WO2012101735A1 - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
WO2012101735A1
WO2012101735A1 PCT/JP2011/051199 JP2011051199W WO2012101735A1 WO 2012101735 A1 WO2012101735 A1 WO 2012101735A1 JP 2011051199 W JP2011051199 W JP 2011051199W WO 2012101735 A1 WO2012101735 A1 WO 2012101735A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
destination
mode
storage device
remaining capacity
Prior art date
Application number
PCT/JP2011/051199
Other languages
English (en)
French (fr)
Inventor
遠齢 洪
義信 杉山
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/883,633 priority Critical patent/US8755964B2/en
Priority to EP11856863.3A priority patent/EP2669131B1/en
Priority to JP2012554514A priority patent/JP5382238B2/ja
Priority to CN201180065786.XA priority patent/CN103339005B/zh
Priority to PCT/JP2011/051199 priority patent/WO2012101735A1/ja
Publication of WO2012101735A1 publication Critical patent/WO2012101735A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • B60L2240/622Vehicle position by satellite navigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a hybrid vehicle, and more particularly, to a hybrid vehicle capable of outputting electric power stored in a power storage device as commercial electric power.
  • Patent Document 1 discloses a vehicle power supply device that can supply commercial AC power from an in-vehicle power source to an outlet provided in the vehicle.
  • this vehicle power supply device power that can be supplied from the high-voltage battery to the outlet via the inverter based on the state of charge (SOC) of the high-voltage battery mounted on the vehicle, that is, the electric product connected to the outlet is consumed.
  • SOC state of charge
  • Possible allowable power consumption is calculated. When the SOC is lower than the predetermined value, the allowable power consumption is gradually reduced as the SOC is reduced.
  • the in-vehicle outlet becomes unusable.
  • an outlet can be made available by generating power using the internal combustion engine, but it is not desirable to start the internal combustion engine for using the outlet. Therefore, it is desired that the outlet can be used at least to the destination without starting the internal combustion engine for use of the outlet.
  • the above-described vehicle power supply device secures the use of the outlet as much as possible while suppressing the decrease in the SOC of the in-vehicle power supply. However, when the SOC decreases to a predetermined lower limit value, the outlet becomes unusable.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a hybrid vehicle that can use the outlet to the destination without starting the internal combustion engine for using the outlet. .
  • the hybrid vehicle includes a rechargeable power storage device, an internal combustion engine, at least one electric motor, a power output device, an information device, and a control device.
  • At least one electric motor has a power generation function for supplying electric power to the power storage device by being driven by the internal combustion engine, and a function for generating a traveling driving force.
  • the power output device is provided to output the power stored in the power storage device as commercial power.
  • the information device has information related to traveling to the destination of the vehicle.
  • the control device controls the state of charge of the power storage device based on the information up to the destination and the usage status of the power output device up to the destination.
  • control device predicts the amount of power used by the power output device to the destination based on the information up to the destination and the usage status of the power output device, and determines the state of charge of the power storage device based on the prediction result. Control.
  • control device predicts the amount of power used by the power output device to the destination from the output power from the power output device and the required time to the destination.
  • the hybrid vehicle further includes an input device for a user to input power used by the power output device. Then, the control device predicts the power consumption of the power output device to the destination from the power usage input from the input device and the required time to the destination.
  • the control device stops the internal combustion engine and prioritizes traveling using only at least one electric motor (CD mode), and operates the internal combustion engine to set the charging state of the power storage device to a predetermined level. Further switching of the driving mode including the second mode (CS mode) maintained at the target is further controlled. When the remaining capacity falls below the second threshold value (S2) that is higher than the first threshold value (S1) indicating the lower limit of the remaining capacity of the power storage device by the amount of power used, the control device travels.
  • the mode is the second mode.
  • control device sets the target of the remaining capacity so that the remaining capacity gradually decreases in accordance with the usage state of the power output device during a period from when the remaining capacity falls below the second threshold until the vehicle reaches the destination. To change.
  • the control method is a hybrid vehicle control method.
  • the hybrid vehicle includes a rechargeable power storage device, an internal combustion engine, at least one electric motor, a power output device, and an information device.
  • At least one electric motor has a power generation function for supplying electric power to the power storage device by being driven by the internal combustion engine, and a function for generating a traveling driving force.
  • the power output device is provided to output the power stored in the power storage device as commercial power.
  • the information device has information related to traveling to the destination of the vehicle.
  • the control method includes a step of predicting the amount of power used by the power output device to the destination based on the information up to the destination and the usage status of the power output device, and the state of charge of the power storage device based on the prediction result Controlling.
  • the step of predicting includes the step of predicting the amount of power used by the power output apparatus to the destination from the output power from the power output apparatus and the required time to the destination.
  • the hybrid vehicle has a first mode (CD mode) in which the internal combustion engine is stopped and priority is given to traveling using only at least one electric motor, and the charge state of the power storage device is determined by operating the internal combustion engine.
  • the driving mode including the second mode (CS mode) maintained at the target can be switched.
  • the control method compares the remaining capacity of the power storage device with a second threshold value (S2) that is higher than the first threshold value (S1) indicating the lower limit of the remaining capacity by the amount of power used. And a step of setting the traveling mode to the second mode when the remaining capacity falls below the second threshold value.
  • the remaining capacity target is set so that the remaining capacity gradually decreases in accordance with a usage state of the power output device during a period from when the remaining capacity falls below the second threshold value until the vehicle reaches the destination.
  • the method further includes a step of changing.
  • a power output device for outputting the power stored in the power storage device as commercial power and an information device having information relating to traveling to the destination of the vehicle are provided. Since the state of charge of the power storage device is controlled based on the information up to the destination and the usage status of the power output device up to the destination, the power output device can be used up to the destination. Therefore, according to the present invention, the power output device can be used up to the destination without starting the internal combustion engine in order to use the power output device.
  • FIG. 1 is an overall block diagram of a hybrid vehicle according to an embodiment of the present invention. It is a functional block diagram for demonstrating the main functions of ECU. It is the figure which showed an example of the change of the remaining capacity of an electrical storage apparatus. It is a flowchart for demonstrating the process sequence of ECU when an AC switch is turned on by the user.
  • FIG. 1 is an overall block diagram of a hybrid vehicle according to an embodiment of the present invention.
  • hybrid vehicle 100 includes a power storage device 10, a system main relay (hereinafter referred to as "SMR (System Main Relay)") 15, a boost converter 20, inverters 22 and 24, a motor generator. 30 and 32 and an engine 35.
  • the hybrid vehicle 100 further includes a charging inlet 40, a voltage converter 45, relays 47, 50, 55, an outlet 60, a current sensor 62, and an ECU (Electronic Control Unit) 65.
  • Hybrid vehicle 100 further includes a car navigation device 70, an AC switch 72, and a CS mode switch 74.
  • the power storage device 10 is a rechargeable DC power supply, and is constituted by, for example, a secondary battery such as nickel metal hydride or lithium ion or a large capacity capacitor.
  • a secondary battery such as nickel metal hydride or lithium ion or a large capacity capacitor.
  • the power storage device 10 is charged by receiving the power generated by the motor generator 30 driven by the engine 35.
  • the power storage device 10 is charged by receiving the electric power generated by the motor generator 32 even when the vehicle is braked or when the acceleration is reduced on the downward slope.
  • voltage converter 45 as a charger, power storage device 10 is charged by a power source (hereinafter referred to as “external power source”) 85 outside the vehicle (hereinafter, power storage device 10 is charged by external power source 85. (Referred to as “external charging”).
  • the power storage device 10 outputs the stored power to the boost converter 20. Further, by using the voltage converter 45 as a DC / AC converter, the power storage device 10 can supply power to the outlet 60 via the voltage converter 45. In addition, power storage device 10 calculates an SOC based on detection values of a voltage sensor and a current sensor (not shown), and outputs SOC information including the calculated value to ECU 65.
  • the SMR 15 is provided between the power storage device 10 and the boost converter 20.
  • the SMR 15 is turned on when the vehicle system is activated to run the hybrid vehicle 100.
  • Boost converter 20 boosts the input voltages of inverters 22 and 24 to the voltage of power storage device 10 or higher based on a control signal from ECU 65.
  • Boost converter 20 is formed of, for example, a current reversible chopper circuit.
  • the inverters 22 and 24 are connected to the boost converter 20 in parallel with each other.
  • Inverter 22 drives motor generator 30 based on a control signal from ECU 65.
  • Inverter 24 drives motor generator 32 based on a control signal from ECU 65.
  • Each inverter 22 and 24 is comprised by the three-phase PWM inverter containing the switching element for three phases, for example.
  • Each of the motor generators 30 and 32 is a motor generator capable of a power running operation and a regenerative operation, and is constituted by, for example, a three-phase AC synchronous motor generator in which a permanent magnet is embedded in a rotor.
  • the motor generator 30 is driven by the inverter 22 and generates, for example, a starting torque of the engine 35 to start the engine 35. After the engine 35 is started, the motor generator 30 is driven by the engine 35 to generate electric power.
  • the motor generator 32 is driven by the inverter 24 and generates, for example, driving torque for driving to drive driving wheels (not shown). When the vehicle is braked, the kinetic energy of the vehicle is transmitted from the driving wheels. Receive and generate electricity.
  • the engine 35 converts thermal energy generated by the combustion of fuel into kinetic energy of a moving element such as a piston or a rotor, and outputs the converted kinetic energy to at least one of the drive wheel and the motor generator 30.
  • the charging inlet 40 is configured to be matable with a connector 80 connected to an external power supply 85. During external charging, the charging inlet 40 receives power supplied from the external power supply 85 and outputs it to the voltage converter 45. Instead of the charging inlet 40, a charging plug configured to be connectable to an outlet of the external power supply 85 may be provided.
  • the voltage converter 45 is configured to receive power from the external power supply 85 and charge the power storage device 10. Specifically, voltage converter 45 is connected to power supply lines PL1 and NL1 wired between power storage device 10 and SMR 15 via relay 47. Voltage converter 45 converts electric power supplied from external power supply 85 into charging electric power for power storage device 10 based on a control signal from ECU 65 during external charging. Voltage converter 45 is configured to be capable of voltage conversion in both directions, and can convert electric power received from power storage device 10 into a commercial AC voltage and output it to outlet 60. The voltage converter 45 is configured by, for example, an AC / DC converter capable of bidirectional voltage conversion.
  • the relay 50 is provided between the charging inlet 40 and the voltage converter 45.
  • One end of the relay 55 is connected to the electric circuit between the voltage converter 45 and the relay 50, and the other end is connected to the outlet 60.
  • Relays 50 and 55 operate in response to a command from ECU 65. Specifically, during external charging, relays 50 and 55 are turned on and off, respectively. When power is supplied from power storage device 10 to outlet 60, relays 50 and 55 are turned off and on, respectively.
  • the outlet 60 is configured to be able to fit a power plug such as a home appliance.
  • Current sensor 62 detects current Iac output from outlet 60 and outputs the detected value to ECU 65.
  • the car navigation device 70 has information related to traveling to the destination. Specifically, the car navigation device 70 is configured such that an operator can input a destination, and has information such as a route from the current location to the destination, a required time, and a distance. Then, the car navigation device 70 outputs information related to traveling to the destination to the ECU 65.
  • the AC switch 72 is configured to be operable by the user so that the outlet 60 can be used. When AC switch 72 is turned on by the user, relays 47, 50, and 55 are turned on, off, and on, respectively, and power can be supplied from power storage device 10 to outlet 60.
  • the CS mode switch 74 is configured so that the driver can request traveling in the CS (Charge Sustaining) mode.
  • This hybrid vehicle 100 has a traveling mode of a CD (Charge Depleting) mode and a CS mode.
  • the CD mode is a travel mode in which the engine 35 is stopped and the travel using only the motor generator 32 is prioritized.
  • the CS mode is a mode in which the engine 35 is appropriately operated to travel while maintaining the SOC of the power storage device 10 at a predetermined target.
  • This CD mode is a traveling mode in which the vehicle is basically driven using the electric power stored in the power storage device 10 as an energy source without maintaining the SOC of the power storage device 10.
  • the discharge rate is often relatively larger than the charge.
  • the CS mode is a traveling mode in which the engine 35 is operated as necessary to generate power by the motor generator 30 in order to maintain the SOC of the power storage device 10 at a predetermined target. The engine 35 is always operated. It is not limited to running.
  • the traveling mode is the CD mode
  • the engine 35 operates if the accelerator pedal is greatly depressed and a large vehicle power is required. Even if the travel mode is the CS mode, the engine 35 stops if the SOC exceeds the target value. Therefore, regardless of the travel mode, the engine 35 is stopped and travel using only the motor generator 32 is referred to as “EV travel”, and the engine 35 is operated to travel using the motor generator 32 and the engine 35. This is referred to as “HV traveling”.
  • the ECU 65 is constituted by an electronic control unit, and performs SMR 15, boost converter 20, inverters 22, 24, voltage conversion by software processing by executing a program stored in advance by the CPU and / or hardware processing by a dedicated electronic circuit.
  • the operation of the device 45 and the relays 47, 50, 55 is controlled.
  • the ECU 65 controls the SOC of the power storage device 10 based on the above information from the car navigation device 70 to the destination and the usage status of the outlet 60.
  • the ECU 65 predicts the power consumption of the outlet 60 from the outlet 60 to the destination based on the output power (use record) from the outlet 60 and the required time to the destination, and the SOC to the destination based on the prediction result. To control.
  • FIG. 2 is a functional block diagram for explaining main functions of the ECU 65.
  • ECU 65 includes an SOC control unit 110, a travel mode control unit 112, a travel control unit 114, command generation units 116 and 122, and a charge / discharge control unit 120.
  • the SOC control unit 110 performs a process for controlling the SOC of the power storage device 10 (FIG. 1). Specifically, SOC control unit 110 acquires SOC information from power storage device 10 and calculates a remaining capacity (Wh) of power storage device 10 based on the acquired SOC information. In addition, the SOC control unit 110 acquires the required time to the destination from the car navigation device 70, further acquires the detection value of the current sensor 62, and calculates the output power (W) of the outlet 60.
  • the output power of the outlet 60 indicates the usage status of the outlet 60, and may be the output power at that time, or an average value from the start of traveling. Alternatively, the maximum power that can be output by the outlet 60 may be the output power.
  • the SOC control unit 110 predicts the power consumption (Wh) of the outlet 60 to the destination from the output power of the outlet 60 and the required time to the destination. Specifically, the SOC control unit 110 calculates the amount of power used by the outlet 60 to the destination by multiplying the output power of the outlet 60 by the required time to the destination. Then, SOC control unit 110 compares the threshold value obtained by adding the calculated power consumption to a predetermined remaining capacity lower limit value and the remaining capacity of power storage device 10, and When the remaining capacity falls below the threshold value, the travel mode control unit 112 is requested to travel in the CS mode.
  • SOC control unit 110 calculates an SOC target when traveling in the CS mode to the destination. Specifically, SOC control unit 110 changes the SOC target so that the remaining capacity gradually decreases according to the output power (W) of outlet 60 from the threshold value to the lower limit value. This point will be described later with reference to FIG.
  • the traveling mode control unit 112 controls the traveling mode (CD mode / CS mode).
  • the driving mode control unit 112 sets the driving mode to the CD mode when the external charging is finished.
  • traveling mode control unit 112 receives a traveling request in the CS mode from SOC control unit 110, traveling mode control unit 112 switches the traveling mode to CS mode when traveling in the CD mode.
  • traveling in the CS mode is requested by the CS mode switch 74, the traveling mode control unit 112 sets the traveling mode to the CS mode.
  • the traveling control unit 114 performs actual traveling control according to the traveling mode controlled by the traveling mode control unit 112. Specifically, the travel control unit 114 controls the motor generator 32 so that the engine 35 is stopped and the motor generator 32 travels only in the CD mode. In the CS mode, traveling control unit 114 operates engine 35 and motor generator 30 such that engine 35 is operated and motor generator 30 charges power storage device 10 while traveling using engine 35 and motor generator 32. , 32 are controlled.
  • the traveling control unit 114 also starts the engine 35 (HV traveling) when a large traveling driving force is requested by depressing the accelerator pedal even in the CD mode. On the other hand, the traveling control unit 114 also stops the engine 35 (EV traveling) if the remaining capacity exceeds the target value even in the CS mode.
  • Command generation unit 116 generates a control signal for driving engine 35 and inverters 22, 24 in accordance with a command from travel control unit 114, and outputs the generated control signal to engine 35 and inverters 22, 24. .
  • the charge / discharge control unit 120 controls external charging by the external power source 85 (FIG. 1) and power feeding from the power storage device 10 to the outlet 60.
  • external power supply 85 When external power supply 85 is connected to charging inlet 40 and external charging is requested, charging / discharging control unit 120 turns on, turns on, and turns off relays 47, 50, and 55, and charges power storage device 10 with external power supply 85.
  • the voltage converter 45 is controlled.
  • charging / discharging control unit 120 turns on, turns off, and turns on relays 47, 50, and 55, respectively, so that power is supplied from power storage device 10 to outlet 60.
  • the converter 45 is controlled.
  • the command generation unit 122 generates a control signal for driving the voltage converter 45 according to the command from the charge / discharge control unit 120 and outputs the generated control signal to the voltage converter 45.
  • FIG. 3 is a diagram showing a change in the remaining capacity of the power storage device 10.
  • FIG. 3 shows a typical example, but the change in the remaining capacity is not limited to that shown in FIG.
  • the horizontal axis indicates time from the departure place.
  • a solid line k1 indicates a change in the remaining capacity in this embodiment, and a dotted line k2 indicates a change in the remaining capacity in the prior art as a comparative example.
  • the power stored in the power storage device 10 by external charging is supplied to the outlet 60, and the engine 35 is not driven to generate power for use of the outlet 60.
  • the outlet 60 can be used when the remaining capacity is greater than the lower limit S1, and the outlet 60 becomes unusable when the remaining capacity reaches the lower limit S1.
  • the travel mode is the CD mode after the start of travel from the departure place until the remaining capacity decreases, and the vehicle basically travels using the electric power stored in the power storage device 10 as an energy source. Therefore, in the CD mode, the remaining capacity of power storage device 10 decreases.
  • the vehicle travels in the CD mode until the remaining capacity reaches the lower limit S1.
  • the traveling mode is switched from the CD mode to the CS mode, and thereafter, the remaining capacity is maintained at the lower limit S1 by appropriately operating the engine 35 to the destination.
  • the outlet 60 cannot be used up to the destination.
  • the state of charge of power storage device 10 is controlled based on the destination information and the usage status of outlet 60 so that outlet 60 can be used up to the destination.
  • the amount of power used by the outlet 60 to the destination is predicted from the output power from the outlet 60 and the required time to the destination.
  • the traveling mode is switched to the CS mode.
  • the target of the remaining capacity is variably set so that the target of the remaining capacity gradually decreases from the threshold value S2 to the lower limit value S1 when traveling to the destination (dotted line k3).
  • the target slope of the remaining capacity indicated by the dotted line k3 corresponds to the output power (W) from the outlet 60.
  • W the output power
  • FIG. 4 is a flowchart for explaining the processing procedure of the ECU 65 when the AC switch 72 is turned on. The process of this flowchart is called from the main routine and executed every certain time or every time a predetermined condition is satisfied.
  • ECU 65 determines whether or not AC switch 72 is turned on (step S10). When AC switch 72 is not turned on (NO in step S10), ECU 65 proceeds to step S120 without executing a series of subsequent processes.
  • step S10 If it is determined in step S10 that the AC switch 72 is turned on (YES in step S10), the ECU 65 acquires the required time to the destination from the car navigation device 70 (step S20). Moreover, ECU65 acquires the detected value of the current sensor 62 (FIG. 1), and calculates the output electric power of the outlet 60 (step S30). As described above, the output power of the outlet 60 indicates the usage status of the outlet 60, and may be the current output power or an average value from the start of traveling. Alternatively, the maximum power that can be output by the outlet 60 may be the output power.
  • the ECU 65 acquires the SOC information of the power storage device 10 from the power storage device 10 (step S40). Then, ECU 65 calculates the remaining capacity (Wh) of power storage device 10 based on the obtained SOC information (step S50). Next, the ECU 65 predicts the power consumption (Wh) of the outlet 60 to the destination (step S60). Specifically, the ECU 65 multiplies the output power of the outlet 60 calculated in step S30 by the required time to the destination acquired in step S20, thereby using the power consumption (Wh) of the outlet 60 to the destination. ) Is calculated.
  • the ECU 65 calculates the remaining capacity threshold S2 (FIG. 3) obtained by adding the power consumption of the outlet 60 to the destination to the remaining capacity lower limit S1 (FIG. 3) in step S50. It is determined whether the remaining capacity (Wh) is large (step S70). If it is determined that the remaining capacity is greater than threshold value S2 (YES in step S70), ECU 65 determines whether or not CS mode switch 74 is turned on (step S80). If CS mode switch 74 is off (NO in step S80), ECU 65 sets the traveling mode to the CD mode (step S90). When CS mode switch 74 is on (YES in step S80), ECU 65 proceeds to step S110.
  • CS mode switch 74 is on (YES in step S80)
  • step S70 when it is determined in step S70 that the remaining capacity is equal to or less than threshold value S2 (NO in step S70), ECU 65 calculates an SOC target (variable value) (step S100). Specifically, the target of the remaining capacity of the power storage device 10 is calculated along the dotted line k3 shown in FIG. Then, the ECU 65 sets the traveling mode to the CS mode (step S110).
  • hybrid vehicle 100 has an outlet 60 for outputting electric power stored in power storage device 10 as commercial power, and car navigation having information related to traveling to the destination of the vehicle.
  • Device 70 since the charge state of the electrical storage apparatus 10 is controlled based on the information to the destination obtained from the car navigation apparatus 70 and the usage status of the outlet 60 to the destination, the outlet 60 can be used to the destination. Can do. Therefore, according to this embodiment, it is possible to use the outlet 60 to the destination without starting the engine 35 in order to use the outlet 60.
  • the amount of power used by the outlet 60 to the destination (from the output power of the outlet 60 (use record) calculated from the detection value of the current sensor 62) and the required time to the destination (
  • Wh the power consumption of the outlet 60 to the destination
  • the power consumption (Wh) of the outlet 60 to the destination may be predicted by another method.
  • an input device is provided for the user to input power consumption (W) of the outlet 60 to the destination. From the power usage input from the input device and the required time to the destination, The power consumption (Wh) of the outlet 60 may be predicted.
  • the voltage converter 45 can be converted in both directions, and the outlet 60 is connected between the voltage converter 45 and the charging inlet 40.
  • the arrangement is not limited to this.
  • the voltage converter 45 may be dedicated to the charger, and a DC / AC converter may be provided separately from the voltage converter 45 for power supply from the power storage device 10 to the outlet 60.
  • external charging is performed using voltage converter 45, but external power supply 85 is connected to the neutral point of motor generators 30 and 32 during external charging, and neutral point is obtained by inverters 22 and 24. By adjusting the voltage between them, the power supplied from the external power supply 85 may be converted into a charging voltage to charge the power storage device 10.
  • the hybrid vehicle 100 is a so-called “plug-in hybrid vehicle” that can be externally charged.
  • the present invention is not limited to a plug-in hybrid vehicle.
  • external charging may be performed using a non-contact power feeding method such as a resonance method or electromagnetic induction, or a hybrid vehicle in which power storage device 10 is charged outside the vehicle and can be transshipped.
  • the present invention can also be applied to other types of hybrid vehicles. is there. That is, for example, a so-called series-type hybrid vehicle that uses the engine 35 only to drive the motor generator 30 and generates the driving force of the vehicle only by the motor generator 32, or a motor as needed using the engine 35 as the main power.
  • the present invention can also be applied to a one-motor hybrid vehicle that can charge the power storage device 10 using the motor as a generator.
  • engine 35 corresponds to an embodiment of “internal combustion engine” in the present invention
  • motor generators 30 and 32 correspond to an embodiment of “at least one electric motor” in the present invention
  • Voltage converter 45 and outlet 60 form one embodiment of the “power output device” in the present invention
  • car navigation device 70 corresponds to one embodiment of “information device” in the present invention
  • ECU 65 corresponds to an embodiment of “control device” in the present invention.
  • 10 power storage device 15 SMR, 20 boost converter, 22, 24 inverter, 30, 32 motor generator, 35 engine, 40 charging inlet, 47, 50, 55 relay, 60 outlet, 65 ECU, 70 car navigation device, 72 AC switch 74 CS mode switch, 80 connector, 85 external power supply, 100 hybrid vehicle, 110 SOC control unit, 112 travel mode control unit, 114 travel control unit, 116, 122 command generation unit, 120 charge / discharge control unit.

Abstract

 蓄電装置(10)に蓄えられた電力を商用電力として出力するためにコンセント(60)が設けられ、コンセント(60)は、蓄電装置(10)から電圧変換器(45)を介して給電を受ける。カーナビゲーション装置(70)は、車両の目的地までの走行に関する情報を有する。ECU(65)は、目的地までの走行に関する情報をカーナビゲーション装置(70)から取得し、その目的地までの情報と目的地までのコンセント(60)の使用状況とに基づいて、蓄電装置(10)の充電状態を制御する。

Description

ハイブリッド車両
 この発明は、ハイブリッド車両に関し、特に、蓄電装置に蓄えられた電力を商用電力として出力可能なハイブリッド車両に関する。
 特開2004-282837号公報(特許文献1)は、車載電源から車内に設けられたコンセントへ商用交流電力を供給可能な車両用電源装置を開示する。この車両用電源装置においては、車両に搭載された高圧バッテリの充電状態(SOC)に基づいて、高圧バッテリからインバータを介してコンセントへ供給可能な電力、すなわち、コンセントに接続される電気製品が消費可能な許容消費電力が算出される。そして、SOCが所定値を下回っている場合には、SOCが小さくなるほど段階的に許容消費電力が小さくなる。
 このような構成とすることにより、車載電源のSOCの低下を抑制しつつコンセントの使用をできるだけ確保することができるとされる(特許文献1参照)。
特開2004-282837号公報 特開2004-236472号公報
 車載電源のSOCが所定の下限値まで低下すると、車載コンセントは使用不可となる。ハイブリッド車両においては、内燃機関を用いて発電を行なうことによりコンセントを使用可能にすることもできるが、コンセント使用のために内燃機関を始動するのは望ましくない。そこで、コンセント使用のために内燃機関を始動することなく、少なくとも目的地までコンセントを使用可能とすることが望まれる。上記の車両用電源装置は、車載電源のSOCの低下を抑制しつつコンセントの使用をできるだけ確保するものであるが、SOCが所定の下限値まで低下した場合には、コンセントは使用不可となる。
 この発明は、かかる課題を解決するためになされたものであり、その目的は、コンセント使用のために内燃機関を始動することなく目的地までコンセントを使用可能とするハイブリッド車両を提供することである。
 この発明によれば、ハイブリッド車両は、再充電可能な蓄電装置と、内燃機関と、少なくとも一つの電動機と、電力出力装置と、情報機器と、制御装置とを備える。少なくとも一つの電動機は、内燃機関により駆動されて蓄電装置へ電力を供給するための発電機能と、走行駆動力を発生する機能とを有する。電力出力装置は、蓄電装置に蓄えられた電力を商用電力として出力するために設けられる。情報機器は、車両の目的地までの走行に関する情報を有する。制御装置は、目的地までの情報と目的地までの電力出力装置の使用状況とに基づいて蓄電装置の充電状態を制御する。
 好ましくは、制御装置は、目的地までの情報と電力出力装置の使用状況とに基づいて目的地までの電力出力装置の使用電力量を予測し、その予測結果に基づいて蓄電装置の充電状態を制御する。
 さらに好ましくは、制御装置は、電力出力装置からの出力電力と目的地までの所要時間とから、目的地までの電力出力装置の使用電力量を予測する。
 また、好ましくは、ハイブリッド車両は、電力出力装置の使用電力を利用者が入力するための入力装置をさらに備える。そして、制御装置は、入力装置から入力された使用電力と目的地までの所要時間とから、目的地までの電力出力装置の使用電力量を予測する。
 好ましくは、制御装置は、内燃機関を停止して少なくとも一つの電動機のみを用いての走行を優先させる第1のモード(CDモード)と、内燃機関を動作させて蓄電装置の充電状態を所定の目標に維持する第2のモード(CSモード)とを含む走行モードの切替をさらに制御する。そして、制御装置は、蓄電装置の残存容量の下限を示す第1のしきい値(S1)よりも上記使用電力量分だけ高い第2のしきい値(S2)を残存容量が下回ると、走行モードを第2のモードとする。
 さらに好ましくは、制御装置は、残存容量が第2のしきい値を下回ってから目的地に車両が到達するまでの区間、電力出力装置の使用状況に従って残存容量が漸減するように残存容量の目標を変化させる。
 また、この発明によれば、制御方法は、ハイブリッド車両の制御方法である。ハイブリッド車両は、再充電可能な蓄電装置と、内燃機関と、少なくとも一つの電動機と、電力出力装置と、情報機器とを備える。少なくとも一つの電動機は、内燃機関により駆動されて蓄電装置へ電力を供給するための発電機能と、走行駆動力を発生する機能とを有する。電力出力装置は、蓄電装置に蓄えられた電力を商用電力として出力するために設けられる。情報機器は、車両の目的地までの走行に関する情報を有する。そして、制御方法は、目的地までの情報と電力出力装置の使用状況とに基づいて目的地までの電力出力装置の使用電力量を予測するステップと、その予測結果に基づいて蓄電装置の充電状態を制御するステップとを含む。
 好ましくは、予測するステップは、電力出力装置からの出力電力と目的地までの所要時間とから、目的地までの電力出力装置の使用電力量を予測するステップを含む。
 好ましくは、ハイブリッド車両は、内燃機関を停止して少なくとも一つの電動機のみを用いての走行を優先させる第1のモード(CDモード)と、内燃機関を動作させて蓄電装置の充電状態を所定の目標に維持する第2のモード(CSモード)とを含む走行モードの切替が可能である。そして、制御方法は、蓄電装置の残存容量を、残存容量の下限を示す第1のしきい値(S1)よりも上記使用電力量分だけ高い第2のしきい値(S2)と比較するステップと、残存容量が第2のしきい値を下回ると、走行モードを第2のモードとするステップとをさらに含む。
 さらに好ましくは、制御方法は、残存容量が第2のしきい値を下回ってから目的地に車両が到達するまでの区間、電力出力装置の使用状況に従って残存容量が漸減するように残存容量の目標を変化させるステップをさらに含む。
 この発明においては、蓄電装置に蓄えられた電力を商用電力として出力するための電力出力装置と、車両の目的地までの走行に関する情報を有する情報機器とが備えられる。そして、目的地までの情報と目的地までの電力出力装置の使用状況とに基づいて蓄電装置の充電状態を制御するので、目的地まで電力出力装置を使用可能とすることができる。したがって、この発明によれば、電力出力装置を使用するために内燃機関を始動することなく目的地まで電力出力装置を使用することが可能となる。
この発明の実施の形態によるハイブリッド車両の全体ブロック図である。 ECUの主要な機能を説明するための機能ブロック図である。 蓄電装置の残存容量の変化の一例を示した図である。 ACスイッチが利用者によりオン操作されたときのECUの処理手順を説明するためのフローチャートである。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 図1は、この発明の実施の形態によるハイブリッド車両の全体ブロック図である。図1を参照して、ハイブリッド車両100は、蓄電装置10と、システムメインリレー(以下「SMR(System Main Relay)」と称する。)15と、昇圧コンバータ20と、インバータ22,24と、モータジェネレータ30,32と、エンジン35とを備える。また、ハイブリッド車両100は、充電インレット40と、電圧変換器45と、リレー47,50,55と、コンセント60と、電流センサ62と、ECU(Electronic Control Unit)65とをさらに備える。さらに、ハイブリッド車両100は、カーナビゲーション装置70と、ACスイッチ72と、CSモードスイッチ74とをさらに備える。
 蓄電装置10は、再充電可能な直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池や大容量のキャパシタによって構成される。蓄電装置10は、そのSOCが低下すると、エンジン35により駆動されるモータジェネレータ30によって発電された電力を受けて充電される。また、車両の制動時や下り斜面での加速度低減時にも、蓄電装置10は、モータジェネレータ32によって発電される電力を受けて充電される。さらに、電圧変換器45を充電器として用いることによって、蓄電装置10は、車両外部の電源(以下「外部電源」と称する。)85により充電される(以下、外部電源85による蓄電装置10の充電を「外部充電」と称する。)。
 そして、蓄電装置10は、蓄えられた電力を昇圧コンバータ20へ出力する。また、電圧変換器45をDC/AC変換器として用いることによって、蓄電装置10は、電圧変換器45を介してコンセント60へも給電可能である。また、蓄電装置10は、図示されない電圧センサおよび電流センサの検出値に基づいてSOCを算出し、その算出値を含むSOC情報をECU65へ出力する。
 SMR15は、蓄電装置10と昇圧コンバータ20との間に設けられる。SMR15は、ハイブリッド車両100を走行させるために車両システムが起動されるとオン状態となる。昇圧コンバータ20は、ECU65からの制御信号に基づいて、インバータ22,24の入力電圧を蓄電装置10の電圧以上に昇圧する。昇圧コンバータ20は、たとえば、電流可逆チョッパ回路によって構成される。
 インバータ22,24は、互いに並列して昇圧コンバータ20に接続される。インバータ22は、ECU65からの制御信号に基づいてモータジェネレータ30を駆動する。インバータ24は、ECU65からの制御信号に基づいてモータジェネレータ32を駆動する。各インバータ22,24は、たとえば、三相分のスイッチング素子を含む三相PWMインバータによって構成される。
 モータジェネレータ30,32の各々は、力行動作および回生動作可能な電動発電機であり、たとえば、ロータに永久磁石が埋設された三相交流同期電動発電機によって構成される。モータジェネレータ30は、インバータ22によって駆動され、たとえば、エンジン35の始動トルクを発生してエンジン35を始動させ、エンジン35の始動後はエンジン35により駆動されて発電する。モータジェネレータ32は、インバータ24によって駆動され、たとえば、走行用の駆動トルクを発生して駆動輪(図示せず)を駆動し、車両の制動時等には、車両の有する運動エネルギーを駆動輪から受けて発電する。
 エンジン35は、燃料の燃焼による熱エネルギーをピストンやロータなどの運動子の運動エネルギーに変換し、その変換された運動エネルギーを駆動輪およびモータジェネレータ30の少なくとも一方へ出力する。
 充電インレット40は、外部電源85に接続されるコネクタ80と嵌合可能に構成される。そして、外部充電時、充電インレット40は、外部電源85から供給される電力を受けて電圧変換器45へ出力する。なお、充電インレット40に代えて、外部電源85のコンセントに接続可能に構成された充電プラグを設けてもよい。
 電圧変換器45は、外部電源85から電力を受けて蓄電装置10を充電するように構成される。詳しくは、電圧変換器45は、蓄電装置10およびSMR15間に配線される電源線PL1,NL1にリレー47を介して接続される。そして、電圧変換器45は、外部充電時、外部電源85から供給される電力をECU65からの制御信号に基づいて蓄電装置10の充電電力に変換する。また、電圧変換器45は、双方向に電圧変換可能に構成され、蓄電装置10から受ける電力を商用交流電圧に変換してコンセント60へ出力することができる。電圧変換器45は、たとえば、双方向に電圧変換可能なAC/DCコンバータによって構成される。
 リレー50は、充電インレット40と電圧変換器45との間に設けられる。リレー55は、電圧変換器45とリレー50との間の電路に一端が接続され、コンセント60に他端が接続される。リレー50,55は、ECU65からの指令に応じて動作する。具体的には、外部充電時は、リレー50,55は、それぞれオン,オフされる。蓄電装置10からコンセント60への給電時は、リレー50,55は、それぞれオフ,オンされる。コンセント60は、家電製品等の電源プラグを嵌合可能に構成される。電流センサ62は、コンセント60から出力される電流Iacを検出し、その検出値をECU65へ出力する。
 カーナビゲーション装置70は、目的地までの走行に関する情報を有する。具体的には、カーナビゲーション装置70は、操作者が目的地を入力可能に構成され、現在地から目的地までの経路や所要時間、距離等の情報を有する。そして、カーナビゲーション装置70は、その目的地までの走行に関する情報をECU65へ出力する。
 ACスイッチ72は、コンセント60を使用可能とするために利用者が操作可能に構成される。そして、利用者によりACスイッチ72がオン操作されると、リレー47,50,55がそれぞれオン,オフ,オンされ、蓄電装置10からコンセント60へ給電可能となる。
 CSモードスイッチ74は、CS(Charge Sustaining)モードでの走行を運転者が要求可能に構成される。このハイブリッド車両100は、CD(Charge Depleting)モードとCSモードとの走行モードを有する。CDモードとは、エンジン35を停止してモータジェネレータ32のみを用いての走行を優先させる走行モードである。一方、CSモードとは、エンジン35を適宜動作させて蓄電装置10のSOCを所定の目標に維持して走行するモードである。
 なお、CDモードでも、運転者によりアクセルペダルが大きく踏込まれたり、エンジン駆動タイプのエアコン動作時やエンジン暖機時などは、エンジン35の動作が許容される。このCDモードは、蓄電装置10のSOCを維持することなく、基本的に蓄電装置10に蓄えられた電力をエネルギー源として車両を走行させる走行モードである。このCDモードの間は、結果的に充電よりも放電の割合の方が相対的に大きくなることが多い。一方、CSモードは、蓄電装置10のSOCを所定の目標に維持するために、必要に応じてエンジン35を動作させてモータジェネレータ30により発電を行なう走行モードであり、エンジン35を常時動作させての走行に限定されるものではない。
 すなわち、走行モードがCDモードであっても、アクセルペダルが大きく踏込まれて大きな車両パワーが要求されればエンジン35は動作する。また、走行モードがCSモードであっても、SOCが目標値を上回っていればエンジン35は停止する。そこで、走行モードに拘わらず、エンジン35を停止してモータジェネレータ32のみを用いての走行を「EV走行」と称し、エンジン35を動作させてモータジェネレータ32およびエンジン35を用いての走行を「HV走行」と称する。
 ECU65は、電子制御ユニットにより構成され、予め記憶されたプログラムをCPUで実行することによるソフトウェア処理および/または専用の電子回路によるハードウェア処理により、SMR15、昇圧コンバータ20、インバータ22,24、電圧変換器45およびリレー47,50,55の各機器の動作を制御する。
 ここで、ECU65は、カーナビゲーション装置70から受ける目的地までの上記情報とコンセント60の使用状況とに基づいて蓄電装置10のSOCを制御する。一例として、ECU65は、コンセント60からの出力電力(使用実績)と目的地までの所要時間とから目的地までのコンセント60の使用電力量を予測し、その予測結果に基づいて目的地までのSOCを制御する。
 図2は、ECU65の主要な機能を説明するための機能ブロック図である。図2を参照して、ECU65は、SOC制御部110と、走行モード制御部112と、走行制御部114と、指令生成部116,122と、充放電制御部120とを含む。
 SOC制御部110は、蓄電装置10(図1)のSOCを制御するための処理を行なう。具体的には、SOC制御部110は、蓄電装置10からSOC情報を取得し、その取得したSOC情報に基づいて蓄電装置10の残存容量(Wh)を算出する。また、SOC制御部110は、目的地までの所要時間をカーナビゲーション装置70から取得し、さらに、電流センサ62の検出値を取得してコンセント60の出力電力(W)を算出する。なお、このコンセント60の出力電力は、コンセント60の使用状況を示すものであり、その時点の出力電力であってもよいし、走行開始からの平均値等であってもよい。あるいは、コンセント60が出力可能な最大電力を上記の出力電力としてもよい。
 そして、SOC制御部110は、コンセント60の出力電力と目的地までの所要時間とから、目的地までのコンセント60の使用電力量(Wh)を予測する。具体的には、SOC制御部110は、コンセント60の出力電力に目的地までの所要時間を乗算することによって、目的地までのコンセント60の使用電力量を算出する。そして、SOC制御部110は、その算出された使用電力量を予め定められた残存容量下限値に加算して得られるしきい値と、蓄電装置10の残存容量とを比較し、蓄電装置10の残存容量が上記しきい値を下回ると、走行モード制御部112に対してCSモードでの走行を要求する。
 また、蓄電装置10の残存容量が上記しきい値を下回ると、SOC制御部110は、目的地までCSモードで走行する際のSOC目標を算出する。具体的には、SOC制御部110は、上記しきい値から上記下限値までコンセント60の出力電力(W)に従って残存容量が漸減するようにSOC目標を変化させる。なお、この点については、後ほど図3において図を用いて説明する。
 走行モード制御部112は、走行モード(CDモード/CSモード)を制御する。走行モード制御部112は、外部充電が終了すると、走行モードをCDモードに設定する。また、走行モード制御部112は、CSモードでの走行要求をSOC制御部110から受けると、CDモードで走行している場合には走行モードをCSモードに切替える。また、CSモードスイッチ74によりCSモードでの走行が要求されている場合には、走行モード制御部112は、走行モードをCSモードとする。
 走行制御部114は、走行モード制御部112により制御される走行モードに従って実際の走行制御を行なう。具体的には、走行制御部114は、CDモード時は、エンジン35を停止させてモータジェネレータ32のみで走行するように、モータジェネレータ32を制御する。また、CSモード時は、走行制御部114は、エンジン35を動作させてモータジェネレータ30により蓄電装置10を充電しつつエンジン35およびモータジェネレータ32を用いて走行するように、エンジン35およびモータジェネレータ30,32を制御する。
 なお、走行制御部114は、CDモード時においても、アクセルペダルが踏み込まれることにより大きな走行駆動力が要求されたときはエンジン35を始動させる(HV走行)。一方、走行制御部114は、CSモード時においても、残存容量が目標値を上回っていれば、エンジン35を停止させる(EV走行)。
 指令生成部116は、走行制御部114からの指令に従って、エンジン35およびインバータ22,24を駆動するための制御信号を生成し、その生成された制御信号をエンジン35およびインバータ22,24へ出力する。
 充放電制御部120は、外部電源85(図1)による外部充電、および蓄電装置10からコンセント60への給電を制御する。充放電制御部120は、充電インレット40に外部電源85が接続され外部充電が要求されると、リレー47,50,55をそれぞれオン,オン,オフさせ、外部電源85によって蓄電装置10を充電するように電圧変換器45を制御する。また、充放電制御部120は、利用者によりACスイッチ72がオン操作されると、リレー47,50,55をそれぞれオン,オフ,オンさせ、蓄電装置10からコンセント60へ給電を行なうように電圧変換器45を制御する。
 指令生成部122は、充放電制御部120からの指令に従って、電圧変換器45を駆動するための制御信号を生成し、その生成された制御信号を電圧変換器45へ出力する。
 図3は、蓄電装置10の残存容量の変化を示した図である。なお、この図3は、典型的ではあるが一例を示したものであり、残存容量の変化が図3に示されるものに限定されるものではない。図3を参照して、横軸は、出発地からの時間を示す。実線k1は、この実施の形態における残存容量の変化を示し、比較例として、点線k2は、従来技術における残存容量の変化を示す。
 出発地において外部充電が行なわれ、残存容量が十分にある状態から走行が開始されたものとする。基本的に、コンセント60へは、外部充電によって蓄電装置10に蓄えられた電力が供給され、コンセント60の使用のためにエンジン35を駆動して発電することはしない。そして、コンセント60は、残存容量が下限値S1よりも多いときに使用可能であり、残存容量が下限値S1に達するとコンセント60は使用不可となる。
 出発地から走行開始後、残存容量が低下するまでは、走行モードはCDモードであり、基本的に蓄電装置10に蓄えられた電力をエネルギー源として車両は走行する。したがって、CDモードでは、蓄電装置10の残存容量は低下する。
 ここで、従来技術においては、残存容量が下限値S1に達するまでCDモードで走行する。そして、残存容量が下限値S1に達すると、走行モードがCDモードからCSモードに切替わり、その後は目的地までエンジン35を適宜動作させることによって残存容量が下限値S1に維持される。残存容量が下限値S1に達した後は、目的地までコンセント60を使用できなくなる。
 そこで、この実施の形態においては、目的地情報とコンセント60の使用状況とに基づいて、目的地までコンセント60を使用可能となるように蓄電装置10の充電状態が制御される。詳しくは、コンセント60からの出力電力と目的地までの所要時間とから、目的地までのコンセント60の使用電力量が予測される。そして、その予測されたコンセント60の使用電力量を残存容量の下限値S1に上乗せしたしきい値S2に残存容量が達すると、走行モードがCSモードに切替えられる。さらに、目的地までの走行において残存容量の目標がしきい値S2から下限値S1まで漸減するように、残存容量の目標が可変設定される(点線k3)。なお、この点線k3で示される残存容量の目標の傾きは、コンセント60からの出力電力(W)に相当する。これにより、目的地に到達するまでに残存容量が下限値S1に達することによりコンセント60が使用不可となることはなく、目的地までコンセント60を使用することができる。
 図4は、ACスイッチ72がオンされたときのECU65の処理手順を説明するためのフローチャートである。なお、このフローチャートの処理は、一定時間毎または所定の条件が成立する毎にメインルーチンから呼び出されて実行される。
 図4を参照して、ECU65は、ACスイッチ72がオンされているか否かを判定する(ステップS10)。ACスイッチ72がオンされていないときは(ステップS10においてNO)、ECU65は、以降の一連の処理を実行することなくステップS120へ処理を移行する。
 ステップS10においてACスイッチ72がオンされていると判定されると(ステップS10においてYES)、ECU65は、目的地までの所要時間をカーナビゲーション装置70から取得する(ステップS20)。また、ECU65は、電流センサ62(図1)の検出値を取得し、コンセント60の出力電力を算出する(ステップS30)。上述のように、このコンセント60の出力電力は、コンセント60の使用状況を示すものであり、現在の出力電力であってもよいし、走行開始からの平均値であってもよい。あるいは、コンセント60が出力可能な最大電力を上記の出力電力としてもよい。
 さらに、ECU65は、蓄電装置10のSOC情報を蓄電装置10から取得する(ステップS40)。そして、ECU65は、その取得したSOC情報に基づいて、蓄電装置10の残存容量(Wh)を算出する(ステップS50)。次いで、ECU65は、目的地までのコンセント60の使用電力量(Wh)を予測する(ステップS60)。具体的には、ECU65は、ステップS30において算出されたコンセント60の出力電力にステップS20で取得された目的地までの所要時間を乗算することによって、目的地までのコンセント60の使用電力量(Wh)を算出する。
 そして、ECU65は、目的地までのコンセント60の使用電力量を残存容量の下限値S1(図3)に加算して得られる残存容量のしきい値S2(図3)よりもステップS50において算出された残存容量(Wh)が多いか否かを判定する(ステップS70)。残存容量がしきい値S2よりも多いと判定されると(ステップS70においてYES)、ECU65は、CSモードスイッチ74がオンされているか否かを判定する(ステップS80)。そして、CSモードスイッチ74がオフされていれば(ステップS80においてNO)、ECU65は、走行モードをCDモードとする(ステップS90)。なお、CSモードスイッチ74がオンされているときは(ステップS80においてYES)、ECU65は、ステップS110へ処理を移行する。
 一方、ステップS70において、残存容量がしきい値S2以下であると判定されると(ステップS70においてNO)、ECU65は、SOC目標(可変値)を算出する(ステップS100)。具体的には、図3に示した点線k3に沿うように、蓄電装置10の残存容量の目標を算出する。そして、ECU65は、走行モードをCSモードとする(ステップS110)。
 以上のように、この実施の形態においては、ハイブリッド車両100は、蓄電装置10に蓄えられた電力を商用電力として出力するためのコンセント60と、車両の目的地までの走行に関する情報を有するカーナビゲーション装置70とを備える。そして、カーナビゲーション装置70から得られる目的地までの情報と目的地までのコンセント60の使用状況とに基づいて蓄電装置10の充電状態を制御するので、目的地までコンセント60を使用可能とすることができる。したがって、この実施の形態によれば、コンセント60を使用するためにエンジン35を始動することなく目的地までコンセント60を使用することが可能となる。
 なお、上記の実施の形態においては、電流センサ62の検出値から算出されるコンセント60の出力電力(使用実績)と目的地までの所要時間とから、目的地までのコンセント60の使用電力量(Wh)を予測するものとしたが、目的地までのコンセント60の使用電力量(Wh)を別の手法で予測してもよい。たとえば、目的地までのコンセント60の使用電力(W)を利用者が入力するための入力装置を設け、その入力装置から入力された使用電力と目的地までの所要時間とから、目的地までのコンセント60の使用電力量(Wh)を予測してもよい。
 なお、上記の実施の形態においては、電圧変換器45は双方向に変換可能なものとし、コンセント60は電圧変換器45と充電インレット40との間に接続されるものとしたが、コンセント60の配置はこれに限定されるものではない。電圧変換器45を充電器専用とし、蓄電装置10からコンセント60への給電用に電圧変換器45とは別にDC/ACコンバータを設けてもよい。
 また、上記においては、電圧変換器45を用いて外部充電を行なうものとしたが、外部充電時にモータジェネレータ30,32の中性点に外部電源85を接続し、インバータ22,24により中性点間の電圧を調整することによって、外部電源85から供給される電力を充電電圧に変換して蓄電装置10を充電してもよい。
 また、上記においては、ハイブリッド車両100は、外部充電可能な所謂「プラグインハイブリッド車」としたが、この発明は、プラグインハイブリッド車に限定されるものではない。たとえば、共鳴法や電磁誘導等の非接触による給電手法を用いて外部充電を行なってもよいし、蓄電装置10を車両外部で充電して積替え可能なハイブリッド車両であってもよい。
 また、上記においては、エンジン35の動力を駆動輪およびモータジェネレータ30の少なくとも一方へ出力するシリーズ/パラレル型のハイブリッド車両について説明したが、この発明は、その他の形式のハイブリッド車両にも適用可能である。すなわち、たとえば、モータジェネレータ30を駆動するためにのみエンジン35を用い、モータジェネレータ32でのみ車両の駆動力を発生する、いわゆるシリーズ型のハイブリッド車両や、エンジン35を主動力として必要に応じてモータがアシストするとともに、そのモータを発電機としても用いて蓄電装置10を充電可能な1モータ型のハイブリッド車両などにもこの発明は適用可能である。
 なお、上記において、エンジン35は、この発明における「内燃機関」の一実施例に対応し、モータジェネレータ30,32は、この発明における「少なくとも一つの電動機」の一実施例に対応する。また、電圧変換器45およびコンセント60は、この発明における「電力出力装置」の一実施例を形成し、カーナビゲーション装置70は、この発明における「情報機器」の一実施例に対応する。さらに、ECU65は、この発明における「制御装置」の一実施例に対応する。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 蓄電装置、15 SMR、20 昇圧コンバータ、22,24 インバータ、30,32 モータジェネレータ、35 エンジン、40 充電インレット、47,50,55 リレー、60 コンセント、65 ECU、70 カーナビゲーション装置、72 ACスイッチ、74 CSモードスイッチ、80 コネクタ、85 外部電源、100 ハイブリッド車両、110 SOC制御部、112 走行モード制御部、114 走行制御部、116,122 指令生成部、120 充放電制御部。

Claims (10)

  1.  再充電可能な蓄電装置(10)と、
     内燃機関(35)と、
     前記内燃機関により駆動されて前記蓄電装置へ電力を供給するための発電機能と、走行駆動力を発生する機能とを有する少なくとも一つの電動機(30,32)と、
     前記蓄電装置に蓄えられた電力を商用電力として出力するための電力出力装置(45,60)と、
     車両の目的地までの走行に関する情報を有する情報機器(70)と、
     目的地までの前記情報と目的地までの前記電力出力装置の使用状況とに基づいて前記蓄電装置の充電状態を制御する制御装置(65)とを備えるハイブリッド車両。
  2.  前記制御装置は、目的地までの前記情報と前記電力出力装置の使用状況とに基づいて目的地までの前記電力出力装置の使用電力量を予測し、その予測結果に基づいて前記蓄電装置の充電状態を制御する、請求項1に記載のハイブリッド車両。
  3.  前記制御装置は、前記電力出力装置からの出力電力と目的地までの所要時間とから前記使用電力量を予測する、請求項2に記載のハイブリッド車両。
  4.  前記電力出力装置の使用電力を利用者が入力するための入力装置をさらに備え、
     前記制御装置は、入力装置から入力された使用電力と目的地までの所要時間とから前記使用電力量を予測する、請求項2に記載のハイブリッド車両。
  5.  前記制御装置は、前記内燃機関を停止して前記少なくとも一つの電動機のみを用いての走行を優先させる第1のモード(CDモード)と、前記内燃機関を動作させて前記蓄電装置の充電状態を所定の目標に維持する第2のモード(CSモード)とを含む走行モードの切替をさらに制御し、
     前記制御装置は、前記蓄電装置の残存容量の下限を示す第1のしきい値(S1)よりも前記使用電力量分だけ高い第2のしきい値(S2)を前記残存容量が下回ると、前記走行モードを前記第2のモードとする、請求項1から請求項4のいずれか1項に記載のハイブリッド車両。
  6.  前記制御装置は、前記残存容量が前記第2のしきい値を下回ってから前記目的地に車両が到達するまでの区間、前記電力出力装置の使用状況に従って前記残存容量が漸減するように前記残存容量の目標を変化させる、請求項5に記載のハイブリッド車両。
  7.  ハイブリッド車両の制御方法であって、
     前記ハイブリッド車両(100)は、
     再充電可能な蓄電装置(10)と、
     内燃機関(35)と、
     前記内燃機関により駆動されて前記蓄電装置へ電力を供給するための発電機能と、走行駆動力を発生する機能とを有する少なくとも一つの電動機(30,32)と、
     前記蓄電装置に蓄えられた電力を商用電力として出力するための電力出力装置(45,60)と、
     車両の目的地までの走行に関する情報を有する情報機器(70)とを備え、
     前記制御方法は、
     目的地までの前記情報と前記電力出力装置の使用状況とに基づいて目的地までの前記電力出力装置の使用電力量を予測するステップと、
     その予測結果に基づいて前記蓄電装置の充電状態を制御するステップとを含む、ハイブリッド車両の制御方法。
  8.  前記予測するステップは、前記電力出力装置からの出力電力と目的地までの所要時間とから前記使用電力量を予測するステップを含む、請求項7に記載のハイブリッド車両の制御方法。
  9.  前記ハイブリッド車両は、前記内燃機関を停止して前記少なくとも一つの電動機のみを用いての走行を優先させる第1のモード(CDモード)と、前記内燃機関を動作させて前記蓄電装置の充電状態を所定の目標に維持する第2のモード(CSモード)とを含む走行モードの切替が可能であり、
     前記制御方法は、
     前記蓄電装置の残存容量を、前記残存容量の下限を示す第1のしきい値(S1)よりも前記使用電力量分だけ高い第2のしきい値(S2)と比較するステップと、
     前記残存容量が前記第2のしきい値を下回ると、前記走行モードを前記第2のモードとするステップとをさらに含む、請求項7または請求項8に記載のハイブリッド車両の制御方法。
  10.  前記残存容量が前記第2のしきい値を下回ってから前記目的地に車両が到達するまでの区間、前記電力出力装置の使用状況に従って前記残存容量が漸減するように前記残存容量の目標を変化させるステップをさらに含む、請求項9に記載のハイブリッド車両の制御方法。
PCT/JP2011/051199 2011-01-24 2011-01-24 ハイブリッド車両 WO2012101735A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/883,633 US8755964B2 (en) 2011-01-24 2011-01-24 Hybrid vehicle
EP11856863.3A EP2669131B1 (en) 2011-01-24 2011-01-24 Hybrid vehicle
JP2012554514A JP5382238B2 (ja) 2011-01-24 2011-01-24 ハイブリッド車両およびその制御方法
CN201180065786.XA CN103339005B (zh) 2011-01-24 2011-01-24 混合动力车辆
PCT/JP2011/051199 WO2012101735A1 (ja) 2011-01-24 2011-01-24 ハイブリッド車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/051199 WO2012101735A1 (ja) 2011-01-24 2011-01-24 ハイブリッド車両

Publications (1)

Publication Number Publication Date
WO2012101735A1 true WO2012101735A1 (ja) 2012-08-02

Family

ID=46580346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051199 WO2012101735A1 (ja) 2011-01-24 2011-01-24 ハイブリッド車両

Country Status (5)

Country Link
US (1) US8755964B2 (ja)
EP (1) EP2669131B1 (ja)
JP (1) JP5382238B2 (ja)
CN (1) CN103339005B (ja)
WO (1) WO2012101735A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157185A (ja) * 1992-09-25 1994-06-03 Furukawa Electric Co Ltd:The 化合物半導体単結晶の成長方法
JP2014080060A (ja) * 2012-10-15 2014-05-08 Toyota Motor Corp 車両
JP2015133769A (ja) * 2014-01-09 2015-07-23 トヨタ自動車株式会社 車両の電源装置
JP2015223954A (ja) * 2014-05-28 2015-12-14 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
JPWO2014033915A1 (ja) * 2012-08-31 2016-08-08 トヨタ自動車株式会社 車両および車両の制御方法
JP2016166002A (ja) * 2016-04-15 2016-09-15 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2020054026A (ja) * 2018-09-25 2020-04-02 株式会社Subaru 電力制御装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6197373B2 (ja) * 2013-05-29 2017-09-20 日産自動車株式会社 プラグインハイブリッド車両の制御装置
US20150367837A1 (en) * 2014-06-20 2015-12-24 GM Global Technology Operations LLC Powertrain and method for controlling a powertrain
JP6365332B2 (ja) * 2015-02-05 2018-08-01 トヨタ自動車株式会社 車両の制御装置
JP6160643B2 (ja) * 2015-03-17 2017-07-12 トヨタ自動車株式会社 車両の電源システム
US9809214B2 (en) * 2015-05-06 2017-11-07 Ford Global Technologies, Llc Battery state of charge control using route preview data
JP6348929B2 (ja) * 2016-05-23 2018-06-27 本田技研工業株式会社 動力システム及び輸送機器、並びに、電力伝送方法
JP2017226284A (ja) * 2016-06-21 2017-12-28 株式会社クボタ 作業機
US10328940B2 (en) * 2017-03-16 2019-06-25 Ford Global Technologies, Llc Secure idle for a vehicle generator
US11014462B2 (en) * 2017-11-02 2021-05-25 Lear Corporation Methodology of maximizing charging power transfer for electric vehicle when AC voltage sags
JP7111469B2 (ja) * 2018-01-12 2022-08-02 本田技研工業株式会社 車両制御システム、車両制御方法、およびプログラム
JP7010035B2 (ja) * 2018-02-06 2022-01-26 トヨタ自動車株式会社 電動車両
CN113195288A (zh) * 2018-12-14 2021-07-30 沃尔沃卡车集团 用于车辆的电力传输系统
CN113665427A (zh) * 2020-05-13 2021-11-19 株式会社电装 用于电动汽车的控制装置
CN114475363B (zh) * 2022-01-28 2023-05-23 重庆长安新能源汽车科技有限公司 一种动力电池行车加热控制方法、装置及电动汽车

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004236472A (ja) 2003-01-31 2004-08-19 Toyota Motor Corp 車両の制御装置
JP2004282837A (ja) 2003-03-13 2004-10-07 Toyota Motor Corp 車両用電源装置
JP2007062640A (ja) * 2005-09-01 2007-03-15 Toyota Motor Corp ハイブリッド自動車

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683440B2 (en) * 2001-05-29 2004-01-27 Canon Kabushiki Kaisha Detecting method for detecting internal information of a rechargeable battery, detecting apparatus for detecting internal information of a rechargeable battery, apparatus in which said detecting method is applied, apparatus including said detecting apparatus, and storage medium in which a software program of said detecting method is stored
JP4517984B2 (ja) * 2005-09-01 2010-08-04 トヨタ自動車株式会社 ハイブリッド自動車
JP2007099223A (ja) * 2005-10-07 2007-04-19 Toyota Motor Corp ハイブリッド自動車
JP4862621B2 (ja) * 2006-11-15 2012-01-25 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
JP4715881B2 (ja) * 2008-07-25 2011-07-06 トヨタ自動車株式会社 電源システムおよびそれを備えた車両
JP4572979B2 (ja) * 2008-10-21 2010-11-04 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
DE102008043398A1 (de) * 2008-11-03 2010-05-06 Robert Bosch Gmbh Verfahren zum Betreiben eines Generators eines Fahrzeugs
JP2010274687A (ja) 2009-05-26 2010-12-09 Honda Motor Co Ltd ハイブリッド車両の制御装置
AT507916B1 (de) 2010-04-29 2012-01-15 Avl List Gmbh Verfahren zum betreiben eines elektrofahrzeuges
US9536655B2 (en) * 2010-12-01 2017-01-03 Toyota Jidosha Kabushiki Kaisha Wireless power feeding apparatus, vehicle, and method of controlling wireless power feeding system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004236472A (ja) 2003-01-31 2004-08-19 Toyota Motor Corp 車両の制御装置
JP2004282837A (ja) 2003-03-13 2004-10-07 Toyota Motor Corp 車両用電源装置
JP2007062640A (ja) * 2005-09-01 2007-03-15 Toyota Motor Corp ハイブリッド自動車

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2669131A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157185A (ja) * 1992-09-25 1994-06-03 Furukawa Electric Co Ltd:The 化合物半導体単結晶の成長方法
JPWO2014033915A1 (ja) * 2012-08-31 2016-08-08 トヨタ自動車株式会社 車両および車両の制御方法
US9744963B2 (en) 2012-08-31 2017-08-29 Toyota Jidosha Kabushiki Kaisha Vehicle, and control method for vehicle
US9884618B2 (en) 2012-08-31 2018-02-06 Toyota Jidosha Kabushiki Kaisha Vehicle, and control method for vehicle
JP2014080060A (ja) * 2012-10-15 2014-05-08 Toyota Motor Corp 車両
JP2015133769A (ja) * 2014-01-09 2015-07-23 トヨタ自動車株式会社 車両の電源装置
JP2015223954A (ja) * 2014-05-28 2015-12-14 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
US10322714B2 (en) 2014-05-28 2019-06-18 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method for same
JP2016166002A (ja) * 2016-04-15 2016-09-15 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2020054026A (ja) * 2018-09-25 2020-04-02 株式会社Subaru 電力制御装置
JP7227723B2 (ja) 2018-09-25 2023-02-22 株式会社Subaru 電力制御装置

Also Published As

Publication number Publication date
EP2669131A4 (en) 2014-03-26
EP2669131B1 (en) 2015-02-25
CN103339005B (zh) 2014-11-12
EP2669131A1 (en) 2013-12-04
JP5382238B2 (ja) 2014-01-08
CN103339005A (zh) 2013-10-02
US20130297129A1 (en) 2013-11-07
JPWO2012101735A1 (ja) 2014-06-30
US8755964B2 (en) 2014-06-17

Similar Documents

Publication Publication Date Title
JP5382238B2 (ja) ハイブリッド車両およびその制御方法
JP6003943B2 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
JP5316703B2 (ja) ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
WO2014033915A1 (ja) 車両および車両の制御方法
US10252623B2 (en) Charge/discharge system
WO2012140746A1 (ja) 電動車両の電源装置およびその制御方法
EP2353920A1 (en) Electrically driven vehicle and electrically driven vehicle control method
EP2823987B1 (en) Electric-powered vehicle and method for controlling same
US20120022738A1 (en) Electric powered vehicle and control method for the same
KR101730712B1 (ko) 하이브리드 차량
WO2013065167A1 (ja) 車両および車両の制御方法
JP6213497B2 (ja) ハイブリッド車両
EP2918441B1 (en) Charge/discharge system
JP2014131404A (ja) 車両用充電装置
JP5696790B2 (ja) 車両および車両の制御方法
JP2015070661A (ja) 電力供給制御装置
JP5136612B2 (ja) ハイブリッド車の発電制御装置
JP5293160B2 (ja) 車両の制御装置
US10569656B2 (en) Regenerative control device
JP6333161B2 (ja) 電動車両
JP2012222930A (ja) 車両の制御装置
JP6322417B2 (ja) 電圧変動制御装置
WO2014097415A1 (ja) 充放電システム及び充放電方法
JP5765192B2 (ja) 車両および車両の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856863

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13883633

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012554514

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011856863

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE