WO2010073309A1 - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
WO2010073309A1
WO2010073309A1 PCT/JP2008/073300 JP2008073300W WO2010073309A1 WO 2010073309 A1 WO2010073309 A1 WO 2010073309A1 JP 2008073300 W JP2008073300 W JP 2008073300W WO 2010073309 A1 WO2010073309 A1 WO 2010073309A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
level
hybrid vehicle
voltage
power storage
Prior art date
Application number
PCT/JP2008/073300
Other languages
English (en)
French (fr)
Inventor
孝浩 伊藤
隆市 釜賀
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/140,137 priority Critical patent/US8620503B2/en
Priority to EP08879106.6A priority patent/EP2380793B1/en
Priority to PCT/JP2008/073300 priority patent/WO2010073309A1/ja
Priority to CN200880132476.3A priority patent/CN102264587B/zh
Priority to BRPI0823381A priority patent/BRPI0823381B1/pt
Priority to RU2011130539/11A priority patent/RU2480348C2/ru
Priority to JP2010543652A priority patent/JP5131355B2/ja
Priority to CA2747423A priority patent/CA2747423C/en
Publication of WO2010073309A1 publication Critical patent/WO2010073309A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a hybrid vehicle, and more particularly to a hybrid vehicle having a plurality of travel modes.
  • hybrid vehicles have attracted a great deal of attention due to environmental issues.
  • a hybrid vehicle is an automobile equipped with a plurality of power sources.
  • hybrid vehicles using a power storage device (battery, capacitor, etc.) and a motor as power sources have already been put into practical use.
  • a fuel cell vehicle equipped with a fuel cell as a power source is also attracting attention, but an automobile equipped with a power storage device such as a battery or a capacitor in addition to a fuel cell also has multiple power sources.
  • a hybrid vehicle equipped with a power source is also attracting attention, but an automobile equipped with a power storage device such as a battery or a capacitor in addition to a fuel cell also has multiple power sources.
  • a hybrid vehicle having an external charging function for charging a power storage device using an external power source is known.
  • a hybrid vehicle having an external charging function for example, if the power storage device can be charged from a commercial power source for household use, there is an advantage that the number of times that the user has to go to the supply stand for fuel supply is reduced. .
  • Patent Document 1 discloses a hybrid vehicle capable of forcibly operating a power source whose operation frequency has decreased.
  • This hybrid vehicle includes an engine, a power storage device, and a motor generator as power sources.
  • the control device transitions the traveling mode to the HV mode in which the engine is also driven.
  • the control device determines whether or not the driver has operated the switch for switching the driving mode based on the signal output from the switch. judge. Specifically, the control device determines that the switch has been operated when the voltage of the signal is at the H (logic high) level. However, if an abnormality occurs in the control line that transmits the signal from the switch, the control device may not be able to normally switch the traveling mode. For example, it may happen that the control device switches the driving mode in error.
  • An object of the present invention is to provide a hybrid vehicle capable of avoiding continuing to travel in a traveling mode different from the original traveling mode when an abnormality occurs in a control line for transmitting a signal indicating switching of the traveling mode. Is to provide.
  • the present invention is a hybrid vehicle, each of which is configured to be capable of driving the hybrid vehicle, a first power source and a second power source, a control line, a first node having a first voltage, A second node having a second voltage, a switch, and a control device are provided.
  • the switch sets the voltage level of the control line to a first level corresponding to the first voltage by electrically coupling the control line to the first node when the manual operation is not performed.
  • the switch sets the voltage level of the control line to a second level corresponding to the second voltage by electrically coupling the control line to the second node during a period in which the manual operation is performed. .
  • the control device changes the first level from the first level, which is the first change in the voltage level of the control line, and the second level from the second level, which is the second change in the voltage level of the control line.
  • the hybrid vehicle travel mode is changed to a first mode in which the first power source is preferentially used for travel of the hybrid vehicle and the second power source is traveled by the hybrid vehicle based on the change to the level of the vehicle. Switch between the second mode used preferentially.
  • the first power source includes a rotating electric machine configured to be able to drive the drive wheels, and a power storage device configured to be able to store electric power and to supply the stored electric power to the rotating electric machine.
  • the second power source includes an internal combustion engine.
  • the first mode is a mode in which the rotating electrical machine is driven by using the electric power stored in the power storage device.
  • the second mode is a mode in which the hybrid vehicle travels by driving the internal combustion engine.
  • control device switches the traveling mode between the first and second modes when both the first and second changes are detected.
  • the control device switches the traveling mode between the first and second modes according to the first change.
  • the control device returns the traveling mode to the mode before the reference time.
  • the control device maintains the traveling mode in the mode after the reference time point.
  • the control device switches the traveling mode between the first mode and the second mode when the second change occurs until a predetermined period elapses from the reference time point at which the first change has occurred.
  • the control device keeps the traveling mode in the mode before the reference time.
  • the hybrid vehicle further includes a charger configured to be able to charge the power storage device using electric power supplied from the outside of the hybrid vehicle.
  • control device sets the travel mode to the first mode when the hybrid vehicle starts traveling for the first time after the charging of the power storage device by the charger is completed.
  • the hybrid vehicle continues to travel in a travel mode different from the original travel mode when an abnormality occurs in a control line for transmitting a signal indicating switching of the travel mode. it can.
  • FIG. 1 is an overall block diagram of a hybrid vehicle according to a first embodiment.
  • FIG. 2 is a circuit diagram showing a configuration of converters 10 and 12 and connecting portions 72 to 76 shown in FIG. It is a figure which shows the structure of the charger 240, and the structure of the charging cable 300 which connects a hybrid vehicle and an external power supply in detail. It is a circuit diagram which shows the detailed structure of the inverters 20 and 22 of FIG. It is a block diagram of the signal generation circuit 80 of FIG.
  • FIG. 6 is a diagram illustrating the operation of a switch 82. It is a figure which shows the correspondence of the state of switch 82, and the voltage of signal MD.
  • FIG. 2 is a circuit diagram showing a configuration of converters 10 and 12 and connecting portions 72 to 76 shown in FIG. It is a figure which shows the structure of the charger 240, and the structure of the charging cable 300 which connects a hybrid vehicle and an external power supply in detail. It is a circuit diagram which shows the detailed structure of the invert
  • FIG. 2 is a functional block diagram illustrating a configuration of a travel control system of hybrid vehicle 1000 included in ECU 30. It is a figure explaining switching of driving modes.
  • 6 is a timing chart for illustrating travel mode switching control according to the first embodiment. It is a figure which shows the state which the control line 81 short-circuited to the ground node. 6 is a timing chart for comparing the travel mode switching control according to the first embodiment with the travel mode switching control according to the comparative example of the first embodiment. 6 is a flowchart illustrating traveling mode switching control according to the first embodiment. 12 is a timing chart for illustrating travel mode switching control according to the second embodiment.
  • FIG. 1 is an overall block diagram of a hybrid vehicle according to the first embodiment.
  • hybrid vehicle 1000 includes a main power storage device BA, sub power storage devices BB1, BB2, connections 72, 74, 76, converters 10, 12, a capacitor C, and inverters 20, 22. , Positive electrode lines PL1, PL2, PL3, negative electrode line NL, engine 2, motor generators MG1, MG2, power split mechanism 4, and wheels 6.
  • Hybrid vehicle 1000 further includes voltage sensors 42, 44, 46, 48, current sensors 21, 23, 52, 54, 56, temperature sensors 62, 64, 66, charger 240, inlet 241, and ECU. (Electronic Control Unit) 30.
  • the hybrid vehicle 1000 includes first and second power sources.
  • First power source includes a main power storage device BA, sub power storage devices BB1 and BB2, and a motor generator MG2.
  • the second power source includes the engine 2.
  • the hybrid vehicle 1000 can travel using at least one of the first and second power sources.
  • Engine 2 is an internal combustion engine that generates power by burning fuel such as gasoline.
  • the power split mechanism 4 is coupled to the engine 2 and the motor generators MG1 and MG2, and distributes power between them.
  • the power split mechanism 4 includes a planetary gear mechanism having three rotation shafts, for example, a sun gear, a carrier, and a ring gear. These three rotating shafts are connected to the rotating shafts of engine 2 and motor generators MG1, MG2, respectively. It is noted that engine 2 and motor generators MG1 and MG2 can be mechanically connected to power split mechanism 4 by making the rotor of motor generator MG1 hollow and passing the crankshaft of engine 2 through the center thereof.
  • the rotation shaft of motor generator MG2 is coupled to wheel 6 by a reduction gear or a differential gear (not shown).
  • the motor generator MG1 is mounted on the hybrid vehicle 1000 as operating as a generator driven by the engine 2 and operating as an electric motor capable of starting the engine 2.
  • Motor generator MG2 is mounted on hybrid vehicle 1000 as an electric motor that mainly drives wheels 6.
  • Each of main power storage device BA and sub power storage devices BB1, BB2 is a chargeable / dischargeable power storage device, and is composed of, for example, a secondary battery such as nickel hydride or lithium ion.
  • a large capacity capacitor may be used for at least one of main power storage device BA and sub power storage devices BB1 and BB2.
  • Main power storage device BA supplies electric power to converter 10 while being charged by converter 10 during power regeneration.
  • Each of sub power storage devices BB1 and BB2 supplies power to converter 12, while being charged by converter 12 during power regeneration.
  • Sub power storage devices BB1 and BB2 are selectively connected to converter 12 by connecting portions 74 and 76. This eliminates the need for a converter corresponding to each sub power storage device.
  • the number of sub power storage devices is two.
  • the number of sub power storage devices is not limited to two.
  • the sub power storage device connected to the converter 12 is referred to as “sub power storage device BB”.
  • Connection portion 72 is provided between main power storage device BA and positive electrode line PL1 and negative electrode line NL.
  • Connection unit 72 is controlled to be in a conductive state (ON) / non-conductive state (OFF) in accordance with signal CN1 provided from ECU 30.
  • connection unit 72 is turned on, main power storage device BA is connected to positive electrode line PL1 and negative electrode line NL.
  • connection portion 72 is turned off, main power storage device BA is disconnected from positive electrode line PL1 and negative electrode line NL.
  • Connection portion 74 is provided between sub power storage device BB1, positive electrode line PL2, and negative electrode line NL.
  • Connection unit 74 is in a conductive state or a non-conductive state in accordance with signal CN2. Thereby, connecting unit 74 electrically connects sub power storage device BB1 to positive electrode line PL2 and negative electrode line NL, or disconnects sub power storage device BB1 from positive electrode line PL2 and negative electrode line NL.
  • Connection unit 76 is provided between sub power storage device BB2, and positive electrode line PL2 and negative electrode line NL. Connection unit 76 enters either a conductive state or a non-conductive state according to signal CN3. Thereby, connection unit 76 electrically connects sub power storage device BB2 to positive electrode line PL2 and negative electrode line NL, or disconnects sub power storage device BB2 from positive electrode line PL2 and negative electrode line NL.
  • Converter 10 is connected to positive electrode line PL1 and negative electrode line NL.
  • Converter 10 boosts the voltage from main power storage device BA based on signal PWC1 from ECU 30, and outputs the boosted voltage to positive line PL3.
  • Converter 10 steps down the regenerative power supplied from inverters 20 and 22 via positive line PL3 to the voltage level of main power storage device BA based on signal PWC1, and charges main power storage device BA.
  • Converter 10 stops the switching operation when it receives shutdown signal SD1 from ECU 30. Furthermore, when converter 10 receives upper arm on signal UA1 from ECU 30, converter 10 fixes an upper arm and a lower arm (described later) included in converter 10 to an on state and an off state, respectively.
  • Converter 12 is connected to positive line PL2 and negative line NL.
  • Converter 12 boosts the voltage of sub power storage device BB based on signal PWC2 from ECU 30, and outputs the boosted voltage to positive line PL3.
  • Converter 12 steps down the regenerative power supplied from inverters 20 and 22 through positive electrode line PL3 to the voltage level of sub power storage device BB based on signal PWC2, and charges sub power storage device BB.
  • converter 12 stops the switching operation when it receives shutdown signal SD2 from ECU 30. Furthermore, when converter 12 receives upper arm on signal UA2 from ECU 30, converter 12 fixes an upper arm and a lower arm (described later) included in converter 12 to an on state and an off state, respectively.
  • the capacitor C is connected between the positive electrode line PL3 and the negative electrode line NL, and smoothes the voltage fluctuation between the positive electrode line PL3 and the negative electrode line NL.
  • Inverter 20 converts the DC voltage from positive line PL3 into a three-phase AC voltage based on signal PWI1 from ECU 30, and outputs the converted three-phase AC voltage to motor generator MG1. Inverter 20 converts the three-phase AC voltage generated by motor generator MG1 using the power of engine 2 into a DC voltage based on signal PWI1, and outputs the converted DC voltage to positive line PL3. .
  • Inverter 22 converts the DC voltage from positive line PL3 into a three-phase AC voltage based on signal PWI2 from ECU 30, and outputs the converted three-phase AC voltage to motor generator MG2. Further, the inverter 22 converts the three-phase AC voltage generated by the motor generator MG2 receiving the rotational force from the wheel 6 during regenerative braking of the vehicle into a DC voltage based on the signal PWI2, and the converted DC The voltage is output to the positive line PL3.
  • Each of motor generators MG1 and MG2 is a three-phase AC rotating electric machine, for example, a three-phase AC synchronous motor generator.
  • Motor generator MG ⁇ b> 1 is regeneratively driven by inverter 20, and outputs a three-phase AC voltage generated using the power of engine 2 to inverter 20.
  • Motor generator MG1 is driven by power by inverter 20 when engine 2 is started, and cranks engine 2.
  • the motor generator MG2 is driven by the inverter 22 to generate a driving force for driving the vehicle.
  • Motor generator MG ⁇ b> 2 is regeneratively driven by inverter 22 during regenerative braking of the vehicle, and outputs a three-phase AC voltage generated using the rotational force received from wheels 6 to inverter 22.
  • Current sensor 21 detects the value of the current flowing between motor generator MG1 and inverter 20 as motor current value MCRT1, and outputs the motor current value MCRT1 to ECU 30.
  • Current sensor 23 detects the value of the current flowing between motor generator MG2 and inverter 22 as motor current value MCRT2, and outputs the motor current value MCRT2 to ECU 30.
  • the voltage sensor 42 detects the voltage VBA of the main power storage device BA and outputs it to the ECU 30.
  • Current sensor 52 detects current IA flowing between main power storage device BA and converter 10 and outputs the detected current to ECU 30.
  • Temperature sensor 62 detects temperature TA of main power storage device BA and outputs it to ECU 30.
  • Voltage sensors 44 and 46 detect voltage VB1 of sub power storage device BB1 and VB2 of sub power storage device BB2, respectively, and output them to ECU 30.
  • Current sensors 54 and 56 detect current IB1 flowing between sub power storage device BB1 and converter 12 and current IB2 flowing between sub power storage device BB2 and converter 12, respectively, and output them to ECU 30.
  • Temperature sensors 64 and 66 detect temperature TB1 of sub power storage device BB1 and temperature TB2 of sub power storage device BB2, respectively, and output them to ECU 30.
  • the voltage sensor 48 detects the voltage between terminals of the capacitor C (voltage VH) and outputs it to the ECU 30.
  • Charger 240 and inlet 241 charge main power storage device BA and sub power storage devices BB1, BB2 using electric power supplied from the outside of hybrid vehicle 1000. Electric power supplied from a power source (external power source) outside the vehicle is output between positive line PL2 and negative line NL via inlet 241 and charger 240. Charger 240 operates and stops in response to signal CHG from ECU 30.
  • ECU 30 is based on detection values of voltage sensor 42, temperature sensor 62, and current sensor 52, SOC (M) indicating the remaining capacity of main power storage device BA, and input upper limit power indicating the upper limit value of charging power of main power storage device BA. Win (M) and output upper limit power Wout (M) indicating the upper limit value of the discharge power of main power storage device BA are set.
  • ECU 30 determines SOC (S) indicating the remaining capacity of sub power storage device BB based on the detection values of voltage sensor 44 (or 46), temperature sensor 64 (or 66) and current sensor 54 (or 56).
  • SOC SOC
  • Input / output upper limit power Win (S) indicating the upper limit value of charging power of sub power storage device BB
  • output upper limit power Wout (S) indicating the upper limit value of discharge power of sub power storage device BB are set.
  • the remaining capacity (hereinafter also referred to as SOC (State Of Charge)) is indicated by the ratio (%) of the current charge amount to the full charge state of each battery.
  • Win and Wout are upper limit values of power that do not cause overdischarge or overcharge even if the corresponding power storage device (BA, BB1, BB2) releases or accepts power for a predetermined time (for example, about 10 seconds). Indicated.
  • the ECU 30 generates and outputs signals CN1 to CN3 for controlling the connecting portions 72, 74, and 76, respectively.
  • ECU 30 generates signals PWC 1, SD 1, UA 1 for controlling converter 10, and outputs any of these signals to converter 10.
  • ECU 30 generates signals PWC 2, SD 2, UA 2 for controlling converter 12, and outputs any of these signals to converter 12.
  • ECU 30 generates signals PWI1 and PWI2 for driving inverters 20 and 22, respectively, and outputs the generated signals PWI1 and PWI2 to inverters 20 and 22, respectively. Further, ECU 30 generates a signal CHG for controlling charger 240 and outputs the generated signal CHG to charger 240.
  • the ECU 30 switches the traveling mode of the hybrid vehicle 1000 between a CD (Charge Depletion) mode and a CS (Charge Sustain) mode.
  • CD Charge Depletion
  • CS Charge Sustain
  • the CD mode is a traveling mode in which the motor generator MG2 generates the driving force of the hybrid vehicle 1000 by using the electric power stored in the main power storage device BA and the sub power storage device BB. While hybrid vehicle 1000 travels in the CD mode, the electric power stored in main power storage device BA and sub power storage device BB is consumed by motor generator MG2. That is, in the CD mode, the first power source (main power storage device BA, sub power storage device BB, and motor generator MG2) is preferentially used for traveling of the hybrid vehicle.
  • the CS mode is a mode in which the driving force of the hybrid vehicle 1000 is generated so that the total SOC of the main power storage device BA and the sub power storage devices BB1 and BB2 is maintained.
  • the ECU 30 controls the engine 2 so that the engine 2 is preferentially used for traveling of the vehicle.
  • the driving force of hybrid vehicle 1000 is generated only by engine 2. In this case, consumption of power stored in main power storage device BA and sub power storage device BB is suppressed.
  • the engine 2 and the motor generator MG2 may generate the driving force of the hybrid vehicle 1000.
  • the electric power stored in main power storage device BA and sub power storage device BB is used.
  • motor generator MG2 is regeneratively driven. Electric power generated by motor generator MG2 is stored in main power storage device BA or sub power storage device BB. That is, even in the CS mode, power may be exchanged between main power storage device BA and sub power storage device BB and motor generator MG2.
  • charging / discharging of main power storage device BA and sub power storage device BB is controlled so that the total SOC is maintained even in such a case.
  • Hybrid vehicle 1000 further includes a signal generation circuit 80 that generates a signal MD for switching the travel mode, and a control line 81 for transmitting the signal MD from signal generation circuit 80 to ECU 30.
  • the signal generation circuit 80 includes a manually operated switch 82.
  • the signal generation circuit 80 When the switch 82 is operated by the driver, the signal generation circuit 80 generates a signal MD. ECU 30 switches the driving mode between the CD mode and the CS mode in accordance with signal MD, and controls the first power source and the second power source in accordance with the selected driving mode.
  • ECU 30 controls connection units 72 to 76, converters 10 and 12, and charger 240 when charging main power storage device BA and sub power storage devices BB1 and BB2.
  • ECU 30 sets the travel mode to the CD mode. In other words, when the vehicle system shown in FIG. 1 is activated for the first time after completion of charging of main power storage device BA and sub power storage devices BB1, BB2, the travel mode is set to the CD mode.
  • FIG. 2 is a circuit diagram showing a configuration of converters 10 and 12 and connecting portions 72 to 76 shown in FIG.
  • converter 10 includes power semiconductor switching elements Q1, Q2, diodes D1, D2, a reactor L1, and a capacitor C1.
  • an IGBT Insulated Gate Bipolar Transistor
  • switching element a power semiconductor switching element
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • bipolar transistor a bipolar transistor
  • Switching elements Q1, Q2 are connected in series between positive electrode line PL3 and negative electrode line NL.
  • Diodes D1 and D2 are connected in antiparallel to switching elements Q1 and Q2, respectively.
  • Reactor L1 has one end connected to a connection node of switching elements Q1 and Q2, and the other end connected to positive line PL1.
  • Capacitor C1 is connected to positive electrode line PL1 and negative electrode line NL.
  • the converter 12 has the same configuration as the converter 10.
  • switching elements Q1, Q2 are replaced with switching elements Q3, Q4, diodes D1, D2 are replaced with diodes D3, D4, respectively, and reactor L1, capacitor C1, and positive line PL1 are reactor L2, capacitor C2, and
  • the configuration replaced with positive electrode line PL ⁇ b> 2 corresponds to the configuration of converter 12.
  • Switching elements Q1 and Q2 correspond to the upper arm and the lower arm of converter 10, respectively.
  • switching elements Q3 and Q4 correspond to the upper arm and lower arm of converter 12, respectively.
  • Converters 10 and 12 are formed of a chopper circuit.
  • Converter 10 (12) boosts the voltage of positive line PL1 (PL2) using reactor L1 (L2) based on signal PWC1 (PWC2) from ECU 30 (FIG. 1), and the boosted voltage is increased.
  • the on / off period ratio (duty) of switching element Q1 (Q3) and / or switching element Q2 (Q4) the output voltage from main power storage device BA and sub power storage device BB is boosted. The ratio can be controlled.
  • converter 10 (12) steps down the voltage of positive line PL3 based on signal PWC1 (PWC2) from ECU 30 (not shown), and outputs the reduced voltage to positive line PL1 (PL2).
  • the voltage step-down ratio of positive line PL3 can be controlled by controlling the on / off period ratio (duty) of switching element Q1 (Q3) and / or switching element Q2 (Q4).
  • Connection unit 72 includes system main relay SRB1 connected between the positive electrode of main power storage device BA and positive electrode line PL1, and system main relay SRG1 connected between the negative electrode of main power storage device BA and negative electrode line NL.
  • System main relay SRP1 and limiting resistor RA connected in series between the negative electrode of main power storage device BA and negative electrode line NL and provided in parallel with system main relay SRG1.
  • System main relays SRB1, SRP1, and SRG1 are controlled to be in a conductive state (ON) / non-conductive state (OFF) by a signal CN1 provided from ECU 30.
  • connection parts 74 and 76 have the same configuration as the connection part 72 described above.
  • main power storage device BA is replaced with sub power storage device BB1
  • system main relays SRB1, SRP1, and SRG1 are replaced with system main relays SRB2, SRP2, and SRG2, respectively
  • limiting resistor RA is limited resistor RB1.
  • the configuration replaced with corresponds to the configuration of the connecting portion 74.
  • Each system main relay included in connection unit 74 is controlled to be in a conductive state and a non-conductive state by a signal CN2 from ECU 30.
  • connection portion 72 In the configuration of connection portion 72 described above, main power storage device BA is replaced with sub power storage device BB2, system main relays SRB1, SRP1, and SRG1 are replaced with system main relays SRB3, SRP3, and SRG3, respectively, and limiting resistor RA is limited resistor RB2.
  • the configuration replaced with corresponds to the configuration of the connecting portion 76.
  • Each system main relay included in connection unit 76 is controlled to be in a conductive state and a non-conductive state in accordance with a signal CN3 from ECU 30.
  • the inlet 241 receives AC power from the outside of the vehicle.
  • the ECU 30 sends a signal CHG to the charger 240.
  • the charger 240 converts AC power from the inlet 241 into DC power according to the signal CHG.
  • ECU 30 sends signals CN2 and CN3 to connection units 74 and 76, respectively, in order to turn off connection units 74 and 76. Further, the ECU 30 sends a signal CN1 to the connection unit 72 to turn on the connection unit 72. Further, ECU 30 sends signal UA 1 to converter 10 and sends signal SD 2 to converter 12. Converter 10 turns on the upper arm (switching element Q1) and turns off the lower arm (switching element Q2) in response to signal UA1. Converter 12 turns off the upper arm and the lower arm in response to signal SD2.
  • the DC power output from charger 240 is supplied to main power storage device BA via reactor L2, diode D3, switching element Q1, reactor L1, and connecting portion 72. Thereby, main power storage device BA is charged.
  • ECU 30 When charging sub power storage device BB1, ECU 30 sends signals CN1 and CN3 to connection units 72 and 76, respectively, to turn off connection units 72 and 76. Further, the ECU 30 sends a signal CN ⁇ b> 2 to the connection unit 74 in order to turn on the connection unit 74. Further, ECU 30 sends signal SD1 to converter 10 and sends signal SD2 to converter 12. Converter 10 (12) turns off the upper arm and the lower arm in response to signal SD1 (SD2). The DC power output from the charger 240 is supplied to the sub power storage device BB1 via the connection unit 74. Thereby, sub power storage device BB1 is charged.
  • the ECU 30 When charging the sub power storage device BB2, the ECU 30 sends signals CN1 and CN2 to the connection units 72 and 74, respectively, in order to turn off the connection units 72 and 74. Further, the ECU 30 sends a signal CN3 to the connection unit 76 to turn on the connection unit 76. Further, ECU 30 sends signal SD1 (SD2) to converter 10 (12). The DC power output from the charger 240 is supplied to the sub power storage device BB2 via the connection unit 76. Thereby, sub power storage device BB2 is charged.
  • SD1 SD2
  • FIG. 3 is a diagram showing in detail the configuration of the charger 240 and the configuration of the charging cable 300 that connects the hybrid vehicle and the external power source.
  • the charger 240 includes an AC / DC conversion circuit 242, a DC / AC conversion circuit 244, an insulating transformer 246, and a rectification circuit 248.
  • the AC / DC conversion circuit 242 is composed of a single-phase bridge circuit. AC / DC conversion circuit 242 converts AC power into DC power based on signal CHG from ECU 30. The AC / DC conversion circuit 242 also functions as a boost chopper circuit that boosts the voltage by using a coil as a reactor.
  • the DC / AC conversion circuit 244 is composed of a single-phase bridge circuit.
  • the DC / AC conversion circuit 244 converts DC power into high-frequency AC power based on the signal CHG from the ECU 30 and outputs it to the isolation transformer 246.
  • the insulating transformer 246 includes a core made of a magnetic material, and a primary coil and a secondary coil wound around the core.
  • the primary coil and the secondary coil are electrically insulated and connected to the DC / AC conversion circuit 244 and the rectification circuit 248, respectively.
  • Insulation transformer 246 converts high-frequency AC power received from DC / AC conversion circuit 244 into a voltage level corresponding to the turn ratio of the primary coil and the secondary coil, and outputs the voltage level to rectifier circuit 248.
  • the rectifier circuit 248 rectifies AC power output from the insulating transformer 246 into DC power.
  • the voltage between the AC / DC conversion circuit 242 and the DC / AC conversion circuit 244 (voltage between terminals of the smoothing capacitor) is detected by the voltage sensor 182, and a signal representing the detection result is input to the ECU 30.
  • the output current of charger 240 is detected by current sensor 184, and a signal representing the detection result is input to ECU 30.
  • ECU 30 generates signal CHG for driving charger 240 and outputs it to charger 240 when main power storage device BA and sub power storage devices BB1, BB2 are charged by power supply 402 outside the vehicle.
  • the ECU 30 has a failure detection function of the charger 240 in addition to a control function of the charger 240. If the voltage detected by voltage sensor 182, the current detected by current sensor 184, etc. are equal to or greater than a threshold value, a failure of charger 240 is detected.
  • the inlet 241 is provided, for example, on the side of the hybrid vehicle.
  • a connector 310 of a charging cable 300 that connects the hybrid vehicle and an external power source 402 is connected to the inlet 241.
  • the charging cable 300 includes a connector 310, a plug 320, and a CCID (Charging Circuit Interrupt Device) 330.
  • CCID Charging Circuit Interrupt Device
  • the connector 310 is connected to the inlet 241.
  • the connector 310 is provided with a switch 312.
  • the switch 312 is closed when the connector 310 is connected to the inlet 241.
  • a cable connection signal PISW indicating that the connector 310 is connected to the inlet 241 is input to the ECU 30.
  • the switch 312 opens and closes in conjunction with a locking fitting (not shown) that locks the connector 310 of the charging cable 300 to the inlet 241 of the hybrid vehicle.
  • the plug 320 of the charging cable 300 is connected to the outlet 400.
  • the outlet 400 is an outlet provided in a house, for example. AC power is supplied from the power source 402 to the outlet 400.
  • the CCID 330 has a relay 332 and a control pilot circuit 334.
  • relay 332 In the state where relay 332 is opened, the supply of electric power from power supply 402 to the hybrid vehicle is interrupted. When the relay 332 is closed, power can be supplied from the power source 402 to the hybrid vehicle.
  • the state of relay 332 is controlled by ECU 30 in a state where connector 310 of charging cable 300 is connected to inlet 241 of the hybrid vehicle.
  • the control pilot circuit 334 has a pilot signal (square wave signal) CPLT on the control pilot line in a state where the plug 320 of the charging cable 300 is connected to the outlet 400, that is, the external power source 402, and the connector 310 is connected to the inlet 241.
  • Pilot signal CPLT is periodically changed by an oscillator (not shown) provided in control pilot circuit 334.
  • the control pilot circuit 334 can output a predetermined pilot signal CPLT even if the connector 310 is disconnected from the inlet 241. However, even if the pilot signal CPLT is output with the connector 310 disconnected from the inlet 241, the ECU 30 cannot detect the signal CPLT.
  • control pilot circuit 334 When plug 320 is connected to outlet 400 and connector 310 is connected to inlet 241, control pilot circuit 334 generates pilot signal CPLT having a predetermined pulse width (duty cycle).
  • the current capacity that can be supplied is notified to the hybrid vehicle by the pulse width of the pilot signal CPLT.
  • the current capacity of charging cable 300 is notified to the hybrid vehicle.
  • the pulse width of pilot signal CPLT is constant without depending on the voltage and current of power supply 402.
  • the pulse width of the pilot signal CPLT may be different. That is, the pulse width of pilot signal CPLT can be determined for each type of charging cable.
  • main power storage device BA and sub power storage devices BB1, BB2 are charged in a state where hybrid vehicle and power source 402 are connected by charging cable 300.
  • AC voltage VAC of power supply 402 is detected by voltage sensor 188 provided inside the hybrid vehicle. The detected voltage VAC is transmitted to the ECU 30.
  • FIG. 4 is a circuit diagram showing a detailed configuration of inverters 20 and 22 in FIG.
  • inverter 20 includes a U-phase arm 15, a V-phase arm 16, and a W-phase arm 17.
  • U-phase arm 15, V-phase arm 16, and W-phase arm 17 are connected in parallel between positive electrode line PL3 and negative electrode line NL.
  • the U-phase arm 15 includes switching elements Q5 and Q6 connected in series between the positive electrode line PL3 and the negative electrode line NL, and diodes D5 and D6 connected in reverse parallel to the switching elements Q5 and Q6, respectively.
  • V-phase arm 16 includes switching elements Q7 and Q8 connected in series between positive electrode line PL3 and negative electrode line NL, and diodes D7 and D8 connected in antiparallel to switching elements Q7 and Q8, respectively.
  • W-phase arm 17 includes switching elements Q9 and Q10 connected in series between positive electrode line PL3 and negative electrode line NL, and diodes D9 and D10 connected in antiparallel to switching elements Q9 and Q10, respectively.
  • each phase arm is connected to each phase end of each phase coil of motor generator MG1. That is, motor generator MG1 is a three-phase permanent magnet synchronous motor, and one end of each of three coils of U, V, and W phases is connected to the midpoint.
  • the other end of the U-phase coil is connected to a line UL drawn from the connection node of switching elements Q5 and Q6.
  • the other end of the V-phase coil is connected to line VL drawn from the connection node of switching elements Q7 and Q8.
  • the other end of the W-phase coil is connected to a line WL drawn from the connection node of switching elements Q9 and Q10.
  • inverter 22 in FIG. 1 is also different in that it is connected to motor generator MG2, but since the internal circuit configuration is the same as that of inverter 20, detailed description thereof will not be repeated.
  • FIG. 4 shows that the signal PWI is given to the inverter.
  • This signal PWI generally shows the signals PWI1 and PWI2. As shown in FIG. 1, signals PWI1 and PWI2 are input to inverters 20 and 22, respectively.
  • FIG. 5 is a configuration diagram of the signal generation circuit 80 of FIG. Referring to FIG. 5, signal generation circuit 80 includes a switch 82, a resistor 83, a ground node 84, and a power supply node 85.
  • the switch 82 connects the control line 81 and the ground node 84 in the ON state. Switch 82 disconnects control line 81 from ground node 84 in the off state. Resistor 83 is connected between power supply node 85 and control line 81. The voltage + B of the power supply node is higher than the voltage (set to 0) of the ground node 84.
  • the switch 82 is composed of a momentary switch.
  • the momentary switch is a switch that continues a predetermined state only while being operated and automatically returns to an initial state when the operation is completed.
  • the switch 82 continues to be in an on state only while being operated, and returns to an off state when the operation is completed.
  • FIG. 6 is a diagram for explaining the operation of the switch 82.
  • switch 82 is in an off state when there is no operation by a user (for example, a driver).
  • the switch 82 is turned on by the user's manual operation (for example, pressing a button provided on the switch).
  • the switch 82 is kept in the on state.
  • the state of the switch 82 returns to the initial state (that is, the off state).
  • FIG. 7 is a diagram showing the correspondence between the state of the switch 82 and the voltage of the signal MD.
  • the voltage of the signal MD corresponds to the voltage of the control line 81.
  • switch 82 is in the off state before time t1.
  • the voltage of the signal MD that is, the voltage VMD that is the voltage of the control line 81
  • the switch 82 is turned on by manual operation.
  • the voltage VMD changes from + B to 0.
  • the switch 82 returns to the off state.
  • the voltage VMD changes from 0 to + B.
  • the voltage VMD is 0 because the switch 82 is kept on.
  • the level of the voltage VMD when the value of the voltage VMD is higher than the threshold value (B / 2) is defined as “H level”, and the level of the voltage VMD when the voltage VMD is lower than the threshold value is defined. It is defined as “L level”. That is, when voltage VMD is + B, the level of voltage VMD is H level. When the voltage VMD is 0, the level of the voltage VMD is L level.
  • the threshold value (B / 2) is also shown in other drawings.
  • FIG. 8 is a functional block diagram illustrating the configuration of the travel control system of the hybrid vehicle 1000 included in the ECU 30. More specifically, FIG. 8 shows a control configuration relating to power distribution control between engine 2 and motor generators MG1, MG2. Each functional block shown in FIG. 8 can be realized by execution of a predetermined program stored in advance by the ECU 30 and / or arithmetic processing by an electronic circuit (hardware) in the ECU 30.
  • total power calculation unit 260 calculates the required power (total required power Pttl) of hybrid vehicle 1000 as a whole based on the vehicle speed and the amount of operation of an accelerator pedal (not shown). Note that the total required power Pttl can also include power (engine output) required for generating battery charging power by the motor generator MG1 in accordance with the vehicle situation.
  • Travel control unit 250 includes input / output upper limit powers Win (M) and Wout (M) of main power storage device BA, input / output upper limit powers Win (S) and Wout (S) of sub power storage device BB, and total power calculation unit.
  • torque command values Tqcom1 and Tqcom2 are generated as motor control commands.
  • traveling control unit 250 determines that the total input / output power of motor generators MG1 and MG2 is the total input upper limit power (Win (M) + Win (S)) and output upper limit power of main power storage device BA and sub power storage device BB Torque command values Tqcom1 and Tqcom2 are generated so as not to exceed the sum of (Wout (M) + Wout (S)).
  • the traveling control unit 250 distributes the total required power Pttl to the vehicle driving power by the motor generator MG2 and the vehicle driving power by the engine 2.
  • the running mode is the CD mode
  • the distribution of the vehicle driving power is determined so that the electric power stored in the power storage device is used as much as possible. Therefore, the operation of the engine 2 is suppressed.
  • the traveling mode is the CS mode
  • the vehicle driving power by the engine 2 is set so that the engine 2 can operate with high efficiency. With these controls, the fuel consumption rate of the hybrid vehicle can be increased.
  • the inverter control unit 270 generates the control signal PWI1 for the inverter 20 based on the torque command value Tqcom1 and the motor current value MCRT1 of the motor generator MG1.
  • inverter control unit 280 generates control signal PWI2 for inverter 22 based on torque command value Tqcom2 and motor current value MCRT2 of motor generator MG2.
  • the traveling control unit 250 sets a required value of vehicle drive power by the engine and generates an engine control command Ecom based on the required value.
  • the engine control command Ecom is output to the engine control unit 295.
  • the engine control unit 295 controls the operation of the engine 2 in accordance with the engine control command Ecom.
  • the mode switching control unit 290 receives the signal MD. Mode switching control unit 290 determines whether or not a condition for switching the traveling mode is satisfied based on voltage VMD of signal MD. When mode switching control section 290 determines that the condition for traveling mode is satisfied, it outputs an instruction for switching traveling mode to traveling control section 250. The traveling control unit 250 switches the traveling mode between the CD mode and the CS mode in accordance with an instruction from the mode switching control unit 290.
  • the mode switching control unit 290 does not output an instruction for switching the traveling mode when it is determined that the condition for switching the traveling mode is not satisfied. In this case, the traveling mode switching by the traveling control unit 250 is not executed.
  • Hybrid vehicle 1000 travels actively using the electric power stored in main power storage device BA and sub power storage device BB when the travel mode is the CD mode.
  • hybrid vehicle 1000 travels only by the vehicle driving power from motor generator MG2.
  • the traveling mode is the CD mode
  • the total required power Pttl exceeds the upper limit (Wout (M) + Wout (S)) of the output power of the entire power storage device. Is started. That is, in the CD mode, the first power source (main power storage device BA, sub power storage device BB, and motor generator MG2) is preferentially used for running hybrid vehicle 1000.
  • sub power storage device BB In the CD mode, charging / discharging of the main power storage device BA and the sub power storage device BB is controlled so that the power of the sub power storage device BB is used preferentially over the power of the main power storage device BA.
  • sub power storage device BB connected to converter 12 When the power storage state of sub power storage device BB deteriorates during traveling of hybrid vehicle 1000 (for example, when SOC becomes lower than a predetermined threshold), sub power storage device BB connected to converter 12 is changed. .
  • sub power storage device BB1 is selected as sub power storage device BB when the vehicle system is started, sub power storage device BB1 is disconnected from converter 12, while sub power storage device BB2 is converted as a new sub power storage device BB. 12 is connected.
  • the traveling mode is the CS mode
  • the vehicle driving power is distributed between the engine 2 and the motor generator MG2 so that the total SOC is maintained at the predetermined target value.
  • engine 2 is mainly used for running hybrid vehicle 1000.
  • the main power storage device BA and the sub power storage devices BB1, BB2 are charged by the external power source and the charger 240, so that sufficient power is stored in the main power storage device BA and the sub power storage devices BB1, BB2. Therefore, when the vehicle system is started for the first time after the charging of main power storage device BA and sub power storage devices BB1, BB2 is completed, the traveling mode is set to the CD mode.
  • FIG. 9 is a diagram for explaining the switching of the running mode.
  • the traveling mode of hybrid vehicle 1000 is the CD mode before time t11.
  • electric power is supplied from main power storage device BA and sub power storage device BB to motor generator MG2, so that the total SOC decreases with time.
  • the driver operates the switch 82.
  • the running mode is switched from the CD mode to the CS mode.
  • traveling control unit 250 (see FIG. 8) performs charge / discharge control of main power storage device BA and sub power storage device BB so that the total SOC is maintained at target value A.
  • the SOC value when the switch 82 is operated (time t11) is adopted as the target value A.
  • the driver operates the switch 82 again.
  • the running mode is switched from the CS mode to the CD mode.
  • the total SOC can be preserved by temporarily setting the driving mode to the CS mode.
  • EV Electric Vehicle
  • the total SOC continues to decrease as the driving in the CD mode is continued.
  • engine 2 is used for running hybrid vehicle 1000.
  • FIG. 10 is a timing chart for illustrating travel mode switching control according to the first embodiment.
  • the switch 82 is changed from the off state to the on state by a manual operation.
  • the voltage VMD changes from + B to 0 as the switch 82 changes from the off state to the on state. That is, when the switch 82 changes from the off state to the on state, the level of the voltage VMD changes from the H level to the L level.
  • the operation of the switch 82 is completed. As a result, the switch 82 returns from the on state to the off state.
  • the voltage VMD changes from 0 to + B. That is, when the switch 82 changes from the on state to the off state, the level of the voltage VMD changes from the L level to the H level.
  • Embodiment 1 when the level of the voltage VMD changes from the H level to the L level and changes from the L level to the H level, the ECU 30 switches the traveling mode. As shown in FIG. 10, the level of voltage VMD changes from H level to L level at time t21, and changes from L level to H level at time t22. The ECU 30 switches the traveling mode from the CD mode to the CS mode at time t22.
  • the level of the voltage VMD changes from the H level to the L level at time t23, and changes from the L level to the H level at time t24.
  • the ECU 30 switches the traveling mode from the CS mode to the CD mode at time t24.
  • the control of switching the traveling mode when the switch 82 is operated will be described as a comparative example of the traveling mode switching control according to the first embodiment.
  • the traveling mode is switched when the level of the voltage VMD changes from the H level to the L level. Therefore, when the state of the switch 82 changes as shown in FIG. 10, the travel mode is switched from the CD mode to the CS mode at time t21, and the travel mode is switched from the CS mode to the CD mode at time t23.
  • the traveling mode cannot be normally switched when the control line 81 is short-circuited to the ground node.
  • FIG. 11 is a diagram showing a state in which the control line 81 is short-circuited to the ground node.
  • voltage VMD of control line 81 changes from + B to 0. That is, the level of voltage VMD changes from H level to L level.
  • FIG. 12 is a timing chart for comparing the driving mode switching control according to the first embodiment with the driving mode switching control according to the comparative example of the first embodiment.
  • voltage VMD changes from + B to 0 when control line 81 is short-circuited to ground node 84 (time t25).
  • control line 81 cannot be disconnected from the ground node, so that the level of voltage VMD cannot be changed from H level to L level.
  • the traveling mode is switched from the CD mode to the CS mode at time t25. Further, after time t25, the traveling mode is maintained in the CS mode.
  • a momentary switch is applied to the switch 82.
  • the running mode is switched.
  • control line 81 is short-circuited to ground node 84, the level of voltage VMD changes from H level to L level, but does not return from L level to H level. Therefore, according to the present embodiment, the traveling mode is not switched in such a case.
  • control line 81 when the control line 81 is short-circuited to the ground node, it is possible to prevent the traveling mode from being erroneously switched. Furthermore, according to the present embodiment, it is possible to avoid the vehicle from continuing to travel in a travel mode different from the original travel mode.
  • FIG. 13 is a flowchart illustrating travel mode switching control according to the first embodiment. The process shown in this flowchart is called from the main routine at predetermined intervals, for example, and is executed by the mode switching control unit 290 (see FIG. 8).
  • mode switching control unit 290 determines whether or not the level of voltage VMD has changed from H level to L level (step S1).
  • the mode switching control unit 290 determines a change in the level of the voltage VMD as shown below. First, mode switching control unit 290 determines the level of voltage VMD by comparing the value of voltage VMD with a threshold value (for example, B / 2). Next, mode switching control unit 290 determines that the level of voltage VMD has changed, for example, when the level of voltage VMD at the first time is different from the level of voltage VMD at the second time.
  • a threshold value for example, B / 2
  • mode switching control unit 290 determines that the level of voltage VMD has changed from the H level to the L level (YES in step S1), it executes the process of step S2. Specifically, in step S2, mode switching control unit 290 determines whether or not the level of voltage VMD has changed from the L level to the H level.
  • step S2 When it is determined that the level of the voltage VMD has not changed from the L level to the H level (NO in step S2), the process of step S2 is repeatedly executed. That is, when the level of voltage VMD is H level, the process of step S2 is repeatedly executed.
  • mode switching control unit 290 outputs an instruction for switching the traveling mode to traveling control unit 250.
  • Traveling control unit 250 switches the traveling mode in accordance with an instruction from mode switching control unit 290.
  • control line 81 When control line 81 is normal and switch 82 is operated, it is detected that the level of voltage VMD has changed from the H level to the L level (YES in step S1), and the level of voltage VMD is further reduced to L. It is detected that the level has changed to the H level (YES in step S2).
  • the mode switching control unit 290 outputs an instruction to switch the traveling mode to the traveling control unit 250 (step S3).
  • the traveling control unit 250 switches the traveling mode in response to this instruction. Therefore, the traveling mode is switched normally.
  • step S1 When the control line 81 is short-circuited to the ground (ground node), it is detected that the level of the voltage VMD has changed from the H level to the L level (YES in step S1). However, the level of the voltage VMD does not return from the L level to the H level. Therefore, the determination process in step S2 is repeated. In this case, the mode switching control unit 290 does not output an instruction to switch the traveling mode to the traveling control unit 250. Therefore, the traveling mode is not switched.
  • the switch 82 is constituted by a momentary switch. That is, the switch 82 electrically couples the control line 81 to the ground node 84 during a period in which the manual operation is performed, while the control line 81 is connected to the power supply node 85 via the resistor 83 when the manual operation is not performed. And combine.
  • the ECU 30 is based on the first change in the voltage level of the control line 81 (change from H level to L level) and the second change in the voltage level of the control line 81 (change from L level to H level).
  • the traveling mode of hybrid vehicle 1000 is switched between the first mode (CD mode) and the second mode (CS mode).
  • the traveling mode at the start of traveling is the CD mode.
  • the travel mode is switched from the CD mode to the CS mode due to a short circuit of the control line 81, the EV travel distance is shortened.
  • FIG. 14 is a timing chart for illustrating travel mode switching control according to the second embodiment.
  • the change in the state of switch 82 and the change in voltage VMD during the period from time t31 to time t32 are the change in the state of switch 82 and the voltage VMD during the period from time t21 to time t22. Is the same as each change.
  • the driving mode is switched when the level of the voltage VMD changes from the H level to the L level. That is, the traveling mode is switched from the CD mode to the CS mode at time t31.
  • the traveling mode is determined as the mode after switching.
  • the level of voltage VMD changes from H level to L level.
  • a period T1 from time t31 to time t32 is shorter than the predetermined period T. Therefore, at time t32, the traveling mode is determined to be the CS mode.
  • the change in the state of the switch 82 and the change in the voltage VMD during the period from the time t33 to the time t34 are the same as the change in the state of the switch 82 and the change in the voltage VMD during the period from the time t31 to the time t32.
  • the traveling mode is switched from the CS mode to the CD mode.
  • the period T2 from time t33 to time t34 is shorter than the predetermined period T. Therefore, at time t34, the traveling mode is determined to be the CD mode.
  • the traveling mode is switched when the level of the voltage VMD changes from the H level to the L level.
  • the traveling mode is determined as the mode after the switching.
  • FIG. 15 is a diagram for explaining the change in voltage VMD when the control line 81 is short-circuited to the ground and the travel mode switching control according to the second embodiment.
  • control line 81 when control line 81 is short-circuited to the ground, voltage VMD changes from + B to 0. However, the voltage VMD remains 0 even after a predetermined period T has elapsed from the time when the voltage VMD has changed (time t41).
  • the traveling mode is returned to the mode before switching. At time t42, the traveling mode is switched from the CS mode to the CD mode. Therefore, according to the second embodiment, when an abnormality occurs in the control line 81 (when the control line 81 is short-circuited to the ground), it is possible to prevent the vehicle from continuing to travel in a travel mode different from the original travel mode. .
  • the length of the predetermined period T is set to the length of the normal operation time of the switch 82 (not particularly limited, for example, about several seconds).
  • FIG. 16 is a flowchart illustrating travel mode switching control according to the second embodiment. The process shown in this flowchart is called from the main routine at predetermined intervals, for example, and is executed by the mode switching control unit 290 (see FIG. 8).
  • mode switching control unit 290 determines whether or not the level of voltage VMD has changed from the H level to the L level (step S11). In step S11, the same processing as in step S1 is executed.
  • mode switching control unit 290 determines that the level of voltage VMD has changed from the H level to the L level (YES in step S11)
  • mode switching control unit 290 outputs an instruction for switching the travel mode to travel control unit 250 (step S11).
  • Traveling control unit 250 switches the traveling mode in accordance with an instruction from mode switching control unit 290.
  • the mode switching control unit 290 measures the elapsed time from the time when the level of the voltage VMD changes from the H level to the L level (step S13).
  • step S14 determines whether or not the level of the voltage VMD has changed from the L level to the H level.
  • the process of step S14 is the same as the process of step S2.
  • step S15 mode switching control unit 290 determines whether or not a predetermined time has elapsed since voltage VMD changed from H level to L level. If it is determined that the predetermined time has not elapsed (NO in step S15), the process returns to step S13. On the other hand, when it is determined that the predetermined time has elapsed (YES in step S15), the process of step S16 is executed. In step S ⁇ b> 16, mode switching control unit 290 outputs an instruction for switching the traveling mode to traveling control unit 250. The traveling control unit 250 switches the traveling mode between the CD mode and the CS mode in accordance with an instruction from the mode switching control unit 290.
  • step S14 If it is determined in step S14 that the level of the voltage VMD has changed from the L level to the H level (YES in step S14), the entire process is returned to the main routine. Also, when the process of step S16 is completed, the entire process is returned to the main routine.
  • mode switching control unit 290 determines the traveling mode as the mode after switching.
  • mode switching control unit 290 When the control line 81 is short-circuited to the ground, the level of the voltage VMD changes from H level to L level. However, the level of the voltage VMD remains at the L level even after a lapse of a predetermined period from the time when the change occurs. In this case, mode switching control unit 290 outputs an instruction for returning the traveling mode to the mode before switching. That is, the travel mode of the hybrid vehicle is switched once, but returns to the original mode. Therefore, according to the second embodiment, when an abnormality occurs in the control line 81 (when the control line 81 is short-circuited to the ground), it is possible to prevent the vehicle from continuing to travel in a travel mode different from the original travel mode. .
  • the configuration of the hybrid vehicle according to the third embodiment is the same as the configuration of the hybrid vehicle according to the first embodiment.
  • the third embodiment is different from the first and second embodiments in terms of traveling mode switching control.
  • FIG. 17 is a timing chart for illustrating travel mode switching control according to the third embodiment.
  • times t51, t52, t53, and t54 correspond to times t31, t32, t33, and t34, respectively.
  • a period T1 from time t51 to time t52 and a period T2 from time t53 to time t54 are shorter than the predetermined period T.
  • the length of the predetermined period T is set to a length that is about the normal operation time of the switch 82 (although it is not particularly limited, for example, about several seconds).
  • the driving mode is switched when the level of voltage VMD changes from the L level to the H level from when the voltage VMD changes from the H level to the L level until the predetermined period T elapses. . That is, the traveling mode is switched from the CD mode to the CS mode at time t52, and the traveling mode is switched from the CS mode to the CD mode at time t54.
  • the voltage VMD changes from + B to 0.
  • the voltage VMD remains 0 even after a predetermined period T has elapsed from the time when the voltage VMD has changed (time t41).
  • the traveling mode is not switched in such a case.
  • FIG. 18 is a flowchart illustrating travel mode switching control according to the third embodiment. The process shown in this flowchart is called from the main routine at predetermined intervals, for example, and is executed by the mode switching control unit 290 (see FIG. 8).
  • mode switching control unit 290 determines whether or not the level of voltage VMD has changed from H level to L level (step S21). In step S21, processing similar to that in step S1 is executed.
  • mode switching control unit 290 determines that voltage VMD level has changed from H level to L level (YES in step S21)
  • mode switching control unit 290 determines the elapsed time from when voltage VMD level has changed from H level to L level. Measurement is performed (step S22).
  • step S23 determines whether or not the level of the voltage VMD has changed from the L level to the H level.
  • mode switching control unit 290 determines that the level of voltage VMD has not changed from the L level to the H level (NO in step S23)
  • step S24 mode switching control unit 290 determines whether or not a predetermined time has elapsed since the level of voltage VMD changed from the H level to the L level. If it is determined that the predetermined time has not elapsed (NO in step S24), the process returns to step S22. On the other hand, when it is determined that the predetermined time has elapsed (YES in step S24), the entire process ends.
  • mode switching control unit 290 determines that the level of voltage VMD has changed from the L level to the H level (YES in step S23)
  • mode switching control unit 290 outputs an instruction for switching the travel mode to travel control unit 250 (step S23).
  • Traveling control unit 250 switches the traveling mode in accordance with an instruction from mode switching control unit 290.
  • the process of step S25 ends, the entire process is returned to the main routine.
  • mode switching control unit 290 determines the traveling mode as the mode after switching.
  • mode switching control unit 290 does not output an instruction for switching the traveling mode. That is, the driving mode of the hybrid vehicle is not switched. Therefore, according to the third embodiment, when an abnormality occurs in the control line 81 (when the control line 81 is short-circuited to the ground), it can be avoided that the vehicle continues to travel in a travel mode different from the original travel mode. .
  • FIG. 19 is a diagram illustrating another configuration example of the signal generation circuit.
  • switch 82 is provided between control line 81 and ground node 84, and resistor 83 is connected between control line 81 and ground node 84. This is different from the signal generation circuit 80 in that respect.
  • the switch 82 when the switch 82 is turned on, the voltage of the control line 81 changes from 0 to + B.
  • the control line 81 is short-circuited to the power supply node 85, the voltage of the control line 81 remains + B.
  • mode switching control unit 290 determines whether or not the level of voltage VMD has changed from the L level to the H level. Furthermore, in steps S2, S14, and S23, mode switching control unit 290 determines whether or not the level of voltage VMD has changed from the H level to the L level.
  • the internal combustion engine (engine) is shown as the second power source mounted on the hybrid vehicle.
  • the present invention includes a plurality of different types of power sources and the plurality of power sources.
  • the present invention can be applied to a hybrid vehicle having a plurality of driving modes in which usage modes of power sources are different.
  • the second power source is not limited to the internal combustion engine, as long as it is of a different type from the first power source.
  • a fuel cell may be mounted on a hybrid vehicle as the second power source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 スイッチ(82)は、手動操作の非実行時には、制御線(81)を第1のノード(85)に電気的に結合することにより、制御線(81)の電圧レベルを第1の電圧に対応する第1のレベルに設定する。スイッチ(82)は、手動操作が実行される期間においては、制御線(81)を第2のノードに電気的に結合することにより、制御線(81)の電圧レベルを、第2の電圧に対応する第2のレベルに設定する。ECU(30)は、制御線(81)の電圧レベルの第1のレベルから第2のレベルへの変化、および、制御線(81)の電圧レベルの第2のレベルから第1のレベルへの変化に基づいて、第1および第2の動力源を有するハイブリッド車両(1000)の走行モードを、第1の動力源がハイブリッド車両(1000)の走行に優先的に使用される第1のモードと、第2の動力源がハイブリッド車両(1000)の走行に優先的に使用される第2のモードとの間で切換える。

Description

ハイブリッド車両
 本発明は、ハイブリッド車両に関し、特に、複数の走行モードを有するハイブリッド車両に関する。
 近年、環境問題などを背景にハイブリッド車両(Hybrid Vehicle)が大きく注目されている。ハイブリッド車両は、複数の動力源を搭載した自動車であり、従来のエンジンに加えて蓄電装置(バッテリやキャパシタなど)とモータとを動力源とするハイブリッド車両が既に実用化されている。
 また、動力源として燃料電池(Fuel Cell)を搭載する燃料電池車も注目されているが、燃料電池に加えてバッテリやキャパシタなどの蓄電装置も電源として搭載した自動車も、広い意味で複数の動力源を搭載したハイブリッド車両である。
 一方、外部電源を用いて蓄電装置を充電する外部充電機能を備えたハイブリッド車両が知られている。外部充電機能を備えたハイブリッド車両によれば、たとえば家庭用の商用電源から蓄電装置の充電を行なうことができれば、燃料補給のために補給スタンドに行かなければならない回数が減るといったメリットなどが得られる。
 特開2007-62639号公報(特許文献1)は、動作頻度が少なくなった動力源を強制的に動作させることができるハイブリッド車両を開示する。このハイブリッド車両は、動力源として、エンジンと、蓄電装置およびモータジェネレータとを搭載する。蓄電装置およびモータジェネレータのみを動力源として走行するEVモードで走行中にHVモード移行スイッチがオン操作されると、制御装置は、エンジンも駆動させて走行するHVモードに走行モードを移行する。
特開2007-62639号公報
 特開2007-62639号公報(特許文献1)に開示された構成によれば、制御装置は、スイッチから出力された信号に基づいて、運転者が走行モードを切換えるスイッチを操作したか否かを判定する。具体的には、制御装置は、信号の電圧がH(論理ハイ)レベルである場合に、スイッチが操作されたと判定する。しかしながらスイッチからの信号を伝送する制御線において異常が生じた場合には、制御装置が走行モードを正常に切換えることができなくなる可能性がある。たとえば制御装置が走行モードを誤って切換えることが起こりうる。
 本発明の目的は、走行モードの切換えを示す信号を伝送するための制御線に異常が生じた場合において、本来の走行モードとは異なる走行モードで走行し続けることを回避可能な、ハイブリッド車両を提供することである。
 本発明は要約すれば、ハイブリッド車両であって、各々がハイブリッド車両を駆動可能に構成された第1および第2の動力源と、制御線と、第1の電圧を有する第1のノードと、第2の電圧を有する第2のノードと、スイッチと、制御装置とを備える。スイッチは、手動操作の非実行時には、制御線を第1のノードに電気的に結合することにより、制御線の電圧レベルを、第1の電圧に対応する第1のレベルに設定する。スイッチは、手動操作が実行される期間においては、制御線を第2のノードに電気的に結合することにより、制御線の電圧レベルを、第2の電圧に対応する第2のレベルに設定する。制御装置は、制御線の電圧レベルの第1の変化である第1のレベルから第2のレベルへの変化、および、制御線の電圧レベルの第2の変化である第2のレベルから第1のレベルへの変化に基づいて、ハイブリッド車両の走行モードを、第1の動力源がハイブリッド車両の走行に優先的に使用される第1のモードと、第2の動力源がハイブリッド車両の走行に優先的に使用される第2のモードとの間で切換える。
 好ましくは、第1の動力源は、駆動輪を駆動可能に構成された回転電機と、電力を蓄積可能であるとともに蓄積された電力を回転電機に供給可能に構成された蓄電装置とを含む。第2の動力源は、内燃機関を含む。
 好ましくは、第1のモードは、蓄電装置に蓄積された電力を使用することにより回転電機を駆動させるモードである。第2のモードは、内燃機関を駆動することによりハイブリッド車両を走行させるモードである。
 好ましくは、制御装置は、第1および第2の変化の両方を検出した場合において、走行モードを第1および第2のモードの間で切換える。
 好ましくは、制御装置は、第1の変化に応じて走行モードを第1および第2のモードの間で切換える。制御装置は、第1の変化が生じた基準時点から所定の期間が経過するまでに第2の変化が生じない場合には、走行モードを、基準時点以前のモードに戻す。制御装置は、基準時点から所定の期間が経過するまでに第2の変化が生じた場合には、走行モードを、基準時点以後のモードに保つ。
 好ましくは、制御装置は、第1の変化が生じた基準時点から所定の期間が経過するまでに第2の変化が生じた場合には、走行モードを第1および第2のモードの間で切換える。制御装置は、基準時点から所定の期間が経過するまでに第2の変化が生じなかった場合には、走行モードを、基準時点以前のモードに保つ。
 好ましくは、ハイブリッド車両は、ハイブリッド車両の外部から与えられた電力を用いて蓄電装置を充電可能に構成された充電器をさらに備える。
 好ましくは、制御装置は、充電器による蓄電装置の充電の終了後に初めてハイブリッド車両の走行が開始される場合には、走行モードを第1のモードに設定する。
 本発明によれば、走行モードの切換えを示す信号を伝送するための制御線に異常が生じた場合において、本来の走行モードとは異なる走行モードでハイブリッド車両が走行し続けることを回避することができる。
実施の形態1に従うハイブリッド車両の全体ブロック図である。 図1に示したコンバータ10,12および接続部72~76の構成を示す回路図である。 充電器240の構成および、ハイブリッド車両と外部電源とを接続する充電ケーブル300の構成を詳細に示す図である。 図1のインバータ20および22の詳細な構成を示す回路図である。 図1の信号発生回路80の構成図である。 スイッチ82の動作を説明する図である。 スイッチ82の状態と信号MDの電圧との対応関係を示す図である。 ECU30に含まれるハイブリッド車両1000の走行制御系の構成を説明する機能ブロック図である。 走行モードの切換えを説明する図である。 実施の形態1に従う走行モード切換制御を説明するためのタイミングチャートである。 制御線81が接地ノードに短絡した状態を示す図である。 実施の形態1に従う走行モードの切換制御と、実施の形態1の比較例に従う走行モードの切換制御とを対比するためのタイミングチャートである。 実施の形態1に従う走行モード切換制御を説明するフローチャートである。 実施の形態2に従う走行モード切換制御を説明するためのタイミングチャートである。 制御線81がアースに短絡した場合における電圧VMDの変化および、実施の形態2に従う走行モード切換制御を説明する図である。 実施の形態2に従うモード切換制御を説明するフローチャートである。 実施の形態3に従う走行モード切換制御を説明するためのタイミングチャートである。 実施の形態3に従う走行モード切換制御を説明するフローチャートである。 信号発生回路の他の構成例を示す図である。
符号の説明
 2 エンジン、4 動力分割機構、6 車輪、10,12 コンバータ、15 U相アーム、16 V相アーム、17 W相アーム、20,22 インバータ、21,23,52,54,56,184 電流センサ、30 ECU、42,44,46,48,182,188 電圧センサ、62,64,66 温度センサ、72,74,76 接続部、80,80A 信号発生回路、81 制御線、82,312 スイッチ、83 抵抗、84 接地ノード、85 電源ノード、240 充電器、241 インレット、242 AC/DC変換回路、244 DC/AC変換回路、246 絶縁トランス、248 整流回路、250 走行制御部、260 トータルパワー算出部、270,280 インバータ制御部、290 モード切換制御部、295 エンジン制御部、300 充電ケーブル、310 コネクタ、320 プラグ、330 CCID、332 リレー、334 コントロールパイロット回路、400 コンセント、402 電源、1000 ハイブリッド車両、BA 主蓄電装置、BB1,BB2 副蓄電装置、C,C1,C2 コンデンサ、D1~D10 ダイオード、L1,L2 リアクトル、MG1,MG2 モータジェネレータ、NL 負極ライン、PL1,PL2,PL3 正極ライン、Q1~Q10 スイッチング素子、RA,RB1,RB2 制限抵抗、SRB1,SRP1,SRG1,SRB2,SRP2,SRG2,SRB3,SRP3,SRG3 システムメインリレー、UL,VL,WL ライン。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 [実施の形態1]
 図1は、実施の形態1に従うハイブリッド車両の全体ブロック図である。
 図1を参照して、ハイブリッド車両1000は、主蓄電装置BAと、副蓄電装置BB1,BB2と、接続部72,74,76と、コンバータ10,12と、コンデンサCと、インバータ20,22と、正極ラインPL1,PL2,PL3と、負極ラインNLと、エンジン2と、モータジェネレータMG1,MG2と、動力分割機構4と、車輪6とを備える。ハイブリッド車両1000は、さらに、電圧センサ42,44,46,48と、電流センサ21,23,52,54,56と、温度センサ62,64,66と、充電器240と、インレット241と、ECU(Electronic Control Unit)30とを備える。
 ハイブリッド車両1000は、第1および第2の動力源を備える。第1の動力源は、主蓄電装置BAと、副蓄電装置BB1,BB2と、モータジェネレータMG2とを含む。第2の動力源はエンジン2を含む。ハイブリッド車両1000は、第1および第2の動力源の少なくとも一方を用いて走行可能である。
 エンジン2は、内燃機関であって、ガソリン等の燃料を燃焼させることにより動力を発生させる。
 動力分割機構4は、エンジン2とモータジェネレータMG1,MG2とに結合されて、これらの間で動力を分配する。動力分割機構4は、たとえばサンギヤ、キャリアおよびリングギヤの3つの回転軸を有する遊星歯車機構からなる。これら3つの回転軸がエンジン2およびモータジェネレータMG1,MG2の回転軸にそれぞれ接続される。なお、モータジェネレータMG1のロータを中空にして、その中心にエンジン2のクランク軸を通すことにより、エンジン2およびモータジェネレータMG1,MG2を動力分割機構4に機械的に接続することができる。また、モータジェネレータMG2の回転軸は、図示されない減速ギヤあるいは差動ギヤによって車輪6に結合される。
 モータジェネレータMG1は、エンジン2によって駆動される発電機として動作し、かつエンジン2の始動を行ない得る電動機として動作するものとして、ハイブリッド車両1000に搭載される。モータジェネレータMG2は、主として車輪6を駆動する電動機としてハイブリッド車両1000に搭載される。
 主蓄電装置BAおよび副蓄電装置BB1,BB2の各々は充放電可能な蓄電装置であり、たとえばニッケル水素やリチウムイオン等の二次電池からなる。なお、主蓄電装置BAおよび副蓄電装置BB1,BB2の少なくとも1つに大容量のキャパシタを用いてもよい。
 主蓄電装置BAは、コンバータ10へ電力を供給する一方、電力回生時にはコンバータ10によって充電される。副蓄電装置BB1,BB2の各々はコンバータ12へ電力を供給する一方、電力回生時にはコンバータ12によって充電される。
 副蓄電装置BB1,BB2は接続部74,76によってコンバータ12に選択的に接続される。これにより、各副蓄電装置に対応してコンバータを設ける必要がなくなる。本実施の形態では副蓄電装置の個数は2個である。ただし副蓄電装置の個数は2個に限定されるものではない。以下では、副蓄電装置BB1,BB2のうち、コンバータ12に接続される副蓄電装置を「副蓄電装置BB」と称することにする。
 接続部72は、主蓄電装置BAと、正極ラインPL1および負極ラインNLとの間に設けられる。接続部72は、ECU30から与えられる信号CN1に応じて導通状態(オン)/非導通状態(オフ)が制御される。接続部72がオンすると主蓄電装置BAが正極ラインPL1および負極ラインNLに接続される。一方、接続部72がオフすると主蓄電装置BAが正極ラインPL1および負極ラインNLから切り離される。
 接続部74は、副蓄電装置BB1と、正極ラインPL2および負極ラインNLとの間に設けられる。接続部74は、信号CN2に応じて導通状態および非導通状態のいずれかの状態となる。これにより、接続部74は、副蓄電装置BB1を正極ラインPL2および負極ラインNLに電気的に接続したり、副蓄電装置BB1を正極ラインPL2および負極ラインNLから切り離したりする。
 接続部76は、副蓄電装置BB2と、正極ラインPL2および負極ラインNLとの間に設けられる。接続部76は、信号CN3に応じて導通状態および非導通状態のいずれかの状態となる。これにより、接続部76は、副蓄電装置BB2を正極ラインPL2および負極ラインNLに電気的に接続したり、副蓄電装置BB2を正極ラインPL2および負極ラインNLから切り離したりする。
 コンバータ10は、正極ラインPL1および負極ラインNLに接続される。コンバータ10は、ECU30からの信号PWC1に基づいて主蓄電装置BAからの電圧を昇圧し、その昇圧した電圧を正極ラインPL3へ出力する。また、コンバータ10は、インバータ20,22から正極ラインPL3を介して供給される回生電力を、信号PWC1に基づいて主蓄電装置BAの電圧レベルに降圧して主蓄電装置BAを充電する。
 コンバータ10は、ECU30からシャットダウン信号SD1を受けるとスイッチング動作を停止する。さらに、コンバータ10は、ECU30から上アームオン信号UA1を受けると、コンバータ10に含まれる上アームおよび下アーム(後述)をオン状態およびオフ状態にそれぞれ固定する。
 コンバータ12は、正極ラインPL2および負極ラインNLに接続される。コンバータ12は、ECU30からの信号PWC2に基づいて副蓄電装置BBの電圧を昇圧し、その昇圧した電圧を正極ラインPL3へ出力する。また、コンバータ12は、インバータ20,22から正極ラインPL3を介して供給される回生電力を、信号PWC2に基づいて副蓄電装置BBの電圧レベルに降圧し、副蓄電装置BBを充電する。
 さらに、コンバータ12は、ECU30からシャットダウン信号SD2を受けるとスイッチング動作を停止する。さらに、コンバータ12は、ECU30から上アームオン信号UA2を受けると、コンバータ12に含まれる上アームおよび下アーム(後述)をオン状態およびオフ状態にそれぞれ固定する。
 コンデンサCは、正極ラインPL3と負極ラインNLとの間に接続され、正極ラインPL3と負極ラインNLとの間の電圧変動を平滑化する。
 インバータ20は、ECU30からの信号PWI1に基づいて、正極ラインPL3からの直流電圧を3相交流電圧に変換して、その変換した3相交流電圧をモータジェネレータMG1へ出力する。また、インバータ20は、モータジェネレータMG1がエンジン2の動力を用いることによって発電した3相交流電圧を、信号PWI1に基づいて直流電圧に変換して、その変換した直流電圧を正極ラインPL3へ出力する。
 インバータ22は、ECU30からの信号PWI2に基づいて、正極ラインPL3からの直流電圧を3相交流電圧に変換して、その変換した三相交流電圧をモータジェネレータMG2へ出力する。また、インバータ22は、車両の回生制動時に、モータジェネレータMG2が車輪6からの回転力を受けることによって発電した三相交流電圧を、信号PWI2に基づいて直流電圧に変換して、その変換した直流電圧を正極ラインPL3へ出力する。
 モータジェネレータMG1,MG2の各々は三相交流回転電機であり、たとえば三相交流同期電動発電機からなる。モータジェネレータMG1は、インバータ20によって回生駆動され、エンジン2の動力を用いて発電した三相交流電圧をインバータ20へ出力する。また、モータジェネレータMG1は、エンジン2の始動時にインバータ20によって力行駆動されて、エンジン2をクランキングする。
 モータジェネレータMG2はインバータ22によって力行駆動されて、車両を駆動するための駆動力を発生する。また、モータジェネレータMG2は、車両の回生制動時、インバータ22によって回生駆動されて、車輪6から受ける回転力を用いて発電した三相交流電圧をインバータ22へ出力する。
 電流センサ21は、モータジェネレータMG1とインバータ20との間に流れる電流の値をモータ電流値MCRT1として検出し、そのモータ電流値MCRT1をECU30へ出力する。電流センサ23は、モータジェネレータMG2とインバータ22との間に流れる電流の値をモータ電流値MCRT2として検出し、そのモータ電流値MCRT2をECU30へ出力する。
 電圧センサ42は、主蓄電装置BAの電圧VBAを検出してECU30へ出力する。電流センサ52は、主蓄電装置BAとコンバータ10との間に流れる電流IAを検出してECU30へ出力する。温度センサ62は、主蓄電装置BAの温度TAを検出してECU30へ出力する。
 電圧センサ44および46は、副蓄電装置BB1の電圧VB1および副蓄電装置BB2のVB2をそれぞれ検出してECU30へ出力する。電流センサ54および56は、副蓄電装置BB1とコンバータ12との間に流れる電流IB1、および副蓄電装置BB2とコンバータ12との間に流れる電流IB2をそれぞれ検出してECU30へ出力する。温度センサ64および66は、副蓄電装置BB1の温度TB1および副蓄電装置BB2の温度TB2をそれぞれ検出してECU30へ出力する。
 電圧センサ48は、コンデンサCの端子間電圧(電圧VH)を検出してECU30へ出力する。
 充電器240およびインレット241は、ハイブリッド車両1000の外部から供給された電力を用いて主蓄電装置BA、副蓄電装置BB1,BB2を充電する。車両外部の電源(外部電源)から供給された電力はインレット241および充電器240を介して正極ラインPL2および負極ラインNL間に出力される。充電器240はECU30からの信号CHGに応じて動作および停止する。
 ECU30は、電圧センサ42、温度センサ62および電流センサ52の検出値に基づいて、主蓄電装置BAの残存容量を示すSOC(M)、主蓄電装置BAの充電電力の上限値を示す入力上限電力Win(M)、および、主蓄電装置BAの放電電力の上限値を示す出力上限電力Wout(M)を設定する。
 同様に、ECU30は、電圧センサ44(または46)、温度センサ64(または66)および電流センサ54(または56)の検出値に基づいて、副蓄電装置BBの残存容量を示すSOC(S)、副蓄電装置BBの充電電力の上限値を示す入出力上限電力Win(S)および、副蓄電装置BBの放電電力の上限値を示す出力上限電力Wout(S)を設定する。
 一般的に、残存容量(以下ではSOC(State Of Charge)とも呼ぶ)は、各バッテリの満充電状態に対する現在の充電量の割合(%)によって示される。またWin,Woutは、対応する蓄電装置(BA,BB1,BB2)が所定時間(たとえば10秒程度)電力を放出したり受け入れたりしても過放電あるいは過充電とならないような電力の上限値として示される。
 ECU30は、接続部72,74,76をそれぞれ制御するための信号CN1~CN3を生成して出力する。ECU30はコンバータ10を制御するための信号PWC1,SD1,UA1を生成し、これらの信号のいずれかをコンバータ10へ出力する。ECU30はコンバータ12を制御するための信号PWC2,SD2,UA2を生成し、これらの信号のいずれかをコンバータ12へ出力する。
 さらに、ECU30はインバータ20,22をそれぞれ駆動するための信号PWI1,PWI2を生成し、その生成した信号PWI1,PWI2をインバータ20,22へそれぞれ出力する。さらにECU30は充電器240を制御するための信号CHGを生成して、その生成した信号CHGを充電器240に出力する。
 さらに、ECU30は、ハイブリッド車両1000の走行モードをCD(Charge Depletion)モードとCS(Charge Sustain)モードとの間で切換える。
 CDモードとは、モータジェネレータMG2が主蓄電装置BAおよび副蓄電装置BBに蓄えられた電力を使用することによりハイブリッド車両1000の駆動力を発生させる走行モードである。ハイブリッド車両1000がCDモードで走行する間、主蓄電装置BAおよび副蓄電装置BBに蓄えられた電力はモータジェネレータMG2により消費される。すなわち、CDモードでは、第1の動力源(主蓄電装置BA、副蓄電装置BBおよびモータジェネレータMG2)がハイブリッド車両の走行のために優先的に使用される。
 CSモードとは、主蓄電装置BAおよび副蓄電装置BB1,BB2のトータルSOCが維持されるように、ハイブリッド車両1000の駆動力を発生させるモードである。この場合、ECU30は、エンジン2が車両の走行に優先的に使用されるようにエンジン2を制御する。たとえばCSモードにおいては、エンジン2のみによりハイブリッド車両1000の駆動力が発生される。この場合、主蓄電装置BAおよび副蓄電装置BBに蓄積された電力の消費が抑制される。
 また、CSモードにおいては、エンジン2およびモータジェネレータMG2がハイブリッド車両1000の駆動力を発生する場合がある。たとえばモータジェネレータMG2の出力を高くするために、主蓄電装置BAおよび副蓄電装置BBに蓄積された電力が用いられる。一方、ハイブリッド車両1000の制動時あるいは減速時には、モータジェネレータMG2は回生駆動される。モータジェネレータMG2の発電による電力は、主蓄電装置BAあるいは副蓄電装置BBに蓄えられる。すなわち、CSモードにおいても、主蓄電装置BAおよび副蓄電装置BBとモータジェネレータMG2との間で電力が授受される場合がある。CSモードでは、このような場合においてもトータルSOCが維持されるように、主蓄電装置BAおよび副蓄電装置BBの充放電が制御される。
 ハイブリッド車両1000は、さらに、走行モードを切換えるための信号MDを発生する信号発生回路80と、信号発生回路80からECU30に信号MDを伝送するための制御線81とを含む。信号発生回路80は、手動操作されるスイッチ82を含む。
 スイッチ82が運転者によって操作されたときに、信号発生回路80は信号MDを発生する。ECU30は、信号MDに応じて、走行モードをCDモードとCSモードとの間で切換えるとともに、選択された走行モードに従って、第1の動力源および第2の動力源を制御する。
 ECU30は、主蓄電装置BAおよび副蓄電装置BB1,BB2の充電時において接続部72~76、コンバータ10,12および充電器240を制御する。ECU30は、主蓄電装置BAおよび副蓄電装置BB1,BB2の充電が完了した場合、走行モードをCDモードに設定する。すなわち、図1に示す車両システムが、主蓄電装置BAおよび副蓄電装置BB1,BB2の充電完了後に初めて起動された場合、走行モードはCDモードに設定される。
 図2は、図1に示したコンバータ10,12および接続部72~76の構成を示す回路図である。
 図2を参照して、コンバータ10は、電力用半導体スイッチング素子Q1,Q2と、ダイオードD1,D2と、リアクトルL1と、コンデンサC1とを含む。
 本実施の形態において、電力用半導体スイッチング素子(以下、単に「スイッチング素子」とも称する)としては、IGBT(Insulated Gate Bipolar Transistor)が適用されるものとするが、制御信号によってオン・オフを制御可能であれば任意のスイッチング素子を適用可能である。たとえば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)あるいはバイポーラトランジスタ等も電力用半導体スイッチング素子として適用可能である。
 スイッチング素子Q1,Q2は、正極ラインPL3と負極ラインNLとの間に直列に接続される。ダイオードD1,D2は、それぞれスイッチング素子Q1,Q2に逆並列に接続される。リアクトルL1の一方端は、スイッチング素子Q1,Q2の接続ノードに接続され、その他方端は、正極ラインPL1に接続される。コンデンサC1は、正極ラインPL1および負極ラインNLに接続される。
 コンバータ12は、コンバータ10と同様の構成を有する。コンバータ10の構成において、スイッチング素子Q1,Q2をスイッチング素子Q3,Q4にそれぞれ置き換え、ダイオードD1,D2をダイオードD3,D4にそれぞれ置き換え、リアクトルL1、コンデンサC1および正極ラインPL1をリアクトルL2、コンデンサC2および正極ラインPL2にそれぞれ置き換えた構成がコンバータ12の構成に対応する。
 なお、スイッチング素子Q1,Q2は、コンバータ10の上アームおよび下アームにそれぞれ対応する。同様に、スイッチング素子Q3およびQ4は、コンバータ12の上アームおよび下アームにそれぞれ対応する。
 コンバータ10,12は、チョッパ回路から成る。そして、コンバータ10(12)は、ECU30(図1)からの信号PWC1(PWC2)に基づいて、正極ラインPL1(PL2)の電圧をリアクトルL1(L2)を用いて昇圧し、その昇圧した電圧を正極ラインPL3へ出力する。具体的には、スイッチング素子Q1(Q3)および/またはスイッチング素子Q2(Q4)のオン・オフ期間比(デューティ)を制御することによって、主蓄電装置BA、副蓄電装置BBからの出力電圧の昇圧比を制御できる。
 一方、コンバータ10(12)は、ECU30(図示せず)からの信号PWC1(PWC2)に基づいて、正極ラインPL3の電圧を降圧し、その降圧した電圧を正極ラインPL1(PL2)へ出力する。具体的には、スイッチング素子Q1(Q3)および/またはスイッチング素子Q2(Q4)のオン・オフ期間比(デューティ)を制御することによって、正極ラインPL3の電圧の降圧比を制御できる。
 接続部72は、主蓄電装置BAの正極と正極ラインPL1との間に接続されるシステムメインリレーSRB1と、主蓄電装置BAの負極と負極ラインNLとの間に接続されるシステムメインリレーSRG1と、主蓄電装置BAの負極と負極ラインNLとの間に直列に接続され、かつシステムメインリレーSRG1と並列に設けられるシステムメインリレーSRP1および制限抵抗RAとを含む。システムメインリレーSRB1,SRP1,SRG1はECU30から与えられる信号CN1によって導通状態(オン)/非導通状態(オフ)が制御される。
 接続部74,76は上述した接続部72と同様の構成を有する。すなわち、上述の接続部72の構成において主蓄電装置BAを副蓄電装置BB1に置き換え、システムメインリレーSRB1,SRP1,SRG1をシステムメインリレーSRB2,SRP2,SRG2にそれぞれ置き換え、制限抵抗RAを制限抵抗RB1に置き換えた構成が接続部74の構成に対応する。接続部74に含まれる各システムメインリレーは、ECU30からの信号CN2によって導通状態および非導通状態が制御される。
 また、上述の接続部72の構成において主蓄電装置BAを副蓄電装置BB2に置き換え、システムメインリレーSRB1,SRP1,SRG1をシステムメインリレーSRB3,SRP3,SRG3にそれぞれ置き換え、制限抵抗RAを制限抵抗RB2に置き換えた構成が接続部76の構成に対応する。接続部76に含まれる各システムメインリレーはECU30からの信号CN3に応じて導通状態および非導通状態が制御される。
 本実施の形態では、インレット241は車両外部からの交流電力を受ける。ECU30は充電器240に信号CHGを送る。充電器240は信号CHGに応じてインレット241からの交流電力を直流電力に変換する。
 主蓄電装置BAの充電時において、ECU30は、接続部74,76をオフするために、接続部74,76に信号CN2,CN3をそれぞれ送る。さらにECU30は、接続部72をオンするために信号CN1を接続部72に送る。さらに、ECU30はコンバータ10に信号UA1を送るとともにコンバータ12に信号SD2を送る。コンバータ10は信号UA1に応じて上アーム(スイッチング素子Q1)をオンするとともに、下アーム(スイッチング素子Q2)をオフする。コンバータ12は信号SD2に応じて上アームおよび下アームをオフする。充電器240から出力された直流電力は、リアクトルL2、ダイオードD3、スイッチング素子Q1、リアクトルL1、および接続部72を経由して主蓄電装置BAに供給される。これにより主蓄電装置BAが充電される。
 副蓄電装置BB1の充電時において、ECU30は、接続部72,76をオフするために、信号CN1,CN3を接続部72,76にそれぞれ送る。さらにECU30は、接続部74をオンするために信号CN2を接続部74に送る。さらに、ECU30はコンバータ10に信号SD1を送るとともにコンバータ12に信号SD2を送る。コンバータ10(12)は信号SD1(SD2)に応じて上アームおよび下アームをオフする。充電器240から出力された直流電力は、接続部74を経由して副蓄電装置BB1に供給される。これにより副蓄電装置BB1が充電される。
 副蓄電装置BB2の充電時において、ECU30は、接続部72,74をオフするために、信号CN1,CN2を接続部72,74にそれぞれ送る。さらにECU30は、接続部76をオンするために信号CN3を接続部76に送る。さらに、ECU30はコンバータ10(12)に信号SD1(SD2)を送る。充電器240から出力された直流電力は、接続部76を経由して副蓄電装置BB2に供給される。これにより副蓄電装置BB2が充電される。
 図3は、充電器240の構成および、ハイブリッド車両と外部電源とを接続する充電ケーブル300の構成を詳細に示す図である。
 図3を参照して、充電器240は、AC/DC変換回路242と、DC/AC変換回路244と、絶縁トランス246と、整流回路248とを含む。
 AC/DC変換回路242は、単相ブリッジ回路から成る。AC/DC変換回路242は、ECU30からの信号CHGに基づいて、交流電力を直流電力に変換する。また、AC/DC変換回路242は、コイルをリアクトルとして用いることにより、電圧を昇圧する昇圧チョッパ回路としても機能する。
 DC/AC変換回路244は、単相ブリッジ回路から成る。DC/AC変換回路244は、ECU30からの信号CHGに基づいて、直流電力を高周波の交流電力に変換して絶縁トランス246へ出力する。
 絶縁トランス246は、磁性材から成るコアと、コアに巻回された一次コイルおよび二次コイルとを含む。一次コイルおよび二次コイルは、電気的に絶縁されており、それぞれDC/AC変換回路244および整流回路248に接続される。絶縁トランス246は、DC/AC変換回路244から受ける高周波の交流電力を一次コイルおよび二次コイルの巻数比に応じた電圧レベルに変換して整流回路248へ出力する。整流回路248は、絶縁トランス246から出力される交流電力を直流電力に整流する。
 AC/DC変換回路242とDC/AC変換回路244との間の電圧(平滑コンデンサの端子間電圧)は、電圧センサ182により検出され、検出結果を表わす信号がECU30に入力される。また、充電器240の出力電流は、電流センサ184により検出され、検出結果を表わす信号がECU30に入力される。
 ECU30は、車両外部の電源402により主蓄電装置BAおよび副蓄電装置BB1,BB2が充電されるとき、充電器240を駆動するための信号CHGを生成して充電器240へ出力する。
 なおECU30は、充電器240の制御機能の他、充電器240のフェール検出機能を有する。電圧センサ182により検出される電圧、電流センサ184により検出される電流などがしきい値以上であると、充電器240のフェールが検出される。
 インレット241は、たとえばハイブリッド車両の側部に設けられる。インレット241には、ハイブリッド車両と外部の電源402とを連結する充電ケーブル300のコネクタ310が接続される。
 充電ケーブル300は、コネクタ310と、プラグ320と、CCID(Charging Circuit Interrupt Device)330とを含む。
 コネクタ310は、インレット241に接続される。コネクタ310には、スイッチ312が設けられる。コネクタ310がインレット241に接続されたときにスイッチ312が閉じる。スイッチ312が閉じたときに、コネクタ310がインレット241に接続された状態であることを表わすケーブル接続信号PISWがECU30に入力される。たとえばスイッチ312は、充電ケーブル300のコネクタ310をハイブリッド車両のインレット241に係止する係止金具(図示せず)に連動して開閉する。
 充電ケーブル300のプラグ320は、コンセント400に接続される。コンセント400はたとえば家屋に設けられたコンセントである。コンセント400には電源402から交流電力が供給される。
 CCID330は、リレー332およびコントロールパイロット回路334を有する。リレー332が開いた状態では、電源402からハイブリッド車両へ電力の供給が遮断される。リレー332が閉じた状態では、電源402からハイブリッド車両に電力が供給可能になる。リレー332の状態は、充電ケーブル300のコネクタ310がハイブリッド車両のインレット241に接続された状態でECU30により制御される。
 コントロールパイロット回路334は、充電ケーブル300のプラグ320がコンセント400、すなわち外部の電源402に接続され、かつコネクタ310がインレット241に接続された状態において、コントロールパイロット線にパイロット信号(方形波信号)CPLTを送る。コントロールパイロット回路334内に設けられた発振器(図示せず)によって、パイロット信号CPLTは周期的に変化する。
 コントロールパイロット回路334は、プラグ320がコンセント400に接続された場合には、コネクタ310がインレット241から外されていても、所定のパイロット信号CPLTを出力し得る。ただし、コネクタ310がインレット241から外された状態でパイロット信号CPLTが出力されていても、ECU30は、その信号CPLTを検出できない。
 プラグ320がコンセント400に接続され、かつコネクタ310がインレット241に接続された場合、コントロールパイロット回路334は、予め定められたパルス幅(デューティサイクル)を有するパイロット信号CPLTを生成する。
 パイロット信号CPLTのパルス幅により、供給可能な電流容量がハイブリッド車両に通知される。たとえば、充電ケーブル300の電流容量がハイブリッド車両に通知される。パイロット信号CPLTのパルス幅は、電源402の電圧および電流に依存せずに一定である。
 一方、用いられる充電ケーブルの種類が異なれば、パイロット信号CPLTのパルス幅は異なり得る。すなわち、パイロット信号CPLTのパルス幅は、充電ケーブルの種類毎に定められ得る。
 本実施の形態においては、充電ケーブル300によりハイブリッド車両と電源402とが連結された状態において、主蓄電装置BA、副蓄電装置BB1,BB2が充電される。電源402の交流電圧VACは、ハイブリッド車両の内部に設けられた電圧センサ188により検出される。検出された電圧VACは、ECU30に送信される。
 図4は、図1のインバータ20および22の詳細な構成を示す回路図である。
 図4を参照して、インバータ20は、U相アーム15と、V相アーム16と、W相アーム17とを含む。U相アーム15、V相アーム16、およびW相アーム17は、正極ラインPL3と負極ラインNLとの間に並列に接続される。
 U相アーム15は、正極ラインPL3と負極ラインNLとの間に直列接続されたスイッチング素子Q5,Q6と、スイッチング素子Q5,Q6にそれぞれ逆並列接続されたダイオードD5,D6とを含む。V相アーム16は、正極ラインPL3と負極ラインNLとの間に直列接続されたスイッチング素子Q7,Q8と、スイッチング素子Q7,Q8にそれぞれ逆並列接続されたダイオードD7,D8とを含む。W相アーム17は、正極ラインPL3と負極ラインNLとの間に直列接続されたスイッチング素子Q9,Q10と、スイッチング素子Q9,Q10にそれぞれ逆並列接続されたダイオードD9,D10とを含む。
 各相アームの中間点は、モータジェネレータMG1の各相コイルの各相端に接続されている。すなわち、モータジェネレータMG1は、三相の永久磁石同期モータであり、U,V,W相の3つのコイルは各々一方端が中点に共に接続されている。そして、U相コイルの他方端がスイッチング素子Q5,Q6の接続ノードから引出されたラインULに接続される。またV相コイルの他方端がスイッチング素子Q7,Q8の接続ノードから引出されたラインVLに接続される。またW相コイルの他方端がスイッチング素子Q9,Q10の接続ノードから引出されたラインWLに接続される。
 なお、図1のインバータ22についても、モータジェネレータMG2に接続される点が異なるが、内部の回路構成についてはインバータ20と同様であるので詳細な説明は繰返さない。また、図4には、インバータに信号PWIが与えられることが記載されているが、この信号PWIは信号PWI1,PWI2を総括的に示したものである。図1に示されるように、信号PWI1,PWI2がインバータ20,22にそれぞれ入力される。
 図5は、図1の信号発生回路80の構成図である。
 図5を参照して、信号発生回路80は、スイッチ82と、抵抗83と、接地ノード84と、電源ノード85とを含む。
 スイッチ82は、オン状態において制御線81と接地ノード84とを接続する。スイッチ82は、オフ状態において制御線81を接地ノード84から切り離す。抵抗83は、電源ノード85と制御線81との間に接続される。電源ノードの電圧+Bは接地ノード84の電圧(0とする)よりも高い。
 スイッチ82は、モーメンタリスイッチにより構成される。モーメンタリスイッチとは、操作されている間のみ所定の状態を継続するとともに、その操作が終了したときに初期状態に自動的に戻るスイッチである。本実施の形態では、スイッチ82は、操作されている間のみオン状態を継続するとともに、その操作が終了したときにオフ状態に戻る。
 図6は、スイッチ82の動作を説明する図である。
 図6を参照して、スイッチ82は、ユーザ(たとえば運転者)の操作がないときにはオフ状態である。ユーザの手動操作(たとえばスイッチに設けられたボタンを押す)ことによって、スイッチ82は、オン状態になる。スイッチ82の操作中(たとえばボタンが押されている間)、スイッチ82はオン状態に保たれる。手動操作が終了したときに、スイッチ82の状態は初期状態(すなわちオフ状態)に戻る。
 図7は、スイッチ82の状態と信号MDの電圧との対応関係を示す図である。なお信号MDの電圧は制御線81の電圧に対応する。図6を参照して、時刻t1以前においてスイッチ82はオフ状態である。スイッチ82がオフ状態のときには信号MDの電圧(すなわち制御線81の電圧である電圧VMD)は+Bである。時刻t1において、手動操作によりスイッチ82がオン状態になる。これにより電圧VMDは+Bから0に変化する。時刻t2において、手動操作が終了することによりスイッチ82がオフ状態に戻る。これにより電圧VMDは0から+Bに変化する。時刻t1から時刻t2までの期間には、スイッチ82がオン状態に保たれているので電圧VMDは0になる。
 電圧VMDの値がしきい値(B/2とする)よりも高いときの電圧VMDのレベルを「Hレベル」と定義し、電圧VMDがそのしきい値よりも低いときの電圧VMDのレベルを「Lレベル」と定義する。すなわち電圧VMDが+Bの場合には、電圧VMDのレベルはHレベルである。電圧VMDが0の場合には電圧VMDのレベルはLレベルである。なお、電圧VMDのレベルの説明のために、他の図においてもしきい値(B/2)を示すものとする。
 図8は、ECU30に含まれるハイブリッド車両1000の走行制御系の構成を説明する機能ブロック図である。より具体的には、図8は、エンジン2およびモータジェネレータMG1,MG2の間でのパワー配分制御に係る制御構成を示すものである。図8に示される各機能ブロックは、ECU30による予め記憶された所定プログラムの実行および/またはECU30内の電子回路(ハードウェア)による演算処理によって実現可能である。
 図8を参照して、トータルパワー算出部260は、車速およびアクセルペダル(図示せず)の操作量に基づいて、ハイブリッド車両1000全体の要求パワー(トータル要求パワーPttl)を算出する。なお、トータル要求パワーPttlには、車両状況に応じて、モータジェネレータMG1によるバッテリ充電電力の発生のために要求されるパワー(エンジン出力)も含まれ得る。
 走行制御部250は、主蓄電装置BAの入出力上限電力Win(M),Wout(M)と、副蓄電装置BBの入出力上限電力Win(S),Wout(S)と、トータルパワー算出部260からのトータル要求パワーPttlと、ブレーキペダル操作時の回生ブレーキ要求とを受けて、モータ制御指令としてのトルク指令値Tqcom1およびTqcom2を生成する。このとき走行制御部250は、モータジェネレータMG1,MG2の入出力電力の合計が、主蓄電装置BAおよび副蓄電装置BBの入力上限電力の合計(Win(M)+Win(S))および出力上限電力の合計(Wout(M)+Wout(S))を超えないようにトルク指令値Tqcom1およびTqcom2を生成する。
 さらに、走行制御部250は、トータル要求パワーPttlをモータジェネレータMG2による車両駆動パワーとエンジン2による車両駆動パワーとに配分する。走行モードがCDモードである場合には、蓄電装置に蓄積された電力をできるだけ利用するように車両駆動パワーの配分が決定される。したがってエンジン2の動作が抑制される。走行モードがCSモードである場合には、エンジン2が高効率で動作可能なように、エンジン2による車両駆動パワーが設定される。これらの制御によって、ハイブリッド車両の燃料消費率を高めることが可能となる。
 インバータ制御部270は、トルク指令値Tqcom1およびモータジェネレータMG1のモータ電流値MCRT1に基づいて、インバータ20の制御信号PWI1を生成する。同様に、インバータ制御部280は、トルク指令値Tqcom2およびモータジェネレータMG2のモータ電流値MCRT2に基づいて、インバータ22の制御信号PWI2を生成する。
 走行制御部250は、エンジンによる車両駆動パワーの要求値を設定するとともに、その要求値に基づいてエンジン制御指令Ecomを生成する。エンジン制御指令Ecomは、エンジン制御部295に出力される。エンジン制御部295はエンジン制御指令Ecomに従ってエンジン2の動作を制御する。
 モード切換制御部290は、信号MDを受ける。モード切換制御部290は、信号MDの電圧VMDに基づいて、走行モードを切換えるための条件が満たされたか否かを判定する。モード切換制御部290は、走行モードをための条件が満たされたと判定した場合には、走行制御部250に対して走行モードを切換えるための指示を出力する。走行制御部250は、モード切換制御部290の指示に応じてCDモードとCSモードの間で走行モードを切換える。
 モード切換制御部290は、走行モードを切換えるための条件が満たされていないと判定した場合には、走行モードを切換えるための指示を出力しない。この場合には走行制御部250による走行モードの切換えは実行されない。
 ハイブリッド車両1000は、走行モードがCDモードである場合には、主蓄電装置BAおよび副蓄電装置BBに蓄積された電力を積極的に使用して走行する。トータル要求パワーPttlが、蓄電装置全体の出力電力の上限(Wout(M)+Wout(S))以下である場合には、ハイブリッド車両1000は、モータジェネレータMG2による車両駆動パワーのみによって走行する。走行モードがCDモードであるもののトータル要求パワーPttlが蓄電装置全体の出力電力の上限(Wout(M)+Wout(S))を超える場合には、エンジン2による車両駆動パワーを発生させるためにエンジン2が始動される。すなわちCDモードでは、第1の動力源(主蓄電装置BA、副蓄電装置BBおよびモータジェネレータMG2)がハイブリッド車両1000の走行に優先的に使用される。
 CDモードでは、主蓄電装置BAの電力よりも副蓄電装置BBの電力が優先的に使用されるように、主蓄電装置BAおよび副蓄電装置BBの充放電が制御される。ハイブリッド車両1000の走行中に副蓄電装置BBの蓄電状態が悪化した場合(たとえばSOCが所定のしきい値より低くなった場合)には、コンバータ12に接続される副蓄電装置BBが変更される。たとえば、副蓄電装置BB1が車両システムの起動時に副蓄電装置BBとして選択された場合には、副蓄電装置BB1がコンバータ12から切り離される一方で、副蓄電装置BB2が新たな副蓄電装置BBとしてコンバータ12に接続される。
 これに対して、走行モードがCSモードである場合には、トータルSOCが所定目標値に維持されるように、エンジン2およびモータジェネレータMG2の間で車両駆動パワーが配分される。この場合には、主としてエンジン2がハイブリッド車両1000の走行に使用される。
 主蓄電装置BAおよび副蓄電装置BB1,BB2が外部電源および充電器240によって充電されることにより、十分な電力が主蓄電装置BAおよび副蓄電装置BB1,BB2に蓄積される。したがって、主蓄電装置BAおよび副蓄電装置BB1,BB2の充電が完了後に車両システムが初めて起動された場合、走行モードがCDモードに設定される。
 図9は、走行モードの切換えを説明する図である。図9を参照して、時刻t11以前においてはハイブリッド車両1000の走行モードはCDモードである。CDモードにおいては、主蓄電装置BAおよび副蓄電装置BBからモータジェネレータMG2に電力が供給されるため、トータルのSOCは時間とともに低下する。
 時刻t11において、運転者がスイッチ82を操作する。これにより走行モードがCDモードからCSモードに切換わる。CSモードにおいては、走行制御部250(図8参照)は、トータルのSOCが目標値Aに維持されるよう主蓄電装置BAおよび副蓄電装置BBの充放電制御を実行する。たとえばスイッチ82が操作された時点(時刻t11)におけるSOC値が目標値Aとして採用される。
 時刻t12において、運転者が再びスイッチ82を操作する。これにより走行モードがCSモードからCDモードに切換わる。
 このように、走行モードをCSモードに一旦設定することによって、トータルのSOCを温存できる。これにより、所望の区間において、エンジン2を使用しないEV(Electric Vehicle)走行が実現可能となる。
 なお、運転者がスイッチ82を操作しない場合には、CDモードでの走行が継続されることによってトータルのSOCが低下し続ける。トータルのSOCが所定の下限値を下回った場合、エンジン2がハイブリッド車両1000の走行に使用される。
 <走行モード切換制御>
 図10は、実施の形態1に従う走行モード切換制御を説明するためのタイミングチャートである。
 図10を参照して、時刻t21において、スイッチ82は、手動操作によりオフ状態からオン状態に変化する。電圧VMDは、スイッチ82がオフ状態からオン状態に変化することによって、+Bから0に変化する。すなわちスイッチ82がオフ状態からオン状態に変化することにより、電圧VMDのレベルがHレベルからLレベルに変化する。
 時刻t22において、スイッチ82の操作が終了する。これによりスイッチ82はオン状態からオフ状態に戻る。スイッチ82がオン状態からオフ状態に変化することにより、電圧VMDは0から+Bに変化する。すなわち、スイッチ82がオン状態からオフ状態に変化することにより、電圧VMDのレベルがLレベルからHレベルに変化する。
 実施の形態1では、電圧VMDのレベルがHレベルからLレベルに変化し、かつLレベルからHレベルに変化した場合に、ECU30は走行モードを切換える。図10に示されるように、電圧VMDのレベルは、時刻t21においてHレベルからLレベルに変化するとともに、時刻t22においてLレベルからHレベルに変化する。ECU30は、時刻t22において走行モードをCDモードからCSモードに切換える。
 同様に、電圧VMDのレベルは、時刻t23においてHレベルからLレベルに変化するとともに、時刻t24においてLレベルからHレベルに変化する。ECU30は、時刻t24において走行モードをCSモードからCDモードに切換える。
 ここで、スイッチ82が操作されたときに走行モードを切換えるという制御を、実施の形態1に従う走行モードの切換制御の比較例として説明する。この制御によれば、電圧VMDのレベルがHレベルからLレベルに変化した場合に走行モードが切換えられる。したがって、図10に示すようにスイッチ82の状態が変化した場合、時刻t21において走行モードがCDモードからCSモードに切換わるとともに、時刻t23において走行モードがCSモードからCDモードに切換わる。
 しかしながら、比較例に従う制御の場合、制御線81が接地ノードに短絡したときに走行モードを正常に切換えることができなくなる。
 図11は、制御線81が接地ノードに短絡した状態を示す図である。図11を参照して、制御線81がアース(接地ノード)と短絡することにより、制御線81の電圧VMDは+Bから0に変化する。すなわち電圧VMDのレベルがHレベルからLレベルに変化する。
 図12は、実施の形態1に従う走行モードの切換制御と、実施の形態1の比較例による走行モードの切換制御とを対比するためのタイミングチャートである。図12を参照して、制御線81が接地ノード84に短絡した時点(時刻t25)において電圧VMDは+Bから0に変化する。制御線81が接地ノードに短絡した場合には、制御線81を接地ノードから切り離すことができないので、電圧VMDのレベルをHレベルからLレベルに変化させることができない。
 比較例によれば、時刻t25において走行モードがCDモードからCSモードに切換わる。さらに時刻t25以後において走行モードはCSモードに保たれる。
 一方、本実施の形態によれば、スイッチ82にモーメンタリスイッチが適用される。さらに、本実施の形態によれば、電圧VMDのレベルがHレベルからLレベルに変化し、かつLレベルからHレベルに変化した場合に、走行モードが切換わる。制御線81が接地ノード84に短絡した場合には、電圧VMDのレベルはHレベルからLレベルに変化するものの、LレベルからHレベルに戻らない。したがって本実施の形態によれば、このような場合には走行モードが切換わらない。
 本実施の形態によれば、制御線81が接地ノードに短絡した場合において、走行モードが誤って切換わることを防ぐことができる。さらに、本実施の形態によれば、本来の走行モードとは異なる走行モードで車両が走行し続けることを回避することができる。
 図13は、実施の形態1に従う走行モード切換制御を説明するフローチャートである。このフローチャートに示す処理は、たとえば所定の周期ごとにメインルーチンから呼び出されるとともに、モード切換制御部290(図8参照)により実行される。
 図13を参照して、モード切換制御部290は、電圧VMDのレベルがHレベルからLレベルに変化したか否かを判定する(ステップS1)。
 たとえば、モード切換制御部290は、以下に示すように、電圧VMDのレベルの変化を判定する。まず、モード切換制御部290は、電圧VMDの値をしきい値(たとえばB/2)と比較することにより電圧VMDのレベルを判定する。次に、モード切換制御部290は、たとえば第1の時刻における電圧VMDのレベルと第2の時刻における電圧VMDのレベルとが異なる場合に、電圧VMDのレベルが変化したと判定する。
 電圧VMDのレベルがHレベルからLレベルに変化していないと判定された場合(ステップS1においてNO)、全体の処理はメインルーチンに戻される。モード切換制御部290は、電圧VMDのレベルがHレベルからLレベルに変化したと判定した場合(ステップS1においてYES)、ステップS2の処理を実行する。詳細には、ステップS2において、モード切換制御部290は、電圧VMDのレベルがLレベルからHレベルに変化したか否かを判定する。
 電圧VMDのレベルがLレベルからHレベルに変化していないと判定された場合(ステップS2においてNO)、ステップS2の処理が繰返して実行される。すなわち電圧VMDのレベルがHレベルの場合には、ステップS2の処理が繰返して実行される。
 一方、電圧VMDのレベルがLレベルからHレベルに変化したと判定された場合(ステップS2においてYES)、モード切換制御部290は、走行制御部250に対して走行モードを切換えるための指示を出力する(ステップS3)。走行制御部250は、モード切換制御部290の指示に応じて走行モードを切換える。ステップS3の処理が終了すると、全体の処理が終了する。
 制御線81が正常であり、かつスイッチ82が操作された場合には、電圧VMDのレベルがHレベルからLレベルに変化したことが検出され(ステップS1においてYES)、さらに電圧VMDのレベルがLレベルからHレベルに変化したことが検出される(ステップS2においてYES)。この場合、モード切換制御部290は走行制御部250に走行モードを切換える指示を出力する(ステップS3)。走行制御部250はこの指示に応じて走行モードを切換える。したがって、走行モードが正常に切換えられる。
 制御線81がアース(接地ノード)に短絡した場合には、電圧VMDのレベルがHレベルからLレベルに変化したことが検出される(ステップS1においてYES)。しかし電圧VMDのレベルはLレベルからHレベルに戻らない。したがって、ステップS2の判定処理が繰返される。この場合、モード切換制御部290は走行制御部250に走行モードを切換える指示を出力しない。よって走行モードは切換わらない。
 このように、実施の形態1によれば、スイッチ82は、モーメンタリスイッチにより構成される。すなわち、スイッチ82は、手動操作が実行される期間には、制御線81を接地ノード84に電気的に結合する一方で、手動操作の非実行時には制御線81を電源ノード85に抵抗83を介して結合する。
 ECU30は、制御線81の電圧レベルの第1の変化(HレベルからLレベルへの変化)および、制御線81の電圧レベルの第2の変化(LレベルからHレベルへの変化)に基づいて、ハイブリッド車両1000の走行モードを、第1のモード(CDモード)と、第2のモード(CSモード)との間で切換える。これによって、制御線81に異常が生じた場合(制御線81がアースに短絡した場合)において本来の走行モードとは異なる走行モードで車両が走行し続けることを回避できる。
 特に、本実施の形態に係るハイブリッド車両においては、走行開始時の走行モードがCDモードである。制御線81の短絡によって走行モードがCDモードからCSモードに切換えられた場合、EV走行距離が短くなる。しかしながら本実施の形態によれば、制御線81の短絡によりEV走行距離が短くなることを回避できる。
 [実施の形態2]
 実施の形態2に従うハイブリッド車両の構成は、実施の形態1に従うハイブリッド車両の構成と同様であるので以後の説明は繰返さない。実施の形態2は、走行モードの切換制御の点において実施の形態1と異なる。
 図14は、実施の形態2に従う走行モード切換制御を説明するためのタイミングチャートである。
 図14および図10を参照して、時刻t31から時刻t32までの期間におけるスイッチ82の状態の変化および電圧VMDの変化は、時刻t21から時刻t22までの期間におけるスイッチ82の状態の変化および電圧VMDの変化とそれぞれ同じである。
 実施の形態2では、電圧VMDのレベルがHレベルからLレベルに変化したときに走行モードが切換えられる。すなわち、時刻t31において走行モードがCDモードからCSモードに切換えられる。
 時刻t31から所定の期間Tが経過するまでに電圧VMDのレベルがLレベルからHレベルに変化した場合、走行モードは切換後のモードに確定される。時刻t32において電圧VMDのレベルがHレベルからLレベルに変化する。時刻t31から時刻t32までの期間T1は、所定の期間Tよりも短い。よって、時刻t32において、走行モードはCSモードに確定される。
 時刻t33から時刻t34までの期間におけるスイッチ82の状態の変化および電圧VMDの変化は、時刻t31から時刻t32までの期間におけるスイッチ82の状態の変化および電圧VMDの変化と同様である。時刻t33において走行モードはCSモードからCDモードに切換えられる。さらに、時刻t33から時刻t34までの期間T2は、所定の期間Tよりも短い。よって、時刻t34において、走行モードはCDモードに確定される。
 このように、実施の形態2では、電圧VMDのレベルがHレベルからLレベルに変化した時点において、走行モードを切換える。そして走行モードが切換わった時点から所定の期間Tが経過するまでに電圧VMDのレベルがLレベルからHレベルに変化した場合には、走行モードが切換後のモードに確定される。
 図15は、制御線81がアースに短絡した場合における電圧VMDの変化および、実施の形態2に従う走行モード切換制御を説明する図である。
 図15を参照して、制御線81がアースに短絡した場合には、電圧VMDが+Bから0に変化する。しかし、電圧VMDが変化した時点(時刻t41)から所定の期間Tが経過した後においても、電圧VMDは0のままである。
 実施の形態2によれば、電圧VMDのレベルがHレベルからLレベルに変化した時点から所定の期間Tが経過したにもかかわらず電圧VMDのレベルがLレベルからHレベルに変化しない場合には、走行モードが切換前のモードに戻される。時刻t42において、走行モードはCSモードからCDモードに切換わる。したがって、実施の形態2によれば、制御線81に異常が生じた場合(制御線81がアースに短絡した場合)において本来の走行モードとは異なる走行モードで車両が走行し続けることを回避できる。
 なお、所定の期間Tの長さは、スイッチ82の通常の操作時間程度の長さ(特に限定されないが、たとえば数秒程度)に設定される。
 図16は、実施の形態2に従う走行モード切換制御を説明するフローチャートである。このフローチャートに示す処理は、たとえば所定の周期ごとにメインルーチンから呼び出されるとともに、モード切換制御部290(図8参照)により実行される。
 図16を参照して、モード切換制御部290は、電圧VMDのレベルがHレベルからLレベルに変化したか否かを判定する(ステップS11)。ステップS11ではステップS1と同様の処理が実行される。
 電圧VMDのレベルがHレベルからLレベルに変化していないと判定された場合(ステップS11においてNO)、全体の処理はメインルーチンに戻される。モード切換制御部290は、電圧VMDのレベルがHレベルからLレベルに変化したと判定した場合(ステップS11においてYES)、走行制御部250に対して走行モードを切換えるための指示を出力する(ステップS12)。走行制御部250は、モード切換制御部290の指示に応じて走行モードを切換える。
 次にモード切換制御部290は、電圧VMDのレベルがHレベルからLレベルに変化した時点からの経過時間を計測する(ステップS13)。
 続いてモード切換制御部290は、電圧VMDのレベルがLレベルからHレベルに変化したか否かを判定する(ステップS14)。ステップS14の処理はステップS2の処理と同様である。
 電圧VMDのレベルがLレベルからHレベルに変化していないと判定された場合(ステップS14においてNO)、ステップS15の処理が実行される。ステップS15において、モード切換制御部290は、電圧VMDがHレベルからLレベルに変化した時点から所定時間が経過したか否かを判定する。所定時間が経過していないと判定された場合(ステップS15においてNO)、処理はステップS13に戻る。一方、所定時間が経過したと判定された場合(ステップS15においてYES)、ステップS16の処理が実行される。ステップS16において、モード切換制御部290は、走行制御部250に対して走行モードを切換えるための指示を出力する。走行制御部250は、モード切換制御部290の指示に応じてCDモードとCSモードの間で走行モードを切換える。
 ステップS14において、電圧VMDのレベルがLレベルからHレベルに変化したと判定された場合(ステップS14においてYES)、全体の処理はメインルーチンに戻される。また、ステップS16の処理が終了した場合にも、全体の処理はメインルーチンに戻される。
 運転者が、通常の操作期間よりも長くスイッチ82を操作し続ける可能性は低いと考えられる。したがって、制御線81が正常であり、かつスイッチ82が正常に操作された場合には、電圧VMDのレベルがHレベルからLレベルに変化するとともに、その変化が生じた時点から所定の期間Tが経過するまでに、電圧VMDがLレベルからHレベルに戻る可能性が高い。この場合、モード切換制御部290は、走行モードを切換後のモードに確定する。
 制御線81がアースに短絡した場合には、電圧VMDのレベルはHレベルからLレベルに変化する。しかし、その変化が生じた時点から所定の期間の経過後においても、電圧VMDのレベルはLレベルのままである。この場合には、モード切換制御部290は、走行モードを切換前のモードに戻すための指示を出力する。つまりハイブリッド車両の走行モードは、一旦切換わるものの、元のモードに戻る。したがって、実施の形態2によれば、制御線81に異常が生じた場合(制御線81がアースに短絡した場合)において本来の走行モードとは異なる走行モードで車両が走行し続けることを回避できる。
 [実施の形態3]
 実施の形態3に従うハイブリッド車両の構成は、実施の形態1に従うハイブリッド車両の構成と同様である。実施の形態3は、走行モードの切換制御の点において実施の形態1および実施の形態2と異なる。
 図17は、実施の形態3に従う走行モード切換制御を説明するためのタイミングチャートである。
 図17および図14を参照して、時刻t51,t52,t53,t54は、時刻t31,t32,t33,t34にそれぞれ対応する。時刻t51から時刻t52までの期間T1および時刻t53から時刻t54までの期間T2は、所定の期間Tよりも短い。なお、実施の形態2と同様に、所定の期間Tの長さは、スイッチ82の通常の操作時間程度の長さ(特に限定されないが、たとえば数秒程度)に設定される。
 実施の形態3では、電圧VMDのレベルがHレベルからLレベルに変化した時点から所定の期間Tが経過するまでに電圧VMDのレベルがLレベルからHレベルに変化した場合に走行モードが切換えられる。すなわち、時刻t52において走行モードがCDモードからCSモードに切換えられるとともに、時刻t54において走行モードがCSモードからCDモードに切換えられる。
 図15に示したように、制御線81がアースに短絡した場合には、電圧VMDが+Bから0に変化する。しかし、電圧VMDが変化した時点(時刻t41)から所定の期間Tが経過した後においても、電圧VMDは0のままである。実施の形態3では、このような場合においては、走行モードが切換わらない。これにより、実施の形態3によれば、制御線81に異常が生じた場合(制御線81がアースに短絡した場合)において本来の走行モードとは異なる走行モードで車両が走行し続けることを回避できる。
 図18は、実施の形態3に従う走行モード切換制御を説明するフローチャートである。このフローチャートに示す処理は、たとえば所定の周期ごとにメインルーチンから呼び出されるとともに、モード切換制御部290(図8参照)により実行される。
 図18を参照して、モード切換制御部290は、電圧VMDのレベルがHレベルからLレベルに変化したか否かを判定する(ステップS21)。ステップS21ではステップS1と同様の処理が実行される。
 電圧VMDがHレベルからLレベルに変化していないと判定された場合(ステップS21においてNO)、全体の処理はメインルーチンに戻される。モード切換制御部290は、電圧VMDのレベルがHレベルからLレベルに変化したと判定した場合(ステップS21においてYES)、電圧VMDのレベルがHレベルからLレベルに変化した時点からの経過時間を計測する(ステップS22)。
 次に、モード切換制御部290は、電圧VMDのレベルがLレベルからHレベルに変化したか否かを判定する(ステップS23)。モード切換制御部290は、電圧VMDのレベルがLレベルからHレベルに変化していないと判定した場合(ステップS23においてNO)、ステップS24の処理を実行する。ステップS24において、モード切換制御部290は、電圧VMDのレベルがHレベルからLレベルに変化した時点から所定時間が経過したか否かを判定する。所定時間が経過していないと判定された場合(ステップS24においてNO)、処理はステップS22に戻る。一方、所定時間が経過したと判定された場合(ステップS24においてYES)、全体の処理は終了する。
 モード切換制御部290は、電圧VMDのレベルがLレベルからHレベルに変化したと判定した場合(ステップS23においてYES)、走行制御部250に対して走行モードを切換えるための指示を出力する(ステップS25)。走行制御部250は、モード切換制御部290の指示に応じて走行モードを切換える。ステップS25の処理が終了すると、全体の処理はメインルーチンに戻される。
 制御線81が正常であり、かつスイッチ82が正常に操作された場合には、電圧VMDのレベルがHレベルからLレベルに変化するとともに、その変化が生じた時点から所定の期間Tが経過するまでに電圧VMDがLレベルからHレベルに戻る可能性が高い。この場合、モード切換制御部290は、走行モードを切換後のモードに確定する。
 制御線81がアースに短絡した場合には、電圧VMDのレベルはHレベルからLレベルに変化する。しかし、その変化が生じた時点から所定の期間の経過後においても、電圧VMDのレベルはLレベルのままである。この場合には、モード切換制御部290は、走行モードを切換えるための指示を出力しない。つまりハイブリッド車両の走行モードは切換わらない。したがって、実施の形態3によれば、制御線81に異常が生じた場合(制御線81がアースに短絡した場合)において本来の走行モードとは異なる走行モードで車両が走行し続けることを回避できる。
 なお、本実施の形態にかかるハイブリッド車両に搭載される信号発生回路の構成は、図5に示した構成に限定されるものではない。図19は、信号発生回路の他の構成例を示す図である。
 図19を参照して、信号発生回路80Aは、スイッチ82が制御線81と接地ノード84との間に設けられる点、および、抵抗83が制御線81と接地ノード84との間に接続される点において信号発生回路80と異なる。この構成においては、スイッチ82がオンすると、制御線81の電圧が0から+Bに変化する。制御線81が電源ノード85に短絡した場合には、制御線81の電圧が+Bのままとなる。
 信号発生回路80を信号発生回路80Aに置き換えても、実施の形態1から3のいずれかにおける走行モードの切換制御を適用することができる。ただし、この場合には、ステップS1,S11,S21において、モード切換制御部290は、電圧VMDのレベルがLレベルからHレベルに変化したか否かを判定する。さらに、ステップS2,S14,S23においてモード切換制御部290は、電圧VMDのレベルがHレベルからLレベルに変化したか否かを判定する。
 また、本実施の形態では、ハイブリッド車両に搭載される第2の動力源として内燃機関(エンジン)を示したが、本発明は、互いに異なる種類の複数の動力源を備え、かつ、その複数の動力源の使用態様が異なる複数の走行モードを有するハイブリッド車両に適用することができる。したがって、第2の動力源は、第1の動力源とは異なる種類のものであればよいので、内燃機関に限定されるものではない。たとえば、燃料電池を第2の動力源としてハイブリッド車両に搭載してもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (8)

  1.  ハイブリッド車両であって、
     各々が前記ハイブリッド車両を駆動可能に構成された第1および第2の動力源と、
     制御線(81)と、
     第1の電圧を有する第1のノード(85)と、
     第2の電圧を有する第2のノード(84)と、
     手動操作の非実行時には、前記制御線(81)を前記第1のノード(85)に電気的に結合することにより、前記制御線(81)の電圧レベルを、前記第1の電圧に対応する第1のレベルに設定する一方で、前記手動操作が実行される期間においては、前記制御線(81)を前記第2のノード(84)に電気的に結合することにより、前記制御線(81)の前記電圧レベルを、前記第2の電圧に対応する第2のレベルに設定するスイッチ(82)と、
     前記制御線(81)の前記電圧レベルの第1の変化である前記第1のレベルから前記第2のレベルへの変化、および、前記制御線(81)の前記電圧レベルの第2の変化である前記第2のレベルから前記第1のレベルへの変化に基づいて、前記ハイブリッド車両の走行モードを、前記第1の動力源が前記ハイブリッド車両の走行に優先的に使用される第1のモードと、前記第2の動力源が前記ハイブリッド車両の走行に優先的に使用される第2のモードとの間で切換える制御装置(30)とを備える、ハイブリッド車両。
  2.  前記第1の動力源は、
     駆動輪を駆動可能に構成された回転電機(MG2)と、
     電力を蓄積可能であるとともに蓄積された電力を前記回転電機(MG2)に供給可能に構成された蓄電装置(BA,BB1,BB2)とを含み、
     前記第2の動力源は、
     内燃機関(2)を含む、請求の範囲第1項に記載のハイブリッド車両。
  3.  前記第1のモードは、前記蓄電装置(BA,BB1,BB2)に蓄積された電力を使用することにより前記回転電機(MG2)を駆動させるモードであり、
     前記第2のモードは、前記内燃機関(2)を駆動することにより前記ハイブリッド車両を走行させるモードである、請求の範囲第2項に記載のハイブリッド車両。
  4.  前記制御装置(30)は、前記第1および第2の変化の両方を検出した場合において、前記走行モードを前記第1および第2のモードの間で切換える、請求の範囲第3項に記載のハイブリッド車両。
  5.  前記制御装置(30)は、前記第1の変化に応じて前記走行モードを前記第1および第2のモードの間で切換えるとともに、前記第1の変化が生じた基準時点から所定の期間が経過するまでに前記第2の変化が生じない場合には、前記走行モードを、前記基準時点以前のモードに戻す一方で、前記基準時点から前記所定の期間が経過するまでに前記第2の変化が生じた場合には、前記走行モードを、前記基準時点以後のモードに保つ、請求の範囲第3項に記載のハイブリッド車両。
  6.  前記制御装置(30)は、前記第1の変化が生じた基準時点から所定の期間が経過するまでに前記第2の変化が生じた場合には、前記走行モードを前記第1および第2のモードの間で切換える一方で、前記基準時点から前記所定の期間が経過するまでに前記第2の変化が生じなかった場合には、前記走行モードを、前記基準時点以前のモードに保つ、請求の範囲第3項に記載のハイブリッド車両。
  7.  前記ハイブリッド車両は、
     前記ハイブリッド車両の外部から与えられた電力を用いて前記蓄電装置(BA,BB1,BB2)を充電可能に構成された充電器(240)をさらに備える、請求の範囲第3項に記載のハイブリッド車両。
  8.  前記制御装置(30)は、前記充電器(240)による前記蓄電装置(BA,BB1,BB2)の充電の終了後に初めて前記ハイブリッド車両の走行が開始される場合には、前記走行モードを前記第1のモードに設定する、請求の範囲第7項に記載のハイブリッド車両。
PCT/JP2008/073300 2008-12-22 2008-12-22 ハイブリッド車両 WO2010073309A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/140,137 US8620503B2 (en) 2008-12-22 2008-12-22 Hybrid vehicle
EP08879106.6A EP2380793B1 (en) 2008-12-22 2008-12-22 Hybrid vehicle
PCT/JP2008/073300 WO2010073309A1 (ja) 2008-12-22 2008-12-22 ハイブリッド車両
CN200880132476.3A CN102264587B (zh) 2008-12-22 2008-12-22 混合动力车辆
BRPI0823381A BRPI0823381B1 (pt) 2008-12-22 2008-12-22 veículo híbrido
RU2011130539/11A RU2480348C2 (ru) 2008-12-22 2008-12-22 Гибридное транспортное средство
JP2010543652A JP5131355B2 (ja) 2008-12-22 2008-12-22 ハイブリッド車両
CA2747423A CA2747423C (en) 2008-12-22 2008-12-22 Hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/073300 WO2010073309A1 (ja) 2008-12-22 2008-12-22 ハイブリッド車両

Publications (1)

Publication Number Publication Date
WO2010073309A1 true WO2010073309A1 (ja) 2010-07-01

Family

ID=42286979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073300 WO2010073309A1 (ja) 2008-12-22 2008-12-22 ハイブリッド車両

Country Status (8)

Country Link
US (1) US8620503B2 (ja)
EP (1) EP2380793B1 (ja)
JP (1) JP5131355B2 (ja)
CN (1) CN102264587B (ja)
BR (1) BRPI0823381B1 (ja)
CA (1) CA2747423C (ja)
RU (1) RU2480348C2 (ja)
WO (1) WO2010073309A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131355B2 (ja) * 2008-12-22 2013-01-30 トヨタ自動車株式会社 ハイブリッド車両
WO2012110870A3 (en) * 2011-02-14 2013-04-11 Toyota Jidosha Kabushiki Kaisha Vehicle, control apparatus for vehicle, and control method for vehicle

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893804B2 (ja) * 2009-11-05 2012-03-07 トヨタ自動車株式会社 車両用電源装置
DE102010001817A1 (de) * 2010-02-11 2011-08-11 Robert Bosch GmbH, 70469 Regelungskonzept mit Grenzwertmanagement für DC/DC-Wandler in einem Energiesystem
US9580062B2 (en) * 2012-01-10 2017-02-28 Ford Global Technologies, Llc Method for increasing fuel economy of plug-in hybrid electric vehicles
WO2013168491A1 (ja) * 2012-05-11 2013-11-14 富士電機株式会社 モータ駆動装置
FR2992490B1 (fr) * 2012-06-26 2014-07-18 Renault Sa Procede de commande d'un chargeur de batterie automobile a reduction de pertes par commutation.
JP6127344B2 (ja) * 2013-03-28 2017-05-17 パナソニックIpマネジメント株式会社 信号生成回路
JP6149814B2 (ja) * 2014-07-04 2017-06-21 トヨタ自動車株式会社 ハイブリッド車両
KR101567239B1 (ko) * 2014-10-02 2015-11-13 현대자동차주식회사 차량용 충전기 및 그 제어파일럿 신호 검출 방법
DE102015006820A1 (de) * 2015-05-22 2016-11-24 Man Truck & Bus Ag Verfahren zur Auswahl einer Betriebsart eines Hybridfahrzeugs
US10020759B2 (en) * 2015-08-04 2018-07-10 The Boeing Company Parallel modular converter architecture for efficient ground electric vehicles
US9669820B1 (en) * 2016-04-13 2017-06-06 GM Global Technology Operations LLC Power prioritization in a vehicle using multiple power-sources
JP6888512B2 (ja) * 2017-10-16 2021-06-16 トヨタ自動車株式会社 ハイブリッド自動車
JP7163714B2 (ja) * 2018-10-18 2022-11-01 トヨタ自動車株式会社 車両の電源装置
EP3667885B1 (en) * 2018-12-10 2022-05-04 Veoneer Sweden AB A power supply control system and method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395125U (ja) * 1986-12-12 1988-06-20
JPH0528872A (ja) * 1991-07-22 1993-02-05 Nippon Kinsen Kikai Kk 故障判別機能付検出装置
JPH07302150A (ja) * 1994-05-10 1995-11-14 Matsushita Electric Ind Co Ltd スイッチの多重押下検出装置
JPH0946821A (ja) * 1995-05-24 1997-02-14 Toyota Motor Corp ハイブリッド電気自動車
JPH11237427A (ja) * 1998-02-23 1999-08-31 Rinnai Corp スイッチ状態検出装置
JP2001222923A (ja) * 2000-02-09 2001-08-17 Toto Ltd スイッチ入力回路
JP2001227438A (ja) * 2000-02-16 2001-08-24 Mitsubishi Motors Corp ハイブリッド電気自動車のエンジン始動制御装置
JP2007062639A (ja) 2005-09-01 2007-03-15 Toyota Motor Corp ハイブリッド自動車
JP2007069625A (ja) * 2005-09-02 2007-03-22 Toyota Motor Corp ハイブリッド車およびその制御方法
JP2008128192A (ja) * 2006-11-24 2008-06-05 Toyota Motor Corp 動力出力装置、それを搭載した車両及びその制御方法
JP2009018713A (ja) * 2007-07-12 2009-01-29 Toyota Motor Corp ハイブリッド車両およびハイブリッド車両の制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395125A (ja) 1986-10-13 1988-04-26 Hitachi Cable Ltd 屈折率分布を有するガラス体の製造方法
DE4133014A1 (de) * 1991-10-04 1993-04-08 Mannesmann Ag Nicht-spurgebundenes fahrzeug mit elektrodynamischem wandler und fahrhebel
JP2001224138A (ja) * 2000-02-07 2001-08-17 Hitachi Ltd 蓄電装置及び蓄電器の電圧検出方法
JP4839722B2 (ja) * 2005-08-08 2011-12-21 トヨタ自動車株式会社 車両の電源装置
JP4513812B2 (ja) * 2007-01-04 2010-07-28 トヨタ自動車株式会社 車両の電源装置および車両
CN102264587B (zh) * 2008-12-22 2014-06-25 丰田自动车株式会社 混合动力车辆

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395125U (ja) * 1986-12-12 1988-06-20
JPH0528872A (ja) * 1991-07-22 1993-02-05 Nippon Kinsen Kikai Kk 故障判別機能付検出装置
JPH07302150A (ja) * 1994-05-10 1995-11-14 Matsushita Electric Ind Co Ltd スイッチの多重押下検出装置
JPH0946821A (ja) * 1995-05-24 1997-02-14 Toyota Motor Corp ハイブリッド電気自動車
JPH11237427A (ja) * 1998-02-23 1999-08-31 Rinnai Corp スイッチ状態検出装置
JP2001222923A (ja) * 2000-02-09 2001-08-17 Toto Ltd スイッチ入力回路
JP2001227438A (ja) * 2000-02-16 2001-08-24 Mitsubishi Motors Corp ハイブリッド電気自動車のエンジン始動制御装置
JP2007062639A (ja) 2005-09-01 2007-03-15 Toyota Motor Corp ハイブリッド自動車
JP2007069625A (ja) * 2005-09-02 2007-03-22 Toyota Motor Corp ハイブリッド車およびその制御方法
JP2008128192A (ja) * 2006-11-24 2008-06-05 Toyota Motor Corp 動力出力装置、それを搭載した車両及びその制御方法
JP2009018713A (ja) * 2007-07-12 2009-01-29 Toyota Motor Corp ハイブリッド車両およびハイブリッド車両の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2380793A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131355B2 (ja) * 2008-12-22 2013-01-30 トヨタ自動車株式会社 ハイブリッド車両
WO2012110870A3 (en) * 2011-02-14 2013-04-11 Toyota Jidosha Kabushiki Kaisha Vehicle, control apparatus for vehicle, and control method for vehicle
CN103354784A (zh) * 2011-02-14 2013-10-16 丰田自动车株式会社 车辆、用于车辆的控制装置和用于车辆的控制方法
CN103354784B (zh) * 2011-02-14 2015-11-25 丰田自动车株式会社 车辆、用于车辆的控制装置和用于车辆的控制方法

Also Published As

Publication number Publication date
US20110288710A1 (en) 2011-11-24
BRPI0823381A2 (pt) 2015-06-16
EP2380793B1 (en) 2019-05-08
CN102264587A (zh) 2011-11-30
CA2747423A1 (en) 2010-07-01
RU2011130539A (ru) 2013-01-27
CN102264587B (zh) 2014-06-25
EP2380793A1 (en) 2011-10-26
RU2480348C2 (ru) 2013-04-27
US8620503B2 (en) 2013-12-31
EP2380793A4 (en) 2014-08-27
JP5131355B2 (ja) 2013-01-30
JPWO2010073309A1 (ja) 2012-05-31
CA2747423C (en) 2013-05-28
BRPI0823381B1 (pt) 2019-12-24

Similar Documents

Publication Publication Date Title
JP5131355B2 (ja) ハイブリッド車両
JP5228824B2 (ja) 車両の電源システムおよび車両
JP5024454B2 (ja) 電動車両の電源システムおよびその制御方法
JP6130634B2 (ja) 電気車両を充電するための装置および方法
EP2353920B1 (en) Electrically driven vehicle and electrically driven vehicle control method
JP5071519B2 (ja) 電力変換装置およびそれを搭載する車両
US8594873B2 (en) Power supply system for electric powered vehicle and control method thereof
JP4888600B2 (ja) 電動車両の電源システム、電動車両および電動車両の制御方法
EP2558329B1 (en) Power supply system and vehicle equipped with power supply system
JP5459408B2 (ja) 電動車両の電源システムおよびその制御方法ならびに電動車両
JP5660102B2 (ja) 車両の電源装置
JP5825423B2 (ja) 電動車両およびその制御方法
WO2014115209A1 (en) Power supply system for vehicle
WO2010026801A1 (ja) 車両、車両の制御方法および制御装置
WO2010061465A1 (ja) 車両の充電システム
EP2558326A2 (en) Power supply system and vehicle equipped with power supply system
JP5187152B2 (ja) 車両の電源システムおよび車両
JP5228825B2 (ja) 車両の電源システムおよび車両
WO2010070761A1 (ja) ハイブリッド車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880132476.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08879106

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2747423

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2010543652

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5516/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008879106

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011130539

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13140137

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0823381

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0823381

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110622