WO2007013569A1 - 内燃機関のバルブ制御装置およびその方法 - Google Patents

内燃機関のバルブ制御装置およびその方法 Download PDF

Info

Publication number
WO2007013569A1
WO2007013569A1 PCT/JP2006/314928 JP2006314928W WO2007013569A1 WO 2007013569 A1 WO2007013569 A1 WO 2007013569A1 JP 2006314928 W JP2006314928 W JP 2006314928W WO 2007013569 A1 WO2007013569 A1 WO 2007013569A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
sticking
internal combustion
combustion engine
moving
Prior art date
Application number
PCT/JP2006/314928
Other languages
English (en)
French (fr)
Inventor
Hiroshi Enomoto
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP06781839.3A priority Critical patent/EP1911958B1/en
Priority to US11/989,317 priority patent/US7957890B2/en
Priority to CN2006800269990A priority patent/CN101228345B/zh
Priority to ES06781839.3T priority patent/ES2689742T3/es
Publication of WO2007013569A1 publication Critical patent/WO2007013569A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/48EGR valve position sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • F02M26/54Rotary actuators, e.g. step motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D2011/108Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type with means for detecting or resolving a stuck throttle, e.g. when being frozen in a position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/16End position calibration, i.e. calculation or measurement of actuator end positions, e.g. for throttle or its driving actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/50Arrangements or methods for preventing or reducing deposits, corrosion or wear caused by impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/70Flap valves; Rotary valves; Sliding valves; Resilient valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/72Housings
    • F02M26/73Housings with means for heating or cooling the EGR valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a valve control device provided in an internal combustion engine (hereinafter sometimes referred to as an engine) mounted on an automobile or the like.
  • the present invention relates to an improvement in the operation performed to eliminate or prevent valve sticking caused by deposits or the like.
  • EGR gas exhaust recirculation gas
  • an exhaust gas recirculation device that reduces the maximum in-cylinder combustion temperature and reduces harmful substances (eg, nitrogen oxides) contained in the exhaust gas is provided.
  • This exhaust gas recirculation device includes an EGR pipe that connects the exhaust system and the intake system of the engine, and an EGR valve that is provided in the EGR pipe and is adjustable in opening. In other words, the EGR gas recirculation amount is adjusted by adjusting the opening of the EGR valve.
  • combustion products (acids) contained in EGR gas are fed into an EGR pipe, for example, an exhaust gas recirculation path formed in a circular tube-shaped nozzle fitted in a banorebu housing.
  • Deposits of carbide or carbide may be deposited. This deposit is caused by hydrocarbons (HC), carbon (C), oil, etc. in the exhaust gas, and because of its high viscosity, the outer periphery of the EGR valve, the drive shaft of the EGR valve, and the exhaust gas recirculation path It will adhere to the inner wall surface.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-162665
  • Patent Document 1 discloses that when the engine is stopped, the EGR valve is opened / closed by a predetermined opening degree near the fully closed position (hereinafter, this operation is referred to as “valve reciprocating control operation”). Has been. As a result, the deposited deposit is scraped off by the EGR valve to eliminate or prevent the EGR valve from sticking.
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-3203457
  • the operation is performed within a predetermined range including before and after the position where the throttle valve is fully closed. It is disclosed that the mouth valve is reciprocated. In other words, “Banolev reciprocating control operation” targeting the throttle valve is disclosed.
  • an object of the present invention is to provide a valve control device that performs a control operation to eliminate or prevent the sticking of the valve by opening and closing the valve in the vicinity of the fully closed position of the valve.
  • an object of the present invention is to provide a valve control device for an internal combustion engine that can shorten the time required for the control operation, increase the efficiency, and save power.
  • the solution means of the present invention provides a limitation on the driving time for moving the valve in one direction and the driving time for moving the valve in the other direction. By switching the movement direction, a predetermined number of movement operations are completed within a predetermined time.
  • the present invention provides a valve that is provided in a gas passage (EGR passage or intake passage) of an internal combustion engine to change the flow rate of the gas flowing through the passage by performing an opening and closing operation, and in the vicinity of the valve fully closed position.
  • the equipment is assumed.
  • the valve operation unit starts the operation of moving the valve in the one direction when the “sticking avoidance operation” is executed, and even if a predetermined movement control time elapses.
  • the operation of moving the valve in the other direction is started, and the valve movement is performed even when a predetermined movement control time elapses during the operation of moving the valve in the other direction.
  • the operation of moving the valve in the one direction is started, and after the operation of moving the valve in one direction and the movement in the other direction is performed a predetermined number of times, The operation is terminated.
  • the valve is first fully closed.
  • the operation of moving in one direction from the vicinity of the position is started.
  • the drive motor for energizing the valve is energized and the operation of moving the valve in one direction is started.
  • the valve movement amount does not reach the above-mentioned sticking release movement amount even after a predetermined movement control time has elapsed, that is, the valve is firmly fixed by deposits etc. If it is not possible to move smoothly to the position (predetermined opening cannot be obtained), stop this operation and switch the valve movement direction. In other words, the operation to move the valve in the other direction is started.
  • the valve movement amount does not reach the above-mentioned sticking release movement amount even after a predetermined movement control time has passed, i.e., the valve is still deposited, etc. If it is in a situation where it cannot be moved smoothly in the other direction (predetermined opening cannot be obtained), this operation is stopped, and the valve Switch the moving direction. In other words, the operation to move the valve in one direction is started. After such an operation is performed a predetermined number of times, the “sticking avoidance operation” is terminated. As described above, in this solution, when the valve is firmly fixed by the deposit and cannot move smoothly, the predetermined time has elapsed (after the movement control time has elapsed).
  • the valve sticks when the movement amount of the valve reaches the sticking release movement amount within the predetermined movement control time. It is set as the structure which the said sticking determination part determines with having been eliminated.
  • the valve movement amount does not reach the debonding movement amount even after the predetermined movement control time has elapsed.
  • the sticking determination unit determines that the sticking of the valve has not been canceled.
  • an operation for determining whether or not the valve is adhering together with the execution of the “adhesion avoidance operation”.
  • the “adhesion avoidance operation” is completed within a relatively short time, and therefore it is possible to perform the presence or absence of the valve adhering determined by the adhering determination operation in a relatively short time.
  • the “sticking avoidance operation” the operation of moving the valve in one direction and the operation of moving the valve in the other direction are performed a predetermined number of times, so that the reliability of the sticking determination can be improved.
  • Specific examples of the operation of the internal combustion engine according to the sticking determination result by the sticking determination unit include the following. That is, when the sticking determination unit determines that the sticking of the valve has not been eliminated, the valve opening / closing operation during the operation of the internal combustion engine is prohibited.
  • the valve opening / closing position is positioned at a predetermined position, and this position is used when performing the valve opening / closing control operation during the operation of the internal combustion engine.
  • the reference position correction operation for recognizing it as the reference position is performed.
  • valve opening / closing operation is prohibited, and if the sticking valve is forced to operate, the valve may be damaged. It can be avoided. .
  • the valve opening / closing control operation is performed.
  • the reference position can be corrected in a situation where the valve can be accurately positioned to a predetermined reference position (for example, the valve fully closed position). It is possible to control the opening degree of the valve with high accuracy and to operate the internal combustion engine satisfactorily.
  • the present solution is applied to an EGR valve control device and the valve reference position of the EGR valve is corrected, the recirculation amount of the EGR gas can be controlled with high accuracy.
  • the intake air amount can be controlled with high accuracy.
  • the “sticking avoidance operation” is performed while the internal combustion engine is stopped. According to this, while avoiding adverse effects (for example, worsening of the emission) caused by the valve opening / closing operation different from the original valve opening control operation during the operation of the internal combustion engine,
  • the “sticking judgment operation” can be executed.
  • the operation of moving the valve in the other direction is started. I have to. For this reason, the operation of moving the valve in one direction or the other direction is not continued for a long time, and the “sticking avoidance operation” can be completed within a relatively short time. . As a result, as the time required for this “sticking avoidance operation” is shortened, it becomes possible to improve the efficiency of the operation and save power.
  • FIG. 1 is a diagram showing a schematic configuration of an engine and its control system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the main structure of the EGR valve control device.
  • FIG. 3 is a view showing an opening position of the EGR valve.
  • FIG. 4 is a flow chart for explaining the control procedure of the entire EGR valve control operation.
  • FIG. 5 is a flowchart for explaining the control procedure of the sticking avoidance operation and the sticking determination operation.
  • FIG. 6 is a timing chart showing changes in the timer value of the drive timer, the count value of the drive counter, and the count value of the sticking counter when the sticking flag is set to OFF.
  • FIG. 7 is a timing chart showing changes in the timer value of the drive timer, the count value of the drive counter, and the count value of the sticking counter when the sticking flag is set to ON.
  • FIG. 8 is a timing chart for explaining the valve reference position correction operation when the fully closed position of the EGR valve is used as the reference position.
  • FIG. 9 is a flowchart for explaining the valve reference position correction operation when the position where the EGR valve contacts the stopper is used as the reference position.
  • FIG. 1 is a schematic configuration diagram of the engine 2 and its control system according to the present embodiment.
  • An intake passage 4 is connected to a combustion chamber 3 formed between the cylinder 2a and the piston 2c in the engine 2 via an intake valve 4a as an intake system.
  • an air cleaner 6 that filters the intake air
  • an intake air amount sensor 8 for detecting the intake air amount GN
  • an intake air temperature sensor 10 for detecting the temperature of the intake air
  • a throttle valve 14 for adjusting the amount of intake air introduced into the combustion chamber 3 is provided.
  • the throttle valve 14 is driven to open and close by a drive mechanism 16.
  • the drive mechanism 16 includes a step motor 18 and a gear group that drives and connects the step motor 18 and the throttle knob 14.
  • the step motor 18 is It is driven and controlled by an electronic control unit (hereinafter referred to as “ECU”) 20 for performing various controls of engine 2.
  • ECU electronice control unit
  • the drive mechanism 16 is fully opened Suitsuchi 22 throttle valve 1 4 is turned on by fully opened position location is provided.
  • an exhaust passage 24 is connected to the combustion chamber 3 as an exhaust system via an exhaust valve 24a.
  • An EGR (exhaust gas recirculation) passage 26 branches from the exhaust passage 24.
  • the EGR passage 26 is connected to the downstream side of the throttle valve 14 in the intake passage 4. £.
  • the 1 ⁇ passage 26 is provided with an EGR valve 30 that is opened and closed by an actuator 28 controlled by the ECU 20. The configuration and operation of this actuator 28 and EGR valve 3 will be described later.
  • Engine 2 is provided with a plurality of cylinders (in this embodiment, four cylinders, but only one cylinder is illustrated) # 1, # 2, # 3, and # 4.
  • An injector 32 is arranged for each combustion chamber 3 of # 4. Fuel injection from the injector 3 2 to each cylinder # 1 to # 4 of the engine 2 is controlled by turning on and off the injection control electromagnetic valve 32a.
  • the injector 32 is connected to a common rail 34 as an accumulator pipe common to each cylinder. While the injection control solenoid valve 32 a is open, the fuel in the common rail 34 is transferred from the injector 32 into the combustion chamber 3. It comes to be injected. In the common rail 34, a relatively high pressure corresponding to the fuel injection pressure is accumulated. In order to realize this pressure accumulation, the common rail 34 is connected to the discharge port 36 a of the supply pump 36 via the supply pipe 35. A check valve 37 is provided in the middle of the supply pipe 35. Due to the presence of the reverse Ih valve 37, the supply of fuel from the supply pump 36 to the common rail 34 is allowed, and the reverse flow of fuel from the common rail 34 to the supply pump 36 is restricted.
  • the supply pump 36 is connected to the fuel tank 38 via the suction port 36b.
  • a filter 39 is provided in the middle.
  • the supply pump 3 6 sucks fuel from the fuel tank 3 8 through the filter 3 9.
  • the supply pump 3 6 reciprocates the plunger with a cam synchronized with the rotation of the engine 2 to increase the fuel pressure to the required pressure, and the high pressure fuel is supplied to the common rail 3 4. Supply.
  • a pressure control valve 40 is provided in the vicinity of the discharge port 36 a of the supply pump 36.
  • the pressure control valve 40 is for controlling the fuel pressure (that is, the injection pressure) discharged from the discharge port 36a to the common rail 34.
  • the pressure control valve 40 is opened, surplus fuel that is not discharged from the discharge port 3 6 a is returned from the return port 3 6 c provided in the supply pump 3 6 through the return pipe 4 1 to the fuel tank.
  • a glow plug 4 2 is disposed in the combustion chamber 3 of the engine 2.
  • the glow plug 4 2 glows red due to the current flowing through the glow relay 4 2 a just before the engine 2 is started, and a part of the fuel spray is blown to it, which promotes ignition and combustion.
  • the starting assistance device is disposed in the combustion chamber 3 of the engine 2.
  • the output shaft (crankshaft) of the engine 2 is provided with a rotor that rotates in synchronization with the rotation of the output shaft, and a convex portion formed on the outer peripheral surface of the rotor is detected and the rotational speed is detected.
  • a rotation speed sensor 44 comprising an electromagnetic pickup that outputs a corresponding pulse signal is provided. The output of the rotational speed sensor 44 is taken into the ECU 20 as a signal contributing to the calculation of the rotational speed of the engine 2.
  • the ECU 20 detects the intake air amount information detected by the intake air amount sensor 8 and the intake air temperature information detected by the intake air temperature sensor 10 as well as the accelerator opening sensor 46.
  • Accelerator opening information (accelerator pedal depression amount information) and IG (ignition) switch 4 8 on / off information, statistic switch 5 0 on / off information, Cylinder block 2 b coolant temperature Coolant temperature information detected by the sensor 52, shift position information detected by the shift position sensor 54 provided in the transmission, and vehicle speed information detected by the signal of the vehicle speed sensor 56,
  • FIG. 2 is a cross-sectional view showing the main structure of the E G R valve control device
  • FIG. 3 is a view showing the opening position of the E G R vano rev 30.
  • the EGR valve control apparatus includes a valve housing 70 that forms part of the EGR passage 26, and a circle that fits into the exhaust gas return passage 71 formed in the valve housing 70.
  • the power unit is driven and controlled by the ECU 20. '
  • the EGR valve control device is provided with a valve opening sensor 7 for converting the opening of the EGR valve 30 into an electric signal.
  • This valve opening sensor 7 outputs the sensor output of the upper limit voltage value (eg 4 V) when the opening of the EGR valve 30 is the fully open position (maximum opening), and the EGR valve 30 When the opening of is the valve fully closed position (minimum opening), the sensor output of the lower limit voltage value (for example, IV) is transmitted.
  • the valve opening sensor 7 includes a rotor 8 1 made of an iron-based metal material (magnetic material) having a substantially U-shaped cross section fixed to the right end of the shaft 80 in FIG.
  • a stator 85 made of an iron-based metal material (magnetic material) that concentrates the magnetic flux to the Hall element 84.
  • the split-type permanent magnet 82 and the split-type yoke are fixed to the inner peripheral surface of the rotor 81 insert-molded in a reduction gear, which is one of the components of the power transmission mechanism, using an adhesive or the like. Yes.
  • the split permanent magnet 82 the permanent magnets with a substantially square shape whose magnetization direction is up and down in Fig. 2 (upper side is N pole and lower side is S pole) are on the same side.
  • the Honore element 8 4 is a non-contact type detection element that is arranged facing the inner periphery of the permanent magnet 82. When a magnetic field of N or S pole is generated on the sensitive surface, it is sensitive to the magnetic field.
  • the valve housing 70 rotates in the exhaust gas recirculation path 7 1 formed in the nozzle 72 from the fully closed position of the EGR valve 30 to the fully open position (see Figure 3 for each position). It is a device that holds it rotatably, and is fastened and fixed to the exhaust gas recirculation pipe using fasteners such as a solenoid.
  • the valve housing 70 is formed with a nozzle fitting portion 73 that fits and holds the nozzle 72.
  • the nozzle 7 2 and the nozzle fitting portion 7 3 have a shaft bearing portion 75 5 that rotatably supports one end portion of the valve shaft 80 via a metal bearing (cantilever bearing) 7 4. Is formed.
  • valve housing 70 Since the valve housing 70 is used in a thermally severe environment, it is integrally formed of a heat-resistant material that is resistant to high temperatures, such as stainless steel.
  • the Nose No. 72 is also formed in a circular pipe shape from a heat-resistant material resistant to high temperatures, such as stainless steel.
  • the metal bearing 74 is formed in a cylindrical shape by Ni-Cu-C, for example.
  • the outer portion of the nozzle fitting portion 73 and the shaft bearing portion 75 is formed with a gear case 76 having an intermediate shape that rotatably accommodates the power transmission mechanism of the power unit. .
  • a concave motor housing 7 7 that accommodates the drive motor 5 of the dynamic unit is specifically formed on the lower outer wall portion of the nozzle fitting portion 73 and the shaft bearing portion 75 in the figure. ing.
  • the nozzle fitting portion 7 between the nozzle fitting portion 73 and the shaft bearing portion 75 and the motor housing 7 7, for example, around the exhaust gas recirculation path 71, near the valve fully closed position, or around the nozzle 72. 3 includes air insulation layer 7 to prevent the heat of EGR gas from being transferred to the atmosphere inside the motor housing 7 7 8 is provided.
  • valve housing 70 has a predetermined temperature range, for example, in the hot water circulation path formed in the nozzle fitting portion 73 around the exhaust gas recirculation path 71, near the valve fully closed position, or around the nozzle 72.
  • the cooling water piping for inflowing the engine cooling water (hot water) inside (for example, 75 to 80 ° C) and the cooling water piping for discharging the hot water from the hot water circulation path are connected.
  • Engine cooling water (hot water) may be circulated and supplied into the heat insulating layer 78.
  • the sensor cover 83 that closes the opening side of the gear case 76 is attached to the opening side of the gear case 76 of the valve housing 70 and the motor housing 77.
  • the sensor cover 83 is made of a thermoplastic resin that electrically insulates the terminals of the valve opening sensor 7 described above.
  • the sensor cover 83 has a fitted part (joint end face) fitted to a fitting part (joint end face) provided on the opening side of the gear case 76 and the motor housing 77, and a rivet or It is assembled airtightly to the fitting part provided on the opening side of the gear case 76 with a screw or the like.
  • the EGR valve 30 is formed of a heat-resistant material that is resistant to high temperatures, for example, stainless steel, in a substantially disc shape, like the Noznore 72, and is used for the EGR gas mixed into the intake air flowing in the intake pipe.
  • a butterfly-type rotary valve that controls the amount of EGR, and is fastened and fixed to the valve mounting portion 86 formed on the valve shaft 80 using a plurality of screws 8 7 such as fastening screws. .
  • An annular ring that holds a seal ring (seal material) 8 8 ⁇ that can slide in contact with the inner wall surface (flow path wall surface) of the nozzle 72 in the vicinity of the valve fully closed position on the outer periphery of the EGR valve 30.
  • a holding groove is formed.
  • the seal ring 88 is also formed in an annular shape from a heat-resistant material resistant to high temperatures, such as stainless steel, like the EGR valve 30.
  • the valve shaft 80 is integrally formed of a heat-resistant material resistant to high temperatures, such as stainless steel, and the semicircular valve mounting portion that holds the EGR valve 30. 8 6 and is supported by the shaft bearing portion 75 so as to be rotatable or slidable.
  • the valve side gear 90 which is one of the components of the power transmission mechanism, and the valve opening sensor 7
  • a caulking fixing portion for fixing the rotor 81, which is one of the constituent elements, by fixing means such as caulking is integrally formed.
  • the power unit of the present embodiment includes a drive motor 5 that drives the valve shaft 80 in the rotation direction, and a power transmission mechanism that transmits the rotational power of the drive motor 5 to the valve shaft 80 (in this embodiment).
  • a gear reduction mechanism The drive motor 5 is connected to motor energization terminals embedded in the gear case 76 and the sensor cover 83, and is a drive source that operates when energized.
  • the drive motor 5 is a drive source having a metal-made front frame 93, a cylindrical yoke 94, a plurality of permanent magnets, a motor shaft, a armature core, a armature coil, and the like.
  • the drive motor 5 has two motor energization terminals embedded and held in the sensor cover 83, and is integrally connected to the motor energization terminals.
  • the drive motor 5 extends from the sensor cover 83 to the drive motor 5 side.
  • a motor actuator DC motor
  • DC motor that is energized through two protruding motor connection terminals and two motor power supply terminals that are detachably connected to these motor connection terminals, and the motor shaft rotates.
  • the command EGR amount (target valve opening degree) commanded by the ECU 20 and the detected EGR amount (valve opening degree) detected by the valve opening sensor 7 are substantially matched.
  • the drive current value to the drive motor 5 is feedback controlled.
  • the control of the control command value (drive current value) to the drive motor 5 is desirably performed by duty (DUTY) control. That is, the control pulse signal ON / OFF ratio (energization ratio 'duty ratio) per unit time is adjusted according to the deviation between the command EGR amount (command valve opening) and the detected EGR amount (valve opening).
  • the duty control that changes the valve opening is used.
  • the front frame 93 is fastened and fixed to the opening side end surface of the motor housing 77 using screws such as fixing bolts and fastening screws. Further, the front side end of the yoke 94 is fixed to the front frame 93 using a fixing means such as caulking at a plurality of locations.
  • a wave washer 9 5 is provided which generates an urging force for urging the motor 5 in the right direction in FIG.
  • the wave washer 95 is an annular elastic body that can be elastically deformed in substantially the same direction as the axial direction of the motor shaft and is wave-shaped in the circumferential direction.
  • the gear reduction mechanism decelerates the rotational speed of the motor shaft of the drive motor 5 so as to have a predetermined reduction ratio.
  • the pinion gear 9 6 fixed to the outer periphery of the motor shaft of the drive motor 5 and the pinion gear 9 Valve drive means for rotating the valve shaft 80, having an intermediate reduction gear 9 7 rotating in mesh with the intermediate gear 9 7 and the valve side gear 90 rotating in rotation with the intermediate reduction gear 97
  • the pinion gear 96 is a motor-side gear that is integrally formed of a metal material in a predetermined shape and rotates integrally with the motor shaft of the drive motor 5.
  • the intermediate reduction gear 97 is integrally formed of a resin material into a predetermined shape, and is rotatably fitted to the outer periphery of a support shaft 98 that forms the center of rotation.
  • the intermediate reduction gear 97 is provided with a large-diameter gear 99 that meshes with the pinion gear 96 and a small-diameter gear 100 meshed with the valve side gear 90.
  • the pinion gear 96 and the intermediate reduction gear 97 are torque transmission means for transmitting the torque of the drive motor 5 to the valve side gear 90.
  • one end of the support shaft 98 in the axial direction (right end in FIG. 2) is fitted into a concave portion formed on the inner wall surface of the sensor cover 83, and the other end (left end in FIG. 2).
  • the valve side gear 90 of the present embodiment is integrally formed in a predetermined substantially annular shape with a grease material, and the outer peripheral surface of the valve side gear 90 has a small diameter gear 100 of the intermediate reduction gear 97 and The intermeshing gear portion 1 0 1 is formed physically.
  • the return spring 100 is mounted between the bottom wall surface of the gear case 76 and the left end surface of the valve side gear 90 in FIG. .
  • the rotor 8 1 made of an iron-based metal material (magnetic material) is insert-molded on the inner diameter side of the vano rev side gear 90.
  • the pinion gear 96 rotates and torque is transmitted to the large-diameter gear 99 of the intermediate deceleration gear 97.
  • the valve-side gear 9 having the gear portion 10 0 1 that meshes with the small-diameter gear 100. 0 rotates.
  • the valve side gear 90 rotates around the valve shaft 80, so that the valve shaft 80 rotates by a predetermined rotation angle, and the EGR valve 30 opens from the fully closed position to the fully open position. It is driven to rotate in the opening direction.
  • the recirculation amount of the EGR gas is feedback controlled so that a predetermined value can be maintained by detection signals from the intake air amount sensor (air flow meter) 8, the intake air temperature sensor 10, and the valve opening sensor 7. Therefore, Cylinder of Engine 2: (Intake air sucked into ⁇ 1 to # 4 is reduced to EGR amount set for each operation state of Engine 2 in order to reduce emissions.
  • the valve opening is controlled linearly and mixed with the EGR gas recirculated from the exhaust passage 24 to the intake passage 4 via the exhaust gas recirculation passage 71.
  • Step ST 1 by deposits that are deposits of combustion products contained in EGR gas Considering the possibility that the EGR valve 3 ⁇ may stick to the inner peripheral surface of the exhaust gas recirculation passage 71, etc., perform the "sticking avoidance operation" to remove this deposit after the engine 2 stops ( Step ST 1).
  • Step ST 1 When performing the opening and closing operation of the EGR valve 30 as “sticking avoiding operation” during operation of the engine 2 is, can cause a problem such as deterioration of inadvertently connexion emissions such that EGR gas amount deviates from an appropriate value 1 In this embodiment, this problem can be avoided by executing the “sticking avoidance operation” after the engine 2 is stopped.
  • a “sticking judgment operation (determination operation by the sticking judgment unit of the present invention)” for determining whether or not the sticking of the EGR valve 30 has been eliminated is performed (step ST2). .
  • the EGR valve 30 is fixed at a predetermined reference position only when it is determined that the EGR valve 30 has been fixed by the “sticking determination operation”, and this position is set to the EG during engine operation.
  • a correction (learning) operation is performed as the valve reference position when performing the open / close control operation of the R valve 30 (step ST3).
  • the opening control of the EGR valve 30 is stopped, and a normal engine stop state is entered (step ST4).
  • the EGR valve control apparatus there is a possibility that the EGR valve 30 may adhere to the inner peripheral surface of the exhaust gas recirculation path 71 due to deposits that are deposits of combustion products contained in the EGR gas.
  • the "sticking avoidance operation” for removing this deposit is executed.
  • This “adhesion avoidance operation” is to drive the drive motor 5 after engine 2 is stopped (immediately after it is stopped), and to open and close the EGR valve 30 within a predetermined angular range near its fully closed position. It is.
  • the angular range is 30 ° from the fully closed position of the EGR valve 30 to the positive side (the side toward the EGR valve fully open position) (the position indicated by X in Fig.
  • the EGR valve 30 By alternately performing the opening operation of the EGR valve 30 to the positive side and the opening operation of the EGR valve 30 to the negative side, the deposited deposit is scraped off by the EGR valve 30, and the EGR valve 30 Sticking I try to eliminate it.
  • the angle range is not limited to this, and can be set arbitrarily. Also, the positive side angle and the negative side angle may be different from each other. Further, the first opening direction at the start of the sticking avoidance operation may be the positive side or the negative side.
  • the ECU 20 performs a “sticking judgment operation” that determines whether or not the sticking of the EGR valve 30 has been eliminated by the “sticking avoidance operation” when the “sticking avoidance operation” described above is executed. ing.
  • This “sticking judgment operation” is performed within a predetermined movement control time when the EGR valve 30 is moved in one direction (for example, the positive side) as described in the following flow chart (FIG. 5).
  • a predetermined sticking release movement amount position 30 ° from the above-mentioned fully closed position
  • step ST 11 the initial drive direction is determined. For example, the positive side is determined as the drive direction of the EGR valve 30.
  • the count value n of the drive counter preset in the ECU 20 is reset to “0”
  • the timer value t of the drive timer is reset to “0”.
  • step ST13 the count value m of the sticking counter is reset to “0”.
  • step ST14 a command value for determining the opening degree of the EGR valve 30 is calculated.
  • a command value for opening the EGR valve 30 is calculated at this position.
  • the opening operation of the EGR valve 30 is started according to this command value (step ST 15). That is, a current corresponding to the command value is supplied to the drive motor 5 and the opening operation of the EGR valve 30 is started. After the opening control for the EGR valve 30 is started in this way, the “sticking determination operation” associated therewith is executed.
  • step ST16 the opening position of the EGR valve 30 is within a predetermined drive range (hereinafter, this movement amount is referred to as “sticking removal movement amount” 14928) is reached. That is, 0. It is determined whether the EGR valve 30 at the position of 30 has reached the positive 30 ° position. Immediately after the start of the “sticking avoidance operation”, since the EGR valve 30 has not yet reached the position of the positive side 3,0 °, a NO determination is made in this step ST 16 and the process proceeds to step ST 17. In this step ST17, it is determined whether or not the timer value t of the drive timer has exceeded a predetermined allowable drive time (the movement control time). This allowable drive time is set as a value such as 1 sec.
  • step ST 17 it is determined whether or not the count value n of the driving force counter has reached a predetermined value N (determination of the sticking avoidance operation).
  • This count value n is a value that is incremented ("1" is added) every time the EGR valve 30 is opened to the positive side or the negative side (see step ST21).
  • the predetermined value N is set as a value such as “10”, for example.
  • step ST24 it is determined whether or not the opening operation of the EGR valve 30 to the positive side and the opening operation to the negative side have been executed a total of 10 times. Immediately after the start of the “sticking avoidance operation”, the count value n of the drive counter has not yet reached the predetermined value N, so a NO determination is made in this step ST 24 and the flow returns to step ST 15 to the above command value. Accordingly, the opening operation of the EGR valve 30 is continued.
  • step ST16 the timer value t of the drive timer indicates the allowable drive time. If exceeded (if YES in step ST 17), the process proceeds to step ST 18 where the count value m of the sticking counter is incremented (“1” force S is added).
  • step ST 17 the opening amount of the EGR valve 30 reaches the sticking release movement amount (step ST).
  • step ST 19 the count value m of the sticking counter is reset to “0”. Then, after the count value m of the sticking counter described above is incremented or the count value m of the sticking counter is reset, the process proceeds to Step ST 20, 6314928
  • step ST11 the drive direction of the EGR valve 30 is set to the negative side in step ST20. Thereafter, the process proceeds to step ST21, where the count value n of the drive counter is incremented ("1" is added), and the process proceeds to step ST22.
  • step ST22 the drive timer is reset, and then in step ST 23, the command value is calculated again and the process proceeds to step ST 24.
  • step ST 24 The above operation is continuously performed until a YE S determination is made in step ST 24, that is, until the opening operation to the positive side and the opening operation to the negative side of the EGR valve 30 are executed a total of 10 times.
  • the opening value of the EGR valve 30 reaches the allowable drive time before the opening movement amount of the EGR valve 30 reaches the sticking release movement amount while this opening operation is executed a total of 10 times (EGR valve 30 As long as this state continues, the count value m of the sticking counter is incremented while the timer value t of the drive timer reaches the allowable drive time.
  • the count value m of the sticking counter is reset to “0”.
  • step ST 24 the process proceeds to step ST 25, where it is determined whether or not the count value m of the sticking counter exceeds a predetermined sticking determination number M (determination of sticking).
  • a predetermined sticking determination number M determination of sticking
  • the sticking flag is turned ON.
  • step ST 25 the stick flag is turned off in step ST 27, assuming that the sticking of the EGR valve has been eliminated by executing the above sticking avoidance operation. To do.
  • the sticking flag is set to ⁇ N or OFF. "Operation” and accompanying “sticking judgment operation” are completed.
  • FIG. 6 is a timing chart showing changes in the timer value of the drive timer, the count value of the drive counter, and the count value of the sticking counter when the sticking flag is set to OFF.
  • Fig. 7 is a timing chart showing the change of the timer of the drive timer, the count value of the drive counter, and the count of the sticking counter when the sticking flag is set to ON.
  • timing B in Fig. 6 is the start of "sticking avoidance operation”
  • timing C is the end of "sticking avoidance operation”
  • broken line is the valve opening command signal when "sticking avoidance operation” is executed.
  • the timing at which the sign of the command signal is reversed is the timing at which the moving direction of the EGR valve 30 is switched.
  • the “upper limit” of the drive timer in the figure is the allowable drive time
  • the “threshold value” of the sticking counter is the sticking determination number M (the same applies to FIG. 7).
  • the EGR valve 30 opens to the positive side within a short time. The operation and opening to the negative side are completed (total of 10 execution operations are completed), and the time required for “sticking avoidance operation” and “sticking judgment operation” has been shortened.
  • valve reference position correcting operation executed when it is determined by the above-described “sticking determination operation” that the sticking of the EGR valve 30 has been eliminated.
  • This “valve reference position correction operation” is performed by “sticking judgment operation”. Is not executed when it is determined that the sticking of the engine has not been eliminated.
  • the opening degree control of the EGR valve 30 is not executed even if the operation of the engine 2 is subsequently started ( The valve open / close operation is prohibited.
  • the valve reference position is corrected while the EGR valve 30 is fixed, the operation can be prohibited, thereby avoiding erroneous recognition of the valve reference position, and the fixed EGR valve 30.
  • the EGR valve 30 can be prevented from being damaged by forcibly operating the EGR valve.
  • valve reference position correction operation includes the following two. That is, in this “valve reference position correcting operation”, the EGR valve 30 is positioned at a predetermined position (a preset reference position), and the position is recognized by the valve opening sensor 7. Then, the reference position is corrected so that the position becomes the reference position for the pulp opening / closing control operation, and the valve opening / closing control is performed based on this recognized and recognized reference position during subsequent engine operation. Operation is performed. At this time, examples of the predetermined position for positioning the EGR valve 30 include the following.
  • the fully closed position of the EGR valve 30 (the position where the opening is 0 °) is set as the reference position.
  • the reference position For example, there are two types of return springs 10 2, one that gives a forward biasing force and one that gives a negative biasing force.
  • the position where the urging force of these return springs 10 2 is balanced is set so that the EGR valve 30 is fully closed.
  • the EGR valve 30 is provided with a stopper that regulates the amount of movement to the negative side, and the drive motor 5 is energized to connect the EGR valve 30 to this stock.
  • This position is used as the reference position.
  • a stopper is provided at the negative 30 ° position of the EGR valve 30, and the position read by the valve opening sensor 7 with the EGR valve 30 in contact with the stopper is the reference for the negative 30 ° Position.
  • FIG. 8 is a timing chart in this case.
  • IG SW ignition switch
  • 6 314928 D engine stops
  • IG SW ignition switch
  • 6 314928 D Engine stops
  • This “adhesion avoidance operation” and “adhesion determination operation” are as described with reference to the flowchart of FIG.
  • the time zone for these operations is indicated by time T in Fig. 8.
  • the sticking release operation end flag is turned ON, and it is determined that the sticking of the EGR valve 30 has been released in the “sticking judgment operation”
  • valve reference position correction operation J is Start (timing E in the figure).
  • valve reference position correction operation first, the sticking release operation end flag is turned ON, and at the same time the non-energization request flag is turned ON, and the drive motor 81 is de-energized. With this energization release, the EGR valve 30 moves to a position where the urging forces of the return springs are balanced, that is, to the fully closed position. At this time, the panel vibration is generated by the urging force of the return spring, so that the valve opening and the deviation of the valve opening are gradually attenuated and converge to the fully closed position.
  • a valve stabilization counter when not energized is provided in advance.
  • This non-energized valve stability counter counts up when both the valve opening and the valve opening deviation are within the specified range (between the stability judgment upper limit and the stability judgment lower limit in the figure).
  • the valve opening and the valve opening deviation are gradually attenuated and converge to the fully closed position, and when the count value reaches the predetermined stability judgment value after entering the predetermined range. , It is determined that the EGR valve 30 has reached the fully closed position.
  • step ST 31 it is determined whether or not the sticking flag is set OFF in the “sticking judgment operation”. If the EGR valve 30 is not fixed due to the “sticking avoidance operation” and the fixing flag is OFF, the determination at step ST 3 1 is YES and the process proceeds to step ST 3 2. In this step ST 3 2, it is determined whether the position of the EGR valve 30 is stable. Perform “stability judgment”.
  • valve stability determination is an operation for determining whether or not the position of the EGR valve 30 is in contact with the strut is stable (whether the valve flutters or the like has occurred). Specifically, it is determined from values such as valve opening, valve opening speed, and drive duty.
  • Step ST 33 to ST 36 are operations for preventing the EGR valve 30 from coming into contact with the stagger in a short time and avoiding contact with the stopper with a large impact force.
  • the gear is prevented from being damaged, and the EGR valve 30 Is prevented from colliding with the stagger and bouncing back. Therefore, first, it is determined whether or not the command straight (p) is larger than the command value gradual change start opening (PB) (step ST 33), and if this is judged NO, the command value (p) Add the gradual change speed (PBD) to the command value
  • step ST 35 and ST 36 the EGR valve 30 is driven at a relatively high speed (steps ST 35 and ST 36). If YES is determined in step ST33, the command value (PBT) before gradual change is set as the command value (p), and the EGR valve 30 is driven at a low speed.
  • the YE S determination is made in step ST 32 above, and the position of the EGR valve 30 in contact with this stover is determined as the valve opening degree.
  • the reference position is corrected so that the position recognized by the sensor 7 becomes the reference position when performing the valve opening / closing control operation (step ST 37).
  • step S ⁇ 38 After correcting the reference position of the bubbling in this way, the process proceeds to step S ⁇ 38 and the drive motor 5 is de-energized and the EGR valve 30 is returned to the fully closed position (step ST 38). . Stop driving the drive unit to open the EGR valve 30.
  • the opening position of the EGR valve 30 is the predetermined drive.
  • the number of times that the timer value t of the drive timer exceeded the allowable drive time (number of times judged as YES in step ST 17 above) is Judgment is made whether or not the predetermined number of times (for example, 5 times) has been reached, and if this determination is YES, the sticking flag is turned ON, while if this judgment is NO, the sticking flag is turned OFF.
  • the sticking is performed in the final moving action. Judgment operation is performed, and before the timer value t of the drive timer reaches the allowable drive time in this final round (without being judged YES in step ST 17 above), the opening amount of the EGR valve 30 is moved to release the sticking.
  • a determination operation such as turning off the sticking flag may be performed.
  • the present invention is applied as the control device for the EGR valve 30 in the common rail in-cylinder direct injection multi-cylinder diesel engine 2 mounted on an automobile.
  • the present invention is not limited to this, but can be applied to other types of diesel engines and gasoline engines. In addition, it is applicable not only to automobiles but also to engines used for other purposes.
  • the number of cylinders and engine type are not particularly limited.
  • valve control device targeted by the present invention is not limited to the one intended for the EGR valve 30, but may be intended for the throttle valve 14. That is, the throttle valve 14 is prevented from sticking due to deposits, and the valve reference position correcting operation is performed in a state where the sticking is not occurring.

Abstract

バルブ制御装置は、EGRバルブ(30)をバルブ全閉位置付近で開閉動作させることによってバルブの固着を解消または防止する制御動作を行う。このバルブ制御装置は、エンジン停止後、EGRバルブ(30)を全閉位置付近で開閉動作させる「固着回避動作」を実行すると共に「固着判定動作」を実行する。EGRバルブ(30)の固着が解消したと判定された際、EGRバルブ(30)を全閉位置に位置決めし、その位置を、エンジン運転時におけるバルブ開閉制御動作を行う際の基準位置とするように基準位置補正を行う。

Description

6314928 明細書 内燃機関のバルブ制御装置およびその方法 技術分野
本発明は、 自動車等に搭載される内燃機関 (以下、 エンジンと呼ぶ場合もあ る) に備えられるバルブ制御装置に係る。 特に、 本発明は、 デポジット等に起因 するバルブの固着を解消または防止するために実行される動作の改良に関する。 背景技術
従来より、 例えば自動車用エンジン等にあっては、 排気管内を流れる排気ガス の一部を排気再循環ガス (EGRガス) として吸気管内に導入し、 この EGRガ スを吸入空気中に混入させることによつて筒内最高燃焼温度を低下させ、 排気ガ ス中に含まれる有害物質 (例えば窒素酸化物) の低減を図るようにした排気ガス 再循環装置が備えられている。
この排気ガス再循環装置は、 エンジンの排気系と吸気系とを接続する EG R配 管と、 この E G R配管内に備えら'れて開度調整可能とされた E G Rバルブとを備 えている。 つまり、 この EGRバルブの開度を調整することによって EGRガス の還流量を調整するようになっている。
この種の排気ガス再循環装置においては、 EGR配管、 例えばバノレブハウジン グ内に嵌め合わされた円管形状のノズル内に形成される排気ガス還流路に、 EG Rガス中に含まれる燃焼生成物 (酸ィヒ物または炭化物) のデポジットが堆積する 可能性がある。 このデポジットは、 排気ガス中の炭化水素 (HC) 、 カーボン (C) 、 オイル等が原因で発生し、 粘度が高いため、 EGRバルブの外周部、 E GRバルブの駆動シャフト、 排気ガス還流路の内壁面等に付着することになる。 そして、 このデポジット (堆積物) 力、 EGRバルブの外周部と還流路内壁面と の間に付着したり、 駆動シャフトと還流路内壁面との間に付着した場合には、 E GRバルブの開閉動作が妨げられることになり、 E GRバルブの開度調整が良好 に行えず、 EGRガスを吸気管内に供給できなくなったり、 適正な EG Rガスの 還流量を得ることができなくなるといった課題があった。 特に、 EGRバルブを 開閉動作させるための駆動トルクが小さレ、場合や、 E G Rバルブの開度を微小角 度範囲で制御しようとする場合には、 この不具合は顕著に現れる。
この課題を解決するものとして下記の特許文献 1 (特開 2004- 16266 5号公報) が提案されている。 この特許文献 1には、 エンジンの停止時に、 EG Rバルブをバルブ全閉位置付近で所定の開度だけ開閉動作させること (以下、 こ の動作を 「バルブ往復動制御動作」 と呼ぶ) が開示されている。 これにより、 付 着していたデポジットを EGRバルブによって搔き落とし、 EGRバルブの固着 を解消または防止している。
また、 下記の特許文献 2 (特開 2000— 320347号公報) には、 スロッ トルバルブのデポジットによる固着を解消するための動作として、 スロットルバ ルブが全閉となる位置の前後を含む所定範囲においてス口ットルバルブを往復動 作させることが開示されている。 つまり、 スロットルバルブを対象とした 「バノレ ブ往復動制御動作」 が開示されている。
しかしながら、 上述した各特許文献にあっては、 デポジットによるバルブの固 着が強固であって上記 「バルブ往復動制御動作」 を行ってもデポジットの搔き落 としが行えなかった場合については考慮されていないため、 以下に述べる課題が める。
つまり、 上記特許文献 1におけるバルブ往復動制御動作では、 駆動モータに供 給するモータ電流の MAX電流値が所定の電流値以下に低下するまでバルブ往復 動制御動作を継続するようになっている。 し力 し、 これでは、 バルブの固着が強 固であってモータ電流の MAX電流値が所定の電流値以下に低下しな ヽ状況では、 継続的に駆動モータに対する通電が行われてしまうことになり、 この制御動作に 要する時間の短縮化、 高効率化、 省電力化を図ることが困難になる。
また、 特許文献 2におけるバルブ往復動制御動作では、 先ず、 バルブ開度を
0° の位置 (全閉位置). 力 ら正側に 3° の位置まで蘭動するように直動トルクモ ータに対して駆動電流を通電させるようになっているが、 バルブの固着が強固で あってバルブを 3° の位置まで開動させることができない状況では、 維続的に直 動トルクモータに対して駆動電流の通電が行われることになる。 この場合にも、 長時間に亘つてバルブ往復動制御動作が «続されてしまうことになり、 制御動作 に要する時間の短縮化、 高効率化、 省電力化を図ることが困難である。 発明の開示
本発明は、 かかる点に鑑みてなされたものであり、 その目的とするところは、 バルブをバルブ全閉位置付近で開閉動作させることによってバルブの固着を解消 または防止する制御動作を行うバルブ制御装置に対し、 この制御動作に要する時 間の短縮化、 高効率化、 省電力化を図ることが可能な内燃機関のバルブ制御装置 を提供することにある。
一課題の解決原理一
上記の目的を達成するために講じられた本発明の解決手段は、 バルブを一方向 へ移動させるための駆動時間及び他方向へ移動させるための駆動時間にそれぞれ 制限を設け、 この制限時間をもってバルブの移動方向を切り換えることにより、 所定時間内に所定回数の移動動作が完了するようにしている。
一解決手段一
具体的に、 本発明は、 内燃機関の気体通路 (E G R通路や吸気通路) に設けら れて開閉動作を行うことにより通路を流れる気体の流量を可変とするバルブと、 バルブ全閉位置付近において一方向及び他方向へそれぞれ固着解消移動量だけバ ルブを開閉往復移動させることによってバルブの固着を解消または防止する 「固 着回避動作」 を実行するバルブ作動ュニットとを備えた内燃機関のバルブ制御装 置を前提とする。 この内燃機関のバルブ制御装置に対し、 上記バルブ作動ュニッ トが、 上記 「固着回避動作」 の実行時、 バルブを上記一方向へ移動させる動作を 開始し、 所定の移動制御時間が経過してもバルブ移動量が上記固着解消移動量に 達しないときにはバルブを上記他方向へ移動させる動作を開始すると共に、 バル ブを他方向へ移動させる動作時に、 所定の移動制御時間が経過してもバルブ移動 量が上記固着解消移動量に達しないときにはバルブを上記一方向へ移動させる動 作を開始し、 このバルブを一方向へ移動させる動作及び他方向へ移動させる動作 を所定回数行った後に 「固着回避動作」 を終了する構成とされている。
この特定事項により、 「固着回避動作」 が開始されると、 先ず、 バルブを全閉 位置付近から一方向へ移動させる動作が開始される。 例えば、 バルブを開閉動作 させるための駆動モータへの通電が行われてバルブを一方向へ移動させる動作が 開始される。 この動作が開始された後、 所定の移動制御時間が経過してもバルブ 移動量が上記固着解消移動量に達しないとき、 つまり、 バルブがデポジット等に よって強固に固着してしまっており一方向への移動が円滑に行えない (所定の開 度が得られない) 状況となっている場合には、 この動作を停止し、 バルブの移動 方向を切り換える。 つまり、 バルブを他方向へ移動させる動作を開始する。 同様 に、 バルブを他方向へ移動させる動作が開始された後、 所定の移動制御時間が経 過してもバルブ移動量が上記固着解消移動量に達しないとき、 つまり、 未だバル ブがデポジット等によって強固に固着してしまっており他方向への移動も円滑に 行えない (所定の開度が得られない) 状況となっている場合には、 この動作を停 止し、 再ぴ、 バルブの移動方向を切り換える。 つまり、 バルブを一方向へ移動さ せる動作を開始する。 このような動作を所定回数行った後に 「固着回避動作」 を 終了する。 このように、 本解決手段では、 バルブがデポジットによって強固に固 着してしまっていて移動が円滑に行えない状況となっている場合には、 所定時間 経過後 (上記移動制御時間の経過後) にバルブの移動方向を切り換えていき、 所 定回数のバルブ移動動作を行った後に 「固着回避動作」 を終了するようにしてい る b このため、 バルブを一方向または他方向へ移動させる動作が長時間に亘つて 継続されてしまうといった状況を招くことがなく、 比較的短時間のうちに 「固着 回避動作」 を完了させることができる。 その結果、 この 「固着回避動作」 に要す る時間の短縮化に伴い、 動作の高効率化及び省電力化を図ることが可能になる。 また、 この 「固着回避動作」 によってバルブの固着が生じているか否かを判断す る場合においても、 この判断を短時間で正確に行うことができる。
尚、 本解決手段において、 バルブを一方向または他方向へ移動させる動作が開 始された後、 所定の移動制御時間が経過する前にバルブ移動量が上記固着解消移 動量に達した場合 (所定の開度が得られた場合) には、 デポジット等によるバル プの固着が解消されたか、 または固着は元々生じていなかつたと判断し、 バルブ— 移動量が固着解消移動量に達した時点でバルブの移動方向を切り換えるようにす る。 また、 この時点で 「固着回避動作」 を完了させるようにしてもよい。 2006/314928 上記 「固着回避動作」 によってバルブの固着が生じているか否かを判断する場 合の具体構成としては以下のものが挙げられる。 つまり、 「固着回避動作」 の実 行によりバルブの固着が解消したか否かを判定する固着判定部を備えさせる。 そ して、 バルブを一方向へ移動させる動作またはバルブを他方向へ移動させる動作 を開始した後、 所定の移動制御時間内にバルブ移動量が固着解消移動量に達した 場合に、 バルブの固着が解消したと上記固着判定部が判定する構成としている。 また、 バルブを一方向へ移動させる動作及ぴバルブを他方向へ移動させる動作 を所定回数行った後、 所定の移動制御時間が経過してもバルブ移動量が固着解消 移動量に達しなかった回 ¾が所定回数以上であった場合には、 バルブの固着が解 消していないと上記固着判定部が判定する構成としている。
これらの特定事項により、 「固着回避動作」 の実行と共に、 バルブの固着が生 じているか否かを判断する動作 (固着判定動作) も実行することができる。 また、 上述した如く 「固着回避動作」 は比較的短時間のうちに終了するので、 固着判定 動作によって判定されるバルブの固着の有無も比較的短時間で行うことが可能に なる。 また、 「固着回避動作」 では、 バルブを一方向へ移動させる動作及び他方 向へ移動させる動作を所定回数行うため、 固着判定の信頼性も高く得ることがで さる。
上記固着判定部による固着判定結果に応じた内燃機関の動作として具体的には 以下のものが挙げられる。 つまり、 バルブの固着が解消していないと固着判定部 が判定した場合に、 内燃機関の運転時におけるバルブの開閉動作を禁止するもの である。
また、 バルブの固着が解消したと固着判定部が判定した場合に、 バ^^ブの開閉 位置を所定位置に位置決めし、 その位置を、 内燃機関の運転時におけるバルブ開 閉制御動作を行う際の基準位置として認識する基準位置補正動作を行うものであ る。
バルブの固着が解消していないと判定された場合にバルブの開閉動作を禁止す るようにした場合には、 固着したバルブを強制的に作動させようとすることによ るバルブの破損等を回避することができる。 .
また、 バルブの固着が解消したと判定された場合にバルブ開閉制御動作を行う 際の基準位置を補正するようにした場合には、 所定の基準位置 (例えばバルブ全 閉位置) へのバルブの位置決めが正確に行える状況で基準位置の補正が行えるの で、 内燃機関の運転時におけるバルブの開度制御を高精度で行うことができ、 内 燃機関の運転を良好に行うことができる。 例えば、 本解決手段を E G Rバルブの 制御装置に適用して、 この E G Rバルブのバルブ基準位置を補正するようにした 場合には E G Rガスの還流量を高い精度で制御でき、 本解決手段をスロットルバ ルブの制御装置に適用して、 このスロットルバルブのバルブ基準位置を補正する ようにした場合には吸入空気量を高い精度で制御できることになる。
また、 上記 「固着回避動作」 は内燃機関の停止中に実行されるようにし いる。 これによれば、 内燃機関の運転中における本来のバルブ開度制御動作とは異なる バルブ開閉動作が行われてしまうことによる悪影響 (例えばェミツションの悪化 等) を回避しながら上記 「固着回避動作」 や 「固着判定動作」 が実行できる。 本発明では、 バルブの固着を回避するべく往復動させる際に、 所定の移動制御 時間が経過してもバルブ移動量が所定量に達しないときにはバルブを他方向へ移 動させる動作を開始するようにしている。 このため、 バルブを一方向または他方 向へ移動させる動作が長時間に亘つて継続されてしまうといった状況を招くこと がなく、 比較的短時間のうちに 「固着回避動作」 を完了させることができる。 そ の結果、 この 「固着回避動作」 に要する時間の短縮化に伴い、 動作の高効率化及 び省電力化を図ることが可能になる。 図面の簡単な説明
図 1は、 本発明の実施例に係るエンジン及ぴその制御系統の概略構成を示す図 である。
図 2は、 E G Rバルブ制御装置の主要構造を示す断面図である。
図 3は、 E G Rバルブの開動位置を示す図である。
図 4は、 E G Rバルブ制御動作全体の制御手順を説明するためのフローチヤ一 ト図である。
図 5は、 固着回避動作及び固着判定動作の制御手順を説明するためのフローチ ヤート図である。 図 6は、 固着フラグが O F Fに設定される状況での駆動タイマのタイマ値、 駆 動カウンタのカウント値、 固着カウンタのカウント値の変化を示すタイミングチ ヤート図である。
図 7は、 固着フラグが O Nに設定される状況での駆動タイマのタイマ値、 駆動 カウンタのカウント値、 固着カウンタのカウント値の変化を示すタイミングチヤ ート図である。
図 8は、 E G Rバルブの全閉位置を基準位置とする場合のバルブ基準位置補正 動作を説明するためのタイミングチャート図である。
図 9は、 E G Rバルブがストツパに当接した位置を基準位置とする場合のバル ブ基準位置補正動作を説明するためのフローチャート図である。 発明を実施するための最良の形態
以下、 本宪明の実施の形態を図面に基づいて説明する。 本実施例は、 自動車に 搭載されたコモンレール式筒内直噴型多気筒 (例えば 4気筒) ディーゼルェンジ ンにおける E G Rバルブの制御装置として本発明を適用した場合について説明す る。 '
—エンジンの構成説明一
先ず、 本実施例に係るディーゼルエンジン (以下、 単にエンジンという) の概 略構成について説明する。 図 1は本実施例に係るエンジン 2及びその制御系統の 概略構成図である。
このエンジン 2におけるシリンダ 2 aとピストン 2 cとの間で形成される燃焼 室 3には、 吸気系として、 吸気バルブ 4 aを介して吸気通路 4が接続されている。 この吸気通路 4には、 上流側より、 吸入空気を濾過するエアクリーナ 6、 吸入空 気量 G Nを検出するための吸入空気量センサ 8、 吸入空気の温度を検出するため の吸気温センサ 1 0、 燃焼室 3内に導入される吸入空気量を調整するためのスロ ットルバルブ 1 4がそれぞれ設けられている。
スロッ トルバルブ 1 4は駆動機構 1 6によづて開閉駆動される。 駆動機構 1 6 は、 ステップモータ 1 8及びこのステップモータ 1 8とスロットルノ ノレブ 1 4と を駆動連結するギア群を備えて構成されている。 尚、 ステップモータ 1 8は、 ェ ンジン 2の各種制御を行うための電子制御装置 (以下 「ECU」 という) 20に よつて駆動制御される。 また駆動機構 16には、 スロットルバルブ 14が全開位 置となることでオン状態となる全開スィツチ 22が設けられている。
一方、 上記燃焼室 3には、 排気系として、 排気バルブ 24 aを介して排気通路 24が接続されている。 この排気通路 24からは EGR (排気再循環) 通路 26 が分岐している。 この EGR通路 26は、 吸気通路 4におけるスロッ トルバルブ 14の下流側に接続されている。 £。1^通路26には、 ECU 20によって制御 •されるァクチユエータ 28により開閉駆動される EGRバルブ 30が設けられて いる。 このァクチユエータ 28及び EG Rバルブ 3◦の構成及び動作については 後述する。 上記スロッ トルバルブ 14によって吸入空気量を、 また、 この EGR バルブ 30によって EG R量をそれぞれ調整することで、 燃焼室 3内に導入され る吸入空気量と EG R量との割合を自在に設定することが可能となる。 このこと によりエンジン 2の全運転領域にわたって適切な吸入空気量及び E G R量の制御 が行えるようになっている。
エンジン 2には、 複数の気筒 (本実施の形態では 4気筒であるが、 1気筒のみ 図示している) # 1, # 2, # 3, #4が設けられており、 各気筒 # 1〜#4の 燃焼室 3に対してインジェクタ 32がそれぞれ配設されている。 インジェクタ 3 2からエンジン 2の各気筒 # 1〜#4への燃料噴射は、 噴射制御用讒磁弁 32 a のオン 'オフにより制御される。
上記インジェクタ 32は、 各気筒共通の蓄圧配管としてのコモンレール 34に 接続されており、 上記噴射制御用電磁弁 32 aが開いている間、 コモンレール 3 4内の燃料がインジェクタ 32より燃焼室 3内へ噴射されるようになっている。 上記コモンレール 34には、 燃料噴射圧に相当する比較的高い圧力が蓄積されて いる。 この蓄圧を実現するために、 コモンレール 34は、 供給配管 35を介して サプライポンプ 36の吐出ポート 36 aに接続されている。 また、 供給配管 35 の途中には、 逆止弁 37が設けられている。 この逆 Ih弁 37の存在により、 サプ ライポンプ 36からコモンレール 34への燃料の供給が許容され、 且つ、 コモン レール 34からサプライポンプ 36への燃料の逆流が規制されている。
上記サプライポンプ 36は、 吸入ポート 36 bを介して燃料タンク 38に接続 されており、 その途中にはフィルタ 3 9が設けられている。 サプライポンプ 3 6 は、 燃料タンク 3 8からフィルタ 3 9を介して燃料を吸入する。 また、 これとと もに、 サプライポンプ 3 6は、 エンジン 2の回転に同期するカムによってプラン ジャを往復運動せしめて、 燃料圧力を要求される圧力にまで高め、 高圧燃料をコ モンレール 3 4に供給している。
更に、 サプライポンプ 3 6の吐出ポート 3 6 a近傍には、 圧力制御弁 4 0が設 けられている。 この圧力制御弁 4 0は、 吐出ポート 3 6 aからコモンレール 3 4 へ吐出される燃料圧力 (すなわち噴射圧力) を制御するためのものである。 この 圧力制御弁 4 0が開かれることにより、 吐出ポート 3 6 aから吐出されない分の 余剰燃料が、 サプライポンプ 3 6に設けられたリターンポート 3 6 cからリタ一 ン配管 4 1を経て燃料タンク 3 8へと戻されるようになつている。
エンジン 2の燃焼室 3には、 グロ一プラグ 4 2が配設されている。 このグロ一 プラグ 4 2は、 エンジン 2の始動直前にグローリレー 4 2 aに電流が流されるこ - とにより赤熱し、 これに燃料噴霧の一部が吹きつけられることで着火 ·燃焼が促 進される始動檎助装置である。
尚、 エンジン 2の出力軸 (クランク軸) には、 この出力軸の回転に同期して回 転するロータが設けられ、 このロータの外周面に形成された凸部を検出してその 回転速度に対応したパルス信号を出力する電磁ピックァップからなる回転数セン サ 4 4が設けられている。 この回転数センサ 4 4の出力は、 エンジン 2の回転数 の算出に寄与する信号として E C U 2 0に取り込まれる。
その他、 E CU 2 0には、 上述した吸入空気量センサ 8によって検出される吸 入空気量情報や吸気温センサ 1 0によって検出される吸気温度情報をはじめ、 ァ クセル開度センサ 4 6によって検出されるアクセル開度情報 (アクセルペダルの 踏み込み量情報) や I G (ィグニシヨン) スィッチ 4 8のオン ·オフ情報、 スタ 一タスィツチ 5 0のオン■オフ情報、 シリンダプロック 2 bに設けられた冷却水 温センサ 5 2によって検出される冷却水温度情報、 トランスミツションに設けら れたシフトポジシヨンセンサ 5 4によつて検出されるシフトポジション情報及び 車速センサ 5 6の信号により検出されている車速情報、 リターン配管 4 1に設け られた燃温センサ 5 8により検出される燃料温度情報、 コモンレール 3 4に設け られた燃圧センサ 6 0により検出される燃料の圧力 (噴射圧力 P C) 情報等の情 報も併せて取り込まれるようになつている。
一 E G Rバルブ制御装置の説明一
次に、 上記 E G Rバルブ 3 0及びそれを駆動するためのァクチユエータ (バル ブ作動ユニット) 2 8を備えて構成される E G Rバルブ制御装置について説明す る。 図 2は E G Rバルブ制御装置の主要構造を示した断面図であり、 図 3は E G Rバノレブ 3 0の開動位置を示す図である。
本実施例に係る E G Rバルブ制御装置は、 上記 E G R通路 2 6の一部を構成す るバルブハウジング 7 0と、 このバルブハウジング 7 0に形成される排気ガス還 流路 7 1に嵌合する円管形状のノズル 7 2と、 このノズル 7 2内に開閉自在に収 容された上記 E G Rバルブ 3 0と、 この E G Rバルブ 3 0と一体的に回転動作す るバルブシャフト 8 0と、 このバルブシャフト 8 0を回転駆動させる駆動モータ 5と、 この駆動モータ 5の回転動力をバルブシャフト 8 0に伝達するための動力 伝達機構を有する動力ユニット (構成の詳細については後述する) とを備えてお り、 この動力ユニットが上記 E C U 2 0によって駆動制御されるようになってい る。 '
そして、 この E G Rバルブ制御装置は、 E G Rバルブ 3 0の開度を電気信号に 変換するバルブ開度センサ 7が備えられている。 このバルブ開度センサ 7は、 E G Rバルブ 3 0の開度がバルブ全開位置 (最大開度) の場合に、 上限電圧値 (例 えば 4 V) のセンサ出力を発信し、 また、 E G Rバルブ 3 0の開度がバルブ全閉 位置 (最小開度) の場合に、 下限電圧値 (例えば I V) のセンサ出力を発信する。 また、 このバルブ開度センサ 7は、 バ^^ブシャフト 8 0の図 2中の右端部に固定 された略コの字状断面を有する鉄系の金属材料 (磁性材料) よりなるロータ 8 1 と、 磁界発生源である分割型 (略角形状) の永久磁石 8 2と、 この永久磁石 8 2 に磁化される分割型 (略円弧状) のヨーク (磁性体) と、 分割型の永久磁石 8 2 に対向するようにセンサカバー 8 3側に一体的に配置された複数個のホール素子 8 4と、 このホール素子 8 4と E C U 2 0とを電気的に接続するための導電性金 属薄板よりなるターミナルと、 ホール素子 8 4への磁束を集中させる鉄系の金属 材料 (磁性材料) よりなるステータ 8 5とを備えた構成となっている。 上記分割型の永久磁石 8 2及び分割型のヨークは、 動力伝達機構の構成要素の 1つである減速ギヤにインサート成形されたロータ 8 1の内周面に接着剤等を用 いて固定されている。 尚、 分割型の永久磁石 8 2は、 着磁方向が図 2において上 下方向 (上側が N極、 下側が S極) の略角形状の永久磁石が、 互いに同じ極が同 じ側になるように配置されている。 ホーノレ素子 8 4は、 非接触式の検出素子であ つて、 永久磁石 8 2の内周側に対向して配置され、 感面に N極または S極の磁界 が発生すると、 その磁界に感応して起電力 (N極の磁界が発生すると +電位が生 じ、 S極の磁界が発生すると一電位が生じる) を発生するように設けられている。 上記バルブハウジング 7 0は、 ノズル 7 2内に形成される排気ガス還流路 7 1 内に E G Rバルブ 3 0をバルブ全閉位置からバルブ全開位置 (各位置は図 3参 照) に至るまで回転方向に回転自在に保持する装置であり、 排気ガス還流管にポ ノレト等の締結具を用いて締め付け固定されている。 このバルブハウジング 7 0に は、 上記ノズル 7 2を嵌合保持するノズル嵌合部 7 3がー体的に形成されている。 そして、 ノズル 7 2及びノズル嵌合部 7 3には、 バルプシャフト 8 0の一端部を メタル軸受け (片持ち軸受け) 7 4を介して回転自在に支持するシャフト軸受部 7 5がー体的に形成されている。
尚、 バルブハウジング 7 0は、'熱的に厳しい環境で使用されることから、 高温 に強い耐熱性材料、 例えばステンレス鋼等により一体的に形成されている。 また、 ノズノレ 7 2もバルブハウジング 7 0と同様に、 高温に強い耐熱性材料、 例えばス テンレス鋼等により円管形状に形成されている。 また、 メタル軸受け 7 4は、 例 えば N i—C u— C等により円筒形状に形成されている。 そして、 ノズル嵌合部 7 3及びシャフト軸受部 7 5の外側部分には、 動力ュニットのうちの動力伝達機 構を回転自在に収容する間形状のギヤケース 7 6がー体的に形成されている。 また、 ノズル嵌合部 7 3及びシャフト軸受部 7 5の図示下側の外壁部には、 動 力ュニットのうちの駆動モータ 5を収容する凹形状のモータハウジング 7 7がー 体的に形成されている。 そして、 ノズノレ嵌合部 7 3及びシャフト軸受部 7 5とモ ータハウジング 7 7との間、 例えば排気ガス還流路 7 1の周囲またはバルブ全閉 位置近傍またはノズル 7 2の周囲のノズル嵌合部 7 3には、 E G Rガスの熱をモ ータハウジング 7 7内雰囲気中に伝えないようにするためのエアによる断熱層 7 8が設けられている。
また、 バルブハウジング 7 0には、 例えば排気ガス還流路 7 1の周囲またはバ ルブ全閉位置近傍またはノズル 7 2の周囲のノズル嵌合部 7 3に形成される温水 循環経路に所定の温度範囲内 (例えば 7 5〜8 0 °C) のエンジン冷却水 (温水) を流入させるための冷却水配管、 及び温水循環経路内から温水を流出させるため の冷却水配管が接続されている。 尚、 上記断熱層 7 8内に、 エンジン冷却水 (温 水) を循環供給するようにしてもよい。
そして、 バルブハウジング 7 0のギヤケース 7 6及びモータハウジング 7 7の 開口側には、 ギヤケース 7 6の開口側を閉塞する上記センサカバー 8 3が扳り付 けられている。 このセンサカバー 8 3は、 上述したバルブ開度センサ 7の各端子 間を電気的に絶縁する熱可塑性樹脂よりなる。 そして、 センサカバー 8 3は、 ギ ャケース 7 6及びモータハウジング 7 7の開口側に設けられた嵌合部 (接合端 面) に嵌め合わされる被嵌合部 (接合端面) を有し、 リベット若しくはスクリュ 一等によってギヤケース 7 6の開口側に設けられた嵌合部に気密的に組み付けら れている。
上記 E G Rバルブ 3 0は、 ノズノレ 7 2と同様に、 高温に強い耐熱性材料、 例え ばステンレス鋼等により略円板^状に形成されて、 吸気管内を流れる吸入空気中 に混入させる E G Rガスの E G R量を制御するバタフライ形の回転弁で、 バルブ シャフト 8 0に形成されたバルブ装着部 8 6に複数個の締結用ネジゃ固定用ボル ト等のスクリュー 8 7を用いて締め付け固定されている。 この E G Rバルブ 3 0 の外周部にほ、 バルブ全閉位置付近においてノズル 7 2の内壁面 (流路壁面) に 摺接することが可能なシールリング (シール材) 8 8·を保持する円環状の保持溝 が形成されている。 尚、 シールリング 8 8も、 E G Rバルブ 3 0と同様に、 高温 に強い耐熱性材料、 例えばステンレス鋼等により円環状に形成されている。 上記バルブシャフト 8 0は、 E G Rバルブ 3 0と同様に、 高温に強い耐熱性材 料、 例えばステンレス鋼等により一体的に形成されて、 E G Rバルブ 3 0を保持 する半円形状の上記バルブ装着部 8 6を有し、 シャフト軸受部 7 5に回転自在ま たは摺動自在に支持されている。 そして、 バルブシャフト 8 0の端部には、 動力 伝達機構の構成要素の 1つであるバルブ側ギヤ 9 0、 及びバルブ開度センサ 7の 構成要素の 1つであるロータ 8 1をかしめ等の固定手段によって固定するための かしめ固定部が一体的に形成されている。 尚、 バルブシャフト 8 0の図 2中の右 端部とシャフト軸受部 7 5の内周部との間には、 オイルシール 9 1を保持するた めの円環形状のストツノ、° 9 2が装着されている。
本実施例の動力ュニットは、 バルブシャフト 8 0を回転方向に駆動する駆動モ ータ 5、 及ぴこの駆動モータ 5の回転動力をバルプシャフト 8 0に伝達するため の動力伝達機構 (本形態では歯車減速機構) を含んで構成されている。 駆動モー タ 5は、 ギヤケース 7 6及びセンサカバー 8 3内に埋設されたモータ用通電端子 に接続されて、 通電により作動する駆動源である。 この駆動モータ 5は、 金属材 料製のフロントフレーム 9 3、 円筒状のヨーク 9 4、 複数の永久磁石、 モータシ ャフト、 ァーマチヤコア、 ァーマチヤコイル等を有する駆動源である。
そして、 駆動モータ 5は、 センサカバー 8 3に埋設されて保持された 2個のモ 一タ通電端子、 これらのモータ通電端子に一体的に接続されて、 センサカバー 8 3から駆動モータ 5側に突出した 2個のモータ接続端子、 及びこれらのモータ接 続端子に着脱自在に接続する 2個のモータ給電端子を介して通電されて、 モータ シャフトが回転するモータァクチユエータ (直流電動機) である。
また、 本実施例では、 E C U 2 0によって指令される指令 E G R量 (目標弁開 度) とバルブ開度センサ 7によって検出される検出 E G R量 (弁開度) とが略一 致するように、 駆動モータ 5への駆動電流値をフィードバック制御している。 尚、 駆動モータ 5への制御指令値 (駆動電流値) の制御は、 デューティ (D U T Y) 制御により行うことが望ましい。 すなわち、 指令 E G R量 (指令弁開度) と検出 E G R量 (弁開度) との偏差に応じて単位時間当たりの制御パルス信号のオン/ オフの割合 (通電割合 'デューティ比) を調整して、 バルブ開度を変化させるデ ユーティ (D U T Y) 制御を用いている。
尚、 フロントフレーム 9 3は、 モータハウジング 7 7の開口側端面に、 固定用 ボルトや締結ネジ等のスクリューを用いて締め付け固定されている。 また、 ョー ク 9 4のフロント側端部は、 フロントフレーム 9 3に複数箇所でかしめ等の固定 手段を用いて固定されている。 ここで、 本実施例の駆動モータ 5のヨーク 9 4の 凸状のエンドヨークとモータハウジング 7 7の凹状の底壁部との間には、 駆動モ ータ 5を図 2中の右方向に付勢する付勢力 (フロントフレーム 9 3に押し付ける 付勢力) を発生するウェーブヮッシャ 9 5が介装されている。 このウェーブヮッ シャ 9 5は、 モータシャフトの軸方向と略同一方向への弾性変形が可能で、 且つ 周方向に波形成形された環状弾性体である。
歯車減速機構は、 駆動モータ 5のモータシャフトの回転速度を所定の減速比と なるように減速するもので、 駆動モータ 5のモ^ "タシャフトの外周に固定された ピニオンギヤ 9 6と、 このピニオンギヤ 9 6と嚙み合って回転する中間減速ギヤ 9 7と、 この中間減速ギヤ 9 7と嚙み合って回転する上記バルブ側ギヤ 9 0とを 有し、 バルブシャフト 8 0を回転駆動するバルブ駆動手段である。 ピニオンギヤ 9 6は、 金属材料により所定の形状に一体的に形成され、 駆動モータ 5のモータ シャフトと一体的に回転するモータ側ギヤである。
中間減速ギヤ 9 7は、 樹脂材料により所定の形状に一体成形され、 回転中心を 成す支持軸 9 8の外周に回転自在に嵌め合わされている。 そして、 中間減速ギヤ 9 7には、 ピニオンギヤ 9 6に嚙み合う大径ギヤ 9 9、 及びバルブ側ギヤ 9 0に 嚙み合う小径ギヤ 1 0 0が設けられている。 ここで、 ピニオンギヤ 9 6及び中間 減速ギヤ 9 7は、 駆動モータ 5のトノレクをバルブ側ギヤ 9 0に伝達するトルク伝 達手段である。 また、 支持軸 9 8の軸方向の一端部 (図 2中の右端部) は、 セン サカバー 8 3の内壁面に形成された凹状部に嵌め込まれ、 他端部 (図 2中の左端 部) は、 ギヤケース 7 6の底壁面に形成された凹状部に圧入固定されている。 本実施例のバルブ側ギヤ 9 0は、 榭脂材料により所定の略円環形状に一体成形 され、 そのバルブ側ギヤ 9 0の外周面には、 中間減速ギヤ 9 7の小径ギヤ 1 0 0 と嚙み合うギヤ部 1 0 1がー体的に形成されている。 ここで、 本実施例の排気ガ ス再循環装置においては、 ギヤケース 7 6の底壁面とバルブ側ギヤ 9 0の図 2中 の左側端面との間に、 リターンスプリング 1 0 2が装着されている。 尚、 バノレブ 側ギヤ 9 0の内径側には、 鉄系の金属材料 (磁性材料) よりなる上記ロータ 8 1 がィンサート成形されている。
次に、 本実施例の排気ガス再循環装置の動作について説明する。 エンジン 2が 始動することにより、 エンジン 2の吸気バルブ 4 aが開かれると、 エアクリーナ 6で濾過された吸入空気が、 吸気通路 4を通って各気筒 # 1〜# 4のインテーク マ二ホールドに分配され、 エンジン 2の各気筒 # 1〜# 4内に吸入される。 そし て、 エンジン 2では、 燃料が燃える温度よりも高い温度になるまで空気を圧縮し、 そこにインジェクタ 3 2から燃料を噴霧して燃焼が成される。 そして、 各気筒 # 1〜# 4内で燃えた燃焼ガスは、 排気ポートから、 ェキゾ一ストマ二ホールド、 排気通路 2 4を経て排出される。 このとき、 E C U 2 0によって E G Rバルブ 3 0が所定の開度となるように駆動モータ 5に通電されると、 駆動モータ 5のモー タシャフトが回転する。
このモータシャフトが回転することによりピユオンギヤ 9 6が回転して中間減 速ギヤ 9 7の大径ギヤ 9 9にトルクが伝達される。 そして、 大径ギヤ 9 9の回転 に伴って小径ギヤ 1 0 0が支持軸 9 8を中心にして回転すると、 この小径ギヤ 1 0 0に嚙み合うギヤ部 1 0 1を有するバルブ側ギヤ 9 0が回転する。 これにより、 バルブ側ギヤ 9 0がバルプシャフト 8 0を中心にして回転するので、 バルブシャ フト 8 0が所定の回転角度だけ回転し、 E G Rバルブ 3 0がバルブ全閉位置より 全開位置側へ開く方向 (開方向) に回転駆動される。 すると、 エンジン 2の排気 ガスの一部が、 E G Rガスとして、 E G R通路 2 6を経てバルブハウジング 7 0 及びノズル 7 2の排気ガス還流路 7 1内に流入する。 そして、 排気ガス還流路 7 1内に流入した E G Rガスは、 吸気通路 4内に流入して、 エアクリーナ 6からの 吸入空気と混合される。
尚、 E G Rガスの還流量は、 吸入空気量センサ (ェアフロメータ) 8と吸気温 センサ 1 0とバルブ開度センサ 7とからの検出信号で、 所定値を保持できるよう にフィードバック制御している。 したがって、 エンジン 2の 気筒: (Φ 1〜# 4内 に吸い込まれる吸入空気は、 ェミッションを低減するために、 エンジン 2の運転 状態毎に設定された E G R量になるように E G Rバルブ 3 0の弁開度がリニアに 制御され、 排気通路 2 4から排気ガス還流路 7 1を経て吸気通路4に還流した E G Rガスとミキシングすることになる。
一 E G Rバルブ制御動作一
次に、 本実施例の特徴とする制御動作について説明する。 各種の制御動作につ いて説明する前に、 図 4を用いて全体の制御手順の概略を説明する。
先ず、 E G Rガス中に含まれる燃焼生成物の堆積物であるデポジットによって EGRバルブ 3◦が排気ガス還流路 7 1の内周面等に固着する可能性があること を考慮し、 エンジン 2の停止後に、 このデポジットを除去するための 「固着回避 動作」 を実行する (ステップ ST 1) 。 エンジン 2の運転中に 「固着回避動作」 として EGRバルブ 30の開閉動作を行った場合には、 不用意に EGRガス量が 適正値からずれることになつてエミッションの悪化等の不具合を招く可能1生があ るが、 本実施例では、 エンジン 2の停止後に 「固着回避動作」 を実行することで、 この不具合を回避できるようにしている。
また、 上記 「固着回避動作」 の実行に伴い、 EGRバルブ 30の固着が解消し たか否かを判定する 「固着判定動作 (本発明の固着判定部による判定動作) 」 が 行われる (ステップ ST2) 。 これら各動作の後、 「固着判定動作」 によって E GRバルブ 30の固着が解消したと判定された場合に限り、 EGRバルブ 30を 所定の基準位置に固定し、 その位置を、 エンジン運転時における EG Rバルブ 3 0の開閉制御動作を行う際のバルブ基準位置とする補正 (学習) 動作が実行され る (ステップ ST3) 。 その後、 EGRバルブ 30の開動制御が停止され、 通常 のエンジン停止状態に移行する (ステップ ST4) 。 以下、 それぞれの制御動作 について説明する。
—固着回避動作一
本実施例に係る EG Rバルブ制御装置は、 EGRガス中に含まれる燃焼生成物 の堆積物であるデポジットによって EGRバルブ 30が排気ガス還流路 71の内 周面等に固着する可能性があることを考慮し、 このデポジットを除去するための 「固着回避動作」 を実行するようになっている。 この 「固着回避動作」 は、 ェン ジン 2の停止後 (停止直後) に上記駆動モータ 5を駆動し、 EGRバルブ 30を、 その全閉位置付近において所定の角度範囲で開閉動作を行わせるものである。 そ の角度範囲は、 EGRバルブ 30の全閉位置から正側 (EGRバルブ全開位置に 向かう側) に 30 ° (図 3において Xで示す位置) 及ぴ全閉位置から負側 ( E G Rバルブ全開位置に向かう側とは反対側) に 30° (図 3において Yで示す位 置) の範囲となっている。 このような正側への EGRバルブ 30の開動動作と負 側への EG Rバルブ 30の開動動作とを交互に行うことによって、 付着していた デポジットを EGRバルブ 30によって搔き落とし、 EGRバルブ 30の固着を 解消するようにしている。 尚、 上記角度範囲はこれに限るものではなく任意に設 定可能である。 また、 正側の角度と負側の角度とを互いに異ならせるようにして もよい。 更には、 固着回避動作開始時の第一回目の開動方向は正側であってもよ いし負側であってもよい。
また、 上記 ECU20では、 上述した 「固着回避動作」 の実行時に、 この 「固 着回避動作」 により EGRバルブ 30の固着が解消したか否かを判定する 「固着 判定動作」 が行われるようになつている。 この 「固着判定動作」 は、 以下のフロ 一チャート (図 5) でも説明するように、 EGRバルブ 30を一方向 (例えば正 側) へ移動させる動作を行った際、 所定の移動制御時間内にバルブ移動量が所定 の固着解消移動量 (上述した全閉位置から 30° の位置) に達した場合に EGR バルブ 30の固着が解消したと判定するものである。 以下、 .この 「固着回避動 作」 及びそれに伴う 「固着判定動作」 について図 5のフローチャートに沿って説 明する。
ィグニッションスィツチが OFFされるなどしてエンジン 2が停止すると 「固 着回避動作」 が開始される。 この 「固着回避動作」 では、 先ず、 ステップ ST 1 1において、 初回駆動方向が決定される。 例えば EGRバルブ 30の駆動方向と して正側が決定される。 そして、 ステップ ST 1 2で、 ECU20内部に予め設 定されている駆動カウンタのカウント値 n力 S 「0」 にリセットされると共に、 駆 動タイマのタイマ値 tが 「0」 にリセットされ、 更に、 ステップ ST 13で固着 カウンタのカウント値 mが 「0」 にリセットされる。
ステップ ST 14では、 EGRバルブ 30の開度を決定するための指令値が算 出される。 この場合、 EGRバルブ 30を全閉位置から正側に 30° 開動させる ため、 この位置に EG Rバルブ 30を開動するための指令値が算出されることに なる。 この指令値の算出後、 この指令値に従って EG Rバルブ 30の開動動作が 開始される (ステップ ST 1 5) 。 つまり、 上記駆動モータ 5に上記指令値に応 じた電流が供給され、 EGRバルブ 30の開動動作が開始されることになる。 このようにして EG Rバルブ 30に対する開動制御が開始された後、 それに伴 う 「固着判定動作」 が実行される。 先ず、 ステップ ST 16において、 EGRバ ルブ 30の開動位置が所定の駆動範囲 (以下、 この移動量を 「固着解消移動量」 14928 と呼ぶ) に達したか否かが判定される。 つまり、 0。 の位置にあった EGRバル ブ 30が正側 30° の位置に達したか否かが判定される。 「固着回避動作」 の開 始直後は、 未だ、 EGRバルブ 30は正側 3,0° の位置に達していないので、 こ のステップ ST 1 6では NO判定され、 ステップ ST 1 7に移る。 このステップ ST1 7では、 上記駆動タイマのタイマ値 tが所定の駆動許容時間 (上記移動制 御時間) を越えたか否かが判定される。 この駆動許容時間は例えば 1 s e c等の 値として設定される。 「固着回避動作」 の開始直後は、 未だ、 駆動タイマのタイ マ値 tが所定の駆動許容時間に達していないので、 このステップ ST 1 7では N O判定され、 ステップ ST 24に移る。 このステップ ST 24では、 上記駆動力 ゥンタのカウント値 nが所定値 Nに達したか否かが判定 (固着回避動作の終了判 定) される。 このカウント値 nは、 EGRバルブ 30の正側または負側への開動 動作が行われる度にインクリメント ( 「1」 が加算) され.る値である (ステップ ST 21参照) 。 また、 所定値 Nは例えば 「10」 等の値として設定される。 つ まり、 E G Rバルブ 30の正側への開動動作及び負側への開動動作が合計 10回 実行されたか否かが、 このステップ ST 24では判定される。 「固着回避動作」 の開始直後は、 未だ、 駆動カウンタのカウント値 nは所定値 Nに達していないの で、 このステップ ST 24では NO判定され、 ステップ ST 1 5に戻って上記指 令値に従った EG Rバルブ 30の開動動作が継続される。
このような動作が継続され、 E G Rバルブ 30の開動位置が所定の駆動範囲に 達する前に (ステップ ST 16で YE S判定されることなしに) 、 ,駆動タイマの タイマ値 tが駆動許容時間を越えた場合 (ステップ ST 17で YES判定された 場合) には、 ステップ ST 18に移り、 上記固着カウンタのカウント値 mがィ.ン クリメント ( 「1」 力 S加算) される。
一方、 駆動タイマのタイマ値 tが駆動許容時間に達する前に (ステップ ST 1 7で YE S判定されることなしに) 、 EGRバルブ 30の開動量が固着解消移動 量に達した場合 (ステップ ST 16で YES判定された場合) には、 ステップ S T 19に移り、 上記固着カウンタのカウント値 mが 「0」 にリセットされる。 そして、 上述した固着カウンタのカウント値 mがインクリメントまたはこの固 着カウンタのカウント値 mのリセットがなされた後、 ステップ ST 20に移り、 6314928
EGRバルブ 30の駆動方向が逆転される。 つまり、 上記ステップ ST 1 1にお いて初回駆動方向が正側に設定されていた場合には、 このステップ S T 20では EGRバルブ 30の駆動方向が負側に設定される。 その後、 ステップ ST 21に 移り、 上記駆動カウンタのカウント値 nがインクリメント ( 「1」 が加算) され てステップ ST 22に移る。 このステップ ST 22では上記駆動タイマがリセッ トされ、 その後、 ステップ ST 23で指令値が再度算出されてステップ ST 24 に移ることになる。
以上の動作がステップ ST 24で YE S判定されるまで、 つまり、 EGRバル ブ 30の正側への開動動作及び負側への開動動作が合計 10回実行されるまで継 続して行われる。 言い換えると、 この開動動作が合計 10回実行されている間に、 EGRバルブ 30の開動量が固着解消移動量に達する前に駆動タイマのタイマ値 tが駆動許容時間に達した場合 (EGRバルブ 30の固着が生じている可能性が ある場合) には、 この状態が継続する限り、 固着カウンタのカウント値 mがイン クリメントされていく一方、 駆動タイマのタイマ値 tが駆動許容時間に達する前 に EGRバルブ 30の開動量が固着解消移動量に達した場合 (EGRバルブ 30 の固着が解消された場合) には固着カウンタのカウント値 mが 「0」 にリセット されていくといった動作が行われる。
ステップ ST 24で YES判定されると、 ステップ ST 25に移り、 固着カウ ンタのカウント値 mが所定の固着判定回数 Mを越えているか否かが判定される (固着の有無の判定) 。 つまり、 上記ステップ ST 19で固着カウンタのカウン ト値 mが 「0」 にリセットされることなしに、 EGRバルブ 30の固着が生じて いる可能性があると判定された回数が固着判定回数 Mを越えているか否かが判定 される。 この判定が YESであった場合には、 上記 「固着回避動作」 を実行した にも拘わらず EGRバルブ 30の固着が生じている (固着が解消していない) 可 能性が高いとして、 ステップ ST 26において固着フラグを ONする。 一方、 ス テツプ ST 25の判定が NOであった場合には、 上記 「固着回避動作」 を実行し たことにより EGRバルブの固着が解消しているとして、 ステップ ST 27にお いて固着フラグを OFFする。
以上の動作により固着フラグを〇Nまたは OFFに設定し、 この 「固着回避動 作」 及びそれに伴う 「固着判定動作」 を終了する。
図 6は、 固着フラグが O F Fに設定される状況での駆動タイマのタイマ値、 駆 動カウンタのカウント値、 固着カウンタのカウント値の変化を示すタイミングチ ヤートである。 また、 図 7は、 固着フラグが O Nに設定される状況での駆動タイ マのタイマ :、 駆動カウンタのカウント値、 固着カウンタのカウント の変化を 示すタイミングチヤ一トである。
固着フラグが O F Fに設定される状況、 つまり、 「固着回避動作」 を実行した ことにより E G Rバルブ 3 0の固着が解消する状況では、 例えば 「固着回避動 作」 の途中で E G Rパルプ 3 0の開度が大きく得られることになり (図 6におけ るタイミング A) 、 この時点から固着カウンタのカウント値は 「0」 にリセット される。 尚、 この図 6におけるタイミング Bは 「固着回避動作」 の開始時であり、 タイミング Cは 「固着回避動作」 の終了時であり、 破線は 「固着回避動作」 実行 時のバルブ開度指令信号であってこの指令信号の符号が逆転しているタイミング が E G Rバルブ 3 0の移動方向を切り換えるタイミングである。 また、 図中の駆 動タイマの 「上限」 は上記駆動許容時間であり、 固着カウンタの 「閾値」 は上記 固着判定回数 Mである (図 7においても同様) 。 また、 駆動タイマのタイマ値 t が所定の駆動許容時間に達する前に E G Rバルブ 3 0の駆動方向が逆転されるこ とになるので、 短時間のうちに E G Rバルブ 3 0の正側への開動動作及び負側へ の開動動作が完了 (合計 1 0回の実行動作が完了) することになり、 「固着回避 動作」 及び 「固着判定動作」 に要する時間が短縮化されている。
一方、 固着フラグが O Nに設定される状況、 つまり、 「固着回避動作」 を実行 したにも拘わらず E G Rバルブの固着が生じている可能性が高い状況では、 E G Rバルブ 3 0の開度が大きく得られることがなく、 固着カウンタのカウント値が インクリメントされ続けて上記固着力ゥンタのカウント値 mが固着判定回数 Mを 越えた状況で 「固着回避動作」 及び 「固着判定動作」 が終了することになる。 一バルブ基準位置補正動作—
次に、 上述した 「固着判定動作」 によって E G Rバルブ 3 0の固着が解消した と判定された場合に実行される 「バルブ基準位置補正動作」 について説明する。 この 「バルブ基準位置補正動作」 は 「固着判定動作」 によって E G Rバルブ 3 0 の固着が解消していないと判定された場合には実行されことなく、 また、 この場 合には、 その後にエンジン 2の運転が開始されても E G Rバルブ 3 0の開度制御 は実行されない (バルブ開閉動作を禁止する) ようになつている。 これにより、 E G Rバルブ 3 0が固着した状態でバルブ基準位置を補正するといつた動作を禁 止することができ、 バルブ基準位置の誤認識を招くことが回避され、 また、 固着 した E G Rバルブ 3 0を強制的に作動させようとすることによる E G Rバルブ 3 0の破損等を回避することができるようになつている。
上記 「バルブ基準位置補正動作」 としては以下の 2つが挙げられる。 つまり、 この 「バルブ基準位置補正動作」 は、 E G Rバルブ 3 0を所定位置 (予め設定さ れた基準位置) に位置決めしておき、 その位置を上記バルブ開度センサ 7によつ て認、識してその位置をパルプ開閉制御動作を行う際の基準位置とするように基準 位置補正を行うものであり、 その後のエンジン運転時にあっては、 この認、識した 基準位置を基にバルブ開閉制御動作が行われる。 そして、 この際に E G Rバルブ 3 0を位置決めする所定位置としては、 以下のものが挙げられる。
先ず、 E G Rバルブ 3 0の全閉位置 (開度 0 ° の位置) を上記基準位置とする ものである。 これは、 例えば上記リターンスプリング 1 0 2を正翻への付勢力を 与えるものと負側への付勢力を与えるものとの 2種類を備えさせておき、 馬区動モ ータ 5への通電を解除した場合には、 これらリターンスプリング 1 0 2の付勢力 が釣り合う位置が E G Rバルブ 3 0の全閉位置となるように設定するものである。 また、 他の位置決めとしては、 E G Rバルブ 3 0の負側への移動量を規制する ストツパを備えさせておき、 駆動モータ 5への通電を行って E G Rバルブ 3 0を このストッノ、。に当接させ、 この位置を上記基準位置とするものである。 例えば E G Rバルブ 3 0の負側 3 0 ° の位置にストッパを設けておき、 E G Rバルブ 3 0 をストツバに当接させた状態でバルブ開度センサ 7が読み取った位置を負側 3 0 ° の基準位置とするものである。
以下、 それぞれのバルブ基準位置補正動作について具体的に説明する。
先ず、 E G Rバルブ 3 0の全閉位置を上記基準位置とする場合について説明す る。 図 8は、 この場合におけるタイミングチャートである。 先ず、 ィグニッショ ンスィッチ (I G SW) が O F Fされてエンジンが停止すると (図中のタイミン 6 314928 グ D) 、 「固着回避動作」 及び 「固着判定動作」 が開始される。 この 「固着回避 動作」 及び 「固着判定動作」 は上記図 5のフローチャートを用いて説明したとお りである。 これら動作の時間帯を図 8中の時間 Tで示す。 そして、 これら動作が 終了して固着解消動作終了フラグが O Nとなり、 「固着判定動作」 において E G Rバルブ 3 0の固着が解消したと判定された場合には、 「バルブ基準位置捕正動 作 J が開始される (図中のタイミング E) 。
この 「バルブ基準位置補正動作」 では、 先ず、 固着解消動作終了フラグが O N となると同時に無通電要求フラグが〇Nとなり、 駆動モータ 8 1への通電が解除 される。 この通電解除により、 リターンスプリング同士の付勢力が釣り合う位置、 つまり、 全閉位置まで E G Rバルブ 3 0は移動する。 この際、 リターンスプリン グの付勢力によるパネ振動が生じるため、 バルブ開度及びバルブ開度の偏差は 徐々に減衰し、 全閉位置に収束していくことになる。 また、 無通電時バルブ安定 カウンタが予め備えられている。 この無通電時バルブ安定カウンタは、 上記バル ブ開度及びバルブ開度の偏差が共に所定の範囲内 (図中の安定判定上限と安定判 定下限との間) に入った場合にカウントアップするものであり、 バルブ開度及び バルブ開度の偏差は徐々に減衰し、 全閉位置に収束していって、 この所定の範囲 内に入った後に、 カウント値が所定の安定判定値に達すると、 E G Rバルブ 3 0 が全閉位置に達したと判断される。
このようにして無通電時バルブ安定カウンタのカウント値が 「安定判定値 J に 達すると (図中のタイミング F ) 、 上述した如く、 その位置 (全閉位置) を上記 バルブ開度センサ 7によつて認識してその位置をバルブ開閉制御動作を行う際の 基準位置とするように基準位置補正を行う。
次に、 E G Rバルブ 3 0をストツバに当接させ、 その位置を上記基準位置とす る場合について説明する。 図 9は、 この場合におけるフローチャートである。 先 ず、 ステップ S T 3 1において、 上記 「固着判定動作」 において固着フラグが O F Fに設定されたか否かを判定する。 上記 「固着回避動作」 によって E G Rバル ブ 3 0の固着が解消されており固着フラグが O F Fとなっている場合には、 この ステップ S T 3 1で Y E S判定されてステップ S T 3 2に移る。 このステップ S T 3 2では、 E G Rバルブ 3 0の位置が安定しているか否かを判断する 「バルブ 安定判定」 を行う。 この 「バルブ安定判定」 は、 EGRバルブ 30がストツバに 当接されたことで、 その位置が安定しているか (バルブのバタツキ等が生じてい ないか) を判断する動作である。 具体的には、 バルブ開度、 バルブ開動速度、 駆 動 DUTY等の値から判断される。
「バルブ基準位置補正動作」 の開始時には未だ E G Rバルブ 30はストツバに 当接しておらず、 このステップ ST 32で NO判定されてステップ ST 33に移 る。 ステップ ST 33〜ST 36は、 EGRバルブ 30を短時間でストツバに当 接させ、 しかもストッパに大きな衝撃力で接触してしまうことを回避するための 動作である。 つまり、 EGRバルブ 30がストツバに当接する直前まではバルブ 開動速度を高くし、 その後、 開動速度を低く (徐変) していくことにより、 上記 ギアゃストツバの破損を防止し、 且つ E G Rバルブ 30がストツバに衝突して跳 ね返ってしまうことを防止する。 このため、 先ず、 指令ィ直 (p) が指令値徐変開 始開度 (PB) よりも大きいか否かを判定し (ステップ ST 33) 、 これが NO 判定されると、 指令値 (p) に徐変速度 (PBD) を加算し、 これを指令値
(p) として比較的高速度で E G Rバルブ 30を駆動する (ステップ ST 35, ST 36) 。 そして、 ステップ ST 33で YES判定されると、 指令値 (p) と して徐変前指令値 (PBT) を設定し、 低速度で EG Rバルブ 30を駆動する。 このよう.な動作により EGRバルブ 30力 Sス トツバに当接されてその位置が安定 すると、 上記ステップ ST 32で YE S判定され、 このストツバに当接している E G Rバルブ 30の位置をバルブ開度センサ 7によって認識してその位置をバル プ開閉制御動作を行う際の基準位置とするように基準位置補正を行う (ステップ ST 37) 。
このようにしてバ ブ基準位置の補正動作を行った後、 ステップ S Τ 38に移 つて駆動モータ 5への通電を解除して EG Rバルブ 30を全閉位置に戻し (ステ ップ ST 38) 。 EGRバルブ 30を開動させるための駆動ュニットの駆動を停. 止する。
一固着判定動作の変形例一
上述した実施例における 「固着判定動作」 では、 この判定動作の終了時点にお ける固着力ゥンタのカウント値 mが固着判定回数 Mを越えているか否かによつて 固着解消の有無を判断していた。 これに代えて、 以下に述べる判定動作を行うよ うにしてもよい。
つまり、 E G Rバルブ 3◦を一方向へ移動させる動作または他方向へ移動させ る動作を所定回数 (上記実施例では合計 1 0回) 行った際に、 E G Rバルブ 3 0 の開動位置が所定の駆動範囲に達する前に (上記ステツプ S T 1 6で Y E S判定 されることなしに) 、 駆動タイマのタイマ値 tが駆動許容時間を越えた回数 (上 記ステップ S T 1 7で Y E S判定された回数) が所定回数 (例えば 5回) 以上で あつたか否かを判断し、 この判定が Y E Sであった場合には固着フラグを O Nす る一方、 この判定が N Oであつた場合には固着フラグを O F Fするといつ 'た制御 である。
また、 固着カウンタを備えさせず、 E G Rバルブ 3 0を一方向へ移動させる動 作または他方向へ移動させる動作を所定回数 (例えば合計 1 0回) 行った場合に、 最終回の移動動作において固着判定動作を行い、 この最終回において駆動タイマ のタイマ値 tが駆動許容時間に達する前に (上記ステップ S T 1 7で Y E S判定 されることなしに) 、 E G Rバルブ 3 0の開動量が固着解消移動量に達した場合 (上記ステップ S T 1 6で Y E S判定された場合) に固着フラグを O F Fすると いった判定動作を行うようにしてもよい。
一その他の実施例一
以上説明した実施例及び変形例では、 自動車に搭載されたコモンレール式筒内 直噴型多気筒ディーゼルエンジン 2における E G Rバルブ 3 0の制御装置として 本発明を適用した場合について説明した。 本発明はこれに限らず、 その他の形式 のディーゼルエンジンやガソリンエンジンにも適用可能である。 また、 自動車用 に限らず、 その他の用途に使用されるエンジンにも適用可能である。 また、 気筒 数やエンジン形式 (直列型、 V型エンジン等の別) についても特に限定されるも のではない。
また、 本発明が対象とするバルブ制御装置は、 E G Rバルブ 3 0を対象とする ものに限らず、 スロットルバルブ 1 4を対象としてもよレ、。 つまり、 このスロッ トルバルブ 1 4がデポジットによって固着してしまうことを回避すると共に、 こ の固着が生じていない状態でバルブ基準位置補正動作を行うようにするものであ る。
今回開示された実施例はすべての点で例示であつて制限的なものではないと考 えられるべきである。 本発明の範囲は上記した説明ではなくて請求の範囲によつ て示され、 請求の範囲と均等の意味および範囲内でのすべての変更が含まれるこ とが意図される。

Claims

請求の範囲
1 . 内燃機関の気体通路に設けられて開閉動作を行うことにより通路を流れ る気体の流量を可変とするバルブと、 バルブ全閉位置付近において一方向及び他 方向へそれぞれ固着解消移動量だけバルブを開閉往復移動させることによってバ ルブの固着を解消または防止する固着回避動作を実行するバルブ作動ュニットと を備えた内燃機関のバルブ制御装置において、
前記バルブ作動ユニットは、 前記固着回避動作の実行時、 バルブを前記一方向 へ移動させる動作を開始し、 所定の移動制御時間が経過してもバルブ移動量が前 記固着解消移動量に達しないときにはバルブを前記他方向へ移動させる動作を開 始すると共に、 バルブを他方向へ移動させる動作時に、 所定の移動制御時間が経 過してもバルブ移動量が前記固着解消移動量に達しないときにはバルブを前記一 方向へ移動させる動作を開始し、 このバルブを一方向へ移動させる動作及び他方 向へ移動させる動作を所定回数行った後に固着回避動作を終了する、 内燃機関の バルブ制御装置。
2 . 前記内燃機関のバルブ制御装置は、
前記固着回避動作の実行によりバルブの固着が解消したか否かを判定する固着 判定部をさらに含み、
前記固着判定部は、 バルブを一方向へ移動させる動作またはバルブを他方向へ 移動させる動作を開始した後、 所定の移動制御時間内にバルブ移動量が固着解消 移動量に達した場合に、 バルブの固着が解消したと判定する、 請求項 1に記載の 内燃機関のバルブ制御装置。
3 . 前記内燃機関のバルブ制御装置は、 バルブの固着が解消していないと固 着判定部が判定した場合には、 内燃機関の運転時におけるバルブの開閉動作を禁 止する、 請求項 2に記載の内燃機関のバルブ制御装置。
4 . 前記内燃機関のバルブ制御装置は、 バルブの固着が解消したと固着判定 部が判定した場合には、 バルブの開閉位置を所定位置に位置決めし、 その位置を、 内燃機関の運転時におけるバルブ開閉制御動作を行う際の基準位置として認識す る基準位置補正動作を行う、 請求項 2に記載の内燃機関のバルブ制御装置。
5 . 前記内燃機関のバルブ制御装置は、
前記固着回避動作の実行によりバルブの固着が解消したか否かを判定する固着 判定部をさらに含み、
前記固着判定部は、 バルブを一方向へ移動させる動作及びバルブを他方向へ移 動させる動作を所定回数行った後、 所定の移動制御時間が経過してもバルブ移動 量が固着解消移動量に達しなかった回数が所定回数以上であった場合にはバルブ の固着が解消していないと判定する、 請求項 1に記載の内燃機関のバルブ制御装 置。
6 . 前記内燃機関のバルブ制御装置は、 バルブの固着が解消していないと固 着判定部が判定した場合には、 内燃機関の運転時におけるバルブの開閉動作を禁 止する、 請求項 5に記載の内燃機関のバルブ制御装置。
7 . 前記内燃機関のバルブ制御装置は、 バルブの固着が解消したと固着判定 部が判定した場合には、 バルブの開閉位置を所定位置に位置決めし、 その位置を、 内燃機関の運転時におけるバルブ開閉制御動作を行う際の基準位置として認簿す る基準位置補正動作を行う、 請求項 5に記載の内燃機関のバルブ制御装置。
8 . 前記固着回避動作は、 内燃機関の停止中に実行される、 請求項 1〜7の いずれかに記載の内燃機関のバルブ制御装置。
9 . 内燃機関の気体通路に設けられて開閉動作を行うことにより通路を流れ る気体の流量を可変とするバルブと、 バルブ全閉位置付近において一方向及び他 方向へそれぞれ固着解消移動量だけバルブを開閉往復移動させることによってバ ルブの固着を解消または防止する固着回避動作を実行するバルブ作動ュニットと を備えた内燃機関のバルブ制御方法であって、
前記固着回避動作の実行時、 バルブを前記一方向へ移動させる動作を開始する ステップと、
所定の移動制御時間が経過してもバルブ移動量が前記固着解消移動量に達しな いときにはバルブを前記他方向へ移動させる動作を開始すると共に、 バルブを他 方向へ移動させる動作時に、 所定の移動制御時間が経過してもバルブ移動量が前 記固着解消移動量に達しないときにはバルブを前記一方向へ移動させる動作を開 始するステップと、 このバルブを一方向へ移動させる動作及び他方向へ移動させる動作を所定回数 行った後に固着回避動作を終了するステップとを含む、 内燃機関のバルブ制御方 法。
1 0 . 前記内燃機関のバルブ制御方法は、
前記固着回避動作の実行によりバルブの固着が解消したか否かを判定するステ ップをさらに含み、
前記固着が解消したか否かを判定するステップは、 バルブを一方向へ移動させ る動作またはバルブを他方向へ移動させる動作を開始した後、 所定の移動制御時 間内にバルブ移動量が固着解消移動量に達した場合に、 バルブの固着が解 mした と判定する、 請求項 9に記載の内燃機関のバルブ制御方法。
1 1 . 前記内燃機関のバルブ制御方法は、 バルブの固着が解消していないと 判定された場合には、 内燃機関の運転時におけるバルブの開閉動作を禁止するス テツプをさらに含む、 請求項 1 0に記載の内燃機関のバルブ制御方法。
1 2 . 前記内燃機関のバルブ制御方法は、 バルブの固着が解消したと判定さ れた場合には、 バルブの開閉位置を所定位置に位置決めし、 その位置を、 内燃機 関の運転時におけるバルブ開閉制御動作を行う際の基準位置として認、識する基準 位置補正動作を行うステップをさらに含む、 請求項 1 0に記載の内燃機関のバル ブ制御方法。
1 3 . 前記内燃機関のバルブ制御方法は、
前記固着回避動作の実行によりバルブの固着が解消したか否かを判定するステ ップをさらに含み、
前記固着が解消したか否かを判定するステップは、 バルブを一方向へ移動させ る動作及びバルブを他方向へ移動させる動作を所定回数行った後、 所定の移動制 御時間が経過してもバルブ移動量が固着解消移動量に達しなかった回数が所定回 数以上であつた場合にはバルブの固着が解消していないと判定するステップを含 む、 請求項 9に記載の内燃機関のバルブ制御方法。
1 4 . 前記内燃機関のバルブ制御方法は、 バルブの固着が解消していないと 判定された場合には、 内燃機関の運転時におけるバルブの開閉動作を禁止するス テツプをさらに含む、 請求項 1 3に記載の内燃機関のバルブ制御方法。
1 5 . 前記内燃機関のバルブ制御方法は、 バルブの固着が解消したと判定さ れた場合には、 バルブの開閉位置を所定位置に位置決めし、 その位置を、 内燃機 関の運転時におけるバルブ開閉制御動作を行う際の基準位置として認識する基準 位置補正動作を行うステップをさらに含む、 請求項 1 3に記載の内燃機関のバル ブ制御方法。
1 6 . 前記固着回避動作は、 内燃機関の停止中に実行される、 請求項 9〜1 5のいずれかに記載の内燃機関のバルブ制御方法。
PCT/JP2006/314928 2005-07-25 2006-07-21 内燃機関のバルブ制御装置およびその方法 WO2007013569A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06781839.3A EP1911958B1 (en) 2005-07-25 2006-07-21 Valve control device and method for internal combustion engine
US11/989,317 US7957890B2 (en) 2005-07-25 2006-07-21 Valve control device and method for internal combustion engine
CN2006800269990A CN101228345B (zh) 2005-07-25 2006-07-21 用于内燃机的阀控制装置和方法
ES06781839.3T ES2689742T3 (es) 2005-07-25 2006-07-21 Dispositivo y método de control de válvula para motor de combustión interna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-214561 2005-07-25
JP2005214561A JP4529831B2 (ja) 2005-07-25 2005-07-25 内燃機関のバルブ制御装置

Publications (1)

Publication Number Publication Date
WO2007013569A1 true WO2007013569A1 (ja) 2007-02-01

Family

ID=37683459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314928 WO2007013569A1 (ja) 2005-07-25 2006-07-21 内燃機関のバルブ制御装置およびその方法

Country Status (6)

Country Link
US (1) US7957890B2 (ja)
EP (1) EP1911958B1 (ja)
JP (1) JP4529831B2 (ja)
CN (1) CN101228345B (ja)
ES (1) ES2689742T3 (ja)
WO (1) WO2007013569A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930581A1 (en) * 2005-09-02 2008-06-11 Toyota Jidosha Kabushiki Kaisha Valve controller of internal combustion engine

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201315A (ja) 2008-02-25 2009-09-03 Honda Motor Co Ltd 制御弁の制御装置
JP5393506B2 (ja) * 2010-01-27 2014-01-22 三菱重工業株式会社 エンジンの吸気系に用いられる制御弁の制御装置及び制御方法
JP5660322B2 (ja) * 2011-06-17 2015-01-28 株式会社デンソー 内燃機関のegr制御装置
JP5660323B2 (ja) * 2011-06-17 2015-01-28 株式会社デンソー 内燃機関のegr制御装置
JP5729218B2 (ja) * 2011-08-26 2015-06-03 株式会社デンソー 電子スロットル
JP2014034921A (ja) * 2012-08-08 2014-02-24 Denso Corp 内燃機関の制御装置
DE102013101938B4 (de) * 2013-02-27 2020-02-13 Pierburg Gmbh Antriebsanordnung für ein Aggregat eines Verbrennungsmotors und Abgasrückführventil
DE102014104579B4 (de) 2014-04-01 2017-05-11 Pierburg Gmbh Klappenvorrichtung für eine Verbrennungskraftmaschine
DE102014104578B4 (de) 2014-04-01 2020-02-06 Pierburg Gmbh Klappenvorrichtung für eine Verbrennungskraftmaschine
DE102014104577B4 (de) * 2014-04-01 2020-02-06 Pierburg Gmbh Abgasklappenvorrichtung für eine Verbrennungskraftmaschine
US20150285135A1 (en) * 2014-04-04 2015-10-08 Nexovation, Inc. Combustion engine including an air injector, and power generating system including the combustion engine
JP2015218642A (ja) * 2014-05-16 2015-12-07 株式会社デンソー 内燃機関の排気装置
CN105649788B (zh) * 2014-11-10 2019-05-21 联创汽车电子有限公司 废气再循环阀的零点位置自学习方法
DE102015222609B4 (de) * 2015-11-17 2022-05-25 Purem GmbH Elektrische Abgasklappeneinrichtung, Schalldämpfer und Abgasanlage
JP6477636B2 (ja) * 2016-09-07 2019-03-06 トヨタ自動車株式会社 内燃機関の制御装置
CA3046062A1 (en) 2017-02-10 2018-06-16 Halliburton Energy Services, Inc. Magnetic index positioner
JP2018204483A (ja) * 2017-06-01 2018-12-27 日野自動車株式会社 Egr弁制御装置
CN107100750B (zh) * 2017-06-12 2019-06-04 合肥威尔燃油系统股份有限公司 一种egr阀的自学习清积碳方法
GB2570336B (en) 2018-01-22 2020-03-04 Ford Global Tech Llc An exhaust gas recirculation valve diagnostic method
CN112443430B (zh) * 2019-08-28 2022-08-02 长城汽车股份有限公司 用于废气再循环阀的修复方法、修复设备和车辆
CN111120157B (zh) * 2020-03-31 2020-10-30 潍柴动力股份有限公司 一种egr系统的检测方法、装置及ecu
CN114233486B (zh) * 2021-11-12 2023-08-18 潍柴动力股份有限公司 一种egr阀的控制方法、装置及ecu
CN114352445B (zh) * 2021-12-14 2023-01-24 潍柴动力股份有限公司 Egr阀组件、具有egr阀组件的发动机及发动机的控制方法
US20240011454A1 (en) * 2022-07-07 2024-01-11 International Engine Intellectual Property Company, Llc Exhaust gas recirculation valve diagnostics

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07293355A (ja) * 1994-04-27 1995-11-07 Unisia Jecs Corp 内燃機関用絞り弁の制御装置
JP2000320347A (ja) 1999-05-10 2000-11-21 Toyota Motor Corp 内燃機関のスロットル制御装置
WO2002014673A1 (fr) * 2000-08-14 2002-02-21 Mitsubishi Denki Kabushiki Kaisha Procede de commande de vanne de recirculation des gaz d'echappement
JP2002161750A (ja) * 2000-11-29 2002-06-07 Toyota Industries Corp スワール制御弁付き内燃機関
JP2004084492A (ja) * 2002-08-23 2004-03-18 Toyota Motor Corp 排気還流装置の異常診断装置
JP2004162665A (ja) 2002-11-15 2004-06-10 Denso Corp 排気ガス再循環装置
JP2004316559A (ja) * 2003-04-16 2004-11-11 Toyota Motor Corp スロットル装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696323A (en) * 1985-08-30 1987-09-29 Neotecha Ag Plastic lined rotatable valve
DE3743309A1 (de) * 1987-12-21 1989-06-29 Bosch Gmbh Robert Verfahren und einrichtung zur erkennung und lockerung verklemmter stellelemente
DE4330819A1 (de) * 1993-09-13 1995-03-16 Richter Chemie Technik Gmbh Verbindung zwischen einer Dreh- oder Schwenkarmatur und einem Drehantrieb
US5540414A (en) * 1994-05-03 1996-07-30 Taco, Inc. Actuator and zone valve
JP3702491B2 (ja) 1995-06-01 2005-10-05 株式会社デンソー 内燃機関のegr制御装置
JP2001173464A (ja) 1999-08-05 2001-06-26 Denso Corp 内燃機関のスロットル制御装置
AU2002242933A1 (en) * 2002-02-22 2003-09-09 Plastrulon Processors Limited Ball valve with a single piece ball-stem and an integrated actuator mounting flange
DE102004057612B4 (de) * 2003-12-03 2010-04-08 Continental Automotive Systems US, Inc. (n. d. Gesetzen des Staates Delaware), Auburn Hills Elektronisches Kontrollsystem für einen Drosselkörper und Verfahren
US7114487B2 (en) * 2004-01-16 2006-10-03 Ford Motor Company Ice-breaking, autozero and frozen throttle plate detection at power-up for electronic motorized throttle
JP4285267B2 (ja) * 2004-02-19 2009-06-24 株式会社デンソー 排気ガス再循環装置
JP4483684B2 (ja) * 2005-04-28 2010-06-16 株式会社デンソー 筒内噴射式内燃機関の燃料噴射制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07293355A (ja) * 1994-04-27 1995-11-07 Unisia Jecs Corp 内燃機関用絞り弁の制御装置
JP2000320347A (ja) 1999-05-10 2000-11-21 Toyota Motor Corp 内燃機関のスロットル制御装置
WO2002014673A1 (fr) * 2000-08-14 2002-02-21 Mitsubishi Denki Kabushiki Kaisha Procede de commande de vanne de recirculation des gaz d'echappement
JP2002161750A (ja) * 2000-11-29 2002-06-07 Toyota Industries Corp スワール制御弁付き内燃機関
JP2004084492A (ja) * 2002-08-23 2004-03-18 Toyota Motor Corp 排気還流装置の異常診断装置
JP2004162665A (ja) 2002-11-15 2004-06-10 Denso Corp 排気ガス再循環装置
JP2004316559A (ja) * 2003-04-16 2004-11-11 Toyota Motor Corp スロットル装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930581A1 (en) * 2005-09-02 2008-06-11 Toyota Jidosha Kabushiki Kaisha Valve controller of internal combustion engine
EP1930581A4 (en) * 2005-09-02 2014-10-29 Toyota Motor Co Ltd VALVE CONTROL MODULE FOR INTERNAL COMBUSTION ENGINE

Also Published As

Publication number Publication date
US20090265084A1 (en) 2009-10-22
US7957890B2 (en) 2011-06-07
EP1911958A1 (en) 2008-04-16
EP1911958B1 (en) 2018-09-05
CN101228345B (zh) 2011-03-30
ES2689742T3 (es) 2018-11-15
JP2007032356A (ja) 2007-02-08
CN101228345A (zh) 2008-07-23
JP4529831B2 (ja) 2010-08-25
EP1911958A4 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
WO2007013569A1 (ja) 内燃機関のバルブ制御装置およびその方法
JP4487887B2 (ja) 内燃機関のバルブ制御装置
JP4285267B2 (ja) 排気ガス再循環装置
JP4530037B2 (ja) 内燃機関の吸気制御装置
JP4228941B2 (ja) 電子制御式スロットル制御装置
JP4380765B2 (ja) 内燃機関の制御装置
US20080223036A1 (en) Abnormality-Determining Device and Method For Turbo-Supercharger, and Engine Control Unit
US20150330335A1 (en) Exhaust device for internal combustion engine
US7671601B2 (en) Abnormal condition detecting system for engine
WO2012107950A1 (ja) 内燃機関の制御装置
KR102122622B1 (ko) 내연 기관을 작동시키기 위한 방법 및 장치
JP2008075517A (ja) 内燃機関の制御装置
JP2005256784A (ja) 排気ガス還流装置の故障診断装置
JP5996476B2 (ja) エンジンの排気還流装置
JP2009243475A (ja) 流体制御弁
US20160090931A1 (en) Control apparatus for engine
US20190360417A1 (en) Method of operating an internal combustion engine
JP6115510B2 (ja) 全閉位置学習装置
JP2015200226A (ja) バルブ制御装置
JP4539642B2 (ja) 内燃機関の吸気制御装置
EP2322786B1 (en) Control system for internal combustion engine
WO2021131777A1 (ja) 燃料噴射制御装置
JP2005282562A (ja) 内燃機関の停止装置、内燃機関の自動停止始動装置およびこれらを備える自動車
JP2010096082A (ja) スロットル制御装置
JP2007162471A (ja) 内燃機関用流体制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680026999.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11989317

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006781839

Country of ref document: EP