JP2009243475A - 流体制御弁 - Google Patents

流体制御弁 Download PDF

Info

Publication number
JP2009243475A
JP2009243475A JP2008087050A JP2008087050A JP2009243475A JP 2009243475 A JP2009243475 A JP 2009243475A JP 2008087050 A JP2008087050 A JP 2008087050A JP 2008087050 A JP2008087050 A JP 2008087050A JP 2009243475 A JP2009243475 A JP 2009243475A
Authority
JP
Japan
Prior art keywords
valve
cam
fully closed
seated
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008087050A
Other languages
English (en)
Inventor
Masahito Arai
雅人 新井
Kazuto Maeda
一人 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008087050A priority Critical patent/JP2009243475A/ja
Publication of JP2009243475A publication Critical patent/JP2009243475A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/66Lift valves, e.g. poppet valves
    • F02M26/67Pintles; Spindles; Springs; Bearings; Sealings; Connections to actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • F02M26/54Rotary actuators, e.g. step motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

【課題】 開弁状態からバルブシート2に突き当てるようにバルブ3を全閉作動させる時の閉弁応答性を低下させることなく、バルブ3がバルブシート2に着座した時の衝撃が発生しないようにすることを課題とする。
【解決手段】 モータの回転駆動力を直線駆動力に変換する変換機構の入力部を構成する第1シャフト21に設けられたローラ軸に軸支されるローラ32は、開弁状態からバルブシート2に突き当てるようにバルブ3を全閉作動させる時(バルブ3の全閉作動時)に、バルブ3がバルブシート2に着座して流路孔12を全閉した直後に、変換機構の出力部を構成する第2シャフト22に設けられたカム部材の2つのカム凸部34に形成される各傾斜カム面から離脱するように構成されている。これによって、バルブ3の全閉作動時に、バルブ3をバルブシート2に突き当てることによる衝撃が発生しない。
【選択図】 図3

Description

本発明は、ハウジングの内部に形成される流体流路を流れる流体を制御する流体制御弁に関するもので、特に内燃機関の燃焼室より流出した排気ガスを制御する排気ガス制御弁に係わる。
[従来の技術]
従来より、例えばディーゼルエンジン等の内燃機関の排気ガス中に含まれる有害物質(例えば窒素酸化物:NOx等)の低減を図るという目的で、内燃機関の排気ガスの一部であるEGRガスを排気通路から吸気通路に還流させるための排気ガス還流管を備えた排気ガス還流装置が公知である。
この排気ガス還流装置には、排気ガス還流管の内部(EGRライン)を流れるEGRガスの流量を可変制御する排気ガス流量制御弁(EGRガス流量制御弁:以下EGRVと呼ぶ)が組み込まれている(例えば、特許文献1及び2参照)。
特許文献1に記載のEGRVは、図8に示したように、バルブ101を駆動する駆動力を発生するモータ102と、このモータ102の駆動力をバルブ101に伝達する動力伝達機構と、内部にバルブ101、モータ102および動力伝達機構を収容するハウジング103とを備えている。ここで、バルブ101は、ハウジング103に固定されたバルブシート104に対して着座、離脱して流路孔を閉鎖、開放する弁体(フェース部)111、およびこのフェース部111を軸線方向に往復移動させる弁軸(ステム部)112等によって構成されている。
また、動力伝達機構は、モータ102の出力軸105の回転速度を減速する減速器106、この減速器106の出力軸113とオフセット配置したベアリングジャーナル114、およびこのベアリングジャーナル114と回転可能に連結したベアリング115等によって構成されている。
なお、バルブ101のステム部112は、動力伝達機構の出力部を兼ねており、その軸線方向の上端部でベアリング115を保持している。また、ステム部112の軸線方向の下端部には、バルブ101のフェース部111が固定されている。
また、EGRVは、バルブ101のステム部112、ベアリングジャーナル114およびベアリング115等によって、モータ102の回転駆動力を直線駆動力に変換する変換機構を構成している。
また、EGRVは、バルブシート104に対するバルブ101のフェース部111のリフト量を可変することで、バルブ101のステム部112が流路孔を挿通してバルブシート104の図示下端面よりバルブ101のフェース部111が離脱し、バルブ101のフェース部111とバルブシート104の孔壁面との間に形成される隙間の開口面積が変化し、この開口面積の変化に対応してEGRガスの流量を制御している。
特許文献2に記載のEGRVは、図9に示したように、バルブ101を駆動する駆動力を発生するモータ102と、このモータ102の駆動力をバルブ101に伝達する動力伝達機構と、内部にバルブ101、モータ102および動力伝達機構を収容するハウジング103とを備えている。ここで、バルブ101は、ハウジング103に固定されたバルブシート104に対して着座、離脱して流路孔を閉鎖、開放する弁体(フェース部)111、およびこのフェース部111を軸線方向に往復移動させる弁軸(ステム部)112等によって構成されている。
また、動力伝達機構は、モータ102の出力軸105に固定されたスイングバー107、およびこのスイングバー107と嵌合する横軸109等によって構成されている。
なお、バルブ101のステム部112は、動力伝達機構の出力部を兼ねており、その軸線方向の上端部で横軸109を固定している。また、ステム部112の軸線方向の下端部には、バルブ101のフェース部111が固定されている。
このEGRVは、スイングバー107と横軸109とが回転方向で当接し、回転軸方向に相対移動可能であり、横軸109がハウジング103に固定された固定ガイド110の螺旋溝に沿って回転軸方向に回転しながら移動することで、モータ102の出力軸105の回転駆動力を直線駆動力に変換する変換機構を構成している。
また、EGRVは、バルブシート104に対するバルブ101のフェース部111のリフト量を可変することで、バルブ101のステム部112が流路孔を挿通してバルブシート104の図示上端面よりバルブ101のフェース部111がリフトし、バルブ101のフェース部111とバルブシート104の孔壁面との間に形成される隙間の開口面積が変化し、この開口面積の変化に対応してEGRガスの流量を制御している。
[従来の技術の不具合]
ところが、上記の特許文献1及び2に記載のEGRVにおいては、モータ101の回転駆動力を直線駆動力に変換する変換機構の入力部と出力部とが、モータ101の駆動力を機械的連結により直接変換している。このため、開弁状態からバルブシート104に突き当てるようにバルブ101を全閉作動させる時、バルブ101のフェース部111がバルブシート104に着座して流路孔を全閉した際に、バルブ101のフェース部111がバルブシート104でロックすることとなり、モータ102の回転駆動力をバルブ101に伝達する動力伝達系の部品(例えばギヤ等)に、バルブ101のフェース部111をバルブシート104に突き当てることによる衝撃荷重(突き当てによる衝撃荷重)が加わり、動力伝達系の部品が破損(ギヤ割れ等)するという不具合が発生する問題があった。
また、この問題を解決するために、開弁状態からバルブシート104に突き当てるようにバルブ101を全閉作動させる時、バルブ101のフェース部111がバルブシート104に着座する直前に到達した段階で、バルブ101の移動速度(着座速度)を遅くする減速制御を用いて、バルブ101のフェース部111がバルブシート104に着座する瞬間の衝撃、すなわち、突き当てによる衝撃荷重を緩和することが知られているが、開弁状態からバルブシート104に突き当てるようにバルブ101を全閉作動させる全閉作動時間が長くなるので、バルブ101の閉弁応答性が下がるデメリットがある。
米国特許第6443135号明細書 特表2002−508471号公報
本発明の目的は、開弁状態から弁座に突き当てるようにバルブを全閉作動させる時の閉弁応答性を低下させることなく、バルブが弁座に着座した時に衝撃が発生しないようにすることのできる流体制御弁を提供することにある。
請求項1に記載の発明によれば、モータの回転駆動力を直線駆動力に変換する変換機構の入力部に設けられるローラは、開弁状態から弁座に突き当てるようにバルブを全閉作動させる時(バルブの全閉作動時)にバルブが、弁座に着座する直前または弁座に着座した直後に、カム部から離脱するように構成されている。
これによって、開弁状態から弁座に突き当てるようにバルブを全閉作動させる時に、バルブの移動速度(着座速度)を遅くする減速制御を実施しなくても、すなわち、開弁状態から弁座に突き当てるようにバルブを全閉作動させる時の閉弁応答性を低下させる制御を実施しなくても、バルブを弁座に突き当てることによる衝撃(突き当てによる衝撃)が発生しない。あるいはバルブが弁座に着座した時の衝撃力が極めて小さくなる。
したがって、バルブが弁座に着座した時の衝撃が発生しない。あるいはバルブが弁座に着座した時の衝撃力が極めて小さくすることができるので、例えばモータの回転駆動力を変換機構の入力部に伝達する動力伝達系の部品(例えばギヤ等)の破損の心配がない。これにより、開弁状態から全閉位置まで最速でバルブを移動させることができるので、開弁状態から弁座に突き当てるようにバルブを全閉作動させる時の閉弁応答性を向上することができる。
請求項2に記載の発明によれば、ローラは、開弁状態から弁座に突き当てるようにバルブを全閉作動させる時に、バルブが弁座に着座して流路孔を全閉するまで、カム部のカム面に当接するように構成されている。これにより、少なくともバルブの動作可能範囲に渡ってモータの回転駆動力を変換機構で直線駆動力に変換してバルブに伝達することができる。
請求項3に記載の発明によれば、カム部は、バルブの全閉作動時にバルブが弁座に着座するまで、ローラに当接し、且つバルブの全閉作動時にバルブが弁座に着座した直後に、ローラから離脱するカム面を有している。そして、カム部のカム面は、入力部または出力部の中心軸線に垂直な平面に対して傾斜した傾斜面である。
また、ローラは、バルブの全閉作動時にバルブが弁座に着座するまで、カム部のカム面(傾斜面)に当接し、且つバルブの全閉作動時にバルブが弁座に着座した直後に、カム部のカム面(傾斜面)から離脱するように構成されている。
請求項4および請求項5に記載の発明によれば、例えばモータの回転駆動力を変換機構の入力部に伝達する動力伝達系に、変換機構の入力部の限界位置(全閉側の限界位置)を規制するストッパ部材を付加させることなく、バルブが弁座に着座して流路孔を閉鎖状態(全閉状態)に保つことができる。すなわち、バルブ付勢手段の付勢力によってバルブを弁座に押し付けるように付勢しているので、ローラとカム部とが離脱していても、つまりモータからバルブへの動力伝達が遮断されている場合であっても、バルブで流路孔を閉じ切ることができる。これにより、バルブが弁座に着座した時、つまり全閉時における流体漏れ量を低減することができる。
請求項6に記載の発明によれば、カム部は、バルブの全閉作動時にバルブが弁座に着座するまで、ローラに当接し、且つバルブの全閉作動時にバルブが弁座に着座した直後に、ローラから離脱する第1カム面、およびこの第1カム面に対して入力部または出力部の中心軸線方向でローラの径よりも大きい間隔を隔てて対向する第2カム面を有している。そして、カム部の第1カム面および第2カム面は、入力部または出力部の中心軸線に垂直な平面に対して傾斜した傾斜面である。
また、ローラは、バルブの全閉作動時にバルブが弁座に着座するまで、カム部の第1カム面に当接し、且つバルブの全閉作動時にバルブが弁座に着座した後に、カム部の第1カム面から離脱して、カム部の第2カム面に当接するように構成されている。
また、バルブ付勢手段が故障し、バルブの全閉作動時にバルブが弁座より離脱した位置で停止状態にある場合であっても、ローラがカム部の第2カム面と当接することで、モータの回転駆動力によって変換機構の出力部およびバルブを、バルブが流路孔を全閉する全閉位置まで戻すことができる。
請求項7に記載の発明によれば、モータの回転駆動力を直線駆動力に変換する変換機構の入力部に設けられるカム部は、開弁状態から弁座に突き当てるようにバルブを全閉作動させる時(バルブの全閉作動時)にバルブが、弁座に着座する直前または弁座に着座した直後に、ローラから離脱するように構成されている。
これによって、開弁状態から弁座に突き当てるようにバルブを全閉作動させる時に、バルブの移動速度(着座速度)を遅くする減速制御を実施しなくても、すなわち、開弁状態から弁座に突き当てるようにバルブを全閉作動させる時の閉弁応答性を低下させる制御を実施しなくても、バルブを弁座に突き当てることによる衝撃(突き当てによる衝撃)が発生しない。あるいはバルブが弁座に着座した時の衝撃力が極めて小さくなる。
したがって、バルブが弁座に着座した時の衝撃が発生しない。あるいはバルブが弁座に着座した時の衝撃力が極めて小さくすることができるので、例えばモータの回転駆動力を変換機構の入力部に伝達する動力伝達系の部品(例えばギヤ等)の破損の心配がない。これにより、開弁状態から全閉位置まで最速でバルブを移動させることができるので、開弁状態から弁座に突き当てるようにバルブを全閉作動させる時の閉弁応答性を向上することができる。
請求項8に記載の発明によれば、カム部は、開弁状態から弁座に突き当てるようにバルブを全閉作動させる時に、バルブが弁座に着座して流路孔を全閉するまで、ローラの円筒面に当接するように構成されているので、少なくともバルブの動作可能範囲に渡ってモータの回転駆動力を変換機構で直線駆動力に変換してバルブに伝達することができる。
請求項9に記載の発明によれば、カム部は、バルブの全閉作動時にバルブが弁座に着座するまで、ローラに当接し、且つバルブの全閉作動時にバルブが弁座に着座した直後に、ローラから離脱するカム面を有している。そして、カム部のカム面は、出力部または入力部の中心軸線に垂直な平面に対して傾斜した傾斜面である。
また、ローラは、バルブの全閉作動時にバルブが弁座に着座するまで、カム部のカム面(傾斜面)に当接し、且つバルブの全閉作動時にバルブが弁座に着座した直後に、カム部のカム面(傾斜面)から離脱する円筒面を有している。
請求項10および請求項11に記載の発明によれば、例えばモータの回転駆動力を変換機構の入力部に伝達する動力伝達系に、変換機構の入力部の限界位置(全閉側の限界位置)を規制するストッパ部材を付加させることなく、バルブが弁座に着座して流路孔を閉鎖状態(全閉状態)に保つことができる。すなわち、バルブ付勢手段の付勢力によってバルブを弁座に押し付けるように付勢しているので、ローラとカム部とが離脱していても、つまりモータからバルブへの動力伝達が遮断されている場合であっても、バルブで流路孔を閉じ切ることができる。これにより、バルブが弁座に着座した時、つまり全閉時における流体漏れ量を低減することができる。
請求項12に記載の発明によれば、カム部は、バルブの全閉作動時にバルブが弁座に着座するまで、ローラに当接し、且つバルブの全閉作動時にバルブが弁座に着座した直後に、ローラから離脱する第1カム面、およびこの第1カム面に対して出力部または入力部の中心軸線方向でローラの径よりも大きい間隔を隔てて対向する第2カム面を有している。そして、カム部の第1カム面および第2カム面は、出力部または入力部の中心軸線に垂直な平面に対して傾斜した傾斜面である。
また、ローラは、バルブの全閉作動時にバルブが弁座に着座するまで、カム部の第1カム面に当接し、且つバルブの全閉作動時にバルブが弁座に着座した後に、カム部の第1カム面から離脱して、カム部の第2カム面に当接する円筒面を有している。
また、バルブ付勢手段が故障し、バルブの全閉作動時にバルブが弁座より離脱した位置で停止状態にある場合であっても、ローラがカム部の第2カム面と当接することで、モータの回転駆動力によって変換機構の出力部およびバルブを、バルブが流路孔を全閉する全閉位置まで戻すことができる。
本発明を実施するための最良の形態は、開弁状態から弁座に突き当てるようにバルブを全閉作動させる時の閉弁応答性を低下させることなく、バルブが弁座に着座した時に衝撃が発生しないようにするという目的を、バルブの全閉作動時にバルブが弁座に着座した直後に、変換機構の入力部または出力部のローラ軸に軸支されるローラが、変換機構の出力部または入力部に設けられるカム部から離脱するように構成することで実現した。
[実施例1の構成]
図1ないし図3は本発明の実施例1を示したもので、図1は排気ガス流量制御弁(EGRV)を示した図で、図2はEGRVの主要部を示した図である。
本実施例の排気ガス還流装置は、例えば自動車等の車両に搭載される内燃機関(以下エンジンと呼ぶ)に使用されるもので、エンジンの各気筒毎の燃焼室より流出した排気ガスの一部であるEGRガス(排気再循環ガス)等の高温流体を、エンジンの吸気系統に再循環させるEGR装置である。ここで、エンジンは、燃料が直接燃焼室内に噴射供給される直接噴射式のディーゼルエンジンが採用されている。そして、エンジンは、各気筒毎の燃焼室内に吸入空気を供給するための吸気管、および各気筒毎の燃焼室より流出した排気ガスを排気浄化装置を経由して外部に排出するための排気管を有している。
また、排気ガス還流装置は、排気管と吸気管とを接続する排気ガス還流管(図示せず)と、この排気ガス還流管の途中に配設された排気ガス流量制御弁(EGRガス流量制御弁:以下EGRVと呼ぶ)とを備えている。なお、本実施例では、排気ガス還流管のEGRガス流(空気流)方向の上流端が、排気管(例えばエキゾーストマニホールド)に気密的に接続されており、また、排気ガス還流管のEGRガス流(空気流)方向の下流端が、吸気管(例えばインテークマニホールド)に気密的に接続されている。
本実施例のEGRVは、本発明の流体制御弁に相当するもので、エンジンの排気通路から吸気通路に還流されるEGRガスの還流量(排気ガスの流量:EGR量)を可変制御する電動式流体流量制御弁である。
EGRVは、排気ガス還流装置の排気ガス還流管の途中に結合されるハウジング1と、このハウジング1のバルブシート2に着座可能なバルブ3と、このバルブ3を全閉作動方向に付勢するスプリング(バルブ付勢手段)4と、バルブ3をその中心軸線方向に往復移動させる回転駆動力を発生するモータ5と、このモータ5の回転駆動力を直線駆動力に変換する変換機構とを備えている。
本実施例のハウジング1は、金属材料によって形成されており、排気ガス還流管の下流端およびエンジンの吸気管の合流部にボルト等の締結具(図示せず)を用いて締め付け固定されている。また、ハウジング1には、バルブ3および変換機構等を内蔵する第1円筒体(バルブハウジング)6、およびモータ5等を内蔵する第2円筒体(モータハウジング)7等が一体的に形成されている。
第1円筒体6の内部には、エンジンの各気筒毎の燃焼室に連通する流体流路(排気ガス還流路11→流路孔12→排気ガス還流路13)が形成されている。第1円筒体6には、排気ガス還流路11とギヤ収容室14とを仕切る隔壁(ブロック)15が一体的に形成されている。また、排気ガス還流路11と排気ガス還流路13とを仕切る隔壁(ブロック)の凹部には、バルブシート(弁座)2が圧入嵌合されている。
バルブシート2は、金属材料によって形成されており、バルブ3の全閉作動時にバルブ3が着座すると、バルブ3のこれ以上の閉弁作動方向への移動を規制するバルブストッパとしての機能を有している。このバルブシート2の内部には、排気ガス還流路11と排気ガス還流路13とを連通する流路孔(連通孔)12が形成されている。また、バルブシート2には、バルブ3が着座可能なシート面(傾斜面)が形成されている。
また、第1円筒体6の内部には、変換機構の入力部を構成する第1シャフト(入力側シャフト)21を回転自在に支持するボールベアリング(軸受け)8を保持するベアリングホルダ9が固定されている。
また、ブロック15には、変換機構の出力部を構成する第2シャフト(出力側シャフト)22を回転自在に支持するブッシュ16を保持する円筒状の軸受け部が設けられている。そして、ブロック15には、ブッシュ16の周囲を巡るように冷却水路17が形成されている。
ここで、排気ガス還流路11の上流側は、排気ガス還流管を介してエンジンの排気管に接続している。また、排気ガス還流路13の下流側は、エンジンの吸気管に接続している。
バルブ3は、バルブシート2に対して着座、離脱して流路孔12を閉鎖(全閉)、開放する弁体(EGRVの弁体)を構成している。また、バルブ3は、第2シャフト22の軸線方向の一端部(図示下端部)に溶接等により固定されている。本実施例では、バルブ3の背面側の傾斜面(フェース部)が、バルブシート2のシート面に着座するように構成されている。
スプリング4は、ハウジング1のブロック15とカム部材33の背面部との間に配設されている。このスプリング4は、カム部材33の2つのカム凸部34に形成される各傾斜カム面を、ローラ軸31に軸支される2つのローラ32の各円筒面に押し当てる方向に付勢する付勢力(スプリング力)を発生すると共に、バルブ3を、バルブシート2に押し付ける方向に付勢する付勢力(スプリング力)を発生するコイルスプリングである。
ここで、本実施例のEGRVは、バルブ3を開弁作動方向(図示下方)または閉弁作動方向(図示上方)に駆動するバルブ駆動装置(アクチュエータ)を備えている。このアクチュエータは、電力の供給を受けて回転駆動力を発生するモータ(動力源)5と、このモータ5の回転駆動力を直線駆動力に変換する変換機構とを備えている。なお、変換機構は、動力伝達機構(例えば歯車減速機構等)を介して、モータ5の回転駆動力が伝達される入力部(変換機構の入力部)、およびバルブ3に、バルブ3をその中心軸線方向に往復移動させる直線駆動力を伝達する出力部(変換機構の出力部)を有している。
ここで、変換機構の入力部は、その軸線方向に延びる回転軸である円柱状の入力側シャフト(第1シャフト)21を有している。この第1シャフト21の軸線方向の一端部(図示下端部)には、第1シャフト21の軸線方向に対して垂直な方向に延びる円柱状のローラ軸31が固定されている。このローラ軸31の軸線方向の両側には、2つのローラ32がそれぞれ軸支されている。
また、変換機構の出力部は、その軸線方向に延びるバルブ軸である円柱状の出力側シャフト(第2シャフト)22を有している。この第2シャフト22の軸線方向の他端部(図示上端部)には、プレート状のカム部材33が固定されている。このカム部材33の周縁部には、ローラ32と係合離脱可能に係合する2つのカム凸部(カム部)34が形成されている。これらのカム凸部34は、2つのローラ32の各円筒面に対して係合離脱可能に係合(当接)する傾斜カム面を有している。
なお、変換機構の入力部および出力部の詳細は後述する。
モータ5は、ブラシレスDCモータやブラシ付きのDCモータ等の直流(DC)モータが採用されている。なお、三相誘導電動機等の交流(AC)モータを用いても良い。
歯車減速機構は、モータ5の出力軸(モータシャフト)の回転速度を所定の減速比となるように減速するもので、モータ5のモータ出力軸トルク(回転駆動力)を変換機構の入力部に伝達する。
この歯車減速機構は、複数の第1〜第3ギヤ等によって構成されている。
第1ギヤ、つまりピニオンギヤ41は、金属材料によって形成されており、モータ5のモータシャフト39(図5参照)の外周に固定されている。
第2ギヤ、つまり中間減速ギヤ42は、ピニオンギヤ41と噛み合って回転する。中間減速ギヤ42は、樹脂材料によって形成されており、ハウジング1の第1円筒体6または第2円筒体7に一体的に設けられた支持軸(シャフト)44の外周に回転自在に嵌め合わされている。
また、第3ギヤ、つまり最終減速ギヤ43は、中間減速ギヤ42と噛み合って回転する。最終減速ギヤ43は、樹脂材料によって円環板形状に形成されている。また、最終減速ギヤ43の内周部には、非金属材料(樹脂材料)よりなるロータが一体的に形成されている。また、最終減速ギヤ43の内部には、金属材料よりなる最終減速ギヤプレート45がインサート成形されている。
ここで、本実施例のEGRVには、変換機構の入力部、特に一対のローラ32の回転位置を電気信号に変換し、エンジン制御ユニット(以下ECUと呼ぶ)へどれだけローラ32が開弁作動方向または閉弁作動方向に回転しているかを出力する非接触式の回転位置検出装置が搭載されている。
この回転位置検出装置は、第1シャフト21の軸線方向の他端部(出力部側に対して反対側の端部)にかしめ固定された最終減速ギヤ43に一体的に形成されたロータと、このロータに保持固定された磁界発生源としての分割型の永久磁石(マグネット)46と、このマグネット46によって磁化される分割型のヨーク(図示せず)と、マグネット46およびヨークと共に磁気回路を形成する磁気センサ47とによって構成されている。マグネット46およびヨークは、ロータの内周面に接着剤等を用いて固定されている。
磁気センサ47は、センサカバー49の内部に設けられたセンサ保持部に保持固定されている。この磁気センサ47は、マグネット46およびヨークに対向するように配置されたホールIC等によって構成されており、一対のローラ32の回転位置を検出して、ECUに出力する。
ここで、ホールICとは、ホール素子(非接触式の磁気検出素子)と増幅回路とを一体化したIC(集積回路)のことで、ホールIC自身に鎖交する磁束密度に対応した電圧信号を出力する。なお、非接触式の磁気検出素子として、ホールICの代わりに、ホール素子単体または磁気抵抗素子を使用しても良い。
また、本実施例の磁気センサ47は、バルブ3が全閉位置と全開位置との間にある場合、一対のローラ32の回転位置とバルブ3の開度とが対応している。このため、ECUは、一対のローラ32の回転位置に応じてバルブリフト量を検出し、このバルブリフト量に基づいて排気通路から吸気通路へ還流するEGRガスの還流量(EGR量)を演算することが可能である。
ここで、EGRV、特にモータ5は、ECUによって通電制御されるように構成されている。そして、ECUには、制御処理、演算処理を行うCPU、各種プログラムや各種データを保存する記憶装置(ROMやRAM等のメモリ)、入力回路(入力部)、出力回路(出力部)等の機能を含んで構成される周知の構造のマイクロコンピュータが設けられている。そして、ECUは、磁気センサ47、クランク角度センサ、アクセル開度センサ、エアフロメータおよび冷却水温度センサ等の各種センサからのセンサ信号が、A/D変換器でA/D変換された後に、ECUに内蔵されたマイクロコンピュータに入力されるように構成されている。
また、ECUは、図示しないイグニッションスイッチをオン(IG・ON)すると、マイクロコンピュータのメモリ内に格納された制御プログラムに基づいて、磁気センサ47によって検出されるバルブ開度が、エンジンの運転状態に対応して設定される制御目標値に略一致するようにモータ5への供給電力をフィードバック制御するように構成されている。なお、ECUは、イグニッションスイッチがオフ(IG・OFF)されると、メモリ内に格納された制御プログラムに基づく上記の制御が強制的に終了されるように構成されている。
次に、本実施例の変換機構の入力部および出力部の詳細を図1ないし図3に基づいて説明する。
変換機構の入力部を構成する第1シャフト21の軸線方向の一端部(変換機構の出力部側の端部)には、ローラ軸31が保持固定されている。また、第1シャフト21の軸線方向の他端部は、最終減速ギヤ43の内部にインサート成形された最終減速ギヤプレート45にかしめ固定されている。また、第1シャフト21は、ボールベアリング8を介して、ハウジング1の第1円筒部6の内周部に保持固定されたベアリングホルダ9に回転自在に支持されている。
ローラ軸31は、第1シャフト21が、モータ5の回転駆動力によって回転駆動されると、第1シャフト21の中心軸線を中心にして開弁作動方向または閉弁作動方向に回転運動を行う。
本実施例のローラ軸31に軸支される2つのローラ32は、バルブ3の全閉作動時にバルブ3がバルブシート2に着座するまで、カム部材33のカム凸部34の傾斜カム面に当接し、且つバルブ3の全閉作動時にバルブ3がバルブシート2に着座した直後に、カム凸部34の傾斜カム面から離脱する円筒面をそれぞれ有している。
2つのローラ32は、カム部材33のカム凸部34と係合離脱可能に係合する。これらのローラ32は、第1シャフト21およびローラ軸31の回転により、第1シャフト21の中心軸線を中心にした公転運動を行うと共に、この公転運動中にローラ軸31の中心軸線を中心にして自転運動を行う。
変換機構の出力部を構成する第2シャフト22の軸線方向の一端部(図示下端部)の外周には、円環状のバルブ3が固定されている。また、第2シャフト22の軸線方向の中央部は、ハウジング1のブロック15に固定されたブッシュ16に軸線方向に摺動自在に支持されている。また、第2シャフト22の軸線方向の他端部(図示上端部)には、円環板状のカム部材33がかしめ固定されている。
ここで、第2シャフト22は、バルブ3がバルブシート2から離脱した時、つまりバルブ開弁時に、第2シャフト22の軸線方向の一端側(図示下端側)が流路孔12を通り抜けて、バルブシート2の円錐台形状のシート面(傾斜面)よりも変換機構の入力部側に対して逆側(図示下方側)に突き出すように構成されている。すなわち、バルブ3は、その開弁作動方向(全開作動方向)が、スプリング4の付勢方向とは逆方向である図示下方側であり、また、その閉弁作動方向(全閉作動方向)が、スプリング4の付勢方向と同一方向である図示上方側である。
カム部材33は、第2シャフト22の中心軸線に沿って直線運動を行う。
このカム部材33のローラ32と対向する周縁端面には、第2シャフト22の中心軸線に沿って直線運動を行うと共に、少なくともバルブ3の動作可能範囲内に渡ってローラ32の円筒面と係合する螺旋状のカム凸部(カム山部)34が2つ設けられている。
2つのカム凸部34の頂面には、バルブ3を開弁作動方向または閉弁作動方向に動かすことが可能な2つの傾斜カム面が円弧状(螺旋状)に形成されている。これらの傾斜カム面は、第2シャフト22の中心軸線に垂直な平面に対して傾斜した傾斜面である。
2つのカム凸部34は、カム部材33の板厚(または突出量)が、バルブ3の開弁作動方向(全開作動方向)に回転するに従って変換機構の入力部側に徐々に厚くなる(または突出する)ように設けられている。逆に、2つのカム凸部34は、カム部材33の板厚(または突出量)が、バルブ3の閉弁作動方向(全閉作動方向)に回転するに従って変換機構の入力部側に徐々に薄くなる(または凹む)ように設けられている。
また、2つのカム凸部34は、各傾斜カム面の高さが、バルブ3の開弁作動方向(全開作動方向)に回転するに従って変換機構の入力部側に徐々に高くなるように設けられている。逆に、2つのカム凸部34は、各傾斜カム面の高さが、バルブ3の閉弁作動方向(全閉作動方向)に回転するに従って変換機構の入力部側に徐々に低くなるように設けられている。
[実施例1の作用]
次に、本実施例の排気ガス還流装置の作用を図1ないし図3に基づいて簡単に説明する。ここで、図3は開弁状態からハウジングのバルブシートに突き当てるようにバルブを全閉作動させる状態を示した図である。
バルブ3を開弁作動方向に駆動する場合には、先ずECUがエンジンの運転状態に対応して設定される制御目標値(目標リフト量)を演算する。そして、モータ5に電力を供給し、モータ5のモータシャフトを開弁作動方向に回転させる。これにより、モータ5の回転駆動力が、ピニオンギヤ41、中間減速ギヤ42および最終減速ギヤ43に伝達される。そして、最終減速ギヤ43からモータ5の回転駆動力が伝達された、第1シャフト21が、最終減速ギヤ43の回転に伴って所定の回転角度だけ開弁作動方向に回転する。
このとき、第1シャフト21の軸線方向の一端部(先端部、図示下端部)に設けられたローラ軸31に軸支される2つのローラ32は、第1シャフト21およびローラ軸31の回転により、第1シャフト21の中心軸線を中心にした公転運動を行うと共に、この公転運動中にローラ軸31の中心軸線を中心にして自転運動を行う。さらに、ローラ32の円筒面が、第2シャフト22の軸線方向の他端部(図示上端部)に設けられたカム部材33の2つのカム凸部34に形成される各傾斜カム面に接触する。
そして、2つのローラ32が、第1シャフト21の回転に伴って2つのカム凸部34の各傾斜カム面上を転がり接触することで、2つのカム凸部34の形状(カム山形状)に従って、つまり2つのカム凸部34の各傾斜カム面の傾斜に従って2つのローラ32およびこれらのローラ32を軸支するローラ軸31に対して、カム部材33の2つのカム凸部34が図示下方(開弁作動方向)に徐々に移動するため、カム部材33に連動する第2シャフト22が中心軸線方向の一方側(図示下方、開弁作動方向)に直線移動する。
これに伴って、第2シャフト22の軸線方向の一端部(先端部)の外周に固定されたバルブ3が、ハウジング1のバルブシート2より離脱(離座)し、流路孔12が開放される。このとき、エンジンの運転状態に対応して設定される制御目標値(目標リフト量)に対応したバルブリフト量(バルブ開度)分だけ、流路孔12が開放される。
したがって、バルブ3は、制御目標値に相当するバルブリフト量に開弁制御される。これにより、エンジンの各気筒毎の燃焼室より流出した排気ガスの一部であるEGRガスが、エンジンの排気通路から、EGRV内に形成される排気ガス還流路11、流路孔12、排気ガス還流路13を経てエンジンの吸気通路に再循環される。すなわち、EGRガスがエンジンの各気筒毎の燃焼室に供給される吸入空気に混入される。
また、バルブ3を閉弁作動方向(全閉作動方向)に駆動する場合、特に開弁状態からハウジング1のバルブシート2に突き当てるようにバルブ3を全閉作動させる場合には、先ずECUがエンジンの運転状態に対応して設定される制御目標値を、バルブ3の全閉位置を少しだけ通り越した制御上の全閉ポイントに設定する。そして、モータ5に電力を供給し、モータ5のモータシャフト39を閉弁作動方向(全閉作動方向)に回転させる。これにより、モータ5の回転駆動力が、ピニオンギヤ41、中間減速ギヤ42および最終減速ギヤ43に伝達される。
このとき、上述したように、バルブ3が開弁している時、つまりバルブ3がバルブシート2より離脱している時には、図3(a)に示したように、変換機構の入力部側の2つのローラ32の円筒面と、変換機構の出力部である2つのカム凸部34の各傾斜カム面とが接触している。
そして、最終減速ギヤ43からモータ5の回転駆動力が伝達された第1シャフト21が、最終減速ギヤ43の回転に伴って所定の回転角度だけ閉弁作動方向(全閉作動方向)に回転する。このとき、第1シャフト21の軸線方向の一端部(先端部、図示下端部)に設けられたローラ軸31に軸支される2つのローラ32は、第1シャフト21およびローラ軸31の回転により、第1シャフト21の中心軸線を中心にした公転運動を行うと共に、この公転運動中にローラ軸31の中心軸線を中心にして自転運動を行う。さらに、2つのローラ32が、第1シャフト21の回転に伴って2つのカム凸部34の各傾斜カム面上を転がり接触する。これにより、カム部材33の2つのカム凸部34の形状(カム山形状)に従って、つまりカム部材33の一対の傾斜カム面の傾斜に従って2つのローラ32およびこれらのローラ32を軸支するローラ軸31に対して、カム部材33の2つのカム凸部34が図示上方(閉弁作動方向)に徐々に移動するため、カム部材33に連動する第2シャフト22が中心軸線方向の他方側(図示上方、閉弁作動方向)に直線移動する。
そして、図3(b)に示したように、バルブ3が全閉位置に戻され、バルブ3がバルブシート2に密着(着座)し、流路孔12が閉鎖される。これにより、バルブ3の全閉時のEGRガスの洩れが確実に抑止されるため、EGRガスが吸入空気に混入しなくなる。
ここで、本実施例では、開弁状態からハウジング1のバルブシート2に突き当てるようにバルブ3を全閉作動させる場合には、制御目標値が、バルブ3の全閉位置を少しだけ通り越した制御上の全閉ポイントに設定される。このため、バルブ3が全閉位置に到達し、第2シャフト22、カム部材33およびバルブ3における閉弁作動方向への動作が停止していても、モータ5への電力供給が継続されるため、モータ5の回転駆動力による第1シャフト21の閉弁作動方向(全閉作動方向)への回転運動が続けられる。
このように、第1シャフト21の閉弁作動方向への回転運動が続けられると、図3(c)に示したように、変換機構の入力部側の2つのローラ32の円筒面と、変換機構の出力部であるカム凸部34の各傾斜カム面との係合状態が外れる。つまり2つのローラ32の円筒面が2つのカム凸部34の各傾斜カム面から離脱する。このとき、第1シャフト21およびローラ軸31は、第1シャフト21の中心軸線を中心にして空転する。また、2つのローラ32は、自転することなく、第1シャフト21の中心軸線の周囲を公転する。
そして、第1シャフト21の回転位置が、全閉位置を少しだけ通り越した制御上の全閉ポイントに到達すると、モータ5への電力供給が停止される。これにより、第1シャフト21、ローラ軸31および2つのローラ32の回転運動が停止する。
[実施例1の効果]
以上のように、本実施例のEGRVにおいては、第1シャフト21に設けられる2つのローラ32の各円筒面が、開弁状態からバルブシート2に突き当てるようにバルブ3を全閉作動させる時(バルブ3の全閉作動時)にバルブ3がバルブシート2に着座して流路孔12を全閉した直後に、第2シャフト22の軸線方向の他端部に設けられるカム部材33の2つのカム凸部34の各傾斜カム面から離脱するように構成されている。
したがって、本実施例のEGRVにおいては、開弁状態からバルブシート2に突き当てるようにバルブ3を全閉作動させる場合、モータ5の回転駆動力が、複数の第1〜第3ギヤ(ピニオンギヤ41、中間減速ギヤ42および最終減速ギヤ43)等よりなる動力伝達機構を経由して、第1シャフト21に伝達されると、第1シャフト21の軸線方向の一端部(図示下端部)に設けられたローラ軸31に軸支される2つのローラ32の各円筒面と、第2シャフト22の軸線方向の他端部(図示上端部)に設けられるカム部材33の2つのカム凸部34の各傾斜カム面との係合によって、第1シャフト21の中心軸線を中心にしたローラ軸31の回転運動が、第2シャフト22の中心軸線に沿ったカム部材33の2つのカム凸部34の閉弁作動方向への直線運動に変換される。
そして、第2シャフト22から直線駆動力が伝達されたバルブ3は、第1シャフト21、ローラ軸31および2つのローラ32の閉弁作動方向への回転に伴ってバルブシート2に接近するように、バルブ3および第2シャフト22の中心軸線方向の他方側に移動する。つまり、バルブ3が閉弁作動方向への直線運動を行う。
そして、バルブ3がバルブシート2に着座して流路孔12が全閉すると、バルブ3および第2シャフト22の全閉作動方向への動作が停止する。すなわち、バルブ3が流路孔12を全閉する全閉位置で停止する。
このとき、モータ5の回転駆動力を第1シャフト21に伝達し続けると、つまりモータ5への電力供給を継続し、モータ5の回転駆動力による、第1シャフト21の全閉作動方向への回転運動を続けると、バルブ3がバルブシート2に着座して流路孔12を全閉した直後に、ローラ軸31に軸支される2つのローラ32の各円筒面が、カム部材33に設けられるカム凸部32の各傾斜カム面から離脱する。
これによって、開弁状態からバルブシート2に突き当てるようにバルブ3を全閉作動させる時(バルブ3の全閉作動時)に、バルブ3の移動速度(着座速度)を遅くする減速制御を実施しなくても、すなわち、バルブ3の全閉作動時の閉弁応答性を低下させる制御を実施しなくても、モータ5の回転動力を変換機構の第1シャフト21に伝達する動力伝達機構のピニオンギヤ41、中間減速ギヤ42、最終減速ギヤ43(特に樹脂ギヤである中間減速ギヤ42または最終減速ギヤ43等)に、バルブ3をバルブシート2に突き当てることによる衝撃(突き当てによる衝撃)が発生しない。あるいはバルブ3がバルブシート2に着座した時の衝撃力が極めて小さくなる。
したがって、バルブ3がバルブシート2に着座した時の衝撃が発生しない。あるいはバルブ3がバルブシート2に着座した時の衝撃力が極めて小さくすることができるので、モータ5の回転駆動力を第1シャフト21、ローラ軸31および2つのローラ32に伝達する動力伝達機構(歯車減速機構等)のピニオンギヤ41、中間減速ギヤ42、最終減速ギヤ43(特に樹脂ギヤである中間減速ギヤ42または最終減速ギヤ43等)の破損(ギヤ割れ等)の心配がない。これにより、開弁状態から全閉位置まで最速でバルブ3を移動させることができるので、開弁状態からバルブシート2に突き当てるようにバルブ3を全閉作動させる時の閉弁応答性を向上することができる。
なお、バルブ3がバルブシート2に着座した直後に、モータ5のモータシャフト39の回転速度、つまり第1シャフト21の回転速度を、第1シャフト21の回転停止位置である制御上の全閉ポイントに向けて徐々に減速する減速制御を実施しても良い。
また、本実施例のEGRVにおいては、モータ5の回転駆動力を第1シャフト21、ローラ軸31および2つのローラ32に伝達する動力伝達機構(歯車減速機構等)に、第1シャフト21、ローラ軸31および2つのローラ32の限界位置(全閉側の限界位置)を規制するストッパ部材を付加させることなく、バルブ3がバルブシート2に着座して流路孔12を閉鎖状態(全閉状態)に保つことができる。すなわち、スプリング4の付勢力によってバルブ3をバルブシート2に押し付ける方向(全閉作動方向)に付勢しているので、ローラ軸31に軸支される2つのローラ32の各円筒面が、カム部材33に設けられるカム凸部34の各傾斜カム面から離脱していても、つまりモータ5からバルブ3への動力伝達が遮断されている場合であっても、バルブ3で流路孔12を閉じ切ることができる。これにより、バルブ3がバルブシート2に着座した時、つまりバルブ全閉時におけるEGRガス漏れ量を低減することができる。
図4ないし図6は本発明の実施例2を示したもので、図4はEGRVを示した図で、図5はモータの回転駆動力を第1シャフト、ローラ軸および2つのローラに伝達する動力伝達機構(歯車減速機構等)を示した図で、図6は開弁状態からハウジングのバルブシートに突き当てるようにバルブを全閉作動させる状態を示した図である。
本実施例のローラ軸31に軸支される2つのローラ32は、バルブ3の全閉作動時にバルブ3がバルブシート2に着座するまで、カム部材33の2つの第1カム凸部51の第1傾斜カム面に当接し、且つバルブ3の全閉作動時にバルブ3がバルブシート2に着座した直後に、2つの第1カム凸部51の第1傾斜カム面から離脱して、カム部材33の2つの第2カム凸部52の第2傾斜カム面に当接する円筒面をそれぞれ有している。
また、本実施例の第2シャフト22の軸線方向の他端部(図示上端部)には、実施例1と同様に、円環板状のカム部材33がかしめ固定されている。
このカム部材33には、第2シャフト22の中心軸線に沿って直線運動を行うと共に、少なくともバルブ3の動作可能範囲内に渡ってローラ32の円筒面と係合する螺旋状の第1、第2カム凸部(第1、第2カム山部)51、52が2つずつ設けられている。
2つの第1カム凸部51は、実施例1のカム凸部34と同じ構造である。
すなわち、2つの第1カム凸部51の頂面(図示上端面)には、バルブ3を開弁作動方向または閉弁作動方向に動かすことが可能な2つの第1傾斜カム面(第1カム面)が円弧状(螺旋状)に形成されている。これらの第1傾斜カム面は、第2シャフト22の中心軸線に垂直な平面に対して傾斜した傾斜面である。
2つの第1カム凸部51は、カム部材33の板厚(または突出量)が、バルブ3の閉弁作動方向(全閉作動方向)に回転するに従って変換機構の入力部側に徐々に薄くなる(または凹む)ように設けられている。また、2つの第1カム凸部51は、各第1傾斜カム面の高さが、バルブ3の閉弁作動方向(全閉作動方向)に回転するに従って変換機構の入力部側に徐々に低くなるように設けられている。
2つの第2カム凸部52は、図示しないブラケットによってカム部材33および2つの第1カム凸部51に連結されている。なお、第2カム凸部52は、1つでも良い。
また、2つの第2カム凸部52の頂面(図示下端面)には、2つの第1カム凸部51の各第1傾斜カム面に対して第1、第2シャフト21、22の中心軸線方向で、第1シャフト21の軸線方向の一端部(図示下端部)に設けられるローラ軸31に軸支される2つのローラ32の径(ローラ32の直径、ローラ径)よりも大きい間隔(隙間)を隔てて対向する2つの第2傾斜カム面(第2カム面)が円弧状(螺旋状)に形成されている。これらの第2傾斜カム面は、第2シャフト22の中心軸線に垂直な平面に対して傾斜した傾斜面である。
2つの第2カム凸部52は、カム部材33の板厚(または突出量)が、バルブ3の閉弁作動方向(全閉作動方向)に回転するに従って変換機構の入力部側に徐々に厚くなる(または突出する)ように設けられている。また、2つの第2カム凸部52は、各第2傾斜カム面の高さが、バルブ3の閉弁作動方向(全閉作動方向)に回転するに従って変換機構の入力部側に徐々に高くなるように設けられている。
ここで、図6(b)に示したSは、第1シャフト21、ローラ軸31および2つのローラ32における全閉作動方向(閉弁作動方向)の限界位置(ストッパ)を示す。
以上のように、本実施例のEGRVにおいては、第1シャフト21の軸線方向の一端部に設けられる2つのローラ32の各円筒面が、バルブ3の全閉作動時にバルブ3がバルブシート2に着座して流路孔12を全閉するまで、第2シャフト22の軸線方向の他端部に設けられるカム部材33の2つの第1カム凸部51の各第1傾斜カム面に当接し、且つバルブ3の全閉作動時にバルブ3がバルブシート2に着座して流路孔12を全閉した直後に、2つの第1カム凸部51の各第1傾斜カム面から離脱した後、2つの第2カム凸部52の各第2傾斜カム面に当接するように構成されている。
したがって、本実施例のEGRVにおいては、図6(a)に示した開弁状態からバルブシート2に突き当てるようにバルブ3を全閉作動させる場合、モータ5の回転駆動力が、複数の第1〜第3ギヤ(ピニオンギヤ41、中間減速ギヤ42および最終減速ギヤ43)等よりなる動力伝達機構を経由して、第1シャフト21に伝達されると、ローラ軸31に軸支される2つのローラ32の各円筒面とカム部材33の2つの第1カム凸部51の各第1傾斜カム面との係合によって、第1シャフト21の中心軸線を中心にしたローラ軸31の回転運動が、第2シャフト22の中心軸線に沿ったカム部材33の2つの第1カム凸部51の閉弁作動方向への直線運動に変換される。
そして、第2シャフト22から直線駆動力が伝達されたバルブ3は、第1シャフト21、ローラ軸31および2つのローラ32の閉弁作動方向への回転に伴ってバルブシート2に接近するように、バルブ3および第2シャフト22の中心軸線方向の他方側に移動する。つまり、バルブ3が閉弁作動方向への直線運動を行う。
そして、バルブ3がバルブシート2に着座して流路孔12が全閉すると、バルブ3および第2シャフト22の全閉作動方向への動作が停止する。すなわち、バルブ3が流路孔12を全閉する全閉位置で停止する(図6(b)参照)。
このとき、モータ5への電力供給を継続することで、モータ5の回転駆動力による、第1シャフト21の全閉作動方向への回転運動を続けると、バルブ3がバルブシート2に着座して流路孔12を全閉した直後に、2つのローラ32の各円筒面が、カム部材33に設けられる第1カム凸部51の各第1傾斜カム面から離脱する。
これによって、実施例1と同様な効果を達成することができる。
そして、更にモータ5への電力供給を継続して第1シャフト21の全閉作動方向への回転運動を続けると、2つのローラ32の各円筒面が、第1カム凸部51の各第1傾斜カム面から離脱した後に、2つのローラ32の各円筒面が、第2カム凸部52の各第2傾斜カム面に当接(係合)する(図6(c)参照)。このとき、第2カム凸部52は、ブラケットを介してカム部材33および第1カム凸部51と連結しているので、第1、第2シャフト21、22の中心軸線方向への直線運動ができない停止状態にある。このため、モータ5への電力供給を継続しても、2つのローラ32の各円筒面が、第2カム凸部52の各第2傾斜カム面に当接(係合)すると、モータ5の回転駆動力による、第1シャフト21の全閉作動方向への回転運動が停止する。
また、本実施例のEGRVにおいては、2つの第1カム凸部51と2つの第2カム凸部52とがブラケットによって連結されている。また、2つの第1カム凸部51の各第1傾斜カム面と2つの第2カム凸部52の各第2傾斜カム面とは、ローラ径よりも大きい間隔(隙間)を隔てて対向している。
したがって、本実施例のEGRVにおいては、スプリング4が故障(例えばスプリング4の破断等)し、開弁状態からバルブシート2に突き当てるようにバルブ3を全閉作動させる時(バルブ3の全閉作動時)にバルブ3がバルブシート2より離脱した位置(例えば開弁状態の位置)で停止状態にある場合であっても、2つのローラ32の各円筒面が、第2カム凸部52の各第2傾斜カム面に当接(係合)することで、モータ5の回転駆動力によってカム部材33を図示上方に持ち上げることができる。これにより、モータ5の回転駆動力によってバルブ3、第2シャフト22、カム部材33および第1、第2カム凸部51、52を、バルブ3がバルブシート2に着座して流路孔12を全閉する全閉位置まで戻すことができる。
図7は本発明の実施例3を示したもので、図7は開弁状態からハウジングのバルブシートに突き当てるようにバルブを全閉作動させる状態を示した図である。
本実施例の第2シャフト22には、スプリング4の他端部を保持する円環板状のリテーナ35がかしめ固定されている。また、第1シャフト21の軸線方向の一端部(図示下端部)には、円環板状のカム部材(図示せず)がかしめ固定されている。また、第1シャフト21の軸線方向の他端部は、動力伝達機構の最終減速ギヤ43に連結している。
カム部材には、第1シャフト21が、モータ5の回転駆動力によって回転駆動されると、第1シャフト21の中心軸線を中心にして開弁作動方向または閉弁作動方向に回転運動を行うと共に、少なくともバルブ3の動作可能範囲内に渡ってローラ36の円筒面と係合する螺旋状の第1、第2カム凸部(第1、第2カム山部)61、62が2つずつ設けられている。
2つの第1カム凸部61は、バルブ3の全閉作動時にバルブ3がバルブシート2に着座するまで、ローラ36の円筒面に当接し、且つバルブ3の全閉作動時にバルブ3がバルブシート2に着座した直後に、ローラ36の円筒面から離脱する円弧状(螺旋状)の第1傾斜カム面(第1カム面)をそれぞれ有している。この第1傾斜カム面は、2つの第1カム凸部61の頂面(図示下端面)に形成されており、バルブ3を開弁作動方向または閉弁作動方向に動かすことが可能なカム面である。これらの第1傾斜カム面は、第1シャフト21の中心軸線に垂直な平面に対して傾斜した傾斜面である。
2つの第1カム凸部61は、カム部材の板厚(または突出量)が、バルブ3の閉弁作動方向(全閉作動方向)に回転するに従って変換機構の入力部側に徐々に薄くなる(または凹む)ように設けられている。また、2つの第1カム凸部61は、各第1傾斜カム面の高さが、バルブ3の閉弁作動方向(全閉作動方向)に回転するに従って変換機構の入力部側に徐々に低くなるように設けられている。
2つの第2カム凸部62は、図示しないブラケットによってカム部材および2つの第1カム凸部61に連結されている。なお、第2カム凸部62は、1つでも良い。
また、2つの第2カム凸部62は、2つの第1カム凸部61の各第1傾斜カム面に対して第1、第2シャフト21、22の中心軸線方向で、第1シャフト21の軸線方向の一端部(図示下端部)に設けられるローラ軸(図示せず)に軸支される2つのローラ36の径(ローラ36の直径、ローラ径)よりも大きい間隔(隙間)を隔てて対向する円弧状(螺旋状)の第2傾斜カム面(第2カム面)をそれぞれ有している。
これらの第2傾斜カム面は、2つの第2カム凸部62の頂面(図示上端面)に形成されている。これらの第2傾斜カム面は、第2シャフト22の中心軸線に垂直な平面に対して傾斜した傾斜面である。
2つの第2カム凸部62は、カム部材の板厚(または突出量)が、バルブ3の閉弁作動方向(全閉作動方向)に回転するに従って変換機構の入力部側に徐々に厚くなる(または突出する)ように設けられている。また、2つの第2カム凸部62は、各第2傾斜カム面の高さが、バルブ3の閉弁作動方向(全閉作動方向)に回転するに従って変換機構の入力部側に徐々に高くなるように設けられている。
ここで、図7(b)に示したSは、第1シャフト21、ローラ軸および2つのローラ36における全閉作動方向(閉弁作動方向)の限界位置(ストッパ)を示す。
第2シャフト22の軸線方向の一端部(図示下端部)の外周には、円環状のバルブ3が固定されている。また、第2シャフト22の軸線方向の他端部(図示上端部)には、2つのローラ36を軸支するローラ軸が保持固定されている。
ローラ軸は、第2シャフト22の中心軸線に沿って直線運動を行う。
本実施例のローラ軸に軸支されるローラ36は、バルブ3の全閉作動時にバルブ3がバルブシート2に着座して流路孔12を全閉するまで、2つの第1カム凸部61の各第1傾斜カム面に当接し、且つバルブ3の全閉作動時にバルブ3がバルブシート2に着座して流路孔12を全閉した直後に、2つの第1カム凸部61の各第1傾斜カム面から離脱して、2つの第2カム凸部62の各第2傾斜カム面に当接する円筒面を有している。
ローラ36は、カム部材の第1、第2カム凸部61、62と係合離脱可能に係合する。このローラ36は、第2シャフト22の中心軸線に沿って直線運動を行うと共に、この直線運動中にローラ軸の中心軸線を中心にして自転運動を行う。
ローラ36の外周には、円筒面が形成されている。このローラ36の円筒面は、バルブ3の全閉作動時にバルブ3がバルブシート2に着座するまで、カム部材の2つの第1カム凸部61の各第1傾斜カム面に当接するように構成されている。また、ローラ36は、バルブ3の全閉作動時にバルブ3がバルブシート2に着座した直後に、カム部材の2つの第1カム凸部61の各第1傾斜カム面から離脱した後、カム部材の2つの第2カム凸部62の各第2傾斜カム面に当接するように構成されている。
以上のように、本実施例のEGRVにおいては、第2シャフト22の軸線方向の他端部に設けられる2つのローラ36の各円筒面が、第1シャフト21の軸線方向の一端部に設けられる2つの第1カム凸部61の各第1傾斜カム面に当接し、且つバルブ3の全閉作動時にバルブ3がバルブシート2に着座して流路孔12を全閉した直後に、2つの第1カム凸部61の各第1傾斜カム面から離脱して、2つの第2カム凸部62の各第2傾斜カム面に当接するように構成されている。
したがって、本実施例のEGRVにおいては、図7(a)に示した開弁状態からバルブシート2に突き当てるようにバルブ3を全閉作動させる場合、モータ5の回転駆動力が、複数の第1〜第3ギヤ(ピニオンギヤ41、中間減速ギヤ42および最終減速ギヤ43)等よりなる動力伝達機構を経由して、第1シャフト21に伝達されると、カム部材の2つの第1カム凸部61の各第1傾斜カム面と、ローラ軸に軸支される2つのローラ36の各円筒面との係合によって、第1シャフト21の中心軸線を中心にしたカム部材の回転運動が、第2シャフト22の中心軸線に沿ったローラ軸の閉弁作動方向への直線運動に変換される。
そして、第2シャフト22から直線駆動力が伝達されたバルブ3は、第1シャフト21、カム部材および2つの第1、第2カム凸部61、62の閉弁作動方向への回転に伴ってバルブシート2に接近するように、バルブ3および第2シャフト22の中心軸線方向の他方側に移動する。つまり、バルブ3が閉弁作動方向への直線運動を行う。
そして、バルブ3がバルブシート2に着座して流路孔12が全閉すると、バルブ3および第2シャフト22の全閉作動方向への動作が停止する。すなわち、バルブ3が流路孔12を全閉する全閉位置で停止する(図7(b)参照)。
このとき、モータ5への電力供給を継続することで、モータ5の回転駆動力による、第1シャフト21の全閉作動方向への回転運動を続けると、バルブ3がバルブシート2に着座して流路孔12を全閉した直後に、2つのローラ36の各円筒面が、カム部材に設けられる第1カム凸部61の各第1傾斜カム面から離脱する。
これによって、実施例1と同様な効果を達成することができる。
そして、更にモータ5への電力供給を継続して第1シャフト21の全閉作動方向への回転運動を続けると、2つのローラ36の各円筒面が、第1カム凸部61の各第1傾斜カム面から離脱した後に、2つのローラ36の各円筒面が、第2カム凸部62の各第2傾斜カム面に当接(係合)する(図7(c)参照)。このとき、第2カム凸部62は、ブラケットを介してカム部材および第1カム凸部61と連結しているので、第1、第2シャフト21、22の中心軸線方向への直線運動ができない停止状態にある。このため、モータ5への電力供給を継続しても、2つのローラ36の各円筒面が、第2カム凸部62の各第2傾斜カム面に当接(係合)すると、モータ5の回転駆動力による、第1シャフト21の全閉作動方向への回転運動が停止する。
また、本実施例のEGRVにおいては、2つの第1カム凸部61と2つの第2カム凸部62とがブラケットによって連結されている。また、2つの第1カム凸部61の各第1傾斜カム面と2つの第2カム凸部62の各第2傾斜カム面とは、ローラ径よりも大きい間隔(隙間)を隔てて対向している。
したがって、本実施例のEGRVにおいては、スプリング4が故障(例えばスプリング4の破断等)し、開弁状態からバルブシート2に突き当てるようにバルブ3を全閉作動させる時(バルブ3の全閉作動時)にバルブ3がバルブシート2より離脱した位置(例えば開弁状態の位置)で停止状態にある場合であっても、2つのローラ36の各円筒面が、第2カム凸部62の各第2傾斜カム面に当接(係合)することで、モータ5の回転駆動力によってカム部材を図示上方に持ち上げることができる。これにより、モータ5の回転駆動力によってバルブ3、第2シャフト22、カム部材および第1、第2カム凸部61、62を、バルブ3がバルブシート2に着座して流路孔12を全閉する全閉位置まで戻すことができる。
[変形例]
本実施例では、排気ガス還流管とエンジンの吸気管またはインテークマニホールドとの結合部にEGRVを設置しているが、エンジンの排気管と吸気管とを連通する排気ガス還流管の途中にEGRVを設置しても良い。また、排気ガス還流管と排気管またはエキゾーストマニホールドとの結合部にEGRVを設置しても良い。さらに、本実施例では、弁体として1個のバルブ3を使用しているが、弁体として2個以上のバルブを使用しても良い。この場合には、バルブシートの個数も、2個以上となる。
また、ハウジング1とバルブシート(弁座)2とを一体化しても良い。また、バルブ3と第2シャフト22とを一体化して1つのポペットバルブを構成しても良い。
本実施例では、本発明の流体制御弁を、EGRガスの流量を制御するEGRV(EGRガス流量制御弁)に適用しているが、本発明の流体制御弁を、内燃機関への吸入空気の流量を制御するスロットルバルブ等の吸気制御弁、内燃機関より流出する排気ガスの流量を制御する排気ガス流量制御弁、スロットルバルブをバイパスする吸入空気の流量を制御するアイドル回転速度制御弁等の流体流量制御弁に適用しても良い。
また、本実施例では、本発明の流体制御弁を、流体流量制御弁に適用しているが、このような流体流量制御弁に限定する必要はなく、流体流路開閉弁、流体流路切替弁、流体圧力制御弁に適用しても良い。また、本発明の流体制御弁を、タンブル流制御弁やスワール流制御弁等の吸気流制御弁、吸気通路の通路長や通路断面積を変更する吸気可変弁等に適用しても良い。また、エンジンとして、ガソリンエンジンを用いても良い。
EGRVを示した断面図である(実施例1)。 EGRVの主要部を示した断面図である(実施例1)。 (a)〜(c)は開弁状態からバルブシートに突き当てるようにバルブを全閉作動させる状態を示した作動説明図である(実施例1)。 EGRVを示した断面図である(実施例2)。 動力伝達機構を示した平面図である(実施例2)。 (a)〜(c)は開弁状態からバルブシートに突き当てるようにバルブを全閉作動させる状態を示した作動説明図である(実施例2)。 (a)〜(c)は開弁状態からバルブシートに突き当てるようにバルブを全閉作動させる状態を示した作動説明図である(実施例3)。 EGRVを示した断面図である(従来の技術)。 EGRVを示した断面図である(従来の技術)。
符号の説明
1 ハウジング
2 バルブシート(弁座)
3 バルブ
4 スプリング(バルブ付勢手段)
5 モータ(動力源)
12 流路孔(連通孔)
21 第1シャフト(変換機構の入力部)
22 第2シャフト(変換機構の出力部)
31 ローラ軸(変換機構の入力部)
32 ローラ(変換機構の入力部)
33 カム部材
34 カム凸部(カム部、カム山部)
36 ローラ
51 第1カム凸部(第1カム部、第1カム山部)
52 第2カム凸部(第2カム部、第2カム山部)
61 第1カム凸部(第1カム部、第1カム山部)
62 第2カム凸部(第2カム部、第2カム山部)

Claims (12)

  1. (a)内部に流路孔が形成された弁座を有するハウジングと、
    (b)前記弁座に対して着座、離脱して前記流路孔を閉鎖、開放するバルブと、
    (c)このバルブをその中心軸線方向に往復移動させる回転駆動力を発生するモータと、
    (d)このモータの回転駆動力を直線駆動力に変換する変換機構と
    を備えた流体制御弁において、
    前記変換機構は、前記モータの回転駆動力が伝達される入力部、および前記バルブに直線駆動力を伝達する出力部を有し、
    前記入力部は、その中心軸線を中心にして回転運動を行うローラ軸、およびこのローラ軸に軸支されるローラを有し、
    前記出力部は、その中心軸線に沿って直線運動を行うと共に、少なくとも前記バルブの動作可能範囲内に渡って前記ローラと係合するカム部を有し、
    前記ローラは、前記バルブの全閉作動時に前記バルブが、前記弁座に着座する直前または前記弁座に着座した直後に、前記カム部から離脱するように構成されていることを特徴とする流体制御弁。
  2. 請求項1に記載の流体制御弁において、
    前記ローラは、前記バルブの全閉作動時に前記バルブが前記弁座に着座するまで、前記カム部のカム面に当接するように構成されていることを特徴とする流体制御弁。
  3. 請求項1または請求項2に記載の流体制御弁において、
    前記カム部は、前記バルブの全閉作動時に前記バルブが前記弁座に着座するまで、前記ローラに当接し、且つ前記バルブの全閉作動時に前記バルブが前記弁座に着座した直後に、前記ローラから離脱するカム面を有し、
    前記カム面は、前記入力部または前記出力部の中心軸線に垂直な平面に対して傾斜した傾斜面であって、
    前記ローラは、前記バルブの全閉作動時に前記バルブが前記弁座に着座するまで、前記カム面に当接し、且つ前記バルブの全閉作動時に前記バルブが前記弁座に着座した直後に、前記カム面から離脱するように構成されていることを特徴とする流体制御弁。
  4. 請求項1ないし請求項3のうちのいずれか1つに記載の流体制御弁において、
    前記バルブを全閉作動方向に付勢するバルブ付勢手段を備えたことを特徴とする流体制御弁。
  5. 請求項1ないし請求項4のうちのいずれか1つに記載の流体制御弁において、
    前記バルブを前記弁座に押し付ける方向に付勢するバルブ付勢手段を備えたことを特徴とする流体制御弁。
  6. 請求項4または請求項5に記載の流体制御弁において、
    前記カム部は、前記バルブの全閉作動時に前記バルブが前記弁座に着座するまで、前記ローラに当接し、且つ前記バルブの全閉作動時に前記バルブが前記弁座に着座した直後に、前記ローラから離脱する第1カム面、およびこの第1カム面に対して前記入力部または前記出力部の中心軸線方向で前記ローラの径よりも大きい間隔を隔てて対向する第2カム面を有し、
    前記第1カム面および前記第2カム面は、前記入力部または前記出力部の中心軸線に垂直な平面に対して傾斜した傾斜面であって、
    前記ローラは、前記バルブの全閉作動時に前記バルブが前記弁座に着座するまで、前記第1カム面に当接し、且つ前記バルブの全閉作動時に前記バルブが前記弁座に着座した後に、前記第1カム面から離脱して、前記第2カム面に当接するように構成されていることを特徴とする流体制御弁。
  7. (a)内部に流路孔が形成された弁座を有するハウジングと、
    (b)前記弁座に対して着座、離脱して前記流路孔を閉鎖、開放するバルブと、
    (c)このバルブをその中心軸線方向に往復移動させる回転駆動力を発生するモータと、
    (d)このモータの回転駆動力を直線駆動力に変換する変換機構と
    を備えた流体制御弁において、
    前記変換機構は、前記モータの回転駆動力が伝達される入力部、および前記バルブに直線駆動力を伝達する出力部を有し、
    前記入力部は、その中心軸線を中心にして回転運動を行うカム部を有し、
    前記出力部は、その中心軸線に沿って直線運動を行うローラ軸、およびこのローラ軸に軸支されて、少なくとも前記バルブの動作可能範囲内に渡って前記カム部と係合するローラを有し、
    前記カム部は、前記バルブの全閉作動時に前記バルブが、前記弁座に着座する直前または前記弁座に着座した直後に、前記ローラから離脱するように構成されていることを特徴とする流体制御弁。
  8. 請求項7に記載の流体制御弁において、
    前記カム部は、前記バルブの全閉作動時に前記バルブが前記弁座に着座するまで、前記ローラの円筒面に当接するように構成されていることを特徴とする流体制御弁。
  9. 請求項7または請求項8に記載の流体制御弁において、
    前記カム部は、前記バルブの全閉作動時に前記バルブが前記弁座に着座するまで、前記ローラに当接し、且つ前記バルブの全閉作動時に前記バルブが前記弁座に着座した直後に、前記ローラから離脱するカム面を有し、
    前記カム面は、前記出力部または前記入力部の中心軸線に垂直な平面に対して傾斜した傾斜面であって、
    前記ローラは、前記バルブの全閉作動時に前記バルブが前記弁座に着座するまで、前記カム面に当接し、且つ前記バルブの全閉作動時に前記バルブが前記弁座に着座した直後に、前記カム面から離脱する円筒面を有していることを特徴とする流体制御弁。
  10. 請求項7ないし請求項9のうちのいずれか1つに記載の流体制御弁において、
    前記バルブを全閉作動方向に付勢するバルブ付勢手段を備えたことを特徴とする流体制御弁。
  11. 請求項7ないし請求項10のうちのいずれか1つに記載の流体制御弁において、
    前記バルブを前記弁座に押し付ける方向に付勢するバルブ付勢手段を備えたことを特徴とする流体制御弁。
  12. 請求項10または請求項11に記載の流体制御弁において、
    前記カム部は、前記バルブの全閉作動時に前記バルブが前記弁座に着座するまで、前記ローラに当接し、且つ前記バルブの全閉作動時に前記バルブが前記弁座に着座した直後に、前記ローラから離脱する第1カム面、およびこの第1カム面に対して前記出力部または前記入力部の中心軸線方向で前記ローラの径よりも大きい間隔を隔てて対向する第2カム面を有し、
    前記第1カム面および前記第2カム面は、前記出力部または前記入力部の中心軸線に垂直な平面に対して傾斜した傾斜面であって、
    前記ローラは、前記バルブの全閉作動時に前記バルブが前記弁座に着座するまで、前記第1カム面に当接し、且つ前記バルブの全閉作動時に前記バルブが前記弁座に着座した後に、前記第1カム面から離脱して、前記第2カム面に当接する円筒面を有していることを特徴とする流体制御弁。
JP2008087050A 2008-03-28 2008-03-28 流体制御弁 Pending JP2009243475A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008087050A JP2009243475A (ja) 2008-03-28 2008-03-28 流体制御弁

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008087050A JP2009243475A (ja) 2008-03-28 2008-03-28 流体制御弁

Publications (1)

Publication Number Publication Date
JP2009243475A true JP2009243475A (ja) 2009-10-22

Family

ID=41305634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008087050A Pending JP2009243475A (ja) 2008-03-28 2008-03-28 流体制御弁

Country Status (1)

Country Link
JP (1) JP2009243475A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482998A (zh) * 2009-06-17 2012-05-30 法雷奥电机控制系统公司 包括运动转换装置的阀
KR101347852B1 (ko) * 2012-12-14 2014-01-16 계명대학교 산학협력단 Egr 밸브 엑츄에이터
JP2014516394A (ja) * 2011-03-24 2014-07-10 ピールブルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 自動車排気ガス再循環バルブ装置
KR101577213B1 (ko) 2015-07-06 2015-12-15 인지컨트롤스 주식회사 다방향 전환밸브
KR20190140334A (ko) * 2018-06-11 2019-12-19 주식회사 에이씨엔 캠 타입의 게이트 밸브 시스템 및 반도체 기판 처리 장비
KR20190140335A (ko) * 2018-06-11 2019-12-19 주식회사 에이씨엔 도어 밀착 캠 타입의 게이트 밸브 시스템 및 반도체 기판 처리 장비
KR102144817B1 (ko) * 2019-05-15 2020-08-14 인지컨트롤스 주식회사 차량용 멀티밸브 및 이의 액추에이터장치
EP3765772A4 (en) * 2019-05-17 2021-05-19 MacDuff, Malcolm QUARTER-TURN ROD VALVE ACTUATOR

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530209A (ja) * 2009-06-17 2012-11-29 ヴァレオ システム ドゥ コントロール モトゥール 運動変換装置を備えるバルブ
CN102482998A (zh) * 2009-06-17 2012-05-30 法雷奥电机控制系统公司 包括运动转换装置的阀
US9322365B2 (en) 2011-03-24 2016-04-26 Pierburg Gmbh Motor vehicle exhaust-gas recirculation valve arrangement
JP2014516394A (ja) * 2011-03-24 2014-07-10 ピールブルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 自動車排気ガス再循環バルブ装置
KR101347852B1 (ko) * 2012-12-14 2014-01-16 계명대학교 산학협력단 Egr 밸브 엑츄에이터
WO2017007063A1 (ko) * 2015-07-06 2017-01-12 인지컨트롤스주식회사 다방향 전환밸브
KR101577213B1 (ko) 2015-07-06 2015-12-15 인지컨트롤스 주식회사 다방향 전환밸브
KR20190140334A (ko) * 2018-06-11 2019-12-19 주식회사 에이씨엔 캠 타입의 게이트 밸브 시스템 및 반도체 기판 처리 장비
KR20190140335A (ko) * 2018-06-11 2019-12-19 주식회사 에이씨엔 도어 밀착 캠 타입의 게이트 밸브 시스템 및 반도체 기판 처리 장비
KR102131282B1 (ko) * 2018-06-11 2020-07-07 주식회사 에이씨엔 도어 밀착 캠 타입의 게이트 밸브 시스템 및 반도체 기판 처리 장비
KR102131281B1 (ko) * 2018-06-11 2020-07-07 주식회사 에이씨엔 캠 타입의 게이트 밸브 시스템 및 반도체 기판 처리 장비
KR102144817B1 (ko) * 2019-05-15 2020-08-14 인지컨트롤스 주식회사 차량용 멀티밸브 및 이의 액추에이터장치
EP3765772A4 (en) * 2019-05-17 2021-05-19 MacDuff, Malcolm QUARTER-TURN ROD VALVE ACTUATOR
US11339894B2 (en) 2019-05-17 2022-05-24 Malcolm Macduff Quarter-turn pin-valve actuator

Similar Documents

Publication Publication Date Title
JP2009243475A (ja) 流体制御弁
US9404444B2 (en) Exhaust system for internal combustion engine
JP4661668B2 (ja) バルブ開閉制御装置
US7950623B2 (en) Valve opening and closing control apparatus
JP5287953B2 (ja) 低圧egr装置
US20130140477A1 (en) Electric actuator and control valve including the electric actuator
US7503309B2 (en) Throttle control apparatus
JP2007285173A (ja) バルブ開閉制御装置
JP2014040792A (ja) 排気ガス制御弁
US20130104859A1 (en) Low-pressure exhaust gas recirculation system
EP1911958A1 (en) Valve control device and method for internal combustion engine
US20150330335A1 (en) Exhaust device for internal combustion engine
US20090164097A1 (en) Intake controller for internal combustion engine
JP2007064277A (ja) 流体制御弁
JP2011043218A (ja) 流体制御弁
JP2013044309A (ja) 内燃機関の制御装置
JP4738210B2 (ja) バルブ開閉制御装置
JP2013256885A (ja) バルブ駆動装置、およびその組付方法
JP6040903B2 (ja) 流体制御弁
JP6115510B2 (ja) 全閉位置学習装置
JP2015110912A (ja) 内燃機関の排気装置
JP5626270B2 (ja) Egrバルブ
JP5131317B2 (ja) バルブ開閉制御装置
JP2015200226A (ja) バルブ制御装置
KR101376775B1 (ko) 내연기관용 전자식 배기가스 재순환 액츄에이터