WO2017007063A1 - 다방향 전환밸브 - Google Patents

다방향 전환밸브 Download PDF

Info

Publication number
WO2017007063A1
WO2017007063A1 PCT/KR2015/008085 KR2015008085W WO2017007063A1 WO 2017007063 A1 WO2017007063 A1 WO 2017007063A1 KR 2015008085 W KR2015008085 W KR 2015008085W WO 2017007063 A1 WO2017007063 A1 WO 2017007063A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
port
valve
valve housing
cylinder
Prior art date
Application number
PCT/KR2015/008085
Other languages
English (en)
French (fr)
Inventor
김홍선
나현철
권오성
김만수
Original Assignee
인지컨트롤스주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인지컨트롤스주식회사 filed Critical 인지컨트롤스주식회사
Priority to CN201580081506.2A priority Critical patent/CN107849966A/zh
Publication of WO2017007063A1 publication Critical patent/WO2017007063A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/14Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by one actuating member, e.g. a handle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/047Actuating devices; Operating means; Releasing devices electric; magnetic using a motor characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/52Mechanical actuating means with crank, eccentric, or cam
    • F16K31/524Mechanical actuating means with crank, eccentric, or cam with a cam
    • F16K31/52408Mechanical actuating means with crank, eccentric, or cam with a cam comprising a lift valve
    • F16K31/52416Mechanical actuating means with crank, eccentric, or cam with a cam comprising a lift valve comprising a multiple-way lift valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/53Mechanical actuating means with toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves

Definitions

  • the present invention relates to a multi-directional switching valve, and more particularly to a multi-directional switching valve that can control the flow of fluid by opening and closing several ports individually in one axis.
  • the vehicle prevents the engine from being overcooled or overheated by the coolant, which is heated by the engine or cooled by the radiator, thereby controlling the engine temperature to obtain the best engine output.
  • the vehicle uses a multi-directional valve for controlling the flow of coolant. That is, the multi-directional switching valve reduces the warm-up time by optimizing the flow rate of the engine cooling system by adjusting the flow rate of the coolant supplied to the engine, the radiator, etc., and minimizing the friction loss of the engine.
  • the prior art of such a multi-directional valve is a multi-directional valve of Korean Patent No. 10-1210208 filed by the applicant.
  • the multi-directional switching valve is composed of a housing, a spool, a drive unit, the housing has a shielded cylindrical shape, the hole in which the fluid communication is formed in rows and columns along the outer peripheral surface of the plurality of upper and lower portions of the outer peripheral surface It has an upper hole and a lower hole, there is provided an inner space in which fluid is communicated.
  • the spool is provided with a plate-shaped member for shielding the inner middle portion of the housing to divide the upper and lower holes, and to open and close the upper and lower holes while rotating in the interior of the housing.
  • the drive unit is axially connected to the spool to provide power for rotating the spool.
  • the multi-directional switching valve according to the prior art having the above configuration has a structure in which the upper and lower holes of the housing are divided by spools installed in the housing, the multi-directional switching valves play different roles in the upper and lower balls. After the fluid is introduced, it has a structure flowing along a predetermined flow path according to the rotation of the spool. Therefore, there is a limitation in controlling a single fluid to be supplied in various directions according to the state of the vehicle after flowing into the housing.
  • the multi-directional switching valve according to the prior art is rotated in a state where the outer circumferential surface of the spool and the inner circumferential surface of the housing are always in contact with each other, an excessive contact area between the spool and the housing is generated, thereby increasing the wear area. There is an increased risk of gaps between the housing and the housing.
  • the fluid flows undesirably into another flow path through the gap, so that the flow rate of the fluid cannot be precisely controlled, thus reducing the performance of the vehicle. have.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a multi-directional switching valve capable of precisely controlling the flow of fluid by allowing a plurality of ports to communicate with each other individually.
  • the valve housing is formed of a hollow pipe structure, a plurality of ports for discharging the cooling water supplied to the central space to the respective cooling elements are formed;
  • a drive shaft installed in a central space of the valve housing and having a cam corresponding to the port on its outer surface, and a valve unit which opens and closes the port in association with the cam according to the rotation of the drive shaft, and one end of the valve housing.
  • a multi-directional switching valve characterized in that it comprises a drive unit installed in the drive shaft to provide a rotational force to the drive shaft.
  • valve housing is formed at the other end of the valve housing and the cooling water flows into the housing supporter for receiving the other end of the drive shaft, and the seat is formed on one end of the valve housing facing the housing supporter seating the drive unit is mounted It is preferable to include a cover provided with a connector for closing the portion and the seating portion and for supplying electrical energy to the drive unit.
  • valve unit is supported by the valve housing and positioned between the cam and the port, the piston is installed in the cylinder and linearly moved, and is installed at the base of the piston to roll according to the rotation of the cam A roller that moves, a rod extending through the cylinder from the tip of the piston toward the port, a press provided at the tip of the rod to open and close the port according to the rotation of the cam, and installed inside the cylinder; It is preferred that the first elastic member to provide an elastic force to be in close contact with the cam.
  • valve unit is supported by the valve housing and positioned between the cam and the port, a piston installed inside the cylinder and linearly moved, a part of which is embedded in the base end of the piston and the rotation of the cam A rolling ball rolling in a rolling motion, a rod extending through the cylinder from the tip of the piston toward the port, and a pusher provided at the tip of the rod to open and close the port according to the rotation of the cam, and inside the cylinder.
  • a first elastic member installed to provide an elastic force so that the rolling ball is in close contact with the cam.
  • the pressing member is preferably provided with a sealing member around the outer surface.
  • valve unit preferably further includes a second elastic member interposed between the outer end of the cylinder and the presser so that the presser is in close contact with the port when the presser closes the port.
  • the rod penetrates through the presser and protrudes forward of the port, and a snap ring is preferably installed at the tip of the rod to fix the presser.
  • the drive unit includes a pinion installed on a rotation shaft of a drive motor, a screw engaged with the pinion to rotate, a worm gear engaged with the screw and axially coupled to the cam shaft, and the drive motor, and bearing the screw. It comprises a bracket, wherein the drive unit is preferably mounted to the seating portion of the valve housing in the drive motor, pinion, screw, worm gear is assembled to the bracket.
  • a plurality of ports formed in the valve housing can be opened or closed by a single drive shaft, which not only simplifies the power transmission system for operating the valve unit, but also allows the multiple ports to be individually Can be controlled to precisely control the flow of cooling water.
  • valve unit which opens and closes the port by converting the rotation of the cam formed in the drive shaft into a linear motion is rolling with the cam, the wear of the parts can be minimized, thereby preventing leakage due to the wear of the parts. Will increase the lifespan.
  • the drive unit providing the rotational force to the drive shaft is modularized in a semi-assembled state can be installed quickly and easily the drive unit to the seating to improve the productivity of the product.
  • FIG. 1 is a perspective view showing a multi-directional switching valve according to the present invention.
  • Figure 2 is an exploded perspective view showing a multi-directional switching valve according to the present invention.
  • FIG 3 is a cross-sectional view showing a multi-directional switching valve according to the present invention.
  • FIG. 4 is a perspective view showing a valve unit and a driving unit of the multi-directional switching valve according to the present invention.
  • FIG. 5 is a cross-sectional view showing the structure of a valve unit of the multi-directional switching valve according to the present invention.
  • Figure 6 is a cross-sectional view showing the operating state of the valve unit of the multi-directional switching valve according to the present invention.
  • Figure 7 is an exploded perspective view showing a drive unit of the multi-directional switching valve according to the present invention.
  • FIG. 8 is a cross-sectional view showing another embodiment of the valve unit of the multi-directional switching valve according to the present invention.
  • FIG. 9 is a cross-sectional view showing another embodiment of the valve unit of the multi-directional switching valve according to the present invention.
  • FIG. 1 is a perspective view showing a multi-directional switching valve according to the present invention
  • Figure 2 is an exploded perspective view showing a multi-directional switching valve according to the present invention
  • Figure 3 is a cross-sectional view showing a multi-directional switching valve according to the present invention.
  • the multi-directional switching valve includes a valve housing 100 in which a plurality of ports 150 are formed, and a cam 210 corresponding to the port 150 formed in the valve housing 100.
  • valve housing 100 is formed in a hollow pipe structure, and a plurality of ports 150 for discharging the cooling water supplied to the central space of the valve housing 100 to the respective cooling elements are formed.
  • the valve housing 100 has a coolant flowing in and a housing supporter 110 for receiving the drive shaft 200, a seating unit 120 on which the driving unit 400 is mounted, and a cover 130 for closing the seating unit 120. It is composed of
  • the housing supporter 110 is formed at the other end of the valve housing 100. As shown in FIG. 2, the housing supporter 110 has a shape of a hollow disc having an outer diameter closely contacting the inner diameter of the other end of the valve housing 100. It has a support hole 114 for receiving the other end of the drive shaft 200 is formed in the center, the rib 116 is formed radially around the support hole 114.
  • a stopper (not shown) for limiting the rotation angle of the drive shaft 200 is formed inside the support hole 114 receiving the other end of the drive shaft 200, so that the drive shaft 200 is driven by the drive unit 400. It can be rotated only within a set angle when it is rotated by the rotation force provided from
  • the drive motor 410 of the drive unit 400 to provide a rotational force to the drive shaft 200 is composed of a stepping motor that rotates in the forward and reverse directions so that the drive shaft 200 does not rotate beyond 360 degrees a certain range ( For example, 0 to 320 degrees in the forward and reverse direction, the stopper formed in the support hole 114 is limited so that the drive shaft 200 does not rotate over a certain range.
  • the seating part 120 is formed at one end of the valve housing 100 facing the housing supporter 110 formed at the other end of the valve housing 100, and the driving unit 400 is mounted thereon.
  • the seating unit 120 has a shape of a box in which one side is opened at one end of the valve housing 100 as shown in FIG. 2 or 7, and a driving unit 400 providing a rotational force to the driving shaft 200 is provided. Is mounted.
  • the seating part 120 has one end of the drive shaft 200 seated when the through hole 122 that is the same as the axis of the valve housing 100 is formed so that the drive shaft 200 is positioned in the valve housing 100. It protrudes through the through hole 122 of the part 120 to be coupled to the drive unit 400 and the shaft.
  • a bearing member such as a bearing (not shown) is installed in the through hole 122 of the seating part 120 so as to be able to smoothly rotate when the driving shaft 200 rotates.
  • the cover 130 protects the driving unit 400 mounted on the seating unit 120 from being exposed to the outside by closing the seating unit 120 having one side open, and opening the seating unit 120 as necessary. It is assembled to one side of the seating portion 120 by a fastening member such as a bolt to be able to. At this time, a gasket 140 is installed between the cover 130 and the seating part 120 so that a gap does not occur when the cover 130 is assembled to the seating part 120 so that moisture is absorbed into the seating part 120. It blocks the inflow.
  • the cover 130 is provided with a connector 132 so that the driving motor 410 to operate by supplying electrical energy to the drive unit 400, the connector 132 is a drive unit (a) in the seating portion 120 Conductors are formed so that they can be electrically connected when 400 is mounted.
  • the drive shaft 200 is installed in the central space of the valve housing 100 and the outer surface forms a cam 210 corresponding to each of the plurality of ports 150 formed in the valve housing 100.
  • the drive shaft 200 is axially coupled to the drive unit 400 by passing through the through hole 122 of the seating portion 120 provided at one end of the valve housing 100 described above, and the other end of the housing supporter ( It is assembled to the support hole 114 formed in the 110 is rotated in the forward and reverse direction within a certain angle range in accordance with the operation of the drive unit 400.
  • valve unit 300 As the drive shaft 200 rotates, the cam 210 corresponding to the port 150 formed in the valve housing 100 rotates in the same direction as the drive shaft 200 while being closer to or away from the port 150.
  • the rotational movement is performed to control the flow of the coolant introduced into the valve housing 100 by opening or closing the port 150 to the valve unit 300.
  • the structure of the valve unit 300 will be described with reference to FIGS. 4 and 5.
  • FIG 4 is a perspective view showing a valve unit and a driving unit of the multi-directional switching valve according to the present invention
  • Figure 5 is a cross-sectional view showing the structure of the valve unit of the multi-directional switching valve according to the present invention.
  • the valve unit 300 contacts the cylinder 310 located between the cam 210 and the port 150, the piston 320 installed inside the cylinder 310, and the cam 210.
  • Roller 330 rolling in a state, a rod 340 extending from the piston 320 to penetrate the cylinder 310, a presser 350 provided at the tip of the rod 340 to open and close the port 150,
  • the roller 330 is composed of a first elastic member 360 that provides an elastic force to be in close contact with the cam 210.
  • the cylinder 310 is supported by the valve housing 100 and is positioned between the cam 210 of the drive shaft 200 and the port 150 formed in the valve housing 100.
  • the cylinder 310 has a shape of a tube hollow inside thereof so that the piston 320 can move linearly, and a proximal end toward the driving shaft 200 is opened.
  • a flange is formed at the outer end of the cylinder 310 and fixed to the valve housing 100.
  • the piston 320 is installed inside the cylinder 310 described above to be linearly moved along the cylinder 310.
  • the piston 320 is a rod 340 is integrally formed at the front end toward the port 150, the roller 330 is provided at the base end toward the cam 210 of the drive shaft 200.
  • the roller 330 provided at the proximal end of the piston 320 is provided to be able to make a rolling motion in contact with the cam 210 of the drive shaft 200.
  • the roller 330 is provided with the proximal end of the piston 320.
  • a pair of supports 321 are integrally formed, and a pin 322 is provided across the pair of supports 321 so that the roller 330 is rotatably coupled to the pins 322.
  • roller 330 linearly moves the piston 320 in the cylinder 310 while rolling in contact with the outer surface of the cam 210 as the drive shaft 200 rotates.
  • the roller 330 may be made of a material in which a lubricant is absorbed to the roller 330 to minimize wear when contacting the cam 210 formed on the drive shaft 200 and rolling.
  • the rod 340 is formed integrally with the front end of the piston 320 extends through the cylinder 310 toward the port 150 of the valve housing 100.
  • the tip of the rod 340 is provided with a presser 350 for opening the port 150 in accordance with the rotation of the cam 210 formed on the drive shaft 200, the presser 350 is shown in FIG.
  • the sealing member 370 is provided around the outer surface thereof.
  • the presser 350 forms a hole having a diameter smaller than the diameter of the rod 340 on a surface facing the tip of the rod 340 so that the presser 350 and the rod 340 are fixed by interference fit or the rod 340.
  • the rod hole 340 and the stopper 350 may be threaded by forming a screw hole on a surface facing the tip of the rod) and forming a screw thread on the outer circumferential surface of the rod.
  • the sealing member 370 provided in the presser 350 is made of synthetic resin or synthetic rubber such as urethane and rubber exhibiting elastic restoring force, and the presser 350 and the port when the presser 350 closes the port 150. Sealing between the 150 to prevent the cooling water leak between the presser 350 and the port 150.
  • the sealing member 370 may be formed integrally by the presser 350 and the insert injection or detached from the presser 350 so as to replace the sealing member 370 as necessary.
  • the stopper 350 may be made in the shape of a cone as described above, but in some cases, the diameter of the outer surface which is in contact with the port 150 having a spherical shape and a cylindrical shape is larger than the diameter of the port 150. It can be formed to close the port tightly, the shape of the stopper 350 may be implemented in various modifications.
  • the first elastic member 360 is installed inside the cylinder 310 to provide an elastic force such that the roller 330 is in close contact with the cam 210 formed on the drive shaft 200.
  • the first elastic member 360 is made of, for example, a coil spring and positioned at the tip of the piston 320 in the state of being interposed on the rod 340 of the cylinder 310 to cam the roller 330. It provides an elastic force to adhere to.
  • the drive unit 400 is mounted to the seating portion 120 provided on one end of the valve housing 100 to provide a rotational force so that the drive shaft 200 can be rotated. This will be described based on FIG. 7.
  • FIG. 7 is an exploded perspective view showing a drive unit of the multi-directional switching valve according to the present invention.
  • the drive unit 400 is a drive motor 410 for converting electrical energy into rotational force
  • the pinion 420 is installed on the rotating shaft of the drive motor 410 and the screw to rotate 430
  • the worm gear 440 is rotated in engagement with the screw 430 and axially coupled to the drive shaft 200.
  • the drive unit 400 includes a bracket 450 so that the drive unit 400 can be easily assembled to the seating unit 120, the bracket 450 is made of a plate formed with a flat surface on the bracket 450
  • the driving unit 400 is modularized in a semi-assembled state to seat the driving unit 400 in the semi-assembled state. ) Simply install the drive unit 400 can be installed.
  • the bracket 450 for modularizing the drive motor 410, the pinion 420, the screw 430, the worm gear 440 in a semi-assembled state is provided with an idle shaft 452 to receive the screw 430.
  • the screw 430 is hollow inside the center thereof so that the idle shaft 452 penetrates the screw 430.
  • FIG. 6 is a cross-sectional view showing the operating state of the valve unit of the multi-directional switching valve according to the present invention.
  • the multi-directional switching valve according to the present invention the coolant is introduced through the inlet hole 112 formed in the housing supporter 110 of the valve housing 100. Then, the valve unit 300 is operated so that the cooling water can be supplied to each cooling element requiring the cooling water.
  • the rotational force is provided to the drive shaft 200 from the drive unit 400 for the operation of the valve unit 300, whereby the cam 210 of the drive shaft 200 in the same direction as the drive shaft 200 Will rotate.
  • the roller 330 in close contact with the cam 210 is positioned at the top dead center and the bottom dead center of the cam 210, and thus the port 150 formed in the valve housing 100 is opened. It opens and closes to interrupt the flow of cooling water.
  • the drive shaft 200 is formed with a plurality of cams 210 corresponding to the port 150 formed in the valve housing 100, each cam 210 has a valve unit 300 is respectively installed drive shaft ( As the port 200 rotates, one port 150 is opened to supply the coolant and another port 150 is closed to perform a row of strokes to block the supply of the coolant.
  • a plurality of ports 150 formed in the valve housing 100 can be opened or closed by a single drive shaft 200 to power the valve unit 300 to operate.
  • multiple ports 150 can be individually controlled to precisely control the flow of cooling water.
  • valve unit 300 for opening and closing the port 150 by converting the rotation of the cam 210 formed on the drive shaft 200 to linear movement is rolling with the cam 210, thereby minimizing wear of parts. This prevents leakage due to wear of parts and increases the life of the product.
  • the drive unit 400 that provides the rotational force to the drive shaft 200 is modularized in a semi-assembled state to quickly and easily install the drive unit 400 to the mounting portion 120 to improve the productivity of the product .
  • the valve unit may have a structure as shown in FIGS. 4 and 5, but in some cases, the second elastic member 380 is provided or the rod 340 is pressurized 350. It may be made of a structure penetrating). This will be described based on FIG. 8.
  • valve unit 300 is the cylinder 310, the outer end and the presser to add the pressure that the presser 350 is in close contact with the port 150 when the presser 350 closes the port 150.
  • the second elastic member 380 is installed between the 350.
  • the second elastic member 380 may be implemented by a coil spring as shown in FIG.
  • the tip of the rod 340 penetrates the tab 350 to protrude forward of the port 150 so that the tab 350 and the rod 340 have a rigid structure, and a snap ring at the tip of the rod 340 protrudes.
  • a 390 may be installed to fix the presser 350 and the rod 340.
  • the rod 340 has a structure that penetrates the presser 350 as described above, when the rod 340 and the presser 350 are assembled, the rod 340 passes through the presser 350 through the tip of the rod 340.
  • the pusher 350 can be installed on the rod 340 easily and quickly.
  • the roller 330 rolling in contact with the cam 210 may be provided at the base end of the piston 320, but in some cases, the rolling ball may be provided in place of the roller. It may be. This will be described based on FIG. 9.
  • valve unit 300 has a rolling ball 330a having a spherical shape is installed at the base end of the piston 320 so that the rolling ball 330a rolls in accordance with the rotation of the cam 210. .
  • a buried groove 323 in which the rolling ball 330a is embedded is formed at the base end of the piston 320, and the rolling ball 330a having a spherical shape is mounted in the buried groove 323.
  • a part of the rolling ball 330a is projected toward the outside through the base end of the piston 320 is in contact with the cam 210 of the drive shaft 200 by the elastic force exerted from the first elastic member 360 In the state is rolling in accordance with the rotation of the drive shaft 200.
  • the rolling ball 330a rolls over the entire area when the cam 210 is rotated, so that the rolling ball 330a is in contact with the cam 210. Abrasion of a specific part can be minimized to precisely control the opening and closing of the port 150.
  • the contact portion between the cam 210 and the roller 330 is limited to the circumferential direction of the roller 330.
  • uneven wear occurs, as shown in FIG. 9, when the rolling ball 330a having a spherical shape is provided at the base of the piston 320, the rolling ball 330a depends on the load acting on the cam 210 and the rolling ball 330a. Since the contact portion between the cam 210 and the cam 210 is different, wear occurs evenly over the entire area of the rolling ball 330a, so that uneven wear does not occur and thus the opening and closing of the port 150 can be precisely controlled. have.
  • valve housing 110 housing supporter
  • cam 300 valve unit
  • landfill groove 330 roller
  • sealing member 380 second elastic member

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Multiple-Way Valves (AREA)
  • Mechanically-Actuated Valves (AREA)

Abstract

본 발명은 다방향 전환밸브에 관한 것으로, 중공의 파이프 구조로 형성되고, 그 중심부 공간으로 공급되는 냉각수를 외부의 각 냉각요소로 배출하는 다수의 포트가 형성되는 밸브 하우징과, 상기 밸브 하우징의 중심부 공간에 설치되며 그 외면으로 상기 포트에 대응하는 캠이 제각기 형성된 구동 샤프트와, 상기 구동 샤프트의 회전에 따라 상기 캠과 연동하여 상기 포트를 개폐하는 밸브유닛 및 상기 밸브 하우징의 일단에 설치되어 상기 구동 샤프트에 회전력을 제공하는 구동유닛을 포함하는 것을 특징으로 하는 다방향 전환밸브가 개시된다.

Description

다방향 전환밸브
본 발명은 다방향 전환밸브에 관한 것으로, 더욱 상세하게는 하나의 축으로 여러개의 포트를 개별적으로 개폐하여 유체의 흐름을 단속할 수 있는 다방향 전환밸브에 관한 것이다.
일반적으로 차량은 냉각수에 의해 엔진이 과냉되거나 과열되는 것을 방지하게 되는데, 이러한 냉각수는 엔진에 의해 가열되거나 라디에이터에 의해 냉각됨으로써, 최상의 엔진 출력을 얻을 수 있도록 엔진 온도를 제어하게 된다.
이를 위해 차량에는 냉각수의 흐름을 제어하기 위한 다방향 전환밸브가 사용된다. 즉, 다방향 전환밸브는 엔진, 라디에이터 등으로 공급되는 냉각수의 유량을 조절하여 엔진 냉각시스템의 유량을 최적화하여 워밍업 시간을 단축시키고, 엔진의 마찰손실을 최소화시키게 된다. 이러한 다방향 전환밸브의 선행기술로는 본 출원인에 의해 출원된 한국 등록특허 제10-1210208호의 다방향 전환밸브가 있다.
선행기술에 따른 다방향 전환밸브는 하우징, 스풀, 구동부로 구성되는데, 하우징은 차폐된 원통의 형상을 갖고, 유체가 소통하는 구멍이 외주면을 따라 행과 열로 형성되어 외주면의 상부 및 하부에 복수의 상부공 및 하부공을 가지며, 내부에 유체가 소통되는 내부공간이 마련된다.
또한, 스풀은 하우징의 내부 중간 부분을 차폐하는 판상의 부재가 마련되어 상기 상부공 및 하부공을 분할하고, 하우징의 내부에서 회전하면서 상부공 및 하부공을 개폐하게 된다. 그리고, 구동부는 상기 스풀과 축 연결되어 스풀을 회전시키는 동력을 제공하게 된다.
그러나, 상기와 같은 구성을 갖는 선행기술에 따른 다방향 전환밸브는 하우징의 내부에 설치되는 스풀에 의해 하우징의 상부공 및 하부공이 분할된 구조를 갖기 때문에 상부공과 하부공에 각기 다른 역할을 하는 이종의 유체가 유입된 후 스풀의 회전에 따라 정해진 유로를 따라 흐르는 구조를 갖는다. 따라서, 단일의 유체가 하우징으로 유입된 후 차량의 상태에 맞게 여러 방향으로 공급되도록 제어하는데 한계가 있다.
또한, 선행기술에 따르면 스풀이 하우징의 내부에서 구동부에 의해 회전하며 유로의 흐름을 제어하는 구조를 갖기 때문에 장시간 스풀이 작동하는 경우 스풀의 외주면과 하우징 내주면 간에 마모가 발생하게 되어 틈새를 형성하게 될 우려가 있다.
특히, 선행기술에 따른 다방향 전환밸브는 스풀의 외주면과 하우징의 내주면이 항상 접촉한 상태에서 회전되는 구조이기 때문에 스풀과 하우징의 접촉면적이 과다하게 발생하게 되어 그만큼 마모되는 면적이 증가하게 됨으로써 스풀과 하우징 간의 틈새가 발생할 위험이 증가하게 된다.
이렇게 마모가 발생하여 스풀과 하우징 간에 틈새를 형성하게 되면 상기 틈새를 통해 유체가 원치않게 다른 유로를 유입되는 교란이 일어나 유체의 유량을 정밀하게 제어할 수 없고, 따라서 차량의 성능을 저하시키는 문제가 있다.
또한, 상기와 같은 스풀의 회전에 따라 유체의 흐름을 제어하게 되는 선행기술은 유체가 소통하는 하우징에 형성된 복수의 상부공 및 하부공에 대한 개별적인 실링구조를 적용하기 어려운 문제가 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 유체가 소통하는 다수의 포트를 개별적으로 단속할 수 있도록 하여 유체의 흐름을 정밀하게 제어할 수 있는 다방향 전환밸브를 제공하는데 그 목적이 있다.
또한, 유체가 소통하는 포트와 이를 개폐하는 밸브체의 접촉면적을 최소화시켜 부품의 마모에 따른 누수를 방지할 수 있는 다방향 전환밸브를 제공하는데 그 목적이 있다.
또한, 포트와 밸브체가 긴밀하게 접촉되도록 압력을 발생시켜 원치않는 유체의 누수를 방지할 수 있는 다방향 전환밸브를 제공하는데 그 목적이 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 기술적 사상으로는, 중공의 파이프 구조로 형성되고, 그 중심부 공간으로 공급되는 냉각수를 외부의 각 냉각요소로 배출하는 다수의 포트가 형성되는 밸브 하우징과, 상기 밸브 하우징의 중심부 공간에 설치되며 그 외면으로 상기 포트에 대응하는 캠이 제각기 형성된 구동 샤프트와, 상기 구동 샤프트의 회전에 따라 상기 캠과 연동하여 상기 포트를 개폐하는 밸브유닛 및 상기 밸브 하우징의 일단에 설치되어 상기 구동 샤프트에 회전력을 제공하는 구동유닛을 포함하는 것을 특징으로 하는 다방향 전환밸브에 의해 달성된다.
여기서, 상기 밸브 하우징은 상기 밸브 하우징의 타단에 형성되어 냉각수가 유입되며 상기 구동 샤프트의 타단을 축받이 하는 하우징 서포터와, 상기 하우징 서포터와 대향하는 밸브 하우징의 일단에 형성되어 상기 구동유닛이 장착되는 안착부 및 상기 안착부를 폐쇄하며 구동유닛에 전기 에너지를 공급하는 커넥터가 마련된 커버를 포함하는 것이 바람직하다.
또한, 상기 밸브유닛은 상기 밸브 하우징에 지지되며 상기 캠과 포트 사이에 위치하는 실린더와, 상기 실린더의 내부에 설치되어 직선이동하는 피스톤과, 상기 피스톤의 기단에 설치되어 상기 캠의 회전에 따라 구름 운동하는 롤러와, 상기 피스톤의 선단에서 실린더를 관통하여 상기 포트를 향해 연장되는 로드와, 상기 로드의 선단에 마련되어 상기 캠의 회전에 따라 포트를 개폐하는 누르개 및 상기 실린더의 내부에 설치되어 상기 롤러가 상기 캠과 밀착되도록 탄성력을 제공하는 제1탄성부재를 포함하는 것이 바람직하다.
또한, 상기 밸브유닛은 상기 밸브 하우징에 지지되며 상기 캠과 포트 사이에 위치하는 실린더와, 상기 실린더의 내부에 설치되어 직선이동하는 피스톤과, 상기 피스톤의 기단에 그 일부가 매립되고 상기 캠의 회전에 따라 구름 운동하는 구름 볼과, 상기 피스톤의 선단에서 실린더를 관통하여 상기 포트를 향해 연장되는 로드와, 상기 로드의 선단에 마련되어 상기 캠의 회전에 따라 포트를 개폐하는 누르개 및 상기 실린더의 내부에 설치되어 상기 구름 볼이 상기 캠과 밀착되도록 탄성력을 제공하는 제1탄성부재를 포함하는 것이 바람직하다.
이때, 상기 누르개는 그 외면 둘레에 실링부재가 마련되는 것이 바람직하다.
또한, 상기 밸브유닛은 상기 누르개가 상기 포트를 폐쇄하였을 때 누르개가 포트에 밀착되는 압력을 더하도록 상기 실린더 외측 선단과 누르개 사이에 개재되는 제2탄성부재를 더 포함하는 것이 바람직하다.
또한, 상기 로드는 상기 누르개를 관통하여 상기 포트의 전방으로 돌출되고, 상기 로드의 선단에 스냅링이 설치되어 누르개를 고정하는 것이 바람직하다.
그리고, 상기 구동유닛은 구동모터의 회전축에 설치되는 피니언과, 상기 피니언과 맞물려 회전하는 스크류와, 상기 스크류와 맞물려 회전하며 상기 캠 샤프트와 축 결합하는 웜기어 및 상기 구동모터가 설치되며 상기 스크류를 축받이 하는 브라켓을 포함하고, 상기 구동유닛은 상기 브라켓에 구동모터, 피니언, 스크류, 웜기어가 조립된 상태로 상기 밸브 하우징의 안착부에 장착되는 것이 바람직하다.
본 발명에 따른 다방향 전환밸브에 의하면, 밸브 하우징에 형성된 다수의 포트를 하나의 구동 샤프트에 의해 개방하거나 폐쇄할 수 있어 밸브유닛을 동작시키기 위한 동력전달 계통이 단순화될 뿐만 아니라 다수의 포트를 개별적으로 단속할 수 있어 냉각수의 흐름을 정밀하게 제어할 수 있다.
또한, 구동 샤프트에 형성된 캠의 회전을 직선 운동으로 변환시켜 포트를 개폐하는 밸브유닛이 캠과 구름 운동하기 때문에 부품의 마모를 최소화시킬 수 있어 부품의 마모에 따른 누수를 방지할 수 있을 뿐만 아니라 제품의 수명을 증가시키게 된다.
또한, 구동 샤프트에 회전력을 제공하는 구동유닛이 반조립 상태로 모듈화되어 신속하고 용이하게 구동유닛을 안착부에 설치할 수 있어 제품의 생산성을 향상시키게 된다.
도 1은 본 발명에 따른 다방향 전환밸브를 나타낸 사시도이다.
도 2는 본 발명에 따른 다방향 전환밸브를 나타낸 분해 사시도이다.
도 3은 본 발명에 따른 다방향 전환밸브를 나타낸 단면도이다.
도 4는 본 발명에 따른 다방향 전환밸브 중 밸브유닛과 구동유닛을 나타낸 사시도이다.
도 5는 본 발명에 따른 다방향 전환밸브 중 밸브유닛의 구조를 나타낸 단면도이다.
도 6은 본 발명에 따른 다방향 전환밸브 중 밸브유닛의 작동 상태를 나타낸 단면도이다.
도 7은 본 발명에 따른 다방향 전환밸브 중 구동유닛을 나타낸 분해 사시도이다.
도 8은 본 발명에 따른 다방향 전환밸브 중 밸브유닛의 다른 실시예를 나타낸 단면도이다.
도 9는 본 발명에 따른 다방향 전환밸브 중 밸브유닛의 또 다른 실시예를 나타낸 단면도이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명에 따른 다방향 전환밸브를 나타낸 사시도이고, 도 2는 본 발명에 따른 다방향 전환밸브를 나타낸 분해 사시도이며, 도 3은 본 발명에 따른 다방향 전환밸브를 나타낸 단면도이다.
도면을 참조하여 설명하면, 본 발명에 따른 다방향 전환밸브는 다수의 포트(150)가 형성된 밸브 하우징(100), 밸브 하우징(100)에 형성된 포트(150)에 대응하는 캠(210)이 형성된 구동 샤프트(200), 구동 샤프트(200)의 회전에 따라 캠(210)과 연동하여 포트(150)를 개폐하는 밸브유닛(300), 구동 샤프트(200)에 회전력을 제공하는 구동유닛(400)으로 구성된다.
부연하자면, 밸브 하우징(100)은 중공의 파이프 구조로 형성되고, 그 중심부 공간으로 공급되는 냉각수를 외부의 각 냉각요소로 배출하는 다수의 포트(150)가 형성된다.
이러한 밸브 하우징(100)은 냉각수가 유입되며 구동 샤프트(200)를 축받이 하는 하우징 서포터(110), 구동유닛(400)이 장착되는 안착부(120), 안착부(120)를 폐쇄하는 커버(130)로 구성된다.
하우징 서포터(110)는 밸브 하우징(100)의 타단에 형성되는데, 도 2에 도시된 바와 같이 하우징 서포터(110)는 밸브 하우징(100)의 타단 내경에 밀착되는 외경을 갖는 중공된 원판의 형상을 갖되 그 중심에 구동 샤프트(200)의 타단을 축받이 하는 지지 홀(114)이 형성되며, 지지 홀(114)을 중심으로 방사형으로 리브(116)가 형성된다.
이렇게 지지 홀(114)을 중심으로 리브(116)가 방사형으로 형성되면 리브(116)와 리브(116) 사이의 빈 공간을 형성하여 냉각수가 유입되는 유입 홀(112)을 형성하게 된다. 이때, 구동 샤프트(200)의 타단을 축받이 하는 지지 홀(114)의 내부에는 구동 샤프트(200)의 회전 각도를 제한하기 위한 스토퍼(미도시)가 형성되어 구동 샤프트(200)가 구동유닛(400)으로부터 제공되는 회전력에 의해 회전하게 될 때 설정된 각도 내에서만 회동될 수 있다.
즉, 구동 샤프트(200)에 회전력을 제공하는 구동유닛(400)의 구동모터(410)는 정역 방향으로 회전하는 스테핑 모터로 구성되어 구동 샤프트(200)가 360도를 넘어 회전하지 않고 일정 범위(예를 들어, 0도에서 320도) 내에서 정역방향으로 회전하게 되며, 이때 지지 홀(114)에 형성된 스토퍼는 구동 샤프트(200)가 일정 범위를 넘어서 회전하지 않도록 제한하게 된다.
안착부(120)는 밸브 하우징(100)의 타단에 형성된 하우징 서포터(110)와 대향하는 밸브 하우징(100)의 일단에 형성되어 구동유닛(400)이 장착된다. 이러한 안착부(120)는 도 2 또는 도 7에 도시된 바와 같이 밸브 하우징(100)의 일단에서 일측이 개방된 박스의 형상을 갖고 구동 샤프트(200)에 회전력을 제공하는 구동유닛(400)이 장착된다.
이때, 안착부(120)는 밸브 하우징(100)의 축선과 동일한 관통 홀(122)이 형성되어 구동 샤프트(200)가 밸브 하우징(100)에 위치하게 될 때 구동 샤프트(200)의 일단이 안착부(120)의 관통 홀(122)을 통해 돌출되어 구동유닛(400)과 축 결합하게 된다. 이때, 안착부(120)의 관통 홀(122)에는 베어링(미도시)과 같은 축받이 부재가 설치되어 구동 샤프트(200)가 회전할 때 원활하게 회전할 수 있도록 지지하게 된다.
커버(130)는 일측이 개방된 안착부(120)를 폐쇄하여 안착부(120)에 장착된 구동유닛(400)이 외부로 노출되지 않도록 보호하는 것으로, 필요에 따라 안착부(120)를 개방할 수 있게 볼트와 같은 체결부재에 의해 안착부(120)의 일측에 조립된다. 이때 커버(130)와 안착부(120) 사이에는 가스켓(140)이 설치되어 안착부(120)에 커버(130)가 조립되었을 때 틈새가 발생하지 않도록 하여 수분이 안착부(120)의 내부로 유입되는 것을 차단하게 된다.
또한, 커버(130)는 구동유닛(400)에 전기 에너지를 공급하여 구동모터(410)가 작동할 수 있도록 커넥터(132)가 마련되는데, 커넥터(132)는 안착부(120)에 구동유닛(400)이 장착되었을 때 전기적으로 연결될 수 있도록 도선이 형성된다.
한편, 구동 샤프트(200)는 밸브 하우징(100)의 중심부 공간에 설치되며 그 외면으로 밸브 하우징(100)에 형성되는 다수의 포트(150)에 제각기 대응하는 캠(210)을 형성하게 된다. 이러한 구동 샤프트(200)는 일단이 앞서 설명한 밸브 하우징(100)의 일단에 마련되는 안착부(120)의 관통 홀(122)을 관통하여 구동유닛(400)과 축 결합하게 되며 타단이 하우징 서포터(110)에 형성된 지지 홀(114)에 조립되어 구동유닛(400)의 작동에 따라 일정 각도범위 내에서 정역방향으로 회전하게 된다.
이렇게, 구동 샤프트(200)가 회전하는 것에 따라 밸브 하우징(100)에 형성된 포트(150)에 대응하는 캠(210)이 구동 샤프트(200)와 동일한 방향으로 회전하면서 포트(150)와 가까워지거나 멀어지는 회전운동을 하게 되어 밸브유닛(300)으로 포트(150)를 개방하거나 폐쇄하여 밸브 하우징(100)의 내부로 유입된 냉각수의 흐름을 단속하게 된다. 이러한 밸브유닛(300)의 구조를 도 4 및 도 5에 의거하여 설명한다.
도 4는 본 발명에 따른 다방향 전환밸브 중 밸브유닛과 구동유닛을 나타낸 사시도이고, 도 5는 본 발명에 따른 다방향 전환밸브 중 밸브유닛의 구조를 나타낸 단면도이다.
도면을 참조하여 설명하면, 밸브유닛(300)은 캠(210)과 포트(150) 사이에 위치하는 실린더(310), 실린더(310) 내부에 설치되는 피스톤(320), 캠(210)과 접촉한 상태로 구름 운동하는 롤러(330), 피스톤(320)으로부터 연장되어 실린더(310)를 관통하는 로드(340), 로드(340)의 선단에 마련되어 포트(150)를 개폐하는 누르개(350), 롤러(330)가 캠(210)과 밀착되도록 탄성력을 제공하는 제1탄성부재(360)로 구성된다.
실린더(310)는 밸브 하우징(100)에 지지되는 것으로 구동 샤프트(200)의 캠(210)과 밸브 하우징(100)에 형성된 포트(150) 사이에 위치하게 된다. 이러한 실린더(310)는 피스톤(320)이 직선이동할 수 있게 그 내부가 중공된 관의 형상을 갖고 구동 샤프트(200)를 향하는 기단이 개방된다. 또한, 실린더(310)의 외측 선단에 플랜지가 형성되어 밸브 하우징(100)에 고정된다.
피스톤(320)은 앞서 설명한 실린더(310)의 내부에 설치되어 실린더(310)를 따라 직선이동하게 된다. 이러한 피스톤(320)은 포트(150)를 향하는 선단에 로드(340)가 일체로 형성되고, 구동 샤프트(200)의 캠(210)을 향하는 기단에 롤러(330)가 마련된다.
이렇게 피스톤(320)의 기단에 마련되는 롤러(330)는 구동 샤프트(200)의 캠(210)과 접촉한 상태에서 구름 운동할 수 있게 마련되는데, 롤러(330)는 피스톤(320)의 기단과 일체로 한 쌍의 지지대(321)가 형성되고, 한 쌍의 지지대(321)를 가로질러 핀(322)이 구비되어 상기 핀(322)에 롤러(330)가 회전가능하게 결합된다.
이에 따라 롤러(330)는 구동 샤프트(200)의 회전에 따라 캠(210)의 외면과 접촉한 상태로 구름 운동하면서 피스톤(320)을 실린더(310) 내에서 직선이동시키게 된다.
이때, 롤러(330)는 구동 샤프트(200)에 형성된 캠(210)과 접촉하여 구름 운동하게 될 때 마모를 최소화시킬 수 있게 롤러(330)에 윤활제가 흡습된 재질로 이루어질 수 있다.
한편, 로드(340)는 피스톤(320)의 선단과 일체로 형성되어 실린더(310)를 관통하여 밸브 하우징(100)의 포트(150)를 향해 연장된다. 이러한 로드(340)의 선단에는 구동 샤프트(200)에 형성된 캠(210)의 회전에 따라 포트(150)를 개방하는 누르개(350)가 마련되는데, 누르개(350)는 도 4 또는 도 5에 도시된 바와 같이 원추의 형상을 갖고 그 외면 둘레에 실링부재(370)가 구비된다.
누르개(350)는 로드(340)의 선단과 마주하는 면에 로드(340)의 지름보다 작은 지름의 구멍을 형성하여 누르개(350)와 로드(340)가 억지끼움에 의해 고정되거나 또는 로드(340)의 선단과 마주하는 면에 나사 홀을 형성하고, 로드의 선단 외주면에 나사산을 형성하여 로드(340)와 누르개(350)가 나사산 체결될 수도 있다.
그리고, 누르개(350)에 구비되는 실링부재(370)는 탄성복원력이 발휘되는 우레탄, 고무와 같은 합성수지 또는 합성고무로 이루어져 누르개(350)가 포트(150)를 폐쇄하였을 때 누르개(350)와 포트(150) 사이를 밀봉하여 누르개(350)와 포트(150) 사이로 냉각수가 새는 것을 방지하게 된다.
이러한 실링부재(370)는 누르개(350)와 인서트 사출에 의해 일체로 성형되거나 또는 필요에 따라 실링부재(370)를 교체할 수 있게 누르개(350)로부터 착탈되는 구조로 이루어질 수 있다.
한편, 상기 누르개(350)는 앞서 설명한 바와 같이 원추의 형상으로 이루어질 수도 있지만 경우에 따라서는 구의 형태, 원기둥의 형태를 갖되 포트(150)와 접하게 되는 외면의 지름이 포트(150)의 지름보다 크게 형성되어 포트를 긴밀하게 폐쇄할 수 있으며, 이러한 누르개(350)의 형상은 다양하게 변형되어 실시될 수 있다.
제1탄성부재(360)는 실린더(310)의 내부에 설치되어 롤러(330)가 구동 샤프트(200)에 형성된 캠(210)과 밀착되도록 탄성력을 제공하게 된다. 이러한 제1탄성부재(360)는 예를 들어 코일 스프링으로 이루어져 실린더(310)의 내부 중 로드(340)에 개재된 상태로 피스톤(320)의 선단에 위치하여 롤러(330)를 캠(210)에 밀착시키는 탄성력을 제공하게 된다.
한편, 구동유닛(400)은 밸브 하우징(100)의 일단에 마련된 안착부(120)에 장착되어 구동 샤프트(200)가 회전될 수 있게 회전력을 제공하게 된다. 이를 도 7에 의거하여 설명한다.
도 7은 본 발명에 따른 다방향 전환밸브 중 구동유닛을 나타낸 분해 사시도이다. 도면을 참조하여 설명하면, 구동유닛(400)은 전기 에너지를 회전력으로 변환하는 구동모터(410), 구동모터(410)의 회전축에 설치되는 피니언(420), 피니언(420)과 맞물려 회전하는 스크류(430), 스크류(430)와 맞물려 회전하며 구동 샤프트(200)와 축 결합하는 웜기어(440)로 구성된다.
특히, 구동유닛(400)은 안착부(120)에 구동유닛(400)이 간편하게 조립될 수 있게 브라켓(450)을 포함하는데, 브라켓(450)은 평탄면이 형성된 플레이트로 이루어져 브라켓(450)에 구동유닛(400)과 피니언(420), 스크류(430), 웜기어(440)가 조립됨으로써, 구동유닛(400)이 반조립 상태로 모듈화되어 반조립 상태의 구동유닛(400)을 안착부(120)에 장착하는 것만으로 간편하게 구동유닛(400)을 설치할 수 있다.
이렇게, 구동모터(410), 피니언(420), 스크류(430), 웜기어(440)를 반조립 상태로 모듈화시키는 브라켓(450)은 스크류(430)를 축받이 할 수 있게 아이들 샤프트(452)가 마련되는데, 스크류(430)는 그 중심 내부가 중공되어 상기 아이들 샤프트(452)가 스크류(430)를 관통하여 지지하게 된다.
상기와 같은 구성을 갖는 본 발명에 따른 다방향 전환밸브의 작동을 도 6에 의거하여 설명한다.
도 6은 본 발명에 따른 다방향 전환밸브 중 밸브유닛의 작동 상태를 나타낸 단면도이다. 도면을 참조하여 설명하면, 본 발명에 따른 다방향 전환밸브는 밸브 하우징(100)의 하우징 서포터(110)에 형성된 유입 홀(112)을 통해 냉각수가 유입된다. 그리고, 냉각수를 필요로 하는 각 냉각요소에 냉각수가 공급될 수 있게 밸브유닛(300)이 작동된다.
이때, 밸브유닛(300)의 작동을 위해 구동유닛(400)으로부터 회전력이 구동 샤프트(200)에 제공되며, 이에 따라 구동 샤프트(200)의 캠(210)이 구동 샤프트(200)와 동일한 방향으로 회전하게 된다.
이렇게, 구동 샤프트(200)가 회전하는 것에 따라 캠(210)에 밀착된 롤러(330)가 캠(210)의 상사점과 하사점에 위치하게 되면서 밸브 하우징(100)에 형성된 포트(150)를 개폐시켜 냉각수의 흐름을 단속하게 된다.
이때, 구동 샤프트(200)는 밸브 하우징(100)에 형성된 포트(150)에 대응하는 다수개의 캠(210)이 형성되고, 각 캠(210)은 밸브유닛(300)이 제각기 설치되어 구동 샤프트(200)가 회전하는 것에 따라 어느 한 포트(150)는 개방되어 냉각수가 공급되고 또 다른 포트(150)는 폐쇄되어 냉각수의 공급이 차단되는 일렬의 행정을 하게 된다.
본 발명에 의한 다방향 전환밸브에 의하면, 밸브 하우징(100)에 형성된 다수의 포트(150)를 하나의 구동 샤프트(200)에 의해 개방하거나 폐쇄할 수 있어 밸브유닛(300)을 동작시키기 위한 동력전달 계통이 단순화될 뿐만 아니라 다수의 포트(150)를 개별적으로 단속할 수 있어 냉각수의 흐름을 정밀하게 제어할 수 있다.
또한, 구동 샤프트(200)에 형성된 캠(210)의 회전을 직선 운동으로 변환시켜 포트(150)를 개폐하는 밸브유닛(300)이 캠(210)과 구름 운동하기 때문에 부품의 마모를 최소화시킬 수 있어 부품의 마모에 따른 누수를 방지할 수 있을 뿐만 아니라 제품의 수명을 증가시키게 된다.
또한, 구동 샤프트(200)에 회전력을 제공하는 구동유닛(400)이 반조립 상태로 모듈화되어 신속하고 용이하게 구동유닛(400)을 안착부(120)에 설치할 수 있어 제품의 생산성을 향상시키게 된다.
한편, 본 발명은 앞서 설명한 실시예로 한정되는 것이 아니라 본 발명의 요지를 벗어나지 않는 범위 내에서 수정 및 변형하여 실시할 수 있고, 그러한 수정 및 변형이 가해진 것도 본 발명의 기술적 사상에 속하는 것으로 보아야 한다.
예를 들어, 본 발명에 따른 다방향 전환밸브는 밸브유닛이 도 4 및 도 5와 같은 구조로 이루어질 수도 있지만 경우에 따라서는 제2탄성부재(380)가 마련되거나 로드(340)가 누르개(350)를 관통하는 구조로 이루어질 수도 있다. 이를 도 8에 의거하여 설명한다.
도 8은 본 발명에 따른 다방향 전환밸브 중 밸브유닛의 다른 실시예를 나타낸 단면도이다. 도면을 참조하여 설명하면, 밸브유닛(300)은 누르개(350)가 포트(150)를 폐쇄하였을 때 누르개(350)가 포트(150)에 밀착되는 압력을 더하도록 실린더(310) 외측 선단과 누르개(350) 사이에 제2탄성부재(380)가 설치된다. 이러한 제2탄성부재(380)는 도 8에 도시된 바와 같이 코일 스프링에 의해 구현될 수 있다.
또한, 누르개(350)와 로드(340)가 견고한 구조를 갖도록 로드(340)의 선단은 누르개(350)를 관통하여 포트(150)의 전방으로 돌출되고, 돌출된 로드(340)의 선단에 스냅링(390)이 설치되어 누르개(350)와 로드(340)가 고정될 수 있다.
상기와 같이 로드(340)가 누르개(350)를 관통하는 구조를 갖게 되면, 로드(340)와 누르개(350)의 조립 시 로드(340)의 선단을 누르개(350)를 관통시킨 후 로드(340)의 선단에 스냅링(390)을 설치하는 것으로 간편하고 신속하게 로드(340)에 누르개(350)를 설치할 수 있다.
한편, 밸브유닛은 앞서 설명한 바와 같이 캠(210)과 접촉한 상태로 구름 운동하는 롤러(330)가 피스톤(320)의 기단에 마련될 수 있지만 경우에 따라서는 롤러를 대신하여 구름 볼이 마련될 수도 있다. 이를 도 9에 의거하여 설명한다.
도 9는 본 발명에 따른 다방향 전환밸브 중 밸브유닛의 또 다른 실시예를 나타낸 단면도이다. 도면을 참조하여 설명하면, 밸브유닛(300)은 피스톤(320)의 기단에 구의 형태를 갖는 구름 볼(330a)이 설치되어 캠(210)의 회전에 따라 구름 볼(330a)이 구름 운동하게 된다.
이를 위해 피스톤(320)의 기단에는 구름 볼(330a)이 매립되는 매립 홈(323)이 형성되고, 상기 매립 홈(323)에 구의 형태를 갖는 구름 볼(330a)이 장착된다. 이때, 구름 볼(330a)은 그 일부가 피스톤(320)의 기단을 통해 외부를 향해 돌출되어 제1탄성부재(360)로부터 발휘되는 탄성력에 의해 구동 샤프트(200)의 캠(210)과 접촉된 상태에서 구동 샤프트(200)의 회전에 따라 구름 운동하게 된다.
이와 같이 피스톤(320)의 기단에 구름 볼이 마련되면 캠(210)이 회전하게 될 때 구름 볼(330a)이 전면적에 걸쳐 구름 운동하게 됨으로써 구름 볼(330a)은 캠(210)의 접촉에 따른 특정 부위의 마모를 최소화시킬 수 있어 정밀하게 포트(150)의 개폐를 단속할 수 있다.
즉, 도 5 및 도 8에 도시된 바와 같이 피스톤(320)의 기단에 롤러(330)가 마련되는 경우 캠(210)과 롤러(330)의 접촉 부위가 롤러(330)의 원주방향에 국한되어 편마모가 발생하지만 도 9에 도시된 바와 같이 피스톤(320)의 기단에 구 형태의 구름 볼(330a)이 마련되는 경우 캠(210)과 구름 볼(330a)에 작용하는 하중에 따라 구름 볼(330a)과 캠(210)의 접촉 부위가 달라지기 때문에 마모가 발생하는 부분이 구름 볼(330a)의 전 면적에 걸쳐 고르게 발생하기 때문에 편마모가 발생하지 않아 포트(150)의 개폐를 정밀하게 제어할 수 있다.
***** 부호의 설명 ******
100 : 밸브 하우징 110 : 하우징 서포터
112 : 유입 홀 114 : 지지 홀
116 : 리브 120 : 안착부
122 : 관통 홀 130 : 커버
132 : 커넥터 140 : 가스켓
150 : 포트 200 : 구동 샤프트
210 : 캠 300 : 밸브유닛
310 : 실린더 320 : 피스톤
321 : 지지대 322 : 핀
323 : 매립 홈 330 : 롤러
330a : 구름 볼 340 : 로드
350 : 누르개 360 : 제1탄성부재
370 : 실링부재 380 : 제2탄성부재
390 : 스냅링 400 : 구동유닛
410 : 구동모터 420 : 피니언
430 : 스크류 440 : 웜기어
450 : 브라켓 452 : 아이들 샤프트

Claims (8)

  1. 중공의 파이프 구조로 형성되고, 그 중심부 공간으로 공급되는 냉각수를 외부의 각 냉각요소로 배출하는 다수의 포트가 형성되는 밸브 하우징;
    상기 밸브 하우징의 중심부 공간에 설치되며 그 외면으로 상기 포트에 대응하는 캠이 제각기 형성된 구동 샤프트;
    상기 구동 샤프트의 회전에 따라 상기 캠과 연동하여 상기 포트를 개폐하는 밸브유닛; 및
    상기 밸브 하우징의 일단에 설치되어 상기 구동 샤프트에 회전력을 제공하는 구동유닛;을 포함하는 것을 특징으로 하는 다방향 전환밸브.
  2. 청구항 1에 있어서,
    상기 밸브 하우징은
    상기 밸브 하우징의 타단에 형성되어 냉각수가 유입되며 상기 구동 샤프트의 타단을 축받이 하는 하우징 서포터;
    상기 하우징 서포터와 대향하는 밸브 하우징의 일단에 형성되어 상기 구동유닛이 장착되는 안착부; 및
    상기 안착부를 폐쇄하며 구동유닛에 전기 에너지를 공급하는 커넥터가 마련된 커버;를 포함하는 것을 특징으로 하는 다방향 전환밸브.
  3. 청구항 1에 있어서,
    상기 밸브유닛은
    상기 밸브 하우징에 지지되며 상기 캠과 포트 사이에 위치하는 실린더;
    상기 실린더의 내부에 설치되어 직선이동하는 피스톤;
    상기 피스톤의 기단에 설치되어 상기 캠의 회전에 따라 구름 운동하는 롤러;
    상기 피스톤의 선단에서 실린더를 관통하여 상기 포트를 향해 연장되는 로드;
    상기 로드의 선단에 마련되어 상기 캠의 회전에 따라 포트를 개폐하는 누르개; 및
    상기 실린더의 내부에 설치되어 상기 롤러가 상기 캠과 밀착되도록 탄성력을 제공하는 제1탄성부재;를 포함하는 것을 특징으로 하는 다방향 전환밸브.
  4. 청구항 1에 있어서,
    상기 밸브유닛은
    상기 밸브 하우징에 지지되며 상기 캠과 포트 사이에 위치하는 실린더;
    상기 실린더의 내부에 설치되어 직선이동하는 피스톤;
    상기 피스톤의 기단에 그 일부가 매립되고 상기 캠의 회전에 따라 구름 운동하는 구름 볼;
    상기 피스톤의 선단에서 실린더를 관통하여 상기 포트를 향해 연장되는 로드;
    상기 로드의 선단에 마련되어 상기 캠의 회전에 따라 포트를 개폐하는 누르개; 및
    상기 실린더의 내부에 설치되어 상기 구름 볼이 상기 캠과 밀착되도록 탄성력을 제공하는 제1탄성부재;를 포함하는 것을 특징으로 하는 다방향 전환밸브.
  5. 청구항 3 또는 청구항 4에 있어서,
    상기 누르개는 그 외면 둘레에 실링부재가 마련되는 것을 특징으로 하는 다방향 전환밸브.
  6. 청구항 3 또는 청구항 4에 있어서,
    상기 밸브유닛은
    상기 누르개가 상기 포트를 폐쇄하였을 때 누르개가 포트에 밀착되는 압력을 더하도록 상기 실린더 외측 선단과 누르개 사이에 개재되는 제2탄성부재;를 더 포함하는 것을 특징으로 하는 다방향 전환밸브.
  7. 청구항 3 또는 청구항 4에 있어서,
    상기 로드는
    상기 누르개를 관통하여 상기 포트의 전방으로 돌출되고, 상기 로드의 선단에 스냅링이 설치되어 누르개를 고정하는 것을 특징으로 하는 다방향 전환밸브.
  8. 청구항 2에 있어서,
    상기 구동유닛은
    구동모터의 회전축에 설치되는 피니언;
    상기 피니언과 맞물려 회전하는 스크류;
    상기 스크류와 맞물려 회전하며 상기 캠 샤프트와 축 결합하는 웜기어; 및
    상기 구동모터가 설치되며 상기 스크류를 축받이 하는 브라켓;을 포함하고,
    상기 구동유닛은 상기 브라켓에 구동모터, 피니언, 스크류, 웜기어가 조립된 상태로 상기 밸브 하우징의 안착부에 장착되는 것을 특징으로 하는 다방향 전환밸브.
PCT/KR2015/008085 2015-07-06 2015-08-03 다방향 전환밸브 WO2017007063A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580081506.2A CN107849966A (zh) 2015-07-06 2015-08-03 多向切换阀

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0095812 2015-07-06
KR1020150095812A KR101577213B1 (ko) 2015-07-06 2015-07-06 다방향 전환밸브

Publications (1)

Publication Number Publication Date
WO2017007063A1 true WO2017007063A1 (ko) 2017-01-12

Family

ID=55021295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008085 WO2017007063A1 (ko) 2015-07-06 2015-08-03 다방향 전환밸브

Country Status (3)

Country Link
KR (1) KR101577213B1 (ko)
CN (1) CN107849966A (ko)
WO (1) WO2017007063A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101864641B1 (ko) 2016-07-29 2018-06-05 인지컨트롤스 주식회사 다방향 전환 밸브장치 및 그 제작 방법
KR101875650B1 (ko) * 2016-10-21 2018-07-06 현대자동차 주식회사 냉각유체 제어밸브 유닛, 및 이를 구비한 엔진시스템
KR102359939B1 (ko) * 2017-09-13 2022-02-07 현대자동차 주식회사 홀더를 구비한 냉각수 제어 밸브유닛
KR102371254B1 (ko) * 2017-09-13 2022-03-04 현대자동차 주식회사 냉각수 제어밸브 유닛의 제어시스템, 및 이의 제어방법
KR101986556B1 (ko) 2017-11-16 2019-06-10 인지컨트롤스 주식회사 차량용 워터펌프 일체형 멀티 밸브 장치
CN109538818A (zh) * 2019-01-08 2019-03-29 浙江银轮机械股份有限公司 一种电子阀的双密封结构
CN114246475A (zh) * 2020-09-22 2022-03-29 漳州灿坤实业有限公司 出水装置及具有所述出水装置的自动给水机
US20240044418A1 (en) * 2022-08-08 2024-02-08 Hanon Systems Electronic fluid valve system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374945U (ko) * 1986-10-28 1988-05-18
JP2002098245A (ja) * 2000-09-21 2002-04-05 Denso Corp 流量制御弁およびそれを用いた内燃機関の冷却装置
JP2008504504A (ja) * 2004-06-28 2008-02-14 ヴァレオ システム テルミク 流体回路、特にエンジン用冷却回路のための制御バルブ
JP2008279372A (ja) * 2007-05-11 2008-11-20 Techno Excel Co Ltd 浄水器用切替弁のカム駆動式弁開閉機構
JP2009243475A (ja) * 2008-03-28 2009-10-22 Denso Corp 流体制御弁

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1660807A4 (en) * 2003-09-02 2012-01-18 Airsep Corp ROTARY CAM VALVE
CN100365334C (zh) * 2004-03-16 2008-01-30 曹建钢 平面密封三通阀
FR2955168B1 (fr) * 2010-01-14 2012-02-10 Mann & Hummel Gmbh Vanne de commande pour circuit de circulation de liquide
CN202441922U (zh) * 2012-03-07 2012-09-19 常州市华立液压润滑设备有限公司 连续流量三通切换阀
JP5811132B2 (ja) * 2013-04-18 2015-11-11 株式会社デンソー 内燃機関の排気装置
DE102013107293B4 (de) * 2013-07-10 2020-02-20 Pierburg Gmbh Steuerventileinheit für Kühlkreisläufe eines Kraftfahrzeugs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374945U (ko) * 1986-10-28 1988-05-18
JP2002098245A (ja) * 2000-09-21 2002-04-05 Denso Corp 流量制御弁およびそれを用いた内燃機関の冷却装置
JP2008504504A (ja) * 2004-06-28 2008-02-14 ヴァレオ システム テルミク 流体回路、特にエンジン用冷却回路のための制御バルブ
JP2008279372A (ja) * 2007-05-11 2008-11-20 Techno Excel Co Ltd 浄水器用切替弁のカム駆動式弁開閉機構
JP2009243475A (ja) * 2008-03-28 2009-10-22 Denso Corp 流体制御弁

Also Published As

Publication number Publication date
CN107849966A (zh) 2018-03-27
KR101577213B1 (ko) 2015-12-15

Similar Documents

Publication Publication Date Title
WO2017007063A1 (ko) 다방향 전환밸브
WO2016017853A1 (ko) 페일 세이프티 냉각수조절밸브
WO2013109005A1 (ko) 가변용량 압축기의 전자제어밸브
CA2402863C (en) Improved hot runner valve gate piston assembly
JPS6396378A (ja) 電磁石により互いに無関係に切換え可能な複数の切換え弁から成る集合体
WO2015008916A2 (en) Flow path switching valve
WO2022050543A1 (en) Variable cylinder wall for seals on plug valve cross-reference to related application
WO2015182814A1 (ko) 전기 구동식 자동차용 밸브장치
US20230098030A1 (en) Actuating member and reversing valve
WO2023219295A1 (ko) 볼밸브
EP4189267A1 (en) Plug valve hard seal on cylindrical wall
CN113738915A (zh) 致动件及换向阀
EP0169511B1 (en) Rotary actuator
WO2022173219A1 (ko) 워터펌프 및 밸브 통합장치
WO2020054900A1 (ko) 서보 밸브
WO2015072671A1 (en) Valve motor device of injection molding apparatus
WO2012053714A1 (ko) 보일러용 펌프
WO2016013716A1 (ko) 차량용 밸브장치
US20220120353A1 (en) Valve control device for a coolant circuit of a motor vehicle
WO2017099380A1 (ko) 삼방밸브
WO2016064047A1 (ko) 도어 회전장치
WO2021118018A1 (ko) 레귤레이터
WO2021125567A1 (en) Device for controlling a flow rate and expanding a fluid in a fluid circuit and method for operating the device
WO2017007235A1 (ko) 차량용 멀티밸브
WO2024143777A1 (ko) 센서 일체형 팽창밸브

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897785

Country of ref document: EP

Kind code of ref document: A1