WO2007013532A1 - フルオロスルホニル基含有化合物、その製造方法およびそのポリマー - Google Patents

フルオロスルホニル基含有化合物、その製造方法およびそのポリマー Download PDF

Info

Publication number
WO2007013532A1
WO2007013532A1 PCT/JP2006/314812 JP2006314812W WO2007013532A1 WO 2007013532 A1 WO2007013532 A1 WO 2007013532A1 JP 2006314812 W JP2006314812 W JP 2006314812W WO 2007013532 A1 WO2007013532 A1 WO 2007013532A1
Authority
WO
WIPO (PCT)
Prior art keywords
ocf
polymer
compound
compound represented
following formula
Prior art date
Application number
PCT/JP2006/314812
Other languages
English (en)
French (fr)
Inventor
Isamu Kaneko
Atsushi Watakabe
Jyunichi Tayanagi
Susumu Saito
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to DE602006014165T priority Critical patent/DE602006014165D1/de
Priority to CN2006800272391A priority patent/CN101228117B/zh
Priority to EP06781724A priority patent/EP1916237B1/en
Priority to JP2007526882A priority patent/JP5141251B2/ja
Publication of WO2007013532A1 publication Critical patent/WO2007013532A1/ja
Priority to US12/010,586 priority patent/US7531610B2/en
Priority to US12/410,524 priority patent/US7667083B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • C07C303/22Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof from sulfonic acids, by reactions not involving the formation of sulfo or halosulfonyl groups; from sulfonic halides by reactions not involving the formation of halosulfonyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/78Halides of sulfonic acids
    • C07C309/79Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms
    • C07C309/82Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms of a carbon skeleton substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/78Halides of sulfonic acids
    • C07C309/79Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms
    • C07C309/84Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms of a carbon skeleton substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Fluorosulfonyl group-containing compound process for producing the same, and polymer thereof
  • the present invention relates to a compound containing two fluorosulfonyl groups, an intermediate thereof, a production method thereof, a fluorosulfol group-containing polymer obtained by polymerizing the compound, and a sulfonic acid group obtained from the polymer Containing polymer.
  • an electrolyte material constituting an ion exchange membrane for example, a membrane used in salt electrolysis or a polymer electrolyte fuel cell
  • a fluorine-containing monomer represented by the following formula: Fluorosulfol group (SO F) of tetrafluoroethylene copolymer
  • Y represents a fluorine atom or a trifluoromethyl group
  • n represents an integer of 1 to 12
  • m represents an integer of 0 to 3
  • p represents 0 or 1
  • m + p> 0 is there.
  • a sulfonic acid group-containing polymer (hereinafter also referred to as a sulfonic acid polymer) is a polymer that can reduce electrolysis power when used in a salt electrolysis cell or the like by forming a membrane with a high ion exchange capacity.
  • a sulfonic acid polymer is a polymer that can improve the efficiency of power generation energy when used in a fuel cell.
  • the sulfonic acid polymer is preferably a polymer because of its higher ion exchange capacity and lower electrical resistance.
  • Patent Document 1 proposes the following monomers:
  • a represents an integer of 1 to 3
  • b represents an integer of 1 to 3
  • Q F contains a single bond or an etheric oxygen atom, and may have 1 to 6 carbon atoms.
  • Patent Document 2 proposes the following monomers.
  • A carbon
  • a 2
  • B hydrogen or a monovalent metal
  • Rf is a perfluorinated alkyl group.
  • Y F
  • C CF
  • Z F, Cl, CF, Br or I.
  • the sulfonic acid polymer obtained from this monomer has a stability in which a plurality of sulfonic acid groups are bonded to one carbon atom, and it is not known whether such a structure has durability over a long period of time. There are concerns.
  • Patent Document 1 International Publication No. 2005Z003062 Pamphlet (Claim 17)
  • Patent Document 2 Pamphlet of International Publication No. 03Z106515 (Claim 1)
  • the present invention contains two fluorosulfol groups that are groups that can be converted into sulfonic acid groups. It is an object of the present invention to provide a compound, an intermediate thereof, and a production method thereof with high productivity. Another object of the present invention is to provide a fluorosulfol group-containing polymer obtained by polymerizing the compound, and a sulfonic acid group-containing polymer obtained from the polymer cartridge. Means for solving the problem
  • the present invention has a gist characterized by the following.
  • a compound represented by the following formula (a) is represented by the following formula (bl) in the presence of M a F (M a represents a metal atom capable of forming a monovalent cation):
  • M a represents a metal atom capable of forming a monovalent cation
  • the symbols in the formulas have the following meanings.
  • R TM 1 is a single bond or a divalent perfluoro organic group having 1 to 6 carbon atoms.
  • R TM 2 is a divalent perfluoro organic group having 1 to 6 carbon atoms.
  • a compound represented by the following formula (mO) is obtained through a step of obtaining a compound represented by the following formula (c) by the production method according to [1].
  • Method for producing a compound represented by (mO) (However, the symbols in the formulas have the following meanings: R TM 1 is a single bond or a divalent perfluoro organic group having 1 to 6 carbon atoms.
  • R TM 2 Is a divalent perfluoro organic group having 1 to 6 carbon atoms, n is 0 or 1.) o
  • CF 2 CF (CF 2 ) N OCF 2 -CF (mO)
  • [0015] A compound represented by the following formula (c) is obtained by the production method described in [1], and then converted into M a F (M a is a metal atom capable of forming a monovalent cation). In the presence of hexafluoropropenoxide to obtain a compound represented by the following formula (d), which is then thermally decomposed and represented by the following formula (mO): The production method according to [2] (wherein the formula is obtained)
  • CF 2 CF (CF 2 ) n OCF 2 -CF (ml)
  • a method for producing a polymer characterized in that a compound represented by the following formula (mO) is polymerized to obtain a polymer containing units based on the compound represented by the following formula (mO): Symbols in the formula have the following meanings: R FG1 is a single bond or a divalent perfluoro organic group having 1 to 6 carbon atoms, R TM 2 is a divalent perfluoro organic group having 1 to 6 carbon atoms, n Is 0 or 1.) 0
  • CF 2 CF (CF 2 ) n OCF, -CF (mO)
  • a compound represented by the following formula (mO) is copolymerized with tetrafluoroethylene, and a unit based on the compound represented by the following formula (mO) is based on tetrafluoroethylene.
  • a method for producing a polymer characterized in that a polymer containing a unit is obtained (wherein the symbols in the formula have the following meanings: R FG1 represents a single bond or a divalent perfluoro organic group having 1 to 6 carbon atoms) R FG2 is a divalent perfluoro organic group having 1 to 6 carbon atoms, where n is 0 or 1 .; [0024] [Chemical 7]
  • R " 1 may have a single bond or an etheric oxygen atom
  • R F12 is a linear perfluoroalkylene group having 1 to 6 carbon atoms
  • CF 2 CF (CF 2 ) n OCF 2 -CF (ml)
  • CF 2 CFOCF 2 -CF
  • CF 2 CFCF 2 OCF 2 -CF (ITl13)
  • a unit based on the compound according to any one of [13] [8] to [11], and tetrafluoroethylene A polymer comprising units based on len.
  • a compound having two fluorosulfonyl groups which are groups that can be converted into a sulfonic acid group, a compound extremely useful as a reaction intermediate of the compound, and a compound obtained by polymerizing the compound are obtained. It is possible to provide a polymer having two sulfonic acid groups in one side chain.
  • the polymer of the present invention can have a higher softening temperature and excellent mechanical strength than a polymer having one sulfonic acid group in one side chain.
  • the polymer electrolysis having the polymer power of the present invention The quality is low resistance.
  • the compounds and polymers of the present invention are easy to produce and easy to implement industrially.
  • FIG. 1 is a graph showing the relationship between storage elastic modulus and temperature in the polymer of the present invention.
  • FIG. 2 is a graph showing the relationship between the monomer composition and the specific resistance of the polymer.
  • the compound represented by the formula (mO) is referred to as a compound (mO).
  • a unit based on a compound represented by the formula (mO) contained in the polymer is referred to as a unit (mO).
  • a polymer containing a unit (mO) is referred to as a polymer (mO). The same applies to compounds, units, and polymers represented by other formulas.
  • the unit in the polymer means a monomer unit derived from the monomer formed by polymerization of the monomer (also referred to as a repeating unit), but the unit in the present invention is a unit directly formed by a polymerization reaction, It may be a unit formed by chemical conversion after the polymerization reaction.
  • an organic group means a group containing one or more carbon atoms.
  • CF 2 CF (CF 2 ) n OCF 2 -CF (mO)
  • the compound (mO) is preferably represented as a compound (ml) (the definitions of R F11 and R F12 are as described above; the same shall apply hereinafter).
  • CF 2 CF (CF 2 ) nOCF 2 -CF (ITl1)
  • R 1 has an etheric oxygen atom, and is more preferably a straight-chain perfluoroalkylene group having 1 to 6 carbon atoms. Even if it has an atom, it is particularly preferably a straight-chain perfluoroalkylene group having 1 to 6 carbon atoms.
  • a carbon atom has an etheric oxygen atom between carbon atoms, and may be a linear perfluoroalkylene group having 1 to 4 carbon atoms. More preferably. If the number of carbon atoms is too large, the boiling point becomes high and distillation purification becomes difficult.
  • R F12 is more preferably a linear perfluoroalkylene group having 1 to 4 carbon atoms.
  • compound (mO) includes the following compound (mi l), compound (ml2), and compound (ml3). is there.
  • CF 2 CFOCF 2 -CF
  • CF 2 CFOCF 2 — CF (m0 0 )
  • the raw material compound (a) in the reaction ⁇ 1> the following compounds can be preferably used.
  • the oxidation reaction may be carried out in the presence of an inert solvent (for example, fluorotrichloromethane, trichloromethane, pentafluorodichloropropane, perfluorocyclobutane, etc.).
  • the reaction may be performed in the absence of a solvent.
  • the reaction temperature is preferably 50 ° C to 200 ° C, more preferably 80 ° C to 150 ° C, from the viewpoint of yield and reaction selectivity.
  • CF CFCF synthesized from OSO F (US4, 273, 729, etc.). And FOCCF SO F
  • 2 2 2 2 2 2 2 is synthesized by reacting tetrafluoroethane- ⁇ -sultone (compound (bl 1) described later by reacting an amine such as triethylamine or a base catalyst such as KF or NaF with isomerization).
  • compound (bl 1) described later by reacting an amine such as triethylamine or a base catalyst such as KF or NaF with isomerization.
  • the intermediate FOCCF SO F can be synthesized by reacting SO F without isolation.
  • Examples of the compound (bl) include the following compounds.
  • Examples of the compound (b2) include the following compounds.
  • aprotic polar solvent examples include monoglyme, diglyme, triglyme, tetraglyme, acetonitol, propionitol, adiponitrile, benzonitrile, dioxane, tetrahydrofuran, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, nitroethane and the like. it can. These mixed solvents can also be used.
  • the reaction temperature is preferably 80 ° C to + 200 ° C, more preferably 30 ° C to + 50 ° C.
  • M a F examples include potassium fluoride, cesium fluoride, silver fluoride, and quaternary ammonium fluoride.
  • cesium fluoride and potassium fluoride are preferable.
  • compound (bl) is isomerized to compound (b2) in the presence of a base such as potassium or triethylamine, and then used.
  • a base such as potassium or triethylamine
  • the reaction ⁇ 2> is a reaction between the compound (c) having a fluoroformyl group and the epoxy compound hexafluoropropenoxide, similar to the reaction ⁇ 1>.
  • the reaction can be carried out under the same reaction conditions. If a 2-mol adduct of hexafluoropropenoxide is produced, the reaction conversion rate is lowered by lowering the addition amount of hexafluoropropenoxide and distilled from the reaction mixture. The yield can be improved by recovering the unreacted compound (c) by the above and using it again in the reaction.
  • the compound (d) is capable of gas-phase pyrolysis at 150 to 250 ° C in the presence of sodium carbonate, and gas-phase heat at 250 to 400 ° C in the presence of glass beads.
  • the compound (mO 2) can be obtained.
  • thermal decomposition can be performed by heating to 150 to 300 ° C, preferably 180 to 270 ° C, to obtain the compound (mO). Convert —COF group of compound (d) to —COOM e group
  • the thermal decomposition temperature is about 70 to 200 ° C.
  • compound (mO-z) is likely to impair the heat resistance of the polymer, compound (mO z) is likely to impair the heat resistance of the polymer, compound (mO z).
  • the compound (mO-z) can also be removed by heat treatment with.
  • Single in polymer
  • the polymer is heat-treated at a high temperature of 250 to 350 ° C.
  • CF 2 CFCF 2 OCF 2 -CF (mO)
  • the same solvent as in the reaction can be used.
  • the reaction temperature is 50 ° C to + 100 ° C, preferably -20 ° C to + 50 ° C.
  • a polymer can be produced by polymerizing the compound (mO).
  • the polymer is a polymer containing a unit (mO) based on the compound (mO) (hereinafter referred to as a polymer (mO).
  • CF 2 CF (CF 2 ) N OCF 2 -CF (mO)
  • the polymer (mO) is preferably a polymer (ml) containing units (ml) based on the compound (ml).
  • CF 2 CF (CF 2 ) N OCF 2 CF (ml)
  • the polymer (mO) of the present invention may be a polymer that has at least one kind of force of the unit (mO). It may be a polymer having one or more kinds of units).
  • the latter polymer (mO) is preferably a polymer that is composed of one unit (mO) and one or more other units.
  • the polymer (mO) which is a polymer having other units is preferably obtained by copolymerizing the compound (mO) with another copolymerizable monomer.
  • nonionic monomer As the other monomer, a nonionic monomer is usually selected.
  • nonionic means that it does not have an ionic group or its precursor group.
  • examples of such other monomers include tetrafluoroethylene, black trifluoroethylene, trifluoroethylene, vinylidene fluoride, butyl fluoride, ethylene and the like.
  • examples of other monomers having a ring structure include perfluoro (2, 2 dimethyl-1, 3— Difluorol), perfluoro (1,3 diquinol), perfluoro (2-methylene 4-methyl-1,3 dioxolan), perfluoro (4-methoxy 1,3 diquinol) and the like.
  • cyclopolymerizable monomers examples include perfluoro (3-buteryl ether) ⁇ perfluoro (aryl butyl ether) ⁇ perfluoro (3,5 dioxa-1,6) Butadiene) and the like. Further, the following monomers (wherein p is an integer of 2 to 6) can also be suitably used.
  • tetrafluoroethylene has a high mechanical strength not only because the copolymer is excellent in chemical stability and heat resistance, but also in the copolymer.
  • the softening temperature is also preferable because it is higher than that of conventional sulfonic acid polymers.
  • monomers that can be further copolymerized with the other monomers exemplified above include penolephanolo ⁇ -olefins such as propene, hexafnoreo propene, and (perfluoroalkyl) such as (perfluoroleobutyl) ethylene.
  • penolephanolo ⁇ -olefins such as propene, hexafnoreo propene
  • (perfluoroalkyl) such as (perfluoroleobutyl) ethylene.
  • (Perfluoroalkyl) propenes such as ethylenes, 3-perfluorooctyl 1 propene, and perfluorovinyl ethers such as perfluoro (alkyl vinyl ether) and perfluoro (ether-containing alkyl bur ether) You can use etc.
  • CF CF— (OCF CFZ)
  • a compound represented by O—Rf is preferred.
  • t is an integer of 0 to 3
  • Z is a fluorine atom or a trifluoromethyl group
  • Rf may be a straight chain structure or a branched structure. It is a loalkyl group.
  • V is an integer from 1 to 9
  • w is an integer from 1 to 9
  • X is 2 or 3.
  • CF 2 CFOCF 2 CF (CF 3) O (CF 2) W CF 3 (ii)
  • CF 2 CF (OCF 2 CF (CF 3 )) x O (CF 2 ) 2 CF 3 (iii)
  • a solid polymer electrolyte membrane having a higher softening temperature and a battery output can be increased. Therefore, in order to obtain a polymer used as a solid polymer electrolyte having high oxygen solubility or oxygen permeability applied to the force sword catalyst layer, it is preferable to introduce a ring structure into the polymer. In this case, it is preferable to select a monomer containing the aforementioned ring structure or a cyclopolymerizable monomer as the other monomer. Of these, perfluoro (2,2-dimethyl-1,3 diquinol) is preferred! / ⁇ .
  • the ratio of the other units is selected so as to fall within the range of ion exchange capacity described later.
  • the other unit is preferably a tetrafluoroethylene unit as described above.
  • the unit further contains another unit as a third component.
  • the third component is preferably a unit based on a monomer having a ring structure or a cyclopolymerizable monomer.
  • the tetrafluoroethylene unit is preferably contained in an amount of 20 mol% or more, more preferably 40 mol% or more.
  • the third component is preferably a unit based on a monomer having a ring structure or a cyclopolymerizable monomer.
  • a polymer containing a monomer having a ring structure or a unit based on a cyclopolymerizable monomer and not containing a tetrafluoroethylene unit can also be used, but the performance is stable over a long period of time.
  • a polymer containing tetrafluoroethylene units is preferably used in an amount of 20 mol% or more, more preferably 40 mol% or more.
  • the polymerization reaction is not particularly limited as long as it is carried out under conditions where radicals are generated. Absent.
  • the polymerization may be performed by Balta polymerization, solution polymerization, suspension polymerization, emulsion polymerization, polymerization in liquid or supercritical carbon dioxide.
  • the method for generating radicals is not particularly limited, and for example, a method of irradiating radiation such as ultraviolet rays, ⁇ rays, and electron beams can be used, or a radical initiator used in ordinary radical polymerization can be used. You can also use this method.
  • radical initiator examples include bis (fluoracyl) peroxides, bis (chlorofluoroacyl) peroxides, dialkyl peroxide dicarbonates, and disilver oxides. Peroxyesters, dialkyl baroxides, bis (fluoroalkyl) peroxides, azo compounds, persulfates and the like.
  • the solvent to be used usually has a boiling point of 20 to 350 ° C from the viewpoint of handleability, and preferably has a boiling point of 40 to 150 ° C. And it is better to do that. Then, a predetermined amount of one or more of the above monomers is added to the solvent, a radical initiator or the like is added to generate radicals, and polymerization is performed. Gas monomer and Z or liquid monomer can be added in batch, sequential or continuous.
  • examples of usable solvents include perfluororot such as perfluorotributylamine.
  • Realkylamines, perfluorocarbons such as perfluorinated hexane and perfluorooctane, 1H, 4H—perfluorobutane, 1H—hydraulic fluorcarbons such as perfluorinated hexane, 3, 3-dichloro 1 , 1, 1, 2, 2-pentafluoropropane, 1,3-dichloro-1, 1, 2, 2, 3-pentafluororepropropane, and other hydrotarolofluorocarbons Can do.
  • suspension polymerization water is used as a dispersion medium, a monomer to be polymerized is added, and bis (fluoroacyl) peroxides, bis (chlorofluoroacyl) baroxides, dialkyl peroxides are used as radical initiators. It can be carried out by using a nonionic initiator such as carbonates, disilveroxides, peroxyesters, dialkyl peroxides, bis (fluoroalkyl) peroxides, azo compounds.
  • the solvent described in the section of solution polymerization can be added as an auxiliary agent.
  • a surfactant may be appropriately added as a dispersion stabilizer.
  • hydrocarbon compounds such as hexane and methanol may be added.
  • the polymer obtained by polymerization using this compound is preferably heat-treated.
  • FEP uropropene
  • processing is performed at a high temperature of 200 to 400 ° C, or high shearing force is applied in a twin-screw extruder to cut the weak part of the joint.
  • the polymer of the present invention is polymerized and then heat-treated in the presence of air, Z or water, or fluorinated with fluorine gas, whereby unstable sites such as polymer ends are removed. You can stabilize it.
  • the weight average molecular weight of the SO F group-containing polymer of the present invention is 1 X 10 4 to 1 X 10 7
  • Especially preferred is 5 x 10 4 to 5 x 10 6 , and even 1 x 10 5 to 3 x 10 6 . If the molecular weight S of the polymer is too small, physical properties such as the degree of swelling change over time, which may result in insufficient durability. On the other hand, if the molecular weight is too large, there is a risk that it will be difficult to form a solution or mold.
  • the polymer having a SO F group of the present invention is hydrolyzed or hydrolyzed in the presence of a base.
  • Such a polymer is suitable as a polymer electrolyte.
  • the ionic group-containing polymer thus obtained may be treated with aqueous hydrogen peroxide as necessary.
  • two sulfonic acid groups in one unit are not bonded to the same carbon atom.
  • the distance between adjacent CF (SO H) groups in the polymer molecule increases and the sulfonic acid group
  • the proton conductivity improving effect is not so great that proton transfer between them is not so easy.
  • the polymer of the present invention since the two sulfonic acid groups in one unit are appropriately separated via a perfluoroalkylene structure or the like, the distance between each sulfonic acid group in the polymer molecule is averaged, and the proton It is considered that it is preferable because it is easy to move.
  • the polymer having SO 2 H groups of the present invention preferably has a soft temperature of 90 ° C or higher. More preferably 100 ° C or higher.
  • the soft temperature of the polymer is the temperature at which the elastic modulus of the polymer begins to drop sharply when the temperature of the polymer is gradually raised from around room temperature. It is defined as the temperature at which the storage modulus is half that at 50 ° C when dynamic viscoelasticity is measured at ° CZ.
  • the polymer having —SO 2 H group has an ion exchange capacity (hereinafter referred to as A) of 0.5 to 2.5 mm.
  • meqZg Equivalent Zg dry rosin
  • a of the polymer having —SO 2 H group of the present invention is 0.9.
  • the polymer having two R 3 groups can maintain the mechanical strength even if the ion exchange capacity is increased to lower the resistance than the conventional membrane.
  • the SO H group-containing polymer of the present invention is used as a solid polymer electrolyte, such as salt electrolysis.
  • the solid polymer electrolyte material refers to a solid polymer material used by making use of the function of an ionic group, and the ionic group has an ion conduction function, an ion exchange function, a water absorption function, and the like. However, when it contains a strong acid group, it has acid catalysis. It can also be used for proton selective permeable membranes used for water electrolysis, hydrogen peroxide production, ozone production, waste acid recovery, redox flow battery membranes, cation exchange membranes for electrodialysis used for desalting or salt production, etc. .
  • lithium primary batteries lithium secondary batteries, polymer electrolytes of lithium ion secondary batteries, solid acid catalysts, cation exchange resins, sensors using modified electrodes, ion exchange to remove trace ions in the air It can also be used for filter heaters, electrification chromic display elements, etc. That is, it can be used as a material for various electrochemical processes.
  • the polymer having SO H groups of the present invention can be used as a solid acid catalyst.
  • the polymer can increase the ion exchange capacity, it is possible to introduce more reactive sites than conventional polymers.
  • the polymer having a SO H group of the present invention is an acid, base, and salt separation and purification
  • TQ value was measured as an index of polymer molecular weight.
  • the TQ value (unit: ° C) is 2. lmm and inner diameter lmm. 2.
  • the extrusion amount is 100mm 3 Z seconds.
  • the polymer composition was determined by quantifying the fluorosulfonyl group with an infrared absorption spectrum.
  • a of the polymer was determined as follows. About copolymer of TFE and compound (mi l)
  • the polymer F12 was hydrolyzed by immersing it in a solution containing a constant concentration of NaOH water Z methanol as a solvent, and A was obtained by back titrating the solution.
  • polymer F20 calculates A by hydrolysis and back titration, and others
  • This polymer was obtained from an infrared absorption spectrum.
  • A was determined by hydrolysis and back titration of polymers F101 to 103.
  • the soft temperature was measured as follows.
  • the polymer obtained by polymerization was pressed near the TQ temperature to produce a film having a thickness of about 100 to 200 ⁇ m.
  • the film was converted to an acid type polymer by acid treatment after alkali hydrolysis.
  • the acid type film was dynamically measured at a sample width of 0.5 cm, a grip length of 2 cm, a measurement frequency of 1 Hz, and a heating rate of 2 ° CZ. Viscoelasticity measurement was performed, and the value at which the storage elastic modulus was half that at 50 ° C was defined as the soft temperature.
  • the specific resistance is obtained by adhering a substrate with 4 terminal electrodes arranged at 5 mm intervals on a 5 mm wide film, and AC 10 kHz under a constant temperature and humidity condition of 80 ° C. and 95% RH by a known 4 terminal method. Measured at a voltage of IV.
  • CF 2 CFOCF 2 -CF
  • potassium fluoride trade name: Crocat F, manufactured by Morita Chemical
  • a U-shaped tube with a length of 40 cm was prepared. One side is filled with glass wool, and the other side is filled with glass beads using a stainless steel sintered metal as the eye plate.
  • a packed fluidized bed reactor was obtained. Nitrogen gas was used as the fluidizing gas, and the raw material could be supplied continuously using a metering pump. The outlet gas was collected with liquid nitrogen using a trap tube.
  • Compound (ml2) was synthesized by the following synthesis route. Details are described below. Compound (a2) was synthesized in the same manner as described in JP-A-57-176973 (Example 2). Compound (a2) can also be synthesized by the following method.
  • CF CFCF OCF using a 0.2 L autoclave made of Hastelloy C equipped with a stirrer with stirring blades, liquid 'gas inlet, product outlet, and cooling condenser
  • the reactor was heated to 110 ° C, and oxygen gas was introduced into the reactor at a flow rate of 5 L / min and nitrogen gas at 20 L / min.
  • the reaction pressure was maintained at 3. OMPa (gauge pressure) using a back pressure valve.
  • the reaction mixture was refluxed by a cooling condenser, and the gas was discharged out of the reactor through a back pressure valve.
  • the reaction was carried out while checking the conversion rate of the raw material compounds, and the conversion rate was checked by extracting a part of the reaction mixture from the product removal loca.
  • the reaction product was analyzed by gas chromatography. Oxygen gas was charged until the conversion rate of the raw material compound reached 90%.
  • the reaction time required 16 hours, the yield of compound (a2) was 73%, and the selectivity was 81 %Met
  • CF 2 CFOCF 2 -CF
  • a 300 cm 3 4-neck round bottom flask equipped with a Dimroth condenser, thermometer, dropping funnel and glass rod with stirring blade was prepared. Under a nitrogen atmosphere, potassium fluoride (trade name: Crocat F, manufactured by Morita Chemical) (1.6 g) and dimethoxyethane (15.9 g) were added to the reaction vessel.
  • potassium fluoride trade name: Crocat F, manufactured by Morita Chemical
  • reaction vessel was cooled in an ice bath, and tetrafluoroethane ⁇ -sultone (y compound (bl l)) 49. lg was added from the dropping funnel over 32 minutes, and the internal temperature was 10 ° C. It was dripped below.
  • compound (a2) (82. Og) was added dropwise from the dropping funnel into the reaction vessel over 15 minutes. The increase in internal temperature was almost unobservable.
  • the mixture was returned to room temperature and stirred for about 90 hours. The lower layer was collected with a separatory funnel. The recovered amount was 127.6 g and the GC purity was 55%.
  • Potassium fluoride (trade name: Crocat F, manufactured by Morita Chemical Co., Ltd., hereinafter simply referred to as “KF”) (1. lg) was added to a stainless steel autoclave having an internal volume of 200 cm 3 . After deaeration, dimethoxyethane (5.3 g), acetonitrile (5.3 g), and compound (c2) (95.8 g) were added under reduced pressure.
  • KF Potassium fluoride
  • a 50 cm 3 two-necked round bottom flask equipped with a thermometer, a dropping funnel and a stirring bar was prepared. Under a nitrogen atmosphere, potassium hydrogen carbonate (1.02 g) and dimethoxyethane (8.78 g) were added to the reaction vessel. Subsequently, the mixture was cooled by immersion in an ice bath, and 7.05 g of compound (d2) was added dropwise from the dropping funnel over 21 minutes at an internal temperature of 4 to 11 ° C. After completion of dropping, the ice bath was removed, and the mixture was stirred at room temperature for 2.5 hours.
  • compound (d2) (34.6 g) was fed at a reaction temperature of 340 ° C. over 1.5 hours using a fluidized bed reactor.
  • the content of units (mi l) determined from IR was 17.8 mol%.
  • the TQ value was 237 ° C.
  • Example 3 except that the conditions were changed as shown in Table 1, TFE and a compound (mi l) were copolymerized in the same manner as in Example 3 to obtain polymer F12 F15.
  • the polymerization results are shown in Table 1.
  • Example 3 except that each condition was changed as shown in Table 2, TFE and the compound (ml2) were copolymerized in the same manner as in Example 3 to obtain polymer F16 F20.
  • the polymerization results are shown in Table 2.
  • polymer F15 was heated to 320 ° C, the other polymers were TQ temperature, and each polymer film (film thickness 100-200 ⁇ m) was caloeed by pressure press molding. Then an aqueous solution containing 15 mass 0/0 of 30 mass 0/0 and KOH in dimethyl sulfoxide, by immersing the polymer film at 80 ° C 16 hours, the polymer first film in - SO F groups hydrolyzed And was converted to the -SO K group.
  • the polymer film was immersed in a 3 mol ZL aqueous hydrochloric acid solution at 50 ° C. for 2 hours, and then acid treatment for exchanging the aqueous hydrochloric acid solution was repeated four times. Next, the polymer film is sufficiently washed with ion exchanged water so that the SO K groups in the polymer film become SO H groups.
  • Polymers F101 to 103 were obtained by copolymerizing TFE and PSVE. Further, the polymer was converted to the acid form to obtain polymers H101 to 103. The physical properties of each polymer were measured and the results are shown in Table 5.
  • Example 3 In Example 3, except that each condition was changed as shown in Table 6, TFE and a compound (ml3) were copolymerized in the same manner as in Example 3 to obtain polymers F26 to F27.
  • the polymerization results are shown in Table 6.
  • the fluorescent X-ray intensity of sulfur atoms was measured on a film with a thickness of 100 to 200 m produced by hot pressing (device name: RIX300 0, Rigaku Denki Kogyo Co., Ltd.) The ion exchange capacity was determined by company).
  • F 101 film was used as a standard sample.
  • Polymers F26 to F27 obtained in Examples 26 and 27 were heat-treated in air at 300 ° C for 40 hours. Thereafter, the same treatment as in Examples 13 to 21 was performed to obtain acid type polymers H26 and H27. The same physical properties as those of Examples 13 to 21 were measured for these polymers. The results are shown in Table 7.
  • Figure 1 shows a film of polymer HI 1 copolymerized with TFE and compound (mi l) and converted to acid form, and polymer HI 6 copolymerized with TFE and compound (ml 2) and converted to acid form.
  • the relationship between storage elastic modulus and temperature obtained by dynamic viscoelasticity measurement is shown.
  • the polymer H101 obtained by copolymerizing TFE and PSVE and converting to acid form is also shown.
  • the polymer converted to the acid form obtained by copolymerizing the compound (ml 1) or compound (ml2) and TFE is compared to the conventional polymer converted to the acid form by copolymerizing TFE and PSVE. It can be seen that the soft temperature and the glass transition temperature are high.
  • the present invention provides a compound containing two fluorosulfol groups, a compound extremely useful as a reaction intermediate of the compound, and a method for producing them. Since the polymer obtained by polymerizing the compound has two sulfonic acid groups in one side chain, it has a high softening temperature and can be excellent in mechanical strength (for example, elastic modulus in a high temperature range).
  • the polymer electrolyte made of the polymer of the present invention has a low resistance.
  • Useful electrolyte materials that can be used for ion exchange membranes (ion exchange membranes for salt electrolysis and ion exchange membranes for fuel cells) and catalyst layers for fuel cells are provided. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2005-217110 filed on July 27, 2005 are cited here as disclosure of the specification of the present invention. Incorporate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fuel Cell (AREA)

Abstract

 スルホン酸基に変換しうる基であるフルオロスルホニル基を2つ含有する化合物、その中間体およびそれらの生産性の高い製造方法を提供する。また、該化合物を重合させたフルオロスルホニル基含有ポリマー、および該ポリマーから得たスルホン酸基含有ポリマーを提供する。  下式(m0)で表される化合物の製造方法、該化合物、該化合物を重合させたフルオロスルホニル基含有ポリマー、および該ポリマーから得たスルホン酸基含有ポリマー。ただし、RF01は、単結合または炭素数1~6の2価のペルフルオロ有機基を、RF02は、炭素数1~6の2価のペルフルオロ有機基を、nは、0または1を示す。

Description

明 細 書
フルォロスルホニル基含有ィ匕合物、その製造方法およびそのポリマー 技術分野
[0001] 本発明はフルォロスルホニル基を 2つ含有する化合物、その中間体、それら製造方 法、該化合物を重合させたフルォロスルホ -ル基含有ポリマー、および該ポリマーか ら得たスルホン酸基含有ポリマーに関する。
背景技術
[0002] 従来、イオン交換膜 (たとえば、食塩電解や固体高分子形燃料電池に使用される 膜)や燃料電池の触媒層を構成する電解質材料として、下式で表される含フッ素モノ マーとテトラフルォロエチレンの共重合体のフルォロスルホ -ル基( SO F)をスル
2 ホン酸基( SO H)に変換したポリマーが汎用的に用いられている。ただし、下式中
3
、 Yはフッ素原子またはトリフルォロメチル基を示し、 nは 1〜12の整数を示し、 mは 0 〜3の整数を示し、 pは 0または 1を示し、かつ、 m+p >0である。
CF =CF— (OCF CFY) O— (CF ) SO F
2 2 m p 2 n 2
スルホン酸基含有ポリマー(以下、スルホン酸ポリマーとも記す。)は、高イオン交換 容量の膜にして食塩電解セル等に使用した場合には、電解電力を低減できるポリマ 一である。またスルホン酸ポリマーは、燃料電池に使用した場合には、発電エネルギ 一効率を向上させうるポリマーである。該スルホン酸ポリマーとしては、よりイオン交換 容量が大きぐより電気抵抗が低!、重合体であるのが好まし 、。
[0003] 従来のフルォロスルホ -ル基含有モノマーでは、高分子量のパーフルォロポリマー を得るためには重合反応性の高 、テトラフルォロエチレンとの共重合が必須であるが 、スルホン酸ポリマーのイオン交換容量を大きくする目的で、共重合に用いるフルォ ロスルホニル基含有モノマーの比率を高くすると、共重合体の分子量が低くなる問題 があった。分子量の低い共重合体力 形成される膜は、機械的強度および耐久性が 不充分であり、実用的ではない問題があった。
[0004] そこで、高 、イオン交換容量を維持し、かつ、強度を保持するためにテトラフルォロ エチレン含有量の高い膜を得るために、分子内にスルホン酸基またはフルォロスル ホニル基等のスルホン酸基に変換できる前駆体基を 2個有するモノマーの使用が提 案されている。すなわち、特許文献 1においては、以下のモノマーが提案されている
[FSO (CF ) ] [FSO (CF ) ]CF— QF— CF OCF = CF
2 2 a 2 2 b 2 2
上記式中、 aは 1〜3の整数を示し、 bは 1〜3の整数を示し、 QFは単結合またはェ 一テル性酸素原子を含有して 、てもよ 、炭素数 1〜6のペルフルォロアルキレン基を 示す。
[0005] し力し、このモノマーを製造するには、 [FSO (CH ) ] [FSO (CH ) ]CH なる
2 2 a 2 2 b
構造を含有する中間体をフッ素ガスを用いて水素原子を全てフッ素原子に置換する 必要があるが、そのフッ素化反応時に C S結合が切断され易ぐフッ素化の収率が 低いという課題を有している。また、このモノマーを重合させた重合体については記 載されていない。
[0006] 特許文献 2には、以下のモノマーが提案されている。
(XSO ) CY (CF ) 0 (CFZCF O) CF = CF
2 k 1 2 m 2 n 2
上記式中、 k= 2または 3、 k+l= 3、 m=0〜5、 n=0〜5、 X=F、 Cl、 OH、 O (M) (Mは 1〜3価金属、 Lは該金属の価数)、 OR (Rは、炭素数 1〜5のアルキル基で
1/L
あり、前記アルキル基は、炭素でなく水素でもない元素を含むものであってもよい)、 または、 A- (SO Rf) B (Aは、チッ素または炭素であり、 aは、 Aがチッ素のとき a = 1
2 a
、 Aが炭素のとき a = 2であり、 Bは水素または一価の金属であり、 Rfは過フッ化アル キル基である。)、 Y=F、 Cほたは CF、 Z=F、 Cl、 CF、 Brまたは Iである。
3 3
[0007] このモノマーから得られるスルホン酸ポリマーは、複数のスルホン酸基が 1つの炭素 原子に結合しており、このような構造が長期に亘つて耐久性を有するかどうかの知見 がなぐ安定性に懸念がある。
[0008] 特許文献 1:国際公開第 2005Z003062号パンフレット(請求項 17)
特許文献 2:国際公開第 03Z106515号パンフレット (請求項 1)
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、スルホン酸基に変換しうる基であるフルォロスルホ-ル基を 2つ含有す る化合物、その中間体およびそれらの生産性の高 、製造方法を提供することを課題 とする。また、本発明は、該化合物を重合させたフルォロスルホ -ル基含有ポリマー、 および該ポリマーカゝら得たスルホン酸基含有ポリマーを提供することを課題とする。 課題を解決するための手段
[0010] 本発明は、以下を特徴とする要旨を有するものである。
[0011] [1]下式 (a)で表される化合物を MaF (Maは 1価の陽イオンを形成可能な金属原子 を示す。)の存在下に、下式 (bl)で表される化合物または下式 (b2)で表される化合 物と反応させて下式 (c)で表される化合物を得ることを特徴とする下式 (c)で表される 化合物の製造方法。ただし、式中の記号は以下の意味を示す。 R™1は、単結合また は炭素数 1〜6の 2価のペルフルォロ有機基。 R™2は、炭素数 1〜6の 2価のペルフ ルォロ有機基。
[0012] [化 1]
F02-COF (b2)
Figure imgf000005_0001
Figure imgf000005_0002
[0013] [2] [1]に記載の製造方法により下式 (c)で表される化合物を得る工程を経て、下 式 (mO)で表される化合物を得ることを特徴とする下式 (mO)で表される化合物の製 造方法 (ただし、式中の記号は以下の意味を示す。 R™1は、単結合または炭素数 1 〜6の 2価のペルフルォロ有機基。 R™2は、炭素数 1〜6の 2価のペルフルォロ有機 基。 nは、 0または 1。 ) o
[0014] [化 2]
Figure imgf000006_0001
01— S02F
CF2=CF(CF2)NOCF2-CF (mO)
、OCF2RF02 - S02F
[0015] [3] [1]に記載の製造方法により下式 (c)で表される化合物を得て、ついでこれを MaF (Maは 1価の陽イオンを形成可能な金属原子を示す。)の存在下に、へキサフル ォロプロペンォキシドと反応させて下式 (d)で表される化合物を得て、次に該化合物 を熱分解して下式 (mO )で表される化合物を得る [2]に記載の製造方法 (ただし、式
0
中 R™1および RF 2は、前記と同じ意味を示す。
[0016] [化 3]
Figure imgf000006_0002
z RF01-SO2F
FOC— CFOCF2— CF (d)
\0CF2RF2—S02
CF3
Figure imgf000006_0003
[0017] [4] [1]に記載の製造方法により下式 (c)で表される化合物を得て、ついでこれを MbF (Mbはアルカリ金属原子を示す。 )の存在下に下式 (e)で表される化合物と反応 させて下式 (mO )で表される化合物を得る [2]に記載の製造方法 (ただし、式中の記 号は以下の意味を示す。 RFG1および R™2は、前記と同じ。 Xは、一 OSO F、—1、— C
2
1または一 Br。 ) o
[0018] [化 4]
Figure imgf000007_0001
Figure imgf000007_0002
[0019] [5]前記式 (mO)で表される化合物は、下式 (ml)で表される [2]記載の製造方法( ただし、式中の記号は以下の意味を示す。 RF11は、単結合またはエーテル性酸素原 子を有していてもよい炭素数 1〜6の直鎖のペルフルォロアルキレン基。 RF12は、炭 素数 1〜6の直鎖のペルフルォロアルキレン基。 nは、 0または 1。;)。
[0020] [化 5]
,RF11-S02F
CF2=CF(CF2)nOCF2-CF (ml)
ヽ OCF2RF12— S02F
[0021] [6]下式 (mO)で表される化合物を重合し、下式 (mO)で表される化合物に基づく 単位を含むポリマーを得ることを特徴とするポリマーの製造方法 (ただし、式中の記号 は以下の意味を示す。 RFG1は、単結合または炭素数 1〜6の 2価のペルフルォロ有機 基。 R™2は、炭素数 1〜6の 2価のペルフルォロ有機基。 nは、 0または 1。 ) 0
[0022] [化 6]
,R ,FF0011—_SO2F
CF2=CF(CF2)nOCF,-CF (mO)
"OCF2RF02-SO2F
[0023] [7]下式 (mO)で表される化合物とテトラフルォロエチレンとを共重合し、下式 (mO) で表される化合物に基づく単位と、テトラフルォロエチレンに基づく単位とを含むポリ マーを得ることを特徴とするポリマーの製造方法 (ただし、式中の記号は以下の意味 を示す。 RFG1は、単結合または炭素数 1〜6の 2価のペルフルォロ有機基。 RFG2は、 炭素数 1〜6の 2価のペルフルォロ有機基。 nは、 0または 1。;)。 [0024] [化 7]
Figure imgf000008_0001
[0025] [8]下式 (ml)で表される化合物(ただし、式中の記号は以下の意味を示す。 R"1 は、単結合またはエーテル性酸素原子を有して 、てもよ 、炭素数 1〜6の直鎖のぺ ルフルォロアルキレン基。 RF12は、炭素数 1〜6の直鎖のペルフルォロアルキレン基,
) o
[0026] [化 8] ノ RF11— S02F
CF2=CF(CF2)nOCF2-CF (ml)
、OCF2RF12 - S02F
[0027] [9]下式 (mi l)で表される化合物。
[0028] [化 9]
,CF2CF2— S02F
CF2=CFOCF2-CF
、OCF2CF2— S02F
[0029] [10]下式 (ml 2)で表される化合物。
[0030] [化 10] F2OCF2CF2— S02F
CF2=CFOCF2-CF (m12)
、OCF2CF2— S02F
[ 11]下式 (ml 3)で表される化合物。
[0031] [化 11]
XF2OCF2CF2— S02F
CF2=CFCF2OCF2-CF (ITl13)
、OCF2CF2— S02F
[0032] [12] [8]〜 [11]のいずれかに記載の化合物に基づく単位を含むポリマー。
[0033] [13] [8]〜 [11]のいずれかに記載の化合物に基づく単位と、テトラフルォロェチ レンに基づく単位とを含むポリマー。
[0034] [14] [12]または [13]に記載のポリマーの S02F基を S03H基に変換したポ リマー。
[0035] [15]下式 (cl)で表される化合物。
[0036] [化 12]
Figure imgf000009_0001
[0037] [16]下式 (c2)で表される化合物。
[0038] [化 13]
Figure imgf000009_0002
[0039] [17]下式 (dl)で表される化合物。
[0040] [化 14]
FOC— (d1)
Figure imgf000009_0003
[0041] [18]下式 (d2)で表される化合物。
[0042] [化 15] 02F
FOC— (d2)
Figure imgf000009_0004
発明の効果
[0043] 本発明によれば、スルホン酸基に変換しうる基であるフルォロスルホニル基を 2つ含 有する化合物、該化合物の反応中間体として極めて有用な化合物および該化合物 を重合させて得られる 1つの側鎖に 2つのスルホン酸基を有するポリマーを提供でき る。本発明のポリマーは、 1つの側鎖に 1つのスルホン酸基を有するポリマーに比べ、 軟化温度が高く機械的強度に優れうる。また本発明のポリマー力 なる高分子電解 質は抵抗が低い。また、本発明の化合物およびポリマーは製造が容易であり、工業 的実施が容易である。
図面の簡単な説明
[0044] [図 1]本発明のポリマーにおける貯蔵弾性率と温度の関係を示す図。
[図 2]モノマー組成とポリマーの比抵抗の関係を示す図。
発明を実施するための最良の形態
[0045] 本明細書にお!、ては、式 (mO)で表される化合物を化合物 (mO)と記す。ポリマー に含まれる式 (mO)で表される化合物に基づく単位は単位 (mO)と記す。単位 (mO) を含むポリマーをポリマー (mO)と記す。他の式で表される化合物、単位、およびポリ マーにおいても同様に記す。
ポリマーにおける単位とは、モノマーが重合することによって形成する該モノマーに 由来するモノマー単位 (繰り返し単位ともいう。)を意味するが、本発明における単位 は重合反応によって直接形成する単位であっても、重合反応後の化学変換によって 形成する単位であってもよ 、。
本明細書における有機基とは、炭素原子を 1以上含む基をいう。
[0046] 本発明の製造方法により、化合物 (mO)が得られる
Figure imgf000010_0001
RF 2および nの定義は上 述のとおり。以下同様。 ) oここで RFC>1が単結合であるとは、 SO F基が CF基の炭素原
2
子と直接結合していることを意味する (以下同様。 ) o
[0047] [化 16] ノ R™1— S02F
CF2=CF(CF2)nOCF2-CF (mO)
、OCF2RF02— S02F
[0048] 化合物 (mO)は、好ましくは化合物 (ml)として表される (RF11および RF12の定義は 上述のとおり。以下同様。)。
[0049] [化 17]
^_RF" - S02F
CF2=CF(CF2)nOCF2-CF (ITl1 )
OCF2RF12-SOzF [0050] R はエーテル性酸素原子を有して 、てもよ 、炭素数 1〜6の直鎖のペルフルォロ アルキレン基であることがより好ましぐ炭素原子—炭素原子結合間にエーテル性酸 素原子を有して 、てもよ 、炭素数 1〜6の直鎖のペルフルォロアルキレン基であるこ とが特に好ましい。原料の入手性およびモノマー蒸留精製の観点から、炭素原子 炭素原子結合間にエーテル性酸素原子を有して 、てもよ 、炭素数 1〜4の直鎖のぺ ルフルォロアルキレン基であることが更に好ましい。炭素数が多すぎると沸点が高く なり、蒸留精製が難しくなる。
RF12は、炭素数 1〜4の直鎖のペルフルォロアルキレン基であることがより好ましい。
[0051] 原料の入手性、収率および蒸留精製の容易さの観点から、化合物 (mO)の好まし い具体例は、以下の化合物 (mi l)、化合物 (ml2)、化合物 (ml3)である。
[0052] [化 18]
/CF2CF2— S02F
CF2=CFOCF2-CF
、OCF。CF2_S02l
^CFaOCFaCFz— S02F
CF2=CFOCF2-CF (m12)
、OCF2CF2— S02F CF2OCF2CF2— S02F
CF2=CFCF2OCF2-C (m13)
Figure imgf000011_0001
[0053] 本発明における化合物 (mO ) (ィ匕合物 (mO)において n=0である化合物)は、以下
0
の手順で合成できる。
< 1 >フルォロスルホ-ル基を含有するペルフルォロ化合物(a)を、 MaF (Maは 1価 の陽イオンを形成可能な金属原子を示す。)の存在下に、化合物 (bl)または化合物 (b2)と反応させて、化合物 (c)を得る。
< 2>化合物(じ)を、 MaF (Maの定義は上述のとおり。)の存在下で、へキサフルォロ プロペンォキシドを反応させて、化合物(d)を得る。
< 3 >化合物(d)を直接熱分解する力、または、ー且—COF基を—COOMc基 (Mc はアルカリ金属原子)に変換したのち熱分解するかにより、化合物 (mO )に変換する
0 [0054] [化 19] メ01— S02F
Figure imgf000012_0001
CF2-RF02
I I (b1) FSO2-RF02-COF (B2)
o— so2
Figure imgf000012_0002
FOC— (d)
Figure imgf000012_0003
CF2=CFOCF2— CF (m00)
Figure imgf000012_0004
[0055] 前記 < 1 >の反応における原料の化合物(a)としては、以下の化合物が好ましく使 用できる。
[0056] [化 20]
/,CF2CF2— S02F ,CF2OCF2CF2— S02F
CF\2/CF (aD CF\2 /CF (a2) o o
[0057] 化合物(al)は CF =CFCF CF SO Fを過酸化水素、 NaCIOまたは酸素を用い
2 2 2 2
て酸ィ匕することにより合成することができる。酸素ガスを用いる場合、酸化反応は、不 活性溶媒 (たとえば、フルォロトリクロロメタン、トリクロ口トリフルォロェタン、ペンタフル ォロジクロ口プロパン、ペルフルォロシクロブタン等)の存在下に行ってもよぐ溶媒の 不存在下に行ってもよい。また反応の温度は、収率と反応選択率の観点から、 50°C 〜200°Cが好ましぐ 80°C〜150°Cがより好ましい。
[0058] 同様に化合物(a2)は CF =CFCF OCF CF SO Fを酸素酸化することによりより
2 2 2 2 2 合成される。化合物(a2)の合成例は、特開昭 57— 176973号公報に記載されてい る。ここで用いられる CF =CFCF OCF CF SO Fは、 FOCCF SO F、 KFおよび
2 2 2 2 2 2 2
CF =CFCF OSO Fから合成される(US4, 273, 729等)。そして FOCCF SO F
2 2 2 2 2 は、テトラフルォロェタン一 β—スルトン (後述する化合物 (bl l)にトリエチルァミン等 のァミンや KF、 NaF等の塩基触媒を作用させて異性ィ匕することにより合成できる Cio urnal of American Chemical Society, vol. 82, pp6181— 6199, (1960 )、 Inorganic Chemistry Vol. 30, pp4821— 4826, (1991) , WO2003/10 6409)。すなわち、 CF =CFCF OCF CF SO Fは、従来テトラフルォロェタン一
2 2 2 2 2
βースルトンを出発原料として、 FOCCF SO Fを経由する 2段の反応で合成されて
2 2
いた。
[0059] し力し、実際には、テトラフルォロェタン一 β—スルトン、 KFおよび CF =CFCF O
2 2
SO Fを反応させて、中間体の FOCCF SO Fを単離せずに合成することができる。
2 2 2
具体的には、例えばテトラグライム等の溶媒の存在下に KFとテトラフルォロェタン β—スルトンとを冷却しながら反応させ、これに CF =CFCF OSO Fを滴下し、反
2 2 2
応させることにより CF =CFCF OCF CF SO Fを得ることができる。
2 2 2 2 2
[0060] 化合物 (bl)としては以下の化合物が例示される。
[0061] [化 21]
Figure imgf000013_0001
Figure imgf000013_0002
[0062] 化合物 (b2)としては以下の化合物が例示される。
[0063] [化 22]
FS02— CF2— COF (b21) FS02— CF(CF3)— COF 22)
FS02— CF2CF2-COF (b23) FS02— CF2CF2CF2— COF (b24) [0064] 前記く 1 >の反応においては、非プロトン性の極性溶媒を使用することが好ましい 。このような溶媒として、モノグライム、ジグライム、トリグライム、テトラグライム、ァセトニ トリル、プロピオ二トリル、アジポニトリル、ベンゾニトリル、ジォキサン、テトラヒドロフラ ン、ジメチルホルムアミド、ジメチルスルホキシド、 N—メチルピロリドン、ニトロエタン等 を例示することができる。これらの混合溶媒を使用することもできる。反応温度は好ま しくは 80°C〜 + 200°Cであり、より好ましくは 30°C〜 + 50°Cである。
[0065] MaFとしては、フッ化カリウム、フッ化セシウム、フッ化銀、第四級アンモ-ゥムフル オライドを例示することができる。特にフッ化セシウムとフッ化カリウムが好ましい。
[0066] 化合物(bl)、化合物(b2)のいずれも、 MaFと反応して、 MaOCF RF02-SO Fと
2 2 なり、該化合物が化合物 (a)と反応して化合物 (c)を生成する。化合物 (bl)をフツイ匕 カリウムやトリェチルァミン等の塩基の存在下で化合物 (b2)に異性ィ匕させた後、用い ることちでさる。
[0067] 前記 < 2 >の反応は、 < 1 >の反応と同様にフルォロホルミル基を有する化合物(c )とエポキシ化合物であるへキサフルォロプロペンォキシドの反応であり、 < 1 >の反 応と同様の反応条件で実施することができる。へキサフルォロプロペンォキシドの 2モ ル付加物が生成する場合には、へキサフルォロプロペンォキシドの添力卩量を下げて 反応転化率を低めに抑え、反応混合液から蒸留等により未反応の化合物 (c)を回収 して再度反応に用いることにより、収率を改善することができる。
[0068] 前記く 3 >の反応においては、化合物(d)を、炭酸ナトリウムの存在下 150〜250 °Cで気相熱分解する力、ガラスビーズの存在下 250〜400°Cで気相熱分解すること により、化合物 (mO )を得ることができる。または、化合物(d)に M¾COまたは Mc
0 3 2
CO (Meはアルカリ金属原子)を作用させて— COF基を— COOMe基に変換し、乾
3
燥後、 150〜300°C、好ましくは 180〜270°Cに加熱することにより熱分解を行い、 化合物(mO )を得ることができる。化合物(d)の— COF基を— COOMe基に変換し
0
た後、非プロトン性の乾燥溶媒中で熱分解することもできる。この場合、前記く 1 >の 反応と同様の溶媒を使用することができる。この場合の熱分解温度はおよそ 70〜20 0°Cである。
[0069] 熱分解温度がおよそ 250°Cよりも低い場合には、下記の化合物 (mO— z)が副生 することがある。この化合物は、前記 < 1 >の反応の際に副生した下記の化合物(d z)に由来していると考えられる。すなわち、化合物(d z)にへキサフルォロプロべ ンォキシドが付加して熱分解することにより、化合物 (mO— z)が生成すると考えられ
0
る。化合物 (mO—z)はポリマーの耐熱性を損なう懸念があるので、化合物 (mO z
0 0
)が副生する場合には、化合物 (d)の熱分解をおよそ 250〜350°Cの高温で実施す ることにより、該化合物の副生を抑制するのが好ましい。気相熱分解が好ましく採用さ れる。また、化合物(mO— z)を含有する化合物(mO )をおよそ 250〜350°Cの高温
0 0
で熱処理することにより、化合物 (mO— z)を除去することもできる。ポリマー中に単
0
位 (mO—z)が入ってしまった場合には、ポリマーを 250〜350°Cの高温で熱処理す
0
ることにより、不安定部位を分解して安定化させることもできる。
[0070] [化 23] ノ RF01— S02F
Figure imgf000015_0001
[0071] 本発明における化合物 (mO ) (ィ匕合物 (mO)において n= lである化合物)は、前記 < 1 >の反応に続いて、以下の反応を行うことにより合成できる。
<4>化合物((1)に該化合物とおよそ等モル以上の MbF (Mbはアルカリ金属原子を 示す。)の存在下に化合物 (e)と反応させる。
[0072] [化 24]
01— S02F
FOC— CF (C)
OCF2RF02— S02F
CF2=CFCF2X (e) メ01— S02F
CF2=CFCF2OCF2-CF (mO )
^OCFzR™2— S02F [0073] MbFとしては、フッ化カリウムが特に好ましい。化合物 )において Xは、 OSO F
2
、 一 I、 一 Cl、 一 Brであり、反応性の高さから特に OSO Fが好ましい。溶媒は前記
2
く 1 >の反応と同様の溶媒を用いることができる。反応温度は、 50°C〜 + 100°C、 好ましくは― 20°C〜 + 50°Cである。
[0074] 本発明にお 、ては、化合物 (mO)を重合させることによってポリマーを製造できる。
該ポリマーは、化合物(mO)に基づく単位 (mO)を含むポリマー(以下、ポリマー(mO
)と記す。)である。
[0075] [化 25]
^ RF01 -SO2F
CF2 =CF(CF2)NOCF2-CF (mO)
、OCF2RF02— S02F
[0076] ポリマー(mO)は、化合物(ml)に基づく単位 (ml)を含むポリマー(ml)であること が好ましい。
[0077] [化 26] ノ RF" _ SO2F
CF2 =CF(CF2)NOCF2 CF (ml)
、OCF2RF S。2F
[0078] 本発明のポリマー(mO)は、単位 (mO)の 1種以上力もなるポリマーであってもよぐ 単位 (mO)の 1種以上と単位 (mO)以外の単位(以下、他の単位という。)の 1種以上 力もなる重合体であってもよい。後者のポリマー(mO)としては単位 (mO)の 1種と他 の単位の 1種以上と力 なる重合体であるのが好まし 、。他の単位を有する重合体で あるポリマー (mO)は、化合物 (mO)と共重合性の他のモノマーとを共重合させる方 法によるのが好ましい。
[0079] 他のモノマーとしては、通常非イオン性のモノマーが選択される。ここで非イオン性 とは、イオン性基またはその前駆体基を有しないことを意味する。このような他のモノ マーの例としては、テトラフルォロエチレン、クロ口トリフルォロエチレン、トリフルォロ エチレン、フッ化ビ-リデン、フッ化ビュル、エチレン等が挙げられる。他のモノマーの うち環構造を有するモノマーの例としては、ペルフルォロ(2, 2 ジメチルー 1, 3— ジォキノール)、ペルフルォロ(1, 3 ジォキノール)、ペルフルォロ(2—メチレン 4 ーメチルー 1, 3 ジォキソラン)、ペルフルォロ(4ーメトキシ 1, 3 ジォキノール) 等が挙げられる。他のモノマーのうち環化重合性のモノマーの例としては、ペルフル ォロ(3—ブテ-ルビ-ルエーテル)ゝペルフルォロ(ァリルビュルエーテル)ゝペルフ ルォロ(3, 5 ジォキサ— 1, 6 へブタジエン)等が挙げられる。また、下記モノマー (式中 pは 2〜6の整数である。)も好適に使用され得る。
[0080] [化 27]
Figure imgf000017_0001
[0081] 上記の他のモノマーのなかでもテトラフルォロエチレンは、その共重合体が化学的 な安定性、耐熱性に優れているだけでなぐ高い機械的強度を有し、共重合体の軟 化温度も従来のスルホン酸ポリマーより高くなるので好ましい。
[0082] また、上記に例示した他のモノマーとともにさらに共重合できるモノマーとして、プロ ペン、へキサフノレオ口プロペン等のぺノレフノレォロ α—ォレフィン類、(ペルフノレオロブ チル)エチレン等の(ペルフルォロアルキル)エチレン類、 3—ペルフルォロォクチル 1 プロペン等の(ペルフルォロアルキル)プロペン類、ペルフルォロ(アルキルビ -ルエーテル)やペルフルォロ(エーテル性酸素原子含有アルキルビュルエーテル) 等のペルフルォロビニルエーテル類等を用いてもよ 、。
[0083] ペルフルォロビュルエーテル類のコモノマーとしては、 CF =CF— (OCF CFZ)
2 2 t
— O—Rfで表わされる化合物が好ましい。ただし、 tは 0〜3の整数であり、 Zはフッ素 原子またはトリフルォロメチル基であり、 Rfは直鎖構造であっても分岐構造であっても よい炭素数 1〜12のペルフルォロアルキル基である。なかでも、下記化合物(i)〜(ii i)が好ましい。ただし、式中、 Vは 1〜9の整数であり、 wは 1〜9の整数であり、 Xは 2ま たは 3である。
[0084] [化 28] CF2 = CFO (CF2) VCF3 (i)
CF2 = CFOCF2CF (CF3) O (CF2) WCF3 (ii)
CF2 = CF (OCF2CF (CF3) ) xO (CF2) 2CF3 (iii)
[0085] 固体高分子形燃料電池用に高耐久で化学的な安定性に優れた電解質材料を形 成するポリマーを得るためには、前記他のモノマーとしてペルフルォロ化合物を選択 するのが好ましい。
[0086] 燃料電池にぉ 、て化合物 (mO)とテトラフルォロエチレンを共重合して得られるポリ マーと比べて、さらに高い軟化温度を有する固体高分子電解質膜や、電池出力を高 めるために力ソード触媒層に適用される酸素溶解性または酸素透過性の大きい固体 高分子電解質として用いられるポリマーを得るには、環構造をポリマーの中に導入す ることが好適である。この場合、他のモノマーとして前述の環構造を含有するモノマー または環化重合性のモノマーを選択することが好ましい。なかでも、ペルフルォロ(2 , 2 -ジメチル 1, 3 ジォキノール)が好まし!/ヽ。
[0087] 本発明のポリマー中に他の単位が含まれる場合、他の単位の割合は、後述のィォ ン交換容量の範囲になるように選定される。燃料電池の電解質膜に用いる場合、他 の単位は前述のようにテトラフルォロエチレン単位が好ま U、が、軟化温度や成形性 を制御するためにさらに第 3成分として他の単位を含んで 、てもよ 、。第 3成分は好 ましくは環構造を有するモノマーまたは環化重合性のモノマーに基づく単位である。 膜強度を保持するために、テトラフルォロエチレン単位は 20モル%以上含まれること が好ましぐ 40モル%以上含まれることがより好ましい。本発明のポリマーを燃料電池 の触媒層に用いる場合も、膜用途と同様の組成のポリマーを用いることができる。第 3 成分としては環構造を有するモノマーまたは環化重合性のモノマーに基づく単位が 好ましい。また、他の単位として、環構造を有するモノマーまたは環化重合性モノマ 一に基づく単位を含み、テトラフルォロエチレン単位を含まないポリマーも使用可能 であるが、長期に渡り安定して性能を発現させるために、好ましくはテトラフルォロェ チレン単位を 20モル%以上、より好ましくは 40モル%以上含むポリマーが用いられ る。
[0088] 重合反応は、ラジカルが生起する条件のもとで行われるものであれば特に限定され ない。例えば、バルタ重合、溶液重合、懸濁重合、乳化重合、液体または超臨界の 二酸ィ匕炭素中の重合等により行ってもよい。
[0089] ラジカルを生起させる方法は特に限定されず、例えば、紫外線、 γ線、電子線等の 放射線を照射する方法を用いることもできるし、通常のラジカル重合で用いられるラ ジカル開始剤を使用する方法も使用できる。重合反応の反応温度は特に限定されず 、通常は 10〜150°C程度である。化合物(ml)であって、 n=0である化合物の場合 は、好ましくは、 15〜80°Cで重合される。温度が高くなりすぎると、下式に示したよう に、生長末端ラジカルの自己転移による不均化反応により連鎖移動が起こり、分子 量が上がりにくくなる。
[0090] [化 29]
Figure imgf000019_0001
[0091] 化合物(ml)であって、 n= lである化合物の場合は、 n=0の化合物に比べて重合 反応性が低いので、反応性を高めるため、少し温度の高い領域 60〜120°Cで重合 するのが好ましい。
[0092] ラジカル開始剤を使用する場合、ラジカル開始剤としては、例えば、ビス (フルォロ ァシル)パーォキシド類、ビス(クロ口フルォロアシル)パーォキシド類、ジアルキルパ ーォキシジカーボネート類、ジァシルバーォキシド類、パーォキシエステル類、ジァ ルキルバーオキシド類、ビス(フルォロアルキル)パーォキシド類、ァゾ化合物類、過 硫酸塩類等が挙げられる。
[0093] 溶液重合を行う場合には、使用する溶媒は取り扱い性の観点から、通常は 20〜35 0°Cの沸点を有して 、ることが好ましく、 40〜 150°Cの沸点を有して 、ることがより好 ましい。そして、溶媒中に 1種または 2種以上の上記モノマーを所定量投入し、ラジカ ル開始剤等を添加してラジカルを生起させて重合を行う。ガスモノマーおよび Zまた は液モノマーの添カ卩は、一括添加でも逐次添加でも連続添加でもよ 、。
[0094] ここで、使用可能な溶媒としては、ペルフルォロトリブチルァミン等のペルフルォロト リアルキルアミン類、ペルフルォ口へキサン、ペルフルォロオクタン等のペルフルォロ カーボン類、 1H, 4H—ペルフルォロブタン、 1H—ペルフルォ口へキサン等のハイド 口フルォロカーボン類、 3, 3—ジクロロー 1, 1, 1, 2, 2—ペンタフルォロプロパン、 1 , 3—ジクロロー 1, 1, 2, 2, 3—ペンタフノレォロプロパン、等のハイドロタロロフノレォロ カーボン類を例示することができる。
[0095] 懸濁重合は、水を分散媒として用いて、重合させるモノマーを添加し、ラジカル開 始剤としてビス(フルォロアシル)パーォキシド類、ビス(クロ口フルォロアシル)バーオ キシド類、ジアルキルパーォキシジカーボネート類、ジァシルバーォキシド類、パー ォキシエステル類、ジアルキルパーォキシド類、ビス(フルォロアルキル)パーォキシ ド類、ァゾィ匕合物類等の非イオン性の開始剤を用いることにより行うことができる。溶 液重合の項で述べた溶媒を助剤として添加することもできる。また、懸濁粒子の凝集 を防ぐために、適宜界面活性剤を分散安定剤として添加してもよい。
分子量の調整には、へキサンやメタノール等の炭化水素系化合物を添加してもよ い。
[0096] 化合物(mO)であって、 n= lである化合物は、重合部位に CF =CFCF O—基を
2 2 有するが、この化合物を用いて重合で得たポリマーは熱処理することが好ましい。 CF = CFCF O—基を有するモノマーの重合体は、テトラフルォロエチレンとへキサフ
2 2
ルォロプロペン(以下「HFP」という。)の共重合体(以下「FEP」という。)と同様の下 式 (iv)の繰り返し単位を有し、 FEPと同様に耐熱性が低い。 FEPの場合、重合で得 られたポリマーそのものでは、成形加工中に気泡の発生や溶融粘度 (分子量)の変 動が見られることが知られている。これは、熱的に不安定なポリマー主鎖、末端による もので、 FEPにおいては、特に主鎖中の HFP— HFP結合が弱いことが原因であるこ とが知られている。その対策として、 200〜400°Cの高温で処理したり、 2軸押出機内 で高せん断力を加えて結合の弱!ヽ部分を切断すると ヽうことなどが行われて ヽる(ふ つ素榭脂ハンドブック、日刊工業新聞社(1990)、 11ふつ素榭脂 2.テトラフルォロェ チレン Zへキサフルォロプロピレン共重合体(FEP)、 p213)。そのため、 CF =CF
2
CF O—基を有するモノマーの重合体の場合も FEPと同様に熱処理をすることが好
2
ましいと考えられる。 [0097] [化 30]
Figure imgf000021_0001
[0098] 本発明のポリマーは、耐久性改善等のため、重合した後に空気および Zまたは水 の存在下で加熱処理したり、フッ素ガスでフッ素化することにより、ポリマー末端等の 不安定部位を安定化してもよ ヽ。
[0099] 本発明の SO F基を有するポリマーの重量平均分子量は、 1 X 104〜1 X 107
2
好ましぐ特に 5 X 104〜5 X 106、さらには 1 X 105〜3 X 106であることが好まし 、。 ポリマーの分子量力 S小さすぎると、膨潤度等の物性が経時的に変化するため耐久性 が不十分になるおそれがある。一方、分子量が大きすぎると、溶液化や成形が困難 になるおそれがある。
[0100] 本発明の SO F基を有するポリマーは、塩基の存在下で加水分解、または加水
2
分解後酸型化処理することにより、スルホン酸塩基またはスルホン酸基(一 SO H基)
3 を含有するポリマーに変換することができる。このようなポリマーは、高分子電解質と して好適である。このようにして得られるイオン性基含有ポリマーは、必要に応じて過 酸化水素水で処理してもよい。これらの基の変換方法やポリマー処理は、公知の方 法および条件にしたがって実施できる。
[0101] 本発明のポリマーにおいては、 1つの単位内の 2つのスルホン酸基は同一の炭素 原子に結合していない。 2つのスルホン酸基が同一の炭素原子に結合していると、ポ リマー分子中の隣接する CF (SO H)基間の距離は逆に大きくなり、スルホン酸基
3 2
間のプロトン伝達はあまり容易ではなぐプロトン伝導性向上効果は大きくはないと考 えられる。一方、本発明のポリマーは、 1つの単位内の 2つのスルホン酸基がペルフ ルォロアルキレン構造等を介して適度に離れていることにより、ポリマー分子中の各 スルホン酸基間の距離が平均化し、プロトンの移動が容易になり好ま 、と考えられ る。
[0102] 本発明の SO H基を有するポリマーは、軟ィ匕温度が 90°C以上であることが好まし く、 100°C以上であるとさらに好ましい。ここで、ポリマーの軟ィ匕温度とは、ポリマーを 室温付近から徐々に昇温した場合に、ポリマーの弾性率が急激に低下しはじめると きの温度であり、測定周波数 1Ηζ、昇温速度 2°CZ分にて動的粘弾性の測定を行つ たときに、貯蔵弾性率が 50°Cにおける値の半分になる温度と定義する。
[0103] -SO H基を有するポリマーは、イオン交換容量(以下、 Aという)が 0. 5〜2. 5ミリ
3 R
当量 Zg乾燥榭脂(以下、 meqZgとする)であることが好ましい。ポリマーの A
Rが小さ すぎると、ポリマーは含水率が低下してイオン伝導性が低くなるので、ポリマーを固体 高分子形燃料電池の固体高分子電解質膜または触媒層の構成材料として使用する と、十分な電池出力を得ることが困難になるおそれがある。一方、ポリマーの Aが大
R
きすぎると、分子量の高いポリマーの合成が容易でなぐまた、ポリマーが過度に水で 膨潤するため強度の保持が難しくなる。
[0104] 上記の観点から本発明の— SO H基を有するポリマーの Aは、 0. 9
3 R 〜2. 3meq/ gであるとより好ましぐ 1. 4〜2. lmeqZgであるとさらに好ましい。汎用的に用いら れている、側鎖に SO H基をひとつだけ有するポリマーは、抵抗と強度のバランス
3
力 Aが 0. 9〜1. lmeqZgのものが用いられている力 本発明の側鎖に一 SO H
R 3 基を 2つ有するポリマーは、イオン交換容量を大きくして従来の膜より抵抗を下げても 、機械的強度を保持することができる。
[0105] 本発明の SO H基を有するポリマーは、固体高分子電解質として、食塩電解や
3
燃料電池用途に限定されず、種々の用途に使用できる。本明細書において固体高 分子電解質材料とは、イオン性基の機能を活かして使用される固体高分子材料のこ とをいい、イオン性基はイオン伝導機能、イオン交換機能、吸水機能等を有し、強酸 基を含有する場合には酸触媒作用を有する。水電解、過酸化水素製造、オゾン製造 、廃酸回収等に使用するプロトン選択透過膜、レドックスフロー電池の隔膜、脱塩ま たは製塩に使用する電気透析用陽イオン交換膜等にも使用できる。また、リチウム一 次電池、リチウム二次電池、リチウムイオン二次電池のポリマー電解質、固体酸触媒 、陽イオン交換榭脂、修飾電極を用いたセンサー、空気中の微量イオンを除去する ためのイオン交換フィルタゃァクチユエ一ター、エレクト口クロミック表示素子等にも使 用できる。すなわち、各種の電気化学プロセスの材料として使用できる。 [0106] また、本発明の SO H基を有するポリマーは固体酸触媒としても使用できる力 こ
3
の場合には、その軟ィ匕温度が高ければ反応温度を高くできるので、所望の反応をよ り高い温度領域において進行させることが可能となる。本発明の SO H基を有する
3
ポリマーはイオン交換容量を大きくできるので、反応活性点を従来のポリマーよりも多 く導人することがでさる。
[0107] また、本発明の SO H基を有するポリマーは、酸、塩基、および塩類の分離精製
3
に用 ヽる拡散透析用の膜、蛋白質分離のための荷電型多孔膜 (荷電型逆浸透膜、 荷電型限外ろ過膜、荷電型ミクロろ過膜等)、除湿膜、加湿膜等にも使用できる。さら に、 PTFE多孔体力もなるフィルターへの親水性付与剤として使用することもできる。 実施例
[0108] 以下に本発明を実施例により具体的に説明するが、本発明はこれらに限定されな い。
なお、用いた略号を以下に示す。
HCFC225cb : CClF CF CHC1F
2 2
PSVE : CF =CFOCF CF (CF ) OCF CF SO F
2 2 3 2 2 2
AIBN : (CH ) C (CN) N = NC (CH ) (CN)
3 2 3 2
IPP : (CH ) CHOC ( = O) OOC ( = O) OCH (CH )
3 2 3 2
HCFC141b : CH CC1 F
3 2
TFE : CF =CF 。
[化 31]
Figure imgf000023_0001
[0109] ポリマーの物性測定を以下のように行った。
ポリマーの分子量の指標として TQ値を測定した。 TQ値 (単位: °C)とは、長さ lmm 、内径 lmmのノズルを用い、 2. 94MPaの押出し圧力の条件でポリマーの溶融押出 しを行った際の押出し量が 100mm3Z秒となる温度である。フローテスタ CFT— 500 A (島津製作所製)を用いて温度を変えて押出し量を測定し、押出し量が 100mm3Z 秒となる TQ値を求めた。
[0110] ポリマー組成は、フルォロスルホニル基を赤外吸収スペクトルで定量することにより 求めた。
[0111] ポリマーの Aは以下のようにして求めた。 TFEと化合物(mi l)の共重合体につい
R
ては、ポリマー F12を一定濃度の NaOHの水 Zメタノールを溶媒とする溶液に浸漬し て加水分解し、その溶液を逆滴定することにより Aを求めた。 TFEと化合物 (mi l)
R
の共重合体の他のポリマーについては、赤外吸収スペクトルのフルォロスルホ -ル基 の吸収強度をポリマー F4のそれと比較することにより求めた。 TFEと化合物(ml2) の共重合体については、ポリマー F20は加水分解 ·逆滴定により Aを求め、その他
R
のポリマーについては、赤外吸収スペクトルにより求めた。 TFEと PSVEの共重合体 については、ポリマー F101〜103の加水分解 ·逆滴定により Aを求めた。
R
[0112] 軟ィ匕温度の測定は、次のようにして実施した。重合で得たポリマーを TQ温度付近 でプレスして厚さ約 100〜200 μ mのフィルムを作成した。該フィルムをアルカリ加水 分解後、酸処理により酸型のポリマーに変換した。動的粘弾性測定装置 DVA200 ( アイティー計測社製)を用いて、試料幅 0. 5cm、つかみ間長 2cm、測定周波数 1Hz 、昇温速度 2°CZ分にて、前記酸型フィルムの動的粘弾性測定を行い、貯蔵弾性率 が 50°Cにおける値の半分になる値を軟ィ匕温度とした。
[0113] 比抵抗は、 5mm幅のフィルムに 5mm間隔で 4端子電極が配置された基板を密着 させ、公知の 4端子法により 80°C、 95%RHの恒温恒湿条件下で交流 10kHz、 IV の電圧で測定した。
[0114] [例 1]化合物 (mi l)の合成
以下に示す合成ルートにより化合物 (mi l)を合成した。以下にその詳細を記載す る。特表 2002— 528433号公報(実施例 1)に記載の方法と同様にして、化合物(si )を合成した。
[0115] [化 32]
Figure imgf000025_0001
FOC— CF
OCF2CF2— SO; KF
(c1)
CF2CF2— SO;
FOC— CFOCF2-CF
OCF2CF2— S02F
CF3 Δ
(d1)
CF2CF2— S02F
CF2=CFOCF2-CF
—SO,
[0116] (1)化合物 (al)の合成
オートクレーブ(内容積 200cm3)に、化合物(si) (300g)を仕込み、内温を 100°C 〜: LOI. 5°Cに保持しながら酸素ガスをパブリングして酸ィ匕反応を行った。パブリング に伴 、オートクレーブの内圧が 1. OMPa (ゲージ圧)まで上昇した時点でパブリング を停止し、内温を 25°Cまで冷却して内圧をパージした。
[0117] 引き続き、オートクレープ内容液の19 F— NMR解析において、炭素原子に結合す る全てのフッ素原子に由来するスペクトルの面積和に対する、炭素 炭素不飽和結 合に結合するフッ素原子に由来するスペクトルの面積和の比が 0. 05以下になるま で、酸化反応を繰り返し行って化合物(al)を得た (収量 260g)。
[0118] 化合物(al)の19 F— NMR(282. 7MHzゝ溶媒 CDC1、基準: CFC1 ) δ (ppm):
3 3
46. 24 (IF) , - 109. 45 (IF) , —109. 75 (2F) , —112. 55 (IF) , —152. 55 ( IF), -118.10〜― 124.19(2F)。
[0119] (2)化合物(cl)の合成
撹拌機、滴下ロートとジムロート型冷却器を備えた 200cm3のガラスフラスコに、フッ 化カリウム(商品名:クロキャット F、森田化学製) (6.4g)とモノグライム(51g)を入れ 撹拌し、内温を 5〜10°Cに冷却しながら滴下ロートよりテトラフルォロェタン— 13—ス ルトン (化合物 (bll)) (20g)を滴下した。滴下後 30分撹拌し、その後、滴下ロートよ り化合物(al) (28g)を 10〜20°Cで滴下した。滴下後 20°Cで 20時間撹拌した。反 応終了後、減圧蒸留し、 75°CZ4kPa (絶対圧)の留分として 43.2gを得た。ガスクロ マトグラフィー(以下、 GCと 、う)純度は 98%であった。
[0120] 化合物(cl)の19 F— NMR(282.7MHzゝ溶媒 CDC1、基準: CFC1 ) δ (ppm):
3 3
46.5 (IF), 45.8 (IF), 27.9 (IF), —77.1(1F), —85.5 (IF), —107.6(2 F), -112.5(2F), -118.8(2F), —128.0(1F)。
[0121] (3)化合物 (dl)の合成
撹拌機、圧力計を備えた 200cm3ステンレス製オートクレープにフッ化カリウム(商 品名:クロキャット F、森田化学製) (1.2g)、モノグライム(9.6g)およびィ匕合物(cl) ( 92g)をカ卩え、 5〜10°Cで 1時間撹拌した。その後、 0.2MPa (ゲージ圧)以下の圧力 でへキサフルォロプロペンォキシド(33g)を連続添加した。添加終了後、 2時間撹拌 を続け、その後反応液を分液ロートに取り出し、フルォロカーボン層 121gを得た。
[0122] 蒸留により 60°CZ0.33kPa (絶対圧)の留分 86.6gを得た。留分の GC純度は 94 %であった。主な副生成物はへキサフルォロプロペンォキシドが 2モル付カ卩したィ匕合 物であった。
[0123] 化合物(dl)の19 F— NMR(282.7MHzゝ溶媒 CDC1、基準: CFC1 ) δ (ppm):
3 3
46.4 (IF), 45.3 (IF), 26.7 (IF), —76.6 (IF), —79.0(2F), —82.2(3F ), -83.7 (IF), -107.0(1F), —108.6 (IF), —112.4(2F), —118.5(2 F), -131.1(1F), -140.4(1F)。
[0124] (4)化合物(mil)の合成
内径 1.6cmのステンレス製管を用いて、長さ 40cmの U字管を作成した。片側にガ ラスウールを充填し、もう一方にステンレス製焼結金属を目皿としてガラスビーズを充 填した流動層型反応器とした。流動化ガスとして窒素ガスを用い、原料は定量ポンプ を用いて連続的に供給できるようにした。出口ガスはトラップ管を用いて液体窒素で 捕集した。
[0125] 上記 U字管を塩浴に入れて、反応温度 330°Cで化合物(dl) (63g)を 3時間かけて 供給した。その時の化合物(dl)ZNのモル比は
2 1Z20であった。
反応終了後、液体窒素トラップより 47. 4gの液体を得た。 GC純度は 85%であった 。蒸留により沸点 66°CZ0. 67kPa (絶対圧)の留分として、化合物 (mi l)を 25g得 た。 GC純度は 99%であった。
[0126] モノマー(mi l)の19 F— NMR(282. 7MHzゝ溶媒 CDC1、基準: CFC1 ) δ (ρρ
3 3 m) :46. 3 (IF) , 45. 4 (IF) , —79. 1 (2F) , —82. 8 (2F) , —106. 7 (IF) , —1 08. 4 (IF) , - 112. 3 (2F) , —112. 7 (dd, J = 82. 2Hz, 66. 9Hz, IF) , —118 . 5 (2F) , - 121. 3 (dd, J= 112. 7Hz, 82. 2Hz, IF) , —136. 2 (ddt, J= 112 . 9Hz, 67. 1Hz, 6. OHz, IF) , —140. 2 (1F)。
[0127] [例 2]化合物 (ml 2)の合成
以下に示す合成ルートにより化合物 (ml2)を合成した。以下にその詳細を記載す る。特開昭 57— 176973号公報(実施例 2)に記載された方法と同様にして、化合物 (a2)を合成した。また、化合物(a2)は以下の方法でも合成できる。
[0128] 化合物(a2)の合成
撹拌翼付きの撹拌機、液'ガスの仕込み口、生成物の抜き出し口、及び冷却コンデ ンサーを備えたハステロィ C製の 0. 2Lオートクレーブを用い、 CF =CFCF OCF
2 2 2
CF SO Fを 128g仕込んだ。次いで、撹拌機で 250rpmにて回転させて撹拌しつつ
2 2
、 110°Cに加熱し、酸素ガスを毎分 5L、窒素ガスを毎分 20Lの流量で、反応器に導 入した。反応圧力は、背圧弁を用いて 3. OMPa (ゲージ圧力)に保った。反応混合 液は冷却コンデンサーにより、還流させ、ガスは背圧弁を通じて反応器外へ排出した 。原料化合物の転化率をチェックしながら反応を行い、転化率のチェックは生成物の 取り出しロカも反応混合物の一部を抜き出すことにより行った。反応生成物の分析は ガスクロマトグラフによって行った。酸素ガスは原料化合物の転化率が 90%となるま で仕込んだ。反応時間は 16時間を要し、化合物(a2)の収率は 73%、選択率は 81 %であった
[0129] [化 33]
F2C一 CF2
(b11)
CF2— CFCF2OCF2CF2S02F O— S02
V KF
(a2)
Figure imgf000028_0001
(c2)
CF2OCF2CF2— SO;
FOC— CFOCF2— CF
OCF2CF2— S02l
CF3 Δ
(d2)
CF2OCF2CF2— S02F
CF2=CFOCF2-CF
ヽ OCF2CF2— S02F
(m12)
[0130] (1)化合物(c2)の合成
ジムロート冷却管、温度計、滴下ロートおよび撹拌翼付きガラス棒備えた 300cm3 の 4口丸底フラスコを準備した。窒素雰囲気下、反応容器内にフッ化カリウム(商品名 :クロキャット F、森田化学製)(1. 6g)とジメトキシェタン(15. 9g)を加えた。
[0131] 続いて反応容器を氷浴で冷却して、滴下ロートよりテトラフルォロェタン βースル トン (ィ匕合物 (bl l) ) 49. lgを 32分かけて、内温 10°C以下で滴下した。滴下終了後 、化合物(a2) (82. Og)を滴下ロートから反応容器内に 15分かけて滴下した。内温 上昇は殆ど観測されな力つた。滴下終了後、室温に戻して約 90時間撹拌した。分液 ロートで下層を回収した。回収量は 127. 6gであり、 GC純度は 55%であった。 回収液を 200cm3の 4口丸底フラスコに移して、蒸留を実施した。減圧度 1.0〜1. IkPa (絶対圧)で主留 97.7gを得た。 GC純度は 98%であり、収率は 80%であった
[0132] 化合物(c2)の19 F— NMR(282.7MHz、溶媒 CDC1、基準: CFC1 ) δ (ppm):
3 3
45.6(2F), 27.4 (IF), —77.7 (IF), —82.5(2F), —84.0(2F), —85.1( IF), -112.5(2F), -112.8 (2F) , —130.5(1F)。
[0133] (2)化合物 (d2)の合成
内容積 200cm3のステンレス製オートクレーブにフッ化カリウム(商品名:クロキャット F、森田化学社製、以下、単に「KF」と記載する。 ) (1. lg)を加えた。脱気後、減圧 下でジメトキシェタン(5.3g)、ァセトニトリル(5.3g)、化合物(c2) (95.8g)を加え た。
[0134] 続いて反応容器を氷浴で冷却して、内温 0〜5°Cにて、へキサフルォロプロペンォ キシド(27.2g)を 27分かけて添加した後、撹拌しながら室温に戻して一晩撹拌した 分液ロートで下層を回収した。回収量は 121.9gであり、 GC純度は 63%であった 。蒸留により沸点 80〜84°CZ0.67-0.80kPa (絶対圧)の留分として、化合物(d 2)を 72.0g得た。 GC純度は 98%であり、収率は 56%であった。
[0135] 化合物(d2)の19 F— NMR(282.7MHz、溶媒 CDC1、基準: CFC1 ) δ (ppm):
3 3
45.6 (IF), 45.2(1F)26.7 (IF), —77.8 (IF), —79.5(2F), —82.2、—8 2.3 (2ピーク合わせて 7F), -85.0(1F), —112.4(2F), —112.7(2F), —13 1.2 (IF), -145.0(1F)。
[0136] (3)化合物 (ml2)の合成 (その 1)
温度計、滴下ロートと撹拌子を備えた 50cm3の 2口丸底フラスコを準備した。窒素 雰囲気下、反応容器内に炭酸水素カリウム(1.02g)とジメトキシェタン (8.78g)を 加えた。続いて氷浴に浸して冷却し、内温 4〜11°Cにて化合物(d2)7.05gを滴下 ロートより 21分かけて滴下した。滴下終了後氷浴をはずし、室温で 2.5時間撹拌実 施した。
[0137] ローターリーエバポレーターで溶媒を留去し、真空乾燥を 80°Cで 14時間、 100°C で 5. 5時間、 120°Cで 10. 5時間実施した。乾燥後、カリウム塩 6. 71gを得た。
同様にして化合物(d2) (64. 5g)よりカリウム塩 52. 8gを得た。
[0138] 次に、温度計を備えた 50cm3の 2口丸底フラスコに単常留装置を装着した。反応系 内にカリウム塩 6. 6gを投入した。減圧下、反応容器を徐々にオイルバスで加温した 。オイルバス温度 190〜230°Cにて約 1時間かけて液体の留分 4. 34g (GC純度 87 . 8%)を回収した。同様にして、カリウム塩 52. 4gよりオイルバス温度 190〜250°C にて約 1時間かけて液体の留分 40. 2g (GC87%)を回収した。
これら 2つの留分を合わせて蒸留を行い、化合物 (ml2) (26. 7g)を沸点 73〜74 °C/0. 67kPa (絶対圧)の留分として得た。 GC純度は 92%であった。 GC— MS (ガ スクロマトグラフ―質量分析計)で分析したところ、下記の異性体 (p)および不純物 (q )と考えられる化合物をそれぞれ 3%ずつ含有していた。
[0139] [化 34]
CF2=CFOCFCF2OCF2CF2S02F (Q
CF2OCF CF2S02F
CF3— CHFOCF2CFCF2OCF2CF2S02F
OCF2CF2S02F
[0140] (4)化合物 (ml2)の合成 (その 2)
化合物 (mi l)の合成と同様にして、流動層型反応装置を用いて化合物(d2) (34 . 6g)を反応温度 340°Cで 1. 5時間かけて供給した。
反応終了後、液体窒素トラップより 27gの反応生成物を得た。 GC純度は 84%であ つた。蒸留により沸点 69°CZO. 401^½留分として化合物(11112)を得た。 GC純度は 98%であった。
[0141] 化合物(ml2)の19 F— NMR (282. 7MHz、溶媒 CDC1、基準: CFC1 ) δ (ppm)
3 3
:45. 5 (IF) , 45. 2 (IF) , —79. 5 (2F) , —82. 4 (4F) , —84. 1 (2F) , —112. 4 (2F) , - 112. 6 (2F) , —112. 9 (dd, J = 82. 4Hz, 67. 1Hz, IF) , —121. 6 ( dd, J= 112. 9Hz, 82. 4Hz, IF) , —136. 0 (ddt, J= 112. 9Hz, 67. 1Hz, 6. 1Hz, IF) , —144. 9 (1F)。
[0142] [例 3]ポリマーの合成 オートクレープ(内容積 100cm3、ステンレス製)に、化合物 (ml 1) (35. 22g) H CFC225cb (28. 78g)および IPP (11. 9mg)を入れ、液体窒素で冷却して脱気し た。内温を 40°Cに昇温し、オートクレーブに TFEを導入し、圧力を 0. 3MPaG (ゲー ジ圧)とした。温度、圧力を一定に保持して、 25. 6時間重合を行った。つづいてォー トクレーブ内を冷却して重合を停止し、系内のガスをパージした。
[0143] 反応液を HCFC225cbで希釈後、 HCFC141bを添カ卩し、ポリマーを凝集してろ過 した。その後、 HCFC225cb中でポリマーを撹拌して、 HCFC141bで再凝集した。 8 0°Cでー晚減圧乾燥し、ポリマー F11を得た。生成量は 12. 2gであった。
IRより求めた単位(mi l)の含有率は 17. 8mol%であった。 TQ値は 237°Cであつ た。
[0144] [例 4 7]ポリマーの合成
例 3において、各条件を表 1のように変更したほかは例 3と同様にして、 TFEと化合 物 (mi l)を共重合し、ポリマー F12 F15を得た。重合結果を表 1に示した。
[0145] [例 8 12]ポリマーの合成
例 3において、各条件を表 2のように変更したほかは例 3と同様にして、 TFEと化合 物 (ml2)を共重合し、ポリマー F16 F20を得た。重合結果を表 2に示した。
[0146] [表 1]
Figure imgf000031_0001
[0147] [表 2] 例 8 9 10 11 12 得られたポリマ一 F16 F17 F18 F19 F20 反応器容積 Zcm3 30 30 30 30 30 モノマ一(m12)Zg 9.84 8.51 8. 16 9.43 11.8
HCFC225cb/g 3.09 4.03 4.21 4.85 5.58 開始剤 AIBN IPP IPP IPP AIBN 開始剤量ノ mg 1.3 0.63 6. 1 7.2 1.8 审ム ^ノ op
主 /皿 z 70 40 40 40 65 圧力/ MpaG 1.31 0.57 0.63 0.71 1. 11 重合時間 Zhrs 5.フ 10.0 2. 1 2.8 9.0 収量 Zg 1.2 0.98 0.80 2.1 2. 1
AR/ meq-g-1 1.63 1.29 1. 13 0.86 1.51 単位(m12)ノ mol% 14.3 9.8 8. 1 5.6 12.5
TQZ。C 225 320 270 279 270
[0148] [例 13〜21]酸型ポリマーの合成
例 3〜: L1で得られたポリマー F11〜F19を次の方法でそれぞれ処理し、酸型のポリ マー HI 1〜H 19のフィルムを得た。まず、ポリマー F15は 320°Cの温度で、その他の ポリマーは TQ温度で、加圧プレス成形によりそれぞれのポリマーフィルム (膜厚 100 〜200 μ m)にカロェした。次にジメチルスルホキシドの 30質量0 /0と KOHの 15質量0 /0 を含む水溶液に、 80°Cにてポリマーフィルムを 16時間浸漬させることにより、ポリマ 一フィルム中の— SO F基が加水分解され、 -SO K基に変換された。
2 3
[0149] さらに該ポリマーフィルムを、 3molZL塩酸水溶液を用い、 50°Cで 2時間浸漬した 後塩酸水溶液を交換する酸処理を 4回繰り返し行った。次に該ポリマーフィルムをィ オン交換水で充分水洗を行い、該ポリマーフィルム中の SO K基が SO H基に
3 3 変換されたポリマーフィルムを得た。
[0150] 酸型のポリマーの軟ィ匕温度と比抵抗を測定した。その結果を表 3および表 4に示し た。また、動的粘弾性の測定において tan δのピーク値より求めたガラス転移温度 (Τ g)を併記した。
[0151] [表 3] 例 13 14 15 16 17 使用したポリマ一 F11 F12 F13 F14 F15 得られたポリマ一 HI 1 H12 H13 H14 H15 軟化温度 z°c 120 122 120 120 126
Tg(tan(5)/°C 146 150 150 150 150 比抵抗 1.4 1.7 1.9 2. 1 4.3
[0152] [表 4]
Figure imgf000033_0001
[0153] [例 22〜24]
TFEと PSVEを共重合してポリマー F101〜103を得た。さらに酸型に変換してポリ マー H101〜103を得た。各ポリマーの物性を測定し、その結果を表 5に示した。
[0154] [表 5]
Figure imgf000033_0002
[0155] [例 25]化合物 (ml 3)の合成
例 2における化合物 (ml2)の合成ルートと同様に化合物(c2)を合成した後、化合 物(c2)から下記のとおり化合物 (ml3)を合成した。以下にその詳細を記載する。
[0156] [化 35] CF2=CFCF2OS02F
ノ CF2OCF2CF2— S02F zCF2OCF2CF2— S02F
FOC— CF ^ CF2=CFCF2OCF2-CF
OCF2CF2— S02F KF \0CF2CF2— S02F
(c2) (m13)
[0157] 温度計、ジムロート冷却器、撹拌機を装着した 2000mL4つ口フラスコに窒素雰囲 気下でジグライム 677gを挿入した。次に撹拌しながら 23.33g(402mmol)の KFを 加えた。滴下ロートを反応容器に取り付け、反応容器を氷浴にて冷却した。化合物( C2)191.02g(363mmol)を 30分力、けて滴下した。この間、内温は 2.7〜6.4°C であった。氷浴で冷却したまま 2時間撹拌した。
[0158] 次に滴下ロートから 88.55g(385mmol)の CF =CFOSO Fを 40分間かけて滴
2 2
下した。この間、内温は 0.9〜3.4°Cであった。氷浴で冷却したままで 3時間撹拌を 続け、さらに一晩室温で撹拌した。反応液をろ過した後、二相分離した下層を回収し て粗生成物 218g (純度 71.7%)を得た。そして、減圧蒸留により、化合物 (ml3)を 得た。沸点 105— 106°CZl.3-1.5kPa。単離収率 45%。
[0159] 化合物(ml3)の19 F— NMR(282.7MHz、溶媒 CDC1、基準: CFC1 ) δ (ppm)
3 3
:45.5 (IF), 45.1(1F), —72.1 (2F) , —79.6(2F), —82.4(4F), —82.9 (2F), -90.3 (IF), -104.2(1F), —112.5 (2F) , —112.7(2F), —145. 2(1F), -190.8(1F)。
[0160] [例 26〜27]ポリマーの合成
例 3において、各条件を表 6のように変更したほかは例 3と同様にして、 TFEと化合 物(ml3)を共重合し、ポリマー F26〜F27を得た。重合結果を表 6に示した。なお、 TFEと化合物(ml3)の共重合体については、熱プレスにより作成した厚み 100〜2 00 mのフィルムについて硫黄原子の蛍光 X線強度を測定 (使用装置名: RIX300 0、理学電機工業株式会社)することによりイオン交換容量を求めた。標準サンプルと して F 101のフィルムを使用した。
[0161] [表 6]
Figure imgf000035_0001
[例 28〜例 29]酸型ポリマーの調製と物性測定
例 26、 27で得られたポリマー F26〜F27を空気中 300°Cで 40時間の熱処理をし た。その後、例 13〜21と同様の処理を行い、酸型ポリマー H26、 H27を得た。これ らのポリマーに対し、例 13〜21と同様の物性測定を行った。その結果を表 7に示した
[表 7]
Figure imgf000035_0002
図 1は、 TFEと化合物(mi l)を共重合して酸型に変換したポリマー HI 1および TF Eと化合物(ml 2)を共重合して酸型に変換したポリマー HI 6のフィルムを用いて動 的粘弾性測定を行って得られた貯蔵弾性率と温度の関係を示したものである。比較 として TFEと PSVEを共重合して酸型に変換したポリマー H101のそれも表した。化 合物 (ml 1)または化合物 (ml2)と TFEを共重合して得た酸型に変換したポリマー は、従来用いられている TFEと PSVEを共重合して酸型に変換したポリマーに比べ て、軟ィ匕温度およびガラス転移温度が高 、ことが分かる。 [0163] 図 2は、ポリマーにおける化合物(mi l)、化合物(ml2)または PSVEの含有率(モ ル%)と酸型のポリマーの比抵抗の関係を示したものである。フルォロスルホニル基 を 2つ有する化合物 (mi l)または化合物 (ml 2)と TFEを共重合して得た酸型に変 換したポリマーは、従来の PSVEと TFEを共重合して得たそれよりも、モノマー含有 率が少なくても抵抗が低いことが分かる。ビュルエーテルモノマーの含有率が低ぐ T FE含有率が高 、ほど機械的強度が高くなるため、化合物 (mi l)または化合物 (ml 2)を用いると、 PSVEに比べて、低抵抗で高強度の酸型ポリマーが得られることが分 かる。
産業上の利用可能性
[0164] 本発明は、フルォロスルホ-ル基を 2つ含有する化合物、該化合物の反応中間体 として極めて有用な化合物、およびそれらの製造方法を提供する。該化合物を重合 させたポリマーは、一つの側鎖に 2つのスルホン酸基を有するため、軟化温度が高く 機械的強度 (たとえば、高温温域における弾性率)に優れうる。また本発明のポリマ 一からなる高分子電解質は抵抗が低い。イオン交換膜 (食塩電解用のイオン交換膜 や燃料電池用のイオン交換膜)や燃料電池の触媒層に用いうる有用な電解質材料 が提供される。 なお、 2005年 7月 27日に出願された日本特許出願 2005— 217110号の明細書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲 下式 (a)で表される化合物を MaF (Maは 1価の陽イオンを形成可能な金属原子を 示す。)の存在下に、下式 (bl)で表される化合物または下式 (b2)で表される化合物 と反応させて下式 (c)で表される化合物を得ることを特徴とする下式 (c)で表される化 合物の製造方法。
[化 1]
01—S02F
CF\2 /CF (a)
o
CF2-RF02
I I (b1) FS02— RFT)2-COF (B2)
0— so2
Figure imgf000037_0001
ただし、式中の記号は以下の意味を示す。
RFG1は、単結合または炭素数 1〜6の 2価のペルフルォロ有機基。
R™2は、炭素数 1〜6の 2価のペルフルォロ有機基。
請求項 1に記載の製造方法により下式 (c)で表される化合物を得る工程を経て、下 式 (mO)で表される化合物を得ることを特徴とする下式 (mO)で表される化合物の製 造方法。
[化 2]
RF01_SO2p
FOC— CF (c;
、OCF2RF02— S02F 01— S02F
CF2=CF(CF2)NOCF2-CF
\0CF2RF。2 - S02F ただし、式中の記号は以下の意味を示す。 R1*"1は、単結合または炭素数 1〜6の 2価のペルフルォロ有機基。
R™2は、炭素数 1〜6の 2価のペルフルォロ有機基。
nは、 0または 1。
請求項 1に記載の製造方法により下式 (c)で表される化合物を得て、っ 、でこれを MaF (Maは 1価の陽イオンを形成可能な金属原子を示す。)の存在下に、へキサフル ォロプロペンォキシドと反応させて下式 (d)で表される化合物を得て、次に該化合物 を熱分解して下式 (mO )で表される化合物を得る請求項 2に記載の製造方法。
0
[化 3]
FOC—
Figure imgf000038_0001
RF01— S02F
CF2=CFOCF2-C (m00)
Figure imgf000038_0002
ただし、式中 "1および は、前記と同じ意味を示す。
請求項 1に記載の製造方法により下式 (c)で表される化合物を得て、っ 、でこれを MbF (Mbはアルカリ金属原子を示す。 )の存在下に下式 (e)で表される化合物と反応 させて下式 (mO )で表される化合物を得る請求項 2に記載の製造方法。
[化 4]
Figure imgf000038_0003
02F
Figure imgf000038_0004
z RF1— S02F
CF2=CFCF2OCF2-CF (mO )
^OCF2RF02— S02F ただし、式中の記号は以下の意味を示す。
RFC)1および RF 2は、前記と同じ。
Xは、一 OSO F、 一 I、 一 C1または一 Br
2 。
[5] 前記式 (mO)で表される化合物が、下式 (ml)で表される化合物である請求項 2に 記載の製造方法。
[化 5]
/RF11-S02F
CF2=CF(CF2)nOCF2— CF (ml)
、OCF2RF12— S02F ただし、式中の記号は以下の意味を示す。
RF11は、単結合またはエーテル性酸素原子を有して 、てもよ 、炭素数 1〜6の直鎖 のペルフルォロアルキレン基。
RF12は、炭素数 1〜6の直鎖のペルフルォロアルキレン基。
nは、 0または 1。
[6] 下式 (mO)で表される化合物を重合し、下式 (mO)で表される化合物に基づく単位 を含むポリマーを得ることを特徴とするポリマーの製造方法。
[化 6] メ01— S02F
CF2=CF(CF2)nOCF2-CF (mO)
、OCF2RF02— S02F ただし、式中の記号は以下の意味を示す。
RFG1は、単結合または炭素数 1〜6の 2価のペルフルォロ有機基。
R™2は、炭素数 1〜6の 2価のペルフルォロ有機基。
nは、 0または 1。
[7] 下式 (mO)で表される化合物とテトラフルォロエチレンとを共重合し、下式 (mO)で 表される化合物に基づく単位と、テトラフルォロエチレンに基づく単位とを含むポリマ 一を得ることを特徴とするポリマーの製造方法。
[化 7] /RF01-SO2F
CF2=CF(CF2)nOCF2-CF (m0)
^OCF2RF02-SO2F ただし、式中の記号は以下の意味を示す。
RFG1は、単結合または炭素数 1〜6の 2価のペルフルォロ有機基。
R™2は、炭素数 1〜6の 2価のペルフルォロ有機基。
nは、 0または 1。
[8] 下式 (ml)で表される化合物。
[化 8] ノ RF11— S02F
CF2=CF(CF2)nOCF2-CF (01"
^OCF2RF12-S02F ただし、式中の記号は以下の意味を示す。
RF11は、単結合またはエーテル性酸素原子を有していてもよい炭素数 1〜6の直鎖 のペルフルォロアルキレン基。
RF12は、炭素数 1〜6の直鎖のペルフルォロアルキレン基。
nは、 0または 1.
[9] 下式 (ml 1)で表される化合物。
[化 9] CF2CF2— S02F
CF2=CFOCF2-CF
、OCF2CF2— S02F
[10] 下式 (ml 2)で表される化合物。
[化 10]
^CFzOCFzCFz— S02
CF2=CFOCF2-CF (m12)
、OCF2CF2— S02F
[11] 下式 (ml 3)で表される化合物。
[化 11] CF2OCF2CF2— S02F
CF2=CFCF2OCF2-CF (m13)
OCF2CF2— S02F 請求項 8〜: L Iのいずれかに記載の化合物に基づく単位を含むポリマー。 請求項 8〜: L 1のいずれかに記載の化合物に基づく単位と、テトラフルォロエチレン に基づく単位とを含むポリマー。
請求項 12または 13に記載のポリマーの— SO F基を— SO H基に変換したポリマ
2 3 下式 (cl)で表される化合物。
[化 12] z CF2CF2-S02F
FOC— CF
\ (C1)
OCF2CF2— S02F
[16] 下式 (c2)で表される化合物。
[化 13]
CF2OCF2CF2— SO;
FOC— CF (c2)
OCF2CF2— S02F 下式 (dl)で表される化合物。
CF2CF2— S02F
FOC— CFOCF2-CF (d1)
OCF2CF2— S02F
CF, 下式 (d2)で表される化合物。
CF2OCF2CF2— S02l
FOC— CFOCF2-CF (d2)
OCF2CF2— S02F
CF3
PCT/JP2006/314812 2005-07-27 2006-07-26 フルオロスルホニル基含有化合物、その製造方法およびそのポリマー WO2007013532A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE602006014165T DE602006014165D1 (de) 2005-07-27 2006-07-26 Eine fluorsulfonylgruppe enthaltende verbindung, verfahren zu deren herstellung und polymer davon
CN2006800272391A CN101228117B (zh) 2005-07-27 2006-07-26 含氟磺酰基的化合物、其制造方法及其聚合物
EP06781724A EP1916237B1 (en) 2005-07-27 2006-07-26 Compound containing fluorosulfonyl group, process for producing the same, and polymer thereof
JP2007526882A JP5141251B2 (ja) 2005-07-27 2006-07-26 フルオロスルホニル基含有化合物、その製造方法およびそのポリマー
US12/010,586 US7531610B2 (en) 2005-07-27 2008-01-28 Fluorosulfonyl group-containing compound, method for its production and polymer thereof
US12/410,524 US7667083B2 (en) 2005-07-27 2009-03-25 Fluorosulfonyl group-containing compound, method for its production and polymer thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005217110 2005-07-27
JP2005-217110 2005-07-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/010,586 Continuation US7531610B2 (en) 2005-07-27 2008-01-28 Fluorosulfonyl group-containing compound, method for its production and polymer thereof

Publications (1)

Publication Number Publication Date
WO2007013532A1 true WO2007013532A1 (ja) 2007-02-01

Family

ID=37683423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314812 WO2007013532A1 (ja) 2005-07-27 2006-07-26 フルオロスルホニル基含有化合物、その製造方法およびそのポリマー

Country Status (6)

Country Link
US (2) US7531610B2 (ja)
EP (1) EP1916237B1 (ja)
JP (1) JP5141251B2 (ja)
CN (3) CN100576617C (ja)
DE (1) DE602006014165D1 (ja)
WO (1) WO2007013532A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1968147A3 (en) * 2007-01-30 2008-11-12 Asahi Glass Company, Limited Membrane/electrode assembly for polymer electrolyte fuel cells, and method for operating polymer electrolyte fuel cell
JP2010018674A (ja) * 2008-07-09 2010-01-28 Asahi Glass Co Ltd ポリマー、その製造方法、固体高分子形燃料電池用電解質膜および膜電極接合体
WO2010101195A1 (ja) 2009-03-04 2010-09-10 旭化成イーマテリアルズ株式会社 フッ素系高分子電解質膜
WO2011013577A1 (ja) 2009-07-31 2011-02-03 旭硝子株式会社 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
WO2011059115A1 (ja) 2009-11-16 2011-05-19 住友化学株式会社 膜-電極接合体およびこれを用いた燃料電池
US8178257B2 (en) 2007-01-10 2012-05-15 Asahi Glass Company, Limited Polymer electrolyte membrane and membrane/electrode assembly for polymer electrolyte fuel cell
US8361677B2 (en) 2006-10-23 2013-01-29 Asahi Glass Company, Limited Membrane/electrode assembly for polymer electrolyte fuel cell
JP2013075861A (ja) * 2011-09-30 2013-04-25 Asahi Glass Co Ltd 含フッ素化合物の製造方法
US8557474B2 (en) 2007-08-09 2013-10-15 Asahi Glass Company, Limited Fluorosulfonyl group-containing monomer and its polymer, and sulfonic acid group-containing polymer
JP5499478B2 (ja) * 2007-01-26 2014-05-21 旭硝子株式会社 ポリマー、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体
WO2019045064A1 (ja) 2017-09-01 2019-03-07 Agc株式会社 フルオロスルホニル基又はスルホン酸基含有ポリマー、その製造方法及び用途
WO2022196804A1 (ja) 2021-03-18 2022-09-22 ダイキン工業株式会社 フッ素樹脂の製造方法、フッ素樹脂および水性分散液
WO2022244784A1 (ja) 2021-05-19 2022-11-24 ダイキン工業株式会社 フルオロポリマーの製造方法、ポリテトラフルオロエチレンの製造方法および組成物
WO2023277140A1 (ja) 2021-06-30 2023-01-05 ダイキン工業株式会社 高純度フルオロポリマー含有組成物の製造方法および高純度フルオロポリマー含有組成物
WO2023277139A1 (ja) 2021-06-30 2023-01-05 ダイキン工業株式会社 フルオロポリマー組成物の製造方法およびフルオロポリマー組成物

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5141251B2 (ja) 2005-07-27 2013-02-13 旭硝子株式会社 フルオロスルホニル基含有化合物、その製造方法およびそのポリマー
EP2109171A4 (en) * 2006-12-14 2010-09-01 Asahi Glass Co Ltd FESTPOLYMER ELECTROLYTE MEMBRANE FOR A POLYMER ELECTROLYTE FUEL CELL AND MEMBRANE ELECTRODE ASSEMBLY
CN101589179B (zh) * 2007-01-31 2011-09-14 旭硝子株式会社 碱金属氯化物电解用离子交换膜
WO2008093795A1 (ja) 2007-01-31 2008-08-07 Asahi Glass Company, Limited 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池およびそれらの製造方法
CN102471412B (zh) * 2009-07-31 2015-01-14 旭硝子株式会社 电解质材料、液状组合物及固体高分子型燃料电池用膜电极接合体
JP5521427B2 (ja) 2009-07-31 2014-06-11 旭硝子株式会社 燃料電池システム
CN103283072A (zh) * 2010-12-20 2013-09-04 纳幕尔杜邦公司 用作燃料电池的一个或多个电极的离聚物和离子传导性组合物
US9379403B2 (en) 2011-08-26 2016-06-28 Asahi Glass Company, Limited Polymer electrolyte membrane and membrane/electrode assembly for polymer electrolyte fuel cell
JP6172142B2 (ja) * 2012-04-16 2017-08-02 旭硝子株式会社 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
WO2015002008A1 (ja) * 2013-07-03 2015-01-08 旭硝子株式会社 含フッ素ポリマーの製造方法
JP6281427B2 (ja) * 2013-07-19 2018-02-21 セントラル硝子株式会社 膜形成用組成物およびその膜、並びにそれを用いる有機半導体素子の製造方法
DE102013012305A1 (de) 2013-07-24 2015-01-29 Kathrein-Werke Kg Breitband-Antennenarray
JP6763300B2 (ja) * 2014-07-04 2020-09-30 Agc株式会社 電解質材料、液状組成物、固体高分子形燃料電池用膜電極接合体および含フッ素分岐ポリマー
WO2016104380A1 (ja) * 2014-12-25 2016-06-30 旭硝子株式会社 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
CN107922703B (zh) * 2015-08-21 2020-04-14 Agc株式会社 液体组合物的制造方法、催化剂层形成用涂覆液的制造方法和膜电极接合体的制造方法
CN109314262A (zh) * 2016-06-22 2019-02-05 Agc株式会社 电解质材料、其制造方法和其应用
WO2018012374A1 (ja) * 2016-07-11 2018-01-18 旭硝子株式会社 電解質材料、それを含む液状組成物およびその使用
KR102233775B1 (ko) * 2016-07-13 2021-03-30 삼성에스디아이 주식회사 고분자, 및 이를 포함하는 전해질과 리튬 전지
CN107298647B (zh) * 2017-06-22 2019-02-22 山东华夏神舟新材料有限公司 端基为磺酰氟基团的直链全氟乙烯基醚的制备方法
WO2020116651A1 (ja) * 2018-12-07 2020-06-11 Agc株式会社 ペルフルオロポリマー、液状組成物、固体高分子電解質膜、膜電極接合体および固体高分子形水電解装置
EP3892651A4 (en) * 2018-12-07 2022-08-24 Agc Inc. LIQUID COMPOSITION, SOLID POLYMER ELECTROLYTIC MEMBRANE, MEMBRANE-ELECTRODE ASSEMBLY, AND SOLID POLYMER FUEL CELL

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106515A1 (ja) * 2002-06-14 2003-12-24 ダイキン工業株式会社 スルホン酸官能基含有フッ素化単量体、それを含有する含フッ素共重合体、およびイオン交換膜
JP2004143055A (ja) * 2002-10-22 2004-05-20 Kyoji Kimoto フッ素化ケトン化合物およびその製造方法
WO2005003062A2 (ja) * 2003-07-02 2005-01-13 Asahi Glass Co Ltd 含フッ素スルホニルフルオリド化合物の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4225240A (en) * 1978-06-05 1980-09-30 Balasubramanian N Method and system for determining interferometric optical path length difference
US4273729A (en) * 1979-03-14 1981-06-16 E. I. Du Pont De Nemours And Company Polyfluoroallyloxy compounds, their preparation and copolymers therefrom
US4329435A (en) * 1979-05-31 1982-05-11 Asahi Kasei Kogyo Kabushiki Kaisha Novel fluorinated copolymer with tridihydro fluorosulfonyl fluoride pendant groups and preparation thereof
JP4417554B2 (ja) * 1998-03-03 2010-02-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 相当にフッ素化されたイオノマー
CN100389518C (zh) * 2003-01-20 2008-05-21 旭硝子株式会社 固体高分子型燃料电池用电解质材料的制造方法及固体高分子型燃料电池用膜电极接合体
EP1583106A4 (en) * 2003-04-28 2008-07-09 Asahi Glass Co Ltd FESTPOLYMER ELECTROLYTE MATERIAL, PROCESS FOR ITS MANUFACTURE AND MEMBRANE / ELECTRODE ASSEMBLY FOR A FESTPOLYMER FUEL CELL
JP5130911B2 (ja) * 2005-07-27 2013-01-30 旭硝子株式会社 固体高分子形燃料電池用電解質材料、電解質膜および膜電極接合体
JP5141251B2 (ja) 2005-07-27 2013-02-13 旭硝子株式会社 フルオロスルホニル基含有化合物、その製造方法およびそのポリマー

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106515A1 (ja) * 2002-06-14 2003-12-24 ダイキン工業株式会社 スルホン酸官能基含有フッ素化単量体、それを含有する含フッ素共重合体、およびイオン交換膜
JP2004143055A (ja) * 2002-10-22 2004-05-20 Kyoji Kimoto フッ素化ケトン化合物およびその製造方法
WO2005003062A2 (ja) * 2003-07-02 2005-01-13 Asahi Glass Co Ltd 含フッ素スルホニルフルオリド化合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1916237A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8361677B2 (en) 2006-10-23 2013-01-29 Asahi Glass Company, Limited Membrane/electrode assembly for polymer electrolyte fuel cell
US8178257B2 (en) 2007-01-10 2012-05-15 Asahi Glass Company, Limited Polymer electrolyte membrane and membrane/electrode assembly for polymer electrolyte fuel cell
JP5499478B2 (ja) * 2007-01-26 2014-05-21 旭硝子株式会社 ポリマー、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体
US7883807B2 (en) 2007-01-30 2011-02-08 Asahi Glass Company, Limited Membrane/electrode assembly for polymer electrolyte fuel cells, and method for operating polymer electrolyte fuel cell
EP1968147A3 (en) * 2007-01-30 2008-11-12 Asahi Glass Company, Limited Membrane/electrode assembly for polymer electrolyte fuel cells, and method for operating polymer electrolyte fuel cell
US8557474B2 (en) 2007-08-09 2013-10-15 Asahi Glass Company, Limited Fluorosulfonyl group-containing monomer and its polymer, and sulfonic acid group-containing polymer
JP2010018674A (ja) * 2008-07-09 2010-01-28 Asahi Glass Co Ltd ポリマー、その製造方法、固体高分子形燃料電池用電解質膜および膜電極接合体
EP2722921A1 (en) 2009-03-04 2014-04-23 Asahi Kasei E-materials Corporation Fluoropolymer electrolyte membrane
WO2010101195A1 (ja) 2009-03-04 2010-09-10 旭化成イーマテリアルズ株式会社 フッ素系高分子電解質膜
WO2011013577A1 (ja) 2009-07-31 2011-02-03 旭硝子株式会社 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
WO2011059115A1 (ja) 2009-11-16 2011-05-19 住友化学株式会社 膜-電極接合体およびこれを用いた燃料電池
JP2013075861A (ja) * 2011-09-30 2013-04-25 Asahi Glass Co Ltd 含フッ素化合物の製造方法
WO2019045064A1 (ja) 2017-09-01 2019-03-07 Agc株式会社 フルオロスルホニル基又はスルホン酸基含有ポリマー、その製造方法及び用途
WO2019045063A1 (ja) 2017-09-01 2019-03-07 Agc株式会社 フルオロスルホニル基含有化合物、フルオロスルホニル基含有モノマー及びそれらの製造方法
KR20200047516A (ko) 2017-09-01 2020-05-07 에이지씨 가부시키가이샤 플루오로술포닐기 또는 술폰산기 함유 폴리머, 그 제조 방법 및 용도
RU2766150C2 (ru) * 2017-09-01 2022-02-08 ЭйДжиСи Инк. Соединение, содержащее фторсульфонильную группу, мономер, содержащий фторсульфонильную группу, и способы их получения
US11242420B2 (en) 2017-09-01 2022-02-08 AGC Inc. Fluorosulfonyl group-containing compound, fluorosulfonyl group-containing monomer, and their production methods
US11414502B2 (en) 2017-09-01 2022-08-16 AGC Inc. Fluorosulfonyl group or sulfonic acid group-containing polymer, its production method and its application
WO2022196804A1 (ja) 2021-03-18 2022-09-22 ダイキン工業株式会社 フッ素樹脂の製造方法、フッ素樹脂および水性分散液
WO2022244784A1 (ja) 2021-05-19 2022-11-24 ダイキン工業株式会社 フルオロポリマーの製造方法、ポリテトラフルオロエチレンの製造方法および組成物
WO2023277140A1 (ja) 2021-06-30 2023-01-05 ダイキン工業株式会社 高純度フルオロポリマー含有組成物の製造方法および高純度フルオロポリマー含有組成物
WO2023277139A1 (ja) 2021-06-30 2023-01-05 ダイキン工業株式会社 フルオロポリマー組成物の製造方法およびフルオロポリマー組成物

Also Published As

Publication number Publication date
DE602006014165D1 (de) 2010-06-17
US20090187044A1 (en) 2009-07-23
CN101228117A (zh) 2008-07-23
CN100576617C (zh) 2009-12-30
US7667083B2 (en) 2010-02-23
EP1916237A4 (en) 2008-11-26
CN102382017B (zh) 2014-05-28
US20080146841A1 (en) 2008-06-19
CN101228117B (zh) 2013-01-09
EP1916237B1 (en) 2010-05-05
CN101228655A (zh) 2008-07-23
CN102382017A (zh) 2012-03-21
JPWO2007013532A1 (ja) 2009-02-12
EP1916237A1 (en) 2008-04-30
JP5141251B2 (ja) 2013-02-13
US7531610B2 (en) 2009-05-12

Similar Documents

Publication Publication Date Title
WO2007013532A1 (ja) フルオロスルホニル基含有化合物、その製造方法およびそのポリマー
JP7367817B2 (ja) フルオロスルホニル基含有化合物、フルオロスルホニル基含有モノマー及びそれらの製造方法
JP5454592B2 (ja) 固体高分子形燃料電池用電解質材料、電解質膜及び膜電極接合体
JP4774988B2 (ja) 固体高分子電解質材料、製造方法及び固体高分子型燃料電池用膜電極接合体
JP5217708B2 (ja) ポリマー、その製造方法、固体高分子形燃料電池用電解質膜および膜電極接合体
WO2007013533A1 (ja) 固体高分子形燃料電池用電解質材料、電解質膜および膜電極接合体
JP7287404B2 (ja) フルオロスルホニル基含有含フッ素ポリマーの製造方法、塩型スルホン酸基含有含フッ素ポリマーの製造方法および酸型スルホン酸基含有含フッ素ポリマーの製造方法
JP7322896B2 (ja) 液状組成物、固体高分子電解質膜、膜電極接合体、固体高分子形燃料電池
JP7543910B2 (ja) 液状組成物、固体高分子電解質膜、膜電極接合体及び固体高分子形燃料電池
JP7355037B2 (ja) 酸型スルホン酸基含有ポリマー、液状組成物、固体高分子電解質膜、膜電極接合体、固体高分子形燃料電池及び水電解用イオン交換膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680027239.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007526882

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006781724

Country of ref document: EP