WO2007007646A1 - 均一系不斉水素化反応用触媒 - Google Patents

均一系不斉水素化反応用触媒 Download PDF

Info

Publication number
WO2007007646A1
WO2007007646A1 PCT/JP2006/313510 JP2006313510W WO2007007646A1 WO 2007007646 A1 WO2007007646 A1 WO 2007007646A1 JP 2006313510 W JP2006313510 W JP 2006313510W WO 2007007646 A1 WO2007007646 A1 WO 2007007646A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
homogeneous
asymmetric
compound
Prior art date
Application number
PCT/JP2006/313510
Other languages
English (en)
French (fr)
Inventor
Hideo Shimizu
Daisuke Igarashi
Wataru Kuriyama
Yukinori Yusa
Original Assignee
Takasago International Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago International Corporation filed Critical Takasago International Corporation
Priority to US11/988,216 priority Critical patent/US7902110B2/en
Priority to EP06780836.0A priority patent/EP1911516B1/en
Priority to JP2007524614A priority patent/JP5166029B2/ja
Publication of WO2007007646A1 publication Critical patent/WO2007007646A1/ja
Priority to US12/703,079 priority patent/US8497400B2/en
Priority to US12/703,053 priority patent/US8481791B2/en
Priority to US12/949,370 priority patent/US8586498B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2447Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring
    • B01J31/2452Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring with more than one complexing phosphine-P atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2447Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring
    • B01J31/2452Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring with more than one complexing phosphine-P atom
    • B01J31/2457Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring with more than one complexing phosphine-P atom comprising aliphatic or saturated rings, e.g. Xantphos
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B35/00Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
    • C07B35/02Reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/175Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds with simultaneous reduction of an oxo group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/62Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by hydrogenation of carbon-to-carbon double or triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/303Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by hydrogenation of unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5045Complexes or chelates of phosphines with metallic compounds or metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/65515Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a five-membered ring
    • C07F9/65517Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a five-membered ring condensed with carbocyclic rings or carbocyclic ring systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0261Complexes comprising ligands with non-tetrahedral chirality
    • B01J2531/0266Axially chiral or atropisomeric ligands, e.g. bulky biaryls such as donor-substituted binaphthalenes, e.g. "BINAP" or "BINOL"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • the present invention relates to a novel catalyst useful for homogeneous hydrogenation reaction, particularly homogeneous asymmetric hydrogenation reaction, and more specifically, a method for producing a hydride of an unsaturated compound using the catalyst, particularly an optically active compound. It relates to the manufacturing method.
  • Patent Document 1 discloses an asymmetric hydrosilylation reaction of a, j8-unsaturated ester.
  • the method described in Patent Document 1 must form a silyl ether form of the ⁇ , ⁇ -unsaturated ester, and an acid or alkali treatment is necessary to obtain the target compound. Therefore, the operation becomes complicated, and the silane waste is theoretically more than equivalent, resulting in high cost.
  • the reducing agent silane compound used in the hydrosilylation reaction has a problem that it is more expensive than hydrogen gas.
  • Patent Document 2 describes a hydrogenation reaction of olefin using a complex obtained by reacting copper chloride (I) with a phosphorus compound.
  • the phosphorus compound to be reacted with copper (I) chloride is not a chiral compound, and the resulting complex is not a chiral complex. It is not described about making it. For this reason, the hydrogenation reaction of olefins described in Patent Document 2 is not an asymmetric hydrogenation reaction.
  • Non-Patent Document 1 describes an asymmetric hydrogenation reaction of acetyl acetate and acetylacetone using a complex obtained from Raney copper and an optically active amino acid.
  • the asymmetric hydrogenation reaction described in Non-Patent Document 1 is a heterogeneous system. Therefore, the reaction solution was not uniform, and Raney copper had to be handled with care and had problems such as poor workability.
  • the reaction described in Non-Patent Document 1 has not reached practical levels where the catalytic activity and asymmetric yield of the reaction system are extremely low.
  • Patent Document 3 and Non-Patent Document 2 a copper complex is prepared by reacting a specific bisphosphine ligand with a copper salt to once produce a chiral copper complex, and reacting the obtained copper complex with a rhodium complex. 1 It describes that a rhodium metal exchange reaction is carried out to obtain a rhodium complex, and also describes a homogeneous asymmetric hydrogenation reaction using the obtained domeme complex. However, in the method described in Patent Document 3, an asymmetric hydrogenation reaction using a copper complex as a catalyst is not described, and the copper complex is used only for isolation and production of a phosphine ligand.
  • the catalyst species described in Patent Document 3 and Non-Patent Document 2 are rhodium phosphine complexes obtained by a metal exchange reaction.
  • the methods described in Patent Document 3 and Non-Patent Document 2 require that a copper complex be synthesized first, and the operation is complicated.
  • rhodium is very expensive, it has problems such as poor economy.
  • Non-Patent Document 3 describes a heterogeneous asymmetric hydrogenation reaction using Raney copper-ruthenium alloy and optically active tartaric acid.
  • a heterogeneous asymmetric hydrogenation reaction using Raney copper and optically active tartaric acid is described.
  • the method described in Non-Patent Document 3 is a heterogeneous asymmetric hydrogenation reaction, the reaction solution is not uniform, and Raney copper needs to be handled with care. It had problems such as poor quality. Further, since ruthenium is used in addition to copper, there are problems such as high costs.
  • Patent Document 1 Pamphlet of WO01Z19761
  • Patent Document 2 US Pat. No. 3,732,329
  • Non-patent literature l React. Kinet. Catal. Lett., Vol. 9, No.l, 73 (1978).
  • Patent Document 3 Inst. Org. Khim. Im. Zelinskogo, Moscow, USSR. Kinetika i Kataliz., 16 (4), 1081 (1975).
  • the present inventors have catalyzed an asymmetric ligand and copper in a homogeneous system for a hydrogenation reaction of an unsaturated compound, particularly an asymmetric hydrogenation reaction.
  • a hydride of a desired unsaturated compound, particularly an optically active compound can be obtained with good yield and economical efficiency and workability, and the present invention has been completed. It was.
  • the present invention includes the following 1) to 18).
  • a homogeneous hydrogenation catalyst containing an asymmetric copper complex having an asymmetric ligand 1) A homogeneous hydrogenation catalyst containing an asymmetric copper complex having an asymmetric ligand.
  • asymmetric copper complex is a copper complex obtained by reacting an asymmetric ligand with a copper compound.
  • L 3 represents a ligand, and three R 2 Cn's are the same or different and are each a hydrogen atom, a hydrocarbon group which may have a substituent, or a heterocycle which may have a substituent.
  • a cyclic group, an optionally substituted alkoxy group, an optionally substituted aryloxy group, an optionally substituted aralkyloxy group, an amino group or a substituted amino group, and n31 and n32 each independently represents a natural number.
  • the catalyst for homogeneous hydrogenation reaction according to any one of 3) to 5), which contains a copper complex represented by (2) and an optically active diphosphine compound.
  • a method for producing a hydride of an unsaturated compound characterized in that an unsaturated compound is subjected to a homogeneous hydrogenation reaction in the presence of the catalyst for homogeneous hydrogenation reaction according to any one of 1) to 8)
  • the present invention relates to a hydrogenation reaction carried out in the presence of hydrogen gas, particularly an asymmetric hydrogenation reaction or a hydrogen transfer hydrogenation reaction carried out in the presence of a hydrogen donating substance, particularly a hydrogen transfer asymmetric hydrogenation.
  • the present invention provides a novel catalyst for homogeneous hydrogenation reaction useful for reaction, particularly a catalyst for homogeneous asymmetric hydrogenation reaction.
  • various unsaturated compounds are hydrogenated in a uniform system in the presence of the catalyst, particularly an asymmetric hydrogenation reaction. If a hydride of a compound, particularly an optically active compound can be obtained with high efficiency and optical purity, the workability of using a force can be improved, and further, it can be obtained with good economic efficiency.
  • homogeneous system means that the homogeneous hydrogenation reaction catalyst having the catalytic activity used is in a state of being substantially dissolved during the hydrogenation reaction
  • the catalytic force means a state that can be dissolved in a solution and a state that can be dissolved.
  • the state where the catalyst is dissolved in the solution is a state where the homogeneous hydrogenation reaction catalyst is dissolved at the start of the hydrogenation reaction.
  • the state in which the catalyst can be dissolved in a solution means a state in which the homogeneous hydrogenation reaction catalyst can be dissolved at the start of the hydrogenation reaction.
  • the homogeneous hydrogenation used Examples include cases where the reaction catalyst dissolves as the reaction temperature rises or the reaction proceeds, such as the type of unsaturated compound or solvent used, It means that the catalyst is dissolved depending on reaction conditions such as reaction temperature. Furthermore, when there is a boundary surface in the reaction system, the state of the reaction system is uniform or almost uniform throughout the entire surface where the properties of the reaction system hardly change. Thus, the “uniform system” in the present invention is a state in which the asymmetric copper complex or copper compound used as the catalyst for the homogeneous hydrogenation reaction is substantially dissolved during the hydrogenation reaction.
  • the substrate (unsaturated compound) used for the homogeneous hydrogenation reaction, the additive used as necessary, or the deactivated homogeneous hydrogenation catalyst may exist as a solid! ,.
  • the hydrogenation reaction using the homogeneous hydrogenation reaction catalyst is a hydrogenation reaction involving only copper as a transition metal. That is, the catalyst for homogeneous hydrogenation reaction of the present invention is a catalyst using copper as the only transition metal, which contains substantially no transition metal other than copper.
  • Asymmetric copper complexes that can be used for asymmetric synthesis and the like.
  • the asymmetric copper complex used in the present invention is preferably an asymmetric copper complex obtained by reacting an asymmetric ligand with a copper compound. [0018] 1) Asymmetric ligand
  • examples of the asymmetric ligand used in the present invention include a monodentate ligand, a bidentate ligand, a tridentate ligand, and a tetradentate ligand.
  • Examples of the monodentate ligand include optically active phosphorus compounds, optically active amine compounds, optically active alcohol compounds, optically active sulfur compounds, and optically active carbene compounds.
  • R 1 s are the same or different and may have a hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, or a substituent. alkoxy groups, substituted and also good ⁇ Ariruokishi groups, substituted! /, showing a good ⁇ Ararukiruokishi group, an amino group or a substituted amino group. in addition, three in R 1 2 or 3 may be bonded to each other to form a ring.
  • R 2 represents an optionally substituted hydrocarbon group or substituted amino group
  • Q 1 represents a spacer
  • Z 1 and Z 2 each independently represent an oxygen atom, A sulfur atom or NR 4 — (R 4 represents a hydrogen atom or a protecting group);
  • R 4 represents a hydrogen atom or a protecting group
  • R 3 represents a hydrogen atom or an optionally substituted hydrocarbon group
  • Q 2 represents a spacer
  • Z 3 and Z 4 each independently represent an oxygen atom, Sulfur atom or —NR 5 — (R 5 represents a hydrogen atom or a protecting group)]
  • the hydrocarbon group may include a hydrocarbon group and a substituted hydrocarbon group.
  • hydrocarbon group examples include an alkyl group, an alkenyl group, an alkynyl group, an alkadienyl group, an aryl group, an aralkyl group, and the like.
  • the alkyl group may be linear, branched or cyclic, and examples thereof include an alkyl group having 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • Specific examples of the alkyl group include, for example, methyl group, ethyl group, n propyl group, 2-propyl group, n butyl group, 1 methyl propyl group, isobutyl group, tert butyl group, n pentyl group, 1 methyl butyl group, tert Pentyl group, 2-methylbutyl group, 3 methylbutyl group, 2,2 dimethylpropyl group, n-hexyl group, 1 methylpentyl group, 1 ethylbutyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group 2-methylpentane-3-yl group, heptyl group, octyl group,
  • the alkenyl group may be linear or branched, and examples thereof include alkenyl groups having 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms, and more preferably 2 to 10 carbon atoms.
  • Specific examples of the alkenyl group include, for example, a vinyl group, a probe group, a butyl group, a pentyl group, a hexyl group, a heptul group, an otatur group, a nonel group, and a desyl group. The group is listed.
  • the alkynyl group may be linear or branched, and examples thereof include alkynyl groups having 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms, and more preferably 2 to 10 carbon atoms.
  • Archi Specific examples of the -l group include, for example, an ethur group, a propyl group, a butur group, a pentyl group, and a hexynyl group.
  • the alkadienyl group has two double bonds at any position in the chain of the alkyl group, and may be linear, branched or cyclic, for example, having 4 or more carbon atoms, preferably An alkadienyl group having 4 to 20 carbon atoms, more preferably 4 to 15 carbon atoms, and still more preferably 4 to carbon atoms: LO.
  • Specific examples of the alkadie group include 1,3 butagel group, 2,3 dimethyl-1,3 butagel group and the like.
  • aryl groups include aryl groups having 6 to 20 carbon atoms, preferably 6 to 15 carbon atoms. Specific examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, a biphenyl group, and the like.
  • aralkyl group for example, an aralkyl group having 7 to 20 carbon atoms, preferably 7 to 15 carbon atoms, in which at least one hydrogen atom of the alkyl group is substituted with the aryl group can be mentioned.
  • Specific examples of the aralkyl group include a benzyl group, a 1-phenyl group, a 2-phenyl group, a 1-propyl group, and a 3-naphthylpropyl group.
  • Examples of the substituted hydrocarbon group include hydrocarbon groups in which at least one hydrogen atom of the above hydrocarbon group is substituted with a substituent, such as a substituted alkyl group, Examples include an alkenyl group, a substituted alkynyl group, a substituted alkadienyl group, a substituted aryl group, and a substituted aralkyl group.
  • a substituent such as a substituted alkyl group
  • Examples include an alkenyl group, a substituted alkynyl group, a substituted alkadienyl group, a substituted aryl group, and a substituted aralkyl group.
  • the substituent will be described later (the same applies hereinafter).
  • substituted aryl group examples include, for example, tolyl group (for example, 4 methylphenol group), xylyl group (for example, 3,5-dimethylphenyl group), 4-methoxy-3,5-dimethylphenol group, 4-methoxy group. —3,5-di-tert-butylphenol group and the like.
  • aliphatic heterocyclic group examples include pyrrolidyl-2-one group, piperidino group, piperazinyl group, morpholino group, morpholinyl group, tetrahydrofuryl group, tetrahydrobiral group, thiolanyl group and the like.
  • aromatic heterocyclic group examples include 2 to 15 carbon atoms and at least 1, preferably 1 to 3 nitrogen atoms, oxygen atoms, and heteroatoms such as Z or sulfur atoms, 3 to
  • An 8-membered, preferably 5- or 6-membered monocyclic, polycyclic or fused-ring aromatic heterocyclic group may be mentioned.
  • aromatic heterocyclic group examples include, for example, furyl group, chael group, pyridyl group, pyrimidyl group, birazyl group, pyridazyl group, pyrazolyl group, imidazolyl group, oxazolyl group, thiazolyl group, benzofuryl group, Examples include benzocher group, quinolyl group, isoquinolyl group, quinoxalyl group, phthalazyl group, quinazolyl group, naphthyridyl group, cinnolyl group, benzoimidazolyl group, benzoxazolyl group, benzothiazolyl group, attaridyl group, and attaridinyl group. It is done.
  • substituted heterocyclic group examples include heterocyclic groups in which at least one hydrogen atom of the above heterocyclic group is substituted with a substituent, including substituted aliphatic heterocyclic groups and substituted aromatic groups.
  • Group heterocyclic group examples include substituted aliphatic heterocyclic groups and substituted aromatic groups.
  • the alkoxy group may be linear, branched or cyclic, for example, an alkoxy group having 1 to 20 carbon atoms.
  • Specific examples of the alkoxy group include, for example, a methoxy group, an ethoxy group, an n-propoxy group, a 2-propoxy group, an n-butoxy group, a 2-butoxy group, an isobutoxy group, a tert-butoxy group, and an n-pentyloxy group.
  • Examples thereof include a xy group, a heptyloxy group, an octyloxy group, a nonyloxy group, a decyloxy group, and a cyclohexyloxy group.
  • the alkoxy group has 1 to 10 carbon atoms, among others.
  • Examples of the substituted alkoxy group include an alkoxy group in which at least one hydrogen atom of the alkoxy group is substituted with a substituent.
  • the substituent may be! /, But the aryloxy group includes an aryloxy group and a substituted aryloxy group.
  • aryloxy group examples include an aryloxy group having 6 to 20 carbon atoms. Specific examples of the aryloxy group include a phenyloxy group, a naphthyloxy group, and an anthryloxy group. The aryloxy group is preferably an aryloxy group having 6 to 14 carbon atoms.
  • the aralkyloxy group includes an aralkyloxy group and a substituted aralkyloxy group.
  • aralkyloxy group examples include an aralkyloxy group having 7 to 20 carbon atoms. Specific examples of the aralkyloxy group include, for example, a benzyloxy group, a 2-phenyloxy group, a 1-phenolpropoxy group, a 2-phenylpropoxy group, a 3-phenylpropoxy group, a 1-phenolbutoxy group, and a 2-phenoloxy group.
  • the aralkyloxy group is preferably an aralkyloxy group having 7 to 12 carbon atoms.
  • Examples of the substituted aralkyloxy group include an aralkyloxy group in which at least one hydrogen atom of the aralkyloxy group is substituted with a substituent.
  • the substituted amino group represented by R 1 and R 2 includes one or two hydrogen atoms of an amino group.
  • Examples thereof include a chain or cyclic amino group substituted with a substituent such as a mino protecting group.
  • Any amino protecting group can be used as long as it is usually used as an amino protecting group.
  • amino protecting groups are used in PROTECTIVE GROUPS IN ORGANIC SYNTHESIS THIRD EDITION QOHN WILEY & SONS INC. Examples include groups described as groups.
  • amino protecting group examples include, for example, a hydrocarbon group which may have a substituent (eg, alkyl group, aryl group, aralkyl group, etc.), an acyl group which may have a substituent, Alkoxycarbon group which may have a substituent group, with a substituent group, with an arylcarbonyl group, with a substituent group! /, Or with an aralkyloxycarbo group group.
  • a hydrocarbon group which may have a substituent
  • an acyl group which may have a substituent
  • Alkoxycarbon group which may have a substituent group, with a substituent group, with an arylcarbonyl group, with a substituent group! /
  • an aralkyloxycarbo group group -Group, substituted sulfonyl group and the like.
  • amino groups substituted with aryl groups include, for example, N phenylamino groups, N, N diphenylamino groups, N naphthylamino groups, N naphthyl N-phenylamino groups, and the like. And mono- or diarylamino groups.
  • amino group substituted with the aralkyl group that is, the aralkyl group-substituted amino group include mono- or dialalkylamino groups such as N-benzylamino group and N, N-dibenzylamino group.
  • di-substituted amino groups such as N-methyl-N phenolamino group and N benzyl-N-methylamino group can be mentioned.
  • the substituent may have! /, But the acyl group includes an acyl group and a substituted acyl group.
  • acyl group derived from carboxylic acid examples include aliphatic carboxylic acid and aromatic carboxylic acid.
  • an acyl group derived from rubonic acid may be mentioned, for example, the formula: COR b [wherein R b has a hydrogen atom or a substituent, or may have a hydrocarbon group or a substituent. In addition, it represents a heterocyclic group or the like (which may have a substituent, a hydrocarbon group and a substituent which may have a heterocyclic group, and each of the groups described above. May be the same).
  • the aryloxy group or the substituent may be an aralkyloxy group (a hydrocarbon group which may have the substituent, a heterocyclic group which may have the substituent,
  • a substituted amino group, an alkoxy group which may have a substituent, an aralkyl group which may have a substituent, and a substituent which may have a aralkyloxy group are the groups described above. May be the same).
  • the substituted sulfol group represented by these is mentioned.
  • sulfol group examples include a methanesulfol group, a trifluoromethanesulfol group, a benzenesulfonyl group, a p-toluenesulfonyl group, and the like.
  • Sulfo R e is Amino group or a substituted amino group - le group, Aminosuruho - a le group.
  • Specific examples of the aminosulfol group include an aminosulfol group, a dimethylaminosulfol group, a jetylaminosulfonyl group, a diphenylaminosulfonyl group, and the like.
  • the sulfo group is an alkoxy sulfo group.
  • the alkoxysulfol group include a methoxysulfol group, an ethoxysulfol group, a phenoxysulfol group, a benzyloxysulfol group and the like.
  • acyl group derived from sulfinic acid examples include a sulfiel group.
  • Sulfier Examples of the group include a substituted sulfyl group, for example, the formula: R d —SO— [wherein R d may have a substituent, a hydrocarbon group or a substituent. ⁇ represents a heterocyclic group or a substituted amino group (having this substituent! / May be! ⁇ hydrocarbon group, having this substituent!
  • sulfiel group examples include a methanesulfiel group, a tert-butylsulfiel group, a benzenesulfiel group, and the like.
  • acyl group derived from phosphinic acid examples include a phosphier group.
  • phosphier groups include substituted phosphinyl groups, such as the formula: (R e ) -PO- [wherein two R
  • phosphier group represented by these is mentioned.
  • Specific examples of the phosphie group include a dimethyl phosphie group, a diphenyl phosphie group, and the like.
  • Examples of the substituted acyl group include an acyl group in which at least one hydrogen atom of the acyl group is substituted with a substituent.
  • an amino group substituted with an acyl group that is, an example of an acylamino group is, for example, a formylamino group, an acetylamino group, a propio-lamino group, a pivalo-amino group, a penta group.
  • an acylamino group is, for example, a formylamino group, an acetylamino group, a propio-lamino group, a pivalo-amino group, a penta group.
  • examples thereof include a neuroamino group, a hexanoylamino group, and a benzoylamino group.
  • an amino group substituted with a sulfol group that is, a sulfolamino group
  • a sulfolamino group Specific examples include, for example, -NHSO CH, -NHSO CH, NHSO CH CH,
  • the alkoxycarbonyl group may be linear, branched or cyclic, and examples thereof include an alkoxycarbo group having 2 to 20 carbon atoms.
  • Specific examples of the alkoxycarbonyl group include, for example, a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, a 2-propoxycarbonyl group, an n-butoxycarbonyl group, a tert-butoxycarbol group, and a pentylol group.
  • Examples include a xycarbonyl group, a hexyloxycarbonyl group, a 2-ethylhexyloxycarbonyl group, a lauryloxycarbonyl group, a stearyloxycarbonyl group, and a cyclohexyloxycarbonyl group.
  • substituted alkoxycarbonyl group examples include alkoxycarbonyl groups in which at least one hydrogen atom of the alkoxycarboyl group is substituted with a substituent.
  • amino group substituted with an alkoxycarbonyl group that is, an alkoxycarbonylamino group, which may have a substituent
  • examples of the amino group substituted with an alkoxycarbonyl group include, for example, a methoxycarbolamamino group, an ethoxycarbolamino group, an n-propoxy group.
  • examples thereof include a carbonylamino group, an n-butoxycarbonylamino group, a tertbutoxycarbonylamino group, a pentyloxycarbonylamino group, and a hexyloxycarbonylamino group.
  • Examples of the / aryloxycarbonyl group include an aryloxycarbonyl group and a substituted aryloxycarbonyl group.
  • aryloxycarbonyl group for example, an aryloxy group sulfonyl group having 7 to 20 carbon atoms can be mentioned.
  • Specific examples of the aryloxycarbonyl group include, for example, Examples thereof include a phenoxycarbon group and a naphthyloxycarboxyl group.
  • the substituted aryloxycarbonyl group (the aryloxycarbonyl group having a substituent) is an aryl having at least one hydrogen atom of the aryloxycarbonyl group substituted with a substituent. And an oxycarbonyl group.
  • aralkyloxycarbonyl group examples include an aralkyloxycarboxyl group having 8 to 20 carbon atoms.
  • Specific examples of the aralkyloxycarboxyl group include, for example, a benzyloxycarboxyl group, a phenoxycarboxyl group, a 9-fluoromethyloxycarboxyl group, and the like. .
  • aralkyloxycarbonyl group As a substituted aralkyloxycarbonyl group (aralkyloxycarbol group having a substituent), at least one hydrogen atom of the aralkyloxycarboxyl group is substituted with a substituent.
  • amino group substituted with an aralkyloxycarbonyl group may include, for example, a benzyloxycarbonylamino group, a phenethyl group, and the like. Examples thereof include a carboxycarbolamino group and a 9 fluoromethyloxycarbonylamino group.
  • Examples of the cyclic amino group include an amino group bonded with an alkylene group to form a nitrogen-containing ring.
  • the alkylene group may be linear or branched, for example, an alkylene group having 1 to 6 carbon atoms. Specific examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a trimethylene group, a 2-methylpropylene group, a 2,2-dimethylpropylene group, and a 2-ethylpropylene group.
  • the alkylene group has an oxygen atom, a nitrogen atom at any end of the alkylene group or in the chain. It may have an elementary atom, a carbonyl group, or a double bond.
  • Examples of the spacer represented by Q 1 and Q 2 include a divalent organic group having a substituent!
  • Specific examples of the divalent organic group which may have a substituent include, for example, an alkylene group, an arylene group, a heteroarylene group and the like.
  • the divalent organic group has at least one heteroatom or atomic group such as an oxygen atom, a carbonyl group, a sulfur atom, an imino group, or a substituted imino group at an end of the organic group or at any position in the chain. You may have it.
  • the spacer may have an optically active site.
  • the alkylene group may be linear or branched, for example, an alkylene group having 1 to C: LO.
  • Specific examples of the alkylene group include, for example, methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, otatamethylene group, nonamethylene group, decamethylene group, 2-methyl.
  • Examples of the arylene group include a propylene group, a 2,2-dimethylpropylene group, and a 2-ethylpropylene group.
  • Examples of the arylene group include an arylene group having 6 to 20 carbon atoms.
  • Specific examples of the arylene group include, for example, a phenylene group, a biphenyl group, a binaphthalenedyl group, a bisbenzoxol diyl group, and the like.
  • heteroarylene group examples include 3 to 8 members having 2 to 20 carbon atoms and containing at least 1, preferably 1 to 3 nitrogen atoms, oxygen atoms, and heteroatoms such as Z or sulfur atoms, A 5- or 6-membered monocyclic, polycyclic or fused-ring heteroarylene group is preferable.
  • Specific examples of the heteroarylene group include a biviridine diyl group, a bisbenzothiol diyl group, and a bisthiol diyl group.
  • Examples of the imino group include an imino group in which a hydrogen atom in an imino group (—NH—) is substituted with an amino protecting group.
  • the amino protecting group may be the same as the amino protecting group described for the substituted amino group.
  • divalent organic group having a hetero atom or atomic group examples include: -CH -O-CH 1, -C
  • divalent organic groups may be substituted with a substituent described later.
  • the protecting group represented by R 4 in NR 4 — represented by Z 1 and Z 2 and the protecting group represented by R 5 in NR 5 — represented by Z 3 to and Z 4 are It may be the same as the amino protecting group described for the amino group.
  • the substituent for example, it may have a substituent! / ⁇ , a hydrocarbon group, an optionally substituted heterocyclic group, a halogen atom, a halogeno ⁇ hydrocarbon group, a substituent.
  • An optionally substituted alkoxy group, an optionally substituted aryloxy group, an optionally substituted aralkyloxy group, and an optionally substituted heteroaryloxy group A group, a substituent, an alkylthio group, a substituent! /, An arylothio group, an optionally substituted aralkylthio group, and a substituent.
  • An optionally substituted heterothio group, an optionally substituted acyl group, an optionally substituted acyloxy group, an optionally substituted alkoxycarbonyl group May have a substituent group such as aryloxycarbonyl group, substituent group Yes! /
  • aralkyloxy group, carbonyl group, alkylenedioxy group which may have a substituent, nitro group, amino group, substituted amino group, cyano group, sulfo group, substituted Has a silyl group, a hydroxy group, a carboxy group, and a substituent! /, May have an alkoxythiocarbol group, has a substituent! / May have an aryloxycarbol group, a substituent !
  • substituent it may have a substituent! /?
  • the aryloxycarbonyl group has a substituent! /
  • the aralkyloxycarbonyl group and the substituted amino group may be the groups described above and the substituted amino groups, respectively. It may be the same as the group.
  • halogenated hydrocarbon group examples include groups in which at least one hydrogen atom of the hydrocarbon group is halogenated (eg, fluorinated, chlorinated, brominated, iodinated, etc.).
  • halogenated hydrocarbon for example, a halogenated alkyl group, a halogenated aryl group, a halogenated aralkyl group and the like can be mentioned.
  • halogenated alkyl group examples include a halogenated alkyl group having 1 to 20 carbon atoms, and specific examples thereof include a chloromethyl group, a bromomethyl group, a chloroethyl group, a bromopropyl group, a fluoromethyl group, and a fluorethyl group.
  • halogenated aryl group examples include a halogenated aryl group having 6 to 20 carbon atoms. Specific examples thereof include 2 fluorophenol groups, 3 fluorophenol groups, 4 fluorophenol groups, 2 cyclophenol groups, 3 cyclophenol groups, and 4 fluorophore groups.
  • halogenated aralkyl group examples include a group in which at least one hydrogen atom of the aralkyl group is substituted with a hydrogen atom or a rogen atom.
  • examples thereof include a halogenaralkyl group having 7 to 20 carbon atoms, and specific examples thereof.
  • the halogenated aralkyl group is preferably a halogenated aralkyl group having 6 to 15 carbon atoms.
  • the heteroaryloxy group which may have a substituent is a heteroaryloxy group or a substituted heteroaryl group. An oxy group.
  • heteroaryloxy group for example, it contains at least 1, preferably 1 to 3 heteroatoms such as nitrogen, oxygen and sulfur atoms, and has 2 to 20 carbon atoms, preferably carbon atoms. 2 to 15 heteroaryloxy groups may be mentioned.
  • Specific examples of the heteroaryloxy group include a 2-pyridyloxy group, 2-birazyloxy group, 2-pyrimidyloxy group, 2-quinolyloxy group, and the like.
  • substituted heteroaryloxy group examples include heteroaryloxy groups in which at least one hydrogen atom of the aralkyloxy group is substituted with a substituent.
  • the substituents are the same as the above substituents unless otherwise specified. Yes (the same applies below).
  • the alkylthio group may be linear, branched or cyclic, for example, an alkylthio group having 1 to 20 carbon atoms.
  • Specific examples of the alkylthio group include, for example, methylthio group, ethylthio group, n-propylthio group, 2-propylthio group, n-butylthio group, 2-butylthio group, isobutylthio group, tert-butylthio group, pentylthio group, A hexylthio group, a cyclohexylthio group, etc. are mentioned.
  • the alkylthio group is more preferably an alkylthio group having 1 to 6 carbon atoms, preferably an alkylthio group having 1 to 10 carbon atoms.
  • arylothio group examples include an arylothio group having 6 to 20 carbon atoms.
  • arylthio group examples include a phenolthio group and a naphthylthio group.
  • allylthio groups having 6 to 14 carbon atoms are preferred.
  • Examples of the substituted arylothio group include an arylothio group in which at least one hydrogen atom of the arylothio group is substituted with a substituent.
  • the aralkylthio group may include a aralkylthio group and a substituted aralkylthio group.
  • aralkylthio group examples include an aralkylthio group having 7 to 20 carbon atoms. Specific examples of the aralkylthio group include a benzylthio group and a 2-phenethylthio group. The aralkylthio group is preferably an aralkylthio group having 7 to 12 carbon atoms.
  • the substituted aralkylthio group includes an aralkylthio group in which at least one hydrogen atom of the aralkylthio group is substituted with a substituent. I can get lost.
  • the heteroarylthio group may include a heteroarylthio group and a substituted heteroarylthio group.
  • Examples of the acyloxy group which may have a substituent include an acyloxy group and a substituted acyloxy group.
  • Examples of the substituted acyloxy group include an acyloxy group in which at least one hydrogen atom of the acyloxy group is substituted with a substituent.
  • alkoxythiocarbo group which may have a substituent include an alkoxythiocarbo ol group and a substituted alkoxythiocarbo col group.
  • the alkoxythiocarbonyl group may be linear, branched or cyclic, and examples thereof include an alkoxythiocarbol group having 2 to 20 carbon atoms.
  • Specific examples of the alkoxythiocarbonyl group include, for example, a methoxythiocarbonyl group, an ethoxythiocarbo ol group, n -propoxythiocarbo ol group, 2-propoxythiocarbo ol group, n-butoxythiocarbonyl group, tert- Butoxythiocarbonyl group, pentyloxy Examples thereof include a thiocarbol group, a hexoxycarboxyl group, a 2-ethylhexyloxycarbonyl group, a lauryloxythiocarbonyl group, a stearyloxythiocarbonyl group, and a cyclohexyloxythiocarbonyl group.
  • alkoxythiocarbol group having a substituent an alkoxythiocarbol group in which at least one hydrogen atom of the above alkoxythiocarbol group is substituted with a substituent is used. Can be mentioned.
  • aryloxycarbo group examples include an aryloxythiocarbonyl group having 7 to 20 carbon atoms. Specific examples of the aryloxycarbo group include a phenoxythiocarbonyl group, a naphthyloxythiocarbonyl group, and the like.
  • the substituted aryloxythiocarbonyl group (the aryloxythiocarbonyl group having a substituent) is an aryl in which at least one hydrogen atom of the above aryloxycarbonyl group is substituted with a substituent. And an oxythiocarbol group.
  • substituted aralkyloxycarbonyl group aralkyloxycarbonyl having a substituent
  • at least one hydrogen atom of the aralkyloxycarbonyl group is a substituent.
  • examples thereof include a substituted aralkyloxycarboxy group.
  • the alkylthiocarbonyl group may be linear, branched, or cyclic, and examples thereof include an alkylthiocarbonyl group having 2 to 20 carbon atoms.
  • Alkylthio power Specific examples of the reporter group include, for example, a methylthiocarbon group, an ethylthiocarbonyl group, an n-propylthiocarbon group, such as a 2-propylthiocarbon group, an n-butylthiocarbonyl group, a tert- Butylthiocarbonyl group, pentylthiocarbonyl group, hexylthiocarbon group, 2-ethylhexylthiocarbon group, laurylthiocarbon group, stearylthiocarbon group, cyclohexylthiocarbon group Groups and the like.
  • Examples of the substituted alkylthiocarbon group include an alkylthiocarbon group in which at least one hydrogen atom of the above alkylthiocarbon group is substituted with a substituent.
  • Examples of the aryl group that may have a substituent include an aryl group and a substituted arylthiocarbonyl group.
  • arylthiocarbo yl group for example, an aryl thiocarboxyl group having 7 to 20 carbon atoms can be mentioned.
  • Specific examples of the arylthiocarbo ol group include a phenol carbonyl group and a naphthyl thio carbo ol group.
  • aralkylthiocarbonyl group examples include an aralkylthiocarbonyl group having 8 to 20 carbon atoms.
  • Specific examples of the aralkylthiocarboxyl group include, for example, a benzylthiocarbol group, a phenethylthiocarbol group, a 9-fluoromethylthiocarbonyl group, and the like.
  • Substituted aralkylthiocarbonyl group is an aralkylthiocarbocycle in which at least one hydrogen atom of the above aralkylchicarbonyl group is substituted with a substituent. -Group.
  • Examples of the substituted phosphino group include a phosphino group in which one or two hydrogen atoms of the phosphino group have a substituent, and are substituted with a substituent such as a hydrocarbon group.
  • the hydrocarbon group may have a substituent, and the hydrocarbon group may have the substituent described above, and is the same as the hydrocarbon group.
  • Specific examples of the substituted phosphino group include a dimethylphosphino group, a jetylphosphino group, a diphenylphosphino group, and a methylphenolphosphino group.
  • Examples of the substituted silyl group include, for example, three hydrogen atoms of the silyl group having the above substituent, V, a hydrocarbon group, and the above substituent. And tri-substituted silyl groups substituted with a substituent such as a group.
  • Specific examples of the substituted silyl group include, for example, a trimethylsilyl group, a triethylsilyl group, a tri (2-propyl) silyl group, a tert-butyldimethylsilyl group, a tert-butyldiphenylsilyl group, a triphenylsilyl group, and a tert-butylmethoxyphenylsilyl group. Group, tert-butoxydiphenylsilyl group and the like.
  • Examples of the substituted silyloxy group include, for example, a hydrocarbon group and the above substituent group having 1 to 18 carbon atoms and 1 to 3 hydrogen atoms of the silyloxy group having the above substituent group.
  • Examples thereof include a tri-substituted silyloxy group substituted with a substituent such as an optional alkoxy group.
  • substituted silyloxy group examples include, for example, a trimethylsilyloxy group, a triethylsilyloxy group, a tri (2-propyl) silyloxy group, a tert-butyldimethylsilyloxy group, a tert-butyldiphenylsilyloxy group, and a triphenylsilyloxy group.
  • a trimethylsilyloxy group a triethylsilyloxy group
  • a tri (2-propyl) silyloxy group examples
  • tert-butyldimethylsilyloxy group examples of the substituted silyloxy group
  • tert-butyldiphenylsilyloxy group examples include, for example, a trimethylsilyloxy group, a triethylsilyloxy group, a tri (2-propyl) silyloxy group, a tert-butyldimethylsilyloxy group, a tert-
  • Examples of the alkylenedioxy group which may have a substituent include an alkylenedioxy group and a substituted alkylenedioxy group.
  • Examples of the alkylenedioxy group include an alkylenedioxy group having 1 to 3 carbon atoms. Specific examples of the alkylenedioxy group include a methylenedioxy group, an ethylenedioxy group, a trimethylenedioxy group, and a propylenedioxy group.
  • Examples of the substituted alkylenedioxy group include an alkylenedioxy group in which at least one hydrogen atom of the alkylenedioxy group is substituted with a substituent. Specific examples of the substituted alkylenedioxy group include a difluoromethylenedioxy group.
  • optically active phosphorus compound examples include the following optically active phosphorus compounds.
  • optically active amine compound examples include optically active aliphatic amine compounds, optically active aromatic amine compounds, and optically active nitrogen-containing heterocyclic compounds.
  • optically active aliphatic amine compound examples include optically active menthylamine and optically active 1-phenylethylamine.
  • optically active aromatic amine compound examples include, for example, an aniline compound having an optically active site.
  • optically active nitrogen-containing compound examples include pyridine, piperidine, piperazine, oxazoline compounds having an optically active site, and the like.
  • an optically active oxazoline compound of a monodentate ligand is also included in the optically active amine compound.
  • the optically active alcohol compound may be any alcoholic compound having an optically active site in its molecule to be an optically active compound.
  • Specific examples of the optically active alcohol compound include the following optically active alcohol compounds.
  • the optically active sulfur compound is a sulfur compound having an optically active site in its molecule to be an optically active compound.
  • Specific examples of the optically active sulfur compound include the following optically active sulfur compounds.
  • Examples of the bidentate ligand include optically active diphosphine compounds, bidentate optically active phosphorus compounds such as phosphine monophosphite compounds, optically active diamine compounds, optically active amino compounds, and the like. Specific examples include alcoholic compounds, optically active diol compounds, optically active aminophosphine compounds, optically active phosphinoalcohol compounds, optically active aminothiol compounds, and optically active bisazoline compounds.
  • the bidentate optically active phosphorus compound may be a bidentate phosphorus compound having an optically active site in its molecule to be an optically active compound.
  • Examples thereof include an optically active phosphorus compound represented by the following general formula (10).
  • the optically active phosphorus compound represented by the general formula (10) is a phosphorus compound having an optically active site in the molecule.
  • R 6 to R 9 each independently has a hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, or a substituent.
  • An alkoxy group, having a substituent ! may be a aryloxy group or a substituent, and may be a aralkyloxy group, and Q 3 represents a spacer.
  • R 6 and R 7 and P and / or R 8 and R 9 and P, R 6 and / or R 7 and Q 3 or R 8 and / or R 9 and Q 3 are bonded to form a ring. It may be formed.
  • R 6 to R 9 and Q 3 may be any group that allows the phosphorus compound represented by the general formula (10) to be an optically active phosphorus compound. ]
  • optically active phosphorus compound examples include, for example, 1,2-bis (alkyl-phosphino) ethane (DIPAMP), 1,2-bis (alkylmethylphosphino) ethane (BisP *).
  • DIPAMP 1,2-bis (alkyl-phosphino) ethane
  • BisP * 1,2-bis (alkylmethylphosphino) ethane
  • the bidentate optically active diamine compound may be any diamine compound having an optically active site in the molecule as an optically active compound.
  • An optically active diamine compound represented by The optically active diamine compound represented by the following general formula (11) is a diamine compound having an optically active site in the molecule.
  • R 1G to R 13 are each independently a hydrogen atom, a hydrocarbon group optionally having substituent (s), a heterocyclic group optionally having substituent (s), a substituted sulfol group or Indicates a protecting group
  • R " ⁇ R 17 independently represents a hydrogen atom, a hydrocarbon group which may have a substituent, or a heterocyclic group which may have a substituent
  • Q 4 represents a spacer or a bond.
  • F and g each independently represent 0 or 1. However, R 14 and R 15 and C and Z or R 16 and R 17 and C are connected.
  • R 1C R 11 and R 14 or R 15 and C and N, and
  • R 12 or R 13 and R 16 or R 17 and C and N are combined to form a ring such as a carbocyclic ring or an aliphatic ring.
  • R 14 or R 15 and R 16 or R 17 may be bonded to form a ring.
  • R 1C> , R 11 and N, and Z or R 12 , R 13 and N may combine to form a ring.
  • R 1G and R 11 and N and / or R 12 , R 13 and N may be bonded to form a heterocyclic ring such as a pyridine ring.
  • R 14 or R 15 and R 16 or R 17 and C, Q 4 and C are bonded to form an aromatic ring.
  • each group represented by R 1C) to R 17, i.e., may be an optionally substituted hydrocarbon group, optionally substituted heterocyclic group,
  • the substituted sulfo group and the protecting group may be the same as each group described above.
  • the spacer indicated by Q 4 may be the same as the spacer described in Q 1 and Q 2 above.
  • R 14 and R 15, and Z or the ring and R 16 and R 17 is formed by bonding, and the R 1C>, or R 11 and R 14, or R 1 5, and Z or R 12 or R 13 and R A ring formed by combining 16 or R 17 ; a ring formed by combining R 14 or R 15 and R 16 or R 17 ; and R 1C> and R 11 and Z or R 12 and R 13
  • the ring formed by bonding include rings such as carbon ring and heterocyclic ring formed by bonding with an alkylene group.
  • the alkylene group may be the same as the alkylene group described for the spacer in Q 1 and Q 2 in the general formulas (7) and (8).
  • the ring to be formed include a carbon ring such as an aliphatic ring such as a cyclohexane ring and a benzene ring, and a heterocyclic ring such as a pyridine ring and a piperidine ring. These formed rings may further have a substituent as described above.
  • optically active diamine compound examples include optically active aromatic diamines, optically active aliphatic diamines, and optically active bisoxazoline compounds.
  • the optically active bisoxazoline compound in the optically active diamine compound is a bidentate optically active bisoxazoline compound.
  • bidentate optically active bisoxazoline compounds include bis having an optically active site in the molecule that forms an optically active compound.
  • an optically active bisoxazoline compound represented by the following general formula (17) may be used.
  • the optically active bisoxazoline compound represented by the following general formula (17) is a bisoxazoline compound having an optically active site in the molecule.
  • the optically active oxazoline compound may be a tridentate ligand, a tetradentate ligand, or the like depending on the type of substituent of the spacer oxazoline ring.
  • oxazoline rings A and B each represent an optionally substituted oxazoline ring, and Q 1C> represents a spacer or a bond.
  • the oxazoline ring having a substituent represented by oxazoline rings A and B is an oxazoline ring (that is, an oxazoline ring having no substituent). ) Or a substituted oxazoline ring (that is, an oxazoline ring having a substituent).
  • the substituent in the oxazoline ring which may have a substituent may be the same as the substituent described above.
  • the spacer indicated by Q 10 may be the same as the spacer described in Q 1 and Q 2 above.
  • optically active diamine compound examples include, for example, 1,2 diphenylethylene diamine, 1,2 bis (4-methoxyphenyl) ethylene diamine, 1,2 dicyclohexyl ethylene diamine, 1,2 diamine.
  • optically active diamine compounds include (1R, 2R), (IS, 2S), (1 R, 2S), (IS, 2R) isomers as optically active isomers.
  • 2R) and (IS, 2S) are preferred optically active diamine compounds (wherein the optically active form is the same as the optically active amino alcohol compound described later unless otherwise specified). The same applies to compounds having a structure).
  • (1R, 2R) and (IS, 2S) optically active diamine compounds For example, for example, (1R, 2R) -1, 2, 2-diethyleneethylenediamine, (IS, 2S) -1, 2, 2 diethyleneethylenediamine, (1R, 2R) -1, 2 Di (4-N, N-dimethylaminophenol) ethylenediamine, (is, 2S) -1, 2,2-Di (4-N, N-dimethylaminophenol) ethylenediamine, (1R, 2R) — 1, 2 di (4-N, N-detylaminophenol) ethylenediamine, (IS, 2S) — 1,2-di (4-N, N-detylaminophenol) ethylenediamine, (1R, 2R) — 1, 2 di (4-N, N dipropylaminophenol) ethylenediamine, (IS, 2S) — 1,2 di (4-N, N dipropylaminophenol) ethylenediamine, etc. It
  • optically active bisoxazoline compound examples include (S, S) -2,6-bis (4-isopropyl-1-2-oxazoline-1-2-yl) pyridine, (R, R) 2,6bis (4-isopropyl-2-oxazoline-2-yl) pyridine, (S, S) 2,6 bis (4-phenol-2-oxazoline-2-yl) pyridine, (R, R) 2, 6 bis (4 ferro-2-oxazoline-2-yl) pyridine, (S, S) 2, 2, -isopropylidene bis (4 ferro-2-oxazoline), (R , R) — 2, 2, monoisopropylidenebis (4 phenol 2-oxazoline), (S, S) (1) 2, 2, monoisopropylidenebis (4-tert-butyl-2-oxazoline), 2, 2, 1 Methylenebis [(4R or 4S) —FerroLu, 5, 5 dimethyloxazoline], 2, 2′-M
  • the bidentate optically active amino alcohol compound is not limited as long as it is an amino alcohol compound having an optically active site in the molecule to be an optically active compound.
  • An example is an optically active amino alcohol compound represented by the following general formula (12).
  • the optically active amino alcohol compound represented by the following general formula (12) is an amino alcohol compound having an optically active site in the molecule.
  • R 18 and R 19 are each independently a hydrogen atom, an optionally substituted hydrocarbon group, an optionally substituted heterocyclic group, a substituted sulfole group, or R 20 to R 23 each independently represents a hydrogen atom, a hydrocarbon group which may have a substituent, or a heterocyclic group which may have a substituent
  • Q 5 represents Spacer or bond
  • f and g are the same as above, except that R 2 ° and R 21 and C and / or R 22 and R 23 and C combine to form a ring.
  • R 18 or R 19 and R 2 or R 21 and N and C are
  • a ring such as an aliphatic ring may be formed. Further, R 18 and R 19 may be bonded to form a ring. R 18 , R 19, and N may be bonded to form a heterocyclic ring such as a pyridine ring. Furthermore, even if R 2 , R 21 , C and Q 5 are combined to form a ring such as an aliphatic ring or an aromatic ring.
  • each group represented by R 18 to R 23 that is, a hydrocarbon group that may have a substituent, a heterocyclic group that may have a substituent, a substituent
  • the sulfo group and the protecting group may be the same as each group described above.
  • the spacer indicated by Q 5 may be the same as the spacer described in Q 1 and Q 2 above.
  • optically active aminoamino alcohol compound examples include optically active aromatic aminoamino alcohols and optically active aliphatic aminoamino alcohols.
  • Optically active amino alcohol Specific examples of the compound include, for example, 1-amino-2-propanol, 2-amino-1-butanol, alaninol, oral isinol, iso-orthoisinol, 2-aminocyclohexanol, 4 aminocyclohexanol, and 2 aminocyclohexane.
  • Optically active aliphatic amino alcohols such as methanol; phenylglycinol, phenolalanol, ephedrine, norephedrine, pseudoephedrine, 2-amino-1,2-diphenylethanol, 2-benzylaminocyclohexane
  • optically active aromatic amino alcohols such as xanthethanol.
  • optically active amino alcohol compound shown below is mentioned.
  • optically active amino alcohol compounds include (1R, 2R), (1S, 2S), (1R, 2S), and (IS, 2R) isomers as optically active substances.
  • (1R, 2R) and (IS, 2S) isomers are preferred optically active amino alcoholic compounds.
  • the bidentate optically active diol compound may be a diol compound having an optically active site in the molecule to be an optically active compound.
  • the following general formula An optically active diolich compound represented by 13
  • the optically active diol compound represented by the following general formula (13) is a diol compound having an optically active site in the molecule.
  • R 24 to R 27 each independently represents a hydrogen atom, a hydrocarbon group which may have a substituent, or a substituent which may have a heterocyclic group, Q 6 Indicates a spacer or bond
  • F and g are the same as above. However, R 24 and R 25 and C and / or R 26 and R 27 and C are bonded.
  • optically active diol compound examples include the optically active diol compounds shown below.
  • optically active dioli compounds include (1R, 2R), (IS, 2S), (1R, 2S), (IS, 2R) isomers as optically active isomers. 2R) and (IS, 2S) isomers are preferred as optically active dioli compounds.
  • the bidentate optically active aminophosphine compound may be an aminophosphine compound having an optically active site in the molecule to be an optically active compound.
  • examples thereof include an optically active aminophosphine compound represented by the following general formula (14).
  • the optically active aminophosphine compound represented by the following general formula (14) is an aminophosphine compound having an optically active site in the molecule.
  • Q 7 represents a spacer or a bond
  • R 6 , R 7 , R 12 , R 13 , R 16 and R 17 and g are the same as above, except that R 6 , R 7 and P , R 6 and / or R 7 and P and Q 7 , R 16 and R 17 and C, R 12 or R 13
  • R 16 or R 17 and C, and / or R 12 , R 13 and N may combine to form a ring. Also, R 16 or R 17 and C, and / or R 12 , R 13 and N may combine to form a ring. Also,
  • R 12 , R 13 and N may be bonded to form a heterocyclic ring such as a pyridine ring. Furthermore, R 16 or R 17 may be bonded to form a ring such as an aromatic ring or an aliphatic ring. )
  • the spacer represented by Q 7 may be the same as the spacer described in Q 1 and Q 2 above.
  • optically active aminophosphine compound examples include the compounds shown below.
  • a phosphinoalcohol compound having an optically active site that becomes an optically active compound in the molecule may be used.
  • examples thereof include an optically active phosphinoalcohol compound represented by the following general formula (15).
  • the optically active phosphinoalcohol compound represented by the general formula (15) is a phosphinoalcohol compound having an optically active site in the molecule.
  • Q 8 represents a spacer or a bond
  • R 6 , R 7 , R 26 and R 27 , and g are the same as above, except that R 6 and R 7 and P, R 26 and / Or R 27 and C and Q 8 , R 26 and R 27 and C, R 26 or R 27 and C
  • Q 8 may combine with each other to form a ring.
  • the spacer represented by Q 8 may be the same as the spacer described in Q 1 and Q 2 above.
  • optically active phosphinoalcohol compound examples include the compounds shown below.
  • an aminothioi compound having an optically active site that becomes an optically active compound in the molecule may be used.
  • it is represented by the following general formula (16).
  • optically active aminothioi compounds Represented by the following general formula (16)
  • An optically active aminothioy compound is an aminothioy compound having an optically active site in the molecule.
  • R 28 represents a hydrogen atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group
  • Q 9 represents a spacer or a bond.
  • R 18 , R 19 , R 2 ° to R 2 3 , and f and g are the same as above, except that R 2 and R 21 and C and Z or R 22 and R 23 and C are connected.
  • a ring may be formed. Further, R 18 , R 19 and N may be bonded to form a ring such as a heterocyclic ring such as a pyridine ring or a piperidine ring. ) Furthermore, R 2G or R 21 and C and Q 9 and CR 22
  • ⁇ e or R 23 may combine with each other to form a ring such as an aromatic ring or an aliphatic ring.
  • the hydrocarbon group which may have a substituent represented by R 28 and the heterocyclic group which may have a substituent are the same as the groups described above. It may be.
  • the spacer indicated by Q 9 may be the same as the spacer described in Q 1 and Q 2 above.
  • optically active aminothioi compound examples include the compounds shown below.
  • Examples of the tridentate ligand include compounds shown below.
  • the asymmetric ligand used in the present invention may function as a ligand in a different coordination state depending on the reaction conditions and the like.
  • asymmetric ligands may be used alone or in appropriate combination of two or more.
  • these asymmetric ligands are formed by arbitrarily combining the asymmetric ligands. You may do it.
  • the asymmetric ligand may be a commercially available product, or an asymmetric ligand appropriately produced by a conventional method or a method described in the literature as described above.
  • the copper compound used in the present invention can be reacted with an asymmetric ligand to obtain an asymmetric copper complex. Even if the obtained asymmetric copper complex is used as a catalyst for a homogeneous hydrogenation reaction, the reaction is bad. Anything that has no effect can be used.
  • Examples of the copper compound used in the present invention include compounds containing monovalent or divalent copper, and examples thereof include copper salts, other copper compounds, and copper complexes. Specific examples of these copper compounds used in the present invention include, for example, copper compounds described in Organocopper Reagent A Practical Approach (OXFORD UNIVERSITY PRESS, 1994).
  • Examples of the copper salt include a copper salt represented by the following general formula (2-1).
  • nl2 one of X 1 are the same or different, ⁇ - indicates ON, nl L ⁇ nl3 are each independently a natural number.
  • ⁇ represented by X 1 - The ON, nitrate ions, nitrite ions, Harogeni ⁇ ion, sulfate ion, sulfite ion, sulfonate ion, sulfamate ions, carbonate ions, water oxide ions, carboxylic acid Ion, sulfide ion, thiocyanate ion, phosphate ion, pyrophosphate ion, oxide ion, phosphate ion, chlorate ion, perchlorate ion, oxalate ion, hexafluorate ion, cyanide ion Borate ion, metaborate ion, borofluoride ion and the like.
  • halide ions include fluoride ions, chloride ions, bromide ions, and iodide ions.
  • R 1G5 SO _ As sulfonate ions, R 1G5 SO _ (R 1G5 is a hydrocarbon which may have a substituent.
  • the hydrocarbon group which may have a substituent is the same as described above. ) And the like.
  • Specific examples of the sulfonate ion include, for example, methanesulfonate ion, benzenesulfonate ion, trifluoromethanesulfonate ion, and p-toluenesulfonate. And ions.
  • Examples of the carboxylate ion include R 1G6 COO_ (R 1G6 represents a hydrocarbon group which may have a substituent. The hydrocarbon group which may have a substituent is the same as above).
  • Specific examples of strong rubonic acid ions include acetate ion, formate ion, propionate ion, darconate ion, oleate ion, oxalate ion, benzoate ion, phthalate ion, and trifluoroacetate ion. It is done.
  • ni l and nl2 each independently represent a natural number, preferably a natural number of 1 to 10.
  • the copper salt include, for example, copper nitrates such as copper nitrate (I) and copper nitrate (II); copper nitrites such as copper nitrite (I) and copper nitrite (II); copper chloride (1), copper chloride (11), copper bromide (1), copper bromide (11), copper fluoride (1), copper fluoride (11), copper iodide (1), copper iodide ( Copper halides such as II); copper sulfates such as copper sulfate ( ⁇ ); copper sulfites such as copper sulfite (II); copper methanesulfonate (I), copper methanesulfonate ( ⁇ ), copper p-toluenesulfonate (I), p-toluenesulfonic acid copper (II), trifluoromethanesulfonic acid copper (I), trifluoromethanesulfonic acid copper (II) and other
  • Examples of other copper compounds include copper compounds represented by the following general formula (2-2).
  • nl5 X 2 are the same or different and may have a substituent
  • OR 1G1 R 1G1 represents a hydrocarbon group which may have a substituent
  • NR 1G2 R 1G2 The hydrocarbon group which may be the same or different and may have a hydrogen atom or a substituent is shown.
  • PR 103 (Two R 1G3 s are the same or different and each represents an optionally substituted hydrocarbon group.
  • the SR 1G4 (R 1C) 4 represents a hydrocarbon group which may have a substituent. ), 1,3-dicarbol compound or an enolate or hydride thereof, and nl4 to nl6 each independently represents a number. ]
  • nl4 and nl5 each independently represent a natural number, preferably a natural number of 1 to 10.
  • a hydrocarbon group which may have a substituent represented by X 2 , and OR 101 , NR 102 , PR 103
  • the hydrocarbon group which may have a substituent represented by R 102 , R 103 and R 104 may be the same as the hydrocarbon group which may have a substituent described above.
  • OR 1C) 1 represented by X 2 include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n -butoxy group, s-butoxy group, tert-butoxy group, phenoxy group Etc.
  • NR 102 examples include a dimethylamino group, a jetylamino group, a dicyclohexyl group.
  • Examples thereof include a mino group and a diphenylamino group.
  • PR 103 examples include dimethylphosphino group, jetylphosphino group, di (tert-
  • Butyl) phosphino group dicyclohexylphosphino group, diphenylphosphino group and the like.
  • SR 1CM examples include SMe, SEt, SBu, SPh, S (CH CH), etc.
  • 1,3-dicarbol compound or its enolate examples include 2,5-pentanedione (acac), 1, 1,1-trifluoro-2,5-pentanedione, 1, 1, 1, 3, 3, 3 — Hexafluoropentanedione (Mac), benzoylacetone, methyl acetate acetate, ethyl acetate acetate and the like.
  • the copper compound represented by the general formula (2-2) include, for example, copper alkoxides such as copper dimethoxide, copper methoxide, copper diisopropoxide, copper tert-butoxide; copper phenoxide, etc.
  • Copper phosphides such as copper and diphenylphosphides
  • copper amides such as copper dicyclohexylamide
  • copper thiolates such as copper butanethiolate and copper thiophenolate
  • Examples include enolate; hydrogen copper; hydrocarbon copper such as mesityl copper and ethur copper; and silyl copper such as trimethylsilyl ether copper.
  • copper compounds include, for example, copper compounds represented by the following general formula (2-3).
  • R 1OTs are the same or different and each represents an optionally substituted hydrocarbon group, and nl 7 represents a natural number.
  • Specific examples of the copper compound represented by the general formula (2-3) include copper hydride (I) (triphenylphosphine) hexamer (Stryker reagent) and the like.
  • Specific examples of the copper compound represented by the general formula (2-3) include hydrido (triphenylphosphine) copper (I) hexamer and the like.
  • Copper compounds such as the above copper salts and other copper compounds include alkali metals (for example, lithium, sodium, potassium, rubidium, cesium, etc.) and alkaline earth metals (for example, magnesium, calcium, strontium, nitrogen, etc.). It is also possible to form a double salt with a salt of such as lithium. Specific examples of the double salt formed include, for example, KCuF, K [CuF], CuCN-LiCl
  • the compound may be an anhydride or a hydrate.
  • the copper complex used as the copper compound has i) a ligand other than the asymmetric ligand and reacts with the asymmetric ligand to catalyze a homogeneous hydrogenation reaction, particularly a homogeneous asymmetric hydrogen.
  • Any copper complex can be used as long as it is a complex or iii) an asymmetric copper complex precursor that forms an asymmetric copper complex by reacting with an asymmetric ligand.
  • the copper complex include COMPREHENSI. VE ORGANOMETALLIC CHEMISTRY II (Pergamon,
  • the copper complex used as the copper compound cannot be generally described because of its complicated structure, but if it is represented by a general formula, for example, a copper complex represented by the following general formula (2-4): Etc.
  • n22 amino L 2 are the same or different and each represents a ligand, n24 amino X 3 are taken identical or different, ⁇ - indicates on or cation, N21 ⁇ n23 are independently a, Represents a natural number, and n 24 represents 0 or a natural number.
  • the ligand represented by L 2 may be a compound that binds or coordinates with copper.
  • the ligand include monodentate, bidentate, tridentate, and tetradentate ligands.
  • ligand represented by L 2 include, for example, a halogen atom, carbon monoxide (CO), nitriles, cyanides, neutral ligands, hydrocarbon groups, and hydride groups. , Phosphorus compound, amine compound, sulfur compound, arion, hydrocarbon group which may have a substituent, OR lc> ⁇ R 1 ⁇ 1 is the same as above. ), NR 1C> 2 (R 1C> 2 is the same as above), PR 1C> 3 (R 1C> 3 is the same as above)
  • SR 1G4 (R 1C> 4 is the same as above), or 1,3-dicarbo-Louis compound or its enolate (the 1,3-dicarbo-Louis compound or its enolate is the same as above. ) And the like.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 1 represents a hydrocarbon group which may have a substituent.
  • R 11C represents a hydrocarbon group which may have a substituent.
  • -Tolyl and the like represented by The hydrocarbon group which may have a substituent represented by R 11G is the same as the hydrocarbon group which may have a substituent described above.
  • Specific examples of nitriles include, for example, acetonitrile and benzo-tolyl. It is done.
  • the cyanides e.g., RmNC O ⁇ 111 represents a hydrocarbon group which may have a substituent.
  • the cyanides represented by The hydrocarbon group which may have a substituent represented by R 111 is the same as the hydrocarbon group which may have a substituent described above.
  • Specific examples of the cyanides include, for example, methyl isocyanide and phenyl isocyanide.
  • Examples of neutral ligands include aromatic compounds, hydrocarbons such as olefins and olefins, and other neutral ligands.
  • Examples of the aromatic compound include benzene, p-cymene, 1,3,5-trimethylbenzene (mesitylene), hexamethylbenzene and the like.
  • Examples of olefins include ethylene, propylene, and cyclootaten.
  • Examples of diolefins include butadiene, cyclooctagen (cod), and norbornagen (nbd).
  • Examples of other neutral ligands include N, N-dimethylformamide (DMF), acetone, and black mouth form.
  • hydrocarbon group examples include a cyclopentaenyl group (Cp) and a tetramethylcyclopentadienyl group.
  • R 151 s are the same or different and each has a hydrogen atom, a hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, or a substituent.
  • R 151 may have a substituent, may have a hydrocarbon group, a substituent, may have a heterocyclic group, an optionally substituted alkoxy group, a substituent.
  • the aryloxy group which may have a substituent and the substituent may be! /
  • the aralkyloxy group and the substituted amino group may be the same as the groups described above.
  • a hydrocarbon group which may have a substituent represented by R 151 a hydrocarbon group which may have a substituent represented by R 151 , a heterocyclic group which may have a substituent, or an alkoxy group which may have a substituent.
  • Substituent ! / May have a aryloxy group, may have! /, May have a aralkyloxy group, and a substituted amino group may be the same as each group described above.
  • two phosphorus compounds are combined to form a diphosphine compound, for example, the general formula (42)
  • Q 21 represents a spacer, the four R 151 identical or different, the same. As) by forming a Jihosufini ⁇ compounds represented, even.
  • the spacer one represented by Q 21 is a group derived from R 151, the I be the same as the alkylene group described for! /,.
  • phosphorus compound examples include, for example, triphenylphosphine, tolylphosphine, trimethylphosphine, triethylphosphine, methyldiphenylphosphine, dimethylphenolphosphine, and diphenylphosphinomethane (dppm).
  • Phosphine compounds such as diphenylphosphinoethane (dppe), diphenylphosphinopropane (dppp), diphenylphosphinobutane (dppb), diphenylphosphinophenocene (dppf), trimethylphosphite, triethyl
  • Phosphine compounds such as diphenylphosphinoethane (dppe), diphenylphosphinopropane (dppp), diphenylphosphinobutane (dppb), diphenylphosphinophenocene (dppf), trimethylphosphite, triethyl
  • the amine compound include phosphite compounds such as phosphite and triphenyl phosphite.
  • amine compound examples include ammonia; methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, s-butylamine, tert-butylamine, Cyclohexylamine Aliphatic amines such as Aryl, Dimethylamino, etc .; Nitrogen-containing aromatic heterocycles such as Pyridine ( Py ), Dimethylaminopyridine, etc., Pyrrolidine, Piperazine, etc.
  • Nitrogen aliphatic heterocycles ethylenediamine (en), propylene diamine, triethylene diamine, tetramethylethylene diamine (TMEDA), biviridine (bp y), phenanthrin (phen) and other diamines Can be mentioned.
  • sulfur compound examples include dimethyl sulfide, jetyl sulfide, dipropyl sulfide, dibutyl sulfide, and the like.
  • the key-on may be the same as the key-on described for X 1 in the general formula (2-1).
  • the hydrocarbon group which may have a substituent may have the substituent described above, and is the same as the hydrocarbon group.
  • the ion represented by X 3 is a halogen ion, BR 112 (four R 112 are It is the same or different and represents a hydrogen atom, a hydrocarbon group which may have a substituent, or a halogen atom. ), CIO, BrO, OTf, NO, PF, SbF, AsF, I, sulfate ion, CuR
  • Two R 113 s are the same or different and may have a halogen atom or a substituent.
  • Tf is a trifluoromethanesulfonyl group
  • the hydrocarbon group is the same as each group described above.
  • BR 112 examples include BH, BPh, and BF.
  • R 113 is a halogen atom in CuR 113 is, for example, CuCl
  • R 113 may have a substituent
  • hydrogen group examples include CuMe, CuPh, and Cu (Mes).
  • Examples of the cation include alkali metal ions, alkaline earth metal ions, ammonium ions, phosphonium ions, and the like.
  • alkali metal ions examples include lithium ions, sodium ions, potassium ions, cesium ions, and the like.
  • alkaline earth metal ion examples include magnesium ion, calcium ion, and sodium ion.
  • the amorphous ion there can be mentioned an amorphous ion and a substituted amorphous ion.
  • the substituted ammonium ion include, for example, methyl ammonium ion, dimethyl ammonium ion, trimethyl ammonium ion, tetramethyl ammonium ion, ethyl ammonium ion, jetyl ammonium ion, triethyl ammonium ion, tetraethyl ammonium ion, and tetraethyl ammonium ion.
  • Examples of the phospho-muon ion include a phenol-phosphonium ion, a di-phenol phospho-muion, a tri-phosphoro-muon ion, and a tetra-phenol phospho-muon ion.
  • N21 is a force indicating a natural number, preferably a natural number of 1 to 10.
  • N22 represents a natural number, preferably a natural number of 1-20.
  • Specific examples of the copper complex used as the copper compound include, for example, the following copper compounds.
  • copper compounds as described above that is, copper compounds used as copper compounds such as copper salts, other copper compounds, and copper complexes may be anhydrous or hydrated. These copper compounds may be used alone or in appropriate combination of two or more.
  • the copper compound may be a commercially available product, or may be a product prepared as appropriate by a conventional method or a method described in the literature described in the present specification.
  • asymmetric copper complex used in the present invention examples include, for example, Handbook of Enantios elective Catalysis (VCH, 1993), J. Am. Chem. Soc. 2001, 123, 5843., J. Org. Chem. 1998, 63, 6090., Angew. Chem. Int. Ed. 2004, 43, 1679., Dalton. Trans. 2003, 18 81., ORGANIC LETTERS, Vol. 6, No. 14, 2305 (2004), etc.
  • Asymmetric copper complexes Asymmetric copper complexes.
  • the following asymmetric copper complexes are also exemplified as specific examples of the asymmetric copper complex having an asymmetric ligand used in the present invention.
  • c input c L monodentate ligand CAMP, MonoPHOS, etc
  • -CuH L Bidentate BINAP, SEGPHOS, DM-SEGPHOS, DTB -SEGPHOS, etc.
  • .-CuH L Monodentate ligand CAMP, MonoPHOS, etc
  • Cu Cu-L X CI, Br, I, F, OTf, CIQ, BF, PF B, AsF 6, SbF 6, etc.
  • X CI, Br, I, F, OTf, Ciq, BF 4 , PF 6 , AsF 6 , SbF 6 , etc.
  • L Bidentate BINAP, SEGPHOS, DM-SEGPHOS, DTBM-SEGPHOS, etc.
  • X CI, Br, I, F, OTf, CIQ, BF 4, PF 6, AsF 6, SbF 6, etc.
  • L 2 L Bidentate Ligands BINAP, SEGPHOS, DM-SEGPHOS, DTBM-SEGPHOS, etc
  • .-Cu L Bidentate ligand BINAP, SEGPHOS, DM-SEGPHOS, DTBM-SEGPHOS, etc.
  • XX CI, Br, I, F, OTf, CIQ, B, PF 6, AsF 6, SbF R, etc.
  • .-Cu L tetradentate ligand TROST LIGAND, Jacobsen Ligand, etc.
  • asymmetric copper complexes can be used alone or in combination, if necessary. They may be used in combination.
  • the asymmetric copper complex having an asymmetric ligand may be an anhydride or a hydrate.
  • the asymmetric copper complex used in the present invention may be a commercially available product, or a product prepared by a conventional method, a method described in the above-mentioned literature, or a method described later.
  • the asymmetric copper complex used in the present invention may be any asymmetric copper complex having an asymmetric ligand as described in the above 1) asymmetric ligand. If a homogeneous copper complex is represented by a structural formula, the structure is complex, so it cannot be said unconditionally, and it is difficult to represent it by a general formula. For example, if expressed darely, it is represented by the following general formula (1) .
  • n2 pieces of L 1 are the same or different and each represents a ligand FuHitoshihai
  • n5 one of X 1 are the same or different
  • N6 X 2 may be the same or different and may have a substituent
  • OR 1C) 1 (R 1C) 1 may have a substituent A hydrocarbon group is shown.
  • NR 1G2 two R 1G2s are the same or different
  • PR 1C> 3 two R 1C> 3 are the same or
  • SR 1C> 4 (R 1C) 4 represents a hydrocarbon group which may have a substituent.
  • n7 X 3 are the same or different
  • each represents a cation or a cation
  • nl, n2 and n4 are each independently
  • n3 and n6 to n9 each independently represents 0 or a natural number
  • two n5 are the same or different and represent 0 or a natural number.
  • the asymmetric ligand represented by L 1 is the asymmetric ligand described in the above 1) asymmetric ligand.
  • nl represents a natural number, and is preferably a natural number of 1 to 10.
  • n2 represents a natural number, preferably a natural number of 1 to 12.
  • n3 is 0 or a force indicating a natural number, preferably 0 or a natural number of 1 to 20.
  • n5 is a force indicating a natural number, preferably a natural number of 1 to 10.
  • n6 is 0 or a force indicating a natural number, preferably 0 or 1 to: a natural number of L0.
  • the asymmetric copper complex represented by the general formula (1) is, for example, the general formula (61)
  • L 11 represents a bidentate optically active phosphorus compound
  • L 12 represents a phosphorus compound different from L 11
  • L 13 represents a ligand
  • n35 represents a natural number.
  • the bidentate optically active phosphorus compound represented by L 11 may be the same as the optically active phosphorus compound described for the asymmetric ligand.
  • the bidentate optically active phosphorus compound represented by L 11 is preferably an optically active diphosphine compound.
  • the optically active diphosphinic compound may be the same as the optically active phosphorus compound described for the asymmetric ligand.
  • the phosphorus compound different from L 11 represented by L 12 may be an optically active compound (asymmetric coordination compound) as long as it is a phosphorus compound different from the bidentate optically active phosphorus compound represented by L 11.
  • L 2 in the optically active phosphorus compound and the general formula (2-4) described in the above asymmetric ligand may be used.
  • the ligand represented by L 13 may be the same as the ligand described as the ligand represented by L 2 in the general formula (2-4).
  • asymmetric copper complex represented by the general formula (61) include, for example, [CuF (PPh) (L 20
  • Similar optically active diphosphine compound and L 11 is ((R) -BINAP, (S ) -BINAP, (R) - DM- BINAP ⁇ (S) - DM- BINAP ⁇ (R) - SEGPHOS, (S ) - SEGPHOS , (R) — DM—SEGPHOS, (S) — DM—SEGPHOS, (R) —DTBM—SEGPHO S, (S) -DTBM-SEGPHOS, (R, R) —SKEWPHOS, (S, S) —Me— DuPH OS ⁇ (S, S) —Me—DuPHOS, (R, S) —Josiphos, (S, R) —Josiphos, etc.), and n represents a natural number. ) And the like.
  • the asymmetric copper complex used in the present invention may be produced, for example, according to the method described in the literature and the like described in the present specification.
  • an asymmetric copper complex can be easily obtained by reacting an asymmetric ligand with a copper compound in an appropriate solvent as necessary.
  • the amount of the asymmetric ligand and the copper compound used is not particularly limited because it varies depending on the type of the copper compound and the asymmetric ligand used, but the amount of the asymmetric ligand used is relative to the copper compound.
  • Examples of the solvent used as necessary include aliphatic hydrocarbons such as pentane, hexane, heptane, otatan, decane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene. ; Dichloromethane, 1,2-Dichlorodiethylethane, Dichlorodiethylform, Carbon tetrachloride, o Dichlorodiethylbenzene, etc.
  • Halogenated hydrocarbons Jetyl ether, Dicyclohexyl ether, tert butyl methyl ether, Dimethoxyethane, Ethylene Ethers such as glycol jetyl ether, tetrahydrofuran, 1,4 dioxane, 1,3 dioxolane; methanol, ethanol, 2-propanol, n-butanol, s butanol, tert-butanol, 2-ethoxyethanol, benzyl alcohol, etc.
  • Alcohols acetone, methyl ethyl ketone, methyl Ketones such as isobutyl ketone and cyclohexanone; esters such as methyl acetate, ethyl acetate, n-butyl acetate and methyl propionate; amides such as formamide, N, N dimethylformamide and N, N dimethylacetamide; Examples thereof include sulfoxides such as dimethyl sulfoxide; cyanogen-containing organic compounds such as acetonitrile; N-methylpyrrolidone, water and the like. These solvents may be used alone or in appropriate combination of two or more.
  • the amount of the solvent used is appropriately selected from the range of usually 1 to 1000 times, preferably 5 to 200 times the amount of the copper compound.
  • reaction between the asymmetric ligand and the copper compound may be carried out in the presence of other reagents, if necessary.
  • Examples of other reagents include acids, bases, reducing agents, halogenating agents and the like.
  • Examples of the acid include inorganic acids, organic acids, Lewis acids and the like.
  • inorganic acid examples include hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, tetrafluoroboric acid, perchloric acid, periodic acid and the like.
  • organic acids examples include formic acid, acetic acid, valeric acid, hexanoic acid, citrate, chloroacetic acid, dichloroacetic acid, trichlorodiacetic acid, trifluoroacetic acid, benzoic acid, salicylic acid, oxalic acid, succinic acid, malonic acid, Carboxylic acids such as phthalic acid, tartaric acid, malic acid, glycolic acid, methane sulfonic acid, benzene sulfonic acid, p toluene sulfonic acid, trifluoromethane sulfone Examples thereof include sulfonic acids such as acids.
  • Lewis acids examples include aluminum halides such as aluminum chloride and aluminum bromide, dialkylaluminum halides such as jetyl aluminum chloride, jetyl aluminum bromide and diisopropylaluminum chloride, triethoxyaluminum, and triethoxyaluminum.
  • Tri-alkoxy aluminum such as isopropoxyaluminum, tri-tert-butoxyaluminum, halogen-titanium such as tetrasalt-titanium, tetraalkoxytitanium such as tetraisopropoxytitanium, boron trifluoride, trisalt-titanium-boron, tribromide
  • halogenated boron such as boron and boron trifluoride diethyl ether complex
  • zinc halide such as zinc chloride and zinc bromide.
  • Examples of the base include inorganic bases and organic bases.
  • Examples of the inorganic base include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, metal carbonates such as sodium carbonate, potassium carbonate, magnesium carbonate, and calcium carbonate, sodium hydrogen carbonate, and carbonate.
  • Examples thereof include metal hydrogen carbonates such as potassium hydrogen, metal hydrides such as lithium hydride, sodium hydride and potassium hydride, and ammonia.
  • Organic bases include, for example, lithium methoxide, lithium ethoxide, lithium tert butoxide, sodium methoxide, sodium ethoxide, sodium tert butoxide, strong methoxide, potassium ethoxide, potassium tert butoxide, potassium naphthalate.
  • Al-rich earth metal salt triethylamine, diisopropylethylamine, N, N dimethyl A-phosphorus, piperidine, pyridine, 4 dimethylaminopyridine, 1,5 diazabicyclo [4. 3. 0] nona 1-5, 1, 8 diazabicyclo [5. 4.
  • Unde force 1 7 Organic amines such as tri-n-butylamine, N-methylmorpholine, methyllithium, ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, s-butyllithium, tert-butyllithium, phenol-lithium, methylmagnesium Chloride, ethyl chloride, n-propylmagnesium chloride, isopropylmagnesium chloride, n- Butyl Magnesium Chloride, s-Butyl Magnesium Chloride, tert-Butinole Magnesium Chloride, Phenyl Magnesium Chloride, Methyl Magnesium Bromide, Ethyl Magne
  • organometallic compounds such as nesium bromide and phenylmagnesium bromide, optically active compounds (optically active diamine compounds) and racemates of the diamine compounds exemplified above as the asymmetric ligand.
  • Examples of the reducing agent include lithium aluminum hydride, sodium borohydride and the like.
  • halogenating agents include quaternary ammonium salts such as tetraptyl ammonium fluoride, tetraptyl ammonium bromobromide, tetraptyl ammonium trifluoromethane disilicate, and halogens such as iodine and bromine. It is done.
  • a range force of usually from 0.001 to LOO equivalent, preferably from 0.01 to LOO equivalent to the copper compound is appropriately selected.
  • reaction temperature between the asymmetric ligand and the copper compound varies depending on the type of solvent, etc., but is usually in the range of ⁇ 100 ° C to 150 ° C, preferably in the range of ⁇ 80 ° C to 120 ° C. Is done.
  • the reaction time is usually appropriately selected from a range of 1 minute to 100 hours, preferably 10 minutes to 24 hours.
  • reaction After the reaction, it may be used as it is as a catalyst for homogeneous hydrogenation reaction, particularly as a catalyst for homogeneous asymmetric hydrogenation reaction, without post-treatment.
  • Etc. may be used as the catalyst.
  • Specific methods of post-treatment include per se known separation and purification methods such as solvent extraction, salting out, crystallization, recrystallization, and various chromatography.
  • the asymmetric copper complex thus obtained may be a so-called monomer or multimer mixture. That is, an asymmetric copper complex (monomer) in which n4 is 1 in the general formula (1) and an asymmetric copper complex (polymer) in which n4 is 2 or more may be mixed. [1 2] Catalyst for homogeneous hydrogenation reaction
  • the homogeneous hydrogenation reaction catalyst containing an asymmetric copper complex of the present invention and the homogeneous hydrogenation reaction catalyst containing a mixture of an asymmetric ligand and a copper compound may be in solid or solution form. If necessary, other components may be added to the catalyst.
  • the other components to be added as necessary may be any components that do not adversely affect the homogeneous hydrogenation reaction, and examples thereof include solvents and other reagents as described above.
  • the ratio of the mixture of the asymmetric ligand and the copper compound is the ratio of the asymmetric ligand.
  • the copper compound may be appropriately selected from the range of usually 0.0001 to 10 equivalents, preferably 0.0001 to 1 equivalent.
  • the method for producing a hydride of an unsaturated compound according to the present invention comprises performing a hydrogenation reaction in a homogeneous system using the unsaturated compound as a raw material (substrate) in the presence of the catalyst for homogeneous hydrogenation reaction.
  • the hydride of the desired unsaturated compound can be obtained easily and with good yield.
  • a prochiral compound is used as the unsaturated compound and an asymmetric hydrogenation reaction is carried out in the presence of a homogeneous asymmetric hydrogenation catalyst as a homogeneous hydrogenation reaction catalyst, the resulting unsaturated compound
  • the hydride is obtained as an optically active compound.
  • the homogeneous hydrogenation reaction is carried out in the presence of the above-mentioned copper complex, or an asymmetric ligand, a copper compound and an unsaturated compound are mixed. Oh ,.
  • a catalyst for homogeneous hydrogenation reaction containing a copper complex having an asymmetric ligand, if necessary, in the reaction system (in the reaction mixture), asymmetry
  • a homogeneous hydrogenation catalyst containing a mixture of a ligand and a copper compound, an asymmetric ligand, and Z or a copper compound may be further added.
  • Examples of the unsaturated compound used in the present invention include unsaturated compounds such as alkenes, ketones, imines, ketocarboxylic acids and ketoalkenes.
  • alkenes prochiral alkenes are preferred, for example, alkenes represented by the following general formula (21). [0167] [Chemical 21]
  • ketones prochiral ketones are preferred, and examples include ketones represented by the following general formula (22).
  • imines prochiral imines are preferred, for example, imines represented by the following general formula (23).
  • ketocarboxylic acids prochiral ketocarboxylic acids are preferred.
  • ketocarboxylic acids represented by (24).
  • ketoalkenes prochiral ketoalkenes are preferred.
  • the groups represented by R 31 to R 45 may be groups in which each compound exists, for example, a hydrogen atom or a substituent.
  • An arylalkylthio group which may have a substituent, an aralkylthio group which may have a substituent, a heterothio group which may have a substituent, an acyl group which may have a substituent, and a substituent. May have an acyloxy group or a substituent.
  • Alkoxycarbonyl group, having a substituent may be an arylcarbonyl group, having a substituent! /, May!
  • alkylenedioxy group which may have a substituent, -toxyl group, amino group, substituted amino group, cyano group, sulfo group, substituted silyl group, substituted silyloxy group, hydroxy group, carboxy group, substituted
  • An alkoxythiocarbo group which may have a group, an aryloxycarbo group which may have a substituent, V which has a substituent, or an aralkylo group.
  • An alkylthiocarbol group, an optionally substituted arylthiocarbol group, having a substituent May have an aralkylthiocarbol group and a substituent! /, Or may have a carbamoyl group and a substituted phosphine group. It is appropriately selected from groups such as an ino group, an aminosulfol group, and an alkoxysulfol group.
  • Q 11 and Q 12 represent a spacer or a bond.
  • the ring to be formed include a case in which a ring is formed by bonding with an alkylene group or an alkylenedioxy group. In addition, these rings may further have a substituent.
  • each group represented by R 31 to R 45, an alkylene group or an alkylene O alkoxy group when they form a ring unless otherwise specified, the [ 1] may be the same as each group and each group described in the substituent and each group described later (hereinafter the same). o
  • the spacers indicated by Q and Q may be the same as the spacer described in [1] above.
  • the group represented by R 41 may shall apply a metal atom such as an alkali metal.
  • the carboxy group and the sulfo group may also be a metal salt such as a metal atom such as an alkali metal.
  • Examples of the alkali metal include lithium, sodium, potassium, rubidium and cesium.
  • each group R 31 to R 45 form a ring
  • R 45 is bonded to form a ring, for example, an alkylene group which may have a substituent, a carbon chain such as an alkylenedioxy group, which may have a substituent.
  • a ring is formed by bonding via a ring.
  • the formed ring may be monocyclic, polycyclic, or condensed, and examples thereof include aliphatic rings such as 4- to 8-membered rings and aromatic rings.
  • Examples of the alkylene group which may have a substituent include an alkylene group and a substituted alkylene group.
  • the alkylene group may be linear or branched, for example, an alkylene group having 1 to 10 carbon atoms.
  • Specific examples of the alkylene group include, for example, a methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, otatamethylene group, nonamethylene group, decamethylene group, Examples include 2-methylpropylene group, 2,2-dimethylpropylene group, 2-ethylpropylene group and the like.
  • Specific examples of the ring in the case of forming a ring include a cyclopentane ring, a cyclohexane ring, such as a 5- to 7-membered rataton ring, such as a 5- to 7-membered ratata ring, a cyclopentanone ring, and a cyclohexanone ring.
  • the ring thus formed is preferably a ring in which the carbon atom at the site of asymmetric hydrogenation can become an asymmetric carbon by a homogeneous asymmetric hydrogenation reaction.
  • Substituents in the amino group are the same as those described above.
  • Examples of the substituted alkylene group include an alkylene group in which at least one hydrogen atom of the alkylene group is substituted with a substituent.
  • Examples of the alkylenedioxy group which may have a substituent include an alkylenedioxy group and a substituted alkylenedioxy group.
  • Examples of the alkylenedioxy group include an alkylenedioxy group having 1 to 3 carbon atoms. Specific examples of the alkylenedioxy group include a methylenedioxy group, an ethylenedioxy group, a trimethylenedioxy group, and a propylenedioxy group.
  • Examples of the substituted alkylenedioxy group include an alkylenedioxy group in which at least one hydrogen atom of the alkylenedioxy group is substituted with a substituent.
  • Specific examples of the substituted alkylenedioxy group include a difluoromethylenedioxy group.
  • Examples of the spacer include a divalent organic group which may have a substituent such as an alkylene group, an arylene group, and a heteroarylene group.
  • the divalent organic group has at least one heteroatom or atomic group such as an oxygen atom, a carbonyl group, a sulfur atom, an imino group, or a substituted imino group at an end of the organic group or at any position in the chain. May be. Substituents in the inamino group are the same as those described below.
  • alkylene group examples include alkylene groups having 1 to 10 carbon atoms.
  • Specific examples of the alkylene group include, for example, methylene group, ethylene group, trimethylene group, propylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group and the like. Can be mentioned.
  • arylene group a C6-C20 arylene group is mentioned, for example.
  • Specific examples of the arylene group include, for example, a phenylene group, a biphenyl group, a binaphthalenedyl group, a bisbenzoxol diyl group, and the like.
  • heteroarylene group for example, it has 2 to 20 carbon atoms and contains at least 1, preferably 1 to 3 nitrogen atoms, oxygen atoms and hetero atoms such as Z or sulfur atoms, preferably 3 to 8 members, Includes a 5- or 6-membered monocyclic, polycyclic or fused-ring heteroarylene group.
  • Specific examples of the heteroarylene group include, for example, a biviridine diyl group, a bis benzothiol diyl group, and a bis thiol diyl group.
  • divalent organic group having a hetero atom or an atomic group examples include -CH -O-CH, -C
  • the group represented by R 41 may be a metal atom such as an alkali metal.
  • the carboxy group and the sulfo group may be a metal salt such as a metal atom such as an alkali metal.
  • the alkali metal include lithium, sodium, potassium, rubidium, cesium and the like.
  • prochiral compounds are particularly preferable.
  • the unsaturated compound is a prochiral compound
  • the groups represented by R 31 to R 45 in the above general formulas (21) to (25) indicate that the hydride of the obtained prochiral compound is optically active. If it is a group that becomes a compound,
  • alkenes in the unsaturated compound used in the present invention include, for example,
  • R w H, Cl ⁇ , C 2 H 5 , 'Pr, nC 4 H g , Na, K, etc.
  • R x Ch3 ⁇ 4, C 2 H 5 , 'Pr, nC 4 H 9 , etc.
  • ketones include, for example, methyl ethyl ketone, acetophenone, 1-indanone, 3, 4-dihydro- (2H) -naphthalenone ferromethyl methyl ketone and the like, and the following ketones, for example, [0189] [Chemical 27]
  • Rx CH 3 , C 2 H 5 , iPr, nC 4 H 9 , etc.
  • Rz CH 3 , C 2 H 5 , C 3 H 7 , ⁇ , n_C 4 H 9 , etc.
  • imines include the imines shown below.
  • R * H, CH 3, CHjO, C 2 H 5 0, Bu, 'Bu, CI, Br, C 6 H 5, etc.
  • ketocarboxylic acids include the ketocarboxylic acids shown below.
  • R ' Me, Et etc.
  • R '' Me, Et, iPr, — CH 2 CH (CH 3 ) 2 etc.
  • ketoalkenes include the following ketoalkenes and the like. [0196] [Chemical 31]
  • R x Cl ⁇ , C 2 H 5 ,, nC 4 H g , etc.
  • R Y H, 2-Chi, 3-CH 3 , 4-CH3, 2-CH3O, 3-CH, 0, 4-C 0,
  • the unsaturated compound may have a chiral center in the molecule in addition to a site that becomes a prochiral compound.
  • the homogeneous hydrogenation reaction (homogeneous asymmetric hydrogenation reaction) is carried out in the presence of a hydrogen source.
  • the hydrogen source include hydrogen gas and a hydrogen donating substance.
  • the homogeneous hydrogenation reaction in the present invention is a homogeneous hydrogenation reaction (preferably a homogeneous asymmetric hydrogenation reaction) performed in the presence of hydrogen gas or a homogeneous hydrogenation reaction performed in the presence of a hydrogen donating substance. It is a mobile hydrogenation reaction (preferably a homogeneous hydrogen transfer asymmetric hydrogenation reaction).
  • the amount of homogeneous hydrogenation catalyst used is not particularly limited, but when using a homogeneous hydrogenation catalyst containing an asymmetric copper complex, the amount of asymmetric copper complex used is unsaturated. From the range force of 0.0001 to: L equivalent, preferably 0.0001 to 0.1 equivalent to the product. In addition, when using a homogeneous hydrogenation reaction applied catalyst containing a mixture of an asymmetric ligand and a copper compound, the amount of copper compound used is 0.000001 to 1 equivalent with respect to the unsaturated compound, preferably , 0. 0001-0. 1 is appropriately selected from a range of 1 equivalent.
  • the pressure of the hydrogen gas may be in a hydrogen atmosphere.
  • the pressure of hydrogen gas is usually selected from the range of 0.1 to 20 MPa, preferably 0.2 to 10 MPa. In view of economic efficiency, it is possible to maintain high activity below IMPa.
  • Examples of the hydrogen-donating substance include formic acid or a salt thereof, a combination of formic acid and a base, hydroquinone, cyclohexagen, phosphorous acid, alcohols and the like. Of these, formic acid or its salts, a combination of formic acid and a base, alcohols and the like are particularly preferred.
  • Examples of formic acid salts in formic acid or salts thereof include formic acid metal salts such as alkali metal salts and alkaline earth metal salts, ammonium salts and substituted amine salts.
  • the formic acid in the combination of formic acid and the base should be that in which the formic acid is in the form of a formic acid salt or substantially in the form of a formic acid salt in the reaction system.
  • formic acid metal salts such as alkali metal salts and alkaline earth metal salts of these formic acids, ammonium salts and substituted amine salts, and combinations of formic acid and bases Ammonia, inorganic base, organic base, etc. are mentioned.
  • the alkali metals that form salts with formic acid include lithium, sodium, potassium, and rubidium. , Cesium and the like.
  • Examples of the alkaline earth metal include magnesium, canoleum, strontium, norlium.
  • Examples of the inorganic base include alkali or alkaline earth such as potassium carbonate, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydroxide, magnesium carbonate, and calcium carbonate.
  • Metal hydrides such as metal salts and sodium hydride.
  • Examples of the organic base include alkali metals such as potassium methoxide, sodium methoxide, lithium methoxide, sodium ethoxide, potassium isopropoxide, lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, and the like.
  • Alkoxides sodium acetate, potassium acetate, magnesium acetate, calcium acetate and other alkali or alkaline earth metal acetates, triethylamine, diisopropylethylamine, N, N-dimethylaniline, piperidine, pyridine, 4 -Dimethylaminopyridine, 1,5-diazabicyclo [4.3.0] nona-5-ene, 1,8-diazabicyclo [5.4.0] unde force 7-en, tri-n-butylamine , Organic amines such as N-methylmorpholine, odorous methylmagnesium, Organometallic compounds such as sium, propylmagnesium bromide, tert-butylmagnesium chloride, tert-butylmagnesium bromide, methyllithium, ethyllithium, propyllithium, n-butyllithium, tert-butyllithium, etc.
  • the amount of the hydrogen-donating substance to be used is appropriately selected from a range force of usually 0.1 to LOOOO equivalent, preferably 0.5 to 2000 equivalent with respect to the unsaturated compound.
  • the homogeneous hydrogenation reaction in the present invention that is, the method for producing a hydride of an unsaturated compound, can be carried out in a solvent, if necessary.
  • the solvent include aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as pentane, hexane, heptane and octane, and halogens such as dichloromethane, chloroform, carbon tetrachloride and dichloroethane.
  • Hydrocarbons jetyl ether, diisopropyl ether, tert-butyl methyl ether, cyclopentyl methyl ether, dimethoxyethane, tetrahydrofuran, dioxane, dioxolane, ethers, methanol, ethanol, 2-propanol, n-butanol, tert —Alcohols such as butanol and benzyl alcohol; Polyhydric alcohols such as ethylene glycol, propylene glycol, 1,2-propanediol and glycerin; Amides such as N, N-dimethylformamide and N, N-dimethylacetamide , Ketones such as acetone and methyl isobutyl ketone, esters such as methyl acetate, ethyl acetate, and butylacetate, acetonitrile, N-methylpyrrolidone, dimethyl sulfoxide, and water.
  • solvents
  • the amount of the solvent used is not particularly limited because it varies depending on the type, solubility, economics, etc. of the unsaturated compound that is the reaction substrate to be used.For example, it is usually 0 to 200 times, preferably 0 to 40 times the amount of the reaction substrate.
  • the range power of the quantity may be selected as appropriate. For example, when alcohols are used as the solvent, depending on the unsaturated compound to be used, a low concentration force of 1% or less can be carried out in a state close to or without solvent.
  • the reaction temperature is not particularly limited because it varies depending on the type and amount of the asymmetric catalyst to be used and the type of unsaturated compound to be used. However, in consideration of economy and the like, it is usually -30 to 250 ° C, preferably 0. A range force of ⁇ 100 ° C is appropriately selected. For example, the reaction can be carried out even at a low temperature of ⁇ 30 to 0 ° C. or at a high temperature of 100 to 250 ° C.
  • the reaction time varies depending on the type and amount of the asymmetric catalyst used, the type and concentration of the unsaturated compound used, the reaction temperature, the hydrogen pressure, etc., but usually 1 minute to 48 hours, preferably A range force of 10 minutes to 24 hours is also appropriately selected.
  • the homogeneous hydrogenation reaction in the present invention can be carried out regardless of whether the reaction mode is batch or continuous.
  • the reaction can be performed in a reaction vessel used in this field, such as a flask, a reaction kettle, or an autoclave.
  • the homogeneous hydrogenation reaction can be carried out in the presence of an additive, if necessary.
  • the additive include acids, fluorine-containing alcohols, bases, quaternary ammonium salts, quaternary phosphonium salts, phosphorus compounds, halogens, reducing agents, water and the like.
  • the acid as the additive include inorganic acids, organic acids, Lewis acids and the like.
  • inorganic acid examples include hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, tetrafluoroboric acid, perchloric acid, periodic acid and the like.
  • organic acids include formic acid, acetic acid, valeric acid, hexanoic acid, citrate, chloroacetic acid, dichloroacetic acid, trichlorodiacetic acid, trifluoroacetic acid, benzoic acid, salicylic acid, oxalic acid, succinic acid, malonic acid, Examples thereof include carboxylic acids such as phthalic acid, tartaric acid, malic acid, and glycolic acid, and sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and trifluoromethanesulfonic acid.
  • carboxylic acids such as phthalic acid, tartaric acid, malic acid, and glycolic acid
  • sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and trifluoromethanesulfonic acid.
  • Lewis acids examples include aluminum halides such as aluminum chloride and aluminum bromide, dialkylaluminum halides such as jetyl aluminum chloride, jetyl aluminum bromide and diisopropylaluminum chloride, triethoxyaluminum, and triethoxyaluminum.
  • Tri-alkoxy aluminum such as isopropoxyaluminum, tri-tert-butoxyaluminum, halogen-titanium such as tetrasalt-titanium, tetraalkoxytitanium such as tetraisopropoxytitanium, boron trifluoride, trisalt-titanium-boron, tribromide
  • halogenated boron such as boron and boron trifluoride diethyl ether complex
  • zinc halide such as zinc chloride and zinc bromide.
  • acids can be used alone or in appropriate combination of two or more.
  • the amount of the acid used is appropriately selected in the range of usually 0.0001 to 100 equivalents, preferably 0.001 to 10 equivalents, based on the unsaturated compound.
  • the fluorinated alcohol as an additive is preferably a fluorinated aliphatic alcohol.
  • Specific examples of the fluorine-containing aliphatic alcohol include saturated or unsaturated fluorine-containing aliphatic alcohols having 1 to 10 carbon atoms.
  • fluorinated aliphatic alcohol examples include, for example, 2, 2, 2-trifluoroethanol, 2, 2-difluoroethanol, 3, 3, 3 trifluoropropanol, 2, 2, 3, 3 , 3 Pentafluoropropanol, 2, 2, 3, 3—Tetrafluoropropanol, 3, 3, 4, 4, 4 Pentafluorobutanol, 4, 4, 5, 5, 5—Pentafluoro Lopentanol, 5, 5, 6, 6, 6—Pentafluoro Hexanore, 3, 3, 4, 4, 5, 5, 6, 6, 6 Nonafnore Hexanore, 1, 1, 1, 3 3, 3 Hexafluoro 2-propanol and the like.
  • fluorine-containing aliphatic al Calls can be used alone or in appropriate combination of two or more.
  • the amount of the fluorinated alcohol used is appropriately selected in the range of usually 0.01 to 100 equivalents, preferably 0.1 to 10 equivalents, relative to the unsaturated compound.
  • Examples of the base as the additive include inorganic bases and organic bases.
  • Examples of the inorganic base include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, metal carbonates such as sodium carbonate, potassium carbonate, magnesium carbonate, and calcium carbonate, and hydrogen carbonate.
  • Examples thereof include metal hydrogen carbonates such as sodium and potassium hydrogen carbonate, metal hydrides such as lithium hydride, sodium hydride and potassium hydride, and ammonia.
  • organic base examples include lithium methoxide, lithium ethoxide, lithium-tert-butoxide, sodium methoxide, sodium ethoxide, sodium-tert butoxide, potassium methoxide, potassium ethoxide, potassium tert-butoxide, potassium naphthalenide.
  • the amount of the base used is appropriately selected from the range of usually 0 to: LOO equivalent, preferably 0 to 10 with respect to the unsaturated compound.
  • Examples of the quaternary ammonium salt as an additive include quaternary ammonium salts having 4 to 24 carbon atoms.
  • Specific examples of the quaternary ammonium salt include tetraptyl ammonium fluoride, tetrabutyl ammonium chloride, tetrabutyl ammonium chloride, tetrabutyl ammonium chloride, triethylbenzyl ammonium chloride, tetrabutyl ammonium chloride, and tert-butyl ammonium chloride. Fluorosilicate etc. are mentioned.
  • the amount of the quaternary ammonium salt used is appropriately selected from the range of usually 0.0001 to 100 equivalents, preferably 0.001 to 10 equivalents, based on the unsaturated compound.
  • Examples of the quaternary phosphonium salt include quaternary phosphonium salts having 4 to 36 carbon atoms. Specific examples of quaternary phosphonium salts include tetrafluorophosphomumuchloride, tetrafluorophosphorombromide, tetrafluorophosphomudium, methyltriphenol-norephospho-mumochloride, methyltriphenol-norephospho-mubromide, and methyltrifonoformoform. Etc.
  • the amount of the quaternary phosphonium salt used is appropriately selected from the range of usually 0.0001 to 100 equivalents, preferably 0.001 to 10 equivalents, based on the unsaturated compound.
  • the Liny compound may be the same as the Liny compound represented by the general formula (P).
  • phosphorus compound examples include, for example, triphenylphosphine, tolylphosphine, trimethylphosphine, triethylphosphine, methyldiphenylphosphine, dimethylphenolphosphine, diphenylphosphinomethane (dppm).
  • Phosphine compounds such as diphenylphosphinoethane (dppe), diphenylphosphinopropane (dppp), diphenylphosphinobutane (dppb), diphenylphosphinophenocene (dppf), trimethylphosphite, triethyl Examples include phosphite compounds such as phosphite, triphenyl phosphite, etc.
  • the amount of phosphorus compound used is usually 0.000001 to 1 equivalent, preferably 0.0001 to 1 equivalent of range power relative to the unsaturated compound. Selected.
  • halogen examples include bromine and iodine.
  • the amount of halogen used is appropriately selected from a range force of usually 0.0001 to 100 equivalents, preferably 0.001 to 10 equivalents, based on the unsaturated compound.
  • Examples of the reducing agent include sodium borohydride, lithium aluminum hydride, disobutylaluminum hydride, and the like.
  • the amount of the reducing agent used is usually appropriately selected from a range of 0.000001 to L equivalents, preferably 0.0001 to 1 equivalents, relative to the unsaturated compound.
  • the above additives may be used alone or in combination of two or more as appropriate.
  • the unsaturated compound hydride obtained by the production method of the present invention is a compound obtained by subjecting the unsaturated compound to a homogeneous hydrogenation reaction, and preferably an optically active compound. . That is, in the present invention, the homogeneous hydrogenation reaction is preferably a homogeneous asymmetric hydrogenation reaction. Therefore, the hydride of the unsaturated compound obtained in the present invention provides an optically active compound corresponding to each unsaturated compound preferred by the optically active compound. For example, compounds obtained by hydrogenating alkenes are optically active alkanes, compounds obtained by asymmetric hydrogenating ketones are optically active alcohols, and hydrogenating reactions of imines.
  • the compounds obtained by the reaction are optically active amines
  • the compounds obtained by hydrogenating ketocarboxylic acids are optically active hydroxy esters
  • the compounds obtained by hydrogenating ketoalkenes Can be obtained as hydroxyalkenes, hydroxyalkanes and Z or ketoalkans, respectively.
  • optically active alkanes obtained by asymmetric hydrogenation reaction of alkenes include optically active alkanes represented by the following general formula (31).
  • optically active alcohols represented by the following general formula (32).
  • optically active amines obtained by asymmetric hydrogenation reaction of imines include optically active amines represented by the following general formula (33).
  • optically active hydroxyesters obtained by asymmetric hydrogenation reaction of ketocarboxylic acids include optically active hydroxyesters represented by the following general formula (34).
  • Optically active hydroxyalkenes, optically active hydroxyalkanes and optically active ketoalkanes obtained by asymmetric hydrogenation reaction of ketoalkenes are represented, for example, by the following general formulas (35) to (37), respectively.
  • * represents an asymmetric carbon
  • R 31 to R 45 , Q 11 and Q 12 are the same as above.
  • R 35 R 36
  • one of R 35 and R 36 is a hydrogen atom, depending on the type of R 31 to R 45 , It may not be.
  • optically active compound examples include optically active substances of the hydrides of unsaturated compounds mentioned above as specific examples of the hydride of unsaturated compounds.
  • the obtained optically active compound is subjected to post-treatment such as purification and isolation as necessary, and after functional group protection and the like, the product is purified and isolated as necessary.
  • Post-processing may be performed.
  • the specific method for post-processing is the same as the method described above.
  • the catalyst for homogeneous hydrogenation reaction of the present invention is not only obtained at low cost but also easy to handle and has improved workability.
  • the method for producing an optically active compound using this homogeneous hydrogenation reaction catalyst as a homogeneous asymmetric hydrogenation reaction catalyst is obtained by changing the type of asymmetric ligand used, thereby reducing the unsaturated compound. It is possible to control the simultaneous hydrogenation reaction, and it is also possible to obtain any optically active compound, which is a hydride of a desired unsaturated compound with good yield and optical purity. A composite is obtained.
  • the unsaturated compound hydride obtained by the production method of the present invention and the optically active compound among the hydrides are useful as intermediates and perfumes for medicines and agricultural chemicals.
  • Example 17 Homogeneous asymmetric hydrogenation of isophorone 1 using [CuBr ((S) —SEGPHOS)] shown in Scheme A above
  • Example 21 Homogeneous asymmetric hydrogenation of diacetylfuran using [CuBr ((S) -SEGPHOS)]
  • Example 22 Homogeneous asymmetric hydrogenation of isophorone using [CuH (PPh)]
  • Example 23 Homogeneous asymmetric hydrogenation of isophorone using [CuH (PPh)]
  • Methyl 2-methyl-3-phenolpropenoate 176 mg (lmmol), [CuBr ((S) —SEG PHOS)] 22.6 mg [0.03 mmol (Cu equivalent)], ⁇ 33.6 mg (0.3 mmol) in a lOOmL stainless steel autoclave After replacing the inside with nitrogen, add 1.8 mL of a 3: 1 solvent mixture of toluene and t-BuOH, and stir and react at a hydrogen pressure of 3.0 MPa and 85 ° C for 17 hours to give 2-methyl-3-phenolpropene. A methyl hydride, methyl 2-methyl-3-phenolpropionate, was obtained in a yield of 54.7%.
  • Triphenylphosphine (131 mg, 0.5 mmol) was placed in a 20 mL Schlenk tube purged with nitrogen, and toluene (1 mL) was added to make a homogeneous solution. To this solution, 49.5 mg (0.5 mmol) of CuCl and 5 mL of toluene were added and stirred at room temperature for 3 hours. Next, 220 mg (0.5 mmol) of (R, R) -SKE WPHOS was added and stirred for 30 minutes, and then 2.5 mL of toluene was further added, followed by stirring at room temperature for 3 hours. The resulting white suspension was collected by filtration and then washed with toluene to give 320 mg (yield 80%) of the desired title compound as a white solid.
  • Example 47 60 Homogeneous Asymmetric Hydrogenation of Acetophenone
  • Example 80 Homogeneous asymmetric hydrogenation of pinacholine
  • HOS 13.2 mg (0.03 mmol) and NaO-t-Bu 28.8 mg (0.30 mmol) were placed in a 10 OmL stainless steel autoclave, and the system was replaced with nitrogen. To this was added IPA 2 .OmL and 2-acetylylfuran 0.90 mL (9. Ommol), hydrogen pressure 5.0 MPa, 30
  • BPPM N-tert-butoxycarbol 4 diphenylphosphino 2 diphenylphosphinomethinolepyrrolidine;
  • BCPM N tert butoxycarbol 4 dicyclohexylphosphino 2 diphenylphosphinomethylpyrrolidine;
  • Josiphos [2— (Diphenylphosphino) ferrose] ethyl dicyclohexylphosphine;
  • the homogeneous hydrogenation reaction catalyst of the present invention is useful for a homogeneous hydrogenation reaction.
  • the catalyst is used as a homogeneous asymmetric hydrogenation catalyst for the asymmetric hydrogenation of unsaturated compounds. By carrying out the reaction, it is possible to produce the desired optically active compound with higher economic efficiency and workability than the yield and optical purity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Furan Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

 比較的容易に入手可能で、経済性及び作業性がよい、水素化反応、特に不斉水素化反応に有用な、不斉配位子を有する不斉銅錯体を含有する均一系水素化反応用触媒、特に均一系不斉水素化反応用触媒、及び該触媒を用いる収率及び光学純度がよい不飽和化合物の水素化物、特に光学活性化合物の製造方法の提供。  

Description

明 細 書
均一系不斉水素化反応用触媒
技術分野
[0001] 本発明は、均一系水素化反応、特に均一系不斉水素化反応に有用な新規な触媒 に関し、詳しくは、該触媒を用いる不飽和化合物の水素化物の製造方法、特に光学 活性化合物の製造方法に関する。
背景技術
[0002] 近年、不斉合成の分野では、触媒として銅を用いた合成法の研究が広く行われて いる。
例えば、特許文献 1には、 a , j8—不飽和エステルの不斉ヒドロシリルイ匕反応が開 示されている。し力しながら、特許文献 1に記載されている方法は、前記 α , β—不 飽和エステルのシリルエーテル体を形成しなければならず、目的化合物を得るため には、酸やアルカリ処理が必要となることから、操作が煩雑となり、また、シラン廃棄物 が理論的に当量以上出てくるため高コストとなる。更に、ヒドロシリルイ匕反応で用いる 還元剤のシランィ匕合物は、水素ガスに比べ高価である等の問題点を有して ヽた。
[0003] 特許文献 2には、塩化銅 (I)とリン化合物とを反応させて得られる錯体を用いたォレ フィンの水素化反応が記載されている。し力しながら、特許文献 2では、塩化銅 (I)と 反応させるリンィ匕合物はキラルな化合物ではなぐまた、得られる錯体もキラルな錯体 ではなぐ不斉配位子と銅化合物とを反応させることについては記載されてない。そ のため、特許文献 2に記載のォレフィンの水素化反応は、不斉水素化反応ではない
[0004] 非特許文献 1には、ラネー銅と光学活性アミノ酸とから得られた錯体を用いる、ァセ ト酢酸ェチル及びァセチルアセトンの不斉水素化反応が記載されて 、る。し力しなが ら、非特許文献 1に記載の不斉水素化反応は、不均一系である。そのため、反応溶 液が均一とならず、また、ラネー銅は取り扱いに注意する必要があり、作業性がよくな い等の問題点を有していた。更に、非特許文献 1に記載の反応は、反応系の触媒活 性、不斉収率はきわめて低ぐ実用レベルに達していない。 [0005] 特許文献 3及び非特許文献 2には、特定のビスホスフィン配位子を銅塩と反応させ てキラルな銅錯体を一旦製造し、得られた銅錯体とロジウム錯体とを反応させる銅一 ロジウム金属交換反応を行ってロジウム錯体を得ることが記載され、また、得られた口 ジゥム錯体を用いる均一系の不斉水素化反応が記載されている。し力しながら、特許 文献 3に記載の方法では、銅錯体を触媒として用いた不斉水素化反応は記載されて おらず、銅錯体は、ホスフィン配位子の単離生成のためにのみ用いられており、特許 文献 3及び非特許文献 2に記載の触媒種は、金属交換反応によって得られたロジゥ ムホスフィン錯体である。また、特許文献 3及び非特許文献 2に記載の方法は、最初 に銅錯体を合成しなければならず、操作が煩雑である。し力も、ロジウムは非常に高 価であるため、経済性が悪 、等の問題点を有して 、た。
[0006] 非特許文献 3には、ラネー銅—ルテニウム合金と光学活性な酒石酸を用いる不均 一系の不斉水素化反応が記載されている。また、ラネー銅及び光学活性な酒石酸を 用いる不均一系の不斉水素化反応が記載されている。し力しながら、非特許文献 3 に記載の方法は、不均一系の不斉水素化反応であり、反応溶液が均一とならず、ま た、ラネー銅は取り扱いに注意する必要があり、作業性がよくない等の問題点を有し ていた。また、銅の他にルテニウムを用いるため、コストがかかる等の問題点を有して いた。
[0007] このように、不斉配位子を有する銅錯体を用い、また、不斉水素化反応に関わる遷 移金属として、銅を唯一の遷移金属として用い、かつ、均一系で行う実用的かつ経 済的な不斉水素化反応は未だな 、。
[0008] 特許文献 1: WO01Z19761号パンフレット
特許文献 2:米国特許第 3732329号明細書
特許文献 3:特開昭 54— 39052号公報
非特許文献 l : React. Kinet. Catal. Lett., Vol.9, No.l, 73(1978).
非特許文献 2 : J. Org. Chem., 45, 2995 (1980).
特許文献 3 : Inst. Org. Khim. im. Zelinskogo, Moscow, USSR. Kinetika i Kataliz., 16(4), 1081 (1975).
発明の開示 発明が解決しょうとする課題
[0009] 本発明は上記状況に鑑みなされたものであり、比較的容易に入手可能で、経済性 及び作業性がよい、水素化反応、特に不斉水素化反応に有用な均一系水素化反応 用触媒、特に均一系不斉水素化反応用触媒、及び該触媒を用いる収率のよい、不 飽和化合物の水素化物、特に光学活性化合物の製造方法を提供することを目的と する。
課題を解決するための手段
[0010] 本発明者らは、上記課題を解決するために鋭意検討を行った結果、不飽和化合物 の水素化反応、特に不斉水素化反応を均一系で不斉配位子及び銅を触媒として用 いて行うことにより、収率よぐ更に経済性及び作業性よく所望の不飽和化合物の水 素化物、特に光学活性ィ匕合物が得られることを見出し、本発明を完成するに到った。
[0011] 即ち、本発明は、下記 1)〜18)である。
1)不斉配位子を有する不斉銅錯体を含有する均一系水素化反応用触媒。
2)不斉銅錯体が不斉配位子と銅化合物とを反応させて得られる銅錯体である、 1)に 記載の均一系水素化反応用触媒。
3)不斉配位子と銅化合物との混合物を含有する均一系水素化反応用触媒。
4)不斉配位子が単座配位子、二座配位子、三座配位子及び四座配位子カゝらなる群 力 選ばれる少なくとも 1種である、 1)〜3)の何れかに記載の均一系水素化反応用 触媒。
5)更に添加剤を含有する 1)〜4)の何れかに記載の均一系水素化反応用触媒。
6)銅化合物、一般式 (41)
PR151 (41)
3
(式中、 3個の R151は同一又は異なって、水素原子、置換基を有していてもよい炭化 水素基、置換基を有していてもよい複素環基、置換基を有していてもよいアルコキシ 基、置換基を有していてもよいァリールォキシ基、置換基を有していてもよいァラルキ ルォキシ基、アミノ基又は置換アミノ基を示す。)で表されるリンィ匕合物、及び光学活 性ジホスフィンィ匕合物を含有する、請求の範囲第 3〜5項の何れかに記載の均一系 水素化反応用触媒。 7)—般式 (51)
[CuL3 (PR201 ) ] (51)
3 n31 n32
(式中、 L3は配位子を示し、 3個の R2Cnは同一又は異なって、水素原子、置換基を有 していてもよい炭化水素基、置換基を有していてもよい複素環基、置換基を有してい てもよいアルコキシ基、置換基を有していてもよいァリールォキシ基、置換基を有して いてもよいァラルキルォキシ基、アミノ基又は置換アミノ基を示し、 n31及び n32は夫 々独立して、自然数を示す。)で表される銅錯体、及び光学活性ジホスフィンィ匕合物 を含有する 3)〜5)の何れかに記載の均一系水素化反応用触媒。
8)均一系水素化反応用触媒が均一系不斉水素化反応用触媒である、 1)〜7)の何 れかに記載の触媒。
9) 1)〜8)の何れかに記載の均一系水素化反応用触媒の存在下、不飽和化合物を 均一系水素化反応させることを特徴とする、該不飽和化合物の水素化物の製造方法
10)不飽和化合物がプロキラルな化合物であり、均一系水素化反応用触媒が均一 系不斉水素化反応用触媒であり、かつ得られる不飽和化合物の水素化物が光学活 性化合物である、 9)に記載の製造方法。
11) 1)〜7)の何れかに記載の均一系水素化反応用触媒を用いる均一系水素化反 応方法。
12) 8)に記載の均一系不斉水素化反応用触媒を用いる均一系不斉水素化反応方 法。
13)—般式 (61)
[L L12CuL13] (61)
n35
(式中、 L11は二座配位性の光学活性リンィ匕合物を示し、 L12は L11と異なるリンィ匕合物 を示し、 L13は配位子を示し、 n35は自然数を示す。)で表される不斉銅錯体。
14) 13)に記載の不斉銅錯体を含有する均一系水素化反応用触媒。
15) 14)に記載の均一系水素化反応用触媒が、均一系不斉水素化反応用触媒であ る、 14)に記載の触媒。
16) 15)に記載の均一系不斉水素化反応用触媒の存在下、プロキラルな化合物を 均一系不斉水素化反応させることを特徴とする、光学活性化合物の製造方法。
17) 14)に記載の均一系水素化反応用触媒を用いる均一系水素化反応方法。
18) 14)に記載の均一系不斉水素化反応用触媒を用いる均一系不斉水素化反応 方法。
発明の効果
[0012] 本発明は、水素ガスの存在下で行う水素化反応、特に不斉水素化反応や水素供 与性物質の共存下で行う水素移動型水素化反応、特に水素移動型不斉水素化反 応に有用な新規な均一系水素化反応用触媒、特に均一系不斉水素化反応用触媒 を提供するものである。それにより、各種の不飽和化合物を前記触媒の存在下、均 一系で水素化反応、特に不斉水素化反応を行うことにより、医薬、農薬等の中間体 や香料等として有用な前記不飽和化合物の水素化物、特に光学活性化合物を効率 及び光学純度よく得られるば力りでなぐ作業性が向上し、更に、経済性よく得られる 、という効果を奏するものである。
発明を実施するための最良の形態
[0013] 本発明において、「配位子」とは、銅 (Cu)と共に錯体を形成する原子及び原子団 の他に、銅 (Cu)と錯体を形成可能な原子及び原子団を含む。
[0014] [1]均一系水素化反応用触媒
本発明の均一系水素化反応用触媒は、不斉配位子を有する不斉銅錯体を含有す る。また、本発明の均一系水素化反応用触媒は、不斉配位子と銅化合物との混合物 を含有する。
[0015] ここで、本発明において「均一系」とは、用いる触媒活性を持つ均一系水素化反応 用触媒が水素化反応の際に実質的に溶解している状態であることを意味し、該触媒 力 溶液中に溶解して ヽる状態及び溶解して ヽる状態になり得る状態を意味する。 該触媒が溶液中に溶解している状態とは、均一系水素化反応用触媒が水素化反応 開始時に溶けている状態である。また、該触媒が溶液中に溶解している状態になり 得る状態とは、均一系水素化反応用触媒が水素化反応開始時に溶け得る状態であ ることをいい、例えば、用いる均一系水素化反応用触媒が、反応温度の上昇や反応 の進行とともに溶解する場合等が挙げられ、用いる不飽和化合物や溶媒等の種類や 反応温度等の反応条件等により、該触媒が溶解する状態であることをいう。更に、反 応系に境界面が存在する場合には、反応系の性質が境界面でほとんど変化なぐ全 体を通じて均一又はほぼ均一な状態が挙げられる。このように、本発明における「均 一系」とは、均一系水素化反応用触媒として用いる不斉銅錯体又は銅化合物が水素 化反応の際に実質的に溶解している状態であり、反応系において、均一系水素化反 応に用いる基質 (不飽和化合物)、必要に応じて用いる添加剤、或いは失活した均 一系水素化反応用触媒等が固体として存在して 、てもよ!、。
また、本発明において、均一系水素化反応用触媒を用いる水素化反応は、遷移金 属として銅のみが関わる水素化反応である。即ち、本発明の均一系水素化反応用触 媒には、銅以外の遷移金属が実質的に含有されてなぐ銅を唯一の遷移金属として 用いる触媒である。
[0016] [1 1]不斉銅錯体
本発明の均一系水素化反応用触媒で用いられる不斉銅錯体は、上記したように、 不斉配位子を有する不斉銅錯体であり、不斉配位子を有して!/、る不斉銅錯体であれ ば何れも使用可能であり、不斉配位子と銅化合物とを反応させることにより得られる 不斉銅錯体が好ましく用いられる。ここで、反応させることにより得られる不斉銅錯体 は、不斉配位子と銅化合物とを反応させた後、 i)必要に応じて後処理等をして得られ た不斉銅錯体、 ii)後処理等をした後に更に単離及び Z又は精製した不斉銅錯体、 i ii)後処理や単離、精製等を行わずに、反応混合物をそのまま用いる不斉銅錯体等 を含む。
[0017] 本発明で用いられる不斉配位子を有する不斉銅錯体 (以下、単に、「不斉銅錯体」 ということもある。)としては、上記したように不斉配位子を有する不斉な銅錯体であれ ί よ \、 f列 XJ¾、 Handbook of Enantioselective し atalysis (VCH, 1993)、 J. Am. し hem. Soc. 2001, 123, 5843.、 J. Org. Chem. 1998, 63, 6090.、 Angew. Chem. Int. Ed. 200 4, 43, 1679.、 Dalton. Trans. 2003, 1881.、 Organic Letters, Vol.6, No.14, 2305 (200 4).等に記載されている不斉銅錯体で、不斉合成等に使用可能な不斉銅錯体が挙げ られる。本発明で用いられる前記不斉銅錯体は、中でも不斉配位子と銅化合物とを 反応させることにより得られる不斉銅錯体が好ましい。 [0018] 1)不斉配位子
本発明で用いられる不斉配位子は、光学活性部位を有し、光学活性な化合物であ つて、不斉配位子として使用可能なものであれば何れも挙げられる。前記不斉配位 子としては、例えば、 Catalytic Asymmetric Synthesis (Wiley— VCH,2000)、 Handbook of Enantioselective Catalysis with Transition Metal Complex (VCH, 1993)、 ASYMME TRIC CATALYSIS IN ORGANIC SYNTHESIS (John Wiley & Sons Inc.(1994))、 WO 2005Z070875号等に記載されている不斉配位子が挙げられる。
より具体的に説明すると、本発明で用いられる不斉配位子は、例えば、単座配位子 、二座配位子、三座配位子、四座配位子等が挙げられる。
[0019] 単座配位子としては、例えば、光学活性リンィ匕合物、光学活性アミン化合物、光学 活性アルコール化合物、光学活性硫黄化合物、光学活性カルベン化合物等が挙げ られる。
[0020] 光学活性リンィ匕合物としては、その分子内に、光学活性ィ匕合物となるような光学活 性部位を有するリンィ匕合物であればよぐ例えば、下記一般式 (6)〜(8)で表される 光学活性リンィ匕合物等が挙げられる。これら一般式 (6)〜 (8)で表される光学活性リ ン化合物は、その分子内に光学活性部位を有する光学活性リンィ匕合物である。
[0021] PR1 (6)
3
(式中、 3個の R1は同一又は異なって、置換基を有していてもよい炭化水素基、置換 基を有していてもよい複素環基、置換基を有していてもよいアルコキシ基、置換基を 有して 、てもよ ヽァリールォキシ基、置換基を有して!/、てもよ ヽァラルキルォキシ基、 アミノ基又は置換アミノ基を示す。また、 3個の R1中の 2個又は 3個が互いに結合して 環を形成してもよい。)
[0022] [化 1] (刀
Figure imgf000008_0001
[式中、 R2は置換基を有していてもよい炭化水素基又は置換アミノ基を示し、 Q1はス ぺーサ一を示し、 Z1及び Z2は夫々独立して、酸素原子、硫黄原子又は NR4— (R4 は水素原子又は保護基を示す。)を示す。 ] [0023] [化 2]
Figure imgf000009_0001
[ (式中、 R3は水素原子又は置換基を有していてもよい炭化水素基を示し、 Q2はスぺ 一サーを示し、 Z3及び Z4は夫々独立して、酸素原子、硫黄原子又は— NR5— (R5は 水素原子又は保護基を示す。)を示す。 ]
[0024] 一般式 (6)〜(8)にお 、て用いられる各基につ 、て説明する。
!^〜 で示される置換基を有して 、てもよ 、炭化水素基は、炭化水素基及び置換 炭化水素基が挙げられる。
炭化水素基としては、例えば、アルキル基、ァルケ-ル基、アルキニル基、アルカジ ェニル基、ァリール基、ァラルキル基等が挙げられる。
アルキル基としては、直鎖状でも、分岐状でも或いは環状でもよい、例えば炭素数 1〜20、好ましくは炭素数 1〜15、より好ましくは炭素数 1〜10のアルキル基が挙げ られる。アルキル基の具体例としては、例えば、メチル基、ェチル基、 n プロピル基 、 2—プロピル基、 n ブチル基、 1 メチルプロピル基、イソブチル基、 tert ブチル 基、 n ペンチル基、 1 メチルブチル基、 tert ペンチル基、 2—メチルブチル基、 3 メチルブチル基、 2, 2 ジメチルプロピル基、 n—へキシル基、 1 メチルペンチ ル基、 1 ェチルブチル基、 2—メチルペンチル基、 3—メチルペンチル基、 4ーメチ ルペンチル基、 2—メチルペンタン 3—ィル基、ヘプチル基、ォクチル基、ノニル基 、デシル基、ラウリル基、ステアリル基、シクロプロピル基、シクロブチル基、シクロペン チル基、シクロへキシル基等が挙げられる。
ァルケ-ル基としては、直鎖状でも分岐状でもよい、例えば炭素数 2〜20、好ましく は炭素数 2〜15、より好ましくは炭素数 2〜10のアルケニル基が挙げられる。ァルケ -ル基の具体例としては、例えば、ビニル基、プロべ-ル基、ブテュル基、ペンテ- ル基、へキセ-ル基、ヘプテュル基、オタテュル基、ノネ-ル基、デセ -ル基等が挙 げられる。
アルキニル基としては、直鎖状でも分岐状でもよい、例えば炭素数 2〜20、好ましく は炭素数 2〜15、より好ましくは炭素数 2〜10のアルキニル基が挙げられる。アルキ -ル基の具体例としては、例えば、ェチュル基、プロピ-ル基、ブチュル基、ペンチ -ル基、へキシニル基等が挙げられる。
アルカジエ-ル基としては、前記アルキル基の鎖中の任意の位置に二重結合を 2 個有する、直鎖状でも、分岐状でも或いは環状でもよい、例えば、炭素数 4以上、好 ましくは炭素数 4〜20、より好ましくは炭素数 4〜15、更に好ましくは炭素数 4〜: LOの アルカジエ-ル基が挙げられる。アルカジエ-ル基の具体例としては、例えば、 1, 3 ブタジェ-ル基、 2, 3 ジメチルー 1, 3ブタジェ-ル基等が挙げられる。
ァリール基としては、例えば炭素数 6〜20、好ましくは炭素数 6〜15のァリール基 が挙げられる。ァリール基の具体例としては、例えば、フエ-ル基、ナフチル基、アン トリル基、ビフヱニル基等が挙げられる。
ァラルキル基としては、前記アルキル基の少なくとも 1個の水素原子が前記ァリール 基で置換された、例えば炭素数 7〜20、好ましくは炭素数 7〜 15のァラルキル基が 挙げられる。ァラルキル基の具体例としては、例えば、ベンジル基、 1 フエ-ルェチ ル基、 2 フエ-ルェチル基、 1 フエ-ルプロピル基、 3 ナフチルプロピル基等が 挙げられる。
置換炭化水素基 (置換基を有する炭化水素基)としては、上記炭化水素基の少なく とも 1個の水素原子が置換基で置換された炭化水素基が挙げられ、例えば、置換ァ ルキル基、置換アルケニル基、置換アルキニル基、置換アルカジエ-ル基、置換ァリ ール基、置換ァラルキル基等が挙げられる。置換基については、後述する(以下同じ
) o
置換アルキル基の具体例としては、例えば、メトキシメチル基、エトキシメチル基等 が挙げられる。
置換ァリール基の具体例としては、例えば、トリル基 (例えば 4 メチルフエ-ル基) 、キシリル基(例えば 3, 5—ジメチルフエ-ル基)、 4ーメトキシ—3, 5—ジメチルフエ -ル基、 4ーメトキシ—3, 5—ジ—tert ブチルフエ-ル基等が挙げられる。
R1で示される置換基を有して ヽてもよ ヽ複素環基は、複素環基及び置換複素環基 が挙げられる。複素環基としては、脂肪族複素環基及び芳香族複素環基が挙げられ る。 脂肪族複素環基としては、例えば、炭素数 2〜14で、少なくとも 1個、好ましくは 1〜 3個の例えば窒素原子、酸素原子及び Z又は硫黄原子等のへテロ原子を含んで 、 る、 3〜8員、好ましくは 5又は 6員の単環、多環又は縮合環の脂肪族複素環基が挙 げられる。脂肪族複素環基の具体例としては、例えば、ピロリジルー 2—オン基、ピぺ リジノ基、ピペラジニル基、モルホリノ基、モルホリニル基、テトラヒドロフリル基、テトラ ヒドロビラ-ル基、チオラニル基等が挙げられる。
芳香族複素環基としては、例えば、炭素数 2〜15で、少なくとも 1個、好ましくは 1〜 3個の窒素原子、酸素原子及び Z又は硫黄原子等のへテロ原子を含んでいる、 3〜 8員、好ましくは 5又は 6員の単環式、多環式又は縮合環式の芳香族複素環基が挙 げられる。芳香族複素環基の具体例としては、例えば、フリル基、チェ-ル基、ピリジ ル基、ピリミジル基、ビラジル基、ピリダジル基、ピラゾリル基、イミダゾリル基、ォキサ ゾリル基、チアゾリル基、ベンゾフリル基、ベンゾチェ-ル基、キノリル基、イソキノリル 基、キノキサリル基、フタラジル基、キナゾリル基、ナフチリジル基、シンノリル基、ベン ゾイミダゾリル基、ベンゾォキサゾリル基、ベンゾチアゾリル基、アタリジル基、アタリジ ニル基等が挙げられる。
置換複素環基 (置換基を有する複素環基)としては、上記複素環基の少なくとも 1個 の水素原子が置換基で置換された複素環基が挙げられ、置換脂肪族複素環基及び 置換芳香族複素環基が挙げられる。
置換基を有していてもよいアルコキシ基は、アルコキシ基及び置換アルコキシ基が 挙げられる。
アルコキシ基としては、直鎖状でも、分岐状でも或いは環状でもよい、例えば炭素 数 1〜20のアルコキシ基が挙げられる。アルコキシ基の具体例としては、例えば、メト キシ基、エトキシ基、 n—プロポキシ基、 2—プロポキシ基、 n—ブトキシ基、 2—ブトキ シ基、イソブトキシ基、 tert—ブトキシ基、 n—ペンチルォキシ基、 2—メチルブトキシ 基、 3—メチルブトキシ基、 2, 2—ジメチルプロピルォキシ基、 n—へキシルォキシ基 、 2—メチルペンチルォキシ基、 3—メチルペンチルォキシ基、 4ーメチルペンチルォ キシ基、ヘプチルォキシ基、ォクチルォキシ基、ノニルォキシ基、デシルォキシ基、シ クロへキシルォキシ基等が挙げられる。前記アルコキシ基は、中でも炭素数 1〜10の アルコキシ基が好ましぐ炭素数 1〜6のアルコキシ基がより好ましい。
置換アルコキシ基 (置換基を有するアルコキシ基)としては、前記アルコキシ基の少 なくとも 1個の水素原子が置換基で置換されたアルコキシ基が挙げられる。
[0027] 置換基を有して!/、てもよ ヽァリールォキシ基は、ァリールォキシ基及び置換ァリー ルォキシ基が挙げられる。
ァリールォキシ基としては、例えば炭素数 6〜20のァリールォキシ基が挙げられる。 ァリールォキシ基の具体例としては、例えば、フエニルォキシ基、ナフチルォキシ基、 アントリルォキシ基等が挙げられる。前記ァリールォキシ基は、中でも炭素数 6〜 14 のァリールォキシ基が好まし 、。
置換ァリールォキシ基 (置換基を有するァリールォキシ基)としては、前記ァリール ォキシ基の少なくとも 1個の水素原子が置換基で置換されたァリールォキシ基が挙げ られる。
[0028] 置換基を有して!/、てもよ ヽァラルキルォキシ基は、ァラルキルォキシ基及び置換ァ ラルキルォキシ基が挙げられる。
ァラルキルォキシ基としては、例えば炭素数 7〜20のァラルキルォキシ基が挙げら れる。ァラルキルォキシ基の具体例としては、例えば、ベンジルォキシ基、 2—フエ- ルェトキシ基、 1 フエ-ルプロポキシ基、 2 フエ-ルプロポキシ基、 3 フエ-ルプ 口ポキシ基、 1 フエ-ルブトキシ基、 2 フエ-ルブトキシ基、 3 フエ-ルブトキシ基 、 4 フエ-ルブトキシ基、 1 フエ-ルペンチルォキシ基、 2 フエ-ルペンチルォキ シ基、 3—フエ-ルペンチルォキシ基、 4 フエ-ルペンチルォキシ基、 5—フエ-ル ペンチルォキシ基、 1 フエ-ルへキシルォキシ基、 2—フエ-ルへキシルォキシ基、 3—フエ-ルへキシルォキシ基、 4 フエ-ルへキシルォキシ基、 5—フエ-ルへキシ ルォキシ基、 6—フエ二ルへキシルォキシ基等が挙げられる。前記ァラルキルォキシ 基は、中でも炭素数 7〜 12のァラルキルォキシ基が好ましい。
置換ァラルキルォキシ基 (置換基を有するァラルキルォキシ基)としては、前記ァラ ルキルォキシ基の少なくとも 1個の水素原子が置換基で置換されたァラルキルォキシ 基が挙げられる。
[0029] R1及び R2で示される置換アミノ基としては、ァミノ基の 1個又は 2個の水素原子がァ ミノ保護基等の置換基で置換された鎖状又は環状のァミノ基が挙げられる。前記アミ ノ保護基は、通常、ァミノ保護基として用いられているものであれば何れも使用可能 であり、例えば、 PROTECTIVE GROUPS IN ORGANIC SYNTHESIS THIRD EDITIONQOHN WILEY & SONS INC.(1999)]」にァミノ保護基として記載されている 基等が挙げられる。ァミノ保護基の具体例としては、例えば、置換基を有していてもよ い炭化水素基 (例えば、アルキル基、ァリール基、ァラルキル基等)、置換基を有して いてもよいァシル基、置換基を有していてもよいアルコキシカルボ-ル基、置換基を 有して 、てもよ 、ァリールォキシカルボ-ル基、置換基を有して!/、てもよ 、ァラルキル ォキシカルボ-ル基、置換スルホニル基等が挙げられる。
[0030] 上記アミノ保護基の具体例として例示した置換基を有して!/ヽてもよ!/ヽ炭化水素基、 例えばアルキル基、ァリール基及びァラルキル基等は、上記で説明した置換基を有 して 、てもよ 、炭化水素基で説明した各基と同義であってょ 、。
アルキル基で置換されたァミノ基、即ち、アルキル基置換アミノ基の具体例としては 、例えば、 N—メチルァミノ基、 N, N ジメチルァミノ基、 N, N ジェチルァミノ基、 N, N ジイソプロピルアミノ基、 N シクロへキシルァミノ基等のモノ又はジアルキル ァミノ基が挙げられる。
ァリール基で置換されたァミノ基、即ちァリール基置換アミノ基の具体例としては、 例えば、 N フエ-ルァミノ基、 N, N ジフエ-ルァミノ基、 N ナフチルァミノ基、 N ナフチルー N—フエ-ルァミノ基等のモノ又はジァリールァミノ基が挙げられる。 ァラルキル基で置換されたァミノ基、即ちァラルキル基置換アミノ基の具体例として は、例えば、 N ベンジルァミノ基、 N, N ジベンジルァミノ基等のモノ又はジァラル キルアミノ基が挙げられる。また、 N—メチル—N フエ-ルァミノ基、 N ベンジル— N—メチルァミノ基等のジ置換アミノ基が挙げられる。
[0031] 置換基を有して!/、てもよ 、ァシル基は、ァシル基及び置換ァシル基が挙げられる。
ァシル基としては、直鎖状でも、分岐状でも或いは環状でもよい、例えば、カルボン 酸、スルホン酸、スルフィン酸、ホスフィン酸、ホスホン酸等の酸由来の炭素数 1〜20 のァシル基が挙げられる。
カルボン酸由来のァシル基としては、脂肪族カルボン酸、芳香族カルボン酸等の力 ルボン酸由来のァシル基が挙げられ、例えば、式: CORb [式中、 Rbは水素原子、 置換基を有して 、てもよ 、炭化水素基又は置換基を有して 、てもよ 、複素環基等を 示す (該置換基を有して ヽてもよ ヽ炭化水素基及び該置換基を有して ヽてもよ ヽ複 素環基は、上記で説明した各基と同じであってよい)。 ]で表されるァシル基が挙げら れる。カルボン酸由来のァシル基の具体例としては、例えば、ホルミル基、ァセチル 基、プロピオ-ル基、ブチリル基、ビバロイル基、ペンタノィル基、へキサノィル基、ラ ゥロイル基、ステアロイル基、ベンゾィル基、 1 ナフトイル基、 2—ナフトイル基等が 挙げられる。前記ァシル基は、中でも炭素数 2〜18のァシル基が好ましい。
スルホン酸由来のァシル基としては、スルホ-ル基が挙げられる。スルホニル基とし ては、置換スルホ-ル基が挙げられ、例えば、式: Re— SO [式中、 Reは、置換基
2
を有していてもよい炭化水素基、置換基を有していてもよい複素環基、アミノ基、置換 アミノ基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいァリー ルォキシ基又は置換基を有して 、てもよ 、ァラルキルォキシ基を示す (該置換基を 有していてもよい炭化水素基、該置換基を有していてもよい複素環基、置換アミノ基 、置換基を有していてもよいアルコキシ基、置換基を有していてもよいァリールォキシ 基及び置換基を有して ヽてもよ ヽァラルキルォキシ基は、上記で説明した各基と同じ であってよい)。 ]で表される置換スルホ-ル基が挙げられる。スルホ-ル基の具体例 としては、例えば、メタンスルホ-ル基、トリフルォロメタンスルホ-ル基、ベンゼンスル ホニル基、 p—トルエンスルホニル基等が挙げられる。 Reがァミノ基又は置換アミノ基 であるスルホ -ル基は、アミノスルホ -ル基である。アミノスルホ -ル基の具体例とし ては、例えば、アミノスルホ -ル基、ジメチルアミノスルホ -ル基、ジェチルアミノスル ホニル基、ジフエニルアミノスルホニル基等が挙げられる。また、 Reが置換基を有して V、てもよ 、アルコキシ基、置換基を有して 、てもよ 、ァリールォキシ基又は置換基を 有して 、てもよ ヽァラルキルォキシ基である置換スルホ -ル基は、アルコキシスルホ -ル基である。アルコキシスルホ -ル基の具体例としては、例えば、メトキシスルホ- ル基、ェトキシスルホ-ル基、フヱノキシスルホ -ル基、ベンジルォキシスルホ -ル基 等が挙げられる。
スルフィン酸由来のァシル基としては、スルフィエル基が挙げられる。スルフィエル 基としては、置換スルフィ-ル基が挙げられ、例えば、式: Rd— SO— [式中、 Rdは、 置換基を有して ヽてもよ ヽ炭化水素基、置換基を有して ヽてもよ ヽ複素環基又は置 換ァミノ基を示す (該置換基を有して!/ヽてもよ!ヽ炭化水素基、該置換基を有して!/ヽて もよい複素環基及び該置換アミノ基は、上記で説明した各基と同じであってよい。)で 表される置換スルフィエル基が挙げられる。スルフィエル基の具体例としては、例えば 、メタンスルフィエル基、 tert—ブチルスルフィエル基、ベンゼンスルフィエル基等が 挙げられる。
ホスフィン酸由来のァシル基としては、ホスフィエル基が挙げられる。ホスフィエル基 としては、置換ホスフィニル基が挙げられ、例えば、式:(Re) -PO- [式中、 2個の R
2
6は同一又は異なって、置換基を有して!/ヽてもよ!/ヽ炭化水素基を示す (該置換基を有 して 、てもよ 、炭化水素基は、上記で説明した置換基を有して 、てもよ 、炭化水素 基と同じであってよい)。 ]で表される置換ホスフィエル基が挙げられる。ホスフィエル 基の具体例としては、例えば、ジメチルホスフィエル基、ジフエ-ルホスフィエル基等 が挙げられる。
ホスホン酸由来のァシル基としては、ホスホ-ル基が挙げられる。ホスホニル基とし ては、置換ホスホ-ル基が挙げられ、例えば、式:(RfO) —PO—[式中、 2個の Rf
2
同一又は異なって、置換基を有して ヽてもよ ヽ炭化水素基を示す (該置換基を有し て!、てもよ 、炭化水素基は、上記で説明した置換基を有して 、てもよ 、炭化水素基 と同じであってよい)。 ]で表される置換ホスホ-ル基が挙げられる。ホスホ-ル基の 具体例としては、例えば、ジメチルホスホニル基、ジフエ-ルホスホニル基等が挙げら れる。
置換ァシル基 (置換基を有するァシル基)としては、上記ァシル基の少なくとも 1個 の水素原子が置換基で置換されたァシル基が挙げられる。
置換基を有して!/、てもよ 、ァシル基で置換されたァミノ基、即ちァシルァミノ基の具 体例としては、例えば、ホルミルアミノ基、ァセチルァミノ基、プロピオ-ルァミノ基、ピ バロィルァミノ基、ペンタノィルァミノ基、へキサノィルァミノ基、ベンゾィルアミノ基等 が挙げられる。
ァシル基の中でも、スルホ-ル基で置換されたァミノ基、即ちスルホ -ルァミノ基の 具体例としては、例えば、 -NHSO CH 、 -NHSO C H 、 一 NHSO C H CH 、
2 3 2 6 5 2 6 4 3
-NHSO CF 、 -NHSO OCH 、 -NHSO NH等が挙げられる。
2 3 2 3 2 2
ァシル基の中でも、置換基を有していてもよいアルコキシ基、置換基を有していても ょ ヽァリールォキシ基又は置換基を有して 、てもよレ、ァラルキルォキシ基で置換され たァミノ基、即ちアルコキシスルホニルァミノ基の具体例としては、例えば、メトキシス ノレホニルァミノ基、ェトキシスルホ-ルァミノ基、フエノキシスルホ -ルァミノ基、ベンジ ルォキシスルホ -ルァミノ基等が挙げられる。
[0033] 置換基を有していてもよいアルコキシカルボ-ル基は、アルコキシカルボ-ル基及 び置換アルコキシカルボ-ル基が挙げられる。
アルコキシカルボニル基としては、直鎖状でも、分岐状でも或いは環状でもよい、例 えば炭素数 2〜20のアルコキシカルボ-ル基が挙げられる。アルコキシカルボニル 基の具体例としては、例えば、メトキシカルボニル基、エトキシカルボニル基、 n プロ ポキシカノレポ-ノレ基、 2—プロポキシカルボ-ル基、 n ブトキシカルボ-ル基、 tert ブトキシカルボ-ル基、ペンチルォキシカルボニル基、へキシルォキシカルボュル 基、 2—ェチルへキシルォキシカルボ-ル基、ラウリルォキシカルボ-ル基、ステアリ ルォキシカルボ-ル基、シクロへキシルォキシカルボニル基等が挙げられる。
置換アルコキシカルボニル基(置換基を有するアルコキシカルボ-ル基)としては、 前記アルコキシカルボエル基の少なくとも 1個の水素原子が置換基で置換されたァ ルコキシカルボ-ル基が挙げられる。
置換基を有して ヽてもよ 、アルコキシカルボニル基で置換されたァミノ基、即ちアル コキシカルボ-ルァミノ基の具体例としては、例えば、メトキシカルボ-ルァミノ基、ェ トキシカルボ-ルァミノ基、 n—プロポキシカルボニルァミノ基、 n—ブトキシカルボ二 ルァミノ基、 tert ブトキシカルボニルァミノ基、ペンチルォキシカルボ-ルァミノ基、 へキシルォキシカルボニルァミノ基等が挙げられる。
[0034] 置換基を有して 、てもよ!/ヽァリールォキシカルボニル基は、ァリールォキシカルボ二 ル基及び置換ァリールォキシカルボ-ル基が挙げられる。
ァリールォキシカルボニル基としては、例えば、炭素数 7〜20のァリールォキシ力 ルポニル基が挙げられる。ァリールォキシカルボニル基の具体例としては、例えば、 フエノキシカルボ-ル基、ナフチルォキシカルボ-ル基等が挙げられる。 置換ァリールォキシカルボ-ル基 (置換基を有するァリールォキシカルボニル基)と しては、前記ァリールォキシカルボニル基の少なくとも 1個の水素原子が置換基で置 換されたァリールォキシカルボ-ル基が挙げられる。
置換基を有して ヽてもよ 、ァリールォキシカルボニル基で置換されたァミノ基、即ち ァリールォキシカルボ-ルァミノ基の具体例としては、例えば、ァミノ基の 1個の水素 原子が前記したァリールォキシカルボニル基で置換されたァミノ基が挙げられ、その 具体例としては、例えば、フエノキシカルボ-ルァミノ基、ナフチルォキシカルボ-ル アミノ基等が挙げられる。
[0035] 置換基を有していてもよいァラルキルォキシカルボ-ル基は、ァラルキルォキシ力 ルポ-ル基及び置換ァラルキルォキシカルボ-ル基が挙げられる。
ァラルキルォキシカルボ-ル基としては、例えば、炭素数 8〜20のァラルキルォキ シカルボ-ル基が挙げられる。ァラルキルォキシカルボ-ル基の具体例としては、例 えば、ベンジルォキシカルボ-ル基、フエネチルォキシカルボ-ル基、 9 フルォレ -ルメチルォキシカルボ-ル基等が挙げられる。
置換ァラルキルォキシカルボ-ル基(置換基を有するァラルキルォキシカルボ-ル 基)としては、前記ァラルキルォキシカルボ-ル基の少なくとも 1個の水素原子が置換 基で置換されたァラルキルォキシカルボニル基が挙げられる。
置換基を有して 、てもよ 、ァラルキルォキシカルボニル基で置換されたァミノ基、即 ちァラルキルォキシカルボ-ルァミノ基の具体例としては、例えば、ベンジルォキシカ ルボニルァミノ基、フエネチルォキシカルボ-ルァミノ基、 9 フルォレ -ルメチルォ キシカルボニルァミノ基等が挙げられる。
[0036] また、環状のアミノ基としては、例えば、アルキレン基で結合して含窒素環を形成し たァミノ基等が挙げられる。前記アルキレン基としては、直鎖状でも分岐状でもよい、 例えば炭素数 1〜6のアルキレン基が挙げられる。アルキレン基の具体例としては、 例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、 2—メチルプロピレン 基、 2, 2—ジメチルプロピレン基、 2—ェチルプロピレン基等が挙げられる。また、前 記アルキレン基は、該アルキレン基の末端又は鎖中の任意の位置に酸素原子、窒 素原子、カルボ二ル基等や二重結合を有していてもよい。
[0037] Q1及び Q2で示されるスぺーサ一としては、置換基を有して!/ヽてもよ ヽ 2価の有機基 等が挙げられる。置換基を有していてもよい 2価の有機基の具体例としては、例えば 、アルキレン基、ァリーレン基、ヘテロァリーレン基等が挙げられる。また、前記 2価の 有機基は、該有機基の末端又は鎖中の任意の位置に酸素原子、カルボニル基、硫 黄原子、イミノ基、置換イミノ基等のへテロ原子又は原子団を少なくとも 1個有してい てもよい。更に、前記スぺーサ一は、光学活性部位を有していてもよい。
アルキレン基としては、直鎖状でも分岐状でもよい、例えば炭素数 1〜: LOのアルキ レン基が挙げられる。アルキレン基の具体例としては、例えば、メチレン基、エチレン 基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、へキサメチレン 基、ヘプタメチレン基、オタタメチレン基、ノナメチレン基、デカメチレン基、 2—メチル プロピレン基、 2, 2—ジメチルプロピレン基、 2—ェチルプロピレン基等が挙げられる ァリーレン基としては、例えば炭素数 6〜20のァリーレン基が挙げられる。ァリーレ ン基の具体例としては、例えば、フエ-レン基、ビフエ-ルジィル基、ビナフタレンジィ ル基、ビスべンゾジォキソールジィル基等が挙げられる。
ヘテロァリーレン基としては、例えば、炭素数 2〜20で、少なくとも 1個、好ましくは 1 〜3個の窒素原子、酸素原子及び Z又は硫黄原子等のへテロ原子を含んでいる、 3 〜8員、好ましくは 5又は 6員の単環式、多環式又は縮合環式のへテロアリーレン基 が挙げられる。ヘテロァリーレン基の具体例としては、例えば、ビビリジンジィル基、ビ スベンゾチオールジィル基、ビスチオールジィル基等が挙げられる。
置 ミノ基は、イミノ基(-NH-)中の水素原子がァミノ保護基で置換されたィミノ 基が挙げられる。ァミノ保護基は、上記置換アミノ基で説明したァミノ保護基と同じで あってよい。
ヘテロ原子又は原子団を有する 2価の有機基としては、 -CH -O-CH 一、 -C
2 2
H -O-C H一等が挙げられる。
6 4 6 4
これら 2価の有機基は後述する置換基で置換されて 、てもよ 、。
[0038] また、スぺーサ一が光学活性部位を有する場合における、光学活性部位を有する スぺーサ一の具体例としては、例えば、 l t 2—ジメチルエチレン基、 1, 2—シクロへ キシレン基、 1, 2 ジフエ-ルエチレン基、 1, 2 ジ(4—メチルフエ-ル)エチレン基 、 1, 2 ジシクロへキシルエチレン基、 1, 3 ジメチルトリメチレン基、 1, 3 ジフエ- ルトリメチレン基、 1, 4—ジメチルテトラメチレン基、 1, 3 ジォキソラン一 4, 5 ジィ ル基、ビフヱニルジィル基、ビナフタレンジィル基等が挙げられる。これら光学活性部 位を有するスぺーサ一は、(R)体、(S)体、 (R, R)体又は(S, S)体が挙げられる。
[0039] Z1及び Z2で示される、 NR4—における R4で示される保護基、及び Z3〜及び Z4で 示される、 NR5—における R5で示される保護基は、上記置換アミノ基で説明したァ ミノ保護基と同じであってよい。
[0040] 置換基としては、例えば、置換基を有して!/ヽてもよ ヽ炭化水素基、置換基を有して いてもよい複素環基、ハロゲン原子、ハロゲンィ匕炭化水素基、置換基を有していても よいアルコキシ基、置換基を有していてもよいァリールォキシ基、置換基を有してい てもよぃァラルキルォキシ基、置換基を有していてもよいへテロアリールォキシ基、置 換基を有して 、てもよ 、アルキルチオ基、置換基を有して!/、てもよ 、ァリールチオ基 、置換基を有していてもよいァラルキルチオ基、置換基を有していてもよいへテロァリ 一ルチオ基、置換基を有していてもよいァシル基、置換基を有していてもよいァシル ォキシ基、置換基を有していてもよいアルコキシカルボ-ル基、置換基を有していて もよ ヽァリールォキシカルボ-ル基、置換基を有して!/、てもよ ヽァラルキルォキシ力 ルポ二ル基、置換基を有していてもよいアルキレンジォキシ基、ニトロ基、アミノ基、置 換ァミノ基、シァノ基、スルホ基、置換シリル基、ヒドロキシ基、カルボキシ基、置換基 を有して!/、てもよ 、アルコキシチォカルボ-ル基、置換基を有して!/、てもよ 、ァリール ォキシチォカルボ-ル基、置換基を有して!/、てもよ!/ヽァラルキルォキシチォカルボ- ル基、置換基を有していてもよいアルキルチオカルボ-ル基、置換基を有していても よ!ヽァリールチオカルボ-ル基、置換基を有して!/、てもよ 、ァラルキルチオカルボ- ル基、置換基を有していてもよい力ルバモイル基、置換ホスフイノ基、ォキソ基等が挙 げられる。
[0041] 置換基としての、置換基を有して!/ヽてもよ ヽ炭化水素基、置換基を有して ヽてもよ い複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいァ リールォキシ基、置換基を有していてもよいァラルキルォキシ基、置換基を有してい てもよいァシル基、置換基を有していてもよいアルコキシカルボ-ル基、置換基を有 して 、てもよ 、ァリールォキシカルボ-ル基、置換基を有して!/、てもよ 、ァラルキルォ キシカルボニル基及び置換アミノ基は、上記で説明した各基及び置換アミノ基で説 明した各基と同じであってよい。
[0042] ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げら れる。
[0043] ハロゲン化炭化水素基としては、上記炭化水素基の少なくとも 1個の水素原子がハ ロゲン化 (例えばフッ素化、塩素化、臭素化、ヨウ素化等)された基が挙げられる。ハ ロゲン化炭化水素としては、例えば、ハロゲンィ匕アルキル基、ハロゲンィ匕ァリール基、 ノ、ロゲンィ匕ァラルキル基等が挙げられる。
ハロゲン化アルキル基としては、例えば、炭素数 1〜20のハロゲン化アルキル基が 挙げられ、その具体例としては、クロロメチル基、ブロモメチル基、クロ口ェチル基、ブ ロモプロピル基、フルォロメチル基、フルォロェチル基、フルォロプロピル基、フルォ ロブチル基、フルォロペンチル基、フルォ口へキシル基、フルォ口へプチル基、フル ォロォクチル基、フルォロノ-ル基、フルォロデシル基、ジフルォロメチル基、ジフル ォロェチル基、フルォロシクロへキシル基、トリフルォロメチル基、 2, 2, 2—トリフルォ 口ェチル基、 3, 3, 3—トリフルォロプロピル基、ペンタフルォロェチル基、 3, 3, 4, 4 , 4 ペンタフルォロブチル基、ペルフルオロー n プロピル基、ペルフルォロイソプ 口ピル基、ペルフルオロー n ブチル基、ペルフルォロイソブチル基、ペルフルォロ tert ブチノレ基、ぺノレフノレオロー sec ブチノレ基、ぺノレフノレオ口ペンチノレ基、ぺノレ フノレオ口イソペンチノレ基、ぺノレフノレオロー tert ペンチノレ基、ぺノレフノレオロー n—へ キシル基、ペルフルォロイソへキシル基、ペルフルォ口へプチル基、ペルフルォロォ クチル基、ペルフルォロノ-ル基、ペルフルォロデシル基、ペルフルォロォクチルェ チル基、ペルフルォロシクロプロピル基、ペルフルォロシクロペンチル基、ペルフル ォロシクロへキシル基等が挙げられる。前記ハロゲンィ匕アルキル基は、中でも炭素数 1〜 10のハロゲン化アルキル基が好まし!/、。
ハロゲン化ァリール基としては、例えば炭素数 6〜20のハロゲン化ァリール基が挙 げられ、その具体例としては、 2 フルオロフェ-ル基、 3 フルオロフェ-ル基、 4 フルオロフェ-ル基、 2 クロ口フエ-ル基、 3 クロ口フエ-ル基、 4 クロ口フエ-ル 基、 2 ブロモフエ-ル基、 3 ブロモフエ-ル基、 4 ブロモフエ-ル基、 2 ョード フエ-ル基、 3 ョードフエ-ル基、 4 ョードフエ-ル基、 2 トリフルォロメチルフエ ニル基、 3 トリフルォロメチルフエ-ル基、 4 トリフルォロメチルフエ-ル、 2 トリク ロロメチルフエ-ル基、 3—トリクロロメチルフエ-ル基、 4 トリクロロメチルフエ-ル基 、ペルフルオロフェ-ル基、ペルフルォロナフチル基、ペルフルォロアントリル基、ぺ ルフルォロビフヱ-ル基等が挙げられる。前記ハロゲンィ匕ァリール基は、中でも炭素 数 6〜 15のハロゲン化ァリール基が好ましい。
ハロゲン化ァラルキル基としては、前記ァラルキル基の少なくとも 1個の水素原子が ノ、ロゲン原子で置換された基が挙げられ、例えば炭素数 7〜20のハロゲンィ匕ァラル キル基が挙げられ、その具体例としては 2 フルォ口べンジル基、 3 フルォロベンジ ル基、 4 フルォロベンジル基、 2 クロ口べンジル基、 3 クロ口べンジル基、 4ーク ロロべンジル基、 4 ブロモベンジル基、 4 ョードベンジル基、 2 トリフルォロメチ ルベンジル基、 3—トリフルォロメチルベンジル基、 4 トリフルォロメチルベンジル基 、 4 トリクロロメチルベンジル基、ペルフルォロベンジル基等が挙げられる。前記ハ ロゲン化ァラルキル基は、中でも炭素数 6〜 15のハロゲン化ァラルキル基が好ましい 置換基を有していてもよいへテロアリールォキシ基は、ヘテロァリールォキシ基及 び置換へテロアリールォキシ基が挙げられる。
ヘテロァリールォキシ基としては、例えば、少なくとも 1個、好ましくは 1〜3個の窒素 原子、酸素原子、硫黄原子等のへテロ原子を含んでいる、炭素数 2〜20、好ましくは 炭素数 2〜 15のへテロアリールォキシ基が挙げられる。ヘテロァリールォキシ基の具 体例としては、例えば、 2—ピリジルォキシ基、 2—ビラジルォキシ基、 2—ピリミジルォ キシ基、 2—キノリルォキシ基等が挙げられる。
置換へテロアリールォキシ基 (置換基を有するヘテロァリールォキシ基)としては、 前記ァラルキルォキシ基の少なくとも 1個の水素原子が置換基で置換されたへテロァ リールォキシ基が挙げられる。置換基は、特に断りのない限り上記置換基と同じであ つてよい(以下同じ。)。
[0045] 置換基を有していてもよいアルキルチオ基は、アルキルチオ基及び置換アルキル チォ基が挙げられる。
アルキルチオ基としては、直鎖状でも、分岐状でも或いは環状でもよい、例えば炭 素数 1〜20のアルキルチオ基が挙げられる。アルキルチオ基の具体例としては、例 えば、メチルチオ基、ェチルチオ基、 n—プロピルチオ基、 2—プロピルチオ基、 n— ブチルチオ基、 2—ブチルチオ基、イソブチルチオ基、 tert—ブチルチオ基、ペンチ ルチオ基、へキシルチオ基、シクロへキシルチオ基等が挙げられる。前記アルキルチ ォ基は、中でも炭素数 1〜10のアルキルチオ基が好ましぐ炭素数 1〜6のアルキル チォ基がより好ましい。
置換アルキルチオ基 (置換基を有するアルキルチオ基)としては、前記アルキルチ ォ基の少なくとも 1個の水素原子が置換基で置換されたアルキルチオ基が挙げられ る。
[0046] 置換基を有して!/、てもよ!/、ァリールチオ基は、ァリールチオ基及び置換ァリールチ ォ基が挙げられる。
ァリールチオ基としては、例えば炭素数 6〜20のァリールチオ基が挙げられる。ァリ 一ルチオ基の具体例としては、フエ-ルチオ基、ナフチルチオ基等が挙げられる。前 記ァリールチオ基は、中でも炭素数 6〜 14のァリールチオ基が好ましい。
置換ァリールチオ基 (置換基を有するァリールチオ基)としては、前記ァリールチオ 基の少なくとも 1個の水素原子が置換基で置換されたァリールチオ基が挙げられる。
[0047] 置換基を有して!/、てもよ 、ァラルキルチオ基は、ァラルキルチオ基及び置換ァラル キルチオ基が挙げられる。
ァラルキルチオ基としては、例えば炭素数 7〜20のァラルキルチオ基が挙げられる 。ァラルキルチオ基の具体例としては、例えば、ベンジルチオ基、 2—フエネチルチオ 基等が挙げられる。前記ァラルキルチオ基は、中でも炭素数 7〜 12のァラルキルチ ォ基が好ましい。
置換ァラルキルチオ基 (置換基を有するァラルキルチオ基)としては、前記ァラルキ ルチオ基の少なくとも 1個の水素原子が置換基で置換されたァラルキルチオ基が挙 げられる。
[0048] 置換基を有して!/、てもよ 、ヘテロァリールチオ基は、ヘテロァリールチオ基及び置 換ヘテロァリールチオ基が挙げられる。
ヘテロァリールチオ基としては、例えば、少なくとも 1個、好ましくは 1〜3個の窒素 原子、酸素原子、硫黄原子等のへテロ原子を含んでいる、炭素数 2〜20、好ましくは 炭素数 2〜 15のへテロアリールチオ基が挙げられる。ヘテロァリールチオ基の具体 例としては、例えば、 4 ピリジルチオ基、 2 べンズイミダゾリルチオ基、 2 べンズ ォキサゾリルチオ基、 2 ベンズチアゾリルチオ基等が挙げられる。
置換へテロアリールチオ基 (置換基を有するヘテロァリールチオ基)としては、前記 ヘテロァリールチオ基の少なくとも 1個の水素原子が置換基で置換されたへテロァリ 一ルチオ基が挙げられる。
[0049] 置換基を有していてもよいァシルォキシ基は、ァシルォキシ基及び置換ァシルォキ シ基が挙げられる。
ァシルォキシ基としては、脂肪族カルボン酸、芳香族カルボン酸等のカルボン酸由 来の例えば炭素数 2〜20のァシルォキシ基が挙げられる。ァシルォキシ基の具体例 としては、例えば、ァセトキシ基、プロピオ-ルォキシ基、ブチリルォキシ基、ビバロイ ルォキシ基、ペンタノィルォキシ基、へキサノィルォキシ基、ラウロイルォキシ基、ステ ァロイルォキシ基、ベンゾィルォキシ基等が挙げられる。前記ァシルォキシ基は、中 でも炭素数 2〜 18のァシルォキシ基が好まし 、。
置換ァシルォキシ基 (置換基を有するァシルォキシ基)としては、前記ァシルォキシ 基の少なくとも 1個の水素原子が置換基で置換されたァシルォキシ基が挙げられる。
[0050] 置換基を有していてもよいアルコキシチォカルボ-ル基は、アルコキシチォカルボ -ル基及び置換アルコキシチォカルボ-ル基が挙げられる。
アルコキシチォカルボニル基としては、直鎖状でも、分岐状でも或いは環状でもよ い、例えば炭素数 2〜20のアルコキシチォカルボ-ル基が挙げられる。アルコキシチ ォカルボニル基の具体例としては、例えば、メトキシチォカルボニル基、エトキシチォ カルボ-ル基、 n—プロポキシチォカルボ-ル基、 2—プロポキシチォカルボ-ル基、 n—ブトキシチォカルボニル基、 tert—ブトキシチォカルボニル基、ペンチルォキシ チォカルボ-ル基、へキシルォキシチォカルボ-ル基、 2—ェチルへキシルォキシチ ォカルボニル基、ラウリルォキシチォカルボニル基、ステアリルォキシチォカルボニル 基、シクロへキシルォキシチォカルボニル基等が挙げられる。
置換アルコキシチォカルボ-ル基(置換基を有するアルコキシチォカルボ-ル基) としては、上記アルコキシチォカルボ-ル基の少なくとも 1個の水素原子が置換基で 置換されたアルコキシチォカルボ-ル基が挙げられる。
[0051] 置換基を有していてもよいァリールォキシチォカルボ-ル基は、ァリールォキシチ ォカルボ-ル基及び置換ァリールォキシチォカルボ-ル基が挙げられる。
ァリールォキシチォカルボ-ル基としては、例えば炭素数 7〜20のァリールォキシ チォカルボニル基が挙げられる。ァリールォキシチォカルボ-ル基の具体例としては 、例えば、フエノキシチォカルボニル基、ナフチルォキシチォカルボニル基等が挙げ られる。
置換ァリールォキシチォカルボニル基 (置換基を有するァリールォキシチォカルボ -ル基)としては、上記ァリールォキシチォカルボニル基の少なくとも 1個の水素原子 が置換基で置換されたァリールォキシチォカルボ-ル基が挙げられる。
[0052] 置換基を有していてもよいァラルキルォキシチォカルボ-ル基は、ァラルキルォキ シチォカルボ-ル基及び置換ァラルキルォキシチォカルボ-ル基が挙げられる。 ァラルキルォキシチォカルボ-ル基としては、例えば炭素数 8〜 20のァラルキルォ キシチォカルボ-ル基が挙げられる。ァラルキルォキシチォカルボニル基の具体例と しては、例えば、ベンジルォキシチォカルボ-ル基、フエネチルォキシチォカルボ- ル基、 9 フルォレニルメチルォキシチォカルボ-ル基等が挙げられる。
置換ァラルキルォキシチォカルボニル基 (置換基を有するァラルキルォキシチォカ ルボニル基)としては、上記ァラルキルォキシチォカルボ-ル基の少なくとも 1個の水 素原子が置換基で置換されたァラルキルォキシチォカルボ-ル基が挙げられる。
[0053] 置換基を有していてもよいアルキルチオカルボ-ル基は、アルキルチオカルボ-ル 基及び置換アルキルチオカルボ-ル基が挙げられる。
アルキルチオカルボニル基としては、直鎖状でも、分岐状でも或いは環状でもよい 、例えば炭素数 2〜20のアルキルチオカルボ-ル基が挙げられる。アルキルチオ力 ルポ-ル基の具体例としては、例えば、メチルチオカルボ-ル基、ェチルチオカルボ ニル基、 n プロピルチオカルボ-ル基、例えば、 2—プロピルチオカルボ-ル基、 n ーブチルチオカルボニル基、 tert—ブチルチオカルボニル基、ペンチルチオカルボ ニル基、へキシルチオカルボ-ル基、 2—ェチルへキシルチオカルボ-ル基、ラウリ ルチオカルボ-ル基、ステアリルチオカルボ-ル基、シクロへキシルチオカルボ-ル 基等が挙げられる。
置換アルキルチオカルボ-ル基(置換基を有するアルキルチオカルボ-ル基)とし ては、上記アルキルチオカルボ-ル基の少なくとも 1個の水素原子が置換基で置換 されたアルキルチオカルボ-ル基が挙げられる。
[0054] 置換基を有していてもよいァリールチオカルボ-ル基は、ァリールチオカルボ-ル 基及び置換ァリールチオカルボニル基が挙げられる。
ァリールチオカルボ-ル基としては、例えば炭素数 7〜20のァリールチオカルボ- ル基が挙げられる。ァリールチオカルボ-ル基の具体例としては、例えば、フエ-ル チォカルボニル基、ナフチルチオカルボ-ル基等が挙げられる。
置換ァリールチオカルボ-ル基 (置換基を有するァリールチオカルボ-ル基)として は、上記ァリールチオカルボ-ル基の少なくとも 1個の水素原子が置換基で置換され たァリールチオカルボ-ル基が挙げられる。
[0055] 置換基を有していてもよいァラルキルチオカルボ-ル基は、ァラルキルチオカルボ -ル基及び置換ァラルキルチオカルボ-ル基が挙げられる。
ァラルキルチオカルボ-ル基としては、例えば炭素数 8〜20のァラルキルチオカル ボニル基が挙げられる。ァラルキルチォカルボ-ル基の具体例としては、例えば、ベ ンジルチオカルボ-ル基、フエネチルチオカルボ-ル基、 9 フルォレ -ルメチルチ ォカルボニル基等が挙げられる。
置換ァラルキルチォカルボ-ル基 (置換基を有するァラルキルチォカルボニル基) としては、上記ァラルキルチォカルボニル基の少なくとも 1個の水素原子が置換基で 置換されたァラルキルチオカルボ-ル基が挙げられる。
[0056] 置換基を有して!/、てもよ!/、力ルバモイル基は、力ルバモイル基及び置換力ルバモイ ル基が挙げられる。 置換力ルバモイル基としては、力ルバモイル基中のアミノ基の 1個又は 2個の水素 原子が置換基を有して ヽてもよ 、炭化水素基等の置換基で置換された力ルバモイル 基が挙げられる。置換基を有していてもよい炭化水素基は、上記で説明した置換基 を有して!/ヽてもよ 、炭化水素基と同じである。置換力ルバモイル基の具体例としては 、例えば、 N—メチルカルバモイル基、 N, N—ジェチルカルバモイル基、 N—フエ- ルカルバモイル基等が挙げられる。
[0057] 置換ホスフイノ基としては、ホスフイノ基の 1個又は 2個の水素原子が置換基を有し て!、てもよ 、炭化水素基等の置換基で置換されたホスフイノ基が挙げられる。置換基 を有して!/ヽてもよ 、炭化水素基は、上記で説明した置換基を有して ヽてもよ 、炭化 水素基と同じである。置換ホスフイノ基の具体例としては、例えば、ジメチルホスフイノ 基、ジェチルホスフイノ基、ジフエ-ルホスフイノ基、メチルフエ-ルホスフイノ基等が 挙げられる。
[0058] 置換シリル基としては、例えば、シリル基の 3個の水素原子が上記置換基を有して V、てもよ 、炭化水素基、上記置換基を有して 、てもよ 、アルコキシ基等の置換基で 置換されたトリ置換シリル基が挙げられる。置換シリル基の具体例としては、例えば、 トリメチルシリル基、トリェチルシリル基、トリ(2—プロピル)シリル基、 tert—ブチルジ メチルシリル基、 tert—ブチルジフヱ-ルシリル基、トリフエ-ルシリル基、 tert—ブチ ルメトキシフエ-ルシリル基、 tert—ブトキシジフエ-ルシリル基等が挙げられる。
[0059] 置換シリルォキシ基としては、例えば、炭素数 1〜18で、シリルォキシ基の 1〜3個 の水素原子が上記置換基を有して 、てもよ 、炭化水素基、上記置換基を有して 、て もよいアルコキシ基等の置換基で置換されたトリ置換シリルォキシ基が挙げられる。 置換シリルォキシ基の具体例としては、例えば、トリメチルシリルォキシ基、トリェチル シリルォキシ基、トリ(2—プロピル)シリルォキシ基、 tert—ブチルジメチルシリルォキ シ基、 tert—ブチルジフエ-ルシリルォキシ基、トリフエ-ルシリルォキシ基、 tert—ブ チルメトキシフエ-ルシリルォキシ基、 tert—ブトキシジフエ-ルシリルォキシ基等が 挙げられる。
[0060] 置換基を有していてもよいアルキレンジォキシ基は、アルキレンジォキシ基及び置 換アルキレンジォキシ基が挙げられる。 アルキレンジォキシ基としては、例えば、炭素数 1〜3のアルキレンジォキシ基が挙 げられる。アルキレンジォキシ基の具体例としては、例えば、メチレンジォキシ基、ェ チレンジォキシ基、トリメチレンジォキシ基、プロピレンジォキシ基等が挙げられる。 置換アルキレンジォキシ基 (置換基を有するアルキレンジォキシ基)としては、上記 アルキレンジォキシ基の少なくとも 1個の水素原子が置換基で置換されたアルキレン ジォキシ基が挙げられる。置換アルキレンジォキシ基の具体例としては、ジフルォロメ チレンジォキシ基等が挙げられる。
[0061] 光学活性リンィ匕合物の具体例としては、例えば下記に示す光学活性リン化合物等 が挙げられる。
[0062] [化 3]
Figure imgf000027_0001
[0063] 光学活性アミンィ匕合物は、その分子内に、光学活性ィ匕合物となるような光学活性部 位を有するアミンィ匕合物であればょ 、。
前記光学活性アミンィ匕合物としては、光学活性脂肪族ァミン化合物、光学活性芳 香族ァミン化合物、光学活性含窒素複素環化合物等が挙げられる。
光学活性脂肪族ァミン化合物の具体例としては、例えば、光学活性メンチルァミン、 光学活性 1 フエ-ルェチルァミン等が挙げられる。光学活性芳香族アミンィ匕合物の 具体例としては、例えば、光学活性部位をもつァニリンィ匕合物等が挙げられる。光学 活性含窒素化合物の具体例としては、例えば、光学活性部位をもつ、ピリジン、ピぺ リジン、ピぺラジン、ォキサゾリンィ匕合物等が挙げられる。ここで、単座配位子の光学 活性ォキサゾリンィ匕合物も光学活性アミンィ匕合物に含まれる。
[0064] [化 4]
Figure imgf000028_0001
[0065] 光学活性アルコール化合物としては、その分子内に、光学活性ィ匕合物となるような 光学活性部位を有するアルコールィ匕合物であればょ ヽ。光学活性アルコール化合 物の具体例としては、例えば下記に示す光学活性アルコールィ匕合物等が挙げられる
[0066] [化 5]
Figure imgf000028_0002
[0067] 光学活性硫黄ィ匕合物としては、その分子内に、光学活性ィ匕合物となるような光学活 性部位を有する硫黄ィ匕合物であればょ 、。光学活性硫黄ィ匕合物の具体例としては、 例えば下記に示す光学活性硫黄ィ匕合物化合物等が挙げられる。
[0068] [化 6]
Figure imgf000028_0003
[0069] 光学活性カルベンィ匕合物としては、その分子内に、光学活性ィ匕合物となるような光 学活性部位を有するカルベンィ匕合物であればょ 、。光学活性カルベン化合物の具 体例としては、例えば下記に示す光学活性カルベンィ匕合物等が挙げられる。
[0070] [化 7]
Figure imgf000028_0004
[0071] 二座配位子としては、光学活性ジホスフィンィ匕合物、ホスフィン一ホスファイト化合 物等の二座配位性の光学活性リンィ匕合物、光学活性ジァミンィ匕合物、光学活性アミ ノアルコール化合物、光学活性ジオールィ匕合物、光学活性アミノホスフィンィ匕合物、 光学活性ホスフイノアルコール化合物、光学活性アミノチオール化合物、光学活性ビ スォキサゾリンィ匕合物等が挙げられる。
[0072] 二座配位性の光学活性リンィ匕合物としては、その分子内に、光学活性化合物とな るような光学活性部位を有する二座配位性のリンィ匕合物であればよぐ例えば、下記 一般式(10)で表される光学活性リンィ匕合物が挙げられる。前記一般式(10)で表さ れる光学活性リンィ匕合物は、その分子内に光学活性部位を有するリン化合物である
[0073] R6R7P-Q3-PR8R9 (10)
[式中、 R6〜R9は夫々独立して、置換基を有していてもよい炭化水素基、置換基を 有していてもよい複素環基、置換基を有していてもよいアルコキシ基、置換基を有し て!、てもよ ヽァリールォキシ基又は置換基を有して 、てもよ ヽァラルキルォキシ基を 示し、 Q3はスぺーサーを示す。また、 R6と R7と P及び/又は R8と R9と P、 R6及び/又 は R7と Q3又は R8及び/又は R9と Q3、とが結合して環を形成していてもよい。尚、 R6 〜R9及び Q3は、一般式(10)で表されるリン化合物が光学活性リンィ匕合物となるよう な基であればよい。 ]
一般式(10)において、 R6〜R9で示される置換基を有していてもよい炭化水素基、 置換基を有していてもよい複素環基、置換基を有していてもよいアルコキシ基、置換 基を有して 、てもよ ヽァリールォキシ基及び置換基を有して 、てもよ ヽァラルキルォ キシ基は、上記で説明した各基と同じであってよい。また、 Q3で示されるスぺーサー も上記 Q1及び Q2で説明したスぺーサ一と同じであってよい。
[0074] 前記光学活性リン化合物の具体例としては、例えば、 1, 2—ビス (ァ-シルフヱ-ル ホスフイノ)ェタン(DIPAMP)、 1 , 2—ビス(アルキルメチルホスフイノ)ェタン(BisP * )、 2, 3—ビス(ジフエ-ルホスフイノ)ブタン(CHIRAPHOS)、 1, 2—ビス(ジフエ -ルホスフイノ)プロパン(PROPHOS)、 2, 3—ビス(ジフエ-ルホスフイノ)— 5—ノ ルボルネン(NORPHOS)、 2, 3— O—イソプロピリデン— 2, 3—ジヒドロキシ— 1, 4 —ビス(ジフエ-ルホスフイノ)ブタン(DIOP)、 1—シクロへキシル 1, 2—ビス(ジフ ェ-ルホスフイノ)ェタン(CYCPHOS)、 1—置換一 3, 4 ビス(ジフエ-ルホスフイノ )ピロリジン(DEGPHOS)、 2, 4 ビス一(ジフエ-ルホスフイノ)ペンタン(SKEWP HOS)、 1, 2—ビス(置換ホスホラノ)ベンゼン(DuPHOS)、 1, 2—ビス(置換ホスホ ラノ)ェタン(BPE)、 1— ( (置換ホスホラノ) 2— (ジフエ-ルホスフイノ)ベンゼン(U CAP— Ph)、 1— (ビス(3, 5 ジメチルフヱ-ル)ホスフイノ)— 2— (置換ホスホラノ) ベンゼン(UCAP— DM)、 1 ((置換ホスホラノ) 2 (ビス(3, 5 ジ(tert—ブチ ル) 4—メトキシフエ-ル)ホスフイノ)ベンゼン(UCAP— DTBM)、 1— ( (置換ホス ホラノ) - 2- (ジ一ナフタレン一 1—ィル一ホスフイノ)ベンゼン(UCAP— (1— Nap) )、 2, 2,一ビス(ジフエ-ルホスフイノ)一 1, 1,一ビシクロペンタン(BICP)、 2, 2,一 ビス(ジフエ-ルホスフイノ)一 1, 1,一ビナフチル(BINAP)、 2, 2,一ビス(ジフエ- ノレホスフイノ)一 1, 1,一(5, 5,, 6, 6' , 7, 7' , 8, 8,一才クタヒドロヒ、、ナフチノレ) (H
8
— BINAP)、2, 2,一ビス(ジ一 p トリルホスフイノ)一 1, 1,一ビナフチル(TOL— B INAP)、 2, 2 '—ビス(ジ(3, 5 ジメチルフエ-ル)ホスフイノ) 1, 1 'ービナフチル (DM— BINAP)、 2, 2,一ビス(ジフエ-ルホスフイノ)一 6, 6,一ジメチル一 1, 1,一 ビフエ-ル(BICHEP)、(4, 4,一ビー 1, 3 ベンゾジォキソール)一 5, 5,一ジィル ビス(ジフエ-ルホスフィン)(SEGPHOS)、 (4, 4,一ビー 1, 3 ベンゾジォキソール )—5, 5,—ジィルビス [ビス(3, 5—ジメチルフエ-ル)ホスフィン] (DM— SEGPHO S)、 [ (4S) - [4, 4,一ビー 1, 3 べンゾジォキソール ] 5, 5,ージィル]ビス [ビス [ 3, 5 ビス(1, 1—ジメチルェチル)— 4—メトキシフエ-ル]ホスフィン] (DTBM— S EGPHOS)等の光学活性体である、光学活性ジホスフィンィ匕合物等が挙げられる。 また、下記に示す光学活性リンィ匕合物等が挙げられる。
[化 8]
Figure imgf000031_0001
[0076] [化 9]
Figure imgf000031_0002
[0077] 二座配位性の光学活性ジァミンィ匕合物としては、その分子内に、光学活性化合物 となるような光学活性部位を有するジァミンィ匕合物であればよぐ例えば下記一般式 ( 11)で表される光学活性ジァミンィ匕合物が挙げられる。下記一般式(11)で表される 光学活性ジァミンィ匕合物は、その分子内に光学活性部位を有するジァミンィ匕合物で ある。
R^R^N-C (R14R15) -Q4-C (R16R17) _NR12R13 (11)
f g
(式中、 R1G〜R13は夫々独立して、水素原子、置換基を有していてもよい炭化水素基 、置換基を有していてもよい複素環基、置換スルホ -ル基又は保護基を示し、 R"〜 R17は夫々独立して、水素原子、置換基を有していてもよい炭化水素基又は置換基 を有していてもよい複素環基を示し、 Q4はスぺーサ一又は結合手を示し、 f及び gは 夫々独立して 0又は 1を示す。但し、 R14と R15と Cと、及び Z又は R16と R17と Cとが結
f g 合して環を形成してもよい。また、 R1C)又は R11と R14又は R15と Cと Nとが、及び
f Z又は
R12又は R13と R16又は R17と Cと Nとが結合して炭素環や脂肪族環等の環を形成して
g
いてもよい。更に、 R14又は R15と R16又は R17とが結合して環を形成していてもよい。更 にまた、 R1C>と R11と N、及び Z又は R12と R13と Nとが結合して環を形成してもよい。ま た、 R1Gと R11と Nと、及び/又は R12と R13と Nとが結合してピリジン環等の複素環を形 成していてもよい。更に、 R14又は R15と R16又は R17と Cと Q4と Cとが結合して芳香環
f g
や脂肪族環等の環を形成していてもよい。 )
[0078] 一般式(11)において、 R1C)〜R17で示される各基、即ち、置換基を有していてもよい 炭化水素基、置換基を有していてもよい複素環基、置換スルホ -ル基及び保護基は 、上記で説明した各基と同じであってよい。また、 Q4で示されるスぺーサーも上記 Q1 及び Q2等で説明したスぺーサ一と同じであってよい。
R14と R15と、及び Z又は R16と R17とが結合して形成する環、 R1C>又は R11と R14又は R 15とが、及び Z又は R12又は R13と R16又は R17とが結合して形成する環、 R14又は R15と R16又は R17とが結合して形成する環、及び R1C>と R11 及び Z又は R12と R13とが結合し て形成する環、は、例えばアルキレン基で結合して形成する炭素素環や複素環等の 環等が挙げられる。前記アルキレン基は、上記一般式(7)及び (8)において、 Q1及 び Q2におけるスぺーサ一で説明したアルキレン基と同じであってよ 、。前記形成する 環の具体例としては、例えば、シクロへキサン環、ベンゼン環等の脂肪族環等の炭素 環、ピリジン環、ピぺリジン環等の複素環等が挙げられる。尚、これら形成する環には 、更に上記したような置換基を有していてもよい。
[0079] 前記光学活性ジァミンィ匕合物としては、光学活性芳香族ジァミン類、光学活性脂肪 族ジァミン類、光学活性ビスォキサゾリンィ匕合物等が挙げられる。
光学活性ジァミンィ匕合物における光学活性ビスォキサゾリンィ匕合物は、二座配位 性の光学活性ビスォキサゾリンィ匕合物である。二座配位性の光学活性ビスォキサゾリ ン化合物としては、分子内に光学活性ィ匕合物となるような光学活性部位を有するビス ォキサゾリンィ匕合物であればよぐ例えば、下記一般式(17)で表される光学活性ビス ォキサゾリンィ匕合物等が挙げられる。下記一般式(17)で表される光学活性ビスォキ サゾリン化合物は、その分子内に光学活性部位を有するビスォキサゾリン化合物で ある。尚、前記光学活性ォキサゾリン化合物は、スぺーサーゃォキサゾリン環の置換 基の種類により、三座配位子や四座配位子等になることもある。
[0080] [化 10]
Figure imgf000033_0001
[0081] (式中、ォキサゾリン環 A及び Bは、置換基を有していてもよいォキサゾリン環を示し、 Q1C>はスぺーサ一又は結合手を示す。 )
[0082] 上記一般式(17)にお 、て、ォキサゾリン環 A及び Bで示される置換基を有して 、て もよぃォキサゾリン環は、ォキサゾリン環 (即ち、置換基を有さないォキサゾリン環)又 は置換ォキサゾリン環 (即ち、置換基を有するォキサゾリン環)が挙げられる。置換基 を有していてもよいォキサゾリン環における置換基は、上記で説明した置換基と同じ であってよい。また、 Q10で示されるスぺーサーも上記 Q1及び Q2で説明したスぺーサ 一と同じであってよい。
[0083] 光学活性ジァミンィ匕合物の具体例としては、例えば、 1, 2 ジフエ-ルエチレンジ ァミン、 1, 2 ビス(4ーメトキシフエニル)エチレンジァミン、 1, 2 ジシクロへキシル エチレンジァミン、 1, 2 ジ(4— N, N ジメチルァミノフエ-ル)エチレンジァミン、 1 , 2 ジ(4— N, N ジェチルァミノフエ-ル)エチレンジァミン、 1, 2 ジ(4— N, N —ジプロピルアミノフエ-ル)エチレンジァミン、 1, 2— (N ベンゼンスルホ -ル)—1 , 2 ジ(4— N, N ジメチルァミノフエ-ル)エチレンジァミン、 1, 2— (N— p トル エンスルホ-ル)— 1, 2 ジ(4— N, N ジメチルァミノフエ-ル)エチレンジァミン、 1, 2— (N—メタンスルホ -ル) 1, 2 ジ(4— N, N ジメチルァミノフエ-ル)ェチ レンジァミン、 1, 2— (N トリフルォロメタンスルホ -ル) 1, 2 ジ(4— N, N ジメ チルァミノフエ-ル)エチレンジァミン、 1, 2— (N ベンゼンスルホ -ル) 1, 2—ジ (4— N, N ジェチルァミノフエ-ル)エチレンジァミン、 1, 2— (N—ベンゼンスルホ ニル) 1, 2 ジ(4— N, N ジプロピルアミノフエ-ル)エチレンジァミン、 1, 2 ジ (4—スルホ-ルフエ-ル)エチレンジァミン、 1, 2 ジ(4 ナトリウムォキシスルホ- ルフエ-ル)エチレンジァミン、 1, 2—シクロへキサンジァミン、 1, 2—シクロヘプタン ジァミン、 2, 3 ジメチルブタンジァミン、 1ーメチルー 2, 2 ジフエニルエチレンジァ ミン、 1—イソブチル 2, 2—ジフエニルエチレンジァミン、 1—イソプロピル一 2, 2- ジフエニルエチレンジァミン、 1ーメチルー 2, 2—ジ(p—メトキシフエニル)エチレンジ ァミン、 1—イソブチル 2, 2—ジ(p—メトキシフエ-ル)エチレンジァミン、 1—イソプ 口ピル一 2, 2—ジ(p—メトキシフエ-ル)エチレンジァミン、 1—ベンジル一 2, 2—ジ( p—メトキシフエニル)エチレンジァミン、 1ーメチルー 2, 2—ジナフチルエチレンジァ ミン、 1 イソブチルー 2, 2—ジナフチルエチレンジァミン、 1 イソプロピル 2, 2- ジナフチルエチレンジァミン、ビス [N—(2, 4, 6 トリメチルフエニル)メチルー 1, 2 —ジフエ-ルエチレンジァミン、 N, N,一ビス(フエ-ルメチル)一 1, 2—ジフエ-ル —1, 2—エチレンジァミン、 N, N,一ビス(メシチルメチル) 1, 2—ジフエ-ル一 1, 2—エチレンジァミン、 N, N,一ビス(ナフチルメチル) 1, 2—ジフエ-ルー 1, 2- エチレンジァミン等の光学活性体が挙げられる。また、下記に示す光学活性ジァミン 化合物等が挙げられる。
[0084] [化 11]
Figure imgf000034_0001
[0085] これら光学活性ジァミンィ匕合物には、光学活性体として(1R, 2R)、 (IS, 2S)、 (1 R, 2S)、(IS, 2R)体が含まれるが、中でも(1R, 2R)、(IS, 2S)体が好ましい光学 活性ジァミンィ匕合物として挙げられる(ここで、光学活性体について、特に断らない限 り後述する光学活性ァミノアルコールィヒ合物等の同様の構造を有する化合物におい ても同様である。)。(1R, 2R)体及び(IS, 2S)体の光学活性ジァミン化合物の具体 例を示すと、例えば、(1R, 2R) - 1, 2—ジフエ-ルエチレンジァミン、(IS, 2S)— 1 , 2 ジフエ-ルエチレンジァミン、(1R, 2R)— 1, 2 ジ(4— N, N ジメチルァミノ フエ-ル)エチレンジァミン、(is, 2S)— 1, 2—ジ(4— N, N—ジメチルァミノフエ- ル)エチレンジァミン、(1R, 2R)— 1, 2 ジ(4— N, N ジェチルァミノフエ-ル)ェ チレンジァミン、(IS, 2S)— 1, 2—ジ(4— N, N ジェチルァミノフエ-ル)エチレン ジァミン、(1R, 2R)— 1, 2 ジ(4— N, N ジプロピルアミノフエ-ル)エチレンジァ ミン、(IS, 2S)— 1, 2 ジ(4— N, N ジプロピルアミノフエ-ル)エチレンジァミン 等が挙げられる。
また、光学活性ビスォキサゾリンィ匕合物の具体例としては、例えば、(S, S)— 2, 6 —ビス(4—イソプロピル一 2—ォキサゾリン一 2—ィル)ピリジン、(R, R) 2, 6 ビ ス(4—イソプロピル一 2—ォキサゾリン一 2—ィル)ピリジン、(S, S) 2, 6 ビス(4 —フエ-ル— 2—ォキサゾリン— 2—ィル)ピリジン、(R, R) 2, 6 ビス(4 フエ- ルー 2—ォキサゾリン— 2—ィル)ピリジン、(S, S) 2, 2,—イソプロピリデンビス(4 フエ-ルー 2—ォキサゾリン)、 (R, R)— 2, 2,一イソプロピリデンビス(4 フエ-ル 2—ォキサゾリン)、 (S, S) (一) 2, 2,一イソプロピリデンビス(4— tert—ブチ ルー 2—ォキサゾリン)、 2, 2,一メチレンビス [ (4R又は 4S)—フエ-ルー 5, 5 ジメ チルォキサゾリン]、 2, 2'—メチレンビス [ (4R又は 4S)—フエ-ルー 5, 5 ジェチ ルォキサゾリン]、 2, 2'—メチレンビス [ (4R又は 4S)—フエ-ルー 5, 5 ジ n—プ 口ピルォキサゾリン]、 2, 2'—メチレンビス [ (4R又は 4S)—フエ-ルー 5, 5 ジ一 i プロピルォキサゾリン]、 2, 2'—メチレンビス [ (4R又は 4S)—フエ-ルー 5, 5 ジ シクロへキシルォキサゾリン]、 2, 2'—メチレンビス [ (4R又は 4S)—フエ-ルー 5, 5 —ジフエ-ルォキサゾリン]、 2, 2'—メチレンビス [ (4R又は 4S)—フエ-ル一 5, 5— ジー(2 メチルフエ-ル)ォキサゾリン]、 2, 2,ーメチレンビス [ (4R又は 4S) フエ -ル一 5, 5 ジ一(3—メチルフエ-ル)ォキサゾリン]、 2, 2,一メチレンビス [ (4R又 は 4S)—フエ-ルー 5, 5 ジ一(4 メチルフエ-ル)ォキサゾリン]、 2, 2'—メチレン ビス [ (4R又は 4S)—フエ-ルー 5, 5 ジ一(2—メトキシフエ-ル)ォキサゾリン]、 2, 2,ーメチレンビス [ (4R又は 4S) フエ-ルー 5, 5 ジー(3—メトキシフエ-ル)ォキ サゾリン]、 2, 2'—メチレンビス [ (4R又は 4S)—フエ-ル一 5, 5 ジ一(4—メトキシ フエ-ル)ォキサゾリン]、 2, 2,ーメチレンビス [スピロ((4R又は 4S)—フエ-ルォキ サゾリン 5, 1,ーシクロブタン)]、 2, 2,ーメチレンビス [スピロ((4R又は 4S)—フエ ニノレオキサゾリン 5, 1,ーシクロペンタン)]、 2, 2,ーメチレンビス [スピロ((4R又は 4S)—フエ-ルォキサゾリン一 5, 1,一シクロへキサン)]、 2, 2,一メチレンビス [スピ 口((4R又は 4S) フエ-ルォキサゾリン 5, 1,ーシクロヘプタン)]等が挙げられる
[0087] 二座配位性の光学活性ァミノアルコールィ匕合物としては、その分子内に、光学活性 化合物となるような光学活性部位を有するァミノアルコールィ匕合物であればよぐ例 えば下記一般式(12)で表される光学活性ァミノアルコールィ匕合物が挙げられる。下 記一般式(12)で表される光学活性ァミノアルコールィ匕合物は、その分子内に光学 活性部位を有するァミノアルコール化合物である。
[0088] R18R19N - C (R2°R21)— Q5— C (R22R23)— OH (12)
f g
(式中、 R18及び R19は夫々独立して、水素原子、置換基を有していてもよい炭化水素 基、置換基を有していてもよい複素環基、置換スルホ -ル基又は保護基を示し、 R20 〜R23は夫々独立して、水素原子、置換基を有していてもよい炭化水素基又は置換 基を有していてもよい複素環基を示し、 Q5はスぺーサ一又は結合手を示し、 f及び g は前記と同じ。但し、 R2°と R21と Cとが、及び/又は R22と R23と Cとが結合して環を形
f g
成していてもよい。また、 R18又は R19と R2又は R21と Nと Cとが結合して炭素環や脂
f
肪族環等の環を形成していてもよい。更に、 R18と R19とが結合して環を形成していて もよい。また、 R18と R19と Nとが結合してピリジン環等の複素環を形成していてもよい。 更に、 R2と R21と Cと Q5とが結合して脂肪族環や芳香族環等の環を形成していても
f
よい。 )
[0089] 一般式(12)において、 R18〜R23で示される各基、即ち、置換基を有していてもよい 炭化水素基、置換基を有していてもよい複素環基、置換スルホ -ル基及び保護基は 、上記で説明した各基と同じであってよい。また、 Q5で示されるスぺーサーも上記 Q1 及び Q2で説明したスぺーサ一と同じであってよい。
[0090] 前記光学活性ァミノアルコールィ匕合物としては、光学活性芳香族ァミノアルコール 類、光学活性脂肪族ァミノアルコール類等が挙げられる。光学活性ァミノアルコール 化合物の具体例としては、例えば、 1 アミノー 2—プロパノール、 2—アミノー 1ーブ タノール、ァラニノール、口イシノール、イソ口イシノール、 2—アミノシクロへキサノール 、 4 アミノシクロへキサノール、 2 アミノシクロへキサンメタノール等の光学活性脂 肪族ァミノアルコール類;フエ-ルグリシノール、フエ-ルァラ-ノール、エフェドリン、 ノルエフェドリン、シユードエフェドリン、 2—アミノー 1、 2—ジフエ-ルエタノール、 2— ベンジルアミノシクロへキサンメタノール等の光学活性芳香族ァミノアルコール類等が 挙げられる。また、下記に示す光学活性ァミノアルコールィ匕合物等が挙げられる。
[0091] [化 12]
Figure imgf000037_0001
[0092] これら光学活性ァミノアルコールィ匕合物には、光学活性体として(1R, 2R)、 (1S, 2S)、 (1R, 2S)、 (IS, 2R)体が含まれるが、中でも(1R, 2R)、 (IS, 2S)体が好ま しい光学活性ァミノアルコールィ匕合物として挙げられる。
[0093] 二座配位性の光学活性ジオールィ匕合物としては、分子内に光学活性ィ匕合物となる ような光学活性部位を有するジオールィ匕合物であればよぐ例えば下記一般式(13) で表される光学活性ジオールィヒ合物が挙げられる。下記一般式(13)で表される光 学活性ジオール化合物は、その分子内に光学活性部位を有するジオールィ匕合物で ある。
[0094] HO-C (R24R25)— Q6— C (R26R27)— OH (13)
f g
(式中、 R24〜R27は夫々独立して、水素原子、置換基を有していてもよい炭化水素基 又は置換基を有して ヽてもよ ヽ複素環基を示し、 Q6はスぺーサ一又は結合手を示し
、 f及び gは前記と同じ。但し、 R24と R25と Cとが、及び/又は R26と R27と Cとが結合し
f g
て環を形成していてもよい。また、 R24又は R25と Cと Q6と Cと R26又は R27とが結合し
f g
て脂肪族環や芳香族環等の環を形成していてもよい。 )
[0095] 一般式( 13)にお 、て、 R24〜R27で示される置換基を有して 、てもよ 、炭化水素基 及び置換基を有して 、てもよ 、複素環基は、上記で説明した各基と同じであってょ ヽ 。また、 Q6で示されるスぺーサーも上記 Q1及び Q2で説明したスぺーサ一と同じであ つてよい。
[0096] 前記光学活性ジオール化合物の具体例としては、例えば、下記に示す光学活性ジ オール化合物等が挙げられる。
[0097] [化 13]
Figure imgf000038_0001
[0098] これら光学活性ジオールィ匕合物には、光学活性体として(1R, 2R)、 (IS, 2S)、 ( 1R, 2S)、(IS, 2R)体が含まれるが、中でも(1R, 2R)、(IS, 2S)体が好ましい光 学活性ジオールィ匕合物として挙げられる。
[0099] 二座配位性の光学活性アミノホスフィンィ匕合物としては、分子内に光学活性ィ匕合物 となるような光学活性部位を有するァミノホスフィンィ匕合物であればよぐ例えば下記 一般式(14)で表される光学活性アミノホスフィンィ匕合物が挙げられる。下記一般式( 14)で表される光学活性アミノホスフィンィ匕合物は、その分子内に光学活性部位を有 するアミノホスフィンィ匕合物である。
[0100] R6R7P-Q?-C (R16R17) -NR12R13 (14)
g
(式中、 Q7はスぺーサ一又は結合手を示し、 R6、 R7、 R12、 R13、 R16及び R17及び gは 前記と同じ。但し、 R6と R7と P、 R6及び/又は R7と Pと Q7、 R16と R17と C、 R12又は R13
g
と R16又は R17と C、及び/又は R12と R13と Nとが結合して環を形成してもよい。また、
g
R12と R13と Nとが結合してピリジン環等の複素環を形成していてもよい。更に、 R16又 は R17とが結合して芳香環や脂肪族環等の環を形成して!/ヽてもよ!ヽ。 )
一般式(13)において、 Q7で示されるスぺーサーも上記 Q1及び Q2で説明したスぺ ーサ一と同じであってよい。
前記光学活性アミノホスフィン化合物の具体例としては、例えば、下記に示す化合 物等が挙げられる。
[0101] [化 14]
Figure imgf000039_0001
[0102] 二座配位性の光学活性ホスフイノアルコールィ匕合物としては、分子内に光学活性 化合物となるような光学活性部位をするホスフイノアルコールィ匕合物であればよぐ例 えば下記一般式(15)で表される光学活性ホスフイノアルコールィ匕合物が挙げられる 。前記一般式(15)で表される光学活性ホスフイノアルコールィ匕合物は、その分子内 に光学活性部位を有するホスフイノアルコールィ匕合物である。
[0103] R6R7P-Q8-C (R26R27) -OH (15)
g
(式中、 Q8はスぺーサ一又は結合手を示し、 R6、 R7、 R26及び R27、及び gは前記と同 じ。但し、 R6と R7と P、 R26及び/又は R27と Cと Q8、 R26と R27と C、 R26又は R27とと C
g g g
Q8と、が結合して環を形成してもよい。 )
[0104] 一般式(15)において、 Q8で示されるスぺーサーも上記 Q1及び Q2で説明したスぺ ーサ一と同じであってよい。
[0105] 前記光学活性ホスフイノアルコールィ匕合物の具体例としては、例えば、下記に示す 化合物等が挙げられる。
[0106] [化 15]
Figure imgf000039_0002
二座配位性の光学活性アミノチオイ匕合物としては、分子内に光学活性化合物とな るような光学活性部位を有するアミノチオイ匕合物であればよぐ例えば下記一般式(1 6)で表される光学活性アミノチオイ匕合物が挙げられる。下記一般式(16)で表される 光学活性アミノチオイ匕合物は、その分子内に光学活性部位を有するアミノチオイ匕合 物である。
[0108] R18R19N— C (R20R21)— Q9— C (R22R23)— SR28 (16)
f g
(式中、 R28は水素原子、置換基を有していてもよい炭化水素基又は置換基を有して いてもよい複素環基を示し、 Q9はスぺーサ一又は結合手を示し、 R18、 R19、 R2°〜R2 3、及び f及び gは前記と同じ。但し、 R2と R21と Cと、及び Z又は R22と R23と Cとが結
f g 合して環を形成していてもよい。また、 R18又は R19と R2又は R21と Nと Cとが結合して
f
環を形成していてもよい。更に、 R18と R19と Nとが結合してピリジン環ゃピペリジン環 等の複素環等の環を形成していてもよい。)更にまた、 R2G又は R21と Cと Q9と C R22
ί e 又は R23とが結合して芳香環や脂肪族環等の環を形成して 、てもよ!/、。
[0109] 一般式(16)において、 R28で示される置換基を有していてもよい炭化水素基及び 置換基を有していてもよい複素環基は、上記で説明した各基と同じであってよい。ま た、 Q9で示されるスぺーサーも上記 Q1及び Q2で説明したスぺーサ一と同じであって よい。
[0110] 前記光学活性アミノチオイ匕合物の具体例としては、例えば、下記に示す化合物等 が挙げられる。
[0111] [化 16]
Figure imgf000040_0001
[0112] 三座配位子としては、例えば、下記に示すィ匕合物等が挙げられる。
[0113] [化 17]
Figure imgf000041_0001
尚、上記本発明で用いられる不斉配位子は、反応条件等に応じて、異なる配位状 態の配位子として機能してもよ 、。
上記不斉配位子は、夫々単独で用いても 2種以上適宜組み合わせて用いてもょ 、 。また、これら不斉配位子は、該不斉配位子が任意に結合して、不斉配位子を構成 していてもよい。
また、上記不斉配位子は、市販品を用いても、常法や上記したような文献等に記載 の方法で適宜製造した不斉配位子を用いてもょ ヽ。
[0117] 2)銅化合物
本発明で用いられる銅化合物は、不斉配位子と反応させることにより不斉銅錯体が 得られ、得られた不斉銅錯体を均一系水素化反応用触媒として用いても該反応に悪 影響を及ぼさな 、ものであれば何れも使用可能である。
本発明で用いられる銅化合物としては、一価又は二価の銅を含有する化合物が挙 げられ、例えば、銅塩、その他の銅化合物、銅錯体等が挙げられる。これら本発明で 用いられる銅ィ匕合物の具体例としては、例えば、 Organocopper Reagent A Practical Approach (OXFORD UNIVERSITY PRESS, 1994)に記載の銅化合物等が挙げられる
[0118] 銅塩としては、例えば下記一般式(2— 1)で表される銅塩等が挙げられる。
[Cu X1 ] (2- 1)
nil nl2 nl3
(式中、 nl2個の X1は同一又は異なって、ァ-オンを示し、 nl l〜nl3は夫々独立し て、自然数を示す。)
[0119] X1で示されるァ-オンとしては、硝酸イオン、亜硝酸イオン、ハロゲンィ匕物イオン、 硫酸イオン、亜硫酸イオン、スルホン酸イオン、スルファミン酸イオン、炭酸イオン、水 酸化物イオン、カルボン酸イオン、硫化物イオン、チォシアン酸イオン、リン酸イオン、 ピロリン酸イオン、酸化物イオン、リンィ匕物イオン、塩素酸イオン、過塩素酸イオン、ョ ゥ素酸イオン、へキサフルォロケィ酸イオン、シアン化物イオン、ホウ酸イオン、メタホ ゥ酸イオン、ほうフッ化物イオン等が挙げられる。
[0120] ハロゲン化物イオンとしては、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化 物イオン等が挙げられる。
スルホン酸イオンとしては、 R1G5SO _ (R1G5は置換基を有していてもよい炭化水素
3
基を示す。置換基を有していてもよい炭化水素基は上記と同じ。)等で示される基が 挙げられる。スルホン酸イオンの具体例としては、例えば、メタンスルホン酸イオン、ベ ンゼンスルホン酸イオン、トリフルォロメタンスルホン酸イオン、 p—トルエンスルホン酸 イオン等が挙げられる。
カルボン酸イオンとしては、 R1G6COO_ (R1G6は置換基を有していてもよい炭化水素 基を示す。置換基を有していてもよい炭化水素基は上記と同じ。)等で示される。力 ルボン酸イオンの具体例としては、例えば、酢酸イオン、ぎ酸イオン、プロピオン酸ィ オン、ダルコン酸イオン、ォレイン酸イオン、しゅう酸イオン、安息香酸イオン、フタル 酸イオン、トリフルォロ酢酸イオン等が挙げられる。
[0121] ni l及び nl2は夫々独立して自然数を示す力 好ましくは 1〜10の自然数である。
[0122] 銅塩の具体例としては、例えば、硝酸銅 (I)、硝酸銅 (II)等の硝酸銅;亜硝酸銅 (I) 、亜硝酸銅 (II)等の亜硝酸銅;塩化銅 (1)、塩化銅 (11)、臭化銅 (1)、臭化銅 (11)、フ ッ化銅 (1)、フッ化銅 (11)、ヨウ化銅 (1)、ヨウ化銅 (II)等のハロゲン化銅;硫酸銅 (Π) 等の硫酸銅;亜硫酸銅 (II)等の亜硫酸銅;メタンスルホン酸銅 (I)、メタンスルホン酸 銅(Π)、 p—トルエンスルホン酸銅 (I)、 p—トルエンスルホン酸銅 (II)、トリフルォロメ タンスルホン酸銅 (I)、トリフルォロメタンスルホン酸銅 (II)等のスルホン酸銅;スルファ ミン酸銅 (II)等のスルフアミン酸銅;炭酸銅 (II)等の炭酸銅;水酸化銅 (II)等の水酸 ィ匕銅;酢酸銅 (I)、酢酸銅 (II)、ギ酸銅 (II)、プロピオン酸銅 (II)、ダルコン酸銅 (II)、 ォレイン酸銅 (II)、シユウ酸銅 (II)、安息香酸銅 (II)、フタル酸銅 (II)、力プリル酸銅 ( II)、クェン酸銅 (II)、サリチル酸銅 (II)、酒石酸銅 (II)、ステアリン酸銅 (II)、ナフテ ン酸銅、乳酸銅 (Π)、ラウリン酸銅 (Π)等のカルボン酸銅;硫化銅 (1)、硫化銅 (Π)等 の硫化銅;チォシアン酸銅 (I)、チォシアン酸銅 (II)等のチォシアン酸銅;リン酸銅 (I 1)、ピロリン酸銅 (II)等のリン酸銅;酸化銅 (1)、酸化銅 (II)等の酸化銅;塩素酸銅 (I) 、過塩素酸銅 (II)等の過ハロゲンィ匕酸銅;ヨウ素酸銅 (II)等のハロゲンィ匕酸銅;へキ サフルォロケィ酸銅等のケィ酸銅;シアン化銅 (I)、シアン化銅 (II)等のシアン化銅; ホウ酸銅、メタホウ酸銅、銅テトラフルォロボレート等のホウ酸銅等が挙げられる。
[0123] その他の銅化合物としては、例えば下記一般式(2— 2)で表される銅化合物等が 挙げられる。
[Cu X2 ] (2- 2)
nl4 nl5 nl6
[式中、 nl5個の X2は同一又は異なって、置換基を有していてもよい炭化水素基、 O R1G1 (R1G1は置換基を有していてもよい炭化水素基を示す。)、 NR1G2 (2個の R1G2は 同一又は異なって、水素原子又は置換基を有していてもよい炭化水素基を示す。)、
PR103 (2個の R1G3は同一又は異なって、置換基を有していてもよい炭化水素基を示
2
す。)、 SR1G4 (R1C)4は置換基を有していてもよい炭化水素基を示す。)、 1, 3—ジカル ボ-ル化合物或いはそのエノラート又はヒドリドを示し、 nl4〜nl6は夫々独立して、 白然数を示す。]
[0124] 一般式(2— 2)において、 nl4及び nl5は夫々独立して自然数を示す力 好ましく は 1〜 10の自然数である。
X2で示される置換基を有していてもよい炭化水素基、及び OR101、 NR102 、 PR103
2 2 及び SR104において、
Figure imgf000044_0001
R102、 R103及び R104で示される置換基を有していてもよい 炭化水素基は、夫々上記で説明した置換基を有していてもよい炭化水素基と同じで あってよい。
[0125] X2で示される OR1C)1の具体例としては、メトキシ基、エトキシ基、 n—プロポキシ基、 イソプロポキシ基、 n—ブトキシ基、 s—ブトキシ基、 tert—ブトキシ基、フエノキシ基等 が挙げられる。
NR102の具体例としては、ジメチルァミノ基、ジェチルァミノ基、ジシクロへキシルァ
2
ミノ基、ジフエ二ルァミノ基等が挙げられる。
PR103の具体例としては、ジメチルホスフイノ基、ジェチルホスフイノ基、ジ (tert—
2
ブチル)ホスフイノ基、ジシクロへキシルホスフイノ基、ジフエ-ルホスフイノ基等が挙げ られる。
SR1CMの具体例としては、 SMe、 SEt、 SBu、 SPh、 S (CH C H )等が挙げられる
3 6 5
1, 3—ジカルボ-ル化合物或いはそのエノラートの具体例としては、 2, 5—ペンタ ンジオン(acac)、 1, 1, 1—トリフルォロ— 2, 5—ペンタンジオン、 1, 1, 1, 3, 3, 3 —へキサフルォロペンタンジオン(Mac)、ベンゾィルアセトン、ァセト酢酸メチル、ァ セト酢酸ェチル等が挙げられる。
[0126] 一般式(2— 2)で表される銅化合物の具体例としては、例えば、銅ジメトキシド、銅 ジェトキシド、銅ジイソプロポキシド、銅 tert—ブトキシド等の銅アルコキシド;銅フエノ キシド等の銅フエノキシド;銅ジ(tert—ブチルホスフイド)、銅ジシクロへキシルホスフ イド、銅ジフエ-ルホスフイド等の銅ホスフイド;銅ジシクロへキシルアミド等の銅アミド; 銅ブタンチォレート、銅チオフエノレート等の銅チォレート;銅 2, 4—ペンタンジォネ ート、銅ベンゾィルァセトネート、銅 1, 3—ジフエ-ルー 1, 3—プロパンジォネート、 銅ェチルァセトアセテート、銅トリフルォロペンタンジォネート、銅へキサフルォロペン タンジォネート等の銅 1, 3—ジカルボ二ルイ匕合物或いはそのエノラート;水素ィ匕銅;メ シチル銅、ェチュル銅等の炭化水素化銅;トリメチルシリルェチュル銅等のシリルイ匕 銅等が挙げられる。
[0127] その他の銅化合物は、また、例えば下記一般式 (2— 3)で表される銅化合物等が 挙げられる。
[HCuP (R107) ] (2- 3)
3 nl7
(式中、 3個の R1OTは同一又は異なって、置換基を有していてもよい炭化水素基を示 し、 nl 7は自然数を示す。 )
[0128] 一般式 (2— 3)で表される銅化合物の具体例としては、例えば、水素化銅 (I) (トリフ ェニルホスフィン)へキサマー(Stryker試薬)等が挙げられる。
[0129] 一般式(2— 3)で表される銅化合物の具体例としては、例えば、ヒドリド(トリフ ニル ホスフィン)銅 (I)へキサマー等が挙げられる。
[0130] 上記銅塩及び上記その他の銅化合物等の銅化合物は、アルカリ金属(例えば、リ チウム、ナトリウム、カリウム、ルビジウム、セシウム等)やアルカリ土類金属(例えば、 マグネシウム、カルシウム、ストロンチウム、ノ リウム等)の塩と複塩を形成していてもよ い。形成される複塩の具体例としては、例えば、 KCuF、 K [CuF ]、 CuCN-LiCl
3 3 6
、 Li CuCl、 Li CuCl、 LiCuBr等が挙げられる。これら銅塩及び上記その他の銅
2 4 2 3 2
化合物は、無水物でも水和物でもよい。
[0131] 銅化合物として用いられる銅錯体は、 i)不斉配位子以外の配位子を有し、不斉配 位子と反応して均一系水素化反応用触媒、特に均一系不斉水素化反応用触媒とし て使用可能な不斉銅錯体を形成する、又は ii)不斉配位子と共に均一系水素化反応 用触媒、特に均一系不斉水素化反応用触媒として使用可能となる銅錯体、或いは iii )不斉配位子と反応して不斉銅錯体を形成する不斉銅錯体前駆体として用いられる 銅錯体、であれば何れも挙げられる。前記銅錯体としては、例えば、 COMPREHENSI VE ORGANOMETALLIC CHEMISTRY II (Pergamon,
1995)、 COMPREHENSIVE ORGANOMETALLIC CHEMISTRY (Pergamon,
1982)、 WO2005Z016943号、日本化学会編「第 4版 実験化学講座」第 17卷 (無 機錯体 'キレート錯体)、同第 18卷 (有機金属錯体) 1991年 (丸善)、 Inorg. Chem., 1 382 (1965).等に記載されて 、る銅錯体等が挙げられる。
[0132] 銅化合物として用いられる銅錯体は、その構造が複雑であるため一概にはいえな いが、敢えて一般式で表すとすると、例えば下記一般式 (2— 4)で表される銅錯体等 が挙げられる。
[Cu L2 ] X3 (2-4)
n21 n22 n23 n24
(式中、 n22個の L2は同一又は異なって、配位子を示し、 n24個の X3は同一又は異 なって、ァ-オン又はカチオンを示し、 n21〜n23は夫々独立して、自然数を示し、 n 24は 0又は自然数を示す。 )
[0133] 一般式(2— 4)において、 L2で示される配位子は、銅と結合又は配位する化合物で あればよい。該配位子としては、例えば、単座、二座、三座、四座等の配位子が挙げ られる。
[0134] 前記 L2で示される配位子の具体例としては、例えば、ハロゲン原子、一酸化炭素( CO)、二トリル類、シアニド類、中性配位子、炭化水素基類、ヒドリド基、リン化合物、 ァミン化合物、硫黄化合物、ァ-オン、置換基を有していてもよい炭化水素基、 ORlc> ^R1^1は前記と同じ。)、 NR1C>2 (R1C>2は前記と同じ。)、 PR1C>3 (R1C>3は前記と同じ。)
2 2
、 SR1G4 (R1C>4は前記と同じ。)、又は 1, 3—ジカルボ-ルイ匕合物或いはそのエノラー ト (該 1, 3—ジカルボ-ルイ匕合物或いはそのエノラートは上記と同じ。)等が挙げられ る。
[0135] ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げら れる。
二トリル類としては、例えば、 R1 )CN (R11C)は置換基を有していてもよい炭化水素基 を示す。)で表される-トリル類等が挙げられる。 R11Gで示される置換基を有していて もよい炭化水素基は、上記で説明した置換基を有していてもよい炭化水素基と同じ である。二トリル類の具体例としては、例えば、ァセトニトリル、ベンゾ-トリル等が挙げ られる。
シアニド類としては、例えば、 RmNC O^111は置換基を有していてもよい炭化水素 基を示す。)で表されるシアニド類等が挙げられる。 R111で示される置換基を有してい てもよい炭化水素基は、上記で説明した置換基を有していてもよい炭化水素基と同 じである。シアニド類の具体例としては、例えば、メチルイソシアニド、フエ二ルイソシ アニド等が挙げられる。
中性配位子としては、例えば、芳香族化合物、ォレフィン類、ジォレフイン類等の炭 化水素類、その他の中性配位子等が挙げられる。芳香族化合物としては、ベンゼン 、p—シメン、 1, 3, 5—トリメチルベンゼン (メシチレン)、へキサメチルベンゼン等が 挙げられる。ォレフィン類としては、エチレン、プロピレン、シクロオタテン等が挙げら れる。ジォレフイン類としては、ブタジエン、シクロォクタジェン(cod)、ノルボルナジェ ン (nbd)等が挙げられる。その他の中性配位子としては、例えば、 N, N—ジメチルホ ルムアミド(DMF)、アセトン、クロ口ホルム等が挙げられる。
炭化水素基類としては、シクロペンタジェニル基 (Cp)、テトラメチルシクロペンタジ ェニル基等が挙げられる。
リンィ匕合物としては、例えば、一般式 (41)
PR151 (41)
3
(式中、 3個の R151は同一又は異なって、水素原子、置換基を有していてもよい炭化 水素基、置換基を有していてもよい複素環基、置換基を有していてもよいアルコキシ 基、置換基を有していてもよいァリールォキシ基、置換基を有していてもよいァラルキ ルォキシ基、アミノ基又は置換アミノ基を示す。)で表されるリンィ匕合物等が挙げられ る。
R151で示される置換基を有して 、てもよ 、炭化水素基、置換基を有して 、てもよ ヽ 複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいァリ ールォキシ基、置換基を有して!/ヽてもよ ヽァラルキルォキシ基及び置換アミノ基は、 上記で説明した各基と同じであってょ 、。
一般式 (41)において、 R151で示される置換基を有していてもよい炭化水素基、置 換基を有していてもよい複素環基、置換基を有していてもよいアルコキシ基、置換基 を有して!/、てもよ ヽァリールォキシ基、置換基を有して!/、てもよ ヽァラルキルォキシ基 及び置換アミノ基は、上記で説明した各基と同じであってよい。また、 2つのリンィ匕合 物が結合して、ジホスフィンィ匕合物、例えば、一般式 (42)
R151 P-Q21-PR151 (42)
2 2
(式中、 Q21はスぺーサーを示し、 4個の R151は同一又は異なって、前記と同じ。)で 表されるジホスフィンィ匕合物を形成して 、てもよ 、。
一般式 (42)において、 Q21で示されるスぺーサ一は、 R151に由来の基であり、上記 で説明したアルキレン基と同じであってよ!/、。
前記リンィ匕合物の具体例としては、例えば、トリフエ-ルホスフィン、トリトリルホスフィ ン、トリメチルホスフィン、トリェチルホスフィン、メチルジフエニルホスフィン、ジメチル フエ-ルホスフィン、ジフエ-ルホスフイノメタン(dppm)、ジフエ-ルホスフイノエタン( dppe)、ジフエ-ルホスフイノプロパン(dppp)、ジフエ-ルホスフイノブタン(dppb)、 ジフエ-ルホスフイノフエ口セン(dppf)等のホスファン化合物、トリメチルホスファイト、 トリェチルホスファイト、トリフエ-ルホスファイト等のホスファイト化合物等が挙げられる ァミン化合物としては、例えば、アンモニア;メチルァミン、ェチルァミン、 n—プロピ ルァミン、イソプロピルァミン、 n—ブチルァミン、 s—ブチルァミン、 tert—ブチルアミ ン、シクロへキシルァミン等の脂肪族ァミン類;ァ-リン、ジメチルァ-リン等の芳香族 アミン類;ピリジン (Py)、ジメチルァミノピリジン、等の含窒素芳香族複素環類、ピロリ ジン、ピぺラジン等の含窒素脂肪族複素環類;エチレンジァミン (en)、プロピレンジ ァミン、トリエチレンジァミン、テトラメチルエチレンジァミン(TMEDA)、ビビリジン(bp y)、フエナント口リン (phen)等のジァミン類等が挙げられる。
硫黄化合物としては、例えば、ジメチルスルフイド、ジェチルスルフイド、ジプロピル スルフイド、ジブチルスルフイド等が挙げられる。
ァ-オンは、上記一般式(2—1)における X1で説明したァ-オンと同じであってよい 。また、置換基を有していてもよい炭化水素基も、上記で説明した置換基を有してい てもよ 、炭化水素基と同じであってょ 、。
X3で示されるァ-オンとしては、例えば、ハロゲンィ匕物イオン、 BR112 (4個の R112は 同一又は異なって、水素原子、置換基を有していてもよい炭化水素基又はハロゲン 原子を示す。 )、 CIO、 BrO、 OTf、 NO、 PF、 SbF、 AsF、 I、硫酸イオン、 CuR
4 3 3 6 6 6 3
113 (2個の R113は同一又は異なって、ハロゲン原子又は置換基を有していてもよい
2
炭化水素基を示す。)等が挙げられる。ここで、 Tfは、トリフルォロメタンスルホニル基
(SO CF )を示す。ハロゲン原子、ハロゲンィ匕物イオン及び置換基を有していてもよ
2 3
い炭化水素基は、上記で説明した各基と同じである。
BR112の具体例としては、例えば、 BH、 BPh、 BF等が挙げられる。
4 4 4 4
[0137] CuR113における R113がハロゲン原子である場合の具体例としては、例えば、 CuCl
2
、 CuBr、 Cul、 CuF等が挙げられる。また、 R113が置換基を有していてもよい炭化
2 2 2 2
水素基の場合の具体例としては、例えば、 CuMe、 CuPh、 Cu (Mes) 等が挙げら
2 2 2
れる。ここで、 Mesはメシチル基を示す。
[0138] カチオンとしては、アルカリ金属イオン、アルカリ土類金属イオン、アンモ-ゥムィォ ン、ホスホ-ゥムイオン等が挙げられる。
アルカリ金属イオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムィォ ン、セシウムイオン等が挙げられる。
アルカリ土類金属イオンとしては、例えば、マグネシウムイオン、カルシウムイオン、 ノ リウムイオン等が挙げられる。
アンモ-ゥムイオンとしては、アンモ-ゥムイオン及び置換アンモ-ゥムイオンが挙 げられる。置換アンモ-ゥムイオンの具体例としては、例えば、メチルアンモ-ゥムィ オン、ジメチルアンモ -ゥムイオン、トリメチルアンモ -ゥムイオン、テトラメチルアンモ -ゥムイオン、ェチルアンモ -ゥムイオン、ジェチルアンモ -ゥムイオン、トリェチルァ ンモ -ゥムイオン、テトラエチルアンモ -ゥムイオン、テトラプチルアンモ -ゥムイオン、 テトラフエ-ルアンモ -ゥムイオン等が挙げられる。
ホスホ -ゥムイオンとしては、フエ-ノレホスホ -ゥムイオン、ジフエ-ノレホスホ-ゥムィ オン、トリフエ-ルホスホ -ゥムイオン、テトラフエ-ルホスホ -ゥムイオン等が挙げられ る。
[0139] n21は自然数を示す力 好ましくは 1〜10の自然数である。また、 n22は自然数を 示すが、好ましくは 1〜20の自然数である。 [0140] 前記銅化合物として用いられる銅錯体の具体例としては、例えば、下記に示す銅 化合物等がその一例として挙げられる。
CuBr · SMe、 CuI'SMe、 CuBr' P(OMe) 、CuI'P(OMe) ゝ CuI'P(OEt) 、C
2 2 3 3 3 uI-PBu、 CuO-tert-Bu-PEt、 CuI-PPh、 CuBr - (SBu ) 、 Cul' (SBu ) 、
3 3 3 2 2 2 2
CuBr-[P(OMe) ] ゝ Cu [P(OMe) ] 、 Cul' TMEDA、 CuCl (cod)、 CuBr (co
3 2 3 2
d)、 Cul (cod)、 [Cu (BF ) (PPh ) ]、 [CuBr (PPh ) ] Cu (PEt ) Cp、 Cu (PPh
4 3 3 3 n、 3 3
)CpCu(cod) (Mac)、 Cu(C Me ) (Mac)ゝ [Cu(en) ] (C104) 、 [Cu(en) ]SO
2 2 2 2 2 4
、 [Cul(py)]、 [CuI(MeNC)]、 [Cu(MeCN) ][BF ]、 [Cu(MeCN) ] [CIO ]、
4 4 4 4
[Cu(bpy) ][BF ]、 [Cu(bpy) ] [CIO ]、 [Cu(phen) ] [CIO ]、 [Cu(cod)] [C
2 4 2 4 2 4 2 lO ]、 [Cu(cod)] [OTf]、 [Cu(cod)] [BF ]、 [Cu(cod)] [PF ]、 [Cu(CO) (e
4 2 2 4 2 6
n) ] [BPh ]、 [Cu(NH ) ]SO、 [Cu(py) ]C10、 [Cu(py) ] [CIO ] 、 [Cu(N
4 3 4 4 4 4 6 4 2
H ) ]C1、 [CuCl(PPh ) ]、 [Cul (PEt ) ]、 CuCl(C H N )、 {[Cu(CNMe) ]
3 6 2 3 3 3 3 8 12 2 2
[Cul ]} 、K [Cu(C O ) ]、 (NH ) [CuCl ]、K [Cu(CN) ]、K [Cu(NO ) ]
2 n 2 2 4 2 4 2 4 3 4 3 2 5
、 Li[CuMe ]、 Li[Cu(C H ) (SPh)]、 Cu(NH ) (SO ) 。
2 3 5 4 2 4 2
[0141] 二れら上記したような銅化合物、即ち、銅塩、その他の銅化合物、銅錯体等の銅化 合物として用いられる銅化合物は、無水物でも水和物でもよい。また、それら銅化合 物は、夫々単独で用いても 2種以上適宜組み合わせて用いてもょ 、。
また、上記銅化合物は、市販品を用いても、或いは常法や、本明細書に記載の文 献等に記載の方法で適宜製造したものを用いてもょ 、。
[0142] 3)不斉銅錯体
本発明で用いられる不斉銅錯体の具体例としては、例えば、 Handbook ofEnantios elective Catalysis (VCH, 1993)、 J. Am. Chem. Soc.2001, 123, 5843.、 J. Org. Chem .1998, 63, 6090.、 Angew. Chem. Int. Ed.2004, 43, 1679.、 Dalton. Trans.2003, 18 81.、 ORGANIC LETTERS, Vol.6, No.14, 2305 (2004)等に記載されている不斉銅錯 体等が挙げられる。また、下記に示す不斉銅錯体も本発明で用いられる不斉配位子 を有する不斉銅錯体の具体例として挙げられる。
[0143] [化 19] /X\ L:二座配位子 BINAP, SEGPHOS, DM-SEGPHOS, DTBM-SEGPHOS, etc し L "-C 'CU_L X1 , ? : CI, Br, I, F, OTf, OMe, O-t-Bu, H, etc.
c 入 c L:単座配位子 CAMP, MonoPHOS, etc
し L
X1, X?: CI, Br, I, F, OTf, OMe, O-t-Bu, H, etc.
- CuH L:二座配位子 BINAP, SEGPHOS, DM-SEGPHOS, DTB -SEGPHOS, etc.
.-CuH L:単座配位子 CAMP, MonoPHOS, etc
n: 自然数
L:二座配位子 DIPAMP, CHIRAPHOS, PROPHOS, BINAP, etc.
Cu Cu-L X: CI, Br, I, F, OTf, CIQ, BF , PFB, AsF6, SbF6, etc.
L:二座酉己位子 BINAP, SEGPHOS, DM-SEGPHOS, DTBM-SEGPHOS, etc
- Cu- X
X: CI, Br, I, F, OTf, Ciq, BF4, PF6, AsF6, SbF6, etc. [化 20]
L:二座配位子 BINAP, SEGPHOS, DM-SEGPHOS, DTBM-SEGPHOS, etc.
-Cu-L2 X L2: cod, nbd, etc.
X: CI, Br, I, F, OTf, CIQ, BF4, PF6, AsF6, SbF6, etc.
L2 L:二座配位子 BINAP, SEGPHOS, DM-SEGPHOS, DTBM-SEGPHOS, etc
-Cu X L2: MeCN, CO, , Nh¾, etc.
X CI, Br, I, F, OTf, Ciq, BF4, PF6, AsF6, SbFg, etc.
.-Cu L:二座配位子 BINAP, SEGPHOS, DM-SEGPHOS, DTBM-SEGPHOS, etc.
、H
.:二座配位子 DPEN, DAIPEN, BINAP, SEGPHOS, etc.
.-Cu
X X: CI, Br, I, F, OTf, CIQ, B , PF6, AsF6, SbFR, etc.
.-Cu L: 四座配位子 TROST LIGAND, Jacobsen Ligand, etc.
L: 四座配位子 TROST LIGAND, Jacobsen Ligand, etc.
[し一 Cu ] X
X: CI, Br, I, F, OTf, CIQ, BF4, PF6, AsF6, SbF6, etc. これら不斉銅錯体は、夫々単独で用いても、必要に応じて適宜 2種以上組み合わ せて用いてもよい。また、不斉配位子を有する不斉銅錯体は、無水物でも水和物で もよい。更に、本発明で用いられる不斉銅錯体は、市販品を用いても、常法や上記し た文献に記載の方法、或いは後述する方法等により製造したものを用いてもよい。 [0146] 本発明で用いられる不斉銅錯体は、上記 1)不斉配位子で説明したような不斉配位 子を有する不斉銅錯体であれば何れでもよ!ゝが、該不斉銅錯体を構造式で表すと すると、その構造は複雑であるため一概には言えず、一般式で表すことは困難である 力 敢えて表すとすると、例えば下記一般式(1)で表される。
[0147] [Cu L1 L2 X1 X2 H ] [X1 X3 ] (1)
nl n2 n3 n5 n6 n9 n4 n5 n7 n8
[式中、 n2個の L1は同一又は異なって、不斉配位子を示し、 n3個の L2は同一又は 異なって、配位子を示し、 n5個の X1は同一又は異なって、ァ-オンを示し、 n6個の X2は同一又は異なって、置換基を有していてもよい炭化水素基、 OR1C)1 (R1C)1は置換 基を有していてもよい炭化水素基を示す。)、 NR1G2 (2個の R1G2は同一又は異なつ
2
て、置換基を有していてもよい炭化水素基を示す。)、 PR1C>3 (2個の R1C>3は同一又は
2
異なって、置換基を有していてもよい炭化水素基を示す。)、 SR1C>4 (R1C)4は置換基を 有していてもよい炭化水素基を示す。)、 1, 3—ジカルボ二ルイ匕合物或いはそのエノ ラート又はヒドリドを示し、 n7個の X3は同一又は異なって、ァ-オン又はカチオンを示 し、 nl、 n2及び n4は夫々独立して、自然数を示し、 n3及び n6〜n9は夫々独立して 、 0又は自然数を示し、 2個の n5は同一又は異なって、 0又は自然数を示す。 ] [0148] 一般式(1)において、 L1で示される不斉配位子は、上記 1)不斉配位子で説明した 不斉配位子である。 L2で示される配位子、 X1で示されるァ-オン、 X2で示される置換 基を有していてもよい炭化水素基、 OR101、 NR102、 PR103、 SR104及び 1, 3—ジカ
2 2
ルポ二ルイ匕合物或いはそのエノラート、及び X3で示されるァ-オン及びカチオンは、 上記で説明したそれぞれと同じであってょ 、。
[0149] nlは自然数を示すが、好ましくは 1〜10の自然数である。 n2は自然数を示すが、 好ましくは 1〜 12の自然数である。 n3は 0又は自然数を示す力 好ましくは 0又は 1 〜20の自然数である。 n5は自然数を示す力 好ましくは 1〜 10の自然数である。 n6 は 0又は自然数を示す力 好ましくは 0又は 1〜: L0の自然数である。
[0150] 上記一般式(1)で表される不斉銅錯体は、例えば一般式 (61)
[L L12CuL13] (61)
n35
(式中、 L11は二座配位性の光学活性リンィ匕合物を示し、 L12は L11と異なるリンィ匕合物 を示し、 L13は配位子を示し、 n35は自然数を示す。)で表される不斉銅錯体が挙げ られる。
一般式 (61)において、 L11で示される二座配位性の光学活性リンィ匕合物は、上記 不斉配位子で説明した光学活性リンィ匕合物と同じであってよい。 L11で示される二座 配位性の光学活性リン化合物は、中でも光学活性ジホスフィンィ匕合物が好ましい。前 記光学活性ジホスフィンィ匕合物は、上記不斉配位子で説明した光学活性リンィ匕合物 と同じであってよい。 L12で示される L11と異なるリン化合物は、 L11で示される二座配 位性の光学活性リン化合物と異なるリンィ匕合物であればよぐ光学活性体 (不斉配位 子)でも不斉配位子ではない配位子でもよぐ例えば、本明細書において、上記不斉 配位子で説明した光学活性リンィ匕合物や上記一般式 (2— 4)において、 L2で示され る配位子として説明したリンィ匕合物と同じであってょ 、。 L13で示される配位子として は、上記一般式(2— 4)において、 L2で示される配位子として説明した配位子と同じ であってよい。
[0151] 一般式 (61)で表される不斉銅錯体の具体例としては、例えば、 [CuF (PPh ) (L20
3
) ] 、 [CuCKPPh ) (L20) ] 、 [CuBr (PPh ) (L20) ] 、 [Cul (PPh ) (L20) ] 、 [CuH n 3 n 3 n 3 n
(PPh ) (L20) ] 、 [CuOTf (PPh ) (L20) ] 、 [Cu (NO ) (PPh ) (L20) ] 、 [Cu (OA
3 n 3 n 3 3 n
c) (PPh ) (L20) ] 、 [CuCl(P (3, 5-xylyl) ) (L2°) ]、等が挙げられる。(式中、 L2
3 n 3 n
。は L11と同様の光学活性ジホスフィン化合物((R)—BINAP、 (S)—BINAP、 (R) — DM— BINAPゝ (S)— DM— BINAPゝ (R)— SEGPHOS、 (S)— SEGPHOS、 (R)— DM— SEGPHOS、 (S)— DM— SEGPHOS、 (R)— DTBM— SEGPHO S、 (S) -DTBM-SEGPHOS, (R, R)—SKEWPHOS、 (S, S)—Me— DuPH OSゝ (S, S)— Me— DuPHOS、 (R, S)— Josiphos、 (S, R)—Josiphos等)を示し 、 nは自然数を示す。)等が挙げられる。
[0152] 本発明で用いられる不斉銅錯体は、例えば、本明細書に記載した文献等に記載の 方法に従って製造すればょ 、。
即ち、不斉配位子と銅化合物とを、必要に応じて適当な溶媒中で反応させること〖こ より、不斉銅錯体を容易に得ることができる。
[0153] 上記不斉配位子及び銅化合物の使用量は、用いる銅化合物や不斉配位子の種類 等により異なるため特に限定されないが、不斉配位子の使用量が銅化合物に対して 、通常 0. 000001〜100当量、好まし <は 0. 00001〜10当量の範囲力も適宜選択 される。
[0154] 必要に応じて用いられる溶媒としては、例えば、ペンタン、へキサン、ヘプタン、オタ タン、デカン、シクロへキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン 等の芳香族炭化水素類;ジクロロメタン、 1, 2—ジクロ口エタン、クロ口ホルム、四塩化 炭素、 o ジクロ口ベンゼン等のハロゲン化炭化水素類;ジェチルエーテル、ジィソプ 口ピルエーテル、 tert ブチルメチルエーテル、ジメトキシェタン、エチレングリコール ジェチルエーテル、テトラヒドロフラン、 1, 4 ジォキサン、 1, 3 ジォキソラン等のェ 一テル類;メタノール、エタノール、 2—プロパノール、 n—ブタノール、 s ブタノール 、 tert—ブタノール、 2—エトキシエタノール、ベンジルアルコール等のアルコール類 ;アセトン、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン等のケトン 類;酢酸メチル、酢酸ェチル、酢酸 n—ブチル、プロピオン酸メチル等のエステル類; ホルムアミド、 N, N ジメチルホルムアミド、 N, N ジメチルァセトアミド等のアミド類 ;ジメチルスルホキシド等のスルホキシド類;ァセトニトリル等の含シァノ有機化合物類 、 N—メチルピロリドン、水等が挙げられる。これら溶媒は、夫々単独で用いても 2種 以上適宜組み合わせて用いてもょ 、。
溶媒の使用量は、銅化合物に対して、通常 1〜1000倍量、好ましくは 5〜200倍 量の範囲カゝら適宜選択される。
[0155] また、上記不斉配位子と銅化合物との反応は、必要に応じて、その他の試薬の存 在下で行ってもよい。
その他の試薬としては、酸、塩基、還元剤、ハロゲン化剤等が挙げられる。
[0156] 酸としては、無機酸、有機酸、ルイス酸等が挙げられる。
無機酸としては、例えば、塩酸、臭化水素酸、硫酸、リン酸、テトラフルォロホウ酸、 過塩素酸、過ヨウ素酸等挙げられる。
有機酸としては、例えば、ギ酸、酢酸、吉草酸、へキサン酸、クェン酸、クロ口酢酸、 ジクロロ酢酸、トリクロ口酢酸、トリフルォロ酢酸、安息香酸、サリチル酸、シユウ酸、コ ハク酸、マロン酸、フタル酸、酒石酸、リンゴ酸、グリコール酸等のカルボン酸、メタン スルホン酸、ベンゼンスルホン酸、 p トルエンスルホン酸、トリフルォロメタンスルホン 酸等のスルホン酸等が挙げられる。
ルイス酸としては、例えば、塩化アルミニウム、臭化アルミニウム等のハロゲン化ァ ルミ二ゥム、塩化ジェチルアルミニウム、臭化ジェチルアルミニウム、塩化ジイソプロピ ルアルミニウム等のハロゲン化ジアルキルアルミニウム、トリエトキシアルミニウム、トリ イソプロポキシアルミニウム、トリー tert ブトキシアルミニウム等のトリアルコキシアル ミニゥム、四塩ィ匕チタン等のハロゲンィ匕チタン、テトライソプロポキシチタン等のテトラ アルコキシチタン、三フッ化ホウ素、三塩ィ匕ホウ素、三臭化ホウ素、三フッ化ホウ素ジ ェチルエーテル錯体等のハロゲンィ匕ホウ素、塩化亜鉛、臭化亜鉛等のハロゲン化亜 鉛等が挙げられる。
塩基としては、無機塩基、有機塩基等が挙げられる。無機塩基としては、例えば、 水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物類、炭 酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム等の金属炭酸塩類、 炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩類、水素化リチウム、水 素化ナトリウム、水素化カリウム等の金属水素化物類、アンモニア等が挙げられる。有 機塩基としては、例えば、リチウムメトキシド、リチウムエトキシド、リチウム tert ブト キシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウム tert ブトキシド、力リウ ムメトキシド、カリウムエトキシド、カリウム tert ブトキシド、カリウムナフタレ-ド、酢 酸ナトリウム、酢酸カリウム、酢酸マグネシウム、酢酸カルシウム、リチウムジェチルアミ ド、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド、ナトリウムビス( トリメチルシリル)アミド、カリウムビス(トリメチルシリル)アミド、リチウムジフエ-ルホスフ イド、ナトリウムジフエ-ルホスフイド、カリウムジフエ-ルホスフイド等のアルカリ 'アル力 リ土類金属の塩、トリエチルァミン、ジイソプロピルェチルァミン、 N, N ジメチルァ- リン、ピぺリジン、ピリジン、 4 ジメチルァミノピリジン、 1, 5 ジァザビシクロ [4. 3. 0 ]ノナ一 5 ェン、 1, 8 ジァザビシクロ [5. 4. 0]ゥンデ力一 7 ェン、トリ一 n—ブチ ルァミン、 N—メチルモルホリン等の有機アミン類、メチルリチウム、ェチルリチウム、 n プロピルリチウム、イソプロピルリチウム、 n—ブチルリチウム、 s ブチルリチウム、 t ert ブチルリチウム、フエ-ルリチウム、メチルマグネシウムクロリド、ェチルマグネシ ゥムクロリド、 n—プロピルマグネシウムクロリド、イソプロピルマグネシウムクロリド、 n— ブチルマグネシウムクロリド、 s—ブチルマグネシウムクロリド、 tert—ブチノレマグネシ ゥムクロリド、フエ-ルマグネシウムクロリド、メチルマグネシウムブロミド、ェチルマグネ
ネシゥムブロミド、フエニルマグネシウムブロミド等の有機金属化合物類、上記で不斉 配位子として例示したジァミンィ匕合物の光学活性体 (光学活性ジァミンィ匕合物)及び ラセミ体等が挙げられる。
還元剤としては、例えば、水素化アルミニウムリチウム、水素化ホウ素ナトリウム等が 挙げられる。
ハロゲンィ匕剤としては、例えば、テトラプチルアンモニゥムフロリド、テトラプチルアン モ-ゥムブロミド、テトラプチルアンモ -ゥムトリフエ-ルジフルォロシリケート等の 4級 アンモニゥム塩、ヨウ素、臭素等のハロゲン等が挙げられる。
これらその他の試薬は、夫々単独で用いても 2種以上適宜組み合わせて用いても よい。
その他の試薬の使用量としては、銅化合物に対して通常 0. 001〜: LOO当量、好ま しくは 0. 01〜: LOO当量の範囲力も適宜選択される。
[0157] 上記不斉配位子と銅化合物との反応温度は、溶媒の種類等により異なるが、通常 — 100°C〜 150°C、好ましくは— 80°C〜 120度の範囲力 適宜選択される。
反応時間は、通常 1分〜 100時間、好ましくは 10分〜 24時間の範囲力も適宜選択 される。
[0158] 反応後は、後処理等をせずにそのまま均一系水素化反応用触媒、特に均一系不 斉水素化反応用触媒として用いてもよぐ必要に応じて後処理、精製、単離等を行つ た後に、該触媒として用いてもよい。後処理の具体的な方法としては、溶媒抽出、塩 析、晶出、再結晶、各種クロマトグラフィー等、自体公知の分離、精製方法等が挙げ られる。
[0159] このようにして得られた上記不斉銅錯体は、所謂単量体や多量体の混合物である 場合がある。即ち、上記一般式(1)における n4が 1である不斉銅錯体 (モノマー)及 び n4が 2以上である不斉銅錯体 (ポリマー)が混在して ヽる場合がある。 [1 2]均一系水素化反応用触媒
[0160] 本発明の不斉銅錯体を含有する均一系水素化反応用触媒及び不斉配位子と銅 化合物との混合物を含有する均一系水素化反応用触媒は、固体状でも溶液状でも よぐ該触媒中に必要に応じてその他の成分を添加してもよい。必要に応じて添加す るその他の成分としては、均一系水素化反応に悪影響を及ぼさないものであればよく 、例えば上記したような、溶媒、その他の試薬等が挙げられる。
[0161] 本発明の不斉配位子及び銅化合物との混合物を含有する均一系水素化反応用触 媒において、不斉配位子と銅化合物との混合物の比は不斉配位子に対して銅化合 物を通常 0. 000001〜10当量、好ましくは 0. 0001〜1当量の範囲から適宜選択し て用いればよい。
[0162] [2]不飽和化合物の水素化物の製造方法
本発明の不飽和化合物の水素化物の製造方法は、上記均一系水素化反応用触 媒の存在下、不飽和化合物を原料 (基質)として用いて均一系で水素化反応を行うこ とにより、容易且つ収率よく所望の不飽和化合物の水素化物を得ることができる。ここ で、不飽和化合物としてプロキラルな化合物を用い、均一系水素化反応用触媒とし て均一系不斉水素化反応用触媒の存在下で不斉水素化反応を行えば、得られる不 飽和化合物の水素化物は光学活性化合物として得られる。
[0163] 本発明の製造方法において、均一系水素化反応は、上記した銅錯体の存在下で 行うか、或 、は不斉配位子及び銅化合物と不飽和化合物とを混合して行えばょ 、。
[0164] また、本発明の製造方法においては、反応系内 (反応混合物中)に、必要に応じて 、不斉配位子を有する銅錯体を含有する均一系水素化反応用触媒、不斉配位子と 銅化合物との混合物を含有する均一系水素化反応用触媒、不斉配位子、及び Z又 は銅化合物を更に添加してもよ 、。
[0165] 1)不飽和化合物
本発明で用いられる不飽和化合物としては、例えば、アルケン類、ケトン類、ィミン 類、ケトカルボン酸類、ケトアルケン類等の不飽和化合物等が挙げられる。
[0166] アルケン類としては、プロキラルなアルケン類が好ましぐ例えば下記一般式(21) で表されるアルケン類等が挙げられる。 [0167] [化 21]
Figure imgf000058_0001
[0168] ケトン類としては、プロキラルなケトン類が好ましぐ例えば下記一般式 (22)で表さ れるケトン類等が挙げられる。
[0169] [化 22]
Figure imgf000058_0002
[0170] イミン類としては、プロキラルなィミン類が好ましぐ例えば下記一般式(23)で表さ れるィミン類等が挙げられる。
[0171] [化 23]
37
N
(23)
38, 39
R
[0172] ケトカルボン酸類としては、プロキラルなケトカルボン酸類が好ましぐ例えば一般式
(24)で表されるケトカルボン酸類等が挙げられる。
[0173] [化 24]
0 0
40, Qllへ 0 '' (24)
R
[0174] ケトアルケン類としては、プロキラルなケトアルケン類が好ましぐ例えば下記一般式
(25)で表されるケトアルケン類等が挙げられる。
[0175] [化 25]
(25)
Figure imgf000058_0003
[0176] 上記一般式 (21)〜(25)において、 R31〜R45で示される基は、各化合物が存在す るような基であればよぐ例えば、水素原子、置換基を有していてもよい炭化水素基、 置換基を有していてもよい複素環基、ハロゲン原子、ハロゲンィ匕炭化水素基、置換 基を有していてもよいアルコキシ基、置換基を有していてもよいァリールォキシ基、置 換基を有して 、てもよ ヽァラルキルォキシ基、置換基を有して!/、てもよ 、ヘテロァリー ルォキシ基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよい ァリールチオ基、置換基を有していてもよいァラルキルチオ基、置換基を有していて もよいへテロァリールチオ基、置換基を有していてもよいァシル基、置換基を有して いてもよいァシルォキシ基、置換基を有していてもよいアルコキシカルボ-ル基、置 換基を有して 、てもよ 、ァリールォキシカルボ-ル基、置換基を有して!/、てもよ!/ヽァ ラルキルォキシカルボ-ル基、置換基を有していてもよいアルキレンジォキシ基、 -ト 口基、アミノ基、置換アミノ基、シァノ基、スルホ基、置換シリル基、置換シリルォキシ 基、ヒドロキシ基、カルボキシ基、置換基を有していてもよいアルコキシチォカルボ- ル基、置換基を有していてもよいァリールォキシチォカルボ-ル基、置換基を有して V、てもよ 、ァラルキルォキシチォカルボ-ル基、置換基を有して!/、てもよ 、アルキル チォカルボ-ル基、置換基を有していてもよいァリールチオカルボ-ル基、置換基を 有して 、てもよ 、ァラルキルチオカルボ-ル基、置換基を有して!/、てもよ 、カルバモ ィル基、置換ホスフイノ基、アミノスルホ -ル基、アルコキシスルホ -ル基等の基から 適宜選択される。一般式(24)及び(25)において、 Q11及び Q12はスぺーサ一又は 結合手を示す。但し、 R31と R32、 R31と R33、 R31と R34、 R32と R33、 R32と R34、 R33と R34、 R35と R36、 R38と R39、 R38又は R39と R37、 R40と Q11 R40と R41、 R41と Q11 R42と Q12、 R4 4と Q12、 R42と R43、 R42と R44又は R45、 R43と R44、 R43と R45、 R44と R45、とが結合して環 を形成していてもよい。前記形成する環は、例えばアルキレン基又はアルキレンジォ キシ基で結合して環を形成する場合等が挙げられる。尚、これら形成する環には、更 に置換基を有して 、てもよ 、。
[0177] 上記一般式 (21)〜(25)において、 R31〜R45で示される各基、環を形成する場合 のアルキレン基又はアルキレンジォキシ基は、特に断りのない限り、上記 [1]で説明 した各基及び置換基で説明した各基や、後述する各基と同じであってよい(以下同じ ) oまた、 Q 及び Q で示されるスぺーサーも、上記 [1]で説明したスぺーサ一と同じ であってよい。
[0178] また、一般式(24)において、 R41で示される基は、アルカリ金属等の金属原子であ つてもよい。また、上記カルボキシ基及びスルホ基もアルカリ金属等の金属原子等の 金属塩となっていてもよい。アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビ ジゥム、セシウム等が挙げられる。
[0179] 一般式(21)〜(25)において、 R31〜R45の各基が環を形成する場合は、例えば、 R31と R32、 R31と R33、 R32と R34、 R33と R34、 R35と R36、 R38と R39、 R38又は R39と R37、 R4° と Q11 R4°と R41、 R41と Q11 R42と Q12、 R42と R43、 R42と R44又は R45、 R43と R44、 R44
R45、とが結合して環を形成する場合には、例えば置換基を有していてもよいアルキ レン基、置換基を有して 、てもよ 、アルキレンジォキシ基等の炭素鎖を介して結合し て環を形成する場合等が挙げられる。形成される環は、単環状でも多環状でも或い は縮合環状でもよぐ例えば 4〜8員環等の脂肪族環や芳香族環等が挙げられる。
[0180] 前記置換基を有していてもよいアルキレン基は、アルキレン基及び置換アルキレン 基が挙げられる。アルキレン基としては、直鎖状でも分岐状でもよい、例えば炭素数 1 〜10のアルキレン基が挙げられる。前記アルキレン基の具体例としては、例えば、メ チレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン 基、へキサメチレン基、ヘプタメチレン基、オタタメチレン基、ノナメチレン基、デカメチ レン基、 2—メチルプロピレン基、 2, 2—ジメチルプロピレン基、 2—ェチルプロピレン 基等が挙げられる。また、前記環を形成する炭素鎖中には、酸素原子、硫黄原子、ィ ミノ基、置^ミノ基、カルボニル基 (c = o)、チォカルボ-ル基 (C = S)等を有して いてもよい。環を形成する場合の環の具体例としては、シクロペンタン環、シクロへキ サン環、例えば 5〜7員のラタトン環、例えば 5〜7員のラタタム環、シクロペンタノン環 、シクロへキサノン環等が挙げられる。これら形成される環は、不斉水素化する部位 の炭素原子が、均一系不斉水素化反応により不斉炭素となり得るような環が好ましい 。置 ミノ基における置換基は上記で説明した置換基と同じである。
置換アルキレン基 (置換基を有するアルキレン基)としては、上記アルキレン基の少 なくとも 1個の水素原子が置換基で置換されたアルキレン基が挙げられる。 [0181] 置換基を有していてもよいアルキレンジォキシ基は、アルキレンジォキシ基及び置 換アルキレンジォキシ基が挙げられる。アルキレンジォキシ基としては、例えば炭素 数 1〜3のアルキレンジォキシ基が挙げられる。アルキレンジォキシ基の具体例として は、例えば、メチレンジォキシ基、エチレンジォキシ基、トリメチレンジォキシ基、プロ ピレンジォキシ基等が挙げられる。
置換アルキレンジォキシ基 (置換基を有するアルキレンジォキシ基)としては、上記 アルキレンジォキシ基の少なくとも 1個の水素原子が置換基で置換されたアルキレン ジォキシ基が挙げられる。置換アルキレンジォキシ基の具体例としては、ジフルォロメ チレンジォキシ基等が挙げられる。
[0182] スぺーサ一としては、アルキレン基、ァリーレン基、ヘテロァリーレン基等の置換基 を有していてもよい 2価の有機基等が挙げられる。前記 2価の有機基は、該有機基の 末端又は鎖中の任意の位置に酸素原子、カルボニル基、硫黄原子、イミノ基、置換 イミノ基等の異種原子又は原子団を少なくとも 1個有していてもよい。置 ミノ基に おける置換基は後述する置換基と同じである。
[0183] アルキレン基としては、例えば炭素数 1〜10のアルキレン基が挙げられる。アルキ レン基の具体例としては、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン 基、テトラメチレン基、ペンタメチレン基、へキサメチレン基、ヘプタメチレン基、ォクタ メチレン基、ノナメチレン基、デカメチレン基等が挙げられる。
ァリーレン基としては、例えば炭素数 6〜20のァリーレン基が挙げられる。ァリーレ ン基の具体例としては、例えば、フエ-レン基、ビフエ-ルジィル基、ビナフタレンジィ ル基、ビスべンゾジォキソールジィル基等が挙げられる。
ヘテロァリーレン基としては、例えば、炭素数 2〜20で、少なくとも 1個、好ましくは 1 〜3個の窒素原子、酸素原子及び Z又は硫黄原子等の異種原子を含んでいる、 3〜 8員、好ましくは 5又は 6員の単環式、多環式又は縮合環式のへテロアリーレン基が 挙げられる。ヘテロァリーレン基の具体例としては、例えば、ビビリジンジィル基、ビス ベンゾチオールジィル基、ビスチオールジィル基等が挙げられる。
ヘテロ原子又は原子団を有する 2価の有機基としては、 -CH -O-CH , -C
2 2 6
H -O-C H一等が挙げられる。 これら 2価の有機基は、上記 [1]で説明した置換基で置換されていてもよい。
[0184] 一般式(24)にお 、て、 R41で示される基は、アルカリ金属等の金属原子であっても よい。また、上記カルボキシ基及びスルホ基もアルカリ金属等の金属原子等の金属 塩となっていてもよい。アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジゥ ム、セシウム等が挙げられる。
[0185] これら不飽和化合物は、中でもプロキラルな化合物が好ましい。尚、不飽和化合物 がプロキラルな化合物である場合には、上記一般式 (21)〜(25)における R31〜R45 で示される基は、得られる前記プロキラルな化合物の水素化物が光学活性ィ匕合物と なるような基であればょ 、。
[0186] 本発明で用いられる不飽和化合物における、アルケン類の具体例としては、例えば
、下記に示すアルケン等が挙げられる。
[0187] [化 26]
Figure imgf000062_0001
Rw : H, Cl^, C2H5, 'Pr, n-C4Hg, Na, K, etc.
Rx: Ch¾, C2H5, 'Pr, n-C4H9, etc.
RY: H, 3-C , 4-CI^, 2-C 0, 3-Ch¾0, 4-CH3O,
2-tBu, 3-fBu, 4-lBu, 2-CN, 3-CN, 4-CN,
2-CI, 3-CI, 4-CI, 2-Br, 3-Br, 4-Br, etc. ケトン類の具体例としては、例えば、メチルェチルケトン、ァセトフヱノン、 1—インダ ノン、 3, 4—ジヒドロー(2H)—ナフタレノンフエロセ-ルメチルケトン等、及び例えば 下記に示すケトン等が挙げられる, [0189] [化 27]
Figure imgf000063_0001
Rx : CH3, C2H5, iPr, n-C4H9, etc.
Ri : H, 2-CH3, 3-CH3, 4-CH3, 2-CH3O, 3-CH3O, 4-CH3O
2-tBu, 3-tBu, 4-tBu, 2-CN, 3-CN, 4-CN,
2-CI, 3-CI, 4-CI, 2-Br, 3-Br, 4-Br, etc.
Rz : CH3, C2H5, C3H7, ΦΓ, n_C4H9, etc.
[0190] [化 28]
Figure imgf000063_0002
[0191] ィミン類の具体例としては、例えば、下記に示すイミン等が挙げられる。
Figure imgf000064_0001
Ru : CH3, C2H5, Pr, ΨΓ, BU, lBu, C6H5, CH2C6H5, C6H4CH3, C6H40CH3, OH, etc.
Rv : CH3, C2H5, Pr, '? r, Bu, lBu' etc.
R* : H, CH3, CHjO, C2H50, Bu, 'Bu, CI, Br, C6H5, etc.
[0193] ケトカルボン酸類の具体例としては、例えば、下記に示すケトカルボン酸等が挙げ られる。
[0194] [化 30]
Figure imgf000065_0001
Π = 2 ~ 5
R': Me, Et etc.
R' ': Me, Et, iPr, — CH2CH(CH3)2 etc.
[0195] ケトアルケン類の具体例としては、例えば、下記に示すケトアルケン等が挙げられる [0196] [化 31]
Figure imgf000065_0002
Rx: Cl^, C2H5, , n-C4Hg, etc.
RY: H, 2-Chi, 3-CH3, 4-CH3, 2-CH3O, 3-CH,0, 4- C 0,
2JBu, 3-'Bu, 4-tBu, 2-CN, 3-CN, 4-CN,
2-CI, 3-CI, 4-CI, 2-Br, 3-Br, 4-Br, etc.
[0197] 尚、上記不飽和化合物は、プロキラルな化合物となるような部位の他に、その分子 内にキラル中心を有して 、てもよ 、。
[0198] 2)均一系水素化反応 (均一系不斉水素化反応) 本発明において、均一系水素化反応 (均一系水素化反応方法)は、水素源の存在 下で行う。水素源としては、水素ガス及び水素供与性物質が挙げられる。即ち、本発 明における均一系水素化反応は、水素ガスの存在下で行う均一系水素化反応 (好ま しくは均一系不斉水素化反応)又は水素供与性物質の存在下で行う均一系水素移 動型水素化反応 (好ましくは均一系水素移動型不斉水素化反応)である。
[0199] 均一系水素化反応用触媒の使用量は、特に限定されないが、不斉銅錯体を含有 する均一系水素化反応用触媒を用いる場合は、不斉銅錯体の使用量が不飽和化合 物に対して、 0. 00001〜: L当量、好ましくは、 0. 0001〜0. 1当量となる範囲力ら適 宜選択される。また、不斉配位子と銅化合物との混合物を含有する均一系水素化反 応用触媒を用いる場合は、銅化合物の使用量が不飽和化合物に対して、 0. 00001 〜1当量、好ましくは、 0. 0001-0. 1当量となる範囲から適宜選択される。
[0200] 本発明の製造方法を水素ガスの存在下で均一系水素化反応、好ましくは均一系 不斉水素化反応を行う場合における、水素ガスの圧力は、水素雰囲気下であればよ ぐ 0. IMPa以下でも十分であるが、経済性や操作性等を考慮すると、水素ガスの 圧力を通常 0. l〜20MPa、好ましくは 0. 2〜10MPaの範囲から適宜選択される。 また、経済性を考慮して IMPa以下でも高 、活性を維持することが可能である。
[0201] 水素供与性物質としては、例えば、ギ酸又はその塩類、ギ酸と塩基との組み合わせ 、ヒドロキノン、シクロへキサジェン、亜リン酸、アルコール類等が挙げられる。これらの 中では、ギ酸又はその塩類、ギ酸と塩基との組み合わせ、アルコール類等が特に好 ましい。
[0202] ギ酸又はその塩類におけるギ酸の塩類としては、ギ酸のアルカリ金属塩、アルカリ 土類金属塩等のギ酸の金属塩、アンモニゥム塩、置換アミン塩等が挙げられる。
[0203] また、ギ酸と塩基との組み合わせにおけるギ酸は、反応系内でギ酸がギ酸の塩の 形態となるもの、或いは実質的にギ酸の塩の形態となるものであればょ 、。
[0204] これらギ酸のアルカリ金属塩、アルカリ土類金属塩等のギ酸の金属塩や、アンモニ ゥム塩、置換アミン塩等を形成する塩基、並びに、ギ酸と塩基との組み合わせにおけ る塩基としては、アンモニア、無機塩基、有機塩基等が挙げられる。
[0205] ギ酸と塩を形成するアルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム 、セシウム等が挙げられる。また、アルカリ土類金属としては、マグネシウム、カノレシゥ ム、ストロンチウム、ノ リウム等が挙げられる。
[0206] 無機塩基としては、例えば、炭酸カリウム、水酸ィ匕カリウム、水酸化リチウム、炭酸水 素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、水酸化ナトリウム、炭酸マグネシウム 、炭酸カルシウム等のアルカリ又はアルカリ土類金属塩、水素化ナトリウム等の金属 水素化物類等が挙げられる。
[0207] 有機塩基としては、例えば、カリウムメトキシド、ナトリウムメトキシド、リチウムメトキシ ド、ナトリウムエトキシド、カリウムイソプロポキシド、リチウム tert—ブトキシド、ナトリウム tert—ブトキシド、カリウム tert—ブトキシド、等のアルカリ金属アルコキシド、酢酸ナト リウム、酢酸カリウム、酢酸マグネシウム、酢酸カルシウム等のアルカリ又はアルカリ土 類金属の酢酸塩類、トリエチルァミン、ジイソプロピルェチルァミン、 N, N—ジメチル ァニリン、ピぺリジン、ピリジン、 4ージメチルァミノピリジン、 1, 5—ジァザビシクロ [4. 3. 0]ノナ一 5—ェン、 1, 8—ジァザビシクロ [5. 4. 0]ゥンデ力一 7—ェン、トリ一 n— ブチルァミン、 N—メチルモルホリン等の有機アミン類、臭ィ匕メチルマグネシウム、臭 化工チルマグネシウム、臭化プロピルマグネシウム、塩化 tert—ブチルマグネシウム 、臭化 tert—ブチルマグネシウム、メチルリチウム、ェチルリチウム、プロピルリチウム 、 n—ブチルリチウム、 tert—ブチルリチウム等の有機金属化合物類等が挙げられる
[0208] 水素供与性物質としてのアルコール類としては、水素原子を a位に有する低級ァ ルコール類が好ましぐその具体例としては、例えば、メタノール、エタノール、 n—プ ロパノール、イソプロパノール、 n—ブタノール、 sec—ブタノール等が挙げられる。水 素供与性物質としてのアルコール類は、中でもイソプロパノールが好まし 、。
[0209] 水素供与性物質の使用量は、不飽和化合物に対して通常 0. 1〜: LOOOO当量、好 ましくは 0. 5〜2000当量の範囲力 適宜選択される。
[0210] 本発明における均一系水素化反応、即ち不飽和化合物の水素化物の製造方法は 、必要に応じて溶媒中で行うことができる。溶媒としては、例えば、ベンゼン、トルエン 、キシレン等の芳香族炭化水素類、ペンタン、へキサン、ヘプタン、オクタン等の脂肪 族炭化水素類、ジクロロメタン、クロ口ホルム、四塩化炭素、ジクロロェタン等のハロゲ ン化炭化水素類、ジェチルエーテル、ジイソプロピルエーテル、 tert—ブチルメチル エーテル、シクロペンチルメチルエーテル、ジメトキシェタン、テトラヒドロフラン、ジォ キサン、ジォキソラン等のエーテル類、メタノール、エタノール、 2—プロパノール、 n ーブタノール、 tert—ブタノール、ベンジルアルコール等のアルコール類、エチレン グリコール、プロピレングリコール、 1, 2—プロパンジオール、グリセリン等の多価アル コール類、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド等のアミド類、 アセトン、メチルイソブチルケトン等のケトン類、酢酸メチル、酢酸ェチル、酢酸ブチ ル等のエステル類、ァセトニトリル、 N—メチルピロリドン、ジメチルスルホキシド、水等 が挙げられる。これら溶媒は、夫々単独で用いても 2種以上適宜組み合わせて用い てもよい。
溶媒の使用量は、用いる反応基質である不飽和化合物の種類や溶解度、経済性 等により異なるため特に限定されないが、例えば、反応基質に対して通常 0〜200倍 量、好ましくは 0〜40倍量の範囲力 適宜選択すればよい。例えば溶媒としてアルコ 一ル類を用いた場合には、用いる不飽和化合物によっては 1%以下の低濃度力も無 溶媒あるいは無溶媒に近 、状態で行うことができる。
[0211] 反応温度は、用いる不斉触媒の種類や使用量、用いる不飽和化合物の種類により 異なるため特に限定されないが、経済性等を考慮して、通常— 30〜250°C、好ましく は 0〜100°Cの範囲力 適宜選択される。例えば反応温度が— 30〜0°Cの低温でも 、或いは 100〜250°Cの高温でも、反応を実施することができる。
反応時間は、用いる不斉触媒の種類や使用量、用いる不飽和化合物の種類や濃 度、反応温度、水素の圧力等の反応条件等により異なるが、通常 1分〜 48時間、好 ましくは 10分〜 24時間の範囲力も適宜選択される。
[0212] 本発明における均一系水素化反応は、反応形式がバッチ式であっても連続式であ つても実施することができる。また、フラスコや反応釜、オートクレープ等、この分野で 用いられる反応容器中で行うことができる。
[0213] また、均一系水素化反応は、必要に応じて添加剤の存在下で行うことができる。添 加剤としては、酸、含フッ素アルコール、塩基、四級アンモ-ゥム塩、四級ホスホ-ゥ ム塩、リンィ匕合物、ハロゲン、還元剤、水等が挙げられる。 [0214] 添加剤としての酸としては、無機酸、有機酸、ルイス酸等が挙げられる。
無機酸としては、例えば、塩酸、臭化水素酸、硫酸、リン酸、テトラフルォロホウ酸、 過塩素酸、過ヨウ素酸等挙げられる。
有機酸としては、例えば、ギ酸、酢酸、吉草酸、へキサン酸、クェン酸、クロ口酢酸、 ジクロロ酢酸、トリクロ口酢酸、トリフルォロ酢酸、安息香酸、サリチル酸、シユウ酸、コ ハク酸、マロン酸、フタル酸、酒石酸、リンゴ酸、グリコール酸等のカルボン酸、メタン スルホン酸、ベンゼンスルホン酸、 p トルエンスルホン酸、トリフルォロメタンスルホン 酸等のスルホン酸等が挙げられる。
ルイス酸としては、例えば、塩化アルミニウム、臭化アルミニウム等のハロゲン化ァ ルミ二ゥム、塩化ジェチルアルミニウム、臭化ジェチルアルミニウム、塩化ジイソプロピ ルアルミニウム等のハロゲン化ジアルキルアルミニウム、トリエトキシアルミニウム、トリ イソプロポキシアルミニウム、トリー tert ブトキシアルミニウム等のトリアルコキシアル ミニゥム、四塩ィ匕チタン等のハロゲンィ匕チタン、テトライソプロポキシチタン等のテトラ アルコキシチタン、三フッ化ホウ素、三塩ィ匕ホウ素、三臭化ホウ素、三フッ化ホウ素ジ ェチルエーテル錯体等のハロゲンィ匕ホウ素、塩化亜鉛、臭化亜鉛等のハロゲン化亜 鉛等が挙げられる。
これらの酸は、夫々単独で用いても 2種以上適宜組み合わせて用いてもょ 、。 酸の使用量は、不飽和化合物に対して通常 0. 0001〜100当量、好ましくは 0. 00 1〜 10当量の範囲力 適宜選択される。
[0215] 添加剤としての含フッ素アルコールとしては、含フッ素脂肪族アルコールが好ましい 。含フッ素脂肪族アルコールの具体例としては、例えば炭素数 1〜10の飽和又は不 飽和の含フッ素脂肪族アルコールが挙げられる。含フッ素脂肪族アルコールの具体 例としては、例えば、 2, 2, 2—トリフルォロエタノール、 2, 2—ジフルォロエタノール 、 3, 3, 3 トリフルォロプロパノール、 2, 2, 3, 3, 3 ペンタフルォロプロパノール、 2, 2, 3, 3—テトラフルォロプロパノール、 3, 3, 4, 4, 4 ペンタフルォロブタノール 、 4, 4, 5, 5, 5—ペンタフルォロペンタノール、 5, 5, 6, 6, 6—ペンタフルォ口へキ サノーノレ、 3, 3, 4, 4, 5, 5, 6, 6, 6 ノナフノレ才口へキサノーノレ、 1, 1, 1, 3, 3, 3 へキサフルォロ 2—プロパノール等が挙げられる。これらの含フッ素脂肪族アル コールは、夫々単独で用いても 2種以上適宜組み合わせて用いてもょ 、。
含フッ素アルコールの使用量は、不飽和化合物に対して通常 0. 01〜100当量、 好ましくは 0. 1〜 10当量の範囲力 適宜選択される。
添加剤としての塩基としては、無機塩基、有機塩基等が挙げられる。無機塩基とし ては、例えば、水酸化リチウム、水酸化ナトリウム、水酸ィ匕カリウム等のアルカリ金属水 酸化物類、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム等の金 属炭酸塩類、炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩類、水素化 リチウム、水素化ナトリウム、水素化カリウム等の金属水素化物類、アンモニア等が挙 げられる。有機塩基としては、例えば、リチウムメトキシド、リチウムエトキシド、リチウム —tert—ブトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウム—tert ブト キシド、カリウムメトキシド、カリウムエトキシド、カリウム tert—ブトキシド、カリウムナ フタレニド、酢酸ナトリウム、酢酸カリウム、酢酸マグネシウム、酢酸カルシウム、リチウ ムジェチルアミド、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド、 ナトリウムビス(トリメチルシリル)アミド、カリウムビス(トリメチルシリル)アミド、リチウムジ フエ-ルホスフイド、ナトリウムジフエ-ルホスフイド、カリウムジフエ-ルホスフイド等の アルカリ 'アルカリ土類金属の塩、トリェチルァミン、ジイソプロピルェチルァミン、 N, N ジメチルァニリン、ピぺリジン、ピリジン、 4ージメチルァミノピリジン、 1, 5 ジァザ ビシクロ [4. 3. 0]ノナ一 5 ェン、 1, 8 ジァザビシクロ [5. 4. 0]ゥンデ力一 7 ェ ン、トリ一 n—ブチルァミン、 N—メチルモルホリン等の有機アミン類、メチルリチウム、 ェチルリチウム、 n—プロピルリチウム、イソプロピルリチウム、 n—ブチルリチウム、 s— ブチルリチウム、 tert—ブチルリチウム、フエ-ルリチウム、メチルマグネシウムクロリド 、ェチノレマグネシウムクロリド、 n プロピノレマグネシウムクロリド、イソプロピノレマグネ シゥムクロリド、 n—ブチルマグネシウムクロリド、 s ブチルマグネシウムクロリド、 tert ブチルマグネシウムクロリド、フエ-ルマグネシウムクロリド、メチルマグネシウムブロ
ert ブチルマグネシウムブロミド、フエ-ルマグネシウムブロミド等の有機金属化合 物類、上記で不斉配位子として例示したジァミンィ匕合物の光学活性体 (光学活性ジ ァミン化合物)及びラセミ体等が挙げられる。
塩基の使用量は、不飽和化合物に対して、通常 0〜: LOO当量、好ましくは 0〜10の 範囲から適宜選択される。
[0217] 添加剤としての四級アンモ-ゥム塩としては、例えば炭素数 4〜24の四級アンモ- ゥム塩が挙げられる。四級アンモ-ゥム塩の具体例としては、テトラプチルアンモ-ゥ ムフロリド、テトラプチルアンモ -ゥムクロリド、テトラプチルアンモ-ゥムブロミド、テトラ ブチルアンモ-ゥムョージド、トリェチルベンジルアンモ -ゥムクロリド、テトラブチルァ ンモ -ゥムトリフエ-ルジフルォロシリケート等が挙げられる。
四級アンモ-ゥム塩の使用量は、不飽和化合物に対して通常 0. 0001〜100当量 、好ましくは 0. 001〜10当量の範囲から適宜選択される。
[0218] 四級ホスホ-ゥム塩としては、例えば炭素数 4〜36の四級ホスホ-ゥム塩が挙げら れる。四級ホスホ-ゥム塩の具体例としては、テトラフヱ-ルホスホ -ゥムクロリド、テト ラフエ-ルホスホ-ゥムブロミド、テトラフエ-ルホスホ-ゥムョージド、メチルトリフエ- ノレホスホ-ゥムクロリド、メチルトリフエ-ノレホスホ-ゥムブロミド、メチルトリフエ-ノレホス ホ-ゥムョージド等が挙げられる。
四級ホスホ-ゥム塩の使用量は、不飽和化合物に対して通常 0. 0001〜100当量 、好ましくは 0. 001〜10当量の範囲から適宜選択される。
[0219] リンィ匕合物としては、上記一般式 (P)で表されるリンィ匕合物と同じであってよい。
前記リンィ匕合物の具体例としては、例えば、トリフエ-ルホスフィン、トリトリルホスフィ ン、トリメチルホスフィン、トリェチルホスフィン、メチルジフエニルホスフィン、ジメチル フエ-ルホスフィン、ジフエ-ルホスフイノメタン(dppm)、ジフエ-ルホスフイノエタン( dppe)、ジフエ-ルホスフイノプロパン(dppp)、ジフエ-ルホスフイノブタン(dppb)、 ジフエ-ルホスフイノフエ口セン(dppf)等のホスフィン化合物、トリメチルホスファイト、 トリェチルホスファイト、トリフエ-ルホスファイト等のホスファイト化合物等が挙げられる リンィ匕合物の使用量は、不飽和化合物に対して通常 0. 00001〜1当量、好ましく は 0. 0001〜1当量の範囲力も適宜選択される。
[0220] ハロゲンとしては、臭素、ヨウ素等が挙げられる。 ハロゲンの使用量は、不飽和化合物に対して通常 0. 0001〜100当量、好ましくは 0. 001〜10当量の範囲力も適宜選択される。
[0221] 還元剤としては、水素化ホウ素ナトリウム、水素化アルミニウムリチウム,水素化ジィ ソブチルアルミニウム等が挙げられる。
還元剤の使用量は、不飽和化合物に対して通常 0. 00001〜: L当量、好ましくは 0 . 0001〜1当量の範囲力も適宜選択される。
上記添加剤は、夫々単独で用いても 2種以上適宜併用してもよい。
[0222] 本発明の製造方法により得られる不飽和化合物の水素化物は、該不飽和化合物 を均一系水素化反応を行うことにより得られる化合物であり、好ましくは光学活性ィ匕 合物が得られる。即ち本発明において、均一系水素化反応は、均一系不斉水素化 反応が好ましい。そのため、本発明において得られる上記不飽和化合物の水素化物 は、光学活性ィ匕合物が好ましぐ各不飽和化合物に相当する光学活性ィ匕合物が得ら れる。例えば、アルケン類を水素化反応させることにより得られる化合物は光学活性 アルカン類であり、ケトン類を不斉水素化反応させることにより得られる化合物は光学 活性アルコール類であり、イミン類を水素化反応させることにより得られる化合物は光 学活性アミン類であり、ケトカルボン酸類を水素化反応させることにより得られる化合 物は光学活性ヒドロキシエステル類であり、ケトァルケン類を水素化反応させることに より得られる化合物はヒドロキシアルケン類、ヒドロキシアルカン類及び Z又はケトァ ルカン類が夫々得られる。
[0223] アルケン類を不斉水素化反応させることにより得られる光学活性アルカン類として は、例えば下記一般式(31)で表される光学活性アルカン類等が挙げられる。
[0224] [化 32]
Figure imgf000072_0001
[0225] ケトン類を不斉水素化反応させることにより得られる光学活性アルコール類としては
、例えば下記一般式(32)で表される光学活性アルコール類等が挙げられる。
[0226] [化 33]
Figure imgf000073_0001
[0227] イミン類を不斉水素化反応させることにより得られる光学活性アミン類としては、例え ば下記一般式(33)で表される光学活性アミン類等が挙げられる。
[0228] [化 34]
37
,R
HN
(33)
39
R 、R
[0229] ケトカルボン酸類を不斉水素化反応させることにより得られる光学活性ヒドロキシェ ステル類としては、例えば下記一般式(34)で表される光学活性ヒドロキシエステル類 等が挙げられる。
[0230] [化 35]
Figure imgf000073_0002
[0231] ケトァルケン類を不斉水素化反応させることにより得られる光学活性ヒドロキシアル ケン類、光学活性ヒドロキシアルカン類及び光学活性ケトアルカン類は、例えば下記 一般式(35)〜(37)で夫々表される。
[0232] [化 36]
Figure imgf000073_0003
[0233] [化 37]
(36〕
Figure imgf000073_0004
[0234] [化 38]
Figure imgf000074_0001
[0235] 上記式中、 *は不斉炭素を示し、 R31〜R45、 Q11及び Q12は上記と同じ。但し、例え ば、一般式(32)において、 R35=R36である場合、 R35及び R36の何れか一方が水素 原子である場合等、 R31〜R45の種類によっては不斉炭素とならない場合がある。
[0236] 光学活性化合物の具体例としては、上記で不飽和化合物の水素化物の具体例とし て挙げた夫々の不飽和化合物の水素化物の光学活性体が挙げられる。
[0237] 尚、得られた光学活性ィ匕合物は、必要に応じて精製、単離等の後処理や、官能基 の保護等を行った後、必要に応じて精製、単離等の後処理を行ってもよい。後処理 の具体的な方法としては、上記で説明した方法と同様である。
[0238] 本発明の均一系水素化反応用触媒は、安価で得られるばかりでなぐ取り扱いが 容易であるため作業性が向上したものである。この均一系水素化反応用触媒を均一 系不斉水素化反応用触媒として用いた光学活性ィ匕合物の製造方法は、用いる不斉 配位子の種類を代えることにより、不飽和化合物の不斉水素化反応を制御すること 力 り可能となり、また、任意の光学活性ィ匕合物を得ることも可能であ、収率及び光 学純度よく所望の不飽和化合物の水素化物である光学活性ィ匕合物が得られる。 本発明の製造方法により得られる不飽和化合物の水素化物、及び該水素化物の 中でも光学活性ィ匕合物は、医農薬等の中間体や香料等として有用である。
実施例
[0239] 以下に、実施例を挙げて本発明を詳細に説明する力 本発明はこれらによって何ら 限定されるものではない。
以下の実施例において、物性等の測定に用いた装置は次の通りである。 NMR: Bruker社 DRX—500
ガスクロマトグラフィー(GC): Hewlett Packard社 5890— II
マススペクトル: ESI— MS [島津製作所 (株) LCMS— IT TOF]、 EI— MS (T hermo Electron干土 Poralis Q)
尚、下記実施例において、記号「n」は自然数を示す。 [0240] 実施例 1. [CuBr((S)— SEGPHOS)]の合成
(S)-SEGPHOS 500mg(0.819mmol)及び臭ィ匕銅(I) (CuBr) 176mg(l.2 3mmol、 1.5当量)を反応容器に入れ、内部を窒素置換し、トルエン 5mLを加えた 後、室温で 16時間撹拌反応させた。反応液をシリカゲルカラムクロマトグラフィーで 精製した後、溶媒を留去して、表題化合物を得た。
31P-NMR(CDC1 ): δ;— 8.1
3
[0241] 実施例 2. [CuCl ( (S) - SEGPHOS) ] の合成
(S) -SEGPHOS 1. Og(l.64mmol)及び塩ィ匕銅(I) (CuCl) 2.44mg(2.46 mmol、 1.5当量)を反応容器に入れ、内部を窒素置換し、トルエン 5mLを加えた後 、室温で 16時間撹拌反応させた。反応液をシリカゲルカラムクロマトグラフィーで精 製した後、溶媒を留去して、表題化合物を得た。
31P-NMR(CDC1 ): δ;-7.0
3
[0242] 実施例 3. [Cul((S) -SEGPHOS)] の合成
(S) -SEGPHOS 500mg(0.819mmol)及びヨウ化銅(I) (Cul) 234mg(l.2 3mmol、 1.5当量)を反応容器に入れ、内部を窒素置換し、トルエン 5mLを加えた 後、室温で 16時間撹拌反応させた。反応液をシリカゲルカラムクロマトグラフィーで 精製した後、溶媒を留去して、表題化合物を得た。
31P-NMR(CDC1 ): δ ;-9.2
3
[0243] 実施例 4. [Cu (OTf) ( (S) SEGPHOS) ] の合成
(S) -SEGPHOS 500mg(0.819mmol)及び CuOTf'O.5C H 309mg(l
6 6
.23mmol、 1.5当量)を反応容器に入れ、内部を窒素置換し、トルエン 5mLをカロえ た後、室温で 16時間撹拌反応させた。反応液をセライトで濾過した後、溶媒を留去し て、表題化合物を得た。
31P-NMR(CDC1 ): δ ;— 1.1
3
19F-NMR(CDC1 ): δ ;-77.4
3
[0244] 実施例 5〜8. 下記スキーム Αに示した、 Cu(I)塩を用いたイソホロン 1の均一系不 斉水素化反応
[0245] [化 39] スキーム A :イソホロン 1の不斉水素化
Figure imgf000076_0001
1 2 3 4
[0246] 下記表 1に示した銅塩(CuX) O. O3mmol、(S)— SEGPHOS 18. 3mg (0. 03 mmol)及びナトリウム tert—ブトキシド(NaO— t— Bu) 28. 8mg (0. 30mmol)を 10 OmLのステンレス製オートクレーブに入れ、内部を窒素置換した後、トルエンと tert ブチルアルコール(t BuOH)との 3 : 1混合溶媒 2mL及びイソホロン 1 (0. 15mL 、 1. Ommol)をカ卩え、水素圧 3. OMPa、 50°Cで 16〜17時間撹拌反応させた。反応 混合物を GC分析した結果を表 1に示す。
表 1.
[0247] [表 1]
Figure imgf000076_0002
[0248] a) dr (ジァスレテオマー比)
b)主ジァステレオマーの光学純度(%ee)
c) Cu (OTf) ·0. 5C H
6 6
[0249] 実施例 9〜: L I. 上記スキーム Aに示した、 Cu(II)塩を用いた均一系不斉水素化反 応
下記表 2に示した銅塩(CuX ) 0. 03mmol、(S)— SEGPHOS 18. 3mg (0. 03
2
mmol)及び NaO— t— Bu 28. 8mg (0. 30mmol)を lOOmLのステンレス製オート クレープに入れ、内部を窒素置換した後、トルエンと t— BuOHとの 3 : 1混合溶媒 2m L及びイソホロン 1 (0. 15mL、 1. Ommol)を加え、水素圧 5. OMPa、 50。Cで 15〜1 7時間撹拌反応させた。反応混合物を GC分析した結果を表 2に示す。
表 2.
[0250] [表 2]
Figure imgf000077_0001
[0251] a) dr (ジァスレテオマー比)
b)主ジァステレオマーの光学純度(%ee)
[0252] 実施例 12〜16. 上記スキーム Aに示した、上記スキーム Aに表した [CuX( (S)— SEGPHOS) ]を用いたイソホロン 1の均一系不斉水素化反応
実施例 1〜4で得られた不斉銅錯体 [CuX( (S) -SEGPHOS) ] 0. 03mmol( Cu換算)、及び NaO— t— Bu 28. 8mg (0. 30mmol)を lOOmLのステンレス製ォ 一トクレーブに入れ、内部を窒素置換した後、トルエンと t— BuOHとの 3 : 1混合溶媒 2mL及びイソホロン 1 (0. 15mL、 1. Ommol)を加え、水素圧 5. 0MPa、 50。Cで撹 拌反応させた。反応混合物を GC分析した結果を表 3に示す。
表 3.
[0253] [表 3] 収率 (%) [光学純度 (% e e )]
3 , 3, 5—卜 反応時間 3, 3 , 5—卜 3, 3, 5 -卜
実施例 X リメチル— 2—
(h) リ メチルシク口 リ メチルシクロ
シク口へキセノ へキサノン 2 へキサノール 3
ール 4
3 7 [ 9 2 ] b)
1 2 C 1 1 7 2 8 [ 9 0] t r a c e
(9 2 /8 ) a)
4 3 [ 9 2 ] b)
1 3 B r 1 7 2 7 [ 9 0] t r a c e
(9 3/ 7 ) a )
7 8 [ 9 2 ] b)
1 4 B r 48 1 3 [ 9 1 ] t r a c e
( 9 2 / 8) a)
1 5 I 1 8 1 8 [ 7 5] 3 t r a c e
1 6 O T f 1 7 2 1 [ 9 3] 6 t r a c e
[0254] a) dr:ジァスレテオマー比
b)主ジァステレオマーの光学純度(%ee)
[0255] 実施例 17. 上記スキーム Aに示した、 [CuBr((S)— SEGPHOS)] を用いたイソ ホロン 1の均一系不斉水素化反応
実施例 1と同様の方法で得られた不斉銅錯体 [CuBr ( (S)— SEGPHOS) ] 22. 6mg(0.03mmol;Cu換算)、(S)— SEGPHOS 18.3mg(0.03mmol)及び Na O-t-Bu 28.8mg(0.30mmol)を lOOmLのステンレス製オートクレーブに入れ 、内部を窒素置換した後、トルエンと t— BuOHとの 3:1混合溶媒 2mL及びイソホロ ン 1(0.15mL、 lmmol)を加え、水素圧 5.0MPa、 50°Cで 17時間撹拌反応させた 。反応混合物を GCで分析した結果、上記スキーム Aで表した生成物である 3, 3, 5 —トリメチルシクロへキサノン 2を収率 18% (光学純度 93%ee)、 3, 3, 5—トリメチル シクロへキサノール 3を収率 61 % (dr; 93Z7、主ジァステレオマーの光学純度; 95 %ee)、3, 3, 5—トリメチル—2—シクロへキセノール 4を痕跡量(trace)で夫々得た
[0256] 実施例 18及び 19. 上記スキーム Aに示した、上記スキーム Aに示した CuF(PPh )
3
• 2EtOHを用いたイソホロン 1の均一系不斉水素化反応
3
CuF (PPh ) - 2EtOH 28.8mg (0.03mmol)、不斉配位子 0.03mmol及び N
3 3
aO-t-Bu 28.8mg(0.30mmol)を lOOmLのステンレス製オートクレーブに入 れ、内部を窒素置換した後、イソプロピルアルコール (IPA) 2mL及びイソホロン 1 (0 . 45mL、 3. Ommol)を加え、水素圧 5. OMPa、 30°Cで 16時間撹拌反応させた。 反応混合物を GC分析した結果を表 4に示す。
表 4.
[0257] [表 4]
Figure imgf000079_0001
[0258] b)主ジァステレオマーの光学純度(%ee)
[0259] 実施例 20. [CuBr ( (S)— SEGPHOS) ]を用いたァセトフエノンの均一系不斉水 素化反応
実施例 1と同様の方法で得られた [CuBr( (S)— SEGPHOS) Ί 21. 3mg[0. 0 29mmol(Cu換算)]及び NaO— t— Bu 27. 8mg (0. 29mmol)を 20mLのシユレ ンク管に入れ、内部を窒素置換した後、トルエン 1. 4mLを加え、室温で 1時間撹拌 した。次に、 lOOmLのステンレス製オートクレープを別途用意し、内部を窒素置換し た後、このオートクレーブ中にァセトフエノン 113 1^ (0. 96mmol)及び t— BuOH4 50 /z L入れ、次いで、先に調製したシュレンク管の内容物を加え、水素圧 3MPa、 5 0°Cで 19時間撹拌反応させた。反応混合物を GCで分析した結果、収率 65. 4%、 光学純度 65. 7%eeでァセトフエノンの水素化物である 1 フエネチルアルコールを 得た。
[0260] 実施例 21. [CuBr ( (S)—SEGPHOS) ]を用いた 2 ァセチルフランの均一系不 斉水素化反応
実施例 1と同様の方法で得られた [CuBr( (S)— SEGPHOS) ] 22. 6mg[0. 0 3mmol(Cu換算)]及び NaO— t— Bu28. 8mg (0. 30mmol)を lOOmLのステンレ ス製オートクレーブに入れ、内部を窒素置換した後、トルエン 1. 5mL、t—BuOH50 O/zL及び 2—ァセチルフラン 110. lmg(l. Ommol)を加え、水素圧 3. OMPa、 50 °Cで 17時間撹拌反応させた。反応混合物を GCで分析した結果、収率 13%、光学 純度 59. 5%eeで 2—ァセチルフランの水素化物である 1一(2—フリル)エタノールを 得た。
[0261] 実施例 22. [CuH(PPh )] を用いたイソホロンの均一系不斉水素化反応
3 6
[CuH(PPh )] 9. 8mg[0.03mmol(Cu換算)]及び(S)— SEGPHOS 18.
3 6
3mg(0.03mmol)を lOOmLのステンレス製オートクレーブに入れ、内部を窒素置 換した後、トルエンと t— BuOHとの 3:1混合溶媒 2mL及びイソホロン 0. 15mL(l. Ommol)を加え、水素圧 5.0MPa、 50°Cで 17時間撹拌反応させた。反応混合物を GCで分析した結果を表 5に示す。
[0262] 実施例 23. [CuH(PPh )] を用いたイソホロンの均一系不斉水素化反応
3 6
実施例 22において、塩基として NaO— t— Bu 28.8mg(0. 30mmol)を加え、反 応時間を 18時間に代えた以外は、実施例 22と同様にして反応を行った。反応混合 物を GC分析した結果を表 5に併せて示す。
表 5.
[0263] [表 5]
Figure imgf000080_0001
[0264] 実施例 24. 2—メチルブタン酸メチルの製造
チグリン酸メチルエステル 114mg(lmmol)、 [CuBr ( (S) - SEGPHOS) ] 22. 6mg[0.03mmol(Cu換算)]、カリウム tert—ブトキシド( ιιΟΚ)33.6mg(0. 3m mol)を lOOmLのステンレス製オートクレーブに入れ、内部を窒素置換した後、トル ェンと t— BuOHとの 3:1混合溶媒 1. lmLカ卩え、水素圧 3.0MPa、 85°Cで 17時間 撹拌反応させて、チグリン酸メチルの水素化物である 2—メチルブタン酸メチルを収 率 63.8%で得た。
[0265] 実施例 25. 2 メチル 3 フエ-ルプロピオン酸メチルの製造
2—メチル 3 フエ-ルプロペン酸メチル 176mg(lmmol)、 [CuBr((S)— SEG PHOS)] 22.6mg[0.03mmol(Cu換算)]、 ιιΟΚ 33.6mg(0.3mmol)を lOOmLのステンレス製オートクレーブに入れ、内部を窒素置換した後、トルエンと t— BuOHとの 3:1混合溶媒 1.8mLを加え、水素圧 3.0MPa、 85°Cで 17時間撹拌反 応させて、 2—メチルー 3 フエ-ルプロペン酸メチルの水素化物である 2 メチル 3 フエ-ルプロピオン酸メチルを収率 54.7%で得た。
[0266] 実施例 26. 2 ァセトアミドプロピオン酸メチルの製造
2 ァセトアミドー 2 プロペン酸メチル 143mg(lmmol)、 [CuBr((S)— SEGPH OS)] 22.6mg[0.03mmol(Cu換算)]、 ιιΟΚ 33.6mg(0.3mmol)を 100 mLのステンレス製オートクレーブに入れ、内部を窒素置換した後、トルエンと t—Bu OHとの 3:1混合溶媒 1.4mLを加え、水素圧 3.0MPa、 85°Cで 17時間撹拌反応さ せて、 2—ァセトアミド 2—プロペン酸メチルの水素化物である 2—ァセトアミドプロ ピオン酸メチルを収率 52.5%で得た。
[0267] 実施例 27. [CuCl((R, R)— SKEWPHOS) (PPh )]の合成
3 n
トリフエ-ルホスフィン 131mg(0.5mmol)を窒素置換した 20mLシュレンク管に入 れ、これにトルエン lmLを加え、均一溶液とした。この溶液に、 CuCl 49.5mg(0. 5mmol)及びトルエン 5mLを加え、室温で 3時間撹拌した。次いで、(R, R)—SKE WPHOS 220mg(0.5mmol)を添カ卩して 30分撹拌した後、更にトルエン 2.5mL を加えて室温で 3時間撹拌反応させた。得られた白色懸濁液をろ取し、次いでトルェ ンで洗浄して、目的の表題ィ匕合物 320mg (収率 80%)を白色固体として得た。
31P-NMR(CDC1 ): δ ;— 10.0(br, IP), 2.3(br, 2P)
3
EI-MS:765.3[(M-C1)+]
ESI— MS:765.2[(M-C1)+]
[0268] 実施例 28〜30. [CuCl((R, R) -SKEWPHOS) (PPh )]を用いたァセトフエノ
3 n
ンの均一系不斉水素化反応
実施例 27で得られた [CuCl ( (R, R) - SKEWPHOS) (PPh )] 24. Omg (0.
3 n 03mmol)、下記表 6に記した量のトリフエ-ルホスフィン及び NaO— t— Bu 28. 8 mg (0. 30mmol)を lOOmLのステンレス製オートクレーブに入れ、系内を窒素置換 した後、イソプロピルアルコール 2. OmL及びァセトフエノン 1. 05mL (9. Ommol)を 加え、水素圧 5MPa、 30°Cで 16〜17時間撹拌反応させて、ァセトフエノンの水素化 物である 1—フエネチルアルコールを得た。反応混合物を GC分析した。結果を表 6 に示す。
表 6.
[0269] [表 6]
Figure imgf000082_0001
[0270] 実施例 31〜40. ァセトフ ノンの均一系不斉水素化反応 (塩基添加)
銅化合物 [0. 03mmol (Cu換算)])、(R, R)— SKEWPHOS 13. 2mg (0. 03 mmol)、及び NaO— t— Bu 28. 8mg (0. 30mmol)を lOOmLのステンレス製ォー トクレーブに入れ、系内を窒素で置換した。これに、溶媒 2. OmL及びァセトフエノン 1 . 05mL (9. Ommol)を加え、所定の水素圧及び温度で 16〜17時間撹拌反応させ た。用いた銅化合物、溶媒、水素圧、反応温度、及び反応混合物物を GCで分析し たァセトフヱノンの水素化物である 1 フエネチルアルコールの収率及び光学純度を 表 7に示す。
表 7.
[0271] [表 7] 水素
光学純度 圧 温度 収率
施 銅化合物 溶媒 (% e
(M (°C) (%)
例 e )
P a )
31 [CuCl(R,R)-SKEWPHOS] n t-BuOH 3.0 50 >99 46
32 CuF(PPh3)3-2EtOH t-BuOH 3.0 30 >99 53
33 CuF(PPh3)3-2EtOH EtOH 5.0 30 >99 41
34 CuF(PPh3)3-2EtOH I PA 3.0 30 >99 47
35 CuF(PPh3)3-2EtOH t-Bu(Me)CHOH 5.0 30 >99 56
(R)-t-Bu(Me)CH
36 CuF(PPh3)3-2EtOH 5.0 30 >99 55
OH
37 CuF(PPh.3)3-2EtOH CPME 5.0 30 >99 55
38 CuCl(PPh3)3 I PA 3.0 30 >99 47
39 CuCKP(m-tol)3)3 CPME 5.0 30 94 62
40 Cu(N03)(PPh3)2 IPA 5.0 50 >99 43
[0272] t— BuOH:tert ブチルアルコール
EtOH:ェチルアルコール
IPA:イソプロピルアルコール
t-Bu (Me) CHOH :3, 3 ジメチルブタン 2 オール
(R) -t-Bu(Me)CHOH: (R)—3, 3 ジメチルブタン— 2 オール
CPME:シクロペンチルメチルエーテル
tol:— C H CH
6 4 3
[0273] 実施例 41〜46. ァセトフ ノンの均一系不斉水素化反応
下記表 8に記載のハロゲン化銅(CuX)O.03mmol、トリフエ-ルホスフィン(PPh )
3
、 (R, R)— SKEWPHOS、及び NaO— t— Bu 28.8mg(0.30mmol)を lOOmL のステンレス製オートクレーブに入れ、系内を窒素で置換した。これに、 IPA 2. Om L、ァセトフエノン 1.05mL(9. Ommol)を加え、水素圧 5.0MPa、 30。Cで 16〜17 時間撹拌反応させた。用いたハロゲン化銅 CuX、 (R, R)— SKEWPHOSの使用量 、トリフエ-ルホスフィンの使用量、及び反応混合物を GCで分析したァセトフエノンの 水素化物である 1 フエネチルアルコールの収率及び光学純度を表 8に示す。
表 8. [0274] [表 8]
Figure imgf000084_0001
[0275] 実施例 47 60. ァセトフ ノンの均一系不斉水素化反応
CuCl 3. Omg (0. 03mmol)、配位子 0. 09mmol (R, R)— SKEWPHOS 1 3. 2mg (0. 03mmol)及び NaO— t— Bu 28. 8mg (0. 30mmol)を lOOmLのス テンレス製オートクレープに入れ、系内を窒素で置換した。これに、 IPA 2. OmL及 びァセトフエノン 1. 05mL (9. Ommol)を加え、水素圧 5. OMPa 30 Cで 16 17 時間撹拌反応させた。用いた配位子、及び反応混合物物を GCで分析したァセトフエ ノンの水素化物である 1 フエネチルアルコールの収率及び光学純度を表 9に示す。 表 9.
[0276] [表 9]
収率 光学純度 実施例 画 3ίί†
(%) (% e e )
4 7 P C y a 2 5 3 5
4 8 P ( t - B u ) 1 6 4 7
4 9 P (O P h ) a 3 3 7
5 0 P ( 2 - f u r y 1 ) 3 7 4 7
5 1 P (C 6 F 5) 7 3 8
5 2 P P h ( 2 - n a p h t h y l ) > 9 9 5 0
5 3 P ( 1 — n a p h t y l ) 3 3 2 2 0
54 P (2 - n a p h t h y) 3 8 0 5 0
5 5 P ( o - t o 1 y 1 ) a 2 9 4 0
5 6 P (m - t o 1 y 1 ) 3 9 7 5 3
5 7 P ( p t o 1 y 1 ) a > 9 9 5 0
5 8 P (4 - t - B u - C 6H4) 5 8 4 6
5 9 P ( 3, 5 - x y 1 y 1 ) 3 > 9 9 5 7
6 0 P ( 3 , 5 d i — t — B u - C 6H3) 3 34 34
[0277] 実施例 61及び 62. ァセトフエノンの均一系不斉水素化反応 (塩基添加)
CuF(PPh) -2EtOH 28.8mg[0.03mmol/Cu(Cu換算)]、(R, R)— SKE
3 3
WPHOS 39.6mg(0.09mmol)及び NaO— t— Bu 28.8mg(0.30mmol)を lOOmLのステンレス製オートクレーブに入れ、系内を窒素で置換した。これに、溶媒 7. OmL及びァセトフエノン 3.5mL(30mmol)をカロえ、水素圧 5.0MPa、 50°Cで 2 4時間撹拌反応させた。用いた溶媒、及び反応混合物を GCで分析したァセトフエノ ンの水素化物である 1一フエネチルアルコールの収率及び光学純度を表 10に示す。 表 10.
[0278] [表 10]
Figure imgf000085_0001
[0279] 実施例 63. ァセトフエノンの均一系不斉水素化反応(シリルエノールエーテル添カロ )
CuF(PPh) -2EtOH 28.8mg(0.03mmol/Cu) , (R, R)— SKEWPHOS 13. 2mg (0. 03mmol)、及び 1—フエ-ルー 1— (トリメチルシロキシ)エチレン 61 . 5 μ L· (0. 30mmol)を lOOmLのステンレス製オートクレーブに入れ、系内を窒素 で置換した。これに、 t— BuOH 2. OmL及びァセトフエノン 1. 05mL (9. Ommol )を加え、水素圧 3. OMPa、 50°Cで 16時間撹拌反応させた。反応混合物を GC分析 したァセトフエノンの水素化物である 1 フエネチルアルコールを収率 24%、光学純 度 50%eeで得た。
[0280] 実施例 64及び 65. [CuH (PPh ) ] を用いたァセトフヱノンの均一系不斉水素化
3 6
反応
[CuH (PPh ) ] 9. 8mg [0. 03mmol (Cu換算)]、(R, R)— SKEWPHOS 1
3 6
3. 2mg (0. O3mmol)及び NaO— t— Bu 28. 8mg (0. 30mmol)を lOOmLのス テンレス製オートクレープに入れ、系内を窒素で置換した。これに、溶媒 2. OmL及 びァセトフエノン 1. 05mL (9. Ommol)を加え、水素圧 3. OMPa、 30°Cで 16時間撹 拌反応させた。用いた溶媒、及び反応混合物を GCで分析したァセトフエノンの水素 化物である 1 フエネチルアルコールの収率及び光学純度を表 11に示す。
表 11.
[0281] [表 11]
Figure imgf000086_0001
[0282] 実施例 66〜68. 置換ァセトフエノンの均一系不斉水素化反応
CuF (PPh ) - 2EtOH 28. 8mg (0. O3mmol)、 (R, R)—SKEWPHOSを 13.
3 3
2mg (0. O3mmol)、及び NaO— t— Bu 28. 8mg (0. 30mmol)を lOOmLのステ ンレス製オートクレーブに入れ、系内を窒素で置換した。これに、 IPA 2. OmL及び 置換ァセトフエノン 9. Ommolを加え、水素圧 5. OMPa、 30°Cで 16時間撹拌反応さ せた。用いた置換ァセトフエノン、及び反応混合物を GCで分析した置換ァセトフエノ ンの水素化物の収率及び光学純度を表 12に示す。
表 12.
[0283] [表 12] 光学純度 実施例 換ァセトフエノン 収率 (%)
( % e e )
6 6 4 -Bromoaceto henone > 9 9 4 8
6 7 2'-methylacetophenone 8 9 6 0
6 8 3',5 -bis(trifluoromethyl)acetophenone > 9 9 5
[0284] 実施例 69〜79. 置換ァセトフエノンの均一系不斉水素化反応
CuCl 3. Omg (0. 03mmol)、トリス(3, 5—ジメチルフエ-ル)ホスフィン 31. lmg (0. 09mmol)、 (R, R)— SKEWPHOS 13. 2mg (0. 03mmol)及び NaO— t— Bu 28. 8mg (0. 30mmol)を lOOmLのステンレス製オートクレーブに入れ、系内 を窒素で置換した。これに、 IPA 2. OmL及び置換ァセトフエノン 1. 05mL (9. Om mol)を加え、水素圧 5MPa、 30°Cで 16〜17時間撹拌反応させた。用いた置換ァセ トフエノン及び反応混合物を GCで分析した置換ァセトフエノンの水素化物の収率及 び光学純度を表 13に示す
表 13.
[0285] [表 13]
Figure imgf000087_0001
[0286] 注 1 :トリス(3, 5—ジメチルフエ-ル)ホスフィンを 0. 25mmol使用
注 2 : 2, 4—ジメチルー 3—ペンタノールを溶媒に使用
[0287] 実施例 80. ピナコリンの均一系不斉水素化反応
CuF (PPh ) - 2EtOH 28. 8mg[0. 03mmol (Cu換算)]、 (R, R)—SKEWP HOS 13. 2mg (0. 03mmol)及び NaO— t— Bu 28. 8mg (0. 30mmol)を 100 mLのステンレス製オートクレーブに入れ、系内を窒素で置換した。これに、 IPA 2. OmL及びピナコリン 1. 13mL (9. Ommol)を加え、水素圧 5. 0MPa、 30。Cで 16時 間撹拌反応させた。反応混合物を GCで分析した結果、ピナコリンの水素化物である 3, 3 ジメチルブタン 2 オールを収率 79%、光学純度 17%eeで得た。
[0288] 実施例 81. 2 ァセチルフランの均一系不斉水素化反応
CuF (PPh ) - 2EtOH 28. 8mg[0. 03mmol (Cu換算)]、 (R, R)— SKEWP
3 3
HOS 13. 2mg (0. 03mmol)、及び NaO— t— Bu 28. 8mg (0. 30mmol)を 10 OmLのステンレス製オートクレーブに入れ、系内を窒素で置換した。これに、 IPA 2 . OmL及び 2 ァセチルフラン 0. 90mL (9. Ommol)を加え、水素圧 5. 0MPa、 30
°Cで 16時間撹拌反応させた。反応混合物を GCで分析した結果、 2 ァセチルフラ ンの水素化物である 1一(2 フリル)エタノールを収率 99%、光学純度 31%eeで得 た。
[0289] 実施例 82. 2, 3, 3 トリメチルインドレニンの均一系不斉水素化反応 CuCl(PP h ) 26. 5mg (0. 03mmol)、 (R, R)— SKEWPHOS 13. 2mg (0. 03mmol)
3 3
及び NaO— t— Bu 28. 8mg (0. 30mmol)を lOOmLのステンレス製オートクレー ブに入れ、系内を窒素で置換した。これに、 IPA 2. OmL及び 2, 3, 3 トリメチルイ ンドレニン 16 ^ 1^ (1. Ommol)を加え、水素圧 5. 0MPa、 30°Cで 16時間撹拌反応 させた。反応混合物を GCで分析した結果、 2, 3, 3 トリメチルインドレニンの水素化 物である 2, 3, 3 トリメチルー 2, 3 ジヒドロー 1H—インドールを収率 7%、光学純 度 57%eeで得た。
[0290] 実施例 83〜96. ァセトフエノンの均一系不斉水素化反応
Cu(NO ) (PPh ) 11. 7mg[0. 018mmol(Cu換算)]及び不斉配位子(0. 01
3 2 3 2
8mmol)を lOOmLのステンレス製オートクレーブに入れ、系内を窒素で置換した。こ れに、 0. 09M NaO— t— Buの IPA溶液 2. OmL(0. 18mmol)及びァセトフエノン 1 . 05mL (9. Ommol)を加え、水素圧 5. OMPa及び 30°Cで 16〜17時間撹拌反応さ せた。反応混合物物を GCで分析した。用いた不斉配位子及びァセトフエノンの水素 化物である 1 フエネチルアルコールの収率及び光学純度を下記表 14に示す 表 14.
[0291] [表 14]
Figure imgf000089_0001
[0292] BPPM: N - tert -ブトキシカルボ-ル 4 ジフエ-ルホスフイノ 2 ジフエ-ルホ スフイノメチノレピロリジン;
BCPM: N tert ブトキシカルボ-ル 4 ジシクロへキシルホスフイノ 2 ジフエ ニルホスフイノメチルピロリジン;
Xylyl— P— PHOS : 2, 2 ' , 6, 6, 一テトラメトキシ一 4, 4 '—ビス(ジ(3, 5 キシリル )ホスフイノ) 3, 3'—ビビリジン;
Josiphos: [2— (ジフエ-ルホスフイノ)フエロセ -ル]ェチルジシクロへキシルホスフィ ン;
Me— DuPHOS : l, 2 ビス(2, 5 ジメチルホスフオラノ)ベンゼン
IPR— BeePHOS : l, 2 ビス(2—イソプロピル一 2, 3 ジヒドロ一 1H ホスホイン ドール 1 ィル)ベンゼン
[0293] 実施例 97. ァセトフ ノンの均一系不斉水素化反応
[CuH (PPh ) ] 5. 9mg[0. 018mmol(Cu換算)]、及び(S, S)— SKEWPHO
3 3 6
S 7. 9mg (0. 018mmol)を lOOmLのステンレス製オートクレーブに入れ、系内を 窒素で置換した。これに IPA2. OmL及びァセトフエノン 1. 05mL (9mmol)をカロえ、 水素圧 5. OMPa及び 30°Cで 16時間撹拌した。反応混合物を GCで分析した結果、 ァセトフヱノンの水素化物である 1 フエネチルアルコールの収率は 67%、光学純度 は 47%eeであった。
[0294] 実施例 98. ァセトフ ノンの均一系不斉水素化反応
[CuH (PPh ) ] 5. 9mg[0. 018mmol(Cu換算)]、トリフエ-ルホスフィン 4. 7m
3 3 6
g (0. 018mmol)、及び(S, S)— SKEWPHOS 7. 9mg (0. 018mmol)を 100m Lのステンレス製オートクレーブに入れ、系内を窒素で置換した。これに IPA2. OmL 及びァセトフエノン 1. 05mL (9mmol)をカ卩え、水素圧 5. OMPa及び 30°Cで 16時間 撹拌した。反応混合物を GCで分析した結果、ァセトフエノンの水素化物である 1ーフ エネチルアルコールの収率は 99%、光学純度は 47%eeであった。
産業上の利用可能性
[0295] 本発明の均一系水素化反応用触媒は、均一系で行う水素化反応に有用であり、特 に該触媒を均一系不斉水素化反応用触媒として不飽和化合物の不斉水素化反応 を行えば、所望の光学活性化合物を収率及び光学純度よぐ更に経済性及び作業 '性よく製造することができる。

Claims

請求の範囲
[1] 不斉配位子を有する不斉銅錯体を含有する均一系水素化反応用触媒。
[2] 不斉銅錯体が不斉配位子と銅化合物とを反応させて得られる銅錯体である、請求の 範囲第 1項に記載の均一系水素化反応用触媒。
[3] 不斉配位子と銅化合物との混合物を含有する均一系水素化反応用触媒。
[4] 不斉配位子が単座配位子、二座配位子、三座配位子及び四座配位子カゝらなる群か ら選ばれる少なくとも 1種である請求の範囲第 1〜3項の何れかに記載の均一系水素 化反応用触媒。
[5] 更に添加剤を含有する請求の範囲第 1〜4項の何れかに記載の均一系水素化反応 用触媒。
[6] 銅化合物、一般式 (41)
PR151 (41)
3
(式中、 3個の R151は同一又は異なって、水素原子、置換基を有していてもよい炭化 水素基、置換基を有していてもよい複素環基、置換基を有していてもよいアルコキシ 基、置換基を有していてもよいァリールォキシ基、置換基を有していてもよいァラルキ ルォキシ基、アミノ基又は置換アミノ基を示す。)で表されるリンィ匕合物、及び光学活 性ジホスフィンィ匕合物を含有する、請求の範囲第 3〜5項の何れかに記載の均一系 水素化反応用触媒。
[7] 一般式 (51)
[CuL3 (PR201 ) ] (51)
3 n31 n32
(式中、 L3は配位子を示し、 3個の R2Cnは同一又は異なって、水素原子、置換基を有 していてもよい炭化水素基、置換基を有していてもよい複素環基、置換基を有してい てもよいアルコキシ基、置換基を有していてもよいァリールォキシ基、置換基を有して いてもよいァラルキルォキシ基、アミノ基又は置換アミノ基を示し、 n31及び n32は夫 々独立して、自然数を示す。)で表される銅錯体、及び光学活性ジホスフィンィ匕合物 を含有する請求の範囲第 3〜5項の何れかに記載の均一系水素化反応用触媒。
[8] 均一系水素化反応用触媒が均一系不斉水素化反応用触媒である、請求の範囲第 1 〜7項の何れかに記載の触媒。
[9] 請求の範囲第 1〜8項の何れかに記載の均一系水素化反応用触媒の存在下、不飽 和化合物を均一系水素化反応させることを特徴とする、該不飽和化合物の水素化物 の製造方法。
[10] 不飽和化合物がプロキラルな化合物であり、均一系水素化反応用触媒が均一系不 斉水素化反応用触媒であり、かつ得られる不飽和化合物の水素化物が光学活性ィ匕 合物である、請求の範囲第 9項に記載の製造方法。
[11] 請求の範囲第 1項〜第 7項の何れかに記載の均一系水素化反応用触媒を用いる均 一系水素化反応方法。
[12] 請求の範囲第 8項に記載の均一系不斉水素化反応用触媒を用いる均一系不斉水 素化反応方法。
[13] 一般式 (61)
[L L12CuL13] (61)
n35
(式中、 L11は二座配位性の光学活性リンィ匕合物を示し、 L12は L11と異なるリンィ匕合物 を示し、 L13は配位子を示し、 n35は自然数を示す。)で表される不斉銅錯体。
[14] 請求の範囲第 13項に記載の不斉銅錯体を含有する均一系水素化反応用触媒。
[15] 請求の範囲第 14項に記載の均一系水素化反応用触媒が、均一系不斉水素化反応 用触媒である、請求の範囲第 14項に記載の触媒。
[16] 請求の範囲第 15項に記載の均一系不斉水素化反応用触媒の存在下、プロキラル な化合物を均一系不斉水素化反応させることを特徴とする、光学活性化合物の製造 方法。
[17] 請求の範囲第 14項に記載の均一系水素化反応用触媒を用いる均一系水素化反応 方法。
[18] 請求の範囲第 15項に記載の均一系不斉水素化反応用触媒を用いる均一系不斉水 素化反応方法。
PCT/JP2006/313510 2005-07-07 2006-07-06 均一系不斉水素化反応用触媒 WO2007007646A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/988,216 US7902110B2 (en) 2005-07-07 2006-07-06 Homogeneous asymmetric hydrogenation catalyst
EP06780836.0A EP1911516B1 (en) 2005-07-07 2006-07-06 Homogeneous asymmetric hydrogenation process
JP2007524614A JP5166029B2 (ja) 2005-07-07 2006-07-06 均一系不斉水素化反応用触媒
US12/703,079 US8497400B2 (en) 2005-07-07 2010-02-09 Homogeneous asymmetric hydrogenation process
US12/703,053 US8481791B2 (en) 2005-07-07 2010-02-09 Homogeneous asymmetric hydrogenation process
US12/949,370 US8586498B2 (en) 2005-07-07 2010-11-18 Homogeneous asymmetric hydrogenation catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-199463 2005-07-07
JP2005199463 2005-07-07

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US11/988,216 A-371-Of-International US7902110B2 (en) 2005-07-07 2006-07-06 Homogeneous asymmetric hydrogenation catalyst
US12/703,053 Division US8481791B2 (en) 2005-07-07 2010-02-09 Homogeneous asymmetric hydrogenation process
US12/703,079 Division US8497400B2 (en) 2005-07-07 2010-02-09 Homogeneous asymmetric hydrogenation process
US12/949,370 Continuation US8586498B2 (en) 2005-07-07 2010-11-18 Homogeneous asymmetric hydrogenation catalyst

Publications (1)

Publication Number Publication Date
WO2007007646A1 true WO2007007646A1 (ja) 2007-01-18

Family

ID=37637039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313510 WO2007007646A1 (ja) 2005-07-07 2006-07-06 均一系不斉水素化反応用触媒

Country Status (4)

Country Link
US (4) US7902110B2 (ja)
EP (3) EP1911516B1 (ja)
JP (3) JP5166029B2 (ja)
WO (1) WO2007007646A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067441A1 (ja) * 2008-12-11 2010-06-17 高砂香料工業株式会社 アルコール化合物の製造方法
WO2010067442A1 (ja) 2008-12-11 2010-06-17 高砂香料工業株式会社 アルコール化合物の製造方法
JP2010209049A (ja) * 2009-03-12 2010-09-24 Japan Science & Technology Agency ホスホン酸類縁体の製造方法、及び触媒
JP2012507520A (ja) * 2008-10-31 2012-03-29 ベドゥキアン リサーチ, インコーポレイテッド 置換および非置換1−アルケン−3−イルアルキレート化合物からのフェロモンおよび香料の生成
JP2013184935A (ja) * 2012-03-08 2013-09-19 Kyoto Univ 連続的な不斉合成法及びその方法に用いるdnaを含有するハイブリッド触媒
JP2016047487A (ja) * 2014-08-27 2016-04-07 一般財団法人電力中央研究所 触媒又はその前駆体並びにこれらを利用した二酸化炭素の水素化方法及びギ酸塩の製造方法
JP2021109157A (ja) * 2020-01-14 2021-08-02 株式会社豊田中央研究所 炭素化合物還元触媒
CN113891870A (zh) * 2019-05-27 2022-01-04 帝斯曼知识产权资产管理有限公司 在磷化合物存在下将炔醇选择性氢化成烯醇

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013040311A1 (en) * 2011-09-14 2013-03-21 Los Alamos National Security, Llc Compounds and methods for the production of long chain hydrocarbons from biological sources
US9359319B2 (en) 2012-03-22 2016-06-07 Los Alamos National Security, Llc Hydrogenation of biomass-derived substrates
US9120741B2 (en) * 2012-12-21 2015-09-01 Governors Of The University Of Alberta Transition metal catalysts for hydrogenation and hydrosilylation
WO2016079097A1 (de) * 2014-11-18 2016-05-26 Cynora Gmbh Kupfer(i)komplexe für optoelektronische anwendungen
CN110903189B (zh) * 2019-12-10 2022-06-21 大连大学 一种手性2-芳基丙酸酯的合成方法
CN114702475B (zh) * 2022-05-17 2023-12-26 大连天源基化学有限公司 一种单一构型烟碱的合成工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732329A (en) 1970-12-28 1973-05-08 Texaco Inc Hydrogenation process utilizing homogeneous copper catalysts
JPS5439052A (en) 1977-07-18 1979-03-24 Hoffmann La Roche Bissphosphine metal complex
JPH09124669A (ja) * 1995-10-31 1997-05-13 Takasago Internatl Corp 光学活性ジホスフィンの製造方法
WO2001019761A2 (en) 1999-09-15 2001-03-22 Massachusetts Institute Of Technology Asymmetric 1,4-reductions of and 1,4-additions to enoates and related systems
JP2004161645A (ja) * 2002-11-12 2004-06-10 Takasago Internatl Corp ホスフィン化合物、該化合物を配位子とする遷移金属錯体及び該錯体を含む不斉合成用触媒
JP2005041847A (ja) * 2003-07-25 2005-02-17 Nippon Chem Ind Co Ltd フェロセンを置換基に有する光学活性リンキラルジホスフィン化合物、該化合物の中間体、該化合物の製造方法及び該化合物を用いる不斉合成反応、並びに該化合物を配位子として有する金属錯体触媒及び該金属錯体触媒を用いる不斉合成反応をする方法
WO2005016943A1 (ja) 2003-08-13 2005-02-24 Takasago International Corporation 新規な遷移金属錯体、及び該錯体を用いた光学活性アルコールの製造法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120870A (en) * 1977-07-18 1978-10-17 Hoffmann-La Roche Inc. Metal phosphine complex
JPH0997470A (ja) 1995-07-26 1997-04-08 Sony Corp ディスク装置
JP2972887B1 (ja) * 1998-10-29 1999-11-08 千葉大学長 光学活性ビスホスフィノメタン並びにそれらのロジウム又は銅錯体を用いる不斉合成
FR2830254B1 (fr) * 2001-09-28 2004-09-17 Synkem Nouvelles diphosphines, leurs complexes avec des metaux de transition et leur utilisation en synthese asymetrique
CN1318433C (zh) * 2002-04-04 2007-05-30 德古萨股份公司 作为二齿配体的双膦
DE50302717D1 (de) * 2002-08-21 2006-05-11 Lanxess Deutschland Gmbh Chirale Diphosphorverbindungen und deren Übergangsmetallkomplexe
JPWO2005070875A1 (ja) 2004-01-26 2007-09-06 高砂香料工業株式会社 アミン類の製造方法
DE102004022397A1 (de) * 2004-05-06 2005-12-01 Consortium für elektrochemische Industrie GmbH Chirale C2-symmetrische Biphenyle, deren Herstellung sowie Metallkomplexe enthaltend diese Liganden und deren Verwendung als Katalysatoren in chirogenen Synthesen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3732329A (en) 1970-12-28 1973-05-08 Texaco Inc Hydrogenation process utilizing homogeneous copper catalysts
JPS5439052A (en) 1977-07-18 1979-03-24 Hoffmann La Roche Bissphosphine metal complex
JPH09124669A (ja) * 1995-10-31 1997-05-13 Takasago Internatl Corp 光学活性ジホスフィンの製造方法
WO2001019761A2 (en) 1999-09-15 2001-03-22 Massachusetts Institute Of Technology Asymmetric 1,4-reductions of and 1,4-additions to enoates and related systems
JP2004161645A (ja) * 2002-11-12 2004-06-10 Takasago Internatl Corp ホスフィン化合物、該化合物を配位子とする遷移金属錯体及び該錯体を含む不斉合成用触媒
JP2005041847A (ja) * 2003-07-25 2005-02-17 Nippon Chem Ind Co Ltd フェロセンを置換基に有する光学活性リンキラルジホスフィン化合物、該化合物の中間体、該化合物の製造方法及び該化合物を用いる不斉合成反応、並びに該化合物を配位子として有する金属錯体触媒及び該金属錯体触媒を用いる不斉合成反応をする方法
WO2005016943A1 (ja) 2003-08-13 2005-02-24 Takasago International Corporation 新規な遷移金属錯体、及び該錯体を用いた光学活性アルコールの製造法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Comprehensive Organometallic Chemistry II", 1995, PERGAMON
"Comprehensive Organometallic Chemistry", 1982, PERGAMON
"Inst. Org. Khim. im. Zelinskogo", KINETIKA I KATALIZ., vol. 16, no. 4, 1975, pages 1081
"PROTECTIVE GROUPS IN ORGANIC SYNTHESIS THIRD EDITION", 1999, JOHN WILEY & SONS INC
"The Forth Series of Experimental Chemistry", vol. 17, 1991
J. ORG. CHEM., vol. 45, 1980, pages 2995
REACT. KINET. CATAL. LETT., vol. 9, no. 1, 1978, pages 73
See also references of EP1911516A4
THE CHEMICAL SOCIETY OF JAPAN (MARUZEN)": "Inorg. Chem.", vol. 18, 1965, pages: 1382

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507520A (ja) * 2008-10-31 2012-03-29 ベドゥキアン リサーチ, インコーポレイテッド 置換および非置換1−アルケン−3−イルアルキレート化合物からのフェロモンおよび香料の生成
US8680302B2 (en) 2008-12-11 2014-03-25 Takasago International Corporation Method for producing alcohol compound
US20110201820A1 (en) * 2008-12-11 2011-08-18 Takasago International Corporation Method for producing alcohol compound
WO2010067442A1 (ja) 2008-12-11 2010-06-17 高砂香料工業株式会社 アルコール化合物の製造方法
WO2010067441A1 (ja) * 2008-12-11 2010-06-17 高砂香料工業株式会社 アルコール化合物の製造方法
US8697881B2 (en) 2008-12-11 2014-04-15 Takasago International Corporation Method for producing alcohol compound
JP5478510B2 (ja) * 2008-12-11 2014-04-23 高砂香料工業株式会社 アルコール化合物の製造方法
JP5564715B2 (ja) * 2008-12-11 2014-08-06 高砂香料工業株式会社 アルコール化合物の製造方法
JP2010209049A (ja) * 2009-03-12 2010-09-24 Japan Science & Technology Agency ホスホン酸類縁体の製造方法、及び触媒
JP2013184935A (ja) * 2012-03-08 2013-09-19 Kyoto Univ 連続的な不斉合成法及びその方法に用いるdnaを含有するハイブリッド触媒
JP2016047487A (ja) * 2014-08-27 2016-04-07 一般財団法人電力中央研究所 触媒又はその前駆体並びにこれらを利用した二酸化炭素の水素化方法及びギ酸塩の製造方法
CN113891870A (zh) * 2019-05-27 2022-01-04 帝斯曼知识产权资产管理有限公司 在磷化合物存在下将炔醇选择性氢化成烯醇
JP2021109157A (ja) * 2020-01-14 2021-08-02 株式会社豊田中央研究所 炭素化合物還元触媒
JP7380233B2 (ja) 2020-01-14 2023-11-15 株式会社豊田中央研究所 二酸化炭素還元触媒

Also Published As

Publication number Publication date
US20100137615A1 (en) 2010-06-03
EP2095875A1 (en) 2009-09-02
JP5597687B2 (ja) 2014-10-01
EP2392400A2 (en) 2011-12-07
JPWO2007007646A1 (ja) 2009-01-29
EP2392400B1 (en) 2014-05-07
JP2013063433A (ja) 2013-04-11
EP1911516A4 (en) 2009-07-15
US8497400B2 (en) 2013-07-30
US20100168440A1 (en) 2010-07-01
US7902110B2 (en) 2011-03-08
JP2013060451A (ja) 2013-04-04
US20110065929A1 (en) 2011-03-17
JP5694275B2 (ja) 2015-04-01
US8586498B2 (en) 2013-11-19
JP5166029B2 (ja) 2013-03-21
EP1911516A1 (en) 2008-04-16
EP2392400A3 (en) 2012-03-28
EP2095875B1 (en) 2014-10-01
EP1911516B1 (en) 2014-05-14
US8481791B2 (en) 2013-07-09
US20090203927A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
WO2007007646A1 (ja) 均一系不斉水素化反応用触媒
JP5671456B2 (ja) 3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途
JP5477557B2 (ja) エステル又はラクトン類の水素還元によるアルコール類の製造方法
EP2699535B1 (en) Method for producing compound with carbonyl group by using ruthenium carbonyl complex having tridentate ligand as dehydrogenation oxidation catalyst
CN101565434B (zh) 螺环膦-噁唑啉和制备方法及其应用
JP2004537588A (ja) 移動水素化条件下でのカルボニル化合物の還元アミノ化による、アミンの製造方法
EP2619162B1 (en) Method for producing alcohol and/or amine from amide compound
JP5968439B2 (ja) スピロベンジルアミン−ホスフィン及びその製造方法並びにその使用
JP5271503B2 (ja) 有機ホウ素化合物の製造方法
CN111032668B (zh) 具有光学活性的2,3-双膦基吡嗪衍生物、其制造方法、过渡金属配合物和有机硼化合物的制造方法
Kerrigan et al. Salen ligands derived from trans-1, 2-dimethyl-1, 2-cyclohexanediamine: preparation and application in oxo-chromium salen mediated asymmetric epoxidation of alkenes
JP4855196B2 (ja) 置換光学活性ジホスフィン化合物
US7351849B2 (en) Process for producing optically active β-amino acid derivatives
GB2338708A (en) A process for making propargyl alcohol derivatives
JP2007106706A (ja) 光学活性アミノアルコール類の製造方法
Lerum Rhodium-catalyzed addition of terminal alkynes to vinyl ketones and studies toward the synthesis of peyssonenynes A and B
JP2005239583A (ja) 光学活性2−アルキル−1−ブタン酸類の製造方法
JPWO2016047388A1 (ja) アルコール類の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524614

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11988216

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006780836

Country of ref document: EP