WO2005016943A1 - 新規な遷移金属錯体、及び該錯体を用いた光学活性アルコールの製造法 - Google Patents

新規な遷移金属錯体、及び該錯体を用いた光学活性アルコールの製造法 Download PDF

Info

Publication number
WO2005016943A1
WO2005016943A1 PCT/JP2004/011693 JP2004011693W WO2005016943A1 WO 2005016943 A1 WO2005016943 A1 WO 2005016943A1 JP 2004011693 W JP2004011693 W JP 2004011693W WO 2005016943 A1 WO2005016943 A1 WO 2005016943A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
ring
formula
general formula
Prior art date
Application number
PCT/JP2004/011693
Other languages
English (en)
French (fr)
Inventor
Koichi Mikami
Noboru Sayo
Original Assignee
Takasago International Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago International Corporation filed Critical Takasago International Corporation
Priority to JP2005513186A priority Critical patent/JP4590353B2/ja
Priority to AT04771660T priority patent/ATE509024T1/de
Priority to EP04771660A priority patent/EP1661903B8/en
Publication of WO2005016943A1 publication Critical patent/WO2005016943A1/ja
Priority to US11/353,533 priority patent/US7473793B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/65525Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a seven-(or more) membered ring
    • C07F9/65527Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a seven-(or more) membered ring condensed with carbocyclic rings or carbocyclic ring systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/65Metal complexes of amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5022Aromatic phosphines (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5027Polyphosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/65515Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a five-membered ring
    • C07F9/65517Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a five-membered ring condensed with carbocyclic rings or carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/6552Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a six-membered ring
    • C07F9/65522Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a six-membered ring condensed with carbocyclic rings or carbocyclic ring systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention relates to a novel transition metal complex, preferably a ruthenium phosphine complex or a rhodium phosphine complex.
  • a transition metal complex in which an optically active diamine derivative is coordinated with a metal complex having an achiral diphosphine conjugate as a ligand, preferably a ruthenium complex or a rhodium complex, an asymmetric synthesis catalyst comprising the same, and
  • the present invention relates to a method for producing optically active alcohols using the same.
  • an achiral ligand can be used in some way instead of the axially asymmetric diphosphine ligand compound, it can be an advantageous method for obtaining an optically active compound at low cost.
  • an asymmetric hydrogenation reaction using an achiral diphosphine ligand there is a report using 2,2,1-bis (diarylphosphino) -1,1, -biphenyl. (See Non-patent Document 1 .;).
  • an example of an asymmetric hydrogenation reaction using a diphosphine ruthenium-optically active diamine complex is shown.
  • the diphosphine-ruthenium-optically active diamine complex described here has reached a practical level where the asymmetric yield is not so high depending on the kind of the starting ketone! / .
  • Non-patent literature l K. Mikami et al., Angew. Chem. Int. Ed., 1999, vol. 38, p. 495
  • the present invention has been made in view of the above situation, and is effective for various asymmetric synthesis reactions.
  • New transition metal complexes such as ruthenium phosphine complex and rhodium phosphine complex, which can be used more effectively in the asymmetric hydrogenation of various ketones, and their optical activity
  • the purpose is to provide a new method for producing alcohol.
  • the inventors of the present invention have been working diligently to solve the above-mentioned problems, and have found that the achiral diphosphine ligand is converted to a ruthenium complex, and further an optically active diamine ligand is coordinated to obtain a steric configuration. I thought about fixing the constellation and creating a pseudo-asymmetric environment.
  • this complex functions as an asymmetric complex catalyst and can be applied to an asymmetric hydrogenation reaction
  • diphenyl ether A ligand having a diarylphosphino group introduced at the 2,2,2 position, such as benzophenone or benzhydrol, was synthesized, and this ligand was used to form a metal complex such as ruthenium or rhodium, which was further optically active.
  • a diphosphine ruthenium-optically active diamine complex or a diphosphine rhodium-optically active diamine complex is used, and hydrogenation of a ketone compound is performed using the complex.
  • the hydrogenation reaction proceeded as expected with respect to the ketone conjugate, and an optically active alcohol was obtained with high optical purity and high yield, and an optically pure catalyst was obtained. Similar high optical yield and when using found that is achieved, thereby completing the present invention.
  • the present invention includes the following configurations (1) and (13).
  • ring A and ring B each independently represent an aromatic ring which may have a substituent
  • Q ⁇ Q 2 , Q 3 and Q 4 each independently represent a substituent
  • Y represents an aryl group which may have an alicyclic group which may have a substituent
  • Y 1 represents a spacer
  • M represents a transition metal.
  • X represents a halogen atom or an anion
  • Z 1 represents a general formula [3]
  • ring C and ring D each independently represent a optionally substituted substituent or a substituted or unsubstituted alicyclic group; R 21 , R 22 , R 23 and R 24 each independently represent a hydrogen atom or an alkyl group.), P represents 1 or 2, and n represents a natural number.
  • the compound represented by the general formula [3] is an optically active compound and has no transition metal complex.
  • transition metal complex according to any one of (1) to (3), wherein the transition metal complex is a transition metal complex of Groups 8 to 10 of the periodic table of the elements.
  • transition metal complex according to any one of (1) to (4) above, wherein the transition metal complex is a ruthenium or rhodium transition metal complex.
  • the transition metal complex has the following general formula [1 la]
  • ring A and ring B each independently represent an aromatic ring which may have a substituent
  • Q ⁇ Q 2 , Q 3 and Q 4 each independently represent a substituent
  • Y 1 represents a carbonyl group, a sulfonyl group, a thiocarbol group, CH (OH) — or CH (SH)
  • X 1 and X 2 each independently represent a halogen atom
  • Ring C and Ring D each independently have a substituent.
  • R 21 , R 22 , R 23 , and R 24 each independently represent a hydrogen atom or an alkyl group, and * represents an asymmetric carbon atom.
  • the transition metal complex according to the above (5) which is an optically active ruthenium phosphine diamine complex represented by).
  • the transition metal complex has the following general formula [1 2a] [0013] [Formula 4]
  • ring A and ring B each independently represent an aromatic ring which may have a substituent
  • Q ⁇ Q 2 , Q 3 and Q 4 each independently represent a substituent
  • Y 1 represents a carbonyl group, a sulfonyl group, a thiocarbol group, CH (OH) — or CH (SH)
  • ring C and ring D each independently have a substituent, or may be a phenyl group or an alicyclic group which may have a substituent
  • R 21 , R 22 , R 23 , and R 24 each independently represent a hydrogen atom or an alkyl group
  • (X 3 ) — represents an anion
  • * represents an asymmetric carbon.
  • the transition metal complex according to the above (5) which is a rhodium phosphine complex represented by the following formula: (8)
  • the transition metal complex according to any one of the above (3) to (7) has
  • ring A and ring B each independently represent an aromatic ring which may have a substituent
  • Q ⁇ Q 2 , Q 3 , and Q 4 each independently represent a substituent
  • Y 1 represents a spacer.
  • M represents a transition metal
  • X represents a halogen atom or an anion
  • Z 2 represents a neutral ligand
  • q represents 1 or 2
  • r represents 1 or 2
  • the compound represented by the general formula [3] are optically active compounds
  • An asymmetric synthesis catalyst comprising at least one transition metal complex according to any one of the above (3) to (8).
  • ring A and ring B each independently represent an aromatic ring which may have a substituent
  • Q ⁇ Q 2 , Q 3 and Q 4 each independently represent a substituent
  • Y represents an aryl group which may have an alicyclic group which may have a substituent
  • Y 1 represents a spacer
  • M represents a transition metal.
  • X represents a halogen atom or an anion
  • Z 2 represents a neutral ligand
  • q represents 1 or 2
  • r represents 1 or 2
  • m represents 0 or a natural number.
  • ring C and ring D each independently represent a phenyl group which may have a substituent or an alicyclic group which may have a substituent
  • R 21 , R 22 , R 23 , and R 24 each independently represent a hydrogen atom or an alkyl group, and * indicates an asymmetric carbon.
  • a catalyst or a catalyst composition for asymmetric synthesis (11) The catalyst for asymmetric synthesis according to the above (9) or (10), wherein the catalyst for asymmetric synthesis is an asymmetric hydrogenation catalyst. (12) The following general formula [2 ']
  • ring A and ring B each independently represent an aromatic ring which may have a substituent
  • Q ⁇ Q 2 , Q 3 , and Q 4 each independently represent a substituent
  • R 2 independently has a hydrocarbon group which may have a substituent, has a substituent! /, May have! /, Has an aliphatic heterocyclic group or a substituent! /, Represents an aromatic heterocyclic group (excluding the case where R 1 and R 2 are the same) o
  • R 1 and R 2 are bonded to form an adjacent carbon atom They may be taken together to form a ring, and the ring may have a substituent.
  • the ligand represented by L in the transition metal complex of the present invention represented by the general formula [1] will be described.
  • the ligand L is composed of a diphosphine conjugate represented by the general formula [2], and is characterized by having an achiral compound power.
  • the aromatic ring of the aromatic ring which may have the substituents represented by ring A and ring B in the general formula [2] is an aromatic ring capable of forming a 4n + 2 (n is an integer) ⁇ electron system. If it is present, it may be monocyclic, polycyclic, or condensed cyclic, and is not particularly limited, but is preferably a monocyclic or polycyclic having 6 to 20 carbon atoms, more preferably 6 to 14 carbon atoms.
  • aromatic rings include a benzene ring, a naphthalene ring, an anthracene ring, and a tetrahydronaphthalene ring.
  • At least one hydrogen atom may be substituted with a substituent.
  • a substituent include a hydrocarbon group, an alkoxy group, an aryloxy group, an aralkyloxy group, a halogen atom, an alkylenedioxy group, an amino group, a substituted amino group, a nitro group, a hydroxy group, a carboxy group, a sulfo group, And a halogenated alkyl group.
  • hydrocarbon group examples include an alkyl group, an alkenyl group, an alkynyl group, an aryl group and an aralkyl group.
  • the alkyl group may be linear, branched or cyclic, and may be a lower alkyl group or a cycloalkyl group, for example, an alkyl group having 11 to 10 carbon atoms, preferably an alkyl group having 116 carbon atoms, or 31 to 10 carbon atoms, preferably Examples thereof include 3-6 cycloalkyl groups, and specific examples include, for example, methyl, ethyl, ⁇ -propyl, isopropyl, ⁇ -butyl, isobutyl, ter t-butyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, Examples include a 3-methylpentyl group, a 4-methylpentyl group, a 2,2-dimethylbutyl group, a cyclopropyl group, a cyclobuty
  • alkenyl group examples include those having one or more double bonds in the above-mentioned alkyl group having 2 or more carbon atoms, and more specifically, an ethenyl group, a 1-propenyl group, a 2- Examples include a probel group, an isoprobyl group, a 1-butenyl group, a 2-butyl group, a 1,3-butadiene group, a 2-pentenyl group, a 2-hexenyl group and the like.
  • alkynyl group examples include those having one or more triple bonds in the above-mentioned alkyl group having 2 or more carbon atoms, and more specifically, an ethynyl group, a 1-propyl group, a 2-propynyl group and the like. Is mentioned.
  • the aryl group is the above-mentioned aromatic ring group, for example, a 5- to 7-membered monocyclic, polycyclic or condensed-ring aryl group having 6 to 20 carbon atoms, preferably 6 to 14 carbon atoms.
  • specific examples include, for example, a fuel group, a naphthyl group, an anthryl group, a biphenyl group and the like.
  • aralkyl group examples include groups in which at least one hydrogen atom of the above-mentioned alkyl group has been substituted with the above-mentioned aryl group.
  • Specific examples thereof include, for example, a benzyl group, a 2-phenethyl group, a 1-phenylpropyl group, and a 3-naphthylpropyl group.
  • alkoxy group examples include a group in which an oxygen atom is bonded to the above-described hydrocarbon group.
  • alkoxy group examples include a straight-chain, branched, or cyclic group in which an oxygen atom is bonded to the above-described alkyl group.
  • Groups for example, an alkoxy group having 1 to 6 carbon atoms and a cycloalkoxy group having 3 to 6 carbon atoms, and specific examples include, for example, methoxy group, ethoxy group, n-propoxy group, 2-propoxy group, n-butoxy group , Isobutoxy, tert-butoxy, n-pentyloxy, 2-methylbutoxy, 3-methylbutoxy, 2,2-dimethylpropyloxy, n-hexyloxy, 2-methylpentyloxy, 3-methylpentyl Oxy, 4-methylpentyloxy, 5-methylpentyloxy And cyclohexyloxy groups.
  • the aryloxy group includes a group in which an oxygen atom is bonded to the above aryl group.
  • Examples thereof include an aryloxy group having 6 to 14 carbon atoms, and specific examples include a phenoxy group, a naphthyloxy group, and an anthroxy group.
  • Examples of the aralkyloxy group include a group in which an oxygen atom is bonded to the aralkyl group described above, and examples thereof include an aralkyloxy group having 7 to 12 carbon atoms. Specific examples include, for example, a benzyloxy group, a 2-phenethyloxy group, 1 phenylpropoxy, 2-phenylpropoxy, 3 phenylpropoxy, 1 phenylbutoxy, 2 phenylbutoxy, 3 phenylbutoxy, 4 phenylbutoxy, 1 phenyl Rupentoxy, 2 phenylpentoxy, 3 phenylpentoxy, 4 phenylpentoxy, 5 phenylpentoxy, 1 hexyloxy, 2 phenylhexyloxy, 3 phenyl -Hexyloxy group, 4-phenylhexyloxy group, 5-phenylhexyloxy group, 6-phenylhexyloxy group and the like.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • Examples of the substituted amino group include an amino group in which one or two hydrogen atoms of an amino group are substituted with the aforementioned hydrocarbon group or aryl or aralkyl group.
  • Examples of the hydrocarbon group include an alkyl group, an aryl group and an aralkyl group. The definitions and specific examples of these alkyl groups, aryl groups and aralkyl groups are the same as described above.
  • an amino group substituted with an alkyl group that is, an alkyl-substituted amino group
  • an amino group substituted with an alkyl group include, for example, N-methylamino group, N, N-dimethylamino group, N, N-getylamino group, N, N-diisopropylamino group, N And mono- or dialkylamino groups such as -cyclohexylamino group.
  • an amino group substituted with an aryl group that is, an aryl-substituted amino group
  • an amino group substituted with an aryl group include, for example, N-phenylamino group, N, N-diphenylamino group, N-naphthylamino group, N-naphthyl-N-phenylamino group and the like. Mono or diarylamino groups are included.
  • Specific examples of an aralkyl group substituted with an aralkyl group, that is, an aralkyl-substituted amino group include, for example, a mono- or aralkylamino group such as an N-benzylamino group and an N, N-dibenzylamino group.
  • the two adjacent hydrogen atoms on the aromatic ring may be substituted with an alkylenedioxy group.
  • alkylenedioxy group having 13 to 13 carbon atoms, and specific examples include, for example, a methylenedioxy group, an ethylenedioxy group, a trimethylenedioxy group, a propylenedioxy group and the like.
  • halogenated alkyl group at least one, preferably one to three, hydrogen atoms of the above-mentioned alkyl group are halogenated by a halogen atom (for example, fluorination, chlorination, bromination, iodination, etc.).
  • a halogen atom for example, fluorination, chlorination, bromination, iodination, etc.
  • examples thereof include a halogenated alkyl group having 1 10 carbon atoms, preferably 1 to 6 carbon atoms, and specific examples thereof include, for example, chloromethyl group, bromomethyl group, trifluoromethyl group, 2-chloroethyl group, and 3-bromoethyl group.
  • examples of the aryl group which may have a substituent represented by Q 1 to Q 4 include an aryl group and a substituted aryl group which also have the above-described aromatic ring strength.
  • the alicyclic group which may have a substituent includes an alicyclic group and a substituted alicyclic group.
  • the aryl group may be the same as the aryl group described above.
  • the alicyclic group may be monocyclic, polycyclic or bridged, and examples thereof include a cyclic saturated or unsaturated aliphatic hydrocarbon group having 5 to 12 carbon atoms, and specifically, a cyclopentyl group , A cyclohexyl group, a decahydronaphthyl group, a norvol group and the like.
  • Examples of the substituted aryl group include an aryl group in which at least one hydrogen atom of the above aryl group is substituted with a substituent.
  • Examples of the substituted alicyclic group include an alicyclic group in which at least one hydrogen atom of the alicyclic group is substituted with a substituent.
  • Examples of the substituent in the substituted aryl group and the substituted alicyclic group include, for example, a hydrocarbon group, an alkoxy group, an aryloxy group, an aralkyloxy group, a halogen atom, an alkylenedioxy group, an amino group, a substituted amino group, a nitro group, Examples include a hydroxyl group, a carboxyl group, a sulfo group, and a halogenated alkyl group.
  • hydrocarbon group alkoxy group, aryloxy group, aralkyloxy group, halogen atom, alkylenedioxy group, substituted amino group, and benzyloxyalkyl group are the same as those described above.
  • substituted aryl group examples include, for example, a tolyl group, a xylyl group, and a mesityl group.
  • substituted alicyclic group examples include, for example, a methylcyclohexyl group and the like.
  • the spacer represented by Y 1 is a group consisting of 115, preferably 113 nuclear atoms capable of connecting the ring A and the ring B, These groups can have various substituents.
  • alkylene group examples include an alkylene group having 13 to 13 carbon atoms, and specific examples include a methylene group, an ethylene group, a trimethylene group, and a propylene group.
  • the alkylene group has the above-described substituent. You can also.
  • ring A and ring B each independently represent an aromatic ring which may have a substituent
  • Q ⁇ Q 2 , Q 3 and Q 4 each independently represent a substituent
  • a (SO 2) group, a thiocarbol (C S) group, -ji 11 (011)-or -ji 11 (311)-. )
  • Preferred examples of the compound represented by the general formula [2] include the following.
  • Ar a phenyl group, 4-methylphenyl, 3,5-dimethylphenyl,
  • Ar phenyl group, 4 one-methylphenyl, 3, 5-dimethyl-phenylalanine, 4-main Tokishifue sulfonyl, 1, 3, 5-Bok Rimechirufueniru, 1, 3, 5-tri-methoxyphenyl e t c ⁇ .
  • R CH 3 , C 2 H 5 , C 3 H 7 , CH (CH 3 ) 2 etc.
  • phenyl group, 4-methylphenyl, 3,5-dimethylphenyl,
  • R CH 3 C 2 H 5 , C 3 H 7 , CH (CH 3 ) 2 etc.
  • A is a phenyl group, 4-methylphenyl,
  • R ', R'',R''', R ''' H, C, CzHj, C 3 H 7 , 0CH 3 , OC ⁇ , 0C 3 H 7 etc
  • Ar phenyl group, 4-methylphenyl, 3,5-dimethylphenyl, 4-methoxyphenyl, 1,3,5-trimethylphenyl, 1,3,5-trimethoxyphenyl etc.
  • R CH 3 , C2H 5 , C 3 H 7 , CH (CH 3 ) 2 etc.
  • examples of the transition metal represented by M include Group 8 to 10 of the Periodic Table of the Elements (proposed by the American Chemical Society, Inorganic Chemistry Subcommittee (1985)). And the like. The same applies to the following.) Transition metals of groups 8 to 9 of the periodic table of the elements, and the like, and preferable specific examples thereof include ruthenium, rhodium, and iridium. More preferable specific examples include ruthenium and rhodium.
  • the anion represented by X and (X 3 )- is a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or the like.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or the like.
  • An ion is preferable, and a chlorine ion, a bromine atom, an iodine atom, or the like, which is also strong, is preferable.
  • halogen atoms for example, BF, CIO, OTf, PF, SbF
  • examples of the neutral ligand represented by Z 2 include water, the above-described neutral aromatic compounds, neutral neutral olefin compounds, and other neutral compounds, preferably ⁇ -electrons.
  • Neutral ligands such as neutral organic compounds having a ligand.
  • Neutral aromatic compounds Examples of the substance include benzo-tolyl, benzene, and alkyl-substituted benzene. Examples of the alkyl-substituted benzene include p-cymene, hexamethylbenzene, 1,3,5-trimethylbenzene (mesitylene) and the like.
  • neutral olefin compound examples include ethylene, 1,5-cyclooctadiene, cyclopentadiene, pentamethylcyclopentadiene, norbornadiene and the like.
  • neutral ligands include N, N-dimethylformamide (DMF), acetonitrile, acetone, chloroform and the like.
  • metal compound represented by the general formula [4] include, for example, the following compounds.
  • the metal compound represented by the general formula [4] is not limited to these.
  • L in the following formula is the same as described above.
  • iridium complex examples include, for example, the following.
  • Z 1 represents a compound represented by the general formula [3], and examples thereof include diamines such as aromatic diamines and aliphatic diamines.
  • the phenyl group is a phenyl group And a substituted phenyl group.
  • substituted phenyl group examples include a phenyl group in which at least one, and preferably one to three, hydrogen atoms of a phenyl group are substituted with a substituent, and the substituent includes the alkyl group described above.
  • substituent includes the alkyl group described above.
  • the alicyclic group which may have a substituent includes an alicyclic group and a substituted alicyclic group.
  • Examples of the alicyclic group include the cyclohexyl group described above.
  • Examples of the substituted alicyclic group include an alicyclic group in which at least one hydrogen atom of the alicyclic group has been replaced with a substituent.
  • Examples of the substituent include the above-described alkyl group, aryl group, Examples include an alkoxy group and an aryloxy group.
  • alkyl group examples include the same as described above.
  • substituted phenyl group examples include a tolyl group, a xylyl group, a mesityl group, a methoxyphenyl group, a dimethoxyphenyl group and the like.
  • substituted alicyclic group examples include a methylcyclohexyl group.
  • Examples of the compound in which the compound represented by the general formula [3] is optically active include an optically active compound represented by the general formula [3a].
  • Preferred compounds of [3a] include a compound represented by the following general formula [3-la]
  • examples of the aromatic diamines include diphenylethylenediamine, 1,2-bis (4-methoxyphenyl) ethylenediamine, and the like.
  • an optically active aromatic diamine is used as the aromatic diamine
  • the obtained transition metal complex for example, a ruthenium phosphine diamine complex becomes an optically active transition metal complex, for example, an optically active ruthenium phosphine diamine complex.
  • optically active aromatic diamines examples include optically active forms of the aromatic diamines, that is, (1R, 2R) -diethylenediamine, (IS, 2S) -diethylenediamine, 1R, 2R) -1,2-bis (4-methoxyphenyl) ethylenediamine, (IS, 2S) -1,2-bis (4-methoxyphenyl) ethylenediamine and the like.
  • Examples of the aliphatic diamines include dicyclohexylethylene diamine.
  • Examples of the optically active aliphatic diamines include (1R, 2R) -dicyclohexylethylenediamine (IS, 2S) -dicyclohexylethylenediamine and the like.
  • the alkyl group represented by R 21 to R 24 is a lower alkyl group which may be linear, branched or cyclic, such as carbon Number 16 is preferably an alkyl group having 13 carbon atoms. Specific examples include, for example, a methyl group. , An ethyl group, an n-propyl group, a 2-propyl group and the like.
  • transition metal complex represented by the general formula [1] for example, a ruthenium phosphine diamine complex in which the transition metal represented by M is ruthenium is, for example, the following general formula [1-1]
  • the rhodium phosphine complex in which the transition metal represented by ⁇ is rhodium is, for example, represented by the following general formula [12]
  • Rhodium phosphine diamine complex represented by
  • Preferred examples of the ruthenium phosphine complex represented by the general formula [11] include, for example, the following general formula [13] [0067] [Formula 26]
  • R 3 , R 4 , R 5 , R 6 , And R 1G each independently represent a hydrogen atom, a hydrocarbon group, an alkoxy group, an aryloxy group, an aralkyloxy group, a halogen atom, an alkylenedioxy group, an amino group, a substituted amino group, a nitro group, a hydroxyl group, a carboxyl group, or a sulfo group. or it indicates Harogeni spoon alkyl group, R 11 R 12, R 13 , R 14, R 15, R 16, R 17, R 1 8, R 19, and R 2 ° each independently represent a hydrogen atom, an alkyl group , An aryl group, an alkoxy group or an aryloxy group.
  • R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 7 and R 8 , R 8 and R 9 , or R 9 and R 1C> are bonded, and they are bonded.
  • a condensed ring may be formed together with the ring.
  • Q ⁇ Q 2, Q 3, and Q 4, Y ⁇ X 1, X 2, and R 21, R 22, R 23 , and R 24 are as defined above.
  • rhodium phosphine diamine complex represented by the general formula [1-2] include, for example, the following general formula [14]
  • R 1C as the hydrocarbon group, alkoxy group, aryloxy group, aralkyloxy group, halogen atom, alkylenedioxy group, substituted amino group and nodroalkyl group represented by ring A and ring B described above.
  • the same groups as the groups exemplified as the substituents can be mentioned.
  • Alkyl groups, aryl groups, alkoxy groups and aryloxy groups represented by 1 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , and R 2 ° also include the aforementioned groups.
  • the condensed ring may be a ring exemplified as an aromatic ring in the aforementioned ring A and ring B, that is, a naphthalene ring, an anthracene ring, and a tetrahydronaphthalene ring And so on.
  • an optically active diamine is used as the diamine
  • an optically active transition metal complex can be obtained.
  • the ruthenium phosphine diamine complex represented by the general formula [1-1] when producing the ruthenium phosphine diamine complex, an optically active diamine is used as the diamine. If used, the following general formula [1 la]
  • optically active ruthenium phosphine diamine complex represented by the above general formula [1 la] include, for example, the following general formula [13a] [0078] [Formula 30]
  • rhodium phosphine diamine complex represented by the general formula [l-2a] include, for example, the following general formula [14a]
  • optically active rhodium phosphine diamine complex represented by the following formula is obtained.
  • optically active ruthenium phosphine diamine complex represented by the general formula [13a] include, for example, the following compounds. [0083] [Formula 32]
  • optically active rhodium diamine complex represented by the general formula [14a] include, for example, the following compounds.
  • the transition metal complex represented by the general formula [1] containing the compound represented by the above general formula [2] and the compound represented by the above general formula [3] The method will be described more specifically by taking, for example, a ruthenium phosphine diamine complex represented by the above general formula [11].
  • the ruthenium phosphine diamine complex represented by the general formula [11] is described in, for example, J. Chem. Soc., Chem. Commun., 1208 (1989); J. Chem. Soc., Perkin. Trans., 2309 (1994); can be produced according to the method described in JP-A-10-120692.
  • Tf represents a trifluoromethanesulfur group
  • ring A, ring B and Y 1 are the same as described above.
  • Examples of the base used in the above reaction include an inorganic base and an organic base.
  • organic base examples include, for example, triethylamine, diisopropylethylamine, ⁇ , ⁇ -dimethylaniline, piperidine, pyridine, 4-dimethylaminopyridine, and 1,5-diazavisic [4.3.0] ]
  • Examples of the inorganic base include potassium carbonate, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydroxide, and the like.
  • the amount of the base to be used is appropriately selected usually in the range of 2.3 to 3.5 mol, preferably 2.5 to 2.7 mol, based on 1 mol of the dihydroxy compound.
  • solvent used in the reaction examples include halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, carbon tetrachloride, o-dichlorobenzene, pentane, hexane, heptane, octane, decane, and the like.
  • halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, carbon tetrachloride, o-dichlorobenzene, pentane, hexane, heptane, octane, decane, and the like.
  • Aliphatic hydrocarbons such as cyclohexane, ben Aromatic hydrocarbons such as benzene, toluene, xylene, etc., ethers such as getyl ether, diisopropyl ether, tertbutyl methyl ether, dimethoxyethane, ethylene glycol methyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane And esters such as methyl acetate, ethyl acetate, n-butyl acetate and methyl propionate. These solvents may be used alone or in an appropriate combination of two or more.
  • the amount of the solvent to be used is appropriately selected in the range of usually 3 to 10 ml, preferably 5 to 7 ml, based on 1 mmol of the dihydroxy compound.
  • the compound represented by the general formula [6] obtained in the above (11) is subjected to a phosphinyl iridyl reaction.
  • the phosphinyl-dani reaction may be performed by the method described in, for example, Experimental Chemistry, 4th Edition, Vol. 25, Chapter 11, Chapters (especially pages 389-427), edited by The Chemical Society of Japan, 1991, Maruzen et al.
  • transition metal compound used in the above reaction examples include palladium acetate, palladium chloride, and triphenylphosphine palladium. These transition metal compounds may be used alone or in appropriate combination of two or more.
  • the amount of the transition metal compound to be used is appropriately selected from the range of usually 0.08 to 0.20 mmol, preferably 0.1 to 0.12 mmol, based on 1 mmol of the triflate conjugate.
  • the tertiary phosphine may be used as needed depending on the type of the transition metal compound used.
  • the tertiary phosphines include triphenylphosphine, tri-butylphosphine, 1,4-bis (diphenylenophosphino) butane, 1,2-bis (diphenylenophosphino) ethane, 1 , 1-bis (diphenylphosphino) phenene and the like.
  • the amount of the tertiary phosphine to be used is appropriately selected usually from a range of 2.5 to 3.5 mmol, preferably 2.8 to 3.2 mmol, based on 1 mmol of the triflate conjugate.
  • solvent used examples include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; dichloromethane; Halogenated hydrocarbons such as dichloroethane, chloroform, carbon tetrachloride, o-chlorobenzene, etc., getyl ether, diisopropyl ether, tert-butyl methyl ether, dimethoxyethane, ethylene glycol getyl ether, tetrahydrofuran, 4 Ethers such as dioxane, 1,3-dioxolane, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methanol, ethanol, 2-propanol, n-butano
  • the amount of the solvent to be used is appropriately selected usually in the range of 3 to 10 ml, preferably in the range of 4 to 16 ml, based on 1 mmol of the triflate conjugate.
  • the base is the same as the above-mentioned base.
  • the amount of the base to be used is appropriately selected in the range of usually 3.5 to 4.5 mmol, preferably 3.8 to 4.2 mmol, based on 1 mmol of the triflate conjugate.
  • the compound represented by the general formula [8], preferably the general formula [8-1] obtained in the above (12) is subjected to a reduction reaction with a reducing agent to obtain the desired compound
  • a compound represented by the general formula [2], preferably a compound represented by the general formula [2-1] can be obtained.
  • the reducing agent used at this time includes, for example, trichlorosilane.
  • the amount of the reducing agent to be used is appropriately selected usually from the range of 8 to 15 mmol, preferably from 10 to 12 mmol, based on 1 mmol of the compound represented by the general formula [8] or [8-1].
  • the reduction reaction is preferably performed in the presence of a base. Examples of the base include the same bases as described above.
  • the amount of the base used is appropriately selected usually from the range of 35 to 45 mmol, preferably from 40 to 42 mmol, based on 1 mmol of the conjugate represented by the general formula [8] or [8-1]. .
  • the reduction reaction may be performed in the presence of a solvent, if necessary.
  • the solvent include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; dichloromethane, 1,2-dichloroethane Chloroform, carbon tetrachloride, halogenated hydrocarbons such as o-dichloromouth benzene, getyl ether, diisopropyl ether, tert-butyl methyl ether, dimethoxyethane, ethylene glycol getyl ether, tetrahydrofuran, 1,4 Ethers such as dioxane and 1,3-dioxolan, alcohols such as methanol, ethanol, 2-propanol, n-butanol, 2-ethoxyethanol and
  • the amount of the solvent to be used is appropriately selected usually in the range of 8 to 15 ml, preferably 10 to 12 ml, based on 1 mmol of the compound represented by the general formula [8] or [8-1].
  • ring ⁇ and ring ⁇ ⁇ ⁇ ⁇ each independently represent an aromatic ring which may have a substituent
  • Q ⁇ Q 2 , Q 3 and Q 4 each independently represent a substituent.
  • More preferred compounds are those represented by the above general formula [2′-1] in which ring A and ring B in the above general formula [2 ′] may have a substituent, and are a phenyl group.
  • Compounds. Examples of the substituent in the phenyl group include the substituents described above.
  • the transition metal of M in the general formula [10] is ruthenium.
  • transition metal compound in which the transition metal M represented by the general formula [9] is ruthenium, rhodium, or iridium include, for example,
  • Rhodium complexes such as Rhl hydrate
  • Examples include iridium complexes such as 222 2 2 2 3 3 3 hydrate.
  • cod represents 1, S-cyclootagen
  • nbd represents norbornadiene.
  • an optically active aromatic diamine is used as the aromatic diamine
  • an optically active transition metal complex corresponding to the transition metal complex of the general formula [1] for example, represented by the general formula [1-la]
  • An optically active ruthenium phosphine diamine complex and an optically active rhodium phosphine diamine complex represented by the above general formula [12a] are obtained.
  • the amount of use of the compound represented by the general formula [2] and the metal compound represented by the general formula [4] is represented by the general formula [4] with respect to lmmol of the compound represented by the general formula [2]
  • the metal compound is appropriately selected usually in the range of 1.0 to 1.0 mmol, preferably 1.0 to 1.05 mmol.
  • the amount of the compound represented by the above general formula [3] is usually 1.0 to 1.1 mmol, preferably 1.0 to 1.0 mmol relative to 1 mmol of the transition metal compound represented by the general formula [4]. 1. It is appropriately selected from the range of 05 mmol.
  • the amount of the aromatic diamine to be used is usually 1.0-1.lmmol, preferably 1.0-1.lmmol, relative to lmmol of the transition metal compound represented by the general formula [4]. Is in the range of 1.0 to 1.5 mmol.
  • This reaction is preferably performed in the presence of a solvent.
  • a solvent examples include aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as dichloromethane, 1,2-dichloromethane, chloroform, carbon tetrachloride and o-dichlorobenzene.
  • Alcohols such as methanol, ethanol, 2-propanol, n-butanol, 2-ethoxyethanol and benzyl alcohol. These solvents may be used alone or in combination of two or more.
  • the amount of the solvent to be used is appropriately selected in a range of usually 0.8 to 1.5 ml, preferably 1.0 to 1.1 ml, relative to 0.1 mmol of the compound represented by the general formula [2].
  • the reaction temperature is not particularly limited because it varies depending on the type of the compound represented by the general formula [2] and the type of the transition metal compound represented by the general formula [4], but is usually 90 to 105 ° C, preferably 90 to 105 ° C. Alternatively, a force in the range of 95-100 ° C is also selected as appropriate.
  • the reaction time is also used!
  • the compound represented by the general formula [2] or the transition gold represented by the general formula [4] Although it is not particularly limited because it differs depending on the kind of the genus complex and the like, it is usually 15 to 60 minutes, preferably 30 to 40 minutes.
  • the reaction is performed in an inert gas atmosphere.
  • the inert gas include a nitrogen gas and an argon gas.
  • the reaction temperature is not particularly limited because it differs depending on the type of the ruthenium complex, the aromatic diamine, etc., but is usually 90 to 110 ° C, preferably 95 to 105 ° C. Is also selected as appropriate.
  • the reaction time also varies depending on the type of the ruthenium complex or aromatic diamine used, etc., and is not particularly limited, but a force in a range of usually 15 to 60 minutes, preferably 30 to 40 minutes is also appropriately selected.
  • the transition metal complex represented by the general formula [1] of the present invention thus obtained is useful as a catalyst for hydrogenation reaction and the like.
  • an optically active transition metal complex produced using an optically active diamine is useful as a catalyst for asymmetric synthesis, for example, for an asymmetric hydrogenation reaction. It is.
  • the optically active ruthenium phosphine diamine complex represented by the general formula [1-la] and the optically active rhodium phosphine diamine complex represented by the general formula [12a] are not suitable for asymmetric hydrogenation catalysts and the like. It is particularly useful as a catalyst for heterogeneous synthesis.
  • a transition metal compound represented by the general formula [4] for example, a ruthenium phosphine conjugate in which the transition metal M is ruthenium has a property that the ligand represented by Z 2 is a neutral ligand.
  • an aromatic diamine preferably an optically active aromatic diamine
  • the compound can be effectively used as a catalyst composition for asymmetric synthesis such as an asymmetric hydrogenation catalyst composition.
  • the transition metal complex represented by the general formula [1] of the present invention is used in a reaction system in which the transition metal compound represented by the general formula [4] and the diamine compound represented by the general formula [3] coexist. It is thought to be generated in the field.
  • the compound in combination with an aromatic diamine, preferably an optically active aromatic diamine the compound is effectively used as a catalyst composition for asymmetric synthesis such as a hydrogenation catalyst, preferably an asymmetric hydrogenation catalyst composition. can do.
  • metal complexes of metals other than ruthenium can be produced according to the case of ruthenium. .
  • rhodium complex in the case of a rhodium complex, the appropriate rhodium or iridium as described above is used as the transition metal in the general formula [4] instead of the above-mentioned ruthenium, so that the corresponding rhodium phosphine can be obtained.
  • Diamine complexes and iridium phosphine diamine complexes can be produced.
  • examples of the hydrocarbon group of the hydrocarbon group optionally having a substituent represented by R 1 and R 2 include an alkyl group, an alkenyl group, an alkynyl group, and an aryl group. And an aralkyl group.
  • the alkyl group may be linear, branched or cyclic, for example, an alkyl group having 11 to 15 carbon atoms, preferably 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 15 carbon atoms, preferably 3 to 10 carbon atoms.
  • Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, 1-methylpropyl, isobutyl, tert-butyl, n-pentyl, 1-methylbutyl, tert-pentyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, n-hexyl, 1-methylpentyl, 1-ethylbutyl, tert-hexyl, 2-methylpentyl, 3-methylpentyl , 4-methylpentyl, 2-methylpentane-3-yl, heptyl, octyl, nonyl, decyl, cyclopropyl, cyclobutyl, cyclopentyl, And a cyclohexyl group.
  • alkenyl group examples include those having one or more double bonds in the above-mentioned alkyl group having 2 or more carbon atoms, and more specifically, an ethenyl group, a 1-propenyl group, a 2- Examples include a probel group, an isoprobyl group, a 1-butenyl group, a 2-butyl group, a 1,3-butadiene group, a 2-pentenyl group, a 2-hexenyl group and the like.
  • alkynyl group examples include those having one or more triple bonds in the above-mentioned alkyl group having 2 or more carbon atoms, and more specifically, an ethynyl group, a 1-propyl group, a 2-propynyl group and the like. Is mentioned.
  • aryl group examples include a 5- to 7-membered monocyclic, polycyclic or fused-ring aryl group having 6 to 14 carbon atoms, and specific examples include a phenyl group, a naphthyl group, an anthryl group, And a biphenyl group.
  • aralkyl group examples include a group in which at least one hydrogen atom of the alkyl group is substituted with the aralkyl group.
  • an aralkyl group having 7 to 12 carbon atoms is more preferably a benzyl group, Examples include 2-phenyl, 1-propyl, and 3-naphthyl pill groups.
  • the aliphatic heterocyclic group of the aliphatic heterocyclic group which may have a substituent includes, for example, at least one, preferably one to three, nitrogen atoms having 2 to 14 carbon atoms and a heteroatom
  • aliphatic heterocyclic group examples include, for example, a pyrrolidyl-2-one group, a piperidino group, a piperazyl group, a morpholino group, a tetrahydrofuryl group, and a tetrahydrovinyl group.
  • the aromatic heterocyclic group of the aromatic heterocyclic group which may have a substituent
  • the aromatic heterocyclic group having 2 to 15 carbon atoms and having at least one, preferably 113 nitrogen atoms as a hetero atom, an oxygen atom
  • Examples of the substituent for the hydrocarbon group, the aliphatic heterocyclic group and the aromatic heterocyclic group include an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an aralkyloxy group, an alkoxycarbyl group, Liloxycarbol group, aralkyloxycarbo- Carbonyl, alkyloxy, alkylthio, arylthio, aralkylthio, halogen, amino, substituted amino, cyano, nitro, hydroxyl, carboxyl, sulfo, alkylenedioxy and the like. .
  • alkyl group and aryl group are the same as described above.
  • the alkoxy group may be linear, branched, or cyclic, and includes, for example, an alkoxy group having 1 to 16 carbon atoms and a cycloalkoxy group having 3 to 6 carbon atoms, and specifically, a methoxy group, an ethoxy group, and a Propoxy, 2-propoxy, n-butoxy, 1-methylpropoxy, isobutoxy, tert-butoxy, n pentyloxy, 2-methylbutoxy, 3-methylbutoxy, 2,2-dimethylpropyloxy, n —Hexyloxy group, 2-methylpentyloxy group, 3-methylpentyloxy group, 4-methylpentyloxy group, 5-methylpentyloxy group, cyclohexyloxy group and the like.
  • Examples of the aryloxy group include an aryloxy group having 6 to 14 carbon atoms, and specific examples include a phenoxy group, a naphthyloxy group, and an anthroxy group.
  • Examples of the aralkyloxy group include an aralkyloxy group having 7 to 12 carbon atoms, and specific examples thereof include a benzyloxy group, a 2-phenylethoxy group, a 1-phenylpropoxy group, a 2-phenylpropoxy group, and a 3-phenylalkoxy group.
  • the alkoxycarbyl group may be linear, branched or cyclic, for example, an alkoxycarboxy group having 2 to 19 carbon atoms ⁇ a cycloalkoxycarbol group having 3 to 19 carbon atoms, preferably 3 to 10 carbon atoms. Specific examples include methoxycarbyl, ethoxycarbyl, n-propoxycarbonyl, 2-propoxycarbonyl, n-butoxycarbonyl, tert-butoxycarbol, and pentyloxycarbol. Group, hexyl carboxy group, 2-ethylhexyl carboxy group, lauroyl oxy A ball group, a stearoyloxycarbol group, a cyclohexyloxycarbol group and the like.
  • aryloxycarbyl group examples include an aryloxycarbol group having 7 to 20 carbon atoms, and specific examples thereof include a phenoxycarbol group and a naphthyloxycarbol group.
  • aralkyloxycarbol group examples include an aralkyloxycarbol group having 8 to 15 carbon atoms, and specific examples thereof include a benzyloxycarbol group, a ferruxoxycarbol group, Fluoremethyloxycarbol and the like.
  • Examples of the acyloxy group include an aliphatic or aromatic acyloxy group having 2 to 18 carbon atoms derived from a carboxylic acid, and specific examples thereof include an acetoxy group, a propio-loxy group, a butyryloxy group, a bivaloyloxy group, and a pentanoyl group.
  • Examples of the alkylthio group include a xy group, a hexanoyloxy group, a lauroyloxy group, a stearoyloxy group, and a benzoyloxy group.
  • the alkylthio group may be linear, branched, or cyclic. Examples thereof include a cycloalkylthio group having 3 to 6 carbon atoms.
  • Specific examples include methylthio, ethylthio, n-propylthio, 2-propylthio, n-butylthio, 1-methylpropyl, isobutylthio, and tert-butylthio.
  • arylthio group examples include an arylthio group having 6 to 14 carbon atoms, and specific examples include a phenylthio group and a naphthylthio group.
  • aralkylthio group examples include an aralkylthio group having 7 to 12 carbon atoms, and specific examples include a benzylthio group and a 2-phenethylthio group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the substituent is an alkylenedioxy group
  • two hydrogen atoms adjacent to the aryl group are substituted with an alkylenedioxy group.
  • 13 straight-chain or branched alkylenedioxy groups specifically, a methylenedioxy group, an ethylenedioxy group, and a trimethylenedioxy group. And the like.
  • Examples of the substituted amino group include an amino group in which one or two hydrogen atoms of an amino group are substituted with a substituent such as a protecting group.
  • the protecting group is not particularly limited as long as it is used as an amino protecting group.
  • amino protecting groups those described as “amino protecting groups” in “PROTECTIVE GROUPS IN ORGANIC S YNTHESIS Second Edition (JOHN WILEY & SONS, INC .;)" Is mentioned.
  • amino-protecting group examples include, for example, an alkyl group, an aryl group, an aralkyl group, an acyl group, an alkoxycarbyl group, an aryloxycarbyl group, an aralkyloxycarbyl group and the like.
  • alkyl group aryl group, aralkyl group, alkoxycarbyl group, aryloxycarbonyl group and aralkyloxycarbonyl group are the same as those described above.
  • acyl group may be linear or branched, and examples thereof include an aliphatic carboxylic acid, an aromatic carboxylic acid and other carboxylic acid-derived acyl groups having 118 carbon atoms, specifically, a formyl group, Examples include an acetyl group, a propioyl group, a butyryl group, a bivaloyl group, a pentanoyl group, a hexanoyl group, a lauroyl group, a stearoyl group, and a benzoyl group.
  • an amino group substituted with an alkyl group that is, an alkyl-substituted amino group
  • an amino group substituted with an alkyl group include, for example, N-methylamino group, N, N-dimethylamino group, N, N-dimethylamino group, N, N-diisopropyl
  • dialkylamino groups such as amino group and N-cyclohexylamino group are exemplified.
  • an amino group substituted with an aryl group that is, an aryl-substituted amino group
  • an amino group substituted with an aryl group that is, an aryl-substituted amino group
  • an amino group substituted with an aryl group include, for example, N-phenylamino group, N, N-diphenylamino group, N-naphthylamino group, N-naphthylN- Mono or diarylamino groups such as phenylamino group are exemplified.
  • an aralkyl group substituted with an aralkyl group that is, an aralkyl-substituted amino group
  • an aralkyl-substituted amino group include, for example, mono- or diaralkylamino groups such as an N-benzylamino group and an N, N-dibenzylamino group.
  • amino group substituted with an acyl group ie, an acylamino group
  • an acylamino group include, for example, a formylamino group, an acetylamino group, a propio-amino group, a bivaloylamino group, a pentanoylamino group, a hexanoylamino group, a benzoylamino group and the like.
  • an amino group substituted with an alkoxycarbol group that is, an alkoxycarbolamino group
  • an amino group substituted with an alkoxycarbol group include, for example, a methoxycarbolamino group, an ethoxycarbolamino group, an n-propoxycarbolamino group, an n-butoxycarbo- Examples thereof include a lumino group, a tert-butoxycarbonylamino group, a pentyloxycarbolamino group, and a hexyloxycarbolamino group.
  • an amino group substituted with an aryloxycarbonyl group that is, an aryloxycarbonyl amino group
  • one hydrogen atom of the amino group is the aryloxycarbonyl group described above.
  • examples thereof include a substituted amino group, and specific examples include a phenoxycarbolamino group and a naphthyloxycarbamino group.
  • aralkyl group substituted with an aralkyloxycarbol group that is, the aralkyloxycarbol-lamino group
  • the aralkyloxycarbol-lamino group include, for example, a benzyloxycarbol-lamino group.
  • the alkyl group substituted with a halogen atom that is, the halogenated alkyl group
  • at least one, preferably one to three, hydrogen atoms of the above alkyl group are halogenated by a halogen atom (for example, fluorination, chlorination, bromine
  • Halogenated alkyl group having 1-15 carbon atoms, preferably 1-10 carbon atoms, more preferably 1-16 carbon atoms, and specifically, for example, chloro Examples include a methyl group, a bromomethyl group, a trifluoromethyl group, a 2-chloroethyl group, a 3-bromopropyl group, and a 3,3,3-trifluoropropyl group.
  • Examples of the substituted aryl group include an aryl group in which at least one hydrogen atom of the aryl group is substituted with the substituent.
  • aryl group substituted with an alkyl group examples include a tolyl group and a xylyl group.
  • Examples of the substituted aralkyl group include an aralkyl group in which at least one hydrogen atom of the aralkyl group is substituted with the substituent.
  • Examples of the a, j8 unsaturated alkyl group represented by R 1 include an alkyl group and an alkyl group.
  • the alkyl group may be linear or branched, for example, having 2 to 15 carbon atoms, preferably Is an alkenyl group having 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
  • the alkynyl group may be straight-chain or branched, for example, an alkynyl group having 2 to 15 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
  • ketones represented by the general formula [11] include, for example, methyl ethyl ketone, acetophenone, benzalacetone, 1 indanone, 3,4-dihydro-1 (2H) -naphthalenone chloromethyl ketone, and the like.
  • methyl ethyl ketone acetophenone
  • benzalacetone 1 indanone
  • 3,4-dihydro-1 (2H) -naphthalenone chloromethyl ketone and the like.
  • optically active alcohols represented by the general formula [12] obtained by the production method of the present invention are optically active secondary alcohols, and specific examples thereof include those represented by the general formula [11].
  • Specific examples of the ketones represented include optically active alcohols derived from the compounds exemplified above, 2-butanol, phenethyl alcohol and the like.
  • the method for producing an optically active alcohol of the present invention comprises a transition metal complex represented by the general formula [1] of the present invention produced as described above, preferably an optically active general formula [1].
  • the transition metal complex represented by the general formula [4] is used as a catalyst, as described above.
  • the transition metal complex represented by the general formula [4] and the optically active compound represented by the general formula [3] are used as described above.
  • the reaction can be carried out in the presence of an asymmetric synthesis catalyst composition containing the compound.
  • An asymmetric hydrogenation reaction using a heterogeneous catalyst composition is a reaction performed in situ in a reaction system.
  • the method for producing an optically active alcohol of the present invention can be carried out in a solvent, if necessary.
  • the solvent is preferably one that dissolves the ketone conjugate represented by the general formula [11] or the asymmetric hydrogenation catalyst.
  • aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, cyclohexane, aromatic hydrocarbons such as benzene, toluene, xylene, dichloromethane, 1,2-dichloroethane, Halogenated hydrocarbons such as black form, carbon tetrachloride, o-dichlorobenzene, getyl ether, diisopropyl ether, tert-butyl methyl ether, dimethoxyethane, ethylene glycol getyl ether, tetrahydrofuran, 1,4 Ethers such as dioxane and 1,3-dioxolan, alcohols such as methanol, ethanol, 2-propanol, n-butanol, 2-ethoxyethanol and benzyl alcohol, ethylene glycol, propylene glycol, and 1,2-propanedio
  • aromatic hydrocarbons
  • the amount of the solvent used is determined based on the solubility and economy of the ketone conjugate represented by the above general formula [11], which is a reaction substrate to be used.
  • amount of the solvent to be used a range of usually 5 to 50% by mass, preferably 10 to 40% by mass is appropriately selected.
  • the method for producing an optically active alcohol of the present invention is preferably performed in the presence of a base.
  • the base include an inorganic base and an organic base.
  • the organic base include triethylamine, diisopropylethylamine, N, N dimethylaniline, piperidine, pyridine, 4-dimethylaminopyridine, 1,5-diazabicyclo [4.3.0] noner.
  • the inorganic base include potassium carbonate, potassium hydroxide, lithium hydroxide, sodium hydrogencarbonate, sodium carbonate, potassium hydrogencarbonate, sodium hydroxide and the like.
  • the amount of the base to be used is appropriately selected usually in the range of 2 to 5 mmol, preferably 23 to 23 mmol, based on 1 mmol of the ruthenium complex.
  • the pressure of hydrogen used in the method for producing an optically active alcohol of the present invention is generally in the range of 0.5 to lOMPa, preferably in the range of 15 to 150 MPa in consideration of the economic efficiency desired by IMPa. Force Selected as appropriate.
  • the reaction temperature is appropriately selected usually in the range of 15 to 100 ° C, preferably 20 to 80 ° C in consideration of economy and the like.
  • the reaction can be carried out at a low reaction temperature of -30 ° C or a high temperature of 100-250 ° C.
  • the reaction time varies depending on the type and amount of the asymmetric hydrogenation catalyst used, the type and concentration of the ketone conjugate used, the reaction temperature, the reaction conditions such as the pressure of hydrogen, and the like.
  • the reaction is completed within a period of time, but is appropriately selected usually in the range of 1 minute to 48 hours, preferably 10 minutes to 24 hours.
  • Preferred examples of the method for producing an optically active alcohol of the present invention include a method based on a hydrogen transfer reaction.
  • a hydrogen donor substance is present in the reaction system.
  • the hydrogen donating substance any compound can be used as long as it is an organic compound or Z and an inorganic compound, and is a compound capable of donating hydrogen by a thermal action or a catalytic action in a reaction system.
  • Examples of the hydrogen-donating substance include formic acid or salts thereof, a combination of formic acid and a base, hydroquinone, phosphorous acid, and alcohols. Among them, formic acid or salts thereof, those capable of combining formic acid and a base, and alcohols are particularly preferable.
  • Examples of the formic acid salts in formic acid or its salts include metal salts of formic acid such as alkali metal salts and alkaline earth metal salts of formic acid, ammonium salts and substituted amine salts.
  • any form of a formic acid salt or a form of a substantially formic acid salt in a combined reaction system of formic acid and a base may be used.
  • Examples of the alkali metal that forms a salt with formic acid include lithium, sodium, potassium, rubidium, and cesium.
  • examples of the alkaline earth metal include magnesium, canolemium, strontium, and norium.
  • Bases that form metal salts of formic acid such as alkali metal salts and alkaline earth metal salts of formic acid, ammonium salts, substituted amine salts, and the like, and bases in the combination of formic acid and base include ammonia.
  • Examples of the inorganic base include alkali or alkaline earth metal salts such as potassium carbonate, potassium hydroxide, lithium hydroxide, sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydroxide, magnesium carbonate, and calcium carbonate. And metal hydrides such as sodium hydride, sodium borohydride and lithium aluminum hydride.
  • Examples of the organic base include alkali metal alkoxides such as potassium methoxide, sodium methoxide, lithium methoxide, sodium ethoxide, potassium isopropoxide, potassium tert-butoxide, and potassium naphthalenide, sodium acetate, potassium acetate, and magnesium acetate.
  • Alkaline earth metal acetates such as calcium acetate, triethylamine, diisopropylethylamine, N, N-dimethylaline, piperidine, pyridine, 4-dimethylaminopyridine, 1,5-diazabicyclo [4.3.0] Noner 5-ene, 1,8-diazavic mouth [5.4.0] Pin-force—7-ene, tree n-Butylamine, N-methylmorpholine and other organic amines, odor Methyl magnesium bromide, bromide chill magnesium, propyl magnesium bromide, methyl Organometallic compounds such as lithium, ethyllithium, propyllithium, n-butyllithium, tert-butyllithium, and quaternary ammonium salts.
  • Organometallic compounds such as lithium, ethyllithium, propyllithium, n-butyllithium, tert-butyllithium, and quaternary am
  • alcohols as hydrogen-donating substances lower alcohols having a hydrogen atom at the ⁇ -position are preferred. Specific examples include methanol, ethanol, ⁇ -propanol, isopropanol, ⁇ -butanol, sec. —Butanol, etc., of which isopropanol is preferred.
  • the amount of the hydrogen-donating substance to be used is appropriately selected usually from 2 to 20 equivalents, preferably from 4 to 10 equivalents, based on the ketone compound.
  • the present invention can be effectively used for various asymmetric synthesis reactions, and particularly, for example, a novel transition metal complex which can be used more effectively in asymmetric hydrogenation of various ketones, and
  • the present invention also provides a novel method for producing an optically active alcohol using the same. By performing the reaction, the optically active alcohol can be obtained with high optical purity and high yield, and a high asymmetric yield similar to that obtained when an optically pure catalyst is used can be achieved.
  • transition metal complex useful as the catalyst for asymmetric synthesis of the present invention can be produced using an achiral phosphine, and provides a very industrially advantageous method.
  • IR Infrared absorption spectrum
  • HPLC High performance liquid chromatography
  • the raw material bis (2-diphenylphosphinophenol) ether used was purchased from STREM CHEMI CALS.
  • Example 5 the reaction was carried out in the same manner as in Example 5 except that 3,1-methylacetophenone was used in place of 2,1-methylacetophenone, and the reaction was carried out using (1R) — (3— Methylphenyl) ethanol was obtained. GC yield 34%. Optical purity 93% ee.
  • Example 14 the reaction was carried out in the same manner as in Example 11, except that ketones shown in Table 2 below were used instead of acetophenone. Table 2 shows the results.
  • Example 14 the reaction was carried out in the same manner as in Example 11 except that the ketones and the hydrogen pressure shown in Table 3 below were used instead of 2′-methylacetophenone, and the reaction was performed in the same manner as in Table 3 below.
  • the alcohol described in the Tato column was obtained. Table 3 shows the results.
  • Rh + (DPBP) obtained in Example 18 ((S, S) -DPEN ⁇ (SbF-) (
  • Rh + (DPBP) obtained in Example 18 ((S, S) -DPEN ⁇ (SbF-) (
  • the present invention provides a novel transition metal complex useful as a catalyst for asymmetric synthesis having excellent optical yield, preferably an optically active transition metal complex, more preferably a ruthenium complex or a rhodium complex.
  • an optically active transition metal complex more preferably a ruthenium complex or a rhodium complex.
  • industrially useful alcohols can be stereoselectively produced in high yield.
  • both the metal complex of the present invention and the catalyst for asymmetric synthesis comprising the same are extremely useful for the production of stereoselective organic compounds and have industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明は、各種不斉合成反応に効果的に使用することが出来、就中、種々のケトンの不斉水素化反応において、より効果的に使用し得る新規な遷移金属錯体、好ましくはルテニウムホスフィン錯体又はロジウムホスフィン錯体と、それを用いた光学活性アルコールの新規製造方法を提供する。  本発明はジフェニルエーテル、ベンゾフェノン、ベンズヒドロール等の2,2’位にジアリールホスフィノ基を導入した配位子、更にこれに好ましくは光学活性1,2−ジフェニルエチレンジアミンを配位させてなる新規な遷移金属錯体、好ましくは新規なジホスフィン−ルテニウム−光学活性ジアミン錯体又はジホスフィン−ロジウム−光学活性ジアミン錯体、及びこれを不斉水素化触媒として用いてケトン化合物の不斉水素化反応を行うことにより光学活性アルコールを高い光学純度で、且つ高収率で得る方法に関する。

Description

明 細 書
新規な遷移金属錯体、及び該錯体を用いた光学活性アルコールの製造 法
技術分野
[0001] 本発明は、新規な遷移金属錯体、好ましくはルテニウムホスフィン錯体又はロジウム ホスフィン錯体に関する。就中、アキラルなジホスフィンィ匕合物を配位子とする金属錯 体に光学活性なジァミン誘導体を配位した遷移金属錯体、好ましくはルテニウム錯 体又はロジウム錯体、これからなる不斉合成触媒、及びこれを用いた光学活性アルコ ール類の製造方法に関する。
背景技術
[0002] 従来から、不斉合成反応触媒として、遷移金属原子と有機配位子とを構成成分と する錯体を利用することは知られており、その有機配位子として、光学活性化合物を 選択すること、とくに軸不斉のジホスフィン配位子化合物を選択することも知られて ヽ る。し力しながら、この軸不斉のジホスフィン配位子化合物は非常に高価な場合が多 ぐ工業的に用いるためには不利である。
そこで、軸不斉のジホスフィン配位子化合物に代えてアキラルな配位子を何らかの 方法で活用できれば、安価に光学活性化合物が得られる有利な方法となり得る。 このようなアキラルなジホスフィン配位子を用いた不斉水素化反応の例としては、 2, 2,一ビス (ジァリールホスフイノ)—1,1,ービフエ-ルを用 ヽた報告がある(非特許文献 1参照。;)。ここには,ジホスフィン ルテニウム一光学活性ジァミン錯体を用いた不斉 水素化反応の例が示されている。し力しながら、ここに記載されているジホスフィン- ルテニウム一光学活性ジアミン錯体は、原料ケトンの種類によっては不斉収率はそれ ほど高くなぐ実用的レベルに達して!/、な 、ものもある。
[0003] 非特許文献 l :K.Mikamiら, Angew.Chem.Int.Ed.,1999年, 38卷, 495頁
発明の開示
発明が解決しょうとする課題
[0004] 本発明は、上記した如き現状に鑑みなされたもので、各種不斉合成反応に効果的 に使用することが出来、就中、種々のケトンの不斉水素化反応において、より効果的 に使用し得る新規なルテニウムホスフィン錯体ゃロジウムホスフィン錯体などの遷移 金属錯体と、それを用いた光学活性アルコールの新規製造方法を提供することを目 的とする。
課題を解決するための手段
[0005] 本発明者らは、前記課題を解決すべく鋭意研究の途上、アキラルなジホスフィン配 位子をルテニウム錯体とし、さらに光学活性なジァミン配位子を配位させることによつ て、立体配座を固定させ、擬似的に不斉環境を作り出すことを考えた。 即ち、このよ うに立体配座を固定することができれば、この錯体は不斉錯体触媒として機能し、不 斉水素化反応に応用できるものと考え、更に研究を重ねた結果、ジフエ-ルエーテ ル、ベンゾフエノン、ベンズヒドロール等の 2, 2,位にジァリールホスフイノ基を導入し た配位子を合成し、この配位子を用いてルテニウムやロジウム等の金属錯体とし、更 に光学活性 1, 2—ジフエ-ルエチレンジァミンを配位した錯体を形成させて、ジホス フィン ルテニウム一光学活性ジアミン錯体又はジホスフィン ロジウム一光学活性ジァ ミン錯体とし、これを用いてケトン化合物の水素化反応を行ったところ、ケトンィ匕合物 に対して水素化反応が予想通り進行して、光学活性アルコールが高!、光学純度で、 且つ高収率で得られ、光学的に純粋な触媒を用いた時と同じような高い不斉収率が 達成されることを見出し、本発明を完成するに至った。
[0006] 本発明は、下記(1)一(13)の構成を含んでなるものである。
(1) 次の一般式 [1]
[LMX Z1 ] [1]
P n
(式中、 Lは一般式 [2] [0007] [化 1]
Figure imgf000005_0001
[0008] (式中、環 A及び環 Bはそれぞれ独立して置換基を有していてもよい芳香環を示し、 Q\ Q2、 Q3、及び Q4はそれぞれ独立して置換基を有していてもよいァリール基又は 置換基を有していてもよい脂環式基を示し、 Y1はスぺーサーを示す。)で表される化 合物を示し、 Mは遷移金属を示し、 Xはハロゲン原子又は陰イオンを示し、 Z1は一般 式 [3]
[0009] [化 2]
Figure imgf000005_0002
[0010] (式中、環 C及び環 Dはそれぞれ独立して置換基を有していてもよいフエ-ル基又は 置換基を有していてもよい脂環式基を示し、 R21、 R22、 R23、及び R24はそれぞれ独立 して水素原子又はアルキル基を示す。)で示される化合物を示し、 pは 1又は 2を示し 、 nは自然数を示す。)で表される遷移金属錯体。
(2) 一般式 [2]で表される化合物の Y1が、カルボ-ル基、スルホ-ル基、チォカル ボニル基、 -CH (OH)-又は- CH (SH)-である前記(1)に記載の遷移金属錯体。
(3) 一般式 [3]で表される化合物が、光学活性化合物であり、遷移金属錯体が不 斉遷移金属錯体である、前記(1)又は(2)に記載の遷移金属錯体。
(4) 遷移金属錯体が、元素の周期表の第 8— 10族の遷移金属錯体である前記(1) 一 (3)の 、ずれかに記載の遷移金属錯体。
(5) 遷移金属錯体が、ルテニウム又はロジウムの遷移金属錯体である前記(1)一 ( 4)の 、ずれかに記載の遷移金属錯体。
(6) 遷移金属錯体が、下記一般式 [1 la]
[0011] [化 3]
Figure imgf000006_0001
[0012] (式中、環 A及び環 Bはそれぞれ独立して置換基を有していてもよい芳香環を示し、 Q\ Q2、 Q3、及び Q4はそれぞれ独立して置換基を有していてもよいァリール基又は 置換基を有していてもよい脂環式基を示し、 Y1はカルボニル基、スルホニル基、チォ カルボ-ル基、 CH (OH)—又は CH (SH)—から選ばれるスぺーサーを示し、 X1 及び X2はそれぞれ独立してハロゲン原子を示し、環 C及び環 Dはそれぞれ独立して 置換基を有して 、てもよ 、フエ-ル基又は置換基を有して 、てもよ 、脂環式基を示し 、 R21、 R22、 R23、及び R24はそれぞれ独立して水素原子又はアルキル基を示し、 *は 不斉炭素であることを示す。 )で表される光学活性ルテニウムホスフィンジアミン錯体 である、前記(5)に記載の遷移金属錯体。
(7) 遷移金属錯体が、下記一般式 [1 2a] [0013] [化 4]
( ) - [1-2a]
Figure imgf000007_0001
[0014] [式中、環 A及び環 Bはそれぞれ独立して置換基を有していてもよい芳香環を示し、 Q\ Q2、 Q3、及び Q4はそれぞれ独立して置換基を有していてもよいァリール基又は 置換基を有していてもよい脂環式基を示し、 Y1はカルボニル基、スルホニル基、チォ カルボ-ル基、 CH (OH)—又は CH (SH)—から選ばれるスぺーサーを示し、環 C 及び環 Dはそれぞれ独立して置換基を有して 、てもよ 、フエニル基又は置換基を有 していてもよい脂環式基を示し、 R21、 R22、 R23、及び R24はそれぞれ独立して水素原 子又はアルキル基を示し、(X3)—は陰イオンを示し、 *は不斉炭素であることを示す 。 ]で表されるロジウムホスフィン錯体である、前記(5)に記載の遷移金属錯体。 (8) 前記 (3)—(7)のいずれかに記載の遷移金属錯体が、一般式 [4]
[LMX Z2 ] [4]
q m r
(式中、 Lは一般式 [2]
[0015] [化 5]
Figure imgf000007_0002
[0016] (式中、環 A及び環 Bはそれぞれ独立して置換基を有していてもよい芳香環を示し、 Q\ Q2、 Q3、及び Q4はそれぞれ独立して置換基を有していてもよいァリール基又は 置換基を有していてもよい脂環式基を示し、 Y1はスぺーサーを示す。)で表される化 合物を示し、 Mは遷移金属を示し、 Xはハロゲン原子又は陰イオンを示し、 Z2は中性 配位子を示し、 qは 1又は 2を示し、 rは 1又は 2を示し、 mは 0又は自然数を示す。)で 表される遷移金属化合物と、一般式 [3]で表される化合物が光学活性化合物である 次の一般式 [3a]
[0017] [化 6]
Figure imgf000008_0001
[0018] (式中、環 C及び環 Dはそれぞれ独立して置換基を有していてもよいフエ-ル基又は 置換基を有していてもよい脂環式基を示し、 R21、 R22、 R23、及び R24はそれぞれ独立 して水素原子又はアルキル基を示す。)で表される化合物との反応により、反応系の その場で得られるものである前記(3)— (7)の 、ずれかに記載の遷移金属錯体。
(9) 前記(3)—(8)のいずれかに記載の遷移金属錯体の少なくとも 1種を含有して なる不斉合成用触媒。
(10) 一般式 [4]
[LMX Z2 ] [4]
q m r
(式中、 Lは一般式 [2]
[0019] [化 7]
Figure imgf000009_0001
[0020] (式中、環 A及び環 Bはそれぞれ独立して置換基を有していてもよい芳香環を示し、 Q\ Q2、 Q3、及び Q4はそれぞれ独立して置換基を有していてもよいァリール基又は 置換基を有していてもよい脂環式基を示し、 Y1はスぺーサーを示す。)で表される化 合物を示し、 Mは遷移金属を示し、 Xはハロゲン原子又は陰イオンを示し、 Z2は中性 配位子を示し、 qは 1又は 2を示し、 rは 1又は 2を示し、 mは 0又は自然数を示す。)で 表される遷移金属化合物と一般式 [3a]
[0021] [化 8]
Figure imgf000009_0002
[0022] (式中、環 C及び環 Dはそれぞれ独立して置換基を有していてもよいフエ-ル基又は 置換基を有していてもよい脂環式基を示し、 R21、 R22、 R23、及び R24はそれぞれ独立 して水素原子又はアルキル基を示し、 *は不斉炭素であることを示す。)で示される 光学活性化合物とを含有してなる不斉合成用触媒、又は不斉合成用触媒組成物。 (11) 不斉合成用触媒が、不斉水素化触媒である前記 (9)又は(10)に記載の不斉 合成用触媒。 (12) 次の一般式 [2' ]
[0023] [化 9]
Figure imgf000010_0001
[0024] (式中、環 A及び環 Bはそれぞれ独立して置換基を有していてもよい芳香環を示し、 Q\ Q2、 Q3、及び Q4はそれぞれ独立して置換基を有していてもよいァリール基又は 置換基を有していてもよい脂環式基を示し、 Y2はカルボ-ル基(c = o)、スルホ-ル 基(SO )、チォカルボ-ル(C = S)基、ーじ11 (011)—又はーじ11 (311)—を示す。)で
2
表される化合物。
(13) 次の一般式 [11]
[0025] [化 10]
Figure imgf000010_0002
[0026] (式中、
Figure imgf000010_0003
R2は、それぞれ独立して置換基を有してもよい炭化水素基、置換基を有 して!/、てもよ!/、脂肪族複素環基又は置換基を有して!/、てもよ!、芳香族複素環基を示 す (但し、 R1と R2が同一となる場合を除く。 ) oまた、 R1と R2とが結合して、隣接する炭 素原子と一緒になつて環を形成して 、てもよく、その環は置換基を有して 、てもよ 、。 )で表されるケトンィ匕合物を、前記(9)一(11)の 、ずれかに記載の不成合成用触媒 を用いて不斉水素化反応させることを特徴とする、次の一般式 [ 12] [0027] [化 11]
Figure imgf000011_0001
[0028] (式中、 *は不斉炭素であることを示し、 R1及び R2は前記と同じ。 )で表される光学活 性アルコールの製造方法。
[0029] 本発明の遷移金属錯体について説明する。
まず、上記一般式 [1]で表される本発明の遷移金属錯体における、 Lで示される配 位子について説明する。配位子 Lは一般式 [2]で表されるジホスフィンィ匕合物からな るものであり、アキラルな化合物力もなるものであることを特徴としている。一般式 [2] における環 A及び環 Bで示される置換基を有して ヽてもよ 、芳香環の芳香環としては 、 4n+ 2 (nは整数)の π電子系を形成できる芳香環であれば単環式でも、多環式で も、縮合環式であってもよぐ特に制限はないが、好ましくは炭素数 6— 20、より好ま しくは炭素数 6— 14の単環、多環、又は縮合環の芳香環が挙げられる。このような芳 香環としては、例えばベンゼン環、ナフタレン環、アントラセン環、テトラヒドロナフタレ ン環等が挙げられる。
また、これらの芳香環は、少なくとも 1個の水素原子が置換基で置換されていてもよ い。このような置換基としては、炭化水素基、アルコキシ基、ァリールォキシ基、ァラル キルォキシ基、ハロゲン原子、アルキレンジォキシ基、アミノ基、置換アミノ基、ニトロ 基、ヒドロキシ基、カルボキシ基、スルホ基、ハロゲンィ匕アルキル基等が挙げられる。
[0030] 炭化水素基としては、例えば、アルキル基、ァルケ-ル基、アルキニル基、ァリール 基、ァラルキル基等が挙げられる。
アルキル基としては、直鎖状でも分岐状でも環状でもよ 、低級アルキル基ゃシクロ アルキル基、例えば炭素数 1一 10、好ましくは炭素数 1一 6のアルキル基や炭素数 3 一 10、好ましくは 3— 6のシクロアルキル基が挙げられ、具体例としては、例えば、メ チル基、ェチル基、 η—プロピル基、イソプロピル基、 η—ブチル基、イソブチル基、 ter t -ブチル基、 n -ペンチル基、 1 -メチルブチル基、 2 -メチルブチル基、 3 -メチルブ チル基、 2, 2—ジメチルプロピル基、 n—へキシル基、 1ーメチルペンチル基、 2—メチル ペンチル基、 3—メチルペンチル基、 4ーメチルペンチル基、 2, 2—ジメチルブチル基、 シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基等が挙げら れる。
ァルケ-ル基としては、例えば、前記した炭素数 2以上のアルキル基に 1個以上の 二重結合を有するものが挙げられ、より具体的には、ェテニル基、 1 プロぺニル基、 2—プロべ-ル基、イソプロべ-ル基、 1ーブテュル基、 2—ブテュル基、 1, 3—ブタジェ -ル基、 2—ペンテニル基、 2—へキセニル基等が挙げられる。
アルキニル基としては、例えば、前記した炭素数 2以上のアルキル基に 1個以上の 三重結合を有するものが挙げられ、より具体的には、ェチュル基、 1 プロピ-ル基、 2—プロピニル基等が挙げられる。
ァリール基としては、前記した芳香環力 なる基であり、例えば炭素数 6— 20、好ま しくは炭素数 6— 14の 5— 7員の単環式、多環式又は縮合環式のァリール基が挙げ られ、具体例としては、例えば、フエ-ル基、ナフチル基、アントリル基、ビフヱ-ル基 等が挙げられる。
ァラルキル基としては、前記したアルキル基の少なくとも 1個の水素原子が前記ァリ ール基で置換された基が挙げられ、例えば炭素数 7— 26、好ましくは炭素数 7— 12 のァラルキル基が挙げられ、具体例としては、例えば、ベンジル基、 2—フエネチル基 、 1 フエ-ルプロピル基、 3 ナフチルプロピル基等が挙げられる。
アルコキシ基としては、前記した炭化水素基に酸素原子が結合した基が挙げられ、 例えば、前記したアルキル基に酸素原子が結合した直鎖状でも分岐状でも環状でも ょ ヽ低級アルコキシ基ゃシクロアルコキシ基、例えば炭素数 1一 6のアルコキシ基や 炭素数 3— 6のシクロアルコキシ基が挙げられ、具体例としては、例えば、メトキシ基、 エトキシ基、 n プロポキシ基、 2—プロポキシ基、 n ブトキシ基、イソブトキシ基、 tert ブトキシ基、 n ペンチルォキシ基、 2 メチルブトキシ基、 3 メチルブトキシ基、 2, 2 ージメチルプロピルォキシ基、 n—へキシルォキシ基、 2—メチルペンチルォキシ基、 3 ーメチルペンチルォキシ基、 4ーメチルペンチルォキシ基、 5—メチルペンチルォキシ 基、シクロへキシルォキシ基等が挙げられる。
ァリールォキシ基としては、前記したァリール基に酸素原子結合した基が挙げられ
、例えば炭素数 6— 14のァリールォキシ基が挙げられ、具体的例としては、例えば、 フエノキシ基、ナフチルォキシ基、アントリルォキシ基等が挙げられる。
ァラルキルォキシ基としては、前記したァラルキル基に酸素原子が結合した基が挙 げられ、例えば炭素数 7— 12のァラルキルォキシ基が挙げられ、具体例としては、例 えば、ベンジルォキシ基、 2—フエネチルォキシ基、 1 フエ-ルプロポキシ基、 2—フエ -ルプロポキシ基、 3 フエ-ルプロポキシ基、 1 フエ-ルブトキシ基、 2 フエ-ルブ トキシ基、 3 フエ-ルブトキシ基、 4 フエ-ルブトキシ基、 1 フエ-ルペンチルォキ シ基、 2 フエ-ルペンチルォキシ基、 3 フエ-ルペンチルォキシ基、 4 フエ-ルぺ ンチルォキシ基、 5 フエ-ルペンチルォキシ基、 1 フエ-ルへキシルォキシ基、 2— フエ-ルへキシルォキシ基、 3—フエ-ルへキシルォキシ基、 4 フエ-ルへキシルォ キシ基、 5—フエ-ルへキシルォキシ基、 6—フエ-ルへキシルォキシ基等が挙げられ る。
ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が 挙げられる。
置換アミノ基としては、ァミノ基の 1個又は 2個の水素原子が前記した炭化水素基や ァリール基ゃァラルキル基で置換されたァミノ基が挙げられる。炭化水素基としては、 アルキル基、ァリール基、ァラルキル基等が挙げられる。これらアルキル基、ァリール 基、ァラルキル基の定義及び具体例は、上記と同じである。アルキル基で置換された アミノ基、即ちアルキル置換アミノ基の具体例としては、例えば、 N—メチルァミノ基、 N, N—ジメチルァミノ基、 N, N—ジェチルァミノ基、 N, N—ジイソプロピルアミノ基、 N ーシクロへキシルァミノ基等のモノ又はジアルキルァミノ基が挙げられる。ァリール基 で置換されたァミノ基、即ちァリール置換アミノ基の具体例としては、例えば、 N フエ -ルァミノ基、 N, N—ジフエ-ルァミノ基、 N ナフチルァミノ基、 N ナフチルー N—フ ェニルァミノ基等のモノ又はジァリールァミノ基が挙げられる。ァラルキル基で置換さ れたァミノ基、即ちァラルキル置換アミノ基の具体例としては、例えば、 N—べンジル アミノ基、 N, N—ジベンジルァミノ基等のモノ又はジァラルキルアミノ基が挙げられる [0033] 置換基がアルキレンジォキシ基である場合は、前記した芳香環の隣接した 2個の水 素原子がアルキレンジォキシ基で置換される場合等がある力 そのようなアルキレン ジォキシ基としては、例えば炭素数 1一 3のアルキレンジォキシ基が挙げられ、具体 例としては、例えば、メチレンジォキシ基、エチレンジォキシ基、トリメチレンジォキシ 基、プロピレンジォキシ基等が挙げられる。
ハロゲン化アルキル基としては、前記したアルキル基の少なくとも 1個の、好ましくは 1一 3個の水素原子がハロゲン原子によりハロゲン化 (例えばフッ素化、塩素化、臭素 ィ匕、ヨウ素化等)された炭素数 1一 10、好ましくは炭素数 1一 6のハロゲンィ匕アルキル 基が挙げられ、具体例としては、例えば、クロロメチル基、ブロモメチル基、トリフルォ ロメチル基、 2—クロ口ェチル基、 3—ブロモプロピル基、 3, 3, 3—トリフルォロプロピル 基等が挙げられる。
[0034] 一般式 [2]において、 Q1— Q4で示される置換基を有していてもよいァリール基とし ては、前記した芳香環力もなるァリール基及び置換ァリール基が挙げられる。
置換基を有して ヽてもよ ヽ脂環式基としては、脂環式基及び置換脂環式基が挙げ られる。
ァリール基としては、前記したァリール基と同じものが挙げられる。
脂環式基としては単環式、多環式或いは架橋式でもよい、例えば炭素数 5— 12の 環状の飽和又は不飽和の脂肪族炭化水素基が挙げられ、具体的には、シクロペン チル基、シクロへキシル基、デカヒドロナフチル基、ノルボル-ル基等が挙げられる。 置換ァリール基としては、前記したァリール基の少なくとも 1個の水素原子が置換基 で置換されたァリール基が挙げられる。
置換脂環式基としては、前記した脂環式基の少なくとも 1個の水素原子が置換基で 置換された脂環式基が挙げられる。
[0035] 置換ァリール基及び置換脂環式基における置換基としては、例えば炭化水素基、 アルコキシ基、ァリールォキシ基、ァラルキルォキシ基、ハロゲン原子、アルキレンジ ォキシ基、アミノ基、置換アミノ基、ニトロ基、ヒドロキシル基、カルボキシル基、スルホ 基、ハロゲン化アルキル基等が挙げられる。 これら炭化水素基、アルコキシ基、ァリールォキシ基、ァラルキルォキシ基、ハロゲ ン原子、アルキレンジォキシ基、置換アミノ基及びノヽロゲンィ匕アルキル基としては、前 記した各基と同じものが挙げられる。
置換ァリール基の具体例としては、例えば、トリル基、キシリル基、メシチル基等が 挙げられる。
置換脂環式基の具体例としては、例えば、メチルシクロへキシル基等が挙げられる
[0036] 一般式 [2]において、 Y1で示されるスぺーサ一としては、環 Aと環 Bを繋ぐことがで きる 1一 5、好ましくは 1一 3個の原子力 なる基であり、これらの基は各種の置換基を 有することができる。このようなスぺーサ一としては、例えば、カルボ-ル基(c = o)、 硫黄原子、スルホニル基 (SO )、酸素原子、置換基を有してもよいメチレン基、ェチ
2
レン基などの置換基を有してもよいアルキレン基、チォカルボ-ル基(C = S) CH (OH) -CH (SH)—、イミノ基 (-NH-)、置 ミノ基 (-NR—:Rはアルキル基を 示す)等が挙げられる。
アルキレン基としては、炭素数 1一 3のアルキレン基が挙げられ、具体的にはメチレ ン基、エチレン基、トリメチレン基、プロピレン基等が挙げられ、これらのアルキレン基 は、前記した置換基を有することもできる。
Y1で示されるスぺーサ一の好ましい例は、カルボ-ル基(c = o)、スルホ -ル基(S O )、チォカルボ-ル基 (C = S)、—CH (OH) CH (SH)—等が挙げられ、カルボ
2
-ル基 (C = 0)、スルホ -ル基(SO;)、 -CH (OH)—等がより好ましい。
2
[0037] 前記した一般式 [2]で表される化合物の好ましい例としては、例えば、次の一般式
[2-1] [0038] [化 12]
Figure imgf000016_0001
[0039] (式中、 R3、 R4、 R5、 R6
Figure imgf000016_0002
及び は、環 A及び環 Bにおける前記した置 換基を示し、 Q\ Q2、 Q3、及び Q4、並びに Y1は前記と同じ。)で表される化合物が挙 げられる。
また、一般式 [2]において、 Y1で示されるがスぺーサ一力 カルボ-ル基(C = 0) 、スルホ -ル基(SO H)
2 )、チォカルボ-ル(C = S)基、 CH (OH)—、又は—CH (S 一である化合物が好ましぐこのような化合物を次の一般式 [2' ]で表すことができる。
[0040] [化 13]
Figure imgf000016_0003
[0041] (式中、環 A及び環 Bはそれぞれ独立して置換基を有していてもよい芳香環を示し、 Q\ Q2、 Q3、及び Q4はそれぞれ独立して置換基を有していてもよいァリール基又は 置換基を有していてもよい脂環式基を示し、 Y2はカルボ-ル基(c = o)、スルホ-ル 基(SO )、チォカルボ-ル(C = S)基、ーじ11 (011)—又はーじ11 (311)—を示す。)
2
このような一般式 [2' ]で表される化合物の中のさらに好ましい化合物として、次の 一般式 [2,一 1]
[0042] [化 14]
[2'-1】
[0043] (式中、 R3、 R4
Figure imgf000017_0001
、環 A及び環 Bにおける前記した置 換基を示し、 Y2はカルボ-ル基(c = o)、スルホ -ル基(SO )、チォカルボ-ル(C
2
=S)基、 CH (OH)—又は CH (SH)—を示す。 Q Q Q 及び Q4は前記と同じ 。)で表される化合物が挙げられる。
[0044] 一般式 [2]で表される化合物の好ましい例としては、例えば下記のものが挙げられ る。
[0045] [化 15]
.
Figure imgf000018_0001
[0046] [化 16]
Figure imgf000019_0001
Ar:フエニル基、 4一メチルフエニル、 3, 5—ジメチルフエニル、
4ーメ トキシフエニル、 1 , 3, 5—トリメチルフエニル、 1 , 3, 5.—卜リメ トキシフエニル etc.
R:CH3,C2H5,C3H7,CH(O 2 etc. [0047] [化 17]
Figure imgf000020_0001
Ar:フエニル基、 4一メチルフエニル、 3 , 5—ジメチルフエニル、 4—メ トキシフエ二ル、 1 , 3, 5—卜リメチルフエニル、 1 , 3, 5—トリメトキシフエニル etc. ·
R:CH3,C2H5,C3H7,CH(CH3)2etc.
[0048] [化 18]
Figure imgf000021_0001
ΑΓ:フエ二ル基、 4一メチルフエニル、 3, 5—ジメチルフエニル、
4ーメ トキシフエ二ル、 1 , 3, 5—卜リメチルフエニル、
1 , 3, 5—卜リメ 卜キシフエニル etc.
R:CH3 C2H5,C3H7,CH(CH3)2etc.
[0049] また、上記一般式 [2']で表される化合物の更に好ましい例としては、例えば下記 のものが挙げられる。 [0050] [化 19]
Figure imgf000022_0001
Aにフエニル基、 4一メチルフエニル、
3 , 5—ジメチルフエニル、 4ーメトキシフエニル、 1 , 3 , 5—卜リメチルフエニル、
1 , 3, 5—卜リメ卜キシフエニル etc.
R' , R' ' , R' ' ', R' ' ' ': H , C , CzHj, C3H7, 0CH3, OC^, 0C3H7 etc ·
Figure imgf000023_0001
Ar:フエニル基、 4—メチルフエニル、 3, 5—ジメチルフエニル、
4ーメトキシフエ二ル、 1 , 3, 5—トリメチルフエニル、 1 , 3, 5—卜リメトキシフエニル etc.
R:CH3,C2H5,C3H7,CH(CH3)2etc.
[0052] [化 21]
Figure imgf000024_0001
Ar:フエニル基、 4一メチルフエニル、 3, 5—ジメチルフエニル、 4ーメ卜キシフエニル、 1 , 3, 5—トリメチルフ; ニル、 1 , 3, 5—卜リメトキシフエニル etc.
R:CH3,C2H5,C3H7,CH(CH3)2etc.
[0053] [化 22]
Figure imgf000025_0001
Ar :フエニル基、 4一メチルフエニル、 3, 5—ジメチルフエニル,
4ーメトキシフエ二ル、 1 , 3 , 5—トリメチルフエニル、
1 , 3 , 5—トリメトキシフエ二ル etc.
E: - CH2-, -CH2CH , -CH2CH2CH , -CH2CH(CH3)- R : CH3, C,H【,C3H7, CH(CH3)2 etc .
[0054] 一般式 [1]及び一般式 [4]において、 Mで示される遷移金属としては、例えば元素 の周期表の第 8— 10族 (アメリカ化学会無機化学部会の提案( 1985年)した族の分 け方による。以下同じ。)の遷移金属、好ましくは元素の周期表の第 8— 9族の遷移金 属等が挙げられ、好ましい具体例としては、ルテニウム、ロジウム、イリジウム等が挙げ られ、より好ましい具体例としては、ルテニウム、ロジウム等が挙げられる。
一般式 [1]及び一般式 [4]において、 X及び (X3)-で示される陰イオンとしては、ハ ロゲン原子として、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等からなる 陰イオンが挙げられ、好ましくは、塩素原子、臭素原子、ヨウ素原子等力もなる陰ィォ ンが挙げられる。又、ハロゲン原子以外では、例えば BF、 CIO、 OTf、 PF、 SbF
4 4 6 6
、 BPh、 B (3, 5-(CF ) C H )等が挙げられる。
4 3 2 6 3 4
上記一般式 [4]において、 Z2で示される中性配位子としては、水、上記した中性の 芳香族化合物、中性のォレフィン化合物、その他の中性の化合物、好ましくは π—電 子を有する中性の有機化合物等の中性配位子等が挙げられる。中性の芳香族化合 物としては、ベンゾ-トリル、ベンゼン、アルキル置換ベンゼン等が挙げられる。アル キル置換ベンゼンとしては、例えば、 p—シメン、へキサメチルベンゼン、 1, 3, 5—トリ メチルベンゼン (メシチレン)等が挙げられる。
中性のォレフィン化合物としては、エチレン、 1, 5—シクロォクタジェン、シクロペン タジェン、ペンタメチルシクロペンタジェン、ノルボルナジェン等が挙げられる。
その他の中性配位子としては、 N, N—ジメチルホルムアミド(DMF)、ァセトニトリル 、アセトン、クロ口ホルム等が挙げられる。
[0055] 一般式 [4]で表される金属化合物の好ましい具体例としては、例えば以下の化合 物等が挙げられる。尚、一般式 [4]で表される金属化合物は、これらに限定されるも のではない。また、下記式中の Lは前記と同じである。
ロジウム錯体:
[Rh(L)Cl] 、 [Rh(L)Br] 、 [Rh(L)l] 、 [Rh(cod) (L)]BF、 [Rh(cod) (L)]C1
2 2 2 4
O、 [Rh(cod) (L)]PF、 [Rh(cod) (L)]BPh、 [Rh(cod) (L)]OTf、 [Rh(nbd)
4 6 4
(L)]BF、 [Rh(nbd) (L)]C10、 [Rh(nbd) (L)]PF、 [Rh(nbd) (L)]BPh、 [R
6
h(nbd) (L)]OTf、 [Rh(cod) (L)]SbF
6
ルテニウム錯体:
Ru(OAc) (L)ゝ Ru CI (L) NEt、 [RuCl (benzene) (L)]C1、 [RuBr (benzene
2 2 4 2 3
) (L)]Brゝ [Rul (benzene) (L)]I、 [RuCl (p-cymene) (L)]C1、 [RuBr (p-cyme ne) (L)]Br、 [Rul (p-cymene) (L)]I、 [Ru(L)] (BF ) 、 [Ru(L)] (CIO ) 、 [Ru
4 2 4 2
(L)](PF ) 、 [Ru(L)](BPh ) 、 [Ru(L)](OTf)
6 2 4 2 2
イリジウム錯体:
イリジウム錯体の具体例としては、例えば以下のものを挙げることができる。
[lr(L)Cl] 、 [lr(L)Br] 、 [Ir(L)I] 、 [Ir(cod) (L)]BF、 [Ir(cod) (L)]C10、 [Ir
2 2 2 4 4
(cod) (L)]PF、 [Ir(cod) (L)]BPh、 [Ir(cod) (L)]OTf、 [Ir(nbd) (L)]BF、 [I
6 4 4 r(nbd) (L)]C10、 [Ir(nbd) (L)]PF、 [Ir(nbd) (L)]BPh、 [Ir(nbd) (L)]OTf
4 6 4
[0056] 一般式 [1]の式において、 Z1は一般式 [3]で示される化合物を示し、例えば、芳香 族ジァミン類、脂肪族ジァミン類等のジァミン類等が挙げられる。
環 C及び環 Dで示される置換基を有して!/ヽてもよ!/ヽフエ-ル基としては、フエ-ル基 及び置換フ ニル基が挙げられる。
置換フエ-ル基としては、フエニル基の少なくとも 1個の、好ましくは 1一 3個の水素 原子が置換基で置換されたフ ニル基が挙げられ、当該置換基としては、前記してき たアルキル基、ァリール基、アルコキシ基、ァリールォキシ基等が挙げられる。
置換基を有して ヽてもよ ヽ脂環式基としては、脂環式基及び置換脂環式基が挙げ られる。
脂環式基としては、前記してきたシクロへキシル基等が挙げられる。
置換脂環式基としては、前記脂環式基の少なくとも 1個の水素原子が置換基で置 換された脂環式基が挙げられ、置換基としては、前記してきたアルキル基、ァリール 基、アルコキシ基、ァリールォキシ基等が挙げられる。
アルキル基、ァリール基、アルコキシ基及びァリールォキシ基としては、前記と同じ ものが挙げられる。
置換フエ-ル基の具体例としては、例えば、トリル基、キシリル基、メシチル基、メトキ シフエニル基、ジメトキシフエニル基等が挙げられる。
置換脂環式基の具体例としては、メチルシクロへキシル基等が挙げられる。
一般式 [3]で示される化合物が光学活性である化合物は、例えば一般式 [3a]で表 される光学活性ィ匕合物が挙げられる。好ましい [3a]の化合物としては、次式の一般 式 [3 - la]
[0058] [化 23]
Figure imgf000028_0001
[0059] (式中、 R R1Z RL RL R R RiY, RL RL 及び Rz 並びに Rz R22 R23 、及び R24は、環 C及び環 Dの前記した置換基を示し、 *は前記と同じである。)で表 される光学活性ィ匕合物が挙げられる。
一般式 [3]で示される化合物において、芳香族ジァミン類としては、ジフエ-ルェチ レンジァミン、 1, 2—ビス(4ーメトキシフエ-ル)エチレンジァミン等が挙げられる。ここ で、芳香族ジァミン類として光学活性芳香族ジァミン類を用いれば、得られる遷移金 属錯体、例えばルテニウムホスフィンジアミン錯体は、光学活性遷移金属錯体、例え ば光学活性ルテニウムホスフィンジアミン錯体となる。
光学活性芳香族ジァミン類としては、前記芳香族ジァミン類の光学活性体、即ち、 ( 1R, 2R)—ジフエ-ルエチレンジァミン、 (IS, 2S)—ジフエ-ルエチレンジァミン、 (1 R, 2R)— 1, 2—ビス(4ーメトキシフエ-ル)エチレンジァミン、 (IS, 2S)— 1, 2—ビス(4 ーメトキシフエ-ル)エチレンジァミン等が挙げられる。
脂肪族ジァミン類としては、ジシクロへキシルエチレンジァミン等が挙げられる。 光学活性脂肪族ジァミン類としては、 (1R, 2R)—ジシクロへキシルエチレンジァミン (IS, 2S)—ジシクロへキシルエチレンジァミン等が挙げられる。
[0060] 一般式 [3]及び [3a]で表される化合物において、 R21— R24で示されるアルキル基と しては、直鎖状でも分岐状でも環状でもよい低級アルキル基、例えば炭素数 1 6 好ましくは炭素数 1 3のアルキル基が挙げられ、具体例としては、例えば、メチル基 、ェチル基、 n プロピル基、 2—プロピル基等が挙げられる。
[0061] 一般式 [1]で表される遷移金属錯体としては、例えば Mで示される遷移金属がル テ -ゥムであるルテニウムホスフィンジアミン錯体では、例えば次の一般式 [1—1]
[0062] [化 24]
Figure imgf000029_0001
[0063] (式中、環 A、環 B、環 C、環 D、 Q\ Q2、 Q 及び Q4、 R2\ R22、 R23、及び R24、 X1及 び X2、並びに Y1は前記と同じ。)で表されるルテニウムホスフィンジアミン錯体が挙げ られる。
また、 Μで示される遷移金属がロジウムであるロジウムホスフィン錯体は、例えば次 の一般式 [1 2]
[0064] [化 25]
(X3)— [1-2]
Figure imgf000029_0002
[0065] (式中、環 A、環 B、環 C、環 D、
Figure imgf000029_0003
及び (X3) 一、並びに Y1は前記と同じ。)で表されるロジウムホスフィンジアミン錯体が挙げられる
[0066] 上記一般式 [1 1]で表されるルテニウムホ :ン錯体の好ましい例として は、例えば、次の一般式 [1 3] [0067] [化 26]
【1-3]
Figure imgf000030_0001
[0068] (式中、 R3、 R4、 R5、 R6
Figure imgf000030_0002
及び R1Gは、それぞれ独立して水素原子、炭化 水素基、アルコキシ基、ァリールォキシ基、ァラルキルォキシ基、ハロゲン原子、アル キレンジォキシ基、アミノ基、置換アミノ基、ニトロ基、ヒドロキシル基、カルボキシル基 、スルホ基又はハロゲンィ匕アルキル基を示し、 R11 R12、 R13、 R14、 R15、 R16、 R17、 R1 8、 R19、及び R2°は、それぞれ独立して水素原子、アルキル基、ァリール基、アルコキ シ基又はァリールォキシ基を示す。また、 R3と R4、 R4と R5、 R5と R6、 R7と R8、 R8と R9、 又は R9と R1C>とが結合して、それらが結合して ヽる環と一緒になつて縮合環を形成し ていてもよい。 Q\ Q2、 Q3、及び Q4、 Y\ X1、 X2、並びに R21、 R22、 R23、及び R24は 前記と同じ。 )
で表されるルテニウムホスフィンジアミン錯体が挙げられる。
また、 上記一般式 [1—2]で表されるロジウムホスフィンジアミン錯体の好ましい例 としては、例えば、次の一般式 [1 4]
[0069] [化 27]
(X - [1 -4]
[0070] (式
Figure imgf000031_0001
R12、 R13、 R"、 R15、 R16、 R17、 R18、 R19、及び R2°、
Figure imgf000031_0002
並びに R21、 R22、 R23、及び R24は前 記と同じである。 X3は、 X1、 X2と同じである。)で表されるロジウムホスフィンジアミン錯 体が挙げられる。
[0071] 前記した一般式 [1—3]及び一般式 [1-4]において、 R3、 R4、 R5、 R6
Figure imgf000031_0003
及び R1C)で示される炭化水素基、アルコキシ基、ァリールォキシ基、ァラルキルォキシ 基、ハロゲン原子、アルキレンジォキシ基、置換アミノ基及びノヽロゲンィ匕アルキル基と しては、前記した環 A及び環 Bにお 、て置換基として例示した基と同様のものが挙げ られる。また、 1、 R12、 R13、 R14、 R15、 R16、 R17、 R18、 R19、及び R2°で示されるアル キル基、ァリール基、アルコキシ基及びァリールォキシ基も、前記した環 C及び環 Dで 置換基として例示した基と同様のものが挙げられる。また、 R3と R4、 R4と R5、 R5と R6、 R7と R8、 R8と R9、又は R9と R1C>とが結合して、それらが結合している環と一緒になつて 縮合環を形成する場合の縮合環としては、前記した環 A及び環 Bにお ヽて芳香環と して例示した環、即ち、ナフタレン環、アントラセン環、テトラヒドロナフタレン環等が挙 げられる。
[0072] 後述する本発明の遷移金属錯体の製造方法にお!ヽて、ジァミン類として光学活性 ジァミン類を用いれば、光学活性の遷移金属錯体を得ることができる。例えば、前記 した一般式 [1—1]で表されるルテニウムホスフィンジアミン錯体において、当該ルテ -ゥムホスフィンジアミン錯体を製造する際に、ジァミン類として光学活性ジァミン類を 用いれば、次の一般式 [1 la]
[0073] [化 28]
Figure imgf000032_0001
[0074] (式中、 *は不斉炭素であることを示し、環 A、環 B、環 C、環 D、 Q\ Q2、 Q3、及び Q
X1、 X2、並びに R21、 R22、 R23、及び R24は前記と同じ。 )
で表される光学活性ルテニウムホスフィンジアミン錯体が得られる。
また、前記した一般式 [1 2]で表されるロジウムホスフィンジアミン錯体では、当該 ロジウムホスフィンジアミン錯体を製造する際に)、ジァミン類として光学活性ジァミン 類を用いれば、次の一般式 [1 2a]
[0075] [化 29]
Figure imgf000032_0002
[0076] (式中、環 Aゝ環 B、環 C、環 D、
Figure imgf000032_0003
(X3) -、 R21、 R22、 R23、及 び R24、並びに *は前記と同じ。)で表される光学活性ロジウムホスフィンジアミン錯体 が得られる。
[0077] 前記した一般式 [1 la]で表される光学活性ルテニウムホスフィンジアミン錯体のよ り好ましい例としては、例えば、次の一般式 [1 3a] [0078] [化 30]
[0079] (式中、 R3
Figure imgf000033_0001
、 R4、 R5、 R6、 、及び R10、 Rn、 R12、 R13、 R14、 R15、 R16、 R17、 R18、 R19、及び R2°、
Figure imgf000033_0002
X1、 X2、 R21、 R22、 R23、及び R24、並 びに *は前記と同じである。 )
で表される光学活性ルテニウムホスフィンジアミン錯体が挙げられる。
また、前記した一般式 [l—2a]で表されるロジウムホスフィンジアミン錯体のより好ま しい例としては、例えば次の一般式 [1 4a]
[0080] [化 31]
(X9- [卜 4a]
Figure imgf000033_0003
[0081] (式中、 R3、 R4、 R5、 R6、 R7、 R8、 R9、及び R10
Figure imgf000033_0004
R12、 R13、 R"、 R15、 R16、 R17、 R18、 R19、及び R2°、
Figure imgf000033_0005
(X3)—、 R21、 R22、 R23、及び R24、並 びに *は前記と同じである。 )
で表される光学活性ロジウムホスフィンジアミン錯体が得られる。
[0082] 前記した一般式 [ 1 3a]で表される光学活性ルテニウムホスフィンジアミン錯体の 具体例としては、例えば、下記の化合物が挙げられる。 [0083] [化 32]
Figure imgf000034_0001
Figure imgf000035_0001
[εε^] [湖 o]
C69llO/l700Zdf/X3d εε C176910/S00Z OAV
Figure imgf000036_0001
[ ^] [S800]
C69llO/l700Zdf/X3d C176910/S00Z OAV [0086] [化 35]
Figure imgf000037_0001
[0087] [化 36]
Figure imgf000038_0001
[0088] [化 37]
Figure imgf000039_0001
-CHrj -CHjCHr, -CH!CHiCH ' -CH^iCHj)-
[0089] [化 38]
Figure imgf000040_0001
[0090] [化 39]
Figure imgf000041_0001
[0091] [化 40]
Figure imgf000042_0001
Ξ:舞, -CH,CHr,
Figure imgf000042_0002
-CH,CH(CH,)-
[0092] [化 41]
Figure imgf000043_0001
[0093] [化 42]
Figure imgf000044_0001
[0094] [化 43]
Figure imgf000044_0002
E:-CHr, -CHjCH,-, -CH!CH!CH!-, -CHiCH(CHj)- [0095] [化 44]
Figure imgf000045_0001
[0096] [化 45]
Figure imgf000046_0001
[0097] [化 46]
Figure imgf000046_0002
E:-CHr, -CHjCH,-, -CHjCHjCHj-, -CH,CH(CHj)- [0098] [化 47]
Figure imgf000047_0001
[0099] [化 48]
Figure imgf000048_0001
!H H3- ! HO-::
Figure imgf000049_0001
[6fW [00 TO]
C69llO/l700Zdf/X3d IP C176910/S00Z OAV [0101] [化 50]
Figure imgf000050_0001
[0102] [化 51]
Figure imgf000051_0001
R:Me,Et,Pr Pr,Bu etc.
[0103] [化 52]
Figure imgf000052_0001
E:-CHr, -CHjCHrj -C^CH!CH厂, -CH2CH(CH3)- R:Me,Et,Pr, iPr,Bu etc.
[0104] [化 53]
Figure imgf000053_0001
[0105] [化 54]
Figure imgf000054_0001
人)」【
Figure imgf000055_0001
[0107] [化 56]
Figure imgf000056_0001
Figure imgf000057_0001
[8010] rf -(EHO)Hi)¾)-リ Η0!Η3'Η0- '-ιΟι0-リ Ο-:ョ
Figure imgf000058_0001
[8S^ ] [60 TO]
C69llO/l700Zdf/X3d 99 C176910/S00Z OAV [0110] [化 59]
Figure imgf000059_0001
[0111] [化 60]
Figure imgf000060_0001
[0112] [化 61]
Figure imgf000061_0001
E:-CH,- -CH,CHr, -CH,CH!CH,-, -CH,CH(CHj)-
[0113] 前記した一般式 [1 4a]で表される光学活性ロジウムジアミン錯体の具体例として は、例えば下記の化合物等が挙げられる。
[0114] [化 62]
Figure imgf000061_0002
[0115] 本発明における、上記一般式 [2]で表される化合物と上記一般式 [3]で表される化 合物とを含有する一般式 [1]で表される遷移金属錯体の製造方法を、例えば前記し た一般式 [ 1 1 ]で表されるルテニウムホスフィンジアミン錯体を例にとってより具体的 に説明する。 例えば、前記した一般式 [1 1]で表されるルテニウムホスフィンジアミン錯体は、例 えば、 J. Chem. Soc. , Chem. Commun. , 1208 (1989); J. Chem. Soc. , Per kin. Trans. , 2309 (1994);特開平 10— 120692号公報等に記載の方法に準じて 製造することができる。
[0116] 以下に、一般式 [1 1]で表されるルテニウムホスフィンジアミン錯体の製造方法の 一例を記す。
(1)上記一般式 [2]で表される化合物の製造。
(1 1)先ず、一般式 [5]
[0117] [化 63]
Figure imgf000062_0001
[0118] (式中、環 A、環 B及び Y1は前記と同じ。)で表されるジヒドロキシィ匕合物、好ましくは 一般式 [5 - 1]
[0119] [化 64]
[5 1】
[0120] (式中、 R3、 R4
Figure imgf000063_0001
及び R1C>、並びに Y1は前記と同じ。)で表される ジヒドロキシ化合物と、トリフルォロメタンスルホン酸無水物又はトリフルォロメタンスル ホン酸クロリドとを塩基の存在下、適当な溶媒中、 0— 10°Cで 8— 12時間反応させて トリフレート化を行い、一般式 [6]
[0121] [化 65]
[6】
Figure imgf000063_0002
[0122] (式中、 Tfはトリフルォロメタンスルホ -ル基を示し、環 A、環 B及び Y1は前記と同じ。
)で表される化合物、好ましくは一般式 [6— 1] [0123] [化 66]
Figure imgf000064_0001
[0124] (式中、 R3、 R4、 R5、 R6
Figure imgf000064_0002
及び R1C>、 Tf、並びに Y1は前記と同じ。 )で表さ れる化合物を得る。
[0125] 上記反応に用いられる塩基としては、無機塩基、有機塩基等が挙げられる。
有機塩基としては、例えば、トリエチルァミン、ジイソプロピルェチルァミン、 Ν, Ν— ジメチルァニリン、ピぺリジン、ピリジン、 4ージメチルァミノピリジン、 1, 5—ジァザビシク 口 [4. 3. 0]ノナー 5—ェン、 1, 8—ジァザビシクロ [5. 4. 0]ゥンデ力— 7—ェン、トリー η ーブチルァミン、テトラメチルエチレンジァミン、 Ν—メチルモルホリン等の有機アミン類 、カリウムメトキシド、ナトリウムメトキシド、リチウムメトキシド、ナトリウムエトキシド、カリ ゥムイソプロポキシド、カリウム tert—ブトキシド、リチウムメトキシド、カリウムナフタレ- ド等のアルカリ ·アルカリ土類金属の塩等が挙げられる。
無機塩基としては、例えば、炭酸カリウム、水酸ィ匕カリウム、水酸化リチウム、炭酸水 素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、水酸ィ匕ナトリウム等が挙げられる。 塩基の使用量は、ジヒドロキシ化合物 lmolに対して、通常 2. 3— 3. 5mol、好まし くは 2. 5-2. 7molの範囲力 適宜選択される。
反応に用いられる溶媒としては、例えば、ジクロロメタン、 1, 2—ジクロロェタン、クロ 口ホルム、四塩化炭素、 o—ジクロ口ベンゼン等のハロゲン化炭化水素類、ペンタン、 へキサン、ヘプタン、オクタン、デカン、シクロへキサン等の脂肪族炭化水素類、ベン ゼン、トルエン、キシレン等の芳香族炭化水素類、ジェチルエーテル、ジイソプロピル エーテル、 tert ブチルメチルエーテル、ジメトキシェタン、エチレングリコールジェチ ルエーテル、テトラヒドロフラン、 1, 4 ジォキサン、 1, 3—ジォキソラン等のエーテル 類、酢酸メチル、酢酸ェチル、酢酸 n—ブチル、プロピオン酸メチル等のエステル類等 が挙げられる。 これら溶媒は、それぞれ単独で用いても二種以上適宜組み合わせ て用いてもよい。
溶媒の使用量は、ジヒドロキシ化合物 lmmolに対して、通常 3— 10ml、好ましくは 5— 7mlの範囲力 適宜選択される。
[0126] (1 2)上記(1 1)で得られた上記一般式 [6]で表される化合物のホスフィニルイ匕反 応を行う。当該ホスフィニルイ匕反応は、例えば実験化学講座、第 4版、第 25卷、第 11 章 (特に 389— 427頁)、 日本化学会編、 1991年、丸善等に記載の方法により行え ばよい。
即ち、得られた上記一般式 [6]で表される化合物と一般式 [7— 1]
P (O) (QXQ2) [7-1]
又は一般式 [7 - 2]
P (0) (Q3Q4) [7-2]
(上記式中、 Q\ Q2、 Q3、及び Q4は前記と同じ。)で表されるホスフィンォキシドとを 遷移金属化合物及び第三級ホスフィンの存在下、適当な溶媒中、通常 90— 120°C 、好ましくは 100— 105°Cで、通常 12— 36時間、好ましくは 15— 18時間反応させて 一般式 [8]
[0127] [化 67]
[0128] (式中、環 A、環 B、
Figure imgf000065_0001
び Q4は前記と同じ。)で表される化合 物、好ましくは一般式 [8— 1]
[0129] [化 68]
[0130] (式中、 R3、 R4
Figure imgf000066_0001
及び Q4は、 前記と同じ。)で表される化合物を得る。
ここで、ホスフィンォキシドとして上記一般式 [7—1]で表されるホスフィンォキシドを 用 、れば得られる一般式 [8]で表される化合物は、一般式 [8]にお 、て Q1 = Q3及 び Q2=Q4である化合物が得られ、上記一般式 [7— 2]で表されるホスフィンォキシド を用いても同様の化合物が得られる。また、上記一般式 [7— 1]で表されるホスフィン ォキシドを用いて片方の TfO基をホスフィニルイ匕した後、他方の TfO基を上記一般 式 [7— 2]で表されるホスフィンォキシドを用いてホスフィエル化することもできる。
[0131] 上記反応に用いられる遷移金属化合物としては、酢酸パラジウム、塩化パラジウム 、トリフエ-ルホスフィンパラジウム等が挙げられる。これら遷移金属化合物は、それぞ れ単独で用いても二種以上適宜組み合わせて用いてもょ 、。
遷移金属化合物の使用量は、トリフラートイ匕合物 lmmolに対して、通常 0. 08— 0 . 20mmol、好ましくは 0. 10—0. 12mmolの範囲から適宜選択される。
第三級ホスフィンは、用 、る前記遷移金属化合物の種類により必要に応じて用 ヽ ればよい。第三級ホスフィンとしては、トリフエ-ルホスフィン、トリ t ブチルホスフィン、 1, 4 ビス(ジフエニノレホスフイノ)ブタン、 1, 2 ビス(ジフエニノレホスフイノ)ェタン、 1 , 1 ビス(ジフエ-ルホスフイノ)フエ口セン等が挙げられる。
第三級ホスフィンの使用量は、トリフラートイ匕合物 lmmolに対して、通常 2. 5— 3. 5mmol、好ましくは 2. 8—3. 2mmolの範囲から適宜選択される。
用いられる溶媒としては、例えば、ペンタン、へキサン、ヘプタン、オクタン、デカン、 シクロへキサン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭 化水素類、ジクロロメタン、 1, 2—ジクロロェタン、クロ口ホルム、四塩化炭素、 o—ジクロ 口ベンゼン等のハロゲン化炭化水素類、ジェチルエーテル、ジイソプロピルエーテル 、 tert ブチルメチルエーテル、ジメトキシェタン、エチレングリコールジェチルエーテ ル、テトラヒドロフラン、 1, 4 ジォキサン、 1, 3—ジォキソラン等のエーテル類、ァセト ン、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン等のケトン類、メタ ノール、エタノール、 2—プロパノール、 n—ブタノール、 2—エトキシエタノール、ベンジ ルアルコール等のアルコール類、エチレングリコーノレ、プロピレングリコール、 1, 2— プロパンジオール、グリセリン等の多価アルコール類、酢酸メチル、酢酸ェチル、酢 酸 n—ブチル、プロピオン酸メチル等のエステル類、ホルムアミド、 N, N—ジメチルホ ルムアミド、 N, N—ジメチルァセトアミド等のアミド類、ジメチルスルホキシド等のスル ホキシド類、ァセトニトリル等の含シァノ有機化合物類、 N メチルピロリドン、水等が 挙げられる。これら溶媒は、それぞれ単独で用いても 2種以上適宜組み合わせて用 いてもよい。
溶媒の使用量は、トリフラートイ匕合物 lmmolに対して、通常 3— 10ml、好ましくは 4 一 6mlの範囲力 適宜選択される。
ホスフィ-ルイ匕は、通常、塩基の存在下で行うことが好ましい。塩基としては、上述 した塩基と同様である。
塩基の使用量は、トリフラートイ匕合物 lmmolに対して、通常 3. 5— 4. 5mmol、好 ましくは 3. 8— 4. 2mmolの範囲力 適宜選択される。
(1-3) 前記(1 2)で得られた前記一般式 [8]、好ましくは一般式 [8— 1]で表される 化合物は、これを還元剤で還元反応させることにより、 目的の前記した一般式 [2]で 表される化合物、好ましくは一般式 [2— 1]で表される化合物を得ることができる。 このとき用いられる還元剤としては、例えば、トリクロロシラン等が挙げられる。 還元剤の使用量は、一般式 [8]又は一般式 [8 - 1 ]で表される化合物 lmmolに対 して、通常 8— 15mmol、好ましくは 10— 12mmolの範囲から適宜選択される。還元 反応は、通常、塩基の存在下で行うことが好ましい。塩基としては、上述した塩基と同 じものが挙げられる。塩基の使用量は、一般式 [8]又は一般式 [8— 1]で表されるィ匕 合物 lmmolに対して、通常 35— 45mmol、好ましくは 40— 42mmolの範囲から適 宜選択される。
[0133] 還元反応は、必要に応じて溶媒の存在下で行ってもよい。溶媒としては、例えば、 ペンタン、へキサン、ヘプタン、オクタン、デカン、シクロへキサン等の脂肪族炭化水 素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、 1, 2—ジ クロロェタン、クロ口ホルム、四塩化炭素、 o—ジクロ口ベンゼン等のハロゲン化炭化水 素類、ジェチルエーテル、ジイソプロピルエーテル、 tert—ブチルメチルエーテル、ジ メトキシェタン、エチレングリコールジェチルエーテル、テトラヒドロフラン、 1, 4ージォ キサン、 1, 3—ジォキソラン等のエーテル類、メタノール、エタノール、 2—プロパノー ル、 n—ブタノール、 2—エトキシエタノール、ベンジルアルコール等のアルコール類、 エチレングリコーノレ、プロピレングリコール、 1, 2—プロパンジオール、グリセリン等の 多価アルコール類、酢酸メチル、酢酸ェチル、酢酸 n -ブチル、プロピオン酸メチル 等のエステル類、ホルムアミド、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトァ ミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、ァセトニトリル等の含シァ ノ有機化合物類、 N—メチルピロリドン等が挙げられる。これら溶媒は、それぞれ単独 で用いても 2種以上適宜組み合わせて用いてもょ 、。
溶媒の使用量は、一般式 [8]又は一般式 [8— 1 ]で表される化合物 lmmolに対し て、通常 8— 15ml、好ましくは 10— 12mlの範囲力 適宜選択される。
[0134] このようにして製造される本発明の一般式 [2]で表される化合物の中で、好ましい 化合物として次の一般式 [2' ] [0135] [化 69]
Figure imgf000069_0001
[0136] (式中、環 Α及び環 Βはそれぞれ独立して置換基を有していてもよい芳香環を示し、 Q\ Q2、 Q3、及び Q4はそれぞれ独立して置換基を有していてもよいァリール基又は 置換基を有していてもよい脂環式基を示し、 Y2はカルボ-ル基(c = o)、スルホ-ル 基(SO )、チォカルボ-ル(C = S)基、ーじ11 (011)—又はーじ11 (311)—を示す。)で
2
表される化合物が挙げられる。さらに好ましい化合物としては、前記一般式 [2' ]にお ける環 A及び環 Bが置換基を有してもょ 、フエ-ル基である前記一般式 [2 '—1 ]で表 される化合物が挙げられる。当該フ ニル基における置換基としては前記してきた置 換基が挙げられる。
[0137] (2)—般式 [1]で表される遷移金属錯体、例えば一般式 [1 1]で表されるルテニゥ ムジァミンホスフィン錯体の製造。
前記した(1)で得られた一般式 [2]又は一般式 [2— 1]で表される化合物、好ましく は一般式 [2' ]又は一般式 [2'— 1]で表される化合物を、次の一般式 [9]
[MXaZ2b]c [9]
(式中、 M、 X及び Z2は前記と同じであり、 aは 2又は 3を示し、 bは 0又は 1を示し、 cは 1又は 2を示す。)で表される遷移金属化合物と反応させることにより、一般式 [4]で 表される化合物を製造することができる。
例えば、前記した一般式 [10]において Mの遷移金属がルテニウムである一般式 [ 10] ]
[RuX'X^ ] [10]
2
(式中、 X1及び X2ハロゲン原子を示す。ハロゲン原子は上記と同じ。 Z2及び mは前記 と同じ。)で表されれるルテニウム錯体とを、必要に応じて適当な溶媒中で反応させる ことにより、前記した一般式 [4]で表される遷移金属化合物の遷移金属 Mがルテニゥ ムである遷移金属化合物を得ることができる。
次いで、得られた一般式 [4]で表される遷移金属化合物と、前記一般式 [3]で表さ れる化合物とを必要に応じて適当な溶媒中で反応させることにより上記一般式 [1]で 表される本発明の遷移金属錯体を得ることができる。
[0138] 一般式 [9]で表される遷移金属 Mがルテニウム、ロジウム、又はイリジウムなどであ る遷移金属化合物の好ましい具体例としては、例えば、
[RuCl (benzene; ι 、 [RuBr (benzene) I 、 [Rul (benzene) ] 、 [RuCl -cymene
2 2 2 2 2 2 2
;」 、 [RuBr (p-cymene) ] 、 [Rul (p-cymene) ] 、 RuCl (hexamethylbenzene) ] 、 [
2 2 2 2 2 2 2
RuBr (hexamethylbenzene) ] 、 [Rul (hexamethylbenzene) ] 、 [RuCl (mesitylene
2 2 2 2 2
) ] 、 [RuBr (mesitylene) ] 、 [Rul (mesitylene) ] 、 [RuCl (
2 2 2 2 2 2
pentamethylcyclopentadiene) ] 、 [RuBr (pentamethylcyclopentadiene) ] 、 [Rul (
2 2 2 2 pentamethylcyclopentadiene) ] 、 [RuCl (cod) ] 、 [RuBr (cod) ] 、 [Rul (cod) ]
2 2 2 2 2 2 2
、 [RuCl (nbd) ] 、 [RuBr (nbd) ] 、 [Rul (nbd) ] 、 RuCl水和物、 RuBr水和物
2 2 2 2 2 2 3 3
, Rul水和物、 [RhCl (cyclopentadiene) ]等のノレテニゥム錯体、
3 2 2
[RhBr (cyclopentadiene) ι 、 [Rhl (cyclopentaaiene ] 、 [Rhし 1 (
2 2 2 2 2 pentamethylcyclopentadiene) ] 、 [RhBr (pentamethylcyclopentadiene) ] 、 [Rhl (
2 2 2 2 pentamethylcyclopentadiene) ] 、 [RhCl (cod) ] 、 [RhBr (cod) ] 、 [Rhl (cod) ]
2 2 2 2 2 2 2
、 [RhCl (nbd) ] 、 [RhBr (nbd) ] 、 [Rhl (nbd) ] 、 RhCl水和物、 RhBr水和物
2 2 2 2 2 2 3 3
、 Rhl水和物等のロジウム錯体、
3
[irCl I cyclopentadiene) ] 、 [irBr (cyclopentadiene) ] 、 [Irl ι cyclopentadiene) ] 、
2 2 2 2 2 2
[IrCl (pentamethylcyclopentadiene) ] 、 [IrBr (pentamethylcyclopentadiene) ] 、 [I
2 2 2 2 rl (pentamethylcyclopentadiene) ] 、 [IrCl (cod) ] 、 [IrBr (cod) ] 、 [Irl (cod) ]
2 2 2 2 2 2 2 2
、 [IrCl (nbd) ] 、 [IrBr (nbd) ] 、 [Irl (nbd) ] 、 IrCl水和物、 IrBr水和物、 Irl
2 2 2 2 2 2 3 3 3 水和物等のイリジウム錯体等が挙げられる。式中、 codは、 1, S—シクロオタジェンを 示し、 nbdはノルボルナジェンを示す。
[0139] ここで、一般式 [1]で表される本発明の遷移金属錯体を製造する際に使用される前 記一般式 [3]で表される化合物として、芳香族ジァミン類を用いた場合には、前記一 般式 [ 1 1 ]で表されるルテニウムホスフィンジアミン錯体や前記一般式 [ 1 2]で表さ れるロジウムホスフィンジアミン錯体などが得られる。
また、芳香族ジァミン類として光学活性芳香族ジァミン類を用いれば、前記一般式 [ 1]の遷移金属錯体に対応した光学活性な遷移金属錯体、例えば、前記一般式 [1 - la]で表される光学活性ルテニウムホスフィンジアミン錯体や前記一般式 [1 2a]で 表される光学活性ロジウムホスフィンジアミン錯体が得られる。
一般式 [2]で表される化合物及び一般式 [4]で表される金属化合物の使用量は、 一般式 [2]で表される化合物 lmmolに対して一般式 [4]で表される金属化合物を、 通常 1. 0-1. lmmol、好ましくは 1. 0-1. 05mmolの範囲から適宜選択される。 上記一般式 [3]で表される化合物の使用量としては、一般式 [4]で表される遷移金 属化合物 lmmolに対して、通常 1. 0—1. lmmol、好ましくは 1. 0—1. 05mmolの 範囲から適宜選択される。
また、配位子が芳香族ジァミン類である場合の芳香族ジァミン類の使用量は、一般 式 [4]で表される遷移金属化合物 lmmolに対して、通常 1. 0-1. lmmol、好ましく は 1. 0— 1. 5mmolの範囲力 適宜選択される。
本反応は、溶媒の存在下で行うことが好ましい。用いられる溶媒としては、例えば、 ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、 1, 2—ジクロ口 ェタン、クロ口ホルム、四塩化炭素、 o—ジクロ口ベンゼン等のハロゲン化炭化水素類、 メタノール、エタノール、 2—プロパノール、 n—ブタノール、 2—エトキシエタノール、ベ ンジルアルコール等のアルコール類等が挙げられる。これら溶媒は、それぞれ単独 で用いても 2種以上適宜組み合わせて用いてもょ 、。
溶媒の使用量は、一般式 [2]で表される化合物 0. lmmolに対して、通常 0. 8— 1 . 5ml、好ましくは 1. 0-1. 1mlの範囲力 適宜選択される。
反応温度は用いる一般式 [2]で表される化合物や、一般式 [4] ]で表される遷移金 属化合物の種類等により異なるため特に限定されないが、通常 90— 105°C、好まし くは 95— 100°Cの範囲力も適宜選択される。
反応時間も用!、る一般式 [2]で表される化合物や、一般式 [4] ]で表される遷移金 属錯体の種類等により異なるため特に限定されないが、通常 15— 60分、好ましくは 30— 40分の範囲力 適宜選択される。
[0141] 配位子が芳香族ジァミン類である場合、反応は、不活性ガス雰囲気下で行うことも 好ましい態様である。不活性ガスとしては、窒素ガス、アルゴンガス等が挙げられる。 配位子が芳香族ジァミン類である場合の反応温度は、用いるルテニウム錯体、芳香 族ジァミン類等の種類等により異なるため特に限定されないが、通常 90— 110°C、 好ましくは 95— 105°Cの範囲力も適宜選択される。
反応時間も用いるルテニウム錯体、芳香族ジァミン類等の種類等により異なるため 特に限定されないが、通常 15— 60分、好ましくは 30— 40分の範囲力も適宜選択さ れる。
[0142] このようにして得られた本発明の一般式 [1]で表される遷移金属錯体は、水素化反 応などの触媒として有用である。本発明の一般式 [1]で表される遷移金属錯体のうち 光学活性ジァミンを用いて製造される光学活性遷移金属錯体は、不斉合成用、例え ば不斉水素化反応用の触媒として有用である。例えば、、前記一般式 [1 - la]で表 される光学活性ルテニウムホスフィンジアミン錯体や、前記一般式 [1 2a]で表される 光学活性ロジウムホスフィンジアミン錯体は、不斉水素化触媒等の不斉合成触媒とし て特に有用である。
また、一般式 [4]で表される遷移金属化合物、例えば遷移金属 Mがルテニウムであ るルテニウムホスフィンィ匕合物は、 Z2で示される配位子が中性配位子である力 これ らの化合物を芳香族ジァミン、好ましくは光学活性芳香族ジァミンと組み合わせて用 いることにより、不斉水素化触媒組成物等の不斉合成用触媒組成物として効果的に 使用することができる。これは、本発明の一般式 [1]で表される遷移金属錯体が、一 般式 [4]の遷移金属化合物と一般式 [3]のジァミン化合物とが、共に存在する反応 系において、その場で生成するためと考えられる。
同様に、上記一般式 [2]で表される化合物と、前記一般式 [9]で表される遷移金属 化合物、例えば、遷移金属 Mがルテニウムである一般式 [10]で表されるルテニウム 錯体と、遷移金属例えばルテニウムの配位子になり得る化合物とを反応させて得られ る一般式 [4]で表される遷移金属化合物、例えばルテニウムホスフィン化合物の場合 も、当該化合物を芳香族ジァミン、好ましくは光学活性芳香族ジァミンと組み合わせ て用いることにより、水素化触媒、好ましくは不斉水素化触媒組成物等の不斉合成 用触媒組成物として効果的に使用することができる。
[0143] ルテニウム錯体につ ヽて、本発明の金属錯体の製造法を説明してきたが、ルテユウ ム以外の金属の金属錯体につ 、ても、ルテニウムの場合に準じて製造することができ る。
例えば、ロジウム錯体の場合には、前記一般式 [4]における遷移金属として、前記 してきたルテニウムに代えて、上記したような適当なロジウムやイリジウムを使用するこ とにより、同様に対応するロジウムホスフィンジアミン錯体やイリジウムホスフィンジアミ ン錯体を製造することができる。
[0144] 次に、本発明に係る光学活性アルコールの製造方法について説明する。
前記してきた一般式 [11]において、 R1及び R2で示される置換基を有してもよい炭 化水素基の炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基 、ァリール基、ァラルキル基等が挙げられる。
アルキル基としては、直鎖状でも分岐状でも環状でもよい、例えば炭素数 1一 15、 好ましくは炭素数 1一 10のアルキル基や炭素数 3— 15、好ましくは 3— 10のシクロア ルキル基が挙げられ、具体的にはメチル基、ェチル基、 n プロピル基、イソプロピル 基、 n ブチル基、 1 メチルプロピル基、イソブチル基、 tert ブチル基、 n ペンチル 基、 1 -メチルブチル基、 tert -ペンチル基、 2 -メチルブチル基、 3 -メチルブチル基 、 2, 2—ジメチルプロピル基、 n—へキシル基、 1ーメチルペンチル基、 1ーェチルブチ ル基、 tert—へキシル基、 2—メチルペンチル基、 3—メチルペンチル基、 4ーメチルぺ ンチル基、 2—メチルペンタン 3—ィル基、ヘプチル基、ォクチル基、ノニル基、デシ ル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基等が 挙げられる。
ァルケ-ル基としては、例えば、前記した炭素数 2以上のアルキル基に 1個以上の 二重結合を有するものが挙げられ、より具体的には、ェテニル基、 1 プロぺニル基、 2—プロべ-ル基、イソプロべ-ル基、 1ーブテュル基、 2—ブテュル基、 1, 3—ブタジェ -ル基、 2—ペンテニル基、 2—へキセニル基等が挙げられる。 アルキニル基としては、例えば、前記した炭素数 2以上のアルキル基に 1個以上の 三重結合を有するものが挙げられ、より具体的には、ェチュル基、 1 プロピ-ル基、 2—プロピニル基等が挙げられる。
ァリール基としては、例えば炭素数 6— 14の 5— 7員の単環式、多環式又は縮合環 式のァリール基が挙げられ、具体的にはフエ-ル基、ナフチル基、アントリル基、ビフ ニル基等が挙げられる。
ァラルキル基としては、前記アルキル基の少なくとも 1個の水素原子が前記ァリール 基で置換された基が挙げられ、例えば炭素数 7— 12のァラルキル基が好ましぐ具 体的にはべンジル基、 2 フエ-ルェチル基、 1 フエ-ルプロピル基、 3 ナフチルプ 口ピル基等が挙げられる。
[0145] 置換基を有してもよい脂肪族複素環基の脂肪族複素環基としては、例えば、炭素 数 2— 14で、異種原子として少なくとも 1個、好ましくは 1一 3個の例えば窒素原子、 酸素原子、硫黄原子等のへテロ原子を含んでいる、 5— 8員、好ましくは 5又は 6員の 単環の脂肪族複素環基、多環又は縮合環の脂肪族複素環基が挙げられる。脂肪族 複素環基の具体例としては、例えば、ピロリジルー 2—オン基、ピペリジノ基、ピぺラジ -ル基、モルホリノ基、テトラヒドロフリル基、テトラヒドロビラ-ル基等が挙げられる。 置換基を有してもよい芳香族複素環基の芳香族複素環基としては、例えば、炭素 数 2— 15で、異種原子として少なくとも 1個、好ましくは 1一 3個の窒素原子、酸素原 子、硫黄原子等の異種原子を含んでいる、 5— 8員、好ましくは 5又は 6員の単環式 ヘテロァリール基、多環式又は縮合環式のへテロアリール基が挙げられ、具体的に はフリル基、チェ-ル基、ピリジル基、ピリミジル基、ビラジル基、ピリダジル基、ピラゾ リル基、イミダゾリル基、ォキサゾリル基、チアゾリル基、ベンゾフリル基、ベンゾチェ二 ル基、キノリル基、イソキノリル基、キノキサリル基、フタラジル基、キナゾリル基、ナフ チリジル基、シンノリル基、ベンゾイミダゾリル基、ベンゾォキサゾリル基、ベンゾチア ゾリル基等が挙げられる。
[0146] これら炭化水素基、脂肪族複素環基及び芳香族複素環基の置換基としては、例え ば、アルキル基、ァリール基、アルコキシ基、ァリールォキシ基、ァラルキルォキシ基 、アルコキシカルボ-ル基、ァリールォキシカルボ-ル基、ァラルキルォキシカルボ- ル基、ァシルォキシ基、アルキルチオ基、ァリールチオ基、ァラルキルチオ基、ハロゲ ン原子、アミノ基、置換アミノ基、シァノ基、ニトロ基、ヒドロキシル基、カルボキシル基 、スルホ基、アルキレンジォキシ基等が挙げられる。
アルキル基及びァリール基の定義及び具体例等は上記と同じである。
アルコキシ基としては、直鎖状でも分岐状でも環状でもよい、例えば炭素数 1一 6の アルコキシ基や炭素数 3— 6のシクロアルコキシ基が挙げられ、具体的にはメトキシ基 、エトキシ基、 n プロポキシ基、 2—プロポキシ基、 n ブトキシ基、 1 メチルプロポキ シ基、イソブトキシ基、 tert ブトキシ基、 n ペンチルォキシ基、 2—メチルブトキシ基、 3 メチルブトキシ基、 2, 2—ジメチルプロピルォキシ基、 n—へキシルォキシ基、 2—メ チルペンチルォキシ基、 3—メチルペンチルォキシ基、 4ーメチルペンチルォキシ基、 5—メチルペンチルォキシ基、シクロへキシルォキシ基等が挙げられる。
ァリールォキシ基としては、例えば炭素数 6— 14のァリールォキシ基が挙げられ、 具体的にはフエノキシ基、ナフチルォキシ基、アントリルォキシ基等が挙げられる。 ァラルキルォキシ基としては、例えば炭素数 7— 12のァラルキルォキシ基が挙げら れ、具体的にはべンジルォキシ基、 2—フエ-ルェトキシ基、 1 フエ-ルプロポキシ基 、 2 フエ-ルプロポキシ基、 3 フエ-ルプロポキシ基、 1 フエ-ルブトキシ基、 2—フ ェ-ルブトキシ基、 3 フエ-ルブトキシ基、 4 フエ-ルブトキシ基、 1 フエ-ルペンチ ルォキシ基、 2 フエ-ルペンチルォキシ基、 3 フエ-ルペンチルォキシ基、 4 フエ -ルペンチルォキシ基、 5 フエ-ルペンチルォキシ基、 1 フエ-ルへキシルォキシ 基、 2 フエ-ルへキシルォキシ基、 3 フエ-ルへキシルォキシ基、 4 フエ-ルへキ シルォキシ基、 5—フエ-ルへキシルォキシ基、 6—フエ-ルへキシルォキシ基等が挙 げられる。
アルコキシカルボ-ル基としては、直鎖状でも分岐状でも環状でもよい、例えば炭 素数 2— 19のアルコキシカルボ-ル基ゃ炭素数 3— 19、好ましくは 3— 10のシクロア ルコキシカルボ-ル基が挙げられ、具体的にはメトキシカルボ-ル基、エトキシカル ボ-ル基、 n プロポキシカルボ-ル基、 2—プロポキシカルボニル基、 n ブトキシカ ルボニル基、 tert ブトキシカルボ-ル基、ペンチルォキシカルボ-ル基、へキシル ォキシカルボ-ル基、 2—ェチルへキシルォキシカルボ-ル基、ラウロイルォキシカル ボ-ル基、ステアロイルォキシカルボ-ル基、シクロへキシルォキシカルボ-ル基等 が挙げられる。
ァリールォキシカルボ-ル基としては、例えば炭素数 7— 20のァリールォキシカル ボ-ル基が挙げられ、具体的にはフエノキシカルボ-ル基、ナフチルォキシカルボ- ル基等が挙げられる。
ァラルキルォキシカルボ-ル基としては、例えば炭素数 8— 15のァラルキルォキシ カルボ-ル基が挙げられ、具体的にはべンジルォキシカルボ-ル基、フエ-ルェトキ シカルボ-ル基、 9 フルォレ -ルメチルォキシカルボ-ル等が挙げられる。
ァシルォキシ基としては、カルボン酸由来の例えば炭素数 2— 18の脂肪族又は芳 香族のァシルォキシ基が挙げられ、具体的にはァセトキシ基、プロピオ-ルォキシ基 、ブチリルォキシ基、ビバロイルォキシ基、ペンタノィルォキシ基、へキサノィルォキシ 基、ラウロイルォキシ基、ステアロイルォキシ基、ベンゾィルォキシ基等が挙げられる アルキルチオ基としては、直鎖状でも分岐状でも或いは環状でもよい、例えば炭素 数 1一 6のアルキルチオ基や炭素数 3— 6のシクロアルキルチオ基が挙げられ、具体 的にはメチルチオ基、ェチルチオ基、 n プロピルチオ基、 2—プロピルチオ基、 n—ブ チルチオ基、 1 メチルプロピル基、イソブチルチオ基、 tert—ブチルチオ基、ペンチ ルチオ基、へキシルチオ基、シクロへキシルチオ基等が挙げられる。
ァリールチオ基としては、例えば炭素数 6— 14のァリールチオ基が挙げられ、具体 的にはフエ二ルチオ基、ナフチルチオ基等が挙げられる。
ァラルキルチオ基としては、例えば炭素数 7— 12のァラルキルチオ基が挙げられ、 具体的にはべンジルチオ基、 2—フエネチルチオ基等が挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げら れる。
置換基がアルキレンジォキシ基である場合は、上記ァリール基部分の隣接した 2個 の水素原子がアルキレンジォキシ基で置換されるものであり、当該アルキレンジォキ シ基としては、例えば炭素数 1一 3の直鎖状又は分枝状のアルキレンジォキシ基が挙 げられ、具体的にはメチレンジォキシ基、エチレンジォキシ基、トリメチレンジォキシ 基等が挙げられる。
[0149] 置換アミノ基としては、ァミノ基の 1個又は 2個の水素原子が保護基等の置換基で 置換されたァミノ基が挙げられる。保護基としては、ァミノ保護基として用いられるもの であれば特に制限はなぐ例えば「PROTECTIVE GROUPS IN ORGANIC S YNTHESIS Second Edition (JOHN WILEY & SONS, INC.;)」にァミノ保護 基として記載されているものが挙げられる。ァミノ保護基の具体例としては、例えば、 アルキル基、ァリール基、ァラルキル基、ァシル基、アルコキシカルボ-ル基、ァリー ルォキシカルボ-ル基、ァラルキルォキシカルボ-ル基等が挙げられる。
アルキル基、ァリール基、ァラルキル基、アルコキシカルボ-ル基、ァリールォキシ カルボニル基及びァラルキルォキシカルボニル基の定義及び具体例等は、上記と同 じである。
ァシル基としては、直鎖状でも分岐状でもよい、例えば、脂肪族カルボン酸、芳香 族カルボン酸等のカルボン酸由来の炭素数 1一 18のァシル基が挙げられ、具体的 にはホルミル基、ァセチル基、プロピオ-ル基、ブチリル基、ビバロイル基、ペンタノィ ル基、へキサノィル基、ラウロイル基、ステアロイル基、ベンゾィル基等が挙げられる。
[0150] アルキル基で置換されたァミノ基、即ちアルキル置換アミノ基の具体例としては、例 えば、 N—メチルァミノ基、 N, N—ジメチルァミノ基、 N, N—ジェチルァミノ基、 N, N— ジイソプロピルアミノ基、 N—シクロへキシルァミノ基等のモノ又はジアルキルアミノ基 が挙げられる。
ァリール基で置換されたァミノ基、即ちァリール置換アミノ基の具体例としては、例 えば、 N—フエ-ルァミノ基、 N, N—ジフエ-ルァミノ基、 N—ナフチルァミノ基、 N—ナ フチルー N—フエ-ルァミノ基等のモノ又はジァリールァミノ基が挙げられる。
ァラルキル基で置換されたァミノ基、即ちァラルキル置換アミノ基の具体例としては 、例えば、 N—ベンジルァミノ基、 N, N—ジベンジルァミノ基等のモノ又はジァラルキ ルァミノ基が挙げられる。
ァシル基で置換されたァミノ基、即ちァシルァミノ基の具体例としては、例えば、ホ ルミルァミノ基、ァセチルァミノ基、プロピオ-ルァミノ基、ビバロイルァミノ基、ペンタノ ィルァミノ基、へキサノィルァミノ基、ベンゾィルァミノ基等が挙げられる。 アルコキシカルボ-ル基で置換されたァミノ基、即ちアルコキシカルボ-ルァミノ基 の具体例としては、例えば、メトキシカルボ-ルァミノ基、エトキシカルボ-ルァミノ基、 n—プロポキシカルボ-ルァミノ基、 n ブトキシカルボ-ルァミノ基、 tert ブトキシカ ルボニルァミノ基、ペンチルォキシカルボ-ルァミノ基、へキシルォキシカルボ-ルァ ミノ基等が挙げられる。
ァリールォキシカルボ-ル基で置換されたァミノ基、即ちァリールォキシカルボ-ル ァミノ基の具体例としては、ァミノ基の 1個の水素原子が前記したァリールォキシカル ボニル基で置換されたァミノ基が挙げられ、具体的には、例えば、フエノキシカルボ- ルァミノ基、ナフチルォキシカルボ-ルァミノ基等が挙げられる。
[0151] ァラルキルォキシカルボ-ル基で置換されたァミノ基、即ちァラルキルォキシカルボ -ルァミノ基の具体例としては、例えば、ベンジルォキシカルボ-ルァミノ基等が挙げ られる。
ハロゲン原子で置換されたアルキル基、即ちハロゲンィ匕アルキル基としては、上記 アルキル基の少なくとも 1個の、好ましくは 1一 3個の水素原子がハロゲン原子により ハロゲン化 (例えばフッ素化、塩素化、臭素化、ヨウ素化等)された炭素数 1一 15、好 ましくは炭素数 1一 10、より好ましくは炭素数 1一 6のハロゲンィ匕アルキル基が挙げら れ、具体的には、例えば、クロロメチル基、ブロモメチル基、トリフルォロメチル基、 2— クロ口ェチル基、 3—ブロモプロピル基、 3, 3, 3—トリフルォロプロピル基等が挙げられ る。
置換ァリール基としては、上記ァリール基の少なくとも 1個の水素原子が前記置換 基で置換されたァリール基が挙げられる。
アルキル基で置換されたァリール基の具体例としては、トリル基、キシリル基等が挙 げられる。
置換ァラルキル基としては、上記ァラルキル基の少なくとも 1個の水素原子が前記 置換基で置換されたァラルキル基が挙げられる。
[0152] R1で示される a , j8 不飽和アルキル基としては、ァルケ-ル基、アルキ-ル基が 挙げられる。
ァルケ-ル基としては、直鎖状でも分岐状でもよい、例えば炭素数 2— 15、好ましく は炭素数 2— 10、より好ましくは炭素数 2— 6のアルケニル基が挙げられ、具体的に は、例えば、エテュル基、 1—プロべ-ル基、 2 -プロべ-ル基、イソプロべ-ル基、 1 ブテュル基、 2—ブテュル基、 1, 3 ブタジェ-ル基、 2 ペンテ-ル基、 2 キセ- ル基等が挙げられる。
アルキニル基としては、直鎖状でも分岐状でもよい、例えば炭素数 2— 15、好ましく は炭素数 2— 10、より好ましくは炭素数 2— 6のアルキニル基が挙げられ、具体的に は、例えば、ェチュル基、 1 プロピ-ル基、 1—プチ-ル基、 1 ペンチ-ル基、 1 キシニル基等が挙げられる。
一般式 [11]で表されるケトン類の具体例としては、例えば、メチルェチルケトン、ァ セトフエノン、ベンザルアセトン、 1 インダノン、 3, 4—ジヒドロ一(2H)—ナフタレノンフ エロセ-ルメチルケトン等や、例えば下記に示すィ匕合物等が挙げられる。
2004/011693
[0153] [化 70]
Figure imgf000080_0001
CH3, C2H5, iPr, n— C4H9, etc.
H, 2-CH3, 3-CH3, 4-CH3, 2-CH3O, 3-CH30, 4-CH3O,
2-tBu, 3 - tBu, 4-tBu, 2-CN, 3-CN, 4-CN,
2-CI, 3-CI, 4-CI, 2-Br, 3-Br, 4-Br, etc.
CH3, C2H5, C3H7, iPr, n-C4H9, etc.
[0154] [化 71]
Figure imgf000081_0001
[0155] 本発明の製造方法により得られる前記一般式 [12]で表される光学活性アルコール 類は、光学活性第 2級アルコールであるが、その具体例としては、前記一般式 [11] で表されるケトン類の具体例として例示した化合物から誘導される光学活性アルコー ル類や、 2—ブタノール、フエネチルアルコール等が挙げられる。
[0156] 本発明の光学活性アルコールの製造方法は、前述してきたようにして製造した本発 明の一般式 [ 1 ]で表される遷移金属錯体、好ましくは光学活性の一般式 [ 1 ]で表さ れる遷移金属錯体が触媒として使用されるが、前述してきたように、例えば、前記一 般式 [4]で表される遷移金属化合物と光学活性な一般式 [3]で示される光学活性ィ匕 合物とを含有してなる不斉合成触媒組成物の存在下で行うことができる。後者の不 斉合成触媒組成物を用いた不斉水素化反応は、反応系のその場 (in situ)で行う 反応ということになる。
[0157] 本発明の光学活性アルコールの製造方法は、必要に応じて溶媒中で行うことがで きる。溶媒は、上記一般式 [11]で表されるケトンィ匕合物や不斉水素化触媒を溶解す るものが好ましい。
溶媒としては、例えば、ペンタン、へキサン、ヘプタン、オクタン、デカン、シクロへキ サン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、 ジクロロメタン、 1, 2—ジクロロェタン、クロ口ホルム、四塩化炭素、 o—ジクロロベンゼン 等のハロゲン化炭化水素類、ジェチルエーテル、ジイソプロピルエーテル、 tert—ブ チルメチルエーテル、ジメトキシェタン、エチレングリコールジェチルエーテル、テトラ ヒドロフラン、 1, 4 ジォキサン、 1, 3—ジォキソラン等のエーテル類、メタノール、エタ ノール、 2—プロパノール、 n—ブタノール、 2—エトキシエタノール、ベンジルアルコー ル等のアルコール類、エチレングリコール、プロピレングリコール、 1, 2—プロパンジォ ール、グリセリン等の多価アルコール類、 N, N—ジメチルホルムアミド、 N, N ジメチ ルァセトアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、ァセトニトリル 等の含シァノ有機化合物類、 N メチルピロリドン等が挙げられる。これら溶媒は、そ れぞれ単独で用いても 2種以上適宜組み合わせて用いてもょ 、。
溶媒の使用量は、用 、る反応基質である上記一般式 [11]で表されるケトンィ匕合物 の溶解度や経済性により判断される。溶媒の使用量としては、通常 5— 50質量%、 好ましくは 10— 40質量%の範囲力も適宜選択される。
[0158] 本発明の光学活性アルコールの製造方法は、塩基の存在下で行うことが好ましい 。塩基としては、無機塩基、有機塩基等が挙げられる。有機塩基としては、例えば、ト リエチルァミン、ジイソプロピルェチルァミン、 N, N ジメチルァニリン、ピぺリジン、ピ リジン、 4—ジメチルァミノピリジン、 1, 5—ジァザビシクロ [4. 3. 0]ノナー 5 ェン、 1, 8 —ジァザビシクロ [5. 4. 0]ゥンデ力— 7 ェン、トリー n—ブチルァミン、テトラメチルェチ レンジァミン、 N メチルモルホリン等の有機アミン類、カリウムメトキシド、ナトリウムメト キシド、リチウムメトキシド、ナトリウムエトキシド、カリウムイソプロポキシド、カリウム tert ーブトキシド、リチウムメトキシド、カリウムナフタレ-ド等のアルカリ金属やアルカリ土類 金属の塩等が挙げられる。無機塩基としては、例えば、炭酸カリウム、水酸化カリウム 、水酸化リチウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、水酸化ナト リウム等が挙げられる。
塩基の使用量は、ルテニウム錯体 lmmolに対して、通常 2— 5mmol、好ましくは 2 一 3mmolの範囲力 適宜選択される。
[0159] 本発明の光学活性アルコールの製造方法において用いられる水素の圧力は、少 なくとも 0. IMPaが望ましぐ経済性等を考慮すると通常 0. 5— lOMPa、好ましくは 1一 5MPaの範囲力 適宜選択される。
反応温度は、経済性等を考慮して、通常 15— 100°C、好ましくは 20— 80°Cの範囲 から適宜選択される。また、反応温度は、— 30— 0°Cの低温でも、或いは 100— 250 °Cの高温でも反応を実施することができる。
反応時間は、用いる不斉水素化触媒の種類や使用量、用いるケトンィ匕合物の種類 や濃度、反応温度、水素の圧力等の反応条件等により異なるが、通常、数分一数十 時間の間で反応は完結するが、通常 1分一 48時間、好ましくは 10分一 24時間の範 囲から適宜選択される。
[0160] また、本発明の光学活性アルコールの製造方法の好ま 、例として、水素移動型 反応による方法が挙げられる。
水素移動型反応による不斉水素化反応は、水素供与性物質を反応系内に存在さ せるのが好ましい。水素供与性物質は、有機化合物又は Z及び無機化合物あって、 反応系内で、例えば熱的作用や触媒作用によって水素を供与できる化合物であれ ば何れも使用可能である。
水素供与性物質としては、例えば、ギ酸又はその塩類、ギ酸と塩基との組み合わせ 、ヒドロキノン、亜リン酸、アルコール類等が挙げられる。これらの中では、ギ酸又はそ の塩類、ギ酸と塩基との組み合わせ力 なるもの、アルコール類等が特に好ましい。 ギ酸又はその塩類におけるギ酸の塩類としては、ギ酸のアルカリ金属塩、アルカリ 土類金属塩等のギ酸の金属塩、アンモニゥム塩、置換アミン塩等が挙げられる。 また、ギ酸と塩基との組み合わせ反応系内でギ酸の塩の形態となるもの或いは実 質的にギ酸の塩の形態となるものであればよい。 ギ酸と塩を形成するアルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム 、セシウム等が挙げられる。また、アルカリ土類金属としては、マグネシウム、カノレシゥ ム、ストロンチウム、ノ リウム等が挙げられる。
これらギ酸のアルカリ金属塩、アルカリ土類金属塩等のギ酸の金属塩や、アンモニ ゥム塩、置換アミン塩等を形成する塩基、並びに、ギ酸と塩基との組み合わせにおけ る塩基としては、アンモニア、無機塩基、有機塩基等が挙げられる。
無機塩基としては、例えば、炭酸カリウム、水酸ィ匕カリウム、水酸化リチウム、炭酸水 素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、水酸化ナトリウム、炭酸マグネシウム 、炭酸カルシウム等のアルカリ又はアルカリ土類金属塩、水素化ナトリウム、水素化ホ ゥ素ナトリウム、水素化リチウムアルミニウム等の金属水素化物類等が挙げられる。 有機塩基としては、例えば、カリウムメトキシド、ナトリウムメトキシド、リチウムメトキシ ド、ナトリウムエトキシド、カリウムイソプロポキシド、カリウム tert—ブトキシド、カリウムナ フタレニド等のアルカリ金属アルコキシド、酢酸ナトリウム、酢酸カリウム、酢酸マグネ シゥム、酢酸カルシウム等のアルカリ 'アルカリ土類金属の酢酸塩類、トリェチルァミン 、ジイソプロピルェチルァミン、 N, N—ジメチルァ-リン、ピぺリジン、ピリジン、 4—ジメ チノレアミノピリジン、 1, 5—ジァザビシクロ [4. 3. 0]ノナー 5—ェン、 1, 8—ジァザビシク 口 [5. 4. 0]ゥンデ力— 7—ェン、トリー n—ブチルァミン、 N—メチルモルホリン等の有機 アミン類、臭化メチルマグネシウム、臭化工チルマグネシウム、臭化プロピルマグネシ ゥム、メチルリチウム、ェチルリチウム、プロピルリチウム、 n—ブチルリチウム、 tert—ブ チルリチウム等の有機金属化合物類、 4級アンモ-ゥム塩等が挙げられる。
水素供与性物質としてのアルコール類としては、水素原子を α位に有する低級ァ ルコール類が好ましぐ具体例としては、例えば、メタノール、エタノール、 η—プロパノ ール、イソプロパノール、 η—ブタノール、 sec—ブタノール等が挙げられ、中でもイソプ ロパノールが好ましい。
水素供与性物質の使用量は、ケトン化合物に対して通常 2— 20当量、好ましくは 4 一 10当量の範囲力も適宜選択される。
これらの本発明の光学活性アルコールの製造方法は、反応形式がバッチ式であつ ても連続式であっても実施することができる。 発明の効果
[0162] 本発明は、各種不斉合成反応に効果的に使用することが出来、就中、例えば種々 のケトンの不斉水素化反応において、より効果的に使用し得る新規な遷移金属錯体 と、それを用いた光学活性アルコールの新規製造方法を提供するものであり、本発 明のルテニウムホスフィン錯体、就中、光学活性ルテニウムホスフィンジアミン錯体や 光学活性ロジウムホスフィンジアミン錯体を用いてケトン化合物の水素化反応を行え ば、光学活性アルコールが高い光学純度で、且つ高収率で得られ、光学的に純粋 な触媒を用いた時と同様な高い不斉収率が達成される。
しカゝも、本発明の不斉合成用触媒として有用な遷移金属錯体は、アキラルなホスフ インを用いて製造することができ、産業上極めて有利な方法を提供するものである。 発明を実施するための最良の形態
[0163] 以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例によ り何ら限定されるものではない。
なお、以下の実施例及び参考例において、物性等の測定に用いた装置は次の通 りである。
核磁気共鳴スペクトル(以下1 H— NMRと略す):
GEMINI300型(300MHz) (バリアン社製)
13C核磁気共鳴スペクトル(以下13 C— NMRと略す):
GEMINI300型(75MHz) (バリアン社製)
赤外吸収スペクトル (以下 IRと略す):
FT/IR-5000 (日本分光株式会社)
旋光度計: DIP - 140型(日本分光株式会社)
高速液体クロマトグラフィー(以下 HPLCと略す):
LC— 6A、 SPD— 6A (島津製作所)
また、実施例及び参考例で用いる記号及び略号は以下の通りである。
DMF:ジメチルホルムアミド
Ph:フエニル基
Ar: 3, 5—ジメチルフヱ-ル基 DPEN (小文字も同じ):ジフエ-ルエチレンジァミン
[0164] [化 72]
Figure imgf000086_0001
[0165] (実施例 1)
RuCl {2, 2,―ビス(ジフエ-ルホスフィエル)ベンゾフエノン K(S,S)- DPEN}の合成
2
(1) 2, 2,一ビスフルォ口べンズヒドロールの合成
2 ブロモフルォロベンゼン 455 1 (4. 2mmol)及びテトラヒドロフラン 15mlの混合 溶液を 70°Cに冷却した。そこへ、 n—ブチルリチウム 2. 8ml (4. 4mmol)をカ卩え、― 70°Cのまま 30分間攪拌した。その後、ギ酸ェチル 165 /z L (2. Ommol)を加え、室 温で 15時間攪拌した。反応混合物に水 10mlをカ卩えた後、塩化メチレンで 3回抽出し た。有機層を集め水洗した後、硫酸マグネシウムで乾燥した。濃縮して溶媒を回収後 、シリカゲルカラムクロマトグラフィー(酢酸ェチル:へキサン = 1: 5)で精製することに より黄色溶液の表題ィ匕合物 375mg (収率 85%)が得られた。
XH NMR(CDC1 ) 6 ppm; 7. 00—7. 48 (8H, m)、 6. 42 (1H, s)。
3
[0166] (2) 2, 2,一ビスフルォロベンゾフエノンの合成
2, 2,一ビスフルォ口べンズヒドロール 440. 4mg (2. Ommol)及び活性酸化マンガ ン 1. 04g (12. Ommol)の混合物にベンゼン 10mlをカ卩え、 2時間還流した。反応混 合物を室温まで冷却し、セライト濾過を行った。その炉液を濃縮後シリカゲルカラムク 口マトグラフィー(酢酸ェチル:へキサン = 1: 5)で精製することにより黄色溶液の表題 化合物が 360mg (収率 82%)が得られた。
¾ NMR(CDC1 ) δ ppm; 7. 07—7. 37 (8H, m)。 19F NMR (CDC1 ) S ppm;— 112. 70 (s)。
3
[0167] (3) 2, 2,一ビス(ジフエ-ルホスフィエル)ベンゾフエノンの合成
2, 2,一ビスフルォロベンゾフエノン 98. 2mg (0. 45mmol)及びテトラヒドロフラン 5 mlの混合溶液を 70°Cに加熱した。その後、ポタシゥムジフエ-ルホスフィン 2. 8ml ( 1. 4mmol)を加え、 2時間半還流させた。その後反応混合液を 0°Cに冷却し、 1N塩 酸を数滴加えて 1一 2分攪拌した後、硫酸マグネシウムを加えて、セライト濾過した。 その炉液を濃縮後、シリカゲルカラムクロマトグラフィー(酢酸ェチル:へキサン = 1: 6 )そしてアルミナカラムクロマトグラフィー(酢酸ェチル:へキサン = 1: 6)で精製するこ とにより白色固体の表題ィ匕合物が 34mg (収率 13%)得られた。
¾ NMR(CDCl ) 6 ppm; 6. 99—7. 30 (28H, m) 0
3
31P NMR(CDC1 ) δ ppm;— 17. 31 (s)。
3
[0168] (4)RuCl {2, 2,一ビス(ジフヱ-ルホスフィエル)ベンゾフヱノン }(DMF) nの合成
2
2, 2,一ビス(ジフエ-ルホスフィエル)ベンゾフエノン 6. 6mg (0. 012mmol)、ベン ゼンルテニウムクロリド 2量体 3. Omg (0. 006mmol)及び DMFlmlを 100°Cで 45 分間攪拌した後、溶媒を減圧留去して表題化合物を得た。
(5) RuCl {2, 2,一ビス(ジフエ-ルホスフィエル)ベンゾフエノン K(S,S)- DPEN}の合
2
(4)で得られた減圧留去後の RuCl {2, 2,一ビス(ジフエ-ルホスフィエル)ベンゾフ
2
ェノン }(DMF) nの中に(S, S)-DPEN2. 6mg (0. 012mmol)及び塩化メチレン 0 . 8mlを加えて 30分間攪拌した。溶媒を減圧留去し、乾燥したところ、茶褐色の表題 化合物 11. 2mg (収率〉 99%)が得られた。
31P NMR(CDC1 ) δ ppm;— 48. 79 (d, 0. 036Hz)、— 49. 45 (d, 0. 036Hz)。
3
[0169] (実施例 2)
RuCl { 2—ジフエ-ルホスフイノべンズヒドロール K(S,S)- DPEN}の合成
2
(1) 2, 2'—ビス(トリフルォロメタンスルホ -ルォキシ)ベンゾフエノンの合成
2, 2'—ジヒドロキシベンゾフエノン 856. 9mg (4. Ommol)及びジメチルァミノピリジ ン 97. 7mg (0. 8mmol)を塩化メチレン 15mlに溶解し、 0°Cに冷却した。そこへ、 2, 6—ルチジン 1. 2ml(10mmol)をカ卩えた後、トリフルォロメタンスルホン酸無水物 1. 7 ml (lOmmol)を滴下し、その後室温で 18時間攪拌した。反応混合物を水、食塩水 で洗浄した後、硫酸マグネシウムで乾燥した。溶媒を減圧留去した後、アルミナカラ ムクロマトグラフィー(酢酸ェチル:へキサン = 1 :4)で精製することにより表題ィ匕合物 1. 42g (収率 75%)が橙色液体として得られた。
XH NMR(CDC1 ) δ ppm; 7. 39—7. 70 (8H, m)。
3
19F NMR(CDC1 ) S ppm;— 73. 75 (s)。
3
[0170] (2) 2, 2,一ビス {ジフエ-ルホスフィエル }べンゾフエノンの合成
2, 2' ビス(トリフルォロメタンスルホ -ルォキシ)ベンゾフエノン 191. 3mg (0. 4m mol)、酢酸パラジウム 9. Omg (0. 04mmol)、 1, 4 ビス(ジフエ-ルホスフイノ)ブタ ン 17. Omg (0. 04mmol)及びジフエ-ルホスフィンォキシド 310mg (l. 2mmol)を ジメチルスルホキシド 5mlに溶解し、更に N, N—ジイソプロピルェチルァミン 191. 3 mg (0. 4mmol)をカ卩えて 100°Cで 18時間攪拌した。反応混合物を室温まで冷却し 、塩化メチレン 10mlをカ卩えた。この溶液を 1N塩酸、水、食塩水で順次洗浄した後、 硫酸マグネシウムで乾燥した。 溶媒を減圧留去した後、シリカゲルカラムクロマトダラ フィー(酢酸ェチルー塩化メチレン:メタノール = 10: 1)で精製することにより茶褐色 固体の表題化
合物 252mg (収率 90%)が得られた。
¾ NMR(CDC1 ) δ ppm; 7. 06—7. 70 (28H, m)
3
31P NMR(CDC1 ) δ ppm; 32. 07 (s)
3
[0171] (3) 2—ジフエ-ルホスフイノべンズヒドロールの合成
2, 2,一ビス {ジフエ-ルホスフィエル }ベンゾフエノン 252mg (0. 36mmol)をトルェ ン 10mlに溶解し、更にトリェチルァミン 2. Oml (14. 4mmol)を加えた溶液を 0°Cに 冷却した。そこにトリクロロシラン 360 1(3. 6mmol)をカ卩えて、 0°Cのまま 30分間攪 拌した。その後ゆっくりと還流する温度まで上げていき 4時間還流した。反応混合物 を冷却し、 25%水酸ィ匕ナトリウム水溶液 10mlをゆっくり滴下した。水層を塩化メチレ ン 10mlで抽出し、有機層をあわせて 1N塩酸で 2回洗浄した後、硫酸マグネシウムで 乾燥した。減圧濃縮して溶媒を留去した後、シリカゲルカラムクロマトグラフィー(酢酸 ェチル:へキサン = 1 : 6)で精製する事により、黄色固体の表題ィ匕合物 47. 7mg ( 収率 20%)が得られた。
XH NMR(CDC1 ) 6 ppm; 6. 91—7. 39 (28H, m)
3
31P NMR(CDC1 ) δ ppm; —17. 41 (s)
3
(4) RuCl { 2—ジフヱ-ルホスフイノべンズヒドロール } (DMF) nの合成
2
2—ジフエ-ルホスフイノべンズヒドロール 6. 6mg (0. 012mmol)、ベンゼンルテ- ゥムクロリド 2量体 3. Omg (0. 006mmol)及び DMFlmlを 100°Cで 45分間攪拌し た後、溶媒を減圧留去して表題化合物を得た。
(5) RuCl { 2—ジフエ-ルホスフイノべンズヒドロール
2 K(S,S)- DPEN}の合成
(4)で得られた減圧留去後の RuCl { 2—ジフエ-ルホスフイノべンズヒドロール } (D
2
MF) nの中に(S, S)— DPEN2. 6mg (0. 012mmol)及び塩化メチレン 0. 8mlをカロ えて 30分間攪拌した。溶媒を減圧留去した後乾燥して、表題ィ匕合物 11. 2mg (収率 > 99%)を得た。
31P NMR(CDC1 ) S ppm;48. 62、 49. 25 (2d, J = 32. 07Hz)
3 P— P
[0172] (実施例 3)
2, 2,一ビス {ジ一(3, 5—キシリル)ホスフイノ }べンゾフエノンの合成
(1) 2, 2'—ビス(トリフルォロメタンスルホ -ルォキシ)ベンゾフエノンの合成
2, 2'—ジヒドロキシベンゾフエノン 856. 9mg (4. Ommol)及びジメチルァミノピリジ ン 97. 7mg (0. 8mmol)を塩化メチレン 15mlに溶解し、 0°Cに冷却した。そこへ、 2, 6—ルチジン 1. 2ml(10mmol)をカ卩えた後、トリフルォロメタンスルホン酸無水物 1. 7 ml (lOmmol)を滴下し、その後室温で 18時間攪拌した。反応混合物を水、食塩水 で洗浄した後、硫酸マグネシウムで乾燥した。溶媒を減圧留去した後、アルミナカラ ムクロマトグラフィー(酢酸ェチル:へキサン = 1 :4)で精製することにより表題ィ匕合物 1. 42g (収率 75%)が橙色液体として得られた。
XH NMR(CDC1 ) δ ppm ; 7. 39—7. 70 (8H, m)。
3
19F NMR(CDC1 ) δ ppm ;—73. 75 (s)。
3
[0173] (2) 2, 2,一ビス {ジ一(3, 5—キシリル)ホスフィエル }べンゾフエノンの合成
2, 2' ビス(トリフルォロメタンスルホ -ルォキシ)ベンゾフエノン 191. 3mg (0. 4m mol)、酢酸パラジウム 9. Omg (0. 04mmol)、 1, 4 ビス(ジフエ-ルホスフイノ)ブタ ン 17. Omg(0.04mmol)及びジー(3, 5—キシリル)ホスフィンォキシド 310mg(l.2 mmol)をジメチルスルホキシド 5mlに溶解し、更に N, N—ジイソプロピルェチルアミ ン 191.3mg(0.4mmol)をカ卩えて 100°Cで 18時間攪拌した。反応混合物を室温ま で冷却し、塩化メチレン 10mlをカ卩えた。この溶液を 1N塩酸、水、食塩水で順次洗浄 した後、硫酸マグネシウムで乾燥した。 溶媒を減圧留去した後、シリカゲルカラムク 口マトグラフィー(酢酸ェチルー塩化メチレン:メタノール = 10: 1)で精製することによ り茶褐色固体の表題ィ匕
合物 252mg (収率 90%)が得られた。
¾ NMR(CDCl) 6ppm;2.22(24H, s), 7.03—7.78(20H, m)。
3
31P NMR(CDCl) 6ppm;32.08(s)。
3
[0174] (3)2, 2,一ビス {ジ一(3, 5—キシリル)ホスフイノ }べンゾフエノンの合成
2, 2,一ビス {ジ一(3, 5—キシリル)ホスフィエル }ベンゾフエノン 252mg(0.36mmol )をトルエン 10mlに溶解し、更にトリェチルァミン 2. Oml (14.4mmol)をカ卩えた溶液 を 0°Cに冷却した。そこ〖こトリクロロシラン 360 1(3.6mmol)を加えて、 0°Cのまま 30 分間攪拌した。その後ゆっくりと還流する温度まで上げていき 4時間還流した。反応 混合物を冷却し、 25%水酸ィ匕ナトリウム水溶液 10mlをゆっくり滴下した。水層を塩化 メチレン 10mlで抽出し、有機層をあわせて 1N塩酸で 2回洗浄した後、硫酸マグネシ ゥムで乾燥した。減圧濃縮して溶媒を留去した後、シリカゲルカラムクロマトグラフィー (酢酸ェチル:へキサン =1:6)で精製する事により、黄色固体の表題ィ匕合物 47.7 mg (収率 20%)が得られた。
'Η NMR(CDC1 ) 6ppm;2.15(12H, s), 2.23(12H, s), 6.73—7.41(20
3
H, m)。
31P NMR(CDC1 ) δ ppm;— 18.02(s)。
3
[0175] (実施例 4)
RuCl {ビス(2—ジフエ-ルホスフイノフエ-ル)エーテル }{(S,S)- DPEN}の合成
2
(l)RuCl {ビス(2—ジフヱ-ルホスフイノフエ-ル)エーテル } (DMF) nの合成
2
ビス(2—ジフエ-ルホスフイノフエ-ル)エーテル 6.4mg(0.012mmol)、ベンゼン ルテニウムクロリド 2量体 3. Omg(0.006mmol)及び DMFlmlを 100°Cで 30分間 攪拌した後、溶媒を減圧留去して表題化合物を得た。
(2)RuCl {ビス(2—ジフヱ-ルホスフイノフエ-ル)エーテル K(S,S)- DPEN}の合成
2
(1)で得られた減圧留去後の RuCl {ビス(2—ジフエ-ルホスフイノフエ-ル)エーテ
2
ル } (DMF) nの中に(S, S)— DPEN2. 6mg (0. 012mmol)及び塩化メチレン 0. 8 mlを加えて 30分間攪拌した。溶媒を減圧留去し、乾燥したところ、茶褐色の表題ィ匕 合物 11. lmg (収率〉 99%)が得られた。
31P NMR(CDCl ) 6 ppm; 43. 09 (s)。
3
なお、原料のビス(2—ジフエ-ルホスフイノフエ-ル)エーテルは STREM CHEMI CALS社より購入したものを使用した。
[0176] (実施例 5)
2'—メチルァセトフエノンの不斉水素化反応
窒素雰囲気下、実施例 2の(4)で得られた RuCl (DPBOL) (DMF) n (0. 4
2
mol%)、 (S, S)-DPEN (0. 4mol%)、 2,—メチルァセトフヱノン 402. 5g (3. 0mm ol)、水酸化カリウム 1. 3mg (0. 8mol%)、及び 2 プロパノール 3. 3mLをステンレ スオートクレーブに入れ、室温、水素圧 0. 8MPa (8atm)で 4時間撹拌反応させて、 (1R)— 1— (2 メチルフ ニル)—エタノールを得た。 GC収率 99%以上。光学純度 96 %ee。
[0177] (実施例 6)
2,一メチルァセトフエノンの不斉水素化反応
実施例 5において、 RuCl (DPBOL) (DMF) nの代わりに RuCl (DM— BIPHEP
2 2
) (DMF) nを用い、反応温度を 0°Cとした以外は実施例 5と同様にして反応を行い、 ( 1R)— 1— (2—メチルフ -ル)—エタノールを得た。 GC収率 99%以上。光学純度 88 %ee。
[0178] (実施例 7)
2,一メチルァセトフエノンの不斉水素化反応
実施例 5において、 RuCl (DPBOL) (DMF) nの代わりに RuCl (DM— BINAP) (
2 2
DMF) nを用い、反応温度を 0°Cとした以外は実施例 5と同様にして反応を行い、 (1 R)—l—( 2 メチルフ ニル) エタノールを得た。 GC収率 99%以上。光学純度 86% eeG
[0179] (実施例 8)
ァセトフヱノンの不斉水素化反応
実施例 5にお 、て、 2,一メチルァセトフエノンの代わりにァセトフエノンを用いた以外 は実施例 5と同様にして反応を行い、(1R)— 1—フエニルエタノールを得た。 GC収率 99%以上。光学純度 91%ee。
[0180] (実施例 9)
ァセトフエノンの不斉水素化反応
実施例 8において、 RuCl (DPBOL) (DMF) nの代わりに RuCl ( (S)-BINAP) (
2 2
DMF) nを用いた以外は実施例 8と同様にして反応を行 、、 ( 1R)—1— (フエ-ルエタ ノールを得た。 GC収率 99%以上。光学純度 87%ee。
[0181] [表 1]
Figure imgf000092_0001
[0182] (実施例 10)
3,一メチルァセトフエノンの不斉水素化反応
実施例 5にお!/、て、 2,一メチルァセトフエノンの代わりに 3,一メチルァセトフエノンを 用いた以外は実施例 5と同様にして反応を行い、(1R)— (3—メチルフエニル)ェタノ ールを得た。 GC収率 34%。光学純度 93%ee。
[0183] (実施例 11)
メチル 2,一ナフチルケトンの不斉水素化反応 実施例 5において、 2,一メチルァセトフエノンの代わりにメチル 2,一ナフチルケト ンを用いた以外は実施例 5と同様にして反応を行い、(R)— 1— (2 メチルフエ-ル) エタノールを得た。 GC収率 99%以上。光学純度 82%ee。
[0184] (実施例 12)
2'—メチルァセトフエノンの不斉水素化反応
実施例 5において、 RuCl (DPBOL) (DMF) nの代わりに RuCl (DPEphos) (D
2 2
MF) nを用いた以外は実施例 5と同様にして反応を行 、、 (1R)—1 (2 メチルフエ ニル)エタノールを得た。 GC収率 99%以上。光学純度 41%ee。
[0185] (実施例 13)
ァセトフヱノンの不斉水素化反応
実施例 4で合成した RuCl (DPEphos) {(S , S)-DPEN } 11. lmg (0. 012mmol)
2
を而圧管に入れ、 0. 5Μ水酸化カリウム 2 プロパノール溶液 48 1 (0. 024mmol) 及び 2 プロパノール 3. 3mlをカ卩え、アルゴン雰囲気下 30分間攪拌した。その後ァ セトフエノン 350 1 (3. Ommol)を加え、 0. 8MPa (8atm)の水素雰囲気下 4時間攪 拌した。その結果、ァセトフエノンのアルコール還元体である、(1R)— 1—フエ-ルエタ ノールが収率 99%以上、不斉収率 91 %eeで得られた。
[0186] (実施例 14)
不斉水素化反応
実施例 8において、 RuCl (DPBOL) (DMF) nの代わりに RuCl (DPBP) (DMF)
2 2
nを用いた以外は実施例 6と同様にして反応を行い、(1R)— 1 フエ-ルエタノールを 得た。 GC収率 96%。光学純度 90%ee。
[0187] (実施例 15— 19)
不斉水素化反応
実施例 14にお 、て、ァセトフエノンの代わりに下記表 2に示すケトン類を用いた以 外は実施例 11と同様にして反応を行った。結果を表 2に示す。
[0188] [表 2]
Figure imgf000094_0001
[0189] (実施例 20— 23)
不斉水素化反応
実施例 14にお 、て、 2 '—メチルァセトフエノンの代わりに下記表 3に示すケトン類及 び水素圧を代えた以外は実施例 11と同様にして反応を行い、それぞれ表 3のプロダ タト欄に記載のアルコールを得た。結果を表 3に示す。
[0190] [表 3]
Figure imgf000095_0001
[0191] (実施例 24)
Rh {2, 2 ビス(ジフエ-ルホスフィエル)ベンゾフエノン }{(S,S)- DPEN} (SbF―)
6 の合成
(1) [Rh+{2, 2 ビス(ジフ ニルホスフィニル)ベンゾフ ノン }(cod) } (SbF―)の合
6 成
2, 2 ビス(ジフエ-ルホスフィエル)ベンゾフエノン 55. Omg(0. lmmol)、 [Rh(c od)2]SbF 52.3mg(0. lmmol)を塩化メチレン 3mlに溶かし 25°Cで 3間撹拌した
6
後、溶媒を減圧留去して表題化合物を得た。
(2) RhT{2, 2 ビス(ジフエ-ルホスフィエル)ベンゾフエノン }{(S,S)- DPEN} (SbF ―)の
6 合成
(1)で得られた減圧留去後の [Rh+ { 2 2,—ビス(ジフヱニルホスフィニル)ベンゾフ ノン }(cod)}(SbF— )の中に(S S)— DPEN21.2mg(0. lmmol)及び塩化メチ
6
レン 2mlを加えて水素雰囲気下 1時間撹拌した。溶媒を減圧留去し、乾燥して表題 化合物 11 Omg (収率 > 99 %)を得た。
31
P NMR(CDC1 ) Sppm;48.28 57.04 (2dd J =40.5Hz J =157.
3 P— P P— Rh
9Hz )
[0192] (実施例 25) 水素移動型反応による不斉還元反応
窒素雰囲気下、実施例 18で得られた Rh+ (DPBP){(S,S)- DPEN} (SbF―) (
6
3mol%)、ァセトフエノン 36. 6mg (0. 3mmol)、カリウム tert—ブトキシド 6. 7mg (l 8mol%)、 2—プロパノール 3. 6mL及び塩化メチレン 2— 3滴をステンレスオートタレ ーブに入れ、 60°Cで 24時間撹拌反応させて、(1R)—フ ネチルアルコールを得た。 GC収率 99%以上。光学純度 68%ee。
[0193] (実施例 26— 29)
水素移動型反応による不斉還元反応
実施例 25にお 、て、ァセトフエノンの代わりに下記表 4に示すケトン類を用いた以 外は実施例 25と同様にして反応を行った。結果を表 4に示す。
[0194] [表 4]
Figure imgf000096_0001
[0195] (実施例 30)
水素移動型反応による不斉還元反応
窒素雰囲気下、実施例 18で得られた Rh+ (DPBP){(S,S)- DPEN} (SbF―) (
6
3mol%)、ァセトフエノン 36. 6mg (0. 3mmol)、カリウム tert—ブトキシド 6. 7mg (l 8mol%)、 2—プロパノール 3. 6mL及びジクロロエタン 0. 4mLをステンレスオートク レーブに入れ、 60°Cで 24時間撹拌反応させて、(1R)—フヱネチルアルコールを得 た。 GC収率 87%以上。光学純度 87%ee。
[0196] (実施例 31— 34)
水素移動型反応による不斉還元反応
実施例 30にお 、て、ァセトフエノンの代わりに下記表 5に示すケトン類を用いた以 外は実施例 30と同様にして反応を行った。結果を表 5に示す。
[0197] [表 5]
Figure imgf000097_0001
産業上の利用可能性
本発明は、光学収率の優れた不斉合成用触媒として有用な新規な遷移金属錯体 、好ましくは光学活性の遷移金属錯体、より好ましくはルテニウム錯体又はロジウム錯 体を提供するものである。そして、これらの錯体を触媒として、産業上有用なアルコー ル類を立体選択的に高収率で製造することができる。
したがって、本発明の金属錯体、それからなる不斉合成用触媒はいずれも、立体 選択的な有機化合物の製造に極めて有用であり、産業上の利用性を有するものであ る。

Claims

請求の範囲
[1] 次の一般式 [1]
[LMX Z1 ] [1]
P n
(式中、 Lは一般式 [2]
[化 73]
Figure imgf000099_0001
(式中、環 A及び環 Bはそれぞれ独立して置換基を有していてもよい芳香環を示し、 Q\ Q2、 Q3、及び Q4はそれぞれ独立して置換基を有していてもよいァリール基又は 置換基を有していてもよい脂環式基を示し、 Y1はスぺーサーを示す。)で表される化 合物を示し、 Mは遷移金属を示し、 Xはハロゲン原子又は陰イオンを示し、 Z1は一般 式 [3]
[化 74]
Figure imgf000099_0002
(式中、環 C及び環 Dはそれぞれ独立して置換基を有していてもよいフエ-ル基又は 置換基を有していてもよい脂環式基を示し、 R21、 R22、 R23、及び R24はそれぞれ独立 して水素原子又はアルキル基を示す。)で示される化合物を示し、 pは 1又は 2を示し 、 nは自然数を示す。)で表される遷移金属錯体。
[2] 一般式 [2]で表される化合物の Y1が、カルボ-ル基、スルホ-ル基、チォカルボ-ル 基、 -CH (OH)-又は- CH (SH)-である請求の範囲第 1項に記載の遷移金属錯体
[3] 一般式 [3]で表される化合物が、光学活性化合物であり、遷移金属錯体が不斉遷移 金属錯体である、請求の範囲第 1又は 2項に記載の遷移金属錯体。
[4] 遷移金属錯体が、元素の周期表の第 8— 10族の遷移金属錯体である請求の範囲第 1一 3項のいずれかに記載の遷移金属錯体。
[5] 遷移金属錯体力 ルテニウム又はロジウムの遷移金属錯体である請求の範囲第 1一 4項の 、ずれかに記載の遷移金属錯体。
[6] 遷移金属錯体が、次の一般式 [1 la]
[化 75]
Figure imgf000100_0001
(式中、環 A及び環 Bはそれぞれ独立して置換基を有していてもよい芳香環を示し、
Q'Q2, Q3、及び Q4はそれぞれ独立して置換基を有していてもよいァリール基又は置 換基を有していてもよい脂環式基を示し、 Y1はカルボニル基、スルホニル基、チォカ ルボニル基、 CH (OH)—又は— CH (SH)—から選ばれるスぺーサーを示し、 X1及 び X2はそれぞれ独立してハロゲン原子を示し、環 C及び環 Dはそれぞれ独立して置 換基を有して 、てもよ 、フエ-ル基又は置換基を有して 、てもよ 、脂環式基を示し、 R21、 R22、 R23、及び R24はそれぞれ独立して水素原子又はアルキル基を示し、 *は 不斉炭素であることを示す。 )で表される光学活性ルテニウムホスフィンジアミン錯体 である、請求の範囲第 5項に記載の遷移金属錯体。
[7] 遷移金属錯体が、次の一般式 [1 2a]
[化 76]
Figure imgf000101_0001
[式中、環 A及び環 Bはそれぞれ独立して置換基を有していてもよい芳香環を示し、
Q\ Q2、 Q3、及び Q4はそれぞれ独立して置換基を有していてもよいァリール基又は 置換基を有していてもよい脂環式基を示し、 Y1はカルボニル基、スルホニル基、チォ カルボ-ル基、 CH (OH)—又は CH (SH)—から選ばれるスぺーサーを示し、環 C 及び環 Dはそれぞれ独立して置換基を有して 、てもよ 、フエニル基又は置換基を有 していてもよい脂環式基を示し、 R21、 R22、 R23、及び R24はそれぞれ独立して水素原 子又はアルキル基を示し、(X3)—は陰イオンを示し、 *は不斉炭素であることを示す 。 ]で表されるロジウムホスフィン錯体である、請求の範囲第 5項に記載の遷移金属錯 体。
[8] 請求の範囲第 3— 7項のいずれかに記載の遷移金属錯体が、一般式 [4]
[LMX Z2 ] [4]
q m r
(式中、 Lは一般式 [2]
[化 77]
Figure imgf000101_0002
(式中、環 A及び環 Bはそれぞれ独立して置換基を有していてもよい芳香環を示し、 Q\ Q2、 Q3、及び Q4はそれぞれ独立して置換基を有していてもよいァリール基又は 置換基を有していてもよい脂環式基を示し、 Y1はスぺーサーを示す。)で表される化 合物を示し、 Mは遷移金属を示し、 Xはハロゲン原子又は陰イオンを示し、 Z2は中性 配位子を示し、 qは 1又は 2を示し、 rは 1又は 2を示し、 mは 0又は自然数を示す。)で 表される遷移金属化合物と、一般式 [3]で表される化合物が光学活性化合物である 次の一般式 [3a]
[化 78]
Figure imgf000102_0001
(式中、環 C及び環 Dはそれぞれ独立して置換基を有していてもよいフエ-ル基又は 置換基を有していてもよい脂環式基を示し、 R21、 R22、 R23、及び R24はそれぞれ独立 して水素原子又はアルキル基を示す。)で表される化合物との反応により、反応系の その場で得られるものである請求の範囲第 3— 7項のいずれかに記載の遷移金属錯 体。
[9] 請求の範囲第 3— 8項のいずれかに記載の遷移金属錯体の少なくとも 1種を含有し てなる不斉合成用触媒。
[10] 一般式 [4]
[LMX Z2 ] [4]
q m r
(式中、 Lは、一般式 [2]
[化 79]
Figure imgf000103_0001
(式中、環 A及び環 Bはそれぞれ独立して置換基を有していてもよい芳香環を示し、 Q\ Q2、 Q3、及び Q4はそれぞれ独立して置換基を有していてもよいァリール基又は 置換基を有していてもよい脂環式基を示し、 Y1はスぺーサーを示す。)で表される化 合物を示し、 Mは遷移金属を示し、 Xはハロゲン原子又は陰イオンを示し、 Z2は中性 配位子を示し、 qは 1又は 2を示し、 rは 1又は 2を示し、 mは 0又は自然数を示す。)で 表される遷移金属化合物と、一般式 [3a]
[化 80]
Figure imgf000103_0002
(式中、環 C及び環 Dはそれぞれ独立して置換基を有していてもよいフエ-ル基又は 置換基を有していてもよい脂環式基を示し、 R21、 R22、 R23、及び R24はそれぞれ独立 して水素原子又はアルキル基を示し、 *は不斉炭素であることを示す。)で示される 光学活性化合物とを含有してなる不斉合成用触媒。
[11] 不斉合成用触媒が、不斉水素化触媒である請求の範囲第 9又は 10項に記載の不 斉合成用触媒。
[12] 次の一般式 [2' ] [化 81]
Figure imgf000104_0001
(式中、環 Α及び環 Βはそれぞれ独立して置換基を有していてもよい芳香環を示し、 Q\ Q2、 Q3、及び Q4はそれぞれ独立して置換基を有していてもよいァリール基又は 置換基を有していてもよい脂環式基を示し、 Y2はカルボ-ル基(c = o)、スルホ-ル 基(SO )、チォカルボ-ル(C = S)基、ーじ11 (011)—又はーじ11 (311)—を示す。)で
2
表される化合物。
[13] 次の一般式 [11]
[化 82]
Figure imgf000104_0002
(式中、
Figure imgf000104_0003
R2は、それぞれ独立して置換基を有してもよい炭化水素基、置換基を有 して!/、てもよ!/、脂肪族複素環基又は置換基を有して!/、てもよ!、芳香族複素環基を示 す (但し、 R1と R2が同一となる場合を除く。 ) oまた、 R1と R2とが結合して、隣接する炭 素原子と一緒になつて環を形成して 、てもよく、その環は置換基を有して 、てもよ 、。 )で表されるケトンィ匕合物を請求項 9一 11項のいずれかに記載の不成合成用触媒を 用 、て不斉水素化反応させることを特徴とする、次の一般式 [12]
[化 83] [12]
R1 R2
(式中、 *は不斉炭素であることを示し、 R1及び R2は前記と同じ。)で表される光学活 性アルコールの製造方法。
PCT/JP2004/011693 2003-08-13 2004-08-13 新規な遷移金属錯体、及び該錯体を用いた光学活性アルコールの製造法 WO2005016943A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005513186A JP4590353B2 (ja) 2003-08-13 2004-08-13 新規な遷移金属錯体、及び該錯体を用いた光学活性アルコールの製造法
AT04771660T ATE509024T1 (de) 2003-08-13 2004-08-13 Neuer übergangsmetallkomplex und verfahren zur herstellung von optisch aktivem alkohol mit dem komplex
EP04771660A EP1661903B8 (en) 2003-08-13 2004-08-13 Novel transition metal complex and process for producing optically active alcohol with the complex
US11/353,533 US7473793B2 (en) 2003-08-13 2006-02-13 Transition metal complex and process for producing optically active alcohol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003293145 2003-08-13
JP2003-293145 2003-08-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/353,533 Continuation US7473793B2 (en) 2003-08-13 2006-02-13 Transition metal complex and process for producing optically active alcohol

Publications (1)

Publication Number Publication Date
WO2005016943A1 true WO2005016943A1 (ja) 2005-02-24

Family

ID=34190986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011693 WO2005016943A1 (ja) 2003-08-13 2004-08-13 新規な遷移金属錯体、及び該錯体を用いた光学活性アルコールの製造法

Country Status (5)

Country Link
US (1) US7473793B2 (ja)
EP (1) EP1661903B8 (ja)
JP (1) JP4590353B2 (ja)
AT (1) ATE509024T1 (ja)
WO (1) WO2005016943A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007646A1 (ja) 2005-07-07 2007-01-18 Takasago International Corporation 均一系不斉水素化反応用触媒
JP2009001545A (ja) * 2007-05-22 2009-01-08 Takasago Internatl Corp アルコール類の製造方法
JP2009544653A (ja) * 2006-07-27 2009-12-17 エフ.ホフマン−ラ ロシュ アーゲー 1,1,1−トリフルオロアセトンの不斉水素化
WO2012137460A1 (ja) * 2011-04-06 2012-10-11 高砂香料工業株式会社 新規ルテニウム錯体及びこれを触媒とする光学活性アルコール化合物の製造方法
CN102858788A (zh) * 2010-04-28 2013-01-02 高砂香料工业株式会社 钌络合物和制备光学活性醇化合物的方法
JP2019521957A (ja) * 2016-05-06 2019-08-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se P−キラルホスフィン配位子及び不斉合成へのその使用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241566B (zh) * 2011-05-09 2013-12-18 中山奕安泰医药科技有限公司 一种二苯甲醇及其衍生物的制备方法
CN103619858A (zh) * 2011-06-24 2014-03-05 国立大学法人九州大学 新型化合物及使用其的有机装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074829A1 (en) * 2000-03-30 2001-10-11 Chirotech Technology Limited Ruthenium-diphosphine complexes and their use as catalysts
JP2002308816A (ja) * 2001-02-13 2002-10-23 Basf Ag 少なくとも1つのエチレン性不飽和二重結合を有する化合物をヒドロホルミル化する方法、錯化合物用のリガンド、前記のリガンドを有するviii副族の金属の錯体からなる触媒及び前記の触媒の使用
EP1323724A2 (en) * 2001-12-28 2003-07-02 Kanto Kagaku Kabushiki Kaisha Novel ruthenium complexes and process for preparing alcoholic compounds using these

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074829A1 (en) * 2000-03-30 2001-10-11 Chirotech Technology Limited Ruthenium-diphosphine complexes and their use as catalysts
JP2002308816A (ja) * 2001-02-13 2002-10-23 Basf Ag 少なくとも1つのエチレン性不飽和二重結合を有する化合物をヒドロホルミル化する方法、錯化合物用のリガンド、前記のリガンドを有するviii副族の金属の錯体からなる触媒及び前記の触媒の使用
EP1323724A2 (en) * 2001-12-28 2003-07-02 Kanto Kagaku Kabushiki Kaisha Novel ruthenium complexes and process for preparing alcoholic compounds using these

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K. MIKAMI ET AL., ANGEW, CHEM. INT. ED., vol. 38, 1998, pages 495

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007646A1 (ja) 2005-07-07 2007-01-18 Takasago International Corporation 均一系不斉水素化反応用触媒
EP2095875A1 (en) 2005-07-07 2009-09-02 Takasago International Corporation Homogeneous asymmetric hydrogenation catalyst
JP2009544653A (ja) * 2006-07-27 2009-12-17 エフ.ホフマン−ラ ロシュ アーゲー 1,1,1−トリフルオロアセトンの不斉水素化
JP2009001545A (ja) * 2007-05-22 2009-01-08 Takasago Internatl Corp アルコール類の製造方法
CN102858788A (zh) * 2010-04-28 2013-01-02 高砂香料工业株式会社 钌络合物和制备光学活性醇化合物的方法
CN102858788B (zh) * 2010-04-28 2016-01-27 高砂香料工业株式会社 钌络合物和制备光学活性醇化合物的方法
WO2012137460A1 (ja) * 2011-04-06 2012-10-11 高砂香料工業株式会社 新規ルテニウム錯体及びこれを触媒とする光学活性アルコール化合物の製造方法
JPWO2012137460A1 (ja) * 2011-04-06 2014-07-28 高砂香料工業株式会社 新規ルテニウム錯体及びこれを触媒とする光学活性アルコール化合物の製造方法
US9255049B2 (en) 2011-04-06 2016-02-09 Takasago International Corporation Ruthenium complex and method for preparing optically active alcohol compounds using the same as a catalyst
JP2019521957A (ja) * 2016-05-06 2019-08-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se P−キラルホスフィン配位子及び不斉合成へのその使用
JP7098532B2 (ja) 2016-05-06 2022-07-11 ビーエーエスエフ ソシエタス・ヨーロピア P-キラルホスフィン配位子及び不斉合成へのその使用

Also Published As

Publication number Publication date
EP1661903B1 (en) 2011-05-11
US20060142603A1 (en) 2006-06-29
EP1661903B8 (en) 2011-10-19
EP1661903A4 (en) 2006-10-11
US7473793B2 (en) 2009-01-06
JP4590353B2 (ja) 2010-12-01
JPWO2005016943A1 (ja) 2007-11-01
EP1661903A1 (en) 2006-05-31
ATE509024T1 (de) 2011-05-15

Similar Documents

Publication Publication Date Title
JP5671456B2 (ja) 3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途
JP4500289B2 (ja) 2,3−ビス(ジアルキルホスフィノ)ピラジン誘導体及びその製造方法、並びに該誘導体を配位子とする金属錯体
KR100384411B1 (ko) 키랄리간드인헤테로방향족디포스핀
JPWO2006046508A1 (ja) ルテニウム錯体及びこれを用いるtert−アルキルアルコールの製造方法
WO2007007646A1 (ja) 均一系不斉水素化反応用触媒
US7473793B2 (en) Transition metal complex and process for producing optically active alcohol
JP4718452B2 (ja) 光学活性遷移金属−ジアミン錯体及びこれを用いた光学活性アルコール類の製造方法
JPH04139140A (ja) 2,2’―ビス(ジフェニルホスフィノ)―5,5’,6,6’,7,7’,8,8’―オクタヒドロ―1,1’―ビナフチル及びこれを配位子とする遷移金属錯体
JPH0713076B2 (ja) ロジウム―ジホスフイン錯体及びその製造方法
WO2006137195A1 (ja) スルホナート触媒及びそれを利用したアルコール化合物の製法
JP3771070B2 (ja) 軸不斉化合物の製造方法、その製造中間体、新規な軸不斉化合物を配位子とする遷移金属錯体、不斉水素化触媒及び不斉炭素−炭素結合形成触媒
JP5271503B2 (ja) 有機ホウ素化合物の製造方法
JP3020128B2 (ja) 光学活性カルボン酸の製造法
JP4028625B2 (ja) ホスフィン化合物およびそれを配位子とするロジウム錯体
JP2000136193A (ja) 光学活性ビスホスフィノメタン並びにそれらのロジウム又は銅錯体を用いる不斉合成
JP6291179B2 (ja) 光学活性2級アルコールの製造方法
US20030162994A1 (en) 6,6'-Bis-(1-Phosphanorbornadiene) diphosphines, their preparation and their uses
JP4795559B2 (ja) l−メントールの製造方法
WO2006022020A1 (ja) イリジウム錯体
JP4845470B2 (ja) 光学活性アミノアルコール類の製造方法
JP4562736B2 (ja) 光学活性アルコールの製造方法
WO2006088142A1 (ja) 不斉合成用触媒およびそれに用いる配位子、並びにこれらを用いた不斉合成反応による光学活性化合物の製造方法
JP2007512222A (ja) 光学活性3−(4−ヒドロキシフェニル)プロピオン酸類の製造方法
JP5087395B2 (ja) スルホナート触媒及びそれを利用したアルコール化合物の製法
CN118620007A (zh) 一种手性四齿膦配体化合物及其制备方法和应用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513186

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11353533

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004771660

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004771660

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11353533

Country of ref document: US