WO2006022020A1 - イリジウム錯体 - Google Patents

イリジウム錯体 Download PDF

Info

Publication number
WO2006022020A1
WO2006022020A1 PCT/JP2004/012394 JP2004012394W WO2006022020A1 WO 2006022020 A1 WO2006022020 A1 WO 2006022020A1 JP 2004012394 W JP2004012394 W JP 2004012394W WO 2006022020 A1 WO2006022020 A1 WO 2006022020A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
iridium complex
represented
atom
alkyl group
Prior art date
Application number
PCT/JP2004/012394
Other languages
English (en)
French (fr)
Inventor
Kazushi Mashima
Tsuneaki Yamagata
Original Assignee
Takasago International Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago International Corporation filed Critical Takasago International Corporation
Priority to PCT/JP2004/012394 priority Critical patent/WO2006022020A1/ja
Priority to JP2006531183A priority patent/JP4682141B2/ja
Priority to US11/660,935 priority patent/US7642357B2/en
Publication of WO2006022020A1 publication Critical patent/WO2006022020A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2447Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring
    • B01J31/2452Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring with more than one complexing phosphine-P atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • C07F15/004Iridium compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium

Definitions

  • the present invention relates to an iridium complex and a complex used for an asymmetric hydrogenation reaction containing the iridium complex.
  • Non-Patent Document 1 a method using a rhodium complex
  • a method using a ruthenium complex for example, see Non-Patent Document 2
  • the price of the rhodium metal used is high, and when ruthenium metal, which is relatively cheaper than rhodium metal, is used, the prepared ruthenium complex is somewhat unstable, and the optical purity of the amine produced is also somewhat low. It is pointed out that it is not high.
  • ruthenium metal which is relatively cheaper than rhodium metal
  • additives are required to obtain highly active catalysts.
  • Patent Document 1 JP-A-11-335334
  • Non-Patent Document 1 J. Chem. Soc., Chem. Commun., 1991, p.1684
  • Non-Patent Document 2 Inorg. Chem. Acta, 1994, 222, p.85
  • Non-Patent Document 3 Angew. Chem. Int. Ed. Engl., 1990, No. 29, p.558
  • Non-Patent Document 4 Chem. Lett., 1995, p.955
  • Non-Patent Document 5 J. Am. Chem. Soc., 1990, 112, p.9400
  • Non-Patent Document 6 Chem. Eur. J., 2004, No. 10, p.267
  • Non-Patent Literature 7 Proceedings of the 51st Coordination Chemistry Conference, 327 (2a-A07) (2001.9.28 1 31)
  • Non-Patent Document 8 Proceedings of the 81st Annual Meeting of the Chemical Society of Japan I, 499 (1 ⁇ -059) (2002.3 .26- 29)
  • Non-Patent Document 9 Molecular Chirality 2002 Abstract, 47 (PS-3) (2002.6.6) Disclosure of Invention
  • An object of the present invention is to provide a novel iridium complex. Another object of the present invention is to provide a novel catalyst having excellent performance in terms of chemical selectivity, enantioselectivity, catalytic activity and the like as a catalyst for asymmetric synthesis reaction, particularly asymmetric hydrogenation reaction. To do. Means for solving the problem
  • L 1 and L 2 each represent a monodentate neutral ligand which may be the same or different, or represent a bidentate neutral ligand formed by L 1 and L 2 .
  • X 1 , X 2 and X 3 are the same It represents one or different halogen atom, and X 4 represents a counteranion.
  • Phosphine compound power The iridium complex according to the above [3], which is a trialkylphosphine, a triarylphosphine, or a dialkylarylphosphine,
  • Oxazolines are represented by the following general formula (2)
  • a nitrogen-containing heterocyclic carbene is represented by the following formula:
  • the bidentate neutral ligand force is an iridium complex according to the above [1], which is a bisphosphine, diamine, bisoxazoline or biscarbene,
  • R 3 R 4 p— Q 1— p R 5 R 6 (3) (Where R 3 , R 5 and R 6 each independently represents an alkyl group, an aryl group or a heterocyclic group, and Q 1 represents a divalent group.
  • R m represent the same or different hydrogen atoms, alkoxy groups, sulfonyl groups or sulfonyl groups
  • R 11 and R 12 represent a hydrogen atom, an alkyl group, or a monocyclic or polycyclic aromatic hydrocarbon group which may be the same or different
  • R 9 and R 11 or R 1Q and R 12 are bonded to each other. It may form a ring.
  • * Represents an asymmetric carbon atom or a non-asymmetric carbon atom.
  • the iridium complex according to [7] which is a compound represented by
  • R LB , R LB , and R 1S are hydrogen atoms (however, R LB and R LB are not hydrogen atoms at the same time, R 17 and R 18 are not hydrogen atoms at the same time)) Substituted with an alkyl group having 1 to 16 carbon atoms, an optionally substituted phenyl group, or an alkyl group having 1 to 16 carbon atoms, an alkoxy group having 1 to 16 carbon atoms, or a halogen atom.
  • Q 2 represents a phenyl group, a biphenyl diyl group or a pinaphthalene diyl group, and the biphenyl diyl group or the binaphthalene diyl group may have an axially asymmetric structure.
  • Q represents an alkylene group, a phenylene group, a biphenyldiyl group or a pinaphthalene diyl group, and the alkylene group may have an asymmetric carbon, and the biphenyldiyl group or binaphthalene diyl group has an axial asymmetric structure.
  • the carbene 1 and the carbene 2 may be the same or different and each represents a nitrogen-containing heterocyclic carbene.
  • a catalyst comprising the iridium complex according to any one of [1] and [1 1], and
  • optically active compound By using the iridium complex defined in the present invention as a catalyst, a highly stereoselective reaction can be performed, and an optically active compound can be obtained in a high yield. These optically active compounds are useful as intermediates for the synthesis of various compounds.
  • alkyl group having 1 to 16 carbon atoms means, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group N_pentyl group, 2_pentyl group, tert_pentyl group, 2_methylbutyl group, 3_methylbutyl group, 2,2-dimethylpropyl group, n-hexyl group, 2_hexyl group, 3_ Hexyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 2-methylpentane-1-yl group, cyclopropyl group, cyclopentyl group, cyclopentyl group, cyclohexyl group, etc.
  • C 11 -C 8 alkyl group means the C 11 -C 16 alkyl group, heptyl group, octyl group, cycloheptyl group.
  • alkyl group having 1 to 10 carbon atoms refers to the alkyl group having 1 to 8 carbon atoms, nonyl group, decyl group, etc., and the term “alkyl group having 1 to 12 carbon atoms” is used.
  • alkyl group having 1 to 10 carbon atoms, undecyl group, dodecyl group, etc., and the ⁇ alkino group having 1 to 15 carbon atoms '' means the alkyl group having 1 to 12 carbon atoms, tridecyl group, tetradecyl group, It refers to a pentadecyl group.
  • alkoxy group having 1 to 16 carbon atoms means a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a 2_butoxy group, a tert_butoxy group, a pentyloxy group, an isopropyl group.
  • iridium complex of the present invention as shown by the general formula (1), three halogen atoms are bridged to two iridium atoms, and a hydrogen atom and a neutral ligand are coordinated to each iridium atom. It is a binuclear iridium cation type complex.
  • examples of the monodentate neutral ligand represented by L 1 and L 2 include phosphine compounds, or heterocyclic compounds such as oxazolines or nitrogen-containing heterocyclic carbene. .
  • Examples of the phosphine compound include monophosphine compounds such as trialkylphosphine, tri (hetero) arylphosphine, and dialkyl (hetero) arylphosphine. These monophosphine compounds may be racemic or optically active. But you can.
  • the alkyl group of the trialkylphosphine has a chain shape.
  • branched or cyclic alkyl group preferably an alkyl group having 11 to 18 carbon atoms.
  • Each alkyl group may be the same or different.
  • examples of the (hetero) aryl group of the tri (hetero) arylphosphine include a phenyl group, a naphthyl group, a biphenyl group, a furyl group, and a chenyl group, and these groups are substituent groups.
  • Each (hetero) aryl group may be the same or different.
  • examples of the substituent substituted on the (hetero) aryl group include an alkyl group, an alkoxy group, a halogenated alkyl group, a dialkylamino group, and an alkylenedioxy group.
  • the alkyl group is preferably an alkyl group having 1 to 16 carbon atoms.
  • alkoxy group an alkoxy group having 1 to 16 carbon atoms is preferred.
  • the alkylated alkyl group is preferably a perfluoroalkyl group such as a trifluoromethyl group or a pentafluoroethyl group.
  • dialkylamino group examples include a dialkylamino group such as a dimethylamino group or a jetylamino group.
  • alkylenedioxy group include a methylenedioxy group, an ethylenedioxy group, and an isopropylidenedioxy group.
  • racemic or optically active 1,3-oxazolines represented by the following general formula (2) are preferable.
  • R 1 and R 2 represent the same or different alkyl group, aryl group or heteroaryl group. * Represents an asymmetric carbon atom or an asymmetric carbon atom, respectively.
  • alkyl group represented by R 1 and R 2 a linear or branched or cyclic alkyl group having a carbon number of 1 to 16 is preferable.
  • Examples of the aryl group represented by R 1 and R 2 include aryl groups such as a phenyl group, a naphthyl group, and a biphenyl group, and these aryl groups may have a substituent.
  • Examples of the substituent substituted on the aryl group include an alkyl group, an alkoxy group, a halogenated alkyl group, and a halogen atom.
  • Examples of the alkyl group of the substituent include an alkyl group having 1 to 16 carbon atoms.
  • Examples of the alkoxy group of the substituent include an alkoxy group having 1 to 16 carbon atoms.
  • the halogenated alkyl group for the substituent is preferably a perfluoroalkyl group, such as a trifluoromethyl group or a pentafluoroethyl group.
  • Examples of the halogen atom for the substituent include a fluorine atom and a chlorine atom.
  • the heteroaryl group represented by R 1 and R 2 includes, for example, 1 to 4 heteroatoms selected from a nitrogen atom, a sulfur atom and an oxygen atom in addition to a carbon atom. And a group formed by removing one hydrogen atom from a monocyclic, bicyclic or tricyclic 5- to 14-membered (preferably 5- to 10-membered) aromatic heterocycle.
  • Examples of the 5- to 14-membered (preferably 5- to 10-membered) aromatic heterocycle include thiophene, benzothiophene, benzofuran, and benzy. Midazole, benzoxazole, benzothiazole, benzisothiazole, naphtho [
  • the nitrogen-containing heterocyclic carbene means a carbene or N-heterocyclic carbene composed of a heterocyclic ring containing at least one nitrogen atom.
  • the nitrogen-containing heterocyclic carbene for example, those having a 5-membered ring structure containing at least one nitrogen atom represented by the following formula are preferred.
  • hetero atoms such as oxygen atoms and sulfur atoms may be present, and double bonds may be present.
  • the nitrogen-containing heterocyclic carbene may have an atom or substituent other than a hydrogen atom on a carbon atom constituting a ring other than a carbene carbon atom or on a nitrogen atom constituting the ring.
  • atoms other than hydrogen atoms include fluorine atoms, chlorine atoms, bromine atoms, and halogen atoms such as iodine atoms.
  • substituents include an alkyl group and an aryl group. Further, the substituent may have a chirality.
  • alkyl group as a substituent of the nitrogen-containing heterocyclic carbene examples include 1 to 6 carbon atoms. These alkyl groups are preferable, and these alkyl groups may be substituted with an alkoxy group or a phenyl group. In addition, when the alkyl group is branched or has a substituent, the alkyl group may be optically active.
  • Examples of the aryl group as the substituent of the nitrogen-containing heterocyclic carbene include, for example, les, substituents, phenyl groups or substituents having substituents, ret, naphthyl groups, etc. Are listed.
  • Examples of the substituent on the aryl group include an alkyl group, an alkoxy group, and a dialkylamino group.
  • the alkyl group is preferably a C 1-16 alkyl group
  • the alkoxy group is preferably a C 16 alkoxy group
  • the dialkylamino group is a dimethylolamino group.
  • a group or a dimethylamino group is preferred.
  • Examples of the bidentate neutral ligand formed by L 1 and L 2 include bisphosphines, diamines, bisoxazolines, and biscarbenes, and these ligands may be racemic. It may be an optically active substance.
  • R 3 , R 5 and R 6 each independently represents an alkyl group, an aryl group or a heterocyclic group, and Q 1 represents a divalent group.
  • the alkyl group represented by R 4 , R 5 and R 6 may be linear, branched or cyclic, for example, 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, more preferably carbon number. 1 to 6 alkyl groups.
  • Examples of aryl groups represented by R 5 and R 6 include aryl groups having 6 to 14 carbon atoms. Specific examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group. These aryl groups may have a substituent, and examples of the substituent include an alkyl group, an alkoxy group, a halogenated alkyl group, and a halogen atom. Specific examples of these substituents include R 1 And those described for the substituent that substitutes for the aryl group represented by R 2 .
  • Examples of the heterocyclic group represented by R 5 and R 6 include aliphatic or aromatic heterocyclic groups.
  • Examples of the aliphatic heterocyclic group include 2 to 14 carbon atoms and at least one hetero atom.
  • aliphatic heterocyclic group examples include a pyrrolidyl-2-one group, a piperidino group, a piperazinyl group, a monoreforino group, a tetrahydrofuryl group, a tetrahydrobiranyl group, and a tetrahydrochenyl group.
  • the aromatic heterocyclic group for example, it has 2 to 15 carbon atoms and contains at least one heteroatom such as a nitrogen atom, oxygen atom or sulfur atom as a heteroatom, 5 to 8 members, preferably 5 Or a 6-membered monocyclic heteroaryl group, a polycyclic or fused-ring heteroaryl group, specifically, a furyl group, a chenyl group, a pyridinole group, a pyrimidyl group, a pyrazinole group, a pyridazyl group, a virazolyl group.
  • a heteroatom such as a nitrogen atom, oxygen atom or sulfur atom as a heteroatom
  • 5 to 8 members preferably 5 Or a 6-membered monocyclic heteroaryl group, a polycyclic or fused-ring heteroaryl group, specifically, a furyl group, a chenyl group, a pyridinole group, a pyrimidyl group, a
  • the alkylene group specifically, an alkylene group having a carbon number of 16 to 16 is preferable, and examples thereof include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group.
  • the methylene chain is R 3 , It may be substituted with an alkyl group, aryl group or heterocyclic group represented by R 5 and R 6 .
  • the phenylene group is o, m or p-phenylene group, and the phenylene group is substituted with an alkyl group, alkoxy group, hydroxyl group, amino group or substituted amino group, etc. ,.
  • the biphenyldiyl group or pinaphthalene diyl group those having a structure of 1,1'-Bialy Nole 2,2'-diyl type are preferred.
  • the biphenyldiyl group or pinaphthalene diyl group is an alkyl group having 1 to 16 carbon atoms. In addition, it may be substituted with an alkoxy group having 1 to 16 carbon atoms, a hydroxyl group, an amino group, a substituted amino group or the like, and may be partially hydrogenated.
  • optically active bisphosphines examples include optically active bisphosphines known before the present application, and one of them is the general formula (7)
  • R 1, R z R and R represent the same or different cycloalkyl group, a C 1-16 alkyl group, a C 1-16 alkoxy group, or a halogen atom (eg For example, it represents a phenyl group which may be substituted with fluorine or chlorine).
  • R 19 and R 2 represent the same or different cycloalkyl group, a C 1-16 alkyl group, a C 1-16 alkoxy group, or a halogen atom (eg For example, it represents a phenyl group which may be substituted with fluorine or chlorine).
  • R 19 and R 2 The cycloalkyl group represented by R 21 and R 22 is preferably a cyclopentyl group or a cyclohexyl group.
  • Specific optically active bisphosphines represented by the general formula (7) include, for example, 2, 2′_bis- (diphenylphosphino) —1, 1′-binaphthyl (hereinafter referred to as BINAP), 2, 2, —Bis— (di—p-tolylphosphino) — 1, 1′—binaphthyl (hereinafter referred to as Tol_BINAP), 2, 2′—bis— (di—m—tolylphosphino) —1, 1′— Binaphthyl, 2, 2'-Bis (di-3, 5-xylylphosphino) 1, 1, 1-binaphthyl (DM-BINAP), 2, 2'-bis (di-p-terrary) Butylphenylphosphino) -1,1,1'-binaphthyl, 2,2'_bis (di-p-methoxyphenylphosphino) -1,1,1'-bin
  • R z R, R b and the cycloalkyl group which may be the same or different, or an alkyl group having a carbon number of 16 to 16, an alkoxy group having a carbon number of 16 to 16, or And a bisphosphine represented by a phenyl group which may be substituted with an atom).
  • the cycloalkyl group represented by R 23 , R 24 , R 25 and R 26 is preferably a cyclopentyl group or a cyclohexyl group.
  • Specific optically active bisphosphines represented by the general formula (8) include, for example, 2, 2'-bis (diphenylphosphino) -1,5,5,6,6 ', 7,7,8. , 8'-octahydro 1, 1, 1'-binaphthyl (hereinafter referred to as H-BINAP), 2, 2 '_bis (Gee p-tolylphosphino) -5, 5, 6, 6, 6'
  • R 27 , R 28 , R 29 and R 3 ° represent the same or different force to represent a cycloalkyl group, a C 1-16 alkyl group, a C 1-16 alkoxy group.
  • a phenyl group which may be substituted with a halogen atom R 31 , R 32 , R 35 and R 36 may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 16 carbon atoms, or an alkoxy group having 1 to 16 carbon atoms, and two of R 31 , R 32 and R 33 May be bonded to form oxygen as a ring member atom. 5- or 6-membered ring may be formed.
  • R 34 , R 35 and R 36 are combined to form a similar ring. You may do it. However, R 33 and R 34 cannot become hydrogen atoms.
  • the cycloalkyl group represented by R 27 , R 28 , R 29 and R 3 ° is preferably a cyclopentyl group or a cyclohexyl group.
  • Specific optically active bisphosphines represented by the general formula (9) include, for example, ((4,4'_bi-1,3_benzodioxanol) -5,5'-diyl) bis (diphenyl).
  • Enylphosphine) SEGP HOS
  • bis (3,5-xylyl) phosphine) (DM- SEGPHOS)
  • optically active bisphosphines that can be used in the present invention are not limited to these, but a particularly preferable optically active bisphosphine is the optically active bisphosphine represented by the general formula (7).
  • NAP NAP
  • SEGPHOS DM-SEGPHOS
  • DTBM-SEGPHOS NAP
  • the diamines in the bidentate ligand are represented by the general formula (4)
  • R m represents a hydrogen atom, an alkoxycarbonyl group or a sulfonyl group
  • R 1Q , R 11 and R 12 represent the same or different hydrogen atom, alkyl group, or monocyclic or polycyclic aromatic hydrocarbon group, and R 11 or R 1Q and R 12 are bonded to each other.
  • * May represent an asymmetric carbon atom or a non-asymmetric carbon atom.
  • the saturated hydrocarbon group represented by R 7 , R 8 , R 13 and R 14 includes a linear, branched or cyclic alkyl group having 1 to 16 carbon atoms.
  • the aryl group is an aryl group having 6 12 carbon atoms such as a phenyl group or a naphthyl group.
  • Examples of the alkyl group represented by R 9 , R 10 , R 11 and R 12 include a monocyclic or polycyclic aromatic carbon group in which a linear, branched, or cyclic alkyl group having 18 to 18 carbon atoms is preferred.
  • the hydrogen group is preferably an aryl group such as a phenyl group, a tolyl group (o-, m-, p-), a xylyl group or a naphthyl group, or an unsaturated hydrocarbon group such as a bur group.
  • An alkenyl group having 2 to 6 carbon atoms such as a propargyl group, a propenyl group or a butynyl group, or an alkynyl group.
  • Examples of the ring formed by combining R 9 and R 11 or R 1Q and R 12 include rings having 3 to 8 carbon atoms such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, and cyclooctane. .
  • R lb , R lb , and R 1S are hydrogen atoms (however, R lb and R lb are not hydrogen atoms at the same time, R 17 and R 18 are not hydrogen atoms at the same time), carbon number is 1-6. Substituted with an alkyl group having 1 to 16 carbon atoms, an optionally substituted phenyl group, or an alkyl group having 1 to 16 carbon atoms, an alkoxy group having 1 to 16 carbon atoms, or a halogen atom.
  • Q 2 represents a phenyl group, a biphenyl diyl group or a pinaphthalene diyl group, and the biphenyl diyl group or the binaphthalene diyl group may have an axially asymmetric structure.
  • the biscarbenes in the bidentate ligand the following general formula (6) (In the formula, Q 3 represents an alkylene group, a phenyl group, a biphenyl diyl group or a pinaphthalene diyl group, and the alkylene group may have an asymmetric carbon, and the biphenyl diyl group or the binaphthalene diyl group has an axial asymmetric structure.
  • the carbene 1 and the carbene 2 may be the same or different and each represents a nitrogen-containing heterocyclic carbene.
  • the alkylene group represented by [0034] Q 3 the same alkylene group as the alkylene group represented by Q 1 may preferably be mentioned.
  • the nitrogen-containing heterocyclic carbene represented by carbene 1 and carbene 2 means a carbene consisting of a heterocyclic ring containing at least one nitrogen atom or N-heterocyclic carbene.
  • Examples of the nitrogen-containing heterocyclic carbene include the following formula:
  • the nitrogen-containing heterocyclic carbene is bonded to Q 3 on the carbon atom constituting the ring other than the carbene carbon atom and on the nitrogen atom constituting the ring, and is not bonded to Q 3.
  • Has an atom or substituent other than a hydrogen atom examples include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom.
  • Examples of the substituent include an alkyl group and an aryl group. Further, the substituent may have chirality.
  • alkyl group As the alkyl group as the substituent of the nitrogen-containing heterocyclic carbene, an alkyl group having a carbon number of 16 to 16 is preferable. These alkyl groups having a carbon number of 16 to 16 are alkoxy having a carbon number of 16 to 16. It may be substituted with a group or a phenyl group. Further, when the alkyl group is branched or has a substituent, the alkyl group may be optically active.
  • the aryl group as the substituent of the nitrogen-containing heterocyclic carbene is, for example, substituted Examples thereof include a group having a group, a group having a group, a group having a phenyl group or a substituent, a group having a group, a group having a group, a group having a substituent, and a naphthyl group.
  • the substituent on the aryl group include an alkyl group, an alkoxy group, and a dialkylamino group.
  • the substituents on the aryl group as the alkyl group, an alkoxy group having a carbon number of 16 to 16 is preferred, and an alkoxy group having a carbon number of 16 to 16 is preferred.
  • the dialkylamino group include a dimethylamino group and a jetylamino group.
  • These biscarbenes may be racemic or optically active.
  • the above-mentioned neutral ligands are available as ligands themselves or as precursors of ligands, and some of them are commercially available reagents, and are produced by the methods described in the corresponding literature. You can also.
  • halogen atom represented by X 1, X 2 and X 3, fluorine, chlorine and bromine, or iodine, and the like.
  • the counter anion represented by X 4 contains a monovalent anionic ligand such as F-, Br-, C1--, ⁇ , I-, CF SO-, p_CH CH SO-, CIO-, NO. ⁇ , BF ⁇ , B (CH
  • the iridium complex of the present invention is obtained by reacting an iridium compound with the above monodentate neutral ligand or bidentate neutral ligand and reacting with hydrogen halide or hydrohalic acid in the next step. Can be manufactured.
  • iridium compound examples include di_ ⁇ -chlorotetrakis (cyclootaten) nilydium ([IrCl (coe)]), di- / i-bromotetrakis (cyclootaten) diiridium ([Ir
  • Jodhbis bicyclo [2, 2, 1] hepta-2,5-gen diiridium ([Irl (nbd)]) etc.
  • the iridium complex of the present invention comprises these iridium compounds and the above monodentate neutral ligand or It can be prepared by reacting a bidentate neutral ligand and then reacting with hydrogen halide or hydrohalic acid.
  • hydrogen halide include hydrogen fluoride, hydrogen chloride, hydrogen bromide, and hydrogen iodide.
  • halogen hydrofluoric acid include hydrofluoric acid, hydrochloric acid, hydrobromic acid, and iodide. Examples include hydrogen acid.
  • the amount of monodentate neutral ligand or neutral ligand is approximately twice the molar amount for monodentate neutral ligands relative to the iridium atom of the iridium compound, and for bidentate neutral ligands. By making the amount almost equal, the result can be obtained.
  • the iridium complex of the present invention has the following general formula (10)
  • ⁇ 1 represents a halogen atom
  • ⁇ 2 represents an organic acid residue
  • other groups have the same meaning as described above.
  • R 46 represents a hydrogen atom, an alkyl group which may have a substituent, an optionally substituted ure, a (hetero) aryl group or an optionally substituted aralkyl group.
  • Other groups have the same meaning as above.
  • It can be prepared by reacting the iridium complex represented by the formula (II) with hydrogen halide or hydrohalic acid.
  • the organic acid residue in Y 2 represented by the general formula (10) represents a structure in which one hydrogen atom is removed from the organic acid as a proton, specifically, a carboxylic acid residue ( R 47 CO), Examples include sulfonic acid residue (R 48 SO) and phosphoric acid residue ((R 49 ) PO).
  • R 47 in R 47 C 0 which is a carboxylic acid residue may have a hydrogen atom or a substituent.
  • alkyl group having 1 to 3 carbon atoms examples include 1 to 4 alkyl groups and halogen atoms.
  • Specific examples of the alkyl group having 1 to 3 carbon atoms which may have a substituent include a methyl group, an ethyl group, a propyl group, a pivaloyl group, and a trifluoromethyl group.
  • examples of the substituent include a methino group, an ethyl group, an n-propyl group, a methoxy group, an ethoxy group, a propoxy group, and a halogen atom. It is done.
  • One 12 alkyl group, a phosphoric acid residue include good Fuweniru group or a naphthyl group which may have a substituent (R 49) As R 49 in PO, carbon atoms which may have a substituent 1
  • 1-6 alkyl group an optionally substituted alkoxy group having 1 to 16 carbon atoms, an optionally substituted phenoxy group, an optionally substituted phenyl group or naphthyl group; Furthermore, the thing which two R49 may couple
  • the optionally substituted phenyl group or naphthyl group include (biphenyl 2,2'-diyl) dioxy group, (1,1, -binaphthyl-2,2, diyl) dioxy group, and the like.
  • Examples of the substituent of the phenyl group or naphthyl group which may have a substituent include a methylol group, an ethyl group, a propyl group, a methoxy group, an ethoxy group, a propoxy group, and a halogen atom.
  • the compound represented by the general formula (11) can be synthesized, for example, by the method described in Angew. Chem. Int. Ed., 1998, Vol. 37, p. 3381-3383.
  • the alkyl group represented by R 46 in the compound represented by the general formula (11) includes a carbon number of 11
  • alkyl groups are mentioned.
  • Examples of (hetero) aryl groups include phenyl, naphthinole, pyridyl, pyrimidinyl, furyl, and chenyl.
  • Substituents include alkyl groups having 1 to 16 carbon atoms, alkoxy groups having 1 to 16 carbon atoms, and fluorine. Examples include halogen atoms such as atoms, chlorine atoms, and fluorine atoms.
  • Examples of the alkyl of the aralkyl group in R 46 include those having 11 to 12 carbon atoms, and examples of the substituent include alkoxy groups having 11 to 16 carbon atoms. And halogen atoms such as fluorine atom, chlorine atom or bromine atom.
  • These reactions are preferably performed in a solvent.
  • the solvent include aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents such as hexane and heptane.
  • Halogen-containing hydrocarbon solvents such as methylene chloride, alcohol solvents such as methanol, ethanol or isopropanol, ether solvents such as jetyl ether, tetrahydrofuran or 1,4-dioxane, acetonitrile, dimethylformamide or dimethylsulfoxide An organic solvent etc. are mentioned, It is preferable to use these solvents individually or in mixture of 2 or more types.
  • Examples of the above-mentioned hydrogen halide or hydrohalic acid include hydrogen halides such as hydrogen chloride, hydrogen bromide or hydrogen iodide, and halogens such as hydrochloric acid, hydrobromic acid or hydroiodic acid. Force that can include hydroacid Hydrohalic acid is preferred from the viewpoint of handling.
  • the amount of hydrogen halide or hydrohalic acid used is approximately 1 per iridium atom.
  • the counteranion of the iridium complex thus obtained can be exchanged from a halogen atom to another atomic group as desired.
  • exchangeable atomic groups include BF, CIO, CF SO (hereinafter referred to as “O” Tf), PF, SbF, BPh, p—CH C H S
  • the thus obtained iridium complex of the present invention is preferably used for the production of an optically active compound.
  • Specific reactions applied for the production of optically active compounds include asymmetric 1,4 monoaddition reactions, asymmetric hydroformylation reactions, asymmetric hydrocyanation reactions, asymmetric hydroamino reactions, asymmetric reactions. Examples thereof include a Heck reaction or an asymmetric hydrogenation reaction, and an asymmetric hydrogenation reaction is particularly advantageously used.
  • Examples of asymmetric hydrogenation reactions include prochiral carbon-carbon double bonds, such as prochiral enamines, olefins or enol ethers, prochiral carbon-oxygen double bonds, such as prochiral ketones, etc.
  • An asymmetric hydrogenation reaction of a prochiral carbon-nitrogen double bond for example, a prochiral imine.
  • R 37 , R 38 , R 39 and R 4 ° each have an optionally substituted alkyl group, an optionally substituted (hetero) aryl group, or a substituted group.
  • An aralkyl group, an acyl group, a carboxyl group, an alkoxycarbonyl group, an optionally substituted rubamoyl group, a cyano group, an acylamino group or an amino group, and R 37 and R 38 or R 39 and R 4 ° are different from each other, and R 37 and R 39 , R 37 and R 4 ° or R 39 and R 4 ° together form an asymmetric cyclic structure. * Indicates an asymmetric carbon.
  • Examples of the alkyl group at R 39 and R 4 ° include an alkyl group having 11 to 18 carbon atoms.
  • Examples of the (hetero) aryl group include a phenyl group, a naphthyl group, a pyridinole group, a pyrimidyl group, a furyl group, a chenyl group, and the like, and examples of the substituent include an alkyl group having a carbon number of 16 and a carbon number of 11 6 halogen groups such as an alkoxy group, a fluorine atom, a chlorine atom, or a bromine atom.
  • examples of the alkyl group include those having 1 to 12 carbon atoms.
  • examples of the acyl group include an acetyl group, a propanol group, a butyryl group, a bivaloyl group, and a benzoyl group.
  • examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, an isopropoxycarbonyl group, a tert_butoxycarbonyl group, and a benzyloxycarbonyl group.
  • Examples of the substituent ruberamoyl group include a dimethylcarbamoyl group, a jetylcarbamoyl group, and a dibenzylcarbamoyl group.
  • Examples of the acylamino group include an acetylamino group, a tert-butoxycarbonylamino group, a benzyloxycarbonylamino group, and the like.
  • a structure for forming an asymmetric cyclic structure as a whole a 5-membered ring structure or a 6-membered ring structure is preferable.
  • R 41 and R 4 are different from each other, and may have an alkyl group which may have a substituent, a substituent, or a (hetero) aryl group or a substituent.
  • R may also represent an aralkyl group, and R 41 and R 42 may be combined together to form an asymmetric cyclic ketone. * Represents an asymmetric carbon.
  • R and R 44 are different from each other and may have an alkyl group, a substituent, a (hetero) aryl group, or a substituent.
  • R 45 represents a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent.
  • R 43 and R 44 , R 43 and R 45, or R 44 and R 45 may form an asymmetric cyclic imine.
  • alkyl group examples include an alkyl group having 11 to 18 carbon atoms
  • examples of the (hetero) aryl group include a phenyl group, a naphthyl group, a pyridyl group, a pyrimidinyl group, a furyl group, and a phenyl group.
  • examples of the substituent include an alkyl group having 11 to 16 carbon atoms, an alkoxy group having 11 to 16 carbon atoms, and a halogen atom.
  • substituent of the aralkyl group examples include alkyl groups having 1 to 12 carbon atoms.
  • the substituted ring represented by the general formula (13) may be substituted.
  • the substituent include a compound having a cycloalkanone skeleton or a cycloalkenone skeleton of number 3 8, a 1 indanone skeleton, a 2-indanone skeleton, a 1-tetralone skeleton, a 2-tetralone skeleton, or a 1 benzosuberone skeleton. And an alkyl group having 1 to 16 carbon atoms, an alkoxy group having 1 to 16 carbon atoms, a halogen atom or an aryl group.
  • R 43 and R 44 , R 43 and R 45, or R 44 and R 45 to form an asymmetric cyclic imine include compounds such as 3, 4-dihydro-2H-pyrrole skeleton, 2 , 3, 4, 5-tetrahydropyridine skeleton, 3H-indole skeleton, 3, 4-dihydroquinoline skeleton, 3, 4-dihydroisoquinoline skeleton, etc., and the substituent has 1 to 6 carbon atoms.
  • Specific examples of the compound represented by (c) in the above formula (13) include acetophenone, propionphenone, butyrophenone, isobutyrophenone, chloromethyl phenyl ketone, bromomethyl phenyl ketone, 2_acetylyl lysine, 3_acetyl pyridine, (o-methoxy) acetophenone, (o_ethoxy) acetophenone, (o_propoxy) acetophenone, (o_benzyloxy) acetophenone, ⁇ -acetonaphthone, ⁇ -chlorophenyl phenyl ketone, ⁇ -bromophenyl methyl ketone, ⁇ _Cyanophylmethyl ketone, phenylbenzyl ketone, phenyl ( ⁇ -trimethylmethinole) ketone, phenyl (m-tolylmethinole) ketone, phenyl (p
  • Specific examples of the compound represented by (e) in the above formula (14) include 3, 4-dihydro-5-phenyl-2H-pyrrole, 6_phenenole 2, 3, 4, 5, -tetrahydropyridine.
  • the iridium complex of the present invention is useful as a reduction catalyst for multiple bonds of an organic compound, particularly as a reduction catalyst for carbon-carbon double bonds or carbon-heteroatom double bonds. Furthermore, by using the ligand of the iridium complex of the present invention as an optically active substance, it is useful as a catalyst for asymmetric hydrogenation reaction. When the iridium complex of the present invention is used as a catalyst, it may be used after increasing the purity of the complex by a method such as concentration, concentration under reduced pressure, solvent extraction, washing, recrystallization, etc. after the reaction of iridium complex synthesis. The reduction reaction catalyst may be used without purifying the complex.
  • the asymmetric hydrogenation reaction as a preferred embodiment of the present invention is carried out by using a substrate to be hydrogenated, for example, an alcohol solvent such as methanol, ethanol or isopropanol, tetrahydrofuran, diethyl ether, methylene chloride, acetone, ethyl acetate, benzene, It is dissolved in a solvent that does not inhibit the asymmetric hydrogenation reaction such as toluene, N, N-dimethylformamide, acetonitrile, or a mixed solvent thereof, and is about 1/10 to 1 / 10,000 mol, preferably about 1 mol to the substrate.
  • an alcohol solvent such as methanol, ethanol or isopropanol, tetrahydrofuran, diethyl ether, methylene chloride, acetone, ethyl acetate, benzene
  • a solvent that does not inhibit the asymmetric hydrogenation reaction such as toluene, N, N-d
  • the hydrogen pressure is about 1 to 10 MPa, preferably about 3 to 7 MPa
  • the temperature is about ⁇ 20 to 100 ° C., preferably about 20 to about 80 ° C. 0.5 to 30 hours, preferably about 1 to 20 hours.
  • the obtained amine was trifluoroacetamidated and then measured by GLC using a chiral ram Chir asil-DEX CB (Chrompack).
  • optically active compound By using the iridium complex defined in the present invention as a catalyst, a highly stereoselective reaction can be performed, and an optically active compound can be obtained in a high yield. These optically active compounds are useful as intermediates for the synthesis of various compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogenated Pyridines (AREA)

Abstract

  一般式(1) 【化1】  [(IrHL1L2)2(μ-X1)(μ-X2)(μ-X3)]X4 (1) (式中、L1及びL2はそれぞれ同一又は異なっていてもよく、単座中性配位子を表すか、又はL1とL2とで形成される二座中性配位子を表す。X1、X2及びX3はそれぞれ同一又は異なっていてもよく、ハロゲン原子を表し、X4はカウンターアニオンを表す。)で表されるイリジウム錯体を提供することを目的とする。  また、本発明は、不斉合成反応、特に不斉水素化反応の触媒として、化学選択性、エナンチオ選択性及び触媒活性等の点で優れた性能を有する新規な触媒を提供する。

Description

明 細 書
イリジウム錯体
技術分野
[0001] 本発明はイリジウム錯体及び該イリジウム錯体を含む不斉水素化反応に使用する 錯体に関する。 背景技術
[0002] 従来、光学活性なァミン化合物を合成する場合、天然由来のァミン化合物を用いる か、あるいはラセミ体のアミン化合物を合成し、光学活性なカルボン酸を用いて光学 分割する方法等が常法であった。しかしながら、前者の方法は原料物質を入手する 困難性等の点で、また、後者の場合はせつ力べ光学分割しても希望する化合物は光 学分割する前に存在している量を越えることが出来ないという不都合さが残っていた 。それらの点を解決するために、近年、ィミン類の触媒的不斉水素化反応による合成 法が盛んに研究されてきた。例えばロジウム錯体を用いる方法 (例えば、非特許文献 1参照)や、ルテニウム錯体を用いる方法 (例えば、非特許文献 2参照)等が知られて いる。ところ力 使用するロジウム金属の価格が高いこと、またロジウム金属よりも比較 的安価なルテニウム金属を用いた場合、調製されるルテニウム錯体がやや不安定で あり、さらに生成されるァミンの光学純度もさほど高くはないなどの指摘がなされてい る。価格が比較的安レ、イリジウム金属を採用した錯体を用レ、る研究報告もあるが、高 活性な触媒を得るためには添加剤を必要とする (例えば、非特許文献 3又は 4参照)。 添加剤を用いないイリジウム錯体の研究報告 (例えば、非特許文献 5又は 6参照)も あるが、基質によっては得られるァミンの光学純度が低いという問題点があった。
[0003] また、イリジウム -カルボキシラト錯体触媒をィミンの不斉水素化反応に用いると、添 加剤を併用することなく高収率で、高立体選択的に光学活性アミン化合物が得られ ることが報告されている (例えば、特許文献 1又は非特許文献 7— 9参照)。しかしなが ら、この錯体を用いても基質によっては低い触媒活性しか得られないという問題点が あった。
特許文献 1 :特開平 11-335334 非特許文献 1:J. Chem. Soc. , Chem. Commun. , 1991年, p.1684
非特許文献 2:Inorg. Chem. Acta, 1994年,第 222卷, p.85
非特許文献 3:Angew. Chem. Int. Ed. Engl. , 1990年,第 29卷, p.558 非特許文献 4: Chem. Lett. , 1995年, p.955
非特許文献 5 :J. Am. Chem. Soc., 1990年,第 112卷, p.9400
非特許文献 6:Chem. Eur. J. , 2004年,第 10卷, p.267
非特許文献 7:第 51回錯体化学討論会講演要旨集, 327(2a-A07) (2001.9.28 一 31)
非特許文献 8:日本化学会第 81春季年会講演予稿集 I, 499(1ΡΒ-059) (2002.3 .26— 29)
非特許文献 9:モレキュラーキラリティー 2002要旨集, 47(PS-3) (2002.6.6) 発明の開示
発明が解決しょうとする課題
[0004] 本発明は、新規イリジウム錯体を提供することを目的とする。また、本発明は、不斉 合成反応、特に不斉水素化反応の触媒として、化学選択性、ェナンチォ選択性及び 触媒活性等の点で優れた性能を有する新規な触媒を提供することを目的とする。 課題を解決するための手段
[0005] 本発明者等は、新規なイリジウム錯体及びそれを用いた不斉合成反応の開発につ いて鋭意検討した結果、一般式(1)で表されるイリジウム錯体を見出し、さらにそれを 用いた反応において不斉誘起が可能となることを見出し、さらに検討を重ねて本発 明を完成させるに至った。
すなわち、本発明は、
[1] 一般式 (1)
[化 1]
[ ( I r H L 1 L 2) 2 (M - X 1 ) (μ, - Χ 2) ( - Χ3) ] Χ 4 ( 1 )
(式中、 L1及び L2はそれぞれ同一又は異なっていてもよぐ単座中性配位子を表す か、又は L1と L2とで形成される二座中性配位子を表す。 X1、 X2及び X3はそれぞれ同 一又は異なっていてもよぐハロゲン原子を表し、 X4はカウンターァニオンを表す。) で表されるイリジウム錯体、
[2] 単座中性配位子又は二座中性配位子が光学活性体である前記 [1]に記載のィ リジゥム錯体、
[3] 単座中性配位子が、ホスフィン化合物、ォキサゾリン類又は含窒素複素環式力 ルベンであることを特徴とする前記 [1]に記載のイリジウム錯体、
[4] ホスフィン化合物力 トリアルキルホスフィン、トリアリールホスフィン又はジアルキ ルァリールホスフィンであることを特徴とする前記 [3]に記載のイリジウム錯体、
[5] ォキサゾリン類が、下記一般式 (2)
Figure imgf000004_0001
(式中、 R1及び R2は同一又は異なっていてもよぐアルキル基、ァリール基又はへテ ロアリール基を表す。 *は、それぞれ不斉炭素原子又は非不斉炭素原子を表す。 ) で表される化合物であることを特徴とする前記 [3]に記載のイリジウム錯体、
[6] 含窒素複素環式カルベンが、下記式
[化 3]
Figure imgf000004_0002
から選択される化合物であることを特徴とする前記 [3]に記載のイリジウム錯体、
[7] 二座中性配位子力 ビスホスフィン類、ジァミン類、ビスォキサゾリン類又はビス カルベン類であることを特徴とする前記 [1]に記載のイリジウム錯体、
[8] ビスホスフィン類力 一般式(3)
[化 4]
R 3 R 4 p— Q 1— p R 5 R 6 ( 3 ) (式中、 R3
Figure imgf000005_0001
R5及び R6はそれぞれ独立して、アルキル基、ァリール基又は複素環 基を表し、 Q1は二価基を表す。)で表される化合物であることを特徴とする前記 [7]に 記載のイリジウム錯体、
[9] ジァミン類が、一般式 (4)
[化 5]
(
Figure imgf000005_0002
び Rmは同一又は異なっていてもよぐ水素原子、アルコキシ力 ルポニル基又はスルホ二ル基を表し、
Figure imgf000005_0003
R11及び R12は同一又は異なっていて もよぐ水素原子、アルキル基、又は単環もしくは多環の芳香族炭化水素基を表し、 R9と R11又は R1Qと R12は結合して環を形成してもよぐ *は不斉炭素原子又は非不斉 炭素原子を表す。)で表される化合物であることを特徴とする前記 [7]に記載のイリジ ゥム錯体、
[10] ビスォキサゾリン類が、下記一般式(5)
Figure imgf000005_0004
(式中、 RLB、 RLB、 及び R1Sは水素原子 (ただし、 RLB及び RLBは同時に水素原子で はなぐ R17及び R18は同時に水素原子ではない。)、炭素数 1一 6のアルキル基、炭 素数 1一 6のアルコキシ基又はハロゲン原子で置換されていてもよいフエニル基、又 は炭素数 1一 6のアルキル基、炭素数 1一 6のアルコキシ基又はハロゲン原子で置換 されていてもよいベンジル基を表し、 Q2はフエ二レン基、ビフエニルジィル基又はピナ フタレンジィル基を表し、ビフエエルジイル基又はビナフタレンジィル基は軸不斉構 造を有してもよレ、。)で表される化合物であることを特徴とする前記 [7]に記載のイリジ ゥム錯体、
[11] ビスカルベン類が、下記一般式 (6)
[化 7] カルベン 1 カルベン 2 ( 6 )
(式中、 Q。はアルキレン基、フエ二レン基、ビフエエルジイル基又はピナフタレンジィ ル基を表し、アルキレン基は不斉炭素を有してもよぐビフヱエルジイル基又はビナフ タレンジィル基は軸不斉構造を有してもよい。カルベン 1及びカルベン 2は同一又は 異なってもよく含窒素複素環式カルベンを表す。 )で表される化合物であることを特 徴とする前記 [7]に記載のイリジウム錯体、
[12] 前記 [1]一 [1 1]のいずれかに記載のイリジウム錯体を含むことを特徴とする触 媒、及び
[13] 不斉水素化反応に使用されることを特徴とする前記 [12]に記載の触媒、 に関する。
発明の効果
[0006] 本発明で規定するイリジウム錯体を触媒とすることによって高立体選択的な反応を 行うことができ、光学活性化合物を高収率で得ることができる。また、これら光学活性 化合物は様々な化合物の合成中間体として有用である。
発明を実施するための最良の形態
[0007] 以下、本発明について説明する。なお、本明細書において、「炭素数 1一 6のアル キル基」とは、例えばメチル基、ェチル基、 n—プロピル基、イソプロピル基、 n—ブチル 基、 sec—ブチル基、 tert—ブチル基、 n_ペンチル基、 2_ペンチル基、 tert_ペンチ ル基、 2_メチルブチル基、 3_メチルブチル基、 2, 2—ジメチルプロピル基、 n—へキシ ル基、 2_へキシル基、 3_へキシル基、 2—メチルペンチル基、 3—メチルペンチル基、 4—メチルペンチル基、 2—メチルペンタン一 3—ィル基、シクロプロピル基、シクロプチ ル基、シクロペンチル基又はシクロへキシル基等をいう。 「炭素数 1一 8のアルキル基 」とは、前記炭素数 1一 6のアルキル基及びへプチル基、ォクチル基、シクロへプチル 基等をいい、「炭素数 1一 10のアルキル基」とは、前記炭素数 1一 8のアルキル基及 びノニル基、デシル基等をいい、「炭素数 1一 12のアルキル基」とは、前記炭素数 1 一 10のアルキル基及びゥンデシル基、ドデシル基等をいい、「炭素数 1一 15のアル キノレ基」とは、前記炭素数 1一 12のアルキル基及びトリデシル基、テトラデシル基、ぺ ンタデシル基等をいう。また、「炭素数 1一 6のアルコキシ基」とは、メトキシ基、ェトキ シ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、 2_ブトキシ基、 t ert_ブトキシ基、ペンチルォキシ基、イソペンチルォキシ基、 2—メチルブトキシ基、 3 —メチルブトキシ基、 neo_ペンチルォキシ基、へキシルォキシ基又はシクロへキシル ォキシ基等をいう。
[0008] 本発明のイリジウム錯体は、一般式(1)で示されるように二つのイリジウム原子に三 つのハロゲン原子が架橋し、各々のイリジウム原子に水素原子及び中性配位子が配 位した二核性イリジウムカチオン型錯体である。
[0009] 一般式(1)中、 L1及び L2で表される単座中性配位子としては、ホスフィン化合物、 又はォキサゾリン類あるいは含窒素複素環式カルベン等の複素環化合物が挙げら れる。
[0010] ホスフィン化合物としては、トリアルキルホスフィン、トリ(ヘテロ)ァリールホスフィン又 はジアルキル(ヘテロ)ァリールホスフィン等のモノホスフィン化合物が挙げられ、これ らモノホスフィン化合物はラセミ体でもよく光学活性体でもよい。
前記ホスフィン化合物において、トリアルキルホスフィンのアルキル基としては、鎖状
、分岐状又は環状のアルキル基、好ましくは炭素数 1一 8のアルキル基が挙げられる 。各々のアルキル基は同一又は異なっていてもよい。
[0011] 前記ホスフィン化合物において、トリ(ヘテロ)ァリールホスフィンの(ヘテロ)ァリール 基としては、フヱニル基、ナフチル基、ビフヱニル基、フリル基又はチェニル基等が挙 げられ、これらの基は置換基を有していてもよぐまた各々の(ヘテロ)ァリール基は同 一又は異なっていてもよレ、。ここで、 (ヘテロ)ァリール基に置換する置換基としては、 アルキル基、アルコキシ基、ハロゲン化アルキル基、ジアルキルアミノ基又はアルキレ ンジォキシ基等が挙げられる。アルキル基としては、炭素数 1一 6のアルキル基が好 ましレ、。また、アルコキシ基としては、炭素数 1一 6のアルコキシ基が好ましレ、。ハロゲ ン化アルキル基としては、パーフルォロアルキル基等が好ましぐ例えばトリフルォロ メチル基又はペンタフルォロェチル基等が挙げられる。ジアルキルアミノ基としては、 例えばジメチルァミノ基又はジェチルァミノ基等のジアルキルァミノ基が挙げられる。 アルキレンジォキシ基としては、例えばメチレンジォキシ基、エチレンジォキシ基又は イソプロピリデンジォキシ基等が挙げられる。
[0012] ォキサゾリン類としては、下記一般式(2)で表される、ラセミ体又は光学活性体の 1 , 3—ォキサゾリン類が好ましい。
[化 8]
Figure imgf000008_0001
(式中、 R1及び R2は同一又は異なっていてもよぐアルキル基、ァリール基又はへテ ロアリール基を表す。 *は、それぞれ不斉炭素原子又は非不斉炭素原子を表す。 )
[0013] R1及び R2で表されるアルキル基としては、炭素数 1一 6の直鎖又は分岐若しくは環 状のアルキル基が好ましレ、。
[0014] R1及び R2で表されるァリール基としては、フエニル基、ナフチル基又はビフエ二ル 基等のァリール基が挙げられ、これらのァリール基は置換基を有していてもよい。ァリ ール基に置換する置換基としては、アルキル基、アルコキシ基、ハロゲン化アルキル 基又はハロゲン原子等が挙げられる。該置換基のアルキル基としては炭素数 1一 6の アルキル基が挙げられる。該置換基のアルコキシ基としては炭素数 1一 6のアルコキ シ基が挙げられる。該置換基のハロゲン化アルキル基としてはパーフルォロアルキル 基等が好ましぐ例えばトリフルォロメチル基又はペンタフルォロェチル基等が挙げら れる。該置換基のハロゲン原子としてはフッ素原子又は塩素原子等が挙げられる。
[0015] R1及び R2で表されるヘテロァリール基としては、例えば、炭素原子以外に窒素原 子、硫黄原子および酸素原子から選ばれる 1又は 2種のへテロ原子を、 1一 4個含む 単環、 2環又は 3環式の 5— 14員(好ましくは 5— 10員)芳香族複素環から水素原子 1個を除いて形成される基等が挙げられる。当該 5— 14員(好ましくは 5— 10員)の芳 香族複素環としては、例えば、チォフェン、ベンゾチォフェン、ベンゾフラン、ベンズィ ミダゾール、ベンズォキサゾール、ベンゾチアゾール、ベンズイソチアゾール、ナフト[
2, 3_b]チォフェン、フラン、フエノキサチイン、ピロール、イミダゾール、ピラゾール、 ォキサジァゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、インドール、イソインド ール、 1H—インタ"ゾール、プリン、 4H—キノリジン、イソキノリン、キノリン、フタラジン、 ナフチリジン、キノキサリン、キナゾリン、シンノリン、カルバゾール、 j3—力ノレボリン、フ ェナントリジン、アタリジン、フエナジン、チアゾール、イソチアゾール、フエノチアジン、 イソォキサゾール、フラザン、フエノキサジン、フタルイミドなどの芳香族複素環、又は これらの環(好ましくは単環)が 1ないし複数個(好ましくは 1又は 2個)の芳香環(例、 ベンゼン環等)と縮合して形成された環などが挙げられる。当該へテロアリール基とし て好ましくは、例えばチォフェン、フラン、ベンゾフラン、ピリジン又はインドール等が 挙げられる。これらのヘテロァリール基は上記ァリール基と同じ置換基を有していても よい。
また、含窒素複素環式カルベンとは、少なくとも 1つの窒素原子を含む複素環から なるカルベン又は N—へテロサイクリックカルベンを意味する。含窒素複素環式カル ベンとしては、例えば下記の式で表される少なくとも 1個の窒素原子を含む 5員環構 造を有するものが好ましレ、。環構造には酸素原子や硫黄原子等のへテロ原子が存 在してレ、てもよく、また二重結合が存在してレ、てもよレ、。
[化 9]
Figure imgf000009_0001
上記含窒素複素環式カルベンは、カルベン性炭素原子以外の環を構成する炭素 原子上又は環を構成する窒素原子上に水素原子以外の原子又は置換基を有して いてもよい。水素原子以外の原子としては、例えばフッ素原子、塩素原子、臭素原子 又はヨウ素原子等のハロゲン原子等が挙げられる。置換基としては、例えばアルキル 基又はァリール基等が挙げられる。また、該置換基がキラリティーを有するものであつ てもよい。
上記含窒素複素環式カルベンの置換基としてのアルキル基としては、炭素数 1一 6 のアルキル基が好ましく、これらアルキル基はアルコキシ基又はフエニル基等で置換 されていてもよい。また、アルキル基が分岐している場合又は置換基を有する場合は 、該アルキル基が光学活性であってもよい。
上記含窒素複素環式カルベンの置換基としてのァリール基としては、例えば置換 基を有してレ、てもよレ、フエニル基又は置換基を有してレ、てもよレ、ナフチル基等が挙 げられる。これらァリール基上の置換基としては、例えばアルキル基、アルコキシ基又 はジアルキルアミノ基等が挙げられる。ァリール基上の置換基において、アルキル基 としては、炭素数 1一 6のアルキル基が好ましぐアルコキシ基としては炭素数 1一 6の アルコキシ基が好ましぐまた、ジアルキルアミノ基としては、ジメチノレアミノ基又はジ ェチルァミノ基等が好ましレ、。
[0018] L1と L2とで形成される二座中性配位子としては、ビスホスフィン類、ジァミン類、ビス ォキサゾリン類又はビスカルベン類等が挙げられ、これらの配位子はラセミ体でも光 学活性体でもよい。
[0019] ビスホスフィン類としては、下記一般式(3)
[化 10]
R 3 R 4 P— Q 1— P R 5 R 6 ( 3 )
(式中、 R3
Figure imgf000010_0001
R5及び R6はそれぞれ独立して、アルキル基、ァリール基又は複素環 基を表し、 Q1は二価基を表す。)で表される。
上記 、 R4、 R5及び R6で表されるアルキル基としては、直鎖状、分岐状又は環状 でもよく、例えば炭素数 1一 15、好ましくは炭素数 1一 10、より好ましくは炭素数 1一 6 のアルキル基が挙げられる。
[0020] また、 R3
Figure imgf000010_0002
R5及び R6で表されるァリール基としては、例えば炭素数 6— 14のァリ ール基が挙げられる。具体的にはフエニル基、ナフチル基、アンスリル基、フエナンス リル基又はビフヱニル基等が挙げられる。これらァリール基は置換基を有していてもよ ぐ該置換基としては、アルキル基、アルコキシ基、ハロゲン化アルキル基又はハロゲ ン原子等が挙げられ、これら置換基の具体例としては、 R1及び R2で表されるァリール 基に置換する置換基で記載したようなものが挙げられる。 [0021] また、 R3
Figure imgf000011_0001
R5及び R6で表される複素環基としては、脂肪族又は芳香族複素環 基が挙げられ、脂肪族複素環基としては、例えば炭素数 2— 14で、異種原子として 少なくとも 1個の例えば窒素原子、酸素原子又は硫黄原子等のへテロ原子を含んで いる、 5 8員、好ましくは 5又は 6員の単環の脂肪族複素環基、多環又は縮合環等 の脂肪族複素環基が挙げられる。脂肪族複素環基の具体例としては、例えばピロリ ジルー 2—オン基、ピペリジノ基、ピペラジニル基、モノレホリノ基、テトラヒドロフリル基、 テトラヒドロビラニル基又はテトラヒドロチェニル基等が挙げられる。芳香族複素環基と しては、例えば炭素数 2 15で、異種原子として少なくとも 1個の窒素原子、酸素原 子又は硫黄原子等の異種原子を含んでいる、 5— 8員、好ましくは 5又は 6員の単環 式へテロァリール基、多環式又は縮合環式のへテロアリール基が挙げられ、具体的 にはフリル基、チェニル基、ピリジノレ基、ピリミジル基、ピラジノレ基、ピリダジル基、ビラ ゾリル基、イミダゾリル基、ォキサゾリル基、チアゾリル基、ベンゾフリル基、ベンゾチェ ニル基、キノリル基、イソキノリル基、キノキサリル基、フタラジル基、キナゾリル基、ナ フチリジノレ基、シンノリル基、ベンゾイミダゾリル基、ベンゾォキサゾリル基又はべンゾ チアゾリル基等が挙げられる。
[0022] Q1で表される二価基としては、アルキレン基、フエ二レン基、ビフエエルジイル基又 はビナフタレンジィル基等が挙げられる。アルキレン基としては、具体的には、炭素数 1一 6のアルキレン基が好ましぐ例えばメチレン基、エチレン基、トリメチレン基、テト ラメチレン基、ペンタメチレン基又はへキサメチレン基等が挙げられ、これらのメチレ ン鎖は前記 R3
Figure imgf000011_0002
R5及び R6で表されるアルキル基、ァリール基又は複素環基で置 換されてもよレ、。フエ二レン基としては、 o, m又は p—フエ二レン基であり、該フエニレ ン基はアルキル基、アルコキシ基、水酸基、アミノ基又は置換アミノ基等で置換されて レ、てもよレ、。ビフエエルジイル基又はピナフタレンジィル基としては、 1 , 1 ' _ビアリー ノレ一 2, 2 '—ジィル型の構造を有するものが好ましぐ該ビフヱエルジイル基又はピナ フタレンジィル基は炭素数 1一 6のアルキル基、炭素数 1一 6のアルコキシ基、水酸基 、アミノ基又は置換アミノ基等で置換されていてもよぐ部分的に水素付加されていて あよい。
[0023] 一般式(3)で示されるビスホスフィン類としては、上記したビスホスフィンの中でも、 光学活性ビスホスフィン類がより好ましい。更に、光学活性ビスホスフィン類について 説明する。
光学活性ビスホスフィン類としては,例えば本出願前公知の光学活性ビスホスフィ ン類が挙げられ、その一つとして一般式 (7)
[化 11]
Figure imgf000012_0001
(式中、 R 、 Rz R 及び R は同一又は異なっていてもよぐシクロアルキル基を表 す力 、炭素数 1一 6のアルキル基、炭素数 1一 6のアルコキシ基又はハロゲン原子(例 えばフッ素又は塩素等)等で置換されていてもよいフエ二ル基を表す。)で表されるビ スホスフィン類が挙げられる。 R19、 R2。、 R21及び R22で表されるシクロアルキル基とし ては、シクロペンチル基又はシクロへキシル基が好ましレ、。
一般式(7)で表される具体的光学活性ビスホスフィン類としては、例えば 2, 2'_ビ ス—(ジフエニルホスフイノ)— 1, 1'—ビナフチル(以下、 BINAPという)、 2, 2,—ビス— (ジ— p—トリルホスフイノ)— 1, 1'—ビナフチル(以下、 Tol_BINAPとレ、う)、 2, 2'—ビ ス—(ジ— m—トリルホスフイノ)— 1, 1'—ビナフチル、 2, 2'—ビス(ジ— 3, 5—キシリルホ スフイノ)一 1, 1,一ビナフチル(以下、 DM— BINAPとレ、う)、 2, 2'—ビス(ジ一 p—ター シャリーブチルフエニルホスフイノ)— 1, 1 '—ビナフチル、 2, 2 '_ビス(ジー p—メトキシ フエニルホスフイノ)— 1, 1'—ビナフチル、 2, 2'—ビス(ジー p—クロ口フエニルホスフイノ
1 '—ビナフチル、 2, 2'_ビス(ジシクロペンチルホスフイノ)_1, 1 '—ビナフチル (Cp—ΒΙΝΑΡ)又は 2, 2,_ビス(ジシクロへキシルホスフイノ)_1, 1 '—ビナフチル(C y— BINAP)等が挙げられる。
また、光学活性ビスホスフィン類の一つとしては更に一般式(8)
Figure imgf000013_0001
(式中、 Rz R , R b及び ま同一又は異なっていていてもよぐシクロアルキル基 を表すか、炭素数 1一 6のアルキル基、炭素数 1一 6のアルコキシ基又は上記したハ ロゲン原子で置換されていてもよいフエ二ル基を表す。)で表されるビスホスフィン類 を挙げることができる。 R23、 R24、 R25及び R26で表されるシクロアルキル基としては、シ クロペンチル基又はシクロへキシル基が好ましレ、。
一般式(8)で表される具体的光学活性ビスホスフィン類としては、例えば 2, 2'-ビ ス(ジフエニルホスフイノ)一 5, 5,, 6, 6', 7, 7,, 8, 8'—ォクタヒドロ一 1, 1'—ビナフ チル(以下、 H—BINAPという)、 2, 2 '_ビス(ジー p—トリルホスフイノ)—5, 5,, 6, 6'
8
, 7, 7', 8, 8,一ォクタヒドロ一 1, 1,一ビナフチル、 2, 2,一ビス(ジ一 m—トリルホスフイノ )_5, 5,, 6, 6,, 7, 7', 8, 8,ーォクタヒドロー 1, 1,ービナフチノレ、 2, 2'—ビス(ジ _3 , 5—キシリノレホスフイノ)一 5, 5,, 6, 6,, 7, 7,, 8, 8,一才クタヒドロ一 1, 1,一ビナフチ ル、 2, 2'—ビス(ジ— p—ターシャリーブチルフエニルホスフイノ)— 5, 5', 6, 6', 7, 7' , 8, 8 '—ォクタヒドロ— 1, 1'—ビナフチル、 2, 2'—ビス(ジ— p—メトキシフエニルホスフ イノ)_5, 5,, 6, 6,, 7, 7,, 8, 8 '—ォクタヒドロ一1, 1 '—ビナフチノレ、 2, 2'_ビス(ジ —p—クロ口フエニルホスフイノ)一 5, 5,, 6, 6', 7, 7,, 8, 8,一ォクタヒドロ一 1, 1,一ビ ナフチノレ、 2, 2 '_ビス(ジシクロペンチノレホスフイノ)一5, 5,, 6, 6,, 7, 7,, 8, 8,_ ォクタヒドロ _1, 1 '—ビナフチル又は 2, 2 '_ビス(ジシクロへキシルホスフイノ)—5, 5, , 6, 6,, 7, 7', 8, 8 '—ォクタヒドロ一1, 1 '—ビナフチノレ等カある。
さらに、光学活性ビスホスフィン類の一つとしては下記一般式(9)
Figure imgf000014_0001
(式中、 R27、 R28、 R29及び R3°は同一又は異なっていてもよぐシクロアルキル基を表 す力 、炭素数 1一 6のアルキル基、炭素数 1一 6のアルコキシ基又はハロゲン原子で 置換されていてもよいフエ二ル基を表す。 R31、 R32
Figure imgf000014_0002
R35及び R36は、同一 又は異なっていてもよぐ水素原子、炭素数 1一 6のアルキル基又は炭素数 1一 6の アルコキシ基を表し、 R31、 R32及び R33の内の二つが結合して酸素を環構成原子とし てもよい 5— 6員環等の環を形成していてもよぐ R34、 R35及び R36の内の二つが結合 して同様の環を形成していてもよい。ただし、 R33及び R34は水素原子になることはな レ、。)で表されるビスホスフィン類が挙げられる。 R27、 R28、 R29及び R3°で表されるシク 口アルキル基としては、シクロペンチル基又はシクロへキシル基が好ましレ、。
一般式(9)で表される具体的光学活性ビスホスフィン類としては、例えば((4, 4'_ ビ— 1, 3_ベンゾジォキソーノレ)—5, 5 '—ジィル)ビス(ジフエニルホスフィン)(SEGP HOS)、 (4, 4'—ビ一 1, 3—ベンゾジォキソーノレ)一 5, 5,一ジィル)ビス(ビス(3, 5—キ シリル)ホスフィン)(DM—SEGPHOS)、((4, 4'_ビ_1, 3_ベンゾジォキソーノレ)一
5, 5,—ジィル)ビス(ビス(3, 5—ジー t—ブチルー 4ーメトキシフエニル)ホスフィン)(DT BM— SEGPHOS)、 ((4, 4'—ビ— 1, 3—ベンゾジォキソーノレ)— 5, 5,—ジィル)ビス( ビス(4ーメトキシフエニル)ホスフィン)、 ((4, 4'_ビ一 1, 3_ベンゾジォキソーノレ)一5, 5,—ジィル)ビス(ジシクロへキシルホスフィン)(Cy— SEGPHOS)、((4, 4,—ビ— 1, 3_ベンゾジォキソール)一 5, 5,—ジィル)ビス(ビス(3, 5—ジー t_ブチルフエニル)ホ スフイン)、 2, 2'—ビス(ジフエニノレホスフイノ)一 4, 4', 6, 6 '—テトラメチルー 5, 5 '—ジ メトキシー 1, 1'—ビフエニル、 2, 2'—ビス(ジー p—メトキシフエ二ルホスフイノ)— 4, 4',
6, 6 '—テトラメチルー 5, 5'—ジメトキシー 1, 1 '—ビフエニル、 2, 2'_ビス(ジフエニル ホスフイノ)_4, 4,, 6, 6 '—テトラ(トリフルォロメチル)—5, 5'_ジメチルー 1, 1'—ビフ ェニル、 2, 2,_ビス(ジフエニルホスフイノ)_4, 6—ジ(トリフルォロメチノレ) _4,, 6,_ ジメチノレ一 5 ' -メトキシ一 1 , 1,一ビフエニル、 2—ジシクロへキシルホスフイノ一 2 '—ジフ ェニルホスフイノ一4, 4', 6, 6 '—テトラメチノレ一 5, 5'—ジメトキシ一1, 1 '—ビフエニル、 2, 2'—ビス(ジフエニルホスフイノ)— 6, 6'—ジメチルー 1, 1—ビフエニル、 2, 2'—ビス( ジフエニルホスフイノ)一 4, 4', 6, 6 '—テトラメチルー 1, 1 '—ビフエニル、 2, 2'_ビス( ジフエニルホスフイノ)— 3, 3', 6, 6'—テトラメチル— 1, 1'—ビフエ二ル)、 2, 2'—ビス (ジフヱニルホスフイノ)— 4, 4 '—ジフルォロ _6, 6'_ジメチノレ— 1, 1'_ビフヱニル、 2, 2'—ビス(ジフエニルホスフイノ)一 4, 4'—ビス(ジメチルァミノ)一 6, 6'—ジメチル一 1, 1 ,—ビフエニル、 2, 2,—ビス(ジ— p—トリルホスフイノ)— 6, 6'—ジメチル— 1, 1'—ビフエ ニル、 2, 2,—ビス(ジ— o—トリルホスフイノ)— 6, 6'—ジメチル— 1, 1'—ビフエニル、 2, 2'_ビス(ジ— m—フルオロフェニルホスフイノ)_6, 6'_ジメチル_1, 1 '—ビフエニル、 1, 11—ビス(ジフエニルホスフイノ)— 5, 7—ジヒドロべンゾ [c, e]ォキセピン、 2, 2'- ビス(ジフエニルホスフイノ)— 6, 6'—ジメトキシー 1, 1'—ビフエニル、 2, 2'—ビス(ジフ ェニルホスフイノ)— 5, 5,, 6, 6,—テトラメトキシ一 1, 1,—ビフエニル、 2, 2,—ビス(ジ一 p—トリルホスフイノ)— 6, 6'—ジメトキシー 1, 1'—ビフエ二ル又は 2, 2'—ビス(ジフエ二 ルホスフイノ)— 4, 4,, 5, 5,, 6, 6,-へキサメトキシ -1, 1,-ビフエ二ル等が挙げら れる。
さらに本発明において用いることのできる他の光学活性ビスホスフィン類としては、 N, N—ジメチノレー 1— [1,, 2—ビス(ジフエニルホスフイノ)フエロセニノレ]ェチルァミン、 2, 3—ビス(ジフエニルホスフイノ)ブタン、 1—シクロへキシルー 1, 2—ビス(ジフエニル ホスフイノ)ェタン、 2, 3—〇一イソプロピリデン一 2, 3—ジヒドロキシ一 1, 4一ビス(ジフエ ニルホスフイノ)ブタン、 1, 2—ビス { (o—メトキシフエ二ノレ)フエニルホスフイノ }ェタン、 1 , 2—ビス(2, 5—ジアルキルホスホラノ)ベンゼン、 1, 2—ビス(2, 5_ジアルキルホスホ ラノ)ェタン、 1— (2, 5—ジアルキルホスホラノ)— 2— (ジフエニルホスフイノ)ベンゼン、 1-(2, 5—ジアルキルホスホラノ)_2—(ジ(アルキルフヱニル)ホスフイノ)ベンゼン、 5 , 6—ビス(ジフエニルホスフイノ)— 2—ノルボルネン、 N, Ν'—ビス(ジフエニルホスフィ ノ)— Ν, Ν,—ビス(1—フエニルェチル)エチレンジァミン、 1, 2—ビス(ジフエニルホス フイノ)プロパン又は 2, 4_ビス(ジフエニルホスフイノ)ペンタン等が挙げられる。もち ろん本発明に用いることができる光学活性ビスホスフィン類はこれらに何ら限定される ものではないが、とりわけ好ましい光学活性ビスホスフィンは、一般式(7)で示される 光学活性ビスホスフィンであり、特に BINAP、 Tol— BINAP、 DM_BINAP、 H _BI
8
NAP、 SEGPHOS、 DM—SEGPHOS又は DTBM—SEGPHOS等が好ましい。 二座配位子におけるジァミン類としては、一般式 (4)
[化 14]
(
Figure imgf000016_0001
び Rmは水素原子、アルコキシカルボニル基又はスルホニル基 を表し、
Figure imgf000016_0002
R1Q、 R11及び R12は同一又は異なっていてもよぐ水素原子、アルキル基 、又は単環もしくは多環の芳香族炭化水素基を表し、 と R11又は R1Qと R12は結合し て環を形成してもよぐ *は不斉炭素原子又は非不斉炭素原子を表す。)で表される ジァミン類が挙げられる。
[0030] R7、 R8、 R13及び R14で表される飽和炭化水素基としては、直鎖、分岐又は環状の 炭素数 1一 6のアルキル基が挙げられ、不飽和炭化水素基としては、例えばビニル基 、プロパルギル基、プロぺニル基又はブチュル基等の炭素数 2 6のアルケニル基 又はアルキニル基等が挙げられ、ァリール基としてはフエニル基又はナフチル基等 の炭素数 6 12のァリール基が挙げられる。
R9、 R10, R11及び R12で表されるアルキル基としては、直鎖状、分岐状又は環状の 炭素数 1一 8のアルキル基が好ましぐ単環あるいは多環の芳香族炭化水素基として は、例えばフヱニル基、トリル基 (o—, m—, p—)、キシリル基又はナフチル基等のァリ ール基が好ましぐ又は不飽和炭化水素基としては、例えばビュル基、プロパルギル 基、プロぺニル基又はブチニル基等の炭素数 2— 6のアルケニル基又はアルキニル 基等が挙げられる。 R9と R11又は R1Qと R12が結合して形成する環としては、シクロプロ パン、シクロブタン、シクロペンタン、シクロへキサン、シクロヘプタン、シクロオクタン 等の炭素数 3— 8の環が挙げられる。
[0031] 具体的には、 1 , 2—ジフエニルエチレンジァミン、 1 , 2—シクロへキサンジァミン、 1 , 2—シクロヘプタンジァミン、 2, 3—ジメチルヘプタンジァミン、 1ーメチルー 2, 2—ジフエ ニルエチレンジァミン、 1一イソブチノレー 2, 2—ジフエニルエチレンジァミン、 1一イソプロ ピル一 2, 2—ジフエニルエチレンジァミン、 1ーメチルー 2, 2—ジ(p—メトキシフエニル)ェ チレンジァミン、 1一イソブチルー 2, 2—ジ(p—メトキシフエニル)エチレンジァミン、 1ーィ ソプロピル一 2, 2—ジ(p—メトキシフエニル)エチレンジァミン、 1—ベンジルー 2, 2—ジ( p—メトキシフエニル)エチレンジァミン、 1ーメチルー 2, 2—ジナフチルエチレンジァミン 、 1_イソブチルー 2, 2—ジナフチルエチレンジァミン又は 1_イソプロピル一 2, 2—ジナ フチルエチレンジァミン、 N—メトキシカルボニノレー 1 , 2—ジフエニルエチレンジァミン、 N— (p—トノレエンスルホニノレ) -1 ' 2—ジフエニルエチレンジァミンまたは N_メタンスル ホニルー 1 , 2_ジフヱニルエチレンジァミン等が挙げられ、これらのジァミン類はラセミ 体でも光学活性体でもよい。
[0032] 二座配位子におけるビスォキサゾリン類としては、下記一般式(5)
[化 15]
Figure imgf000017_0001
(式中、 Rlb、 Rlb、 及び R1Sは水素原子(ただし、 Rlb及び Rlbは同時に水素原子で はなぐ R17及び R18は同時に水素原子ではない。)、炭素数 1一 6のアルキル基、炭 素数 1一 6のアルコキシ基又はハロゲン原子で置換されていてもよいフエニル基、又 は炭素数 1一 6のアルキル基、炭素数 1一 6のアルコキシ基又はハロゲン原子で置換 されていてもよいベンジル基を表し、 Q2はフエ二レン基、ビフエニルジィル基又はピナ フタレンジィル基を表し、ビフエエルジイル基又はビナフタレンジィル基は軸不斉構 造を有してもよレ、。)で表されるビスォキサゾリン類が挙げられる。これらのビスォキサ ゾリン類はラセミ体でも光学活性体でもよい。
[0033] 二座配位子におけるビスカルベン類としては、下記一般式(6)
Figure imgf000017_0002
(式中、 Q3はアルキレン基、フエ二レン基、ビフエニルジィル基又はピナフタレンジィ ル基を表し、アルキレン基は不斉炭素を有してもよぐビフエエルジイル基又はビナフ タレンジィル基は軸不斉構造を有してもよい。カルベン 1及びカルベン 2は同一又は 異なってもよく含窒素複素環式カルベンを表す。 )で表されるビスカルベン類が挙げ られる。
[0034] Q3で表されるアルキレン基としては、 Q1で表されるアルキレン基と同じアルキレン基 が好ましく挙げられる。
カルベン 1及びカルベン 2で表される含窒素複素環式カルベンとしては、少なくとも 1つの窒素原子を含む複素環からなるカルベン又は N—ヘテロサイクリックカルベン 等を意味する。含窒素複素環式カルベンとしては、例えば、下記の式:
[化 17]
Figure imgf000018_0001
で表される少なくとも 1個の窒素原子を含む 5員環構造を有するものが好ましい。環 構造には酸素原子又は硫黄原子等のへテロ原子が存在していてもよぐまた二重結 合が存在していてもよい。
[0035] 含窒素複素環式カルベンは、カルベン性炭素原子以外の環を構成する炭素原子 上及び環を構成する窒素原子上で Q3と結合しており、 Q3と結合していない箇所には 水素原子以外の原子又は置換基を有してレ、てもよレ、。水素原子以外の原子としては 、例えばフッ素原子、塩素原子、臭素原子又はヨウ素原子等のハロゲン原子等が挙 げられる。置換基としては、例えばアルキル基又はァリール基等が挙げられる。また、 該置換基がキラリティーを有するものであってもよい。
[0036] 上記含窒素複素環式カルベンの置換基としてのアルキル基としては、炭素数 1一 6 のアルキル基が好ましぐこれら炭素数 1一 6のアルキル基は炭素数 1一 6のアルコキ シ基又はフエニル基等で置換されていてもよい。また、アルキル基が分岐している場 合又は置換基を有する場合は、該アルキル基が光学活性であってもよい。
[0037] 上記含窒素複素環式カルベンの置換基としてのァリール基としては、例えば置換 基を有してレ、てもよレ、フエニル基又は置換基を有してレ、てもよレ、ナフチル基等が挙 げられる。これらァリール基上の置換基としては、例えばアルキル基、アルコキシ基又 はジアルキルアミノ基等が挙げられる。ァリール基上の置換基において、アルキル基 としては、炭素数 1一 6のアルキル基が好ましぐアルコキシ基としては、炭素数 1一 6 のアルコキシ基等が好ましレ、。また、ジアルキルアミノ基としては、ジメチルァミノ基又 はジェチルァミノ基等が挙げられる。
[0038] これらのビスカルベン類はラセミ体でも光学活性体でもよレ、。上記中性配位子は、 配位子そのもの又は配位子の前駆体として、一部のものは市販品の試薬として入手 可能であり、また、対応する文献等に記載された方法により製造することもできる。
[0039] X1、 X2及び X3で表わされるハロゲン原子としては、フッ素、塩素、臭素又はヨウ素 等が挙げられる。
X4で表わされるカウンターァニオンは、一価のァニオン性配位子を含み、例えば、 F―、 Br―、 C1—、 Γ、 I―、 CF SO―、 p_CH C H SO—、 CIO―、 NO―、 BF―、 B (C H
3 3 3 3 6 4 3 4 3 4 6
)―、 B [3, 5- (CF ) C H ]―、 PF―、 SbF—又は AsF—等が挙げられる。
5 4 3 2 6 3 3 6 6 6
[0040] 本発明のイリジウム錯体は、イリジウム化合物と上記単座中性配位子又は二座中性 配位子とを反応させ、次レ、でハロゲン化水素又はハロゲン化水素酸と反応させること により製造できる。
上記イリジウム化合物としては、例えばジ _μ—クロロテトラキス(シクロオタテン)ニイ リジゥム([IrCl (coe) ] )、ジ一/ i—ブロモテトラキス(シクロオタテン)二イリジウム([Ir
2 2
Br (coe) ] )、ジ一 μ―ョードテトラキス(シクロオタテン)二イリジウム([Irl (coe) ] )、
2 2 2 2 ジ _ μ _クロ口ビス(1 , 5—シクロォクタジェン)二イリジウム([IrCl (cod) ] )、ジ一 μ—
2
ブロモビス(1 , 5—シクロォクタジェン)二イリジウム ([IrBr (cod) ] )、ジ _μ _ョード
2
ビス(1, 5—シクロォクタジェン)二イリジウム([Irl (cod) ] )、ジ一 μ—クロ口ビス(ビシク
2
口 [2, 2, 1]ヘプタ _2, 5—ジェン)二イリジウム([IrCl (nbd) ] )、ジ— μ _ブロモビス(
2
ビシクロ [2, 2, 1]ヘプタ _2, 5—ジェン)二イリジウム ([IrBr (nbd) ] )又はジ— μ _
2
ョードビス(ビシクロ [2, 2, 1]ヘプタ— 2, 5—ジェン)二イリジウム([Irl (nbd) ] )等が
2 挙げられる。
[0041] 本発明のイリジウム錯体は、これらのイリジウム化合物と上記単座中性配位子又は 二座中性配位子を反応させ、ついでハロゲン化水素又はハロゲン化水素酸と反応さ せることにより調製できる。前記ハロゲン化水素としては、例えばフッ化水素、塩化水 素、臭化水素、ヨウ化水素などが挙げられ、ハロゲンィ匕水素酸としては、例えばフッ 化水素酸、塩酸、臭化水素酸、ヨウ化水素酸などが挙げられる。単座中性配位子又 は中性配位子の量は、イリジウム化合物のイリジウム原子に対して単座中性配位子 の場合はほぼ 2倍モル量、二座中性配位子の場合はほぼ等モル量とすることにより 好ましレ、結果を得ることができる。
[0042] さらに本発明のイリジウム錯体は、下記一般式(10)
[化 18]
[ I r Y1 (H) (Y2) (い |_2)] (1 0)
(式中、 Υ1はハロゲン原子を、 Υ2は有機酸残基を示し、その他の基は前記と同意義 を示す。 )
又は下記一般式(10)
[化 19]
[( I r H L 1 L 2)2( 一 Υ ί — O R46) 2] X4 (1 1 )
(式中、 R46は水素原子、置換基を有してもよいアルキル基、置換基を有していてもよ レ、(ヘテロ)ァリール基、置換基を有していてもよいァラルキル基を、その他の基は前 記と同意義を示す。 )
で表されるイリジウム錯体とハロゲン化水素又はハロゲン化水素酸と反応させることに より調製できる。
[0043] 一般式(10)で表される化合物は、例えば特開平 11一 335334号公報、第 51回錯 体化学討論会講演要旨集、 P.327(2a-A07) (2001.9.28— 31)、 日本化学会 第 81春季年会講演予稿集 I、 p.499(1PB— 059) (2002.3.26— 29)、モレキユラ 一キラリティー 2002要旨集, p.47(PS-3) (2002.6.6)に記載の方法で合成する こと力 Sできる。
[0044] 上記一般式(10)で表される Y2における有機酸残基とは、有機酸からプロトンとして 水素原子が一つ外れた構造のものを表し、具体的にはカルボン酸残基 (R47CO )、 スルホン酸残基 (R48SO )及びリン酸残基((R49) PO )の残基が挙げられる。
3 2 2
カルボン酸残基である R47C〇における R47としては、水素原子、置換基を有しても
2
よい炭素数 1一 3のアルキル基、置換基を有してもよいフエニル基又はナフチル基が 挙げられ、置換基を有してもよい炭素数 1一 3のアルキル基の置換基としては炭素数 1一 4のアルキル基及びハロゲン原子が挙げられる。具体的な置換基を有してもよい 炭素数 1一 3のアルキル基としてはメチル基、ェチル基、プロピル基、ピバロイル基、ト リフルォロメチル基が挙げられる。また、置換基を有してもよいフヱニル基あるいはナ フチル基において、その置換基としては、メチノレ基、ェチル基、 n—プロピル基、メトキ シ基、エトキシ基、プロポキシ基、ハロゲン原子などが挙げられる。
スルホン酸残基である R48SOにおける R48としては、置換基を有してもよい炭素数 1
3
一 12のアルキル基、置換基を有してもよいフヱニル基又はナフチル基が挙げられる リン酸残基である (R49) POにおける R49としては、置換基を有してもよい炭素数 1
2 2
一 6のアルキル基、置換基を有してもよい炭素数 1一 6のアルコキシ基、置換基を有し てもよいフエノキシ基、置換基を有してもよいフエニル基又はナフチル基を示し、更に は二つの R49が結合して環を形成していてもよいものが挙げられる。置換基を有して もよいフエニル基又はナフチル基としては、(ビフエ二ルー 2, 2'—ジィル)ジォキシ基、 (1 , 1,-ビナフチル -2, 2,-ジィル)ジォキシ基などが挙げられ、置換基を有してもよ いフエニル基又はナフチル基の置換基としては、メチノレ基、ェチル基、プロピル基、メ トキシ基、エトキシ基、プロポキシ基、ハロゲン原子などが挙げられる。
[0045] 一般式(11)で表される化合物は、例えば Angew. Chem. Int. Ed. , 1998年, 第 37卷, p. 3381—3383に記載の方法で合成することができる。
[0046] 上記一般式(11)で表される化合物の R46におけるアルキル基としては、炭素数 1一
8のアルキル基が挙げられる。 (ヘテロ)ァリール基としては、例えばフヱニル、ナフチ ノレ、ピリジル、ピリミジニル、フリル、チェニルなどが挙げられ、置換基としては、炭素 数 1一 6のアルキル基、炭素数 1一 6のアルコキシ基、フッ素原子、塩素原子及び臭 素原子等のハロゲン原子等が挙げられる。 R46におけるァラルキル基のアルキルとし ては炭素数 1一 12のものが挙げられ、置換基としては、炭素数 1一 6のアルコキシ基 、フッ素原子、塩素原子又は臭素原子等のハロゲン原子等が挙げられる。
[0047] これらの反応は溶媒中で行うことが好ましい。溶媒の具体例としてはトルエン又はキ シレン等の芳香族炭化水素溶媒、へキサン又はヘプタン等の脂肪族炭化水素溶媒
、塩化メチレン等のハロゲン含有炭化水素溶媒、メタノーノレ、エタノール又はイソプロ パノール等のアルコール系溶媒、ジェチルエーテル、テトラヒドロフラン又は 1 , 4—ジ ォキサン等のエーテル系溶媒、ァセトニトリル、ジメチルホルムアミド又はジメチルス ルホキシド等の有機溶媒等が挙げられ、これらの溶媒を単独あるいは二種以上を混 合した混合溶媒を用いることが好ましい。
[0048] 上記ハロゲン化水素又はハロゲン化水素酸としては、例えば塩ィヒ水素、臭化水素 又はヨウ化水素等のハロゲン化水素、塩酸、臭化水素酸又はヨウ化水素酸等のハロ ゲンィ匕水素酸が挙げられる力 取り扱いの点からハロゲン化水素酸が好ましい。これ らハロゲン化水素又はハロゲン化水素酸の使用量は、イリジウム原子に対してほぼ 1
0当量程度までの範囲内とすることが好ましい。
[0049] また、このようにして得られたイリジウム錯体のカウンターァニオンは、所望によりハ ロゲン原子から別な原子団へと交換することができる。交換しうる原子団としては、例 えば BF、 CIO、 CF SO (以下、〇Tfとする)、 PF、 SbF、 BPh、 p— CH C H S
4 4 3 3 6 6 4 3 6 4
O―、 NO—,B〔3、 5-(CF ) C H〕 —又は AsF—等が挙げられる。
3 3 3 2 6 3 3 6
[0050] このようにして得られた本発明のイリジウム錯体、特に光学活性配位子を有するイリ ジゥム錯体は、光学活性化合物の製造のために好適に使用される。光学活性化合 物の製造のために適用される具体的な反応としては、不斉 1, 4一付加反応、不斉ヒド 口ホルミル化反応、不斉ヒドロシアノ化反応、不斉ヒドロアミノィ匕反応、不斉ヘック(He ck)反応又は不斉水素化反応等が挙げられ、特に不斉水素化反応が有利に用いら れる。
[0051] 不斉水素化反応の例としては、プロキラルな炭素一炭素二重結合、例えばプロキラ ノレなェナミン、ォレフィン又はエノールエーテル等、プロキラルな炭素—酸素二重結 合、例えばプロキラルなケトン等又はプロキラルな炭素—窒素二重結合、例えばプロ キラルなィミン等の不斉水素化反応が挙げられる。
[0052] 以下、不斉水素化反応に関して説明する。 [0053] 上記炭素 -炭素二重結合を有する化合物の不斉水素化反応としては、例えば式(1
[化 20]
Figure imgf000023_0001
(式中、 R37、 R38、 R39及び R4°は、置換基を有していてもよいアルキル基、置換基を 有していてもよい(ヘテロ)ァリール基、置換基を有していてもよいァラルキル基、ァシ ル基、カルボキシル基、アルコキシカルボニル基、置換基を有していてもよい力ルバ モイル基、シァノ基、ァシルァミノ基又はアミノ基を表し、 R37と R38又は R39と R4°はそ れぞれ相異なる。また、 R37と R39、 R37と R4°又は R39と R4°がそれぞれ一緒になつて全 体で非対称環式構造を形成してもよい。 *は不斉炭素を示す。 )
で表されるォレフィンィ匕合物等の反応が挙げられる。
[0054] 上記 7
Figure imgf000023_0002
R39及び R4°におけるアルキル基としては、炭素数 1一 8のアルキル 基が挙げられる。 (ヘテロ)ァリール基としては、例えばフエニル基、ナフチル基、ピリ ジノレ基、ピリミジェル基、フリル基又はチェニル基等が挙げられ、置換基としては、炭 素数 1一 6のアルキル基、炭素数 1一 6のアルコキシ基、フッ素原子、塩素原子又は 臭素原子等のハロゲン原子等が挙げられる。ァラルキル基の置換基において、アル キル基としては炭素数 1一 12のものが挙げられる。ァシル基としては、例えばァセチ ル基、プロパノィル基、ブチリル基、ビバロイル基又はベンゾィル基等が挙げられる。 アルコキシカルボニル基としては、例えばメトキシカルボニル基、エトキシカルボ二ノレ 基、 n—プロポキシカルボニル基、イソプロポキシカルボニル基、 tert_ブトキシカルボ ニル基又はべンジルォキシカルボニル基等が挙げられる。置換力ルバモイル基とし ては、例えばジメチルカルバモイル基、ジェチルカルバモイル基又はジベンジルカル バモイル基等が挙げられる。ァシルァミノ基としては、例えばァセチルァミノ基、 tert— ブトキシカルボニルァミノ基又はべンジルォキシカルボニルァミノ基等が挙げられる。 また、全体で非対称環式構造を形成する場合の構造としては、 5員環又は 6員環構 造が好ましい。
多重結合を有する有機化合物において、炭素 -酸素二重結合を有する化合物の 不斉水素化反応としては、例えば式(13)
[化 21]
Figure imgf000024_0001
(式中、 R41及び R4は相異なり、置換基を有していてもよいアルキル基、置換基を有 してレ、てもよレ、(ヘテロ)ァリール基又は置換基を有してレ、てもよレ、ァラルキル基を表 す。また R41と R42が一緒になつて全体で非対称環式ケトンを形成していてもよい。 * は不斉炭素を示す。 )
で表されるケトン化合物の反応が挙げられ、炭素 -窒素二重結合を有する化合物の 不斉水素化反応としては、式(14)
[化 22]
Figure imgf000024_0002
(式中、 R 及び R44は相異なり置換基を有していてもよいアルキル基、置換基を有し ていてもょレ、(ヘテロ)ァリール基、又は、置換基を有していてもよいァラルキル基を表 し、式中 R45は水素原子、置換基を有していてもよいアルキル基、置換基を有してい てもよぃァリール基、又は、置換基を有していてもよいァラルキル基を表す。また R43と R44、 R43と R45又は R44と R45とで非対称環式ィミンを形成してもよい。 *は不斉炭素を 示す。)
で表されるィミン化合物の反応が挙げられる。
上記 R41及び R42、又は一般式(14)で表される化合物の R43、 R44及び R45のアルキ ル基としては、例えば炭素数 1一 8の炭素数のアルキル基が挙げられ、(ヘテロ)ァリ ール基としては、フエニル基、ナフチル基、ピリジル基、ピリミジニル基、フリル基又は チェニル基等が挙げられ、置換基としては、炭素数 1一 6のアルキル基、炭素数 1一 6のアルコキシ基又はハロゲン原子等が挙げられる。ァラルキル基の置換基にぉレ、て 、アルキル基としては炭素数 1一 12のものが挙げられる。 R41と R42が一緒になつて環 状構造を形成してレ、る場合の一般式(13)で表される置換されてレ、てもよレ、環式ケト ンとしては、例えば炭素数 3 8のシクロアルカノン骨格又はシクロアルケノン骨格、 1 一インダノン骨格、 2—インダノン骨格、 1ーテトラロン骨格、 2—テトラロン骨格又は 1一べ ンゾスベロン骨格等を有する化合物等が挙げられ、置換基としては、炭素数 1一 6の アルキル基、炭素数 1一 6のアルコキシ基、ハロゲン原子又はァリール基等が挙げら れる。
[0057] R43と R44、 R43と R45又は R44と R45とで非対称環式ィミンを形成してレ、る化合物として は、例えば 3, 4—ジヒドロ— 2H—ピロール骨格、 2, 3, 4, 5—テトラヒドロピリジン骨格、 3H—インドール骨格、 3, 4—ジヒドロキノリン骨格又は 3, 4—ジヒドロイソキノリン骨格 等を有する化合物等が挙げられ、置換基としては、炭素数 1一 6のアルキル基、炭素 数 1一 6のアルコキシ基、ハロゲン原子又はァリール基等が挙げられる。
[0058] 上記式(13)の(c)で表される化合物の具体例としては、ァセトフヱノン、プロピオフ ェノン、ブチロフエノン、イソブチロフエノン、クロロメチルフエ二ルケトン、ブロモメチル フエ二ルケトン、 2_ァセチルビリジン、 3_ァセチルビリジン、 (o—メトキシ)ァセトフエノ ン、(o_エトキシ)ァセトフエノン、(o_プロポキシ)ァセトフエノン、(o_ベンジルォキシ )ァセトフエノン、 α—ァセトナフトン、 ρ—クロ口フエ二ルメチルケトン、 ρ—ブロモフエニル メチルケトン、 ρ_シァノフエ二ルメチルケトン、フエニルベンジルケトン、フエニル(ο—ト リルメチノレ)ケトン、フエニル(m—トリルメチノレ)ケトン、フエニル(p—トリルメチノレ)ケトン 、 2—ブタノン、 2—ペンタノン、 2—へキサノン、 2—ヘプタノン、 2—ォクタノン、 2—ノナノ ン、 2—デカノン、シクロへキシルメチルケトン、シクロへキシルェチルケトン、シクロへ キシルベンジルケトン、 t—ブチルメチルケトン、 3_キヌクリジノン、 1_インダノン、 2—ィ ンダノン、 1—テトラロン、 2—テトラロン、ベンジル(2—ピリジル)ケトン、ベンジル(3—ピ リジル)ケトン又はべンジル(2—チアゾリル)ケトン等が挙げられる。 [0059] 上記式(14)の(e)で表される化合物の具体例としては、 3, 4—ジヒドロー 5—フエニル —2H—ピロール、 6_フエニノレー 2, 3, 4, 5,—テトラヒドロピリジン、 1ーメチノレー 3, 4—ジ ヒドロイソキノリン、 6, 7—ジメトキシ一 1ーメチノレー 3, 4—ジヒドロイソキノリン、 1_フエニル _3, 4—ジヒドロイソキノリン、 1—メチノレ一 3, 4—ジヒドロ一9H—ピリド [3, 4_b]インドー ル又はひ一メチルベンジリデンベンジルァミン等が挙げられる。
[0060] 本発明のイリジウム錯体は有機化合物の多重結合の還元、特に炭素 -炭素二重結 合又は炭素一へテロ原子二重結合の還元触媒として有用である。更には、本発明の イリジウム錯体の配位子を光学活性体とすることにより、不斉水素化反応の触媒とし ても有用である。本発明のイリジウム錯体を触媒として用いる場合は、前記イリジウム 錯体合成の反応後に、例えば濃縮、減圧濃縮、溶媒抽出、洗浄、再結晶等の手法 により錯体の純度を高めてから使用してもよいが、錯体を精製することなく還元反応 触媒として使用してもよい。
[0061] 本発明の好ましい態様としての不斉水素化反応は、水素化される基質を例えばメタ ノーノレ、エタノール又はイソプロパノール等のアルコール溶媒ゃテトラヒドロフラン、ジ ェチルエーテル、塩化メチレン、アセトン、酢酸ェチル、ベンゼン、トルエン、 N, N- ジメチルホルムアミド、ァセトニトリル又はこれらの混合溶媒等の不斉水素化反応を阻 害しない溶媒に溶解し、基質に対して約 1/10— 1/10, 000モル、好ましくは約 1 /50— 1/3, 000モルの本発明による触媒を加え、水素圧約 1一 10MPa、好ましく は約 3— 7MPa、温度約— 20— 100°C、好ましくは約 20— 80°Cで約 0. 5— 30時間 、好ましくは約 1一 20時間で行われる。
[0062] 以下に実施例を挙げ、本発明を詳細に説明するが、本発明はこれらの実施例によ つて何ら限定されるものではない。なお、実施例中において下記の分析機器を用い た。
核磁気共鳴スペクトル(NMR); MERCURY300-C/H (VARIAN)
融点(mp); MP-500D (Yanako)
赤外吸収スぺクトノレ(IR); FT/IR-230 (JASCO Corp. )
ガスクロマトグラフィー(GLC); GC-14A (Shimadzu Corp. )
実施例 1 [0063] [{lrH((S)-BINAP)} ( /i—I) ]1の合成
2 3
アルゴン雰囲気下、 20 mLシュレンク管に、 [Irl(cod)] 33.5 mg (0.0392
2
mmol)及びトルエン 5 mLを加え撹拌した。これに(S)_BINAP 53.7 mg (0 .0862 mmol) を加え、室温で 3時間撹拌した後、反応液に 55%ヨウ化水素酸 28 .5 β L·(0. 196 mmol, 5.0当量)を加え、室温でー晚撹拌した。溶媒を減圧留 去し、ジクロロメタン一へキサンから再結晶し、表題化合物(66.0 mg, 薄黄色固体 )を得た。なお、 [IrCl(coe) ] ^[IrCl (cod) ] を原料として用いても同様に目的物
2 2 2
が得られる。
XH NMR (CDCl , 35°C): δ; 6.6—8.4 (Aryl H of BINAP), -15.
3
8 (br, hydride) , -19.0 (br, hydride)
XH NMR (CDCl , — 10。C): δ; 6.6-8.4 (Aryl H of BINAP), -15
3
.6 (t like, hydride) , -19.0 (dd, hydride, J = 7 Hz, 11Hz), 31P } NMR (CDCl , -10°C): δ; -4.6 (m) , —12· 8 (m)
3
IR (KBr): 2228 cm—1 (br, Ir— H伸縮)
ESI MS; m/z 2013 (Μ-Γ)
FAB MS; m/z 2013 (M_I—)
Anal. Calcd for C H I Ir P : C 49.40, H 3.11; Found: C 48.9
88 66 4 2 4
4, H 2.90
mp; 110°C (dec)
Λ (電気伝導度) = 180.2 ScmVmol
o
実施例 2
[0064] [{IrH((S) -BINAP)} ( μ -Br) ]Brの合成
2 3
アルゴン雰囲気下、 20 mLシュレンク管に、 [IrBr(cod)] 51.5 mg (0.06
2
77 mmol)及びトルエン 5 mLを加え撹拌した。これに(S)—BINAP 88.5 mg (0.1421 mmol) を加え、室温で 3時間撹拌した後、反応液に 47%臭化水素酸 3 9.4 β L·(0.3385 mmol, 5.0当量)を加え、室温でー晚撹拌した。溶媒を減圧 留去し、ジクロロメタン一へキサンから再結晶し、表題化合物(125.0 mg, 薄黄色 固体)を得た。なお、 [IrCl(coe) ] を原料として用いても同様に目的物が得られる。 H NMR (CDC1 , 35。C) : δ; 6. 2-8. 2 (Aryl H of BINAP) , -21.
3
52 (dd, J = 14 Hz, 16 Hz, hydride) ,
31P } NMR (CDC1 , 35°C): δ _0· 9 (d, 19 Hz), _9· 2 (d)
3
IR (KBr): 2268 cm—1 (brs, Ir— H伸縮)
ESI MS; m/z 1872 (M_Br—)
FAB MS; m/z 1872 (M_Br—)
Anal. Calcd for C H Br Ir P : C 54. 16, H, 3. 41; Found: C 53
88 66 4 2 4
. 63, H 3. 39
mp; 141°C(dec)
Λ = 139. 78 ScmVmol
o
実施例 3
[0065] [{lrH((S) -BINAP)} ( β -Br) ] Brの合成
2 3
アルゴン雰囲気下、 20 mLシュレンク管に、 [IrCl(cod)] 168. 7 mg (0. 2
2
512 mmol)及びトルエン 5 mLを投入し撹拌した。これに(S)—BINAP 326. 3 mg (0. 5240 mmol) を加え、室温で 3時間撹拌した後、反応液に 47%臭化水 素酸 143 zL(l. 256 mmol, 5. 0当量)を加え、室温でー晚撹拌した。溶媒を減 圧留去し、ジクロロメタン一へキサンから再結晶し、表題化合物(443. 6 mg, 薄黄 色固体)を得た。得られた錯体の NMR分析及び EDAXによる塩素原子未検出から 、塩素原子を含まなレ、標題の錯体であることが支持された。
実施例 4
[0066] [{lrH((S) -BINAP)} ( μ -CI) ] CIの合成
2 3
アルゴン雰囲気下、 20 mLシュレンク管に、 [IrCl(cod)] 120. 0 mg (0. 1
2
790 mmol)及びトルエン 5 mLを投入し撹拌した。これに(S)—BINAP 239. 0 mg (0. 3842 mmol) を加え、室温で 3時間撹拌した後、反応液に 35%塩酸 Ί 9. 0/i L(0. 90 mmol, 5. 1当量)を加え、室温でー晚撹拌した。溶媒を減圧留 去し、ジクロロメタン一へキサンから再結晶し、表題化合物(290. 7 mg, 薄黄色固 体)を得た。
XH NMR (CDC1 , 35°C): δ; 6. 3-8. 1 (Aryl H of BINAP) , -22. 70 (dd, J = 6 Hz, 15 Hz, hydride) ,
31P } NMR (CDCl , 35°C): δ _0· 4 (d) , -7.9 (d)
3
IR (KBr): 2269 cm—1 (brs, Ir— H伸縮)
FAB MS; m/z 1738(M— CI— )
Anal. Calcd for C H CI Ir P : C 58.46, H 3.62; Found: C 58.
88 66 4 2 4
51, H 3.73
mp; 162°C(dec)
Λ = 301.60 ScmVmol
o
実施例 5
[0067] [{lrH((S)-BINAP)} ( /i -I) ]PFの合成
2 3 6
アルゴン雰囲気下、 20 mLシュレンク管に、 [{lrH((S)_BINAP)} (μ-l) ]1 6
2 3
2.9 mg (0.0294 mmol)及び THF 5 mLを投入し撹拌した。これに NaPF
6
112.0 mg (0.667 mmol) を加え、室温でー晚撹拌した。溶媒を減圧留去し 、表題化合物(60· 7 mg, 収率 96· 5%)を得た。
XH NMR (CDCl ): δ; 6.6-8.4 (Aryl H of BINAP) , -19.0 (dd,
3
hydride, J = 7 Hz, 11 Hz),
P^H} NMR (CDCl ) : δ ; —4.6 (dd like) , —12.8 (dd like) , -14
3
4.5 (sept, J = 706 Hz)
PF
19F NMR (CDCl ) : δ ; 77.0 (d, J = 706 Hz)
3 PF
IR (KBr): 2233 cm—1 (br, Ir~H伸縮)
実施例 6
[0068] [{lrH((S) -BINAP)} ( β -Br) ]PFの合成
2 3 6
アルゴン雰囲気下、 20 mLシュレンク管に、 [{lrH((S)_BINAP)} ( β -Br) ]B
2 3 r 64.8 mg (0.0332 mmol)及び THF5 mLを投入し撹拌した。これに NaPF 112.0 mg (0.667 mmol) を加え、室温でー晚撹拌した。溶媒を減圧留去
6
し、表題化合物(64· 5 mg, 収率 96· 4%)を得た。
XH NMR (CDCl ): δ; 6.2-8.2 (Aryl H of BINAP), -21.52 (dd
3
, J = 14 Hz, 16 Hz, hydride) , 31P H} NMR (CDCl ) : 5 ; -0.9 (d), —9.2 (d) , —144.5 (sept, J
3
= 706 Hz)
PF
19F NMR (CDCl ) : δ ; 77.0(d, J = 706 Hz)
3 PF
IR (KBr): 2233 cm—1 (brs, Ir— H伸縮)
実施例 7
[0069] [{IrH((S)-BINAP)} ( CI) ]PFの合成
2 3 6
アルゴン雰囲気下、 20 mLシュレンク管に、 [{lrH((S)_BINAP)} ( μ -CI) ]C
2 3
1 55.0 mg (0.0310 mmol)及び THF5 mLを投入し撹拌した。これに NaPF 104.9 mg (0.625 mmol) を加え、室温でー晚撹拌した。溶媒を減圧留去
6
し、表題化合物(51· 7 mg, 収率 88· 7%)を得た。
実施例 8
[0070] [{IrH((S)-BINAP)} (μ~Ι) ]1の合成
2 3
アルゴン雰囲気下、 20 mLシュレンク管に、 [{IrHI((S)_BINAP) (CH CO )]
3 2 及びトルエンを投入し、これに 55%ヨウ化水素酸 (Ir錯体に対して 10当量)を加え、 室温でー晚撹拌した。 (C1 55.0 mg (0.0310 mmol)及び THF5 mLを加え 撹拌した。溶媒を減圧留去し、表題化合物を収率 90.9%で得た。
[0071] [実施例 9一 12]
6—フエ二ルー 2, 3, 4, 5—テトラヒドロピリジンの不斉水素化反応
lOOmLのオートクレーブに、 [{lrH((S)-BINAP)} 一 X) ]X(Xは表中のハロ
2 3
ゲン原子を表わす)、 6—フエ二ルー 2, 3, 4, 5—テトラヒドロピリジン(以下、 PhTHPと 略す)及びトルエンを投入し(PhTHP濃度が 0· 5mol/Lになるように)、 20°C、 3時 間、水素圧 6 MPaで不斉水素化反応を行った。得られた結果を表 1に示す。
<反応転化率の分析 >
GLCにてキヤビラリ一力ラム DB— 1 &W Scientific社製)を用いて測定した。 <光学純度の測定 >
得られたアミンをトリフルォロアセトアミド化した後、 GLCにてキヤビラリ一力ラム Chir asil-DEX CB (Chrompack社製)を用いて測定した。
[0072] [表 1] 実施例 X S/C 転化率 00 光学純度 (ee¾) 絶対配置
9 1 1000 >99 91 S
10 1 4000 79 90 s
1 1 Br 1000 97 90 s
12 C I 1000 78 89 s
S/Cは PhTHP/l r錯体のモル比を表わす。 産業上の利用可能性
本発明で規定するイリジウム錯体を触媒とすることによって高立体選択的な反応を 行うことができ、光学活性化合物を高収率で得ることができる。また、これら光学活性 化合物は様々な化合物の合成中間体として有用である。

Claims

請求の範囲
[1] 一般式 (1)
[化 1]
[ ( I r H L 1 L2) 2 (M-X1) (μ, - Χ 2) (μ-Χ3) ]Χ4 ( 1 )
(式中、 L1及び L2はそれぞれ同一又は異なっていてもよぐ単座中性配位子を表す か、又は L1と L2とで形成される二座中性配位子を表す。 X1、 X2及び X3はそれぞれ同 一又は異なっていてもよぐハロゲン原子を表し、 X4はカウンターァニオンを表す。) で表されるイリジウム錯体。
[2] 単座中性配位子又は二座中性配位子が光学活性体である請求の範囲第 1項に記 載のイリジウム錯体。
[3] 単座中性配位子が、ホスフィンィ匕合物、ォキサゾリン類又は含窒素複素環式カルべ ンであることを特徴とする請求の範囲第 1項に記載のイリジウム錯体。
[4] ホスフィン化合物力 トリアルキルホスフィン、トリアリールホスフィン又はジアルキル ァリールホスフィンであることを特徴とする請求の範囲第 1項に記載のイリジウム錯体
[5] ォキサゾリン類が、下記一般式(2)
[化 2]
Figure imgf000032_0001
(式中、 R1及び R2は同一又は異なっていてもよぐアルキル基、ァリール基又はへテ ロアリール基を表す。 *は、それぞれ不斉炭素原子又は非不斉炭素原子を表す。 ) で表される化合物であることを特徴とする請求の範囲第 3項に記載のイリジウム錯体 含窒素複素環式カルベンが、下記式
[化 3]
Figure imgf000033_0001
から選択される化合物であることを特徴とする請求の範囲第 3項に記載のイリジウム 錯体。
[7] 二座中性配位子が、ビスホスフィン類、ジァミン類、ビスォキサゾリン類又はビスカル ベン類であることを特徴とする請求の範囲第 1項に記載のイリジウム錯体。
[8] ビスホスフィン類が、一般式(3)
[化 4]
Figure imgf000033_0002
(式中、 R3
Figure imgf000033_0003
R5及び R。はそれぞれ独立して、アルキル基、ァリール基又は複素環 基を表し、 Q1は二価基を表す。)で表される化合物であることを特徴とする請求の範 囲第 7項に記載のイリジウム錯体。
[9] ジァミン類が、下記一般式 (4)
[化 5]
Figure imgf000033_0004
(式中、 R7
Figure imgf000033_0005
R13及び Rmは同一又は異なっていてもよぐ水素原子、アルコキシ力 ルボニル基又はスルホ二ル基を表し、 R9、 R10、 R11及び R12は同一又は異なっていて もよぐ水素原子、アルキル基、又は単環もしくは多環の芳香族炭化水素基を表し、 R9と R11又は R1Qと R12は結合して環を形成してもよぐ *は不斉炭素原子又は非不斉 炭素原子を表す。 )で表される化合物であることを特徴とする請求の範囲第 7項に記 載のイリジウム錯体。
[10] ビスォキサゾリン類が、下記一般式 (5)
[化 6]
Figure imgf000034_0001
(式中、 R , R , R1'及び R1Sは水素原子(ただし、 R1S及び Rlbは同時に水素原子で はなぐ R17及び R18は同時に水素原子ではない。)、炭素数 1一 6のアルキル基、炭 素数 1一 6のアルコキシ基又はハロゲン原子で置換されていてもよいフエニル基、又 は炭素数 1一 6のアルキル基、炭素数 1一 6のアルコキシ基又はハロゲン原子で置換 されていてもよいベンジル基を表し、 Q2はフエ二レン基、ビフエニルジィル基又はピナ フタレンジィル基を表し、ビフエエルジイル基又はビナフタレンジィル基は軸不斉構 造を有してもょレ、。 )で表される化合物であることを特徴とする請求の範囲第 7項に記 載のイリジウム錯体。
[11] ビスカルベン類が、下記一般式(6)
[化 7]
Figure imgf000034_0002
( 6 )
(式中、 Q3はアルキレン基、フエ二レン基、ビフエニルジィル基又はピナフタレンジィ ル基を表し、アルキレン基は不斉炭素を有してもよぐビフヱエルジイル基又はビナフ タレンジィル基は軸不斉構造を有してもよい。カルベン 1及びカルベン 2は同一又は 異なってもよく含窒素複素環式カルベンを表す。 )で表される化合物であることを特 徴とする請求の範囲第 7項に記載のイリジウム錯体。
[12] 請求の範囲第 1項一第 11項のいずれかに記載のイリジウム錯体を含むことを特徴 とする触媒。
[13] 不斉水素化反応に使用されることを特徴とする請求の範囲第 12項に記載の触媒。
PCT/JP2004/012394 2004-08-27 2004-08-27 イリジウム錯体 WO2006022020A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2004/012394 WO2006022020A1 (ja) 2004-08-27 2004-08-27 イリジウム錯体
JP2006531183A JP4682141B2 (ja) 2004-08-27 2004-08-27 イリジウム錯体
US11/660,935 US7642357B2 (en) 2004-08-27 2004-08-27 Iridium complexes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/012394 WO2006022020A1 (ja) 2004-08-27 2004-08-27 イリジウム錯体

Publications (1)

Publication Number Publication Date
WO2006022020A1 true WO2006022020A1 (ja) 2006-03-02

Family

ID=35967243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012394 WO2006022020A1 (ja) 2004-08-27 2004-08-27 イリジウム錯体

Country Status (3)

Country Link
US (1) US7642357B2 (ja)
JP (1) JP4682141B2 (ja)
WO (1) WO2006022020A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010099610A (ja) * 2008-10-24 2010-05-06 Tokyo Univ Of Science 新規不斉触媒、並びに光学活性エステル及び光学活性カルボン酸の製造方法
JP2013508145A (ja) * 2009-10-22 2013-03-07 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア カリックスアレーン結合イリジウム含有金属コロイド
EP2762467A1 (en) 2013-01-31 2014-08-06 Takasago International Corporation Method for producing an optically active 2-arylpiperidinium salt

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114230553B (zh) * 2020-09-09 2023-05-05 凯特立斯(深圳)科技有限公司 一种左旋烟碱的不对称合成方法
CN113861243B (zh) * 2021-09-14 2023-05-12 中国科学院上海有机化学研究所 Ncp配体、其金属铱络合物、制备方法及应用
CN114409688B (zh) * 2022-03-15 2024-05-07 安徽大学 一种2-硼化苯并噻唑衍生物的合成方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447723A (en) * 1987-07-28 1989-02-22 Ciba Geigy Ag Manufacture of optically active secondary amine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447723U (ja) 1987-09-18 1989-03-24
JP3517591B2 (ja) 1998-05-20 2004-04-12 高砂香料工業株式会社 光学活性アミンの製造法
DE10215978A1 (de) * 2002-04-11 2003-10-23 Basf Ag Herstellung von Polyoxymethylen und dafür geeignete Katalysatoren

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447723A (en) * 1987-07-28 1989-02-22 Ciba Geigy Ag Manufacture of optically active secondary amine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010099610A (ja) * 2008-10-24 2010-05-06 Tokyo Univ Of Science 新規不斉触媒、並びに光学活性エステル及び光学活性カルボン酸の製造方法
JP2013508145A (ja) * 2009-10-22 2013-03-07 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア カリックスアレーン結合イリジウム含有金属コロイド
JP2016128485A (ja) * 2009-10-22 2016-07-14 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア カリックスアレーン結合イリジウム含有金属コロイド
EP2762467A1 (en) 2013-01-31 2014-08-06 Takasago International Corporation Method for producing an optically active 2-arylpiperidinium salt
JP2014148475A (ja) * 2013-01-31 2014-08-21 Takasago Internatl Corp 光学活性2−アリールピペリジニウム塩の製造方法
US9012649B2 (en) 2013-01-31 2015-04-21 Takasago International Corporation Method for producing optically active 2-arylpiperidinium salt

Also Published As

Publication number Publication date
US20090036696A1 (en) 2009-02-05
JPWO2006022020A1 (ja) 2008-05-08
US7642357B2 (en) 2010-01-05
JP4682141B2 (ja) 2011-05-11

Similar Documents

Publication Publication Date Title
Arita et al. Synthesis and Reactivities of Cp* Ir Amide and Hydride Complexes Bearing C− N Chelate Ligands
Banerjee et al. Chiral n-heterocyclic carbene gold complexes: Synthesis, properties, and application in asymmetric catalysis
Blaser et al. Heterogeneous catalysis and fine chemicals IV
Michaud et al. A strategy for the stereoselective synthesis of unsymmetric atropisomeric ligands: preparation of NAPhePHOS, a new biaryl diphosphine
KR100384411B1 (ko) 키랄리간드인헤테로방향족디포스핀
WO2001058588A1 (en) Chiral ferrocene phosphines and their use in asymmetric catalytic reactions
CA2382779C (en) Chiral ligands, transition-metal complexes thereof and uses thereof in asymmetric reactions
Chen et al. Highly Enantioselective hydrogenation of tetra-and tri-substituted α, β-unsaturated carboxylic acids with oxa-spiro diphosphine ligands
Bert et al. Chiral imidate–ferrocenylphosphanes: synthesis and application as P, N-ligands in iridium (i)-catalyzed hydrogenation of unfunctionalized and poorly functionalized olefins
Sun et al. Rh‐catalyzed highly enantioselective synthesis of 3‐arylbutanoic acids
AU2011301115B2 (en) Biaryl diphosphine ligands, intermediates of the same and their use in asymmetric catalysis
WO2006022020A1 (ja) イリジウム錯体
Yuan et al. A class of readily available optically pure 7, 7′-disubstituted BINAPs for asymmetric catalysis
JP6437187B2 (ja) 光学活性2級アルコールの製造方法
EP1661903B1 (en) Novel transition metal complex and process for producing optically active alcohol with the complex
JP6065259B2 (ja) 光学活性アミン類の製造方法
Panahi et al. Rhodium‐Catalyzed Asymmetric Macrocyclization towards Crown Ethers Using Hydroamination of Bis (allenes)
Jeulin et al. Multigram-scale asymmetric hydrogenation reactions using Ru-SYNPHOS® and Ru-DIFLUORPHOS® catalysts
JP6291179B2 (ja) 光学活性2級アルコールの製造方法
Bajracharya Design and Synthesis of Chiral Spiro Ligands
JP3517591B2 (ja) 光学活性アミンの製造法
JP5762887B2 (ja) イリジウム錯体及び光学活性化合物の製造方法
Muzenda Diphenylphosphino-N, N-Diisobutylamine as a Co-Catalyst in Pd (II)-Catalyzed Mizoroki-Heck Coupling of Aryl Chlorides
JP2012031119A (ja) 軸不斉イソキノリン誘導体及びその製造方法並びに不斉合成方法
JP2004256460A (ja) イリジウム錯体および光学活性アミンの製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531183

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11660935

Country of ref document: US

122 Ep: pct application non-entry in european phase