WO2007007542A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2007007542A1
WO2007007542A1 PCT/JP2006/312728 JP2006312728W WO2007007542A1 WO 2007007542 A1 WO2007007542 A1 WO 2007007542A1 JP 2006312728 W JP2006312728 W JP 2006312728W WO 2007007542 A1 WO2007007542 A1 WO 2007007542A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
active material
composite oxide
lithium
secondary battery
Prior art date
Application number
PCT/JP2006/312728
Other languages
English (en)
French (fr)
Inventor
Kensuke Nakura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN2006800251959A priority Critical patent/CN101218698B/zh
Priority to US11/915,781 priority patent/US8236449B2/en
Publication of WO2007007542A1 publication Critical patent/WO2007007542A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium ion secondary battery excellent in safety at the time of a short circuit and overcharge.
  • Lithium ion secondary batteries which are representative of non-aqueous electrolyte secondary batteries, have a high energy density with high electromotive force, increasing demand as the main power source for mobile communication devices and portable electronic devices is doing.
  • lithium ion secondary batteries on the market use a lithium composite oxide containing cobalt as a main component as a positive electrode active material.
  • lithium composite oxides with cobalt as the main component are expensive for cobalt compounds used as raw materials, so research on lithium composite oxides with nickel as the main component has been vigorously conducted! /, Ru
  • a lithium composite oxide containing Co or Ni as a main component has high-reactivity high-valence Co 4+ or Ni 4+ during charging.
  • the decomposition reaction of the electrolyte solution involving the lithium complex oxide is accelerated, and gas is generated, or it becomes difficult to suppress heat generation during a short circuit.
  • the thermal decomposition reaction of the active material is an oxygen desorption reaction from the surface of the active material
  • the decomposition reaction of the electrolytic solution is a reaction between the active material surface and the electrolytic solution.
  • Patent Documents 1 to 7 In order to ensure safety during overcharging, a mechanism that cuts off the current mechanically by using the increase in the internal pressure of the battery, or a current cut off by the PTC element using the rise in the temperature of the battery A mechanism that shuts off the current by a shutdown function of a low melting point polyolefin separator is proposed. In addition, a conductive polymer starting material that polymerizes when overcharged is added to the electrolyte, and a short circuit is formed by the conductive polymer inside the battery when overcharged. Also called a mechanism). (Patent Document 8)
  • Patent Document 1 Japanese Patent Laid-Open No. 8-236114
  • Patent Document 2 JP-A-9-35715
  • Patent Document 3 Japanese Patent Laid-Open No. 11 317230
  • Patent Document 4 Japanese Patent Laid-Open No. 11-16566
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2001-196063
  • Patent Document 6 Japanese Patent Laid-Open No. 2003-173775
  • Patent Document 7 Special Table 2003-500318
  • Patent Document 8 Japanese Patent Laid-Open No. 10-321258
  • An object of the present invention is to achieve both safety at the time of a short circuit due to nail penetration or the like and safety at the time of overcharge.
  • the present invention has a chargeable / dischargeable positive electrode, a chargeable / dischargeable negative electrode, and a non-aqueous electrolyte.
  • the electrode includes active material particles, the active material particles include secondary particles of a lithium composite oxide, at least part of the secondary particles have cracks, and at least the surface layer portion of the active material particles is M n , Al, Mg, Ca, Zr, B, W, Nb, Ta, In, Mo, and Sn have at least one element Me selected from the group consisting of Compared to the above, the lithium-ion secondary battery is more distributed in the surface layer portion.
  • the number ratio R of secondary particles having cracks is desirably 2% or more.
  • the secondary particles of the lithium composite oxide are formed by aggregation of a plurality of primary particles of the lithium composite oxide.
  • the cross section of the crack formed in the secondary particle of the lithium composite oxide is the cross section of the lithium composite oxide itself. Therefore, the element Me is distributed more in the surface layer portion of the active material particles than in the cross section formed by the cracks.
  • Lithium composite oxide is Li M L O (however, 0. 85 ⁇ x ⁇ l. 25, 0 ⁇ y ⁇ 0. 50,
  • Element M is a group force consisting of Ni and Co.
  • Element L is an alkaline earth element, transition metal elements other than Ni and Co, rare earth elements, Illb group elements, and IVb group elements. It is preferably represented by at least one selected.
  • the crystal structure of the lithium composite oxide is usually a layer structure (for example, R3m), and oxygen has a vertically closest packing arrangement.
  • Element L forms part of such a crystal structure. That is, the element L is in a state of being dissolved in the lithium composite oxide.
  • the element L is at least one selected from the group force consisting of Al, Mn, Ti, Mg, Zr, Nb, Mo, W, Y, Ca, B, Ta, In and Sn It is more preferable to include at least one selected from the group forces of Al, Mn, and TU.
  • the element Me and the element L constitute different crystal structures.
  • the element Me preferably constitutes an oxide having a crystal structure different from that of the lithium composite oxide in the surface layer portion of the active material particles.
  • the average particle diameter of the active material particles is preferably 10 ⁇ m or more.
  • the amount of element Me contained in the active material particles is preferably 2 mol% or less with respect to the lithium composite oxide. That is, when the lithium composite oxide is represented by Li M L O
  • the amount of element Me is 2 mol% or less with respect to the sum of element M and element L. Is preferred.
  • roller gap is set large so that excessive stress is not applied to the secondary particles.
  • electrode thickness is adjusted by repeating rolling. In this case, the secondary particles do not crack.
  • the element Me distributed more in the surface layer has the effect of improving safety at the time of short circuit.
  • the element Me suppresses metal elution, making it difficult to develop an internal short circuit safety mechanism.
  • the secondary particles of the lithium composite oxide have cracks (cracks)
  • the metal elutes from the cracks during overcharge. Therefore, the internal short circuit safety mechanism is easily developed.
  • FIG. 1 is a longitudinal sectional view of a cylindrical lithium ion secondary battery according to an embodiment of the present invention.
  • the positive electrode will be described.
  • the positive electrode contains the following active material particles.
  • the active material particles include secondary particles of lithium composite acid, and the surface layer portion of the active material particles includes a predetermined element Me.
  • the element Me is distributed more in the surface layer than in the active material particles.
  • Element Me is selected from the group consisting of Mn, Al, Mg, Ca, Zr, B, W, Nb, Ta, In, Mo, and Sn because it has the effect of improving safety during short-circuiting. At least one species is used. These elements may be contained alone in the surface layer portion, or multiple types may be included in the surface layer portion.
  • the secondary particles of the lithium composite oxide are formed by aggregating a plurality of primary particles.
  • the average particle size of the primary particles is not particularly limited, and is generally 0.1 to 3.0 m.
  • At least some of the active material particles have cracks reaching from the surface layer portion to the inside of the secondary particles.
  • at least a part of the secondary particles of the lithium composite oxide has cracks.
  • the presence or absence of cracks can be observed with an electron microscope such as SEM or TEM.
  • the number ratio R of secondary particles having cracks is not particularly limited.
  • the number ratio R of secondary particles having cracks is preferably 2% or more, more preferably 3.5% or more, based on the number.
  • an arbitrary 100 active material particles are observed with an electron microscope with an electron microscope, and the number of particles having cracks reaching from the surface layer to the inside of secondary particles is counted.
  • the number of particles having cracks is desirably 2 or more out of 100, and more preferably 3.5 or more.
  • the average particle size of the active material particles is not particularly limited, but for example, 1 to 30 m is preferable, and 10 to 30 m is particularly preferable.
  • the average particle diameter can be measured by, for example, a wet laser single diffraction particle size distribution measuring device manufactured by Microtrack. In this case, the 50% value (median value: D) on the volume basis can be regarded as the average particle diameter of the active material particles.
  • Lithium composite oxide is generally Li M L O (however, 0.885 ⁇ x ⁇ l. 25, 0 ⁇ y ⁇
  • element M is at least one selected from the group force consisting of Ni and Co
  • element L is alkali earth element, transition metal element other than Ni and Co, rare earth element, mb group element and
  • Element L gives lithium composite oxides effects such as improved thermal stability.
  • the lithium composite oxide represented by Li M L O is preferably Al, Mn,
  • l 2 Contains at least one selected from the group consisting of Ti, Mg ⁇ Zr ⁇ Nb ⁇ Mo, W, Y, Ca ⁇ B, Ta ⁇ In and Sn. These elements may be included in the lithium complex oxide as two or more elements alone as element L. Of these, Al, Mn, Ti and the like are suitable as elements. In particular, A1 is preferable in that the effect of improving the thermal stability of the lithium composite oxide is large.
  • Li M L O the range of X representing the Li content increases or decreases depending on the charge / discharge of the battery.
  • the range of x in the fully discharged state (initial state) is preferably 0.85 ⁇ x ⁇ l. 25, but 0
  • the range of y representing the content of the element L may be 0 ⁇ y ⁇ 0.50. However, considering the balance between thermal stability and capacity of lithium composite oxide, 0.005 ⁇ y ⁇ 0.35 is preferable, and 0.0101y ⁇ 0.1 force S is more preferable. ⁇ . When 0.5 ⁇ y, the merit of using an active material mainly composed of Ni or Co, for example, a specific high capacity cannot be realized.
  • the power of 05 ⁇ a ⁇ 0.5 is preferable, the power of 0.05 ⁇ a ⁇ 0.25 ⁇ is more preferable!
  • element L contains A1
  • the atomic ratio b of A1 to the sum of element M and element L is 0.0
  • the force S is preferably 5 ⁇ d ⁇ 0.35, more preferably 0.01 ⁇ d ⁇ 0.1.
  • the lithium composite oxide represented by Li M L O is a raw material having a predetermined metal element ratio.
  • the raw material contains lithium, element M, and element L as required.
  • the raw materials include oxides, hydroxides, oxyhydroxides, carbonates, nitrates, organic complex salts and the like of each metal element. These may be used alone or in combination of two or more.
  • the raw material preferably contains a solid solution containing a plurality of metal elements.
  • Solid solutions containing multiple metal elements can be formed in any of oxides, hydroxides, oxyhydroxides, carbonates, nitrates, organic complex salts, etc. Noh.
  • a solid solution containing Ni and Co, a solid solution containing Ni, Co and A1, a solid solution containing Ni, Co and Mn, and a solid solution containing Ni, Co and Ti can be used.
  • the firing temperature of the raw material and the oxygen partial pressure in the oxidizing atmosphere depend on the composition of the raw material, the amount, the synthesis apparatus, and the like, but those skilled in the art can appropriately select appropriate conditions.
  • elements other than Li, element M, and element L may be mixed as impurities in amounts that are usually included in industrial raw materials, they do not significantly affect the effects of the present invention.
  • the element Me contained in the surface layer portion of the active material particles is preferably deposited, attached or supported on the surface of the lithium composite oxide in the state of an oxide or a lithium-containing oxide. .
  • the element L dissolved in the lithium composite acid and the element Me contained in the surface layer portion of the active material particles may or may not contain the same kind of element. Even when the element Me and the element L contain the same kind of elements, they are clearly distinguished because they have different crystal structures.
  • the element Me is not dissolved in the lithium composite oxide.
  • the element Me mainly constitutes an oxide having a crystal structure different from that of the lithium composite oxide in the surface layer portion of the active material particles.
  • Element Me and element L are element mapping by EPMA (Electron Probe Micro-Analysis), chemical bond state analysis by XPS (X-ray Photoelectron Spectroscopy), SIMS (2 Secondary ion mass spectrometry: Secon dary Ionization Mass
  • the amount of element Me contained in the active material particles is preferably 2 mol% or less with respect to the lithium composite oxide, and more preferably 0.1 mol% or more and 1.5 mol% or less. Preferred. That is, when the lithium composite oxide is represented by Li M L O, the amount of element Me is
  • the total amount of element M and element L is preferably 2 mol% or less, more preferably 0.1 mol% or more and 1.5 mol% or less. If the amount of the element Me exceeds 2 mol%, the surface layer of the active material particles becomes a resistance layer, and the overvoltage increases, so that the cycle characteristics begin to deteriorate. On the other hand, when the amount of the element Me is less than 0.1 mol%, the exposed portion of the lithium composite oxide increases, so that the effect of improving the safety at the time of short circuit may not be obtained.
  • the element Me in the surface layer diffuses into the lithium composite oxide, and the element in the lithium composite oxide
  • the concentration of elemental L may be higher near the surface layer than in the active material particles.
  • the surface element Me may change to the element L constituting the lithium composite oxide.
  • the element L derived from the element Me diffused in the lithium composite oxide is negligible and can be ignored. Even if this is ignored, the effect of the present invention is hardly affected.
  • a lithium composite oxide is prepared.
  • the method for preparing the lithium composite oxide is not particularly limited.
  • a lithium composite oxide can be synthesized by firing a raw material having a predetermined metal element ratio in an oxidizing atmosphere.
  • the firing temperature, the oxygen partial pressure in the oxidizing atmosphere, and the like are appropriately selected according to the composition, amount, synthesis apparatus, etc. of the raw materials.
  • the prepared lithium composite oxide is loaded with the raw material of the element Me (at least one selected from the group force consisting of Mn, Al, Mg ⁇ Ca ⁇ Zr ⁇ B, W, Nb ⁇ Ta, In, Mo and Sn). .
  • the average particle diameter of the lithium composite oxide is not particularly limited, but is preferably 10 to 30 / ⁇ ⁇ , for example.
  • the amount of the element Me relative to the lithium complex oxide can be determined from the amount of the raw material of the element Me used here.
  • a raw material for the element Me sulfate, nitrate, carbonate, chloride, hydroxide, oxide, alkoxide, and the like containing the element Me can be used. These may be used alone or in combination of two or more. Of these, sulfate, nitrate, salt or alkoxide is particularly preferred in view of battery characteristics.
  • the method for supporting the elemental Me raw material on the lithium composite oxide is not particularly limited. For example, it is preferable to prepare a solution or dispersion by dissolving or dispersing the raw material of the element Me in the liquid component, mixing it with the lithium composite oxide, and then removing the liquid component.
  • the liquid component for dissolving or dispersing the raw material of element Me is not particularly limited, but ketones such as acetonitrile and methyl ethyl ketone (MEK), ethers such as tetrahydrofuran (THF), alcohol such as ethanol, and the like. And other organic solvents are preferred.
  • Alkaline water having a pH of 10 to 14 can also be preferably used.
  • the temperature of is not particularly limited. However, the temperature in the liquid is preferably controlled to 20 to 40 ° C from the viewpoint of workability and manufacturing cost.
  • the stirring time is not particularly limited, but for example, stirring for 3 hours is sufficient.
  • the method for removing the liquid component is not particularly limited. For example, it is sufficient that the liquid component is dried for about 2 hours at a temperature of about 100 ° C.
  • the lithium composite oxide having the element Me supported on the surface is baked in an oxygen atmosphere at 650 to 750 ° C. for 2 to 24 hours, preferably about 6 hours.
  • the pressure of the oxygen atmosphere is preferably 101 to 50 kPa.
  • a positive electrode is formed using the active material particles.
  • the method for producing the positive electrode is not particularly limited. However, it is necessary to generate cracks in the active material particles that extend from the surface layer portion to the inside of the secondary particles.
  • a positive electrode mixture containing active material particles and a binder is supported on a belt-like positive electrode core material (positive electrode current collector).
  • the positive electrode mixture can contain an additive such as a conductive material as an optional component.
  • the positive electrode mixture can be supported on the core material by preparing a paste by dispersing the positive electrode mixture in a liquid component, applying the paste to the core material, and drying the paste.
  • the current collector (positive electrode core material) carrying the positive electrode mixture is rolled with a roller.
  • the roller gap is controlled so that the linear pressure is 1000 to 6000 NZcm.
  • the roller gap is 3 to: LO ⁇ m
  • a large stress is applied to the active material particles.
  • cracks are formed in the active material particles reaching from the surface layer portion to the inside of the secondary particles.
  • thermoplastic resin As the binder to be included in the positive electrode mixture, either thermoplastic or thermosetting resin may be used, but thermoplastic resin is preferable.
  • thermoplastic resins include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene monohexafluoropropylene copolymer.
  • FEP tetrafluoroethylene perfluoroalkyl burue Monoter copolymer
  • PFA tetrafluoroethylene perfluoroalkyl burue Monoter copolymer
  • EDF tetrafluoroethylene perfluoroalkyl burue Monoter copolymer
  • EDF tetrafluoroethylene perfluoroalkyl burue Monoter copolymer
  • EFE tetrafluoroethylene copolymer
  • PCTFE Polychlorotrifluoroethylene
  • ECTFE Ethylene Chlorofluorotrifluoroethylene Copolymer
  • ECTFE vinylidene fluoride monohexafluoropropylene-tetrafluoroethylene copolymer
  • ethylene acrylic acid copolymer Ethylene-methacrylic acid copolymer
  • the conductive material included in the positive electrode mixture may be any electron conductive material that is chemically stable in the battery.
  • natural graphite such as flake graphite
  • graphite such as artificial graphite
  • carbon black such as acetylene black, ketjen black
  • Conductive fibers, metal powders such as aluminum, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, organic conductive materials such as polyphenylene derivatives, fluorine Carbonized carbon or the like can be used. These may be used alone or in combination of two or more.
  • the addition amount of the conductive material is not particularly limited, but 1 to 50% by weight is preferable to 1 to 30% by weight and 2 to 15% by weight is more preferable to the active material particles contained in the positive electrode mixture. Is particularly preferred.
  • the positive electrode core material may be any electron conductor that is chemically stable in the battery.
  • a foil or sheet having strength such as aluminum, stainless steel, nickel, titanium, carbon, and conductive resin can be used.
  • aluminum foil, aluminum alloy foil and the like are preferable.
  • a layer of carbon or titanium is applied to the surface of the foil or sheet.
  • An oxide layer can also be formed. Unevenness can also be imparted to the surface of the foil or sheet. Nets, punching sheets, lath bodies, porous bodies, foams, fiber group molded bodies, and the like can also be used. Although the thickness of the positive electrode core material is not particularly limited, for example, 1 to 500 Within m.
  • the negative electrode capable of charging and discharging lithium includes, for example, a negative electrode core material that includes a negative electrode active material and a binder, and optionally includes a negative electrode mixture containing a conductive material and a thickener. Can be used. Such a negative electrode can be produced in the same manner as the positive electrode.
  • the negative electrode active material may be any material that can electrochemically charge and discharge lithium.
  • the lithium alloy is particularly preferably an alloy containing at least one selected from the group force consisting of silicon, tin, aluminum, zinc and magnesium.
  • the metal oxide is hybridized with a carbon material in which an oxide containing silicon and an oxide containing tin are preferred.
  • the average particle size of the negative electrode active material is not particularly limited, but is preferably 1 to 30 / ⁇ ⁇ .
  • thermoplastic resin As the binder to be included in the negative electrode mixture, either thermoplastic resin or thermosetting resin may be used, but thermoplastic resin is preferable.
  • thermoplastic resins include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene monohexafluoropropylene copolymer.
  • FEP Tetrafluoroethylene perfluoroalkyl buluene mono-terpolymer
  • PFA Vinylidene fluoride-hexafluoropropylene copolymer
  • Polyfluoride fluoride trifluoride trifluoride Fluoroethylene copolymer ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride pentafluoropropylene copolymer, propylene-tetrafluoro Fluoroethylene copolymer, Ethylene black trifluoroethylene copolymer (ECTFE), vinylidene fluoride hexafluoropropylene Trafluoroethylene copolymer, fluorinated vinylidene-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene methyl acryl
  • the conductive material included in the negative electrode mixture may be any electron-conductive material that is chemically stable in the battery.
  • natural graphite such as flake graphite
  • graphite such as artificial graphite
  • carbon black such as acetylene black, ketjen black
  • Conductive fibers, metal powders such as copper and nickel, organic conductive materials such as polyphenylene derivatives, and the like can be used. These may be used alone or in combination of two or more.
  • the amount of the conductive material added is not particularly limited, but is preferably 1 to 30% by weight, more preferably 1 to 10% by weight, based on the active material particles contained in the negative electrode mixture.
  • the negative electrode core material may be any electron conductor that is chemically stable in the battery.
  • a foil or sheet that has strength such as stainless steel, nickel, copper, titanium, carbon, and conductive resin can be used.
  • copper foil and copper alloy foil are preferable.
  • a layer of carbon, titanium, nickel or the like or an oxide layer can be formed on the surface of the foil or sheet. Unevenness can also be imparted to the surface of the foil or sheet. Nets, punching sheets, lath bodies, porous bodies, foams, fiber group molded bodies, and the like can also be used.
  • the thickness of the negative electrode core material is not particularly limited, but is, for example, in the range of 1 to 500 / ⁇ ⁇ .
  • non-aqueous electrolyte a non-aqueous solvent in which a lithium salt is dissolved is preferably used.
  • Non-aqueous solvents include, for example, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate ( ⁇ C), butylene carbonate (BC), dimethyl carbonate (DMC), jetinorecarbonate (DEC), ethinoremethinole.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate ( ⁇ C), butylene carbonate (BC), dimethyl carbonate (DMC), jetinorecarbonate (DEC), ethinoremethinole.
  • Chain carbonates such as carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate and ethyl propionate, ⁇ -petit oral ratatones, y-valerolatatatone Latatones such as 1, 2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), tetrahydrofuran, 2-methyl Cyclic ethers such as tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetoamide, di Chill formamide, Jiokiso orchid, Asetonitoriru, propyl - tolyl, nitromethane, E chill monoglyme, Toriesu phosphate Tellurium, trimethoxymethane, dioxolane derivatives, s
  • a mixed solvent of a cyclic carbonate and a chain carbonate or a mixed solvent of a cyclic carbonate, a chain force carbonate, and an aliphatic carboxylic acid ester is preferable.
  • LiCIO lithium salt dissolved in a non-aqueous solvent
  • LiB CI lower aliphatic lithium carboxylate, LiCl, LiBr, Lil, black mouth
  • lithium lithium tetraborate and lithium imide salts may be used alone or in combination of two or more, but at least LiPF
  • the amount of lithium salt dissolved in a non-aqueous solvent is not particularly limited.
  • the lithium salt concentration is preferably 0.2 to 2 molZL, more preferably 0.5 to 1.5 molZL.
  • additives can be added to the non-aqueous electrolyte for the purpose of improving the charge / discharge characteristics of the battery.
  • the additive for example, it is preferable to use at least one selected from the group power consisting of, for example, beylene carbonate, vinyl ethylene carbonate, phosphazene, and fluorobenzene. Appropriate amounts of these additives are 0.5 to 10% by weight of the non-aqueous electrolyte.
  • Various other additives such as triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, pyridine, hexaline triamide, nitrobenzene derivatives, crown ethers, quaternary A grade ammonium salt, ethylene glycol dialkyl ether or the like can be used.
  • a microporous thin film having a high ion permeability, a predetermined mechanical strength, and an insulating property is preferably used.
  • the microporous thin film preferably has a function of closing the pores at a certain temperature or higher and increasing the resistance.
  • the material of the microporous thin film is organic solvent resistant Polyolefins such as polypropylene and polyethylene having excellent agent properties and hydrophobic properties are preferably used. Sheets such as glass fibers, nonwoven fabrics, woven fabrics, etc. are also used.
  • the pore diameter of the separator is, for example, 0.01-1111.
  • the thickness of the separator is generally 10 to 300 m.
  • the separator porosity is generally 30-80%.
  • a nonaqueous electrolytic solution and a polymer electrolyte having a polymer material strength for holding the nonaqueous electrolytic solution can also be used as a separator integrated with a positive electrode or a negative electrode.
  • the polymer material can hold a non-aqueous electrolyte, but a copolymer of vinylidene fluoride and hexafluoropropylene is particularly preferred.
  • Nickel sulfate, cobalt sulfate, and aluminum sulfate were mixed so that the molar ratio of Ni atom, Co atom, and A1 atom was 80: 15: 5.
  • 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution.
  • 400 g of sodium hydroxide was added to the raw material solution to form a precipitate.
  • the precipitate was sufficiently washed with water and dried to obtain a coprecipitated hydroxide.
  • Ni-Co-A1 co-precipitated hydrolyzed acid 3 kg was mixed with 784 g of lithium hydroxide, and in an atmosphere having an oxygen partial pressure of 0.5 atm. At a synthesis temperature of 750 ° C, Baked for 10 hours. As a result, Ni—Co—A1 lithium complex oxide (LiNi Co Al 2 O 3) containing Ni and Co as the element M and A1 as the element L was obtained. The obtained lithium composite oxide was observed with an electron microscope.
  • the primary particles aggregated to form secondary particles.
  • the dried powder was first pre-fired at 300 ° C. for 6 hours under a dry air atmosphere (humidity 19%, pressure 101 kPa).
  • the pre-fired powder was fired at 650 ° C. for 6 hours in a 100% oxygen atmosphere (pressure lOlkPa).
  • active material particles (average particle size 12 m) containing secondary particles of lithium composite acid and containing Nb in the surface layer portion were obtained.
  • Nb was confirmed by XPS, EPMA, ICP emission analysis and the like.
  • the presence of the element Me in the active material particles was confirmed by XPS, EMPA, ICP emission analysis, and the like.
  • the current collector carrying the positive electrode mixture was rolled only once with a roller having a gap set to 5 ⁇ m to obtain a positive electrode plate having a total thickness of 160 m. Thereafter, the obtained positive electrode plate was slit to a width that could be inserted into a cylindrical battery case, and the positive electrode was obtained.
  • the positive electrode mixture was scraped off, and only the active material particles were separated by washing.
  • BM-400B modified solid steel with a solid content of 40% by weight
  • CMC canoleboxymethinoresenorelose
  • This paste was applied on both sides of a 12 / zm thick copper foil (negative electrode core: current collector), dried, and rolled to a total thickness of S 160 / zm. Thereafter, the obtained negative electrode plate was slit into a width that could be inserted into a cylindrical 18650 battery case to obtain a negative electrode.
  • the positive electrode 5 and the negative electrode 6 were wound through a separator 7 to form a spiral electrode group.
  • a separator 7 a composite film of polyethylene and polypropylene (2300, 25 m thickness made by Selgard) was used.
  • a positive electrode lead 5a and a negative electrode lead 6a made of nickel were attached to the positive electrode 5 and the negative electrode 6, respectively.
  • An upper insulating plate 8a was disposed on the upper surface of the electrode plate group, and a lower insulating plate 8b was disposed on the lower surface, inserted into the battery case 1, and 5 g of non-aqueous electrolyte was injected into the battery case 1.
  • the non-aqueous electrolyte includes a volume ratio of ethylene carbonate to methyl ethyl carbonate of 10
  • Example Battery A1 a cylindrical 18650 lithium secondary battery was completed. This is designated as Example Battery A1.
  • Battery A2 was produced in the same manner as Battery A1, except that the amount of sodium niobium dissolved in 10 L of ethanol was changed to 2. Omol% with respect to the lithium composite oxide.
  • the amount of manganese sulfate dissolved in lOOg of distilled water was 2.0.
  • a battery A4 was produced in the same manner as the battery A3, except that the mol% was changed.
  • Battery A6 was made in the same manner as Battery A5, except that the amount of pentaethoxytantalum dissolved in 10 L of ethanol was changed to 2. Omol% with respect to the lithium composite oxide.
  • Battery A7 was made in the same manner as Battery A3, except that manganese sulfate was changed to disodium molybdate (Mo) dihydrate.
  • Battery A8 was made in the same manner as Battery A7, except that the amount of disodium molybdate dihydrate dissolved in lOOg of distilled water was changed to 2. Omol% with respect to the lithium composite oxide. .
  • a battery A9 was produced in the same manner as the battery A5, except that a solution obtained by dissolving indium nitrate (In) in 1 L of ethanol was used instead of the ethanol solution of pentaethoxytantalum.
  • the amount of indium nitrate used was 0.5 mol% with respect to the lithium composite oxide.
  • a battery A10 was produced in the same manner as the battery A9, except that the amount of indium nitrate dissolved in 1 L of ethanol was changed to 2. Omol% with respect to the lithium composite oxide.
  • Battery A11 was made in the same manner as Battery A3, except that manganese sulfate was changed to tin sulfate (Sn). [0083] Example Battery Al 2
  • a battery A12 was produced in the same manner as the battery A1, except that the amount of tin sulfate dissolved in 10 g of distilled water was changed to 2. Omol% with respect to the lithium composite oxide.
  • Battery A13 was made in the same manner as Battery A3, except that manganese sulfate was changed to sodium tungsten (W).
  • Battery A14 was made in the same manner as Battery A13, except that the amount of sodium tungstate dissolved in lOOg of distilled water was changed to 2. Omol% with respect to the lithium composite oxide.
  • a battery A15 was produced in the same manner as the battery A5, except that a solution of aluminum (A1) triisopropoxide in 10 L of isopropanol was used instead of the ethanol solution of pentaethoxytantalum. .
  • the amount of aluminum triisopropoxide used was 0.5 mol% with respect to the lithium composite oxide.
  • Battery A16 was made in the same manner as Battery A15, except that the amount of aluminum triisopropoxide dissolved in 10 L of isopropanol was changed to 2. Omol% with respect to the lithium composite oxide.
  • a battery A17 was produced in the same manner as the battery A5, except that instead of the ethanol solution of pentaethoxytantalum, a solution in which zirconium (Zr) tetra-n-butoxide was dissolved in 10 L of butanol was used. The amount of zirconium tetra-n-butoxide used was 0.5 mol% with respect to the lithium composite oxide.
  • a battery A18 was produced in the same manner as the battery A17, except that the amount of zirconium tetra-n-butoxide dissolved in 10 L of butanol was changed to 2. Omol% with respect to the lithium composite oxide. [Example battery Al 9]
  • a battery A19 was produced in the same manner as the battery A5, except that instead of the ethanol solution of pentaethoxytantalum, a solution of magnesium acetate (Mg) dissolved in 1 L of ethanol was used.
  • the amount of magnesium acetate used was 0.5 mol% with respect to the lithium composite oxide.
  • a battery A20 was produced in the same manner as the battery A19, except that the amount of magnesium acetate dissolved in 1 L of ethanol was changed to 2. Omol% with respect to the lithium composite oxide.
  • Battery A21 was made in the same manner as Battery A3, except that manganese sulfate was changed to boric acid (B).
  • Battery A22 was made in the same manner as Battery A21, except that the amount of boric acid dissolved in lOOg of distilled water was changed to 2. Omol% with respect to the lithium composite oxide.
  • a battery A23 was produced in the same manner as the battery A5, except that a solution of calcium oleate (Ca) dissolved in 1 L of ethanol was used instead of the ethanol solution of pentaethoxytantalum.
  • the amount of calcium oleate used was 0.5 mol% with respect to the lithium composite oxide.
  • Battery A24 was made in the same manner as Battery A23, except that the amount of calcium oleate dissolved in 1 L of ethanol was changed to 2. Omol% with respect to the lithium composite oxide.
  • the positive electrode mixture paste was applied to both sides of an aluminum foil with a thickness of 20 ⁇ m, dried, and the current collector carrying the positive electrode mixture was then placed in a nozzle with a gap of 15 m.
  • the positive electrode plate was obtained by rolling 3 to 4 times until the total thickness reached 160 / zm.
  • batteries al to a24 were produced in the same manner as batteries A1 to A24, respectively.
  • the positive electrode mixture was scraped off from a part of the positive electrode, and only the active material particles were separated by washing. When the separated active material particles were analyzed by SEM, particles with cracks reaching from the surface layer to the inside of the secondary particles were not observed at all. The same was true for the following comparative batteries.
  • Nickel sulfate, cobalt sulfate, and manganese sulfate were mixed so that the molar ratio of Ni atom, Co atom, and Mn atom was 80: 15: 5.
  • 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution.
  • 400 g of sodium hydroxide was added to the raw material solution to form a precipitate.
  • the precipitate was sufficiently washed with water and dried to obtain a coprecipitated hydroxide.
  • the positive electrode mixture paste was applied to both sides of an aluminum foil with a thickness of 20 ⁇ m, dried, and then the current collector carrying the positive electrode mixture was placed in a nozzle with a gap of 15 m.
  • the positive electrode plate was obtained by rolling 3 to 4 times until the total thickness reached 160 / zm.
  • batteries bl to b 24 were produced in the same manner as batteries B1 to B24, respectively.
  • Nickel sulfate, cobalt sulfate, and manganese sulfate were mixed so that the molar ratio of Ni atom, Co atom, and Mn atom was 34:33:33.
  • 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution.
  • 400 g of sodium hydroxide was added to the raw material solution to form a precipitate.
  • the precipitate was sufficiently washed with water and dried to obtain a coprecipitated hydroxide.
  • Batteries C1 to C24 were produced in the same manner as A24.
  • the positive electrode mixture paste was applied to both sides of an aluminum foil with a thickness of 20 ⁇ m, dried, and then the current collector carrying the positive electrode mixture was placed in a nozzle with a gap of 15 m.
  • the positive electrode plate was obtained by rolling 3 to 4 times until the total thickness reached 160 / zm.
  • batteries cl to c24 were produced in the same manner as batteries C1 to C24, respectively.
  • Nickel sulfate, cobalt sulfate, and titanium nitrate were mixed so that the molar ratio of Ni atom, Co atom, and Ti atom was 80: 15: 5.
  • 3.2 kg of this mixture was dissolved in 10 L of water to obtain a raw material solution.
  • 400 g of sodium hydroxide was added to the raw material solution to form a precipitate.
  • the precipitate was sufficiently washed with water and dried to obtain a coprecipitated hydroxide.
  • Ni-Co-Ti co-precipitated hydroxide 3 kg was mixed with 784 g of lithium hydroxide, and in an atmosphere with an oxygen partial pressure of 0.5 atm. At a synthesis temperature of 750 ° C, Baked for 10 hours. As a result, Ni—Co—Ti lithium composite oxide (LiNi Co Ti 2 O 3) containing Co and Ti as elements M and having an average particle diameter of 11 ⁇ m was obtained. Except for using the obtained lithium composite oxide,
  • Batteries D1 to D24 were produced in the same manner as the ponds A1 to A24.
  • the positive electrode mixture paste was applied to both sides of an aluminum foil with a thickness of 20 ⁇ m, dried, and then the current collector carrying the positive electrode mixture was placed in a nozzle with a gap of 15 m.
  • the positive electrode plate was obtained by rolling 3 to 4 times until the total thickness reached 160 / zm.
  • batteries d1 to d24 were produced in the same manner as batteries D1 to D24, respectively.
  • the completed battery was evaluated as follows.
  • test battery (capacity: 2000 mAh) was charged as follows. Constant current charging: Current 1400mA (0.7C), end voltage 4.25V
  • Constant voltage charging Voltage 4.25V, end current 100mA (0. 05C)
  • Tables 1A to 4A and 1B to 4B show the temperatures reached after 90 seconds in the vicinity of the battery penetration.
  • Tables 1A to 4A and 1B to 4B show the maximum temperature reached on the side of the battery.
  • Lithium composite oxide ... LiNio 80 Co 0 1 5 AI 0 05 O 2 cell No element Me internal short safety overcharge safety amount nail speed 180 mm / sec 4C mA maximum temperature preparative ⁇ ij us
  • the present invention is useful in a lithium ion secondary battery that includes a lithium composite oxide as a positive electrode active material, and achieves both safety during short circuit and safety during overcharge. It can be done.
  • the shape of the lithium ion secondary battery of the present invention is not particularly limited, and may be any shape such as a coin shape, a button shape, a sheet shape, a cylindrical shape, a flat shape, and a square shape.
  • the form of the electrode plate group including the positive electrode, the negative electrode, and the separator may be a wound type or a laminated type.
  • the size of the battery may be small for a small portable device or large for an electric vehicle.
  • the lithium ion secondary battery of the present invention can be used, for example, as a power source for a portable information terminal, a portable electronic device, a small electric power storage device for home use, a motorcycle, an electric vehicle, a hybrid electric vehicle, and the like.
  • the application is not particularly limited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

明 細 書
リチウムイオン二次電池
技術分野
[0001] 本発明は、短絡時および過充電時における安全性に優れたリチウムイオン二次電 池に関する。
背景技術
[0002] 非水電解液二次電池を代表するリチウムイオン二次電池は、起電力が高ぐ高エネ ルギー密度であることから、移動体通信機器や携帯電子機器の主電源としての需要 が拡大している。現在、市販されているリチウムイオン二次電池の大半は、正極活物 質としてコバルトを主成分とするリチウム複合酸ィ匕物が用いられている。しかし、コバ ルトを主成分とするリチウム複合酸化物は、原料に用いるコバルト化合物の価格が高 V、ため、ニッケルを主成分とするリチウム複合酸化物の研究も精力的に行われて!/、る
[0003] Coもしくは Niを主成分とするリチウム複合酸ィ匕物は、充電時に、反応性の高い高 価数の Co4+や Ni4+を有する。このことに起因して、高温環境下では、リチウム複合酸 化物が関与する電解液の分解反応が促進され、ガスが発生したり、短絡時の発熱抑 制が困難になったりする。
[0004] 短絡時の発熱抑制が困難になる理由としては、以下が考えられる。釘刺しなどによ り短絡が起こった場合、短絡部ではジュール熱が発生する。その熱により、正極活物 質の熱分解反応や、活物質と電解液との反応が誘起される。これらの反応は、発熱 を伴うため、反応を抑制できない場合には、電池の異常発熱に至る。
[0005] 活物質の熱分解反応は、活物質表面からの酸素脱離反応であり、電解液の分解 反応は、活物質表面と電解液との反応である。種々の検討の結果、これらの反応は、 格子欠陥により形成される活物質表面の活性点で進行するという知見が得られてい る。
[0006] そこで、短絡時の安全性を確保するために、活物質表面に所定の金属酸化物被膜 を形成することが提案されている(特許文献 1〜7)。 [0007] 一方、過充電時の安全性を確保するために、電池の内圧上昇を利用して、機械的 に電流を遮断する機構や、電池の温度上昇を利用して PTC素子により電流を遮断 する機構、低融点のポリオレフインカ なるセパレータのシャットダウン機能により電流 を遮断する機構等が提案されている。また、電解液に、過充電時に重合する導電性 ポリマーの出発物質を添加して、過充電時に電池内部に導電性ポリマーによる微少 短絡部を形成させて、自動放電する方法 (以下、内部短絡安全機構と称する)も提案 されている。(特許文献 8)
特許文献 1:特開平 8— 236114号公報
特許文献 2 :特開平 9— 35715号公報
特許文献 3 :特開平 11 317230号公報
特許文献 4:特開平 11― 16566号公報
特許文献 5:特開 2001— 196063号公報
特許文献 6:特開 2003 - 173775号公報
特許文献 7:特表 2003 - 500318号公報
特許文献 8:特開平 10— 321258号公報
発明の開示
発明が解決しょうとする課題
[0008] 活物質表面に所定の金属酸化物被膜を形成すると、活物質の分解反応や活物質 と電解液との反応性が抑制されるため、短絡時の安全性は向上する。
[0009] しかし、活物質粒子の表面が他の成分で覆われるため、過充電時における活物質 力 の金属の溶出も抑制される。過充電時に溶出した金属は、電池内部に微少短絡 部を形成する傾向があり、特許文献 8が提案する内部短絡安全機構と同様の役割を 果たすものである。活物質粒子の表面が他の成分で覆われると、このような内部短絡 安全機構が作用せず、過充電時の安全性が十分に確保できなくなる。
本発明は、釘刺しなどによる短絡時の安全性と、過充電時の安全性との両立を目 的とする。
課題を解決するための手段
[0010] 本発明は、充放電可能な正極、充放電可能な負極、および非水電解液を有し、正 極は、活物質粒子を含み、活物質粒子は、リチウム複合酸化物の二次粒子を含み、 二次粒子の少なくとも一部は、クラックを有し、活物質粒子の少なくとも表層部は、 M n、 Al、 Mg、 Ca、 Zr、 B、 W、 Nb、 Ta、 In、 Moおよび Snよりなる群から選択される少 なくとも 1種の元素 Meを有し、元素 Meは、活物質粒子の内部に比べ、表層部に多く 分布して 、るリチウムイオン二次電池に関する。
すべての二次粒子のうち、クラックを有する二次粒子の個数割合 Rは、 2%以上であ ることが望ましい。リチウム複合酸ィ匕物の二次粒子は、リチウム複合酸化物の複数の 一次粒子が凝集して形成されて!、る。
[0011] リチウム複合酸ィ匕物の二次粒子に形成されたクラックの断面は、リチウム複合酸ィ匕 物そのものの断面である。よって、元素 Meは、クラックにより形成された断面に比べ、 活物質粒子の表層部に多く分布している。
[0012] リチウム複合酸化物は、 Li M L O (ただし、 0. 85≤x≤l. 25、 0≤y≤0. 50、
χ l-y y 2
元素 Mは、 Niおよび Coよりなる群力 選択される少なくとも 1種、元素 Lは、アルカリ 土類元素、 Niおよび Co以外の遷移金属元素、希土類元素、 Illb族元素および IVb族 元素よりなる群力 選択される少なくとも 1種)で表されることが好ましい。
リチウム複合酸ィ匕物の結晶構造は、通常、層構造 (たとえば R3m)であり、酸素は立 方最密充填の配列を有する。元素 Lは、このような結晶構造の一部を形成している。 すなわち、元素 Lは、リチウム複合酸ィ匕物に固溶した状態である。
[0013] 0<yの場合、元素 Lは、 Al、 Mn、 Ti、 Mg、 Zr、 Nb、 Mo、 W、 Y、 Ca、 B、 Ta、 In および Snよりなる群力も選択される少なくとも 1種を含むことが好ましぐ Al、 Mnおよ び TUりなる群力 選択される少なくとも 1種を含むことが更に好ましい。
[0014] 通常、元素 Meと元素 Lとは、異なる結晶構造を構成して 、る。元素 Meは、活物質 粒子の表層部において、リチウム複合酸化物とは異なる結晶構造を有する酸化物を 構成していることが好ましい。
[0015] 活物質粒子の平均粒径は、 10 μ m以上であることが好まし 、。
活物質粒子に含まれる元素 Meの量は、リチウム複合酸化物に対して、 2mol%以 下であることが好ましい。すなわち、リチウム複合酸化物が Li M L Oで表される場
X l-y y 2
合には、元素 Meの量は、元素 Mと元素 Lとの合計に対して、 2mol%以下であること が好ましい。
[0016] リチウム複合酸ィ匕物の二次粒子にクラックを形成する方法は様々である。ただし、 正極の製造工程において、圧延条件を制御する方法が、簡易で好ましい。活物質粒 子を担持した集電体 (正極芯材)をローラで圧延する際に、ローラのギャップを従来よ りも小さくすることで、二次粒子に大きなストレス (応力)が付与され、二次粒子にクラッ クが形成される。
通常は、二次粒子に過剰なストレスが印加されないように、ローラのギャップは大き 目に設定される。そして、圧延を繰り返すことにより、電極厚みが調整される。この場 合、二次粒子にクラックは生じない。
発明の効果
[0017] 活物質粒子の内部に比べ、表層部に多く分布する元素 Meは、短絡時の安全性を 向上させる作用を有する。ただし、過充電時には、元素 Meは、金属の溶出を抑制す るため、内部短絡安全機構の発現が困難となる。一方、リチウム複合酸化物の二次 粒子がクラック (割れ目)を有する場合、過充電時には、クラックから金属が溶出する。 よって、内部短絡安全機構の発現が容易となる。
[0018] 内部短絡安全機構の発現を確保する観点から、活物質粒子の表層部における元 素 Meの分布を不均一にすることも考えられる。例えば、活物質粒子の表層部の一部 に元素 Meを付与することも考えられる。しかし、その場合、活物質粒子の表面にリチ ゥム複合酸ィ匕物が露出することになる。よって、釘刺しなどで電池に短絡が形成され た際に、安全性を高めることが困難になる。
[0019] リチウム複合酸ィ匕物の二次粒子にクラックを設ける場合、大電流が流れる短絡時に は、濃度分極により、クラックでは反応がほとんど起こらない。よって、短絡時における 安全性も十分に確保される。また、クラックの間隙に存在する電解液量は少ないため 、電解液とリチウム複合酸化物との反応も抑制される。
図面の簡単な説明
[0020] [図 1]本発明の実施例に係る円筒形リチウムイオン二次電池の縦断面図である。
発明を実施するための最良の形態
[0021] 正極について説明する。正極には、以下のような活物質粒子が含まれている。 活物質粒子は、リチウム複合酸ィヒ物の二次粒子を含み、活物質粒子の表層部は、 所定の元素 Meを含む。元素 Meは、活物質粒子の内部に比べ、表層部に多く分布 している。元素 Meとしては、短絡時の安全性を向上させる効果を有することから、 M n、 Al、 Mg、 Ca、 Zr、 B、 W、 Nb、 Ta、 In、 Moおよび Snよりなる群から選択される少 なくとも 1種が用いられる。これらの元素は単独で表層部に含まれていてもよぐ複数 種が表層部に含まれて 、てもよ 、。
[0022] リチウム複合酸ィ匕物の二次粒子は、複数の一次粒子が凝集して形成されて 、る。
一次粒子の平均粒径は一般に 0. 1〜3. 0 mである力 特に限定されない。
活物質粒子の少なくとも一部は、表層部から二次粒子の内部にまで達するクラックを 有する。換言すれば、リチウム複合酸ィ匕物の二次粒子の少なくとも一部は、クラックを 有する。クラックの有無は、例えば SEM、 TEMなどの電子顕微鏡により観測すること ができる。
[0023] すべての二次粒子のうち、クラックを有する二次粒子の個数割合 Rは、特に限定さ れない。ただし、クラックを有する二次粒子の個数割合 Rは、個数基準で 2%以上が 望ましぐ 3. 5%以上が更に望ましい。例えば、電子顕微鏡により、任意の 100個の 活物質粒子を電子顕微鏡で観察し、表層部から二次粒子の内部にまで達するクラッ クを有する粒子の個数を数える。その際、クラックを有する粒子の個数は 100個中、 2 個以上であることが望ましぐ 3. 5個以上であることが更に好ましい。
[0024] 活物質粒子の平均粒径は、特に限定されないが、例えば 1〜30 mが好ましぐ 1 0〜30 mが特に好ましい。平均粒径は、例えばマイクロトラック社製の湿式レーザ 一回折式粒度分布測定装置等により測定することができる。この場合、体積基準に おける 50%値 (メディアン値: D )を、活物質粒子の平均粒径と見なすことができる。
50
[0025] リチウム複合酸化物は、一般に、 Li M L O (ただし、 0. 85≤x≤l . 25、 0≤y≤
l 2
0. 50、元素 Mは、 Niおよび Coよりなる群力も選択される少なくとも 1種、元素 Lは、ァ ルカリ土類元素、 Niおよび Co以外の遷移金属元素、希土類元素、 mb族元素および
IVb族元素よりなる群力 選択される少なくとも 1種)で表される。元素 Lは、リチウム複 合酸化物に、熱安定性向上等の効果を与える。
[0026] Li M L Oで表されるリチウム複合酸化物は、元素 Lとして、好ましくは、 Al、Mn、
l 2 Ti、 Mgゝ Zrゝ Nbゝ Mo、 W、 Y、 Caゝ B、 Taゝ Inおよび Snよりなる群から選択される少 なくとも 1種を含む。これらの元素は、リチウム複合酸ィ匕物に元素 Lとして単独で含ま れてもよぐ 2種以上が含まれてもよい。これらのうちでは、 Al、 Mn、 Tiなどが元素しと して好適である。特に、 A1は、リチウム複合酸ィ匕物の熱安定性向上の効果が大きい 点で好ましい。
[0027] Li M L Oにおいて、 Li含有量を表す Xの範囲は、電池の充放電により増減する
l 2
。完全放電状態 (初期状態)における xの範囲は、 0. 85≤x≤l. 25が好ましいが、 0
. 93≤x≤l . 1力より好まし!/ヽ。
[0028] 元素 Lの含有量を表す yの範囲は、 0≤y≤0. 50であればよい。ただし、リチウム複 合酸ィ匕物の熱安定性と容量とのバランスを考慮すると、 0. 005≤y≤0. 35が好まし く、 0. 01≤y≤0. 1力 S更に好まし ヽ。 0. 50<yになると、 Niもしくは Coを主成分とす る活物質を用いることのメリット、例えば特有の高容量を実現することができなくなる。
[0029] 元素 Mが、 Coを含む場合、元素 Mと元素 Lとの合計に対する Coの原子比 aは、 0.
05≤a≤0. 5であること力好ましく、 0. 05≤a≤0. 25であること力 ^更に好まし!/、。 元素 Lが、 A1を含む場合、元素 Mと元素 Lとの合計に対する A1の原子比 bは、 0. 0
05≤b≤0. 1であることが好ましぐ 0. 01≤b≤0. 08であることが更に好ましい。 元素 Lが、 Mnを含む場合、元素 Mと元素 Lとの合計に対する Mnの原子比 cは、 0.
005≤c≤0. 5であること力好ましく、 0. 01≤c≤0. 35であること力更に好まし!/、。 元素 Lが、 Tiを含む場合、元素 Mと元素 Lとの合計に対する Tiの原子比 dは、 0. 00
5≤d≤0. 35であること力 S好ましく、 0. 01≤d≤0. 1であることが更に好ましい。
[0030] Li M L Oで表されるリチウム複合酸化物は、所定の金属元素比を有する原料を
l 2
酸化雰囲気中で焼成することにより、合成することができる。原料には、リチウム、元 素 M、必要に応じて元素 Lが含まれる。原料は、各金属元素の酸化物、水酸化物、 ォキシ水酸ィ匕物、炭酸塩、硝酸塩、有機錯塩などを含む。これらは単独で用いてもよ ぐ 2種以上を組み合わせて用いてもよい。
[0031] リチウム複合酸化物の合成を容易にする観点からは、原料が複数の金属元素を含 有する固溶体を含むことが好ましい。複数の金属元素を含む固溶体は、酸化物、水 酸化物、ォキシ水酸化物、炭酸塩、硝酸塩、有機錯塩などの何れにおいても形成可 能である。例えば Niと Coを含む固溶体、 Niと Coと A1を含む固溶体、 Niと Coと Mnを 含む固溶体、 Niと Coと Tiを含む固溶体、などを用いることができる。
[0032] 原料の焼成温度と酸化雰囲気の酸素分圧は、原料の組成、量、合成装置などに依 存するが、当業者であれば適宜適切な条件を選択可能である。
Li、元素 Mおよび元素 L以外の元素が、工業原料に通常に含まれる範囲の量で不 純物として混入する場合もあるが、本発明の効果に大きく影響することはない。
[0033] 活物質粒子の表層部に含まれる元素 Meは、酸化物もしくはリチウム含有酸化物の 状態で、リチウム複合酸ィ匕物の表面に析出し、付着し、もしくは担持されていることが 好ましい。
[0034] リチウム複合酸ィヒ物に固溶した元素 Lと、活物質粒子の表層部に含まれる元素 Me とは、同種の元素を含んでもよぐ含まなくてもよい。元素 Meと元素 Lとが同種の元素 を含む場合でも、これらは結晶構造等が異なるため、明確に区別される。元素 Meは 、リチウム複合酸ィ匕物に固溶しているわけではない。元素 Meは、活物質粒子の表層 部において、主に、リチウム複合酸化物とは異なる結晶構造を有する酸化物を構成 している。元素 Meと元素 Lとは、 EPMA (電子線マイクロアナライザ: Electron Probe Micro-Analysis)による元素マッピング、 XPS (X線光電子分光分析: X- ray Photoelec tron Spectroscopy)による化学結合状態の解析、 SIMS (二次イオン質量分析: Secon dary Ionization Mass
Spectroscopy)を始めとする様々な分析手法により、区別することが可能である。
[0035] 活物質粒子に含まれる元素 Meの量は、リチウム複合酸化物に対して、 2mol%以 下であることが好ましぐ 0. lmol%以上、 1. 5mol%以下であることが更に好ましい 。すなわち、リチウム複合酸化物が Li M L Oで表される場合には、元素 Meの量は
X l-y y 2
、元素 Mと元素 Lとの合計に対して、 2mol%以下であることが好ましぐ 0. lmol%以 上、 1. 5mol%以下であることが更に好ましい。元素 Meの量が 2mol%を超えると、 活物質粒子の表層部が抵抗層となり、過電圧が大きくなるため、サイクル特性が低下 し始める。一方、元素 Meの量が 0. lmol%未満では、リチウム複合酸化物の露出部 が多くなるため、短絡時の安全性を向上させる効果が得られない場合がある。
[0036] 表層部の元素 Meが、リチウム複合酸化物中に拡散し、リチウム複合酸ィヒ物中の元 素 Lの濃度が、活物質粒子の内部に比べ、表層部付近で高くなる場合もある。すな わち、表層部の元素 Meが、リチウム複合酸化物を構成する元素 Lに変化する場合も ある。ただし、リチウム複合酸化物中に拡散した元素 Me由来の元素 Lは微量である から、無視することができる。これを無視しても本発明の効果にほとんど影響はない。
[0037] 次に、正極の製造法の一例について説明する。
(i)第 1ステップ
リチウム複合酸化物を調製する。リチウム複合酸化物の調製方法は特に限定されな い。例えば、所定の金属元素比を有する原料を酸化雰囲気中で焼成することにより、 リチウム複合酸化物を合成することができる。焼成温度、酸化雰囲気における酸素分 圧などは、原料の組成、量、合成装置などに応じて適宜選択される。
[0038] (ii)第 2ステップ
調製したリチウム複合酸化物に、元素 Me (Mn、 Al、 Mgゝ Caゝ Zrゝ B、 W、 Nbゝ Ta 、 In、 Moおよび Snよりなる群力 選択される少なくとも 1種)の原料を担持させる。そ の際、リチウム複合酸ィ匕物の平均粒径は、特に限定されないが、例えば 10〜30 /ζ πι が好ましい。通常、リチウム複合酸ィ匕物に対する元素 Meの量は、ここで用いる元素 Meの原料量から求めることができる。
[0039] 元素 Meの原料には、元素 Meを含む硫酸塩、硝酸塩、炭酸塩、塩化物、水酸化物 、酸化物、アルコキシドなどを用いることができる。これらは単独で用いてもよぐ 2種 以上を組み合わせて用いてもよい。これらのうちでは、電池特性上、硫酸塩、硝酸塩 、塩ィ匕物もしくはアルコキシドを用いることが特に好ましい。元素 Meの原料をリチウム 複合酸化物に担持させる方法は、特に限定されない。例えば、元素 Meの原料を、液 状成分に溶解もしくは分散させて、溶液もしくは分散液を調製し、これをリチウム複合 酸化物と混合したのち、液状成分を除去する方法が好まし ヽ。
[0040] 元素 Meの原料を溶解もしくは分散させる液状成分は、特に限定されないが、ァセト ン、メチルェチルケトン(MEK)などのケトン類、テトラヒドロフラン(THF)などのエー テル類、エタノール等のアルコール類、その他の有機溶媒が好ましい。 pH10〜14 のアルカリ水も好ましく用いることができる。
[0041] 得られた溶液もしくは分散液に、リチウム複合酸化物を投入し、攪拌する際、液中 の温度は、特に限定されない。ただし、作業性や製造コストの観点から、液中の温度 は 20〜40°Cに制御することが好ましい。攪拌時間は、特に限定されないが、例えば 3時間も攪拌すれば十分である。液状成分の除去方法は、特に限定されないが、例 えば 100°C程度の温度で 2時間ほど乾燥させれば十分である。
[0042] (iii)第 3ステップ
表面に元素 Meを担持させたリチウム複合酸化物を、 650〜750°Cで、 2〜24時間 、好ましくは 6時間ほど、酸素雰囲気下で焼成する。このとき、酸素雰囲気の圧力は 1 01〜50kPaが好ましい。この焼成により、元素 Meは、リチウム複合酸化物とは異なる 結晶構造を有する酸化物に変換される。
[0043] (iv)第 4ステップ
活物質粒子を用いて、正極を形成する。正極の作製方法は、特に限定されない。 ただし、活物質粒子に、表層部から二次粒子の内部にまで達するクラックを発生させ る必要がある。
一般的には、まず、活物質粒子と結着剤とを含む正極合剤を、帯状の正極芯材( 正極集電体)に担持させる。正極合剤には、他に、導電材などの添加剤を任意成分 として含ませることができる。正極合剤を液状成分に分散させてペーストを調製し、ぺ 一ストを芯材に塗工し、乾燥させること〖こより、正極合剤を芯材に担持させることがで きる。
[0044] 次に、正極合剤を担持した集電体 (正極芯材)をローラで圧延する。その際、例え ば線圧 1000〜6000NZcmとなるように、ローラのギャップを制御する。ローラのギ ヤップを従来よりも小さくする(例えばギャップを 3〜: LO μ mとする)ことで、活物質粒 子に大きなストレス (応力)が付与される。その結果、活物質粒子に、表層部から二次 粒子の内部にまで達するクラックが形成される。
[0045] 正極合剤に含ませる結着剤には、熱可塑性榭脂および熱硬化性榭脂の何れを用 いてもよいが、熱可塑性榭脂が好ましい。このような熱可塑性榭脂としては、例えば ポリエチレン、ポリプロピレン、ポリテトラフルォロエチレン(PTFE)、ポリフッ化ビ-リ デン(PVDF)、スチレンブタジエンゴム、テトラフルォロエチレン一へキサフルォロプ ロピレン共重合体(FEP)、テトラフルォロエチレン パーフルォロアルキルビュルェ 一テル共重合体(PFA)、フッ化ビ-リデン一へキサフルォロプロピレン共重合体、フ ッ化ビ-リデンークロ口トリフルォロエチレン共重合体、エチレンーテトラフルォロェチ レン共重合体(ETFE)、ポリクロ口トリフルォロエチレン(PCTFE)、フッ化ビ-リデン ペンタフルォロプロピレン共重合体、プロピレンーテトラフルォロエチレン共重合体 、エチレン クロ口トリフルォロエチレン共重合体(ECTFE)、フッ化ビ-リデン一へキ サフルォロプロピレンーテトラフルォロエチレン共重合体、フッ化ビ-リデンーパーフ ルォロメチルビ-ルエーテルーテトラフルォロエチレン共重合体、エチレン アクリル 酸共重合体、エチレンーメタクリル酸共重合体、エチレン アクリル酸メチル共重合 体、エチレンーメタクリル酸メチル共重合体などが挙げられる。これらは単独で用いて もよぐ 2種以上を組み合わせて用いてもよい。これらは Naイオンなどによる架橋体で あってもよい。
[0046] 正極合剤に含ませる導電材は、電池内で化学的に安定な電子伝導性材料であれ ば何でもよい。例えば、天然黒鉛 (鱗片状黒鉛など)、人造黒鉛などの黒鉛類、ァセ チレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブ ラック、サーマルブラック等のカーボンブラック類、炭素繊維、金属繊維などの導電性 繊維類、アルミニウム等の金属粉末類、酸化亜鉛、チタン酸カリウムなどの導電性ウイ スカ一類、酸化チタンなどの導電性金属酸化物、ポリフエ-レン誘導体などの有機導 電性材料、フッ化カーボンなどを用いることができる。これらは単独で用いてもよぐ 2 種以上を組み合わせて用いてもよい。導電材の添加量は、特に限定されないが、正 極合剤に含まれる活物質粒子に対して、 1〜50重量%が好ましぐ 1〜30重量%が 更に好ましぐ 2〜15重量%が特に好ましい。
[0047] 正極芯材 (正極集電体)は、電池内で化学的に安定な電子伝導体であれば何でも よい。例えば、アルミニウム、ステンレス鋼、ニッケル、チタン、炭素、導電性榭脂など 力もなる箔もしくはシートを用いることができる。特に、アルミニウム箔、アルミニウム合 金箔等が好ましい。箔もしくはシートの表面には、カーボンやチタンの層を付与したり
、酸化物層を形成したりすることもできる。箔もしくはシートの表面に凹凸を付与する こともできる。ネット、パンチングシート、ラス体、多孔質体、発泡体、繊維群成形体な どを用いることもできる。正極芯材の厚みは、特に限定されないが、例えば 1〜500 mの範囲内である。
[0048] 以下、本発明のリチウムイオン二次電池の正極以外の構成要素について説明する 。ただし、以下の記載は、本発明を限定するものではない。
[0049] リチウムを充放電可能な負極には、例えば、負極活物質と結着剤を含み、任意成 分として導電材ゃ増粘剤を含む負極合剤を負極芯材に担持させたものを用いること ができる。このような負極は、正極と同様の方法で作製することができる。
[0050] 負極活物質は、リチウムを電気化学的に充放電し得る材料であればよい。例えば、 黒鉛類、難黒鉛ィ匕性炭素材料、リチウム合金、金属酸ィ匕物などを用いることができる 。リチウム合金は、特にケィ素、スズ、アルミニウム、亜鉛およびマグネシウムよりなる 群力も選ばれる少なくとも 1種を含む合金が好ましい。また、金属酸ィ匕物としては、珪 素を含有する酸化物、錫を含有する酸化物が好ましぐ炭素材料とハイブリッド化す ると更に好ましい。負極活物質の平均粒径は、特に限定されないが、 1〜30 /ζ πιであ ることが好ましい。
[0051] 負極合剤に含ませる結着剤には、熱可塑性榭脂および熱硬化性榭脂の何れを用 いてもよいが、熱可塑性榭脂が好ましい。このような熱可塑性榭脂としては、例えば ポリエチレン、ポリプロピレン、ポリテトラフルォロエチレン(PTFE)、ポリフッ化ビ-リ デン(PVDF)、スチレンブタジエンゴム、テトラフルォロエチレン一へキサフルォロプ ロピレン共重合体(FEP)、テトラフルォロエチレン パーフルォロアルキルビュルェ 一テル共重合体(PFA)、フッ化ビ-リデン一へキサフルォロプロピレン共重合体、フ ッ化ビ-リデンークロ口トリフルォロエチレン共重合体、エチレンーテトラフルォロェチ レン共重合体(ETFE)、ポリクロ口トリフルォロエチレン(PCTFE)、フッ化ビ-リデン ペンタフルォロプロピレン共重合体、プロピレンーテトラフルォロエチレン共重合体 、エチレン クロ口トリフルォロエチレン共重合体(ECTFE)、フッ化ビ-リデン一へキ サフルォロプロピレンーテトラフルォロエチレン共重合体、フッ化ビ-リデンーパーフ ルォロメチルビ-ルエーテルーテトラフルォロエチレン共重合体、エチレン アクリル 酸共重合体、エチレンーメタクリル酸共重合体、エチレン アクリル酸メチル共重合 体、エチレンーメタクリル酸メチル共重合体などが挙げられる。これらは単独で用いて もよぐ 2種以上を組み合わせて用いてもよい。これらは Naイオンなどによる架橋体で あってもよい。
[0052] 負極合剤に含ませる導電材は、電池内で化学的に安定な電子伝導性材料であれ ば何でもよい。例えば、天然黒鉛 (鱗片状黒鉛など)、人造黒鉛などの黒鉛類、ァセ チレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブ ラック、サーマルブラック等のカーボンブラック類、炭素繊維、金属繊維などの導電性 繊維類、銅、ニッケル等の金属粉末類、ポリフエ-レン誘導体などの有機導電性材料 などを用いることができる。これらは単独で用いてもよぐ 2種以上を組み合わせて用 いてもよい。導電材の添加量は、特に限定されないが、負極合剤に含まれる活物質 粒子に対して、 1〜30重量%が好ましぐ 1〜10重量%が更に好ましい。
[0053] 負極芯材 (負極集電体)は、電池内でィ匕学的に安定な電子伝導体であれば何でも よい。例えば、ステンレス鋼、ニッケル、銅、チタン、炭素、導電性榭脂など力もなる箔 もしくはシートを用いることができる。特に、銅箔や銅合金箔が好ましい。箔もしくはシ ートの表面には、カーボン、チタン、ニッケルなどの層を付与したり、酸化物層を形成 したりすることもできる。箔もしくはシートの表面に凹凸を付与することもできる。ネット 、パンチングシート、ラス体、多孔質体、発泡体、繊維群成形体などを用いることもで きる。負極芯材の厚みは、特に限定されないが、例えば 1〜500 /ζ πιの範囲内である
[0054] 非水電解液には、リチウム塩を溶解した非水溶媒が好ましく用いられる。
非水溶媒としては、例えばエチレンカーボネート (EC)、プロピレンカーボネート(Ρ C)、ブチレンカーボネート(BC)などの環状カーボネート類、ジメチルカーボネート( DMC)、ジェチノレカーボネート (DEC)、ェチノレメチノレカーボネート (EMC)、ジプロ ピルカーボネート(DPC)などの鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロ ピオン酸メチル、プロピオン酸ェチルなどの脂肪族カルボン酸エステル類、 γ—プチ 口ラタトン、 y—バレロラタトン等のラタトン類、 1, 2—ジメトキシェタン(DME)、 1, 2 ージエトキシェタン(DEE)、エトキシメトキシェタン(EME)等の鎖状エーテル類、テ トラヒドロフラン、 2—メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキ シド、 1, 3—ジォキソラン、ホルムアミド、ァセトアミド、ジメチルホルムアミド、ジォキソ ラン、ァセトニトリル、プロピル-トリル、ニトロメタン、ェチルモノグライム、リン酸トリエス テル、トリメトキシメタン、ジォキソラン誘導体、スルホラン、メチルスルホラン、 1, 3 ジ メチルー 2 イミダゾリジノン、 3—メチルー 2 ォキサゾリジノン、プロピレンカーボネ ート誘導体、テトラヒドロフラン誘導体、ェチルエーテル、 1, 3 プロパンサルトン、ァ -ソール、ジメチルスルホキシド、 N—メチル 2—ピロリドンを用いることができる。こ れらは単独で用いてもよいが、 2種以上を混合して用いることが好ましい。なかでも環 状カーボネートと鎖状カーボネートとの混合溶媒、または、環状カーボネートと鎖状力 ーボネートと脂肪族カルボン酸エステルとの混合溶媒が好ましい。
[0055] 非水溶媒に溶解するリチウム塩としては、例えば LiCIO
4、 LiBF
4、 LiPF
6、 LiAlCl
4
、 LiSbF、 LiSCN、 LiCl、 LiCF SO、 LiCF CO、 Li(CF SO )、 LiAsF、 LiN (
6 3 3 3 2 3 2 2 6
CF SO )、 LiB CI 、低級脂肪族カルボン酸リチウム、 LiCl、 LiBr、 Lil、クロ口ボラ
3 2 2 10 10
ンリチウム、四フエ-ルホウ酸リチウム、リチウムイミド塩等を挙げることができる。これら は単独で用いてもよぐ 2種以上を組み合わせて用いてもよいが、少なくとも LiPFを
6 用いることが好ましい。リチウム塩の非水溶媒に対する溶解量は、特に限定されない 力 リチウム塩濃度は 0. 2〜2molZLが好ましぐ 0. 5〜1. 5molZLが更に好まし い。
[0056] 非水電解液には、電池の充放電特性を改良する目的で、種々の添加剤を添加す ることができる。添加剤としては、例えばビ-レンカーボネート、ビニルエチレンカーボ ネート、フォスファゼンおよびフルォロベンゼンよりなる群力 選択される少なくとも 1 種を用いることが好ましい。これらの添加剤の含有量は、非水電解液の 0. 5〜10重 量%が適量である。
[0057] 他にも種々の添加剤、例えばトリェチルフォスファイト、トリエタノールァミン、環状ェ 一テル、エチレンジァミン、 n—グライム、ピリジン、へキサリン酸トリアミド、ニトロベン ゼン誘導体、クラウンエーテル類、第四級アンモ-ゥム塩、エチレングリコールジアル キルエーテル等を用いることができる。
[0058] 正極と負極との間には、セパレータを介在させる必要がある。
セパレータは、大きなイオン透過度を持ち、所定の機械的強度を持ち、絶縁性であ る微多孔性薄膜が好ましく用いられる。微多孔性薄膜は、一定温度以上で孔を閉塞 し、抵抗を上昇させる機能を持つことが好ましい。微多孔性薄膜の材質は、耐有機溶 剤性に優れ、疎水性を有するポリプロピレン、ポリエチレンなどのポリオレフインが好 ましく用いられる。ガラス繊維などカゝら作製されたシート、不織布、織布なども用いら れる。セパレータの孔径は、例えば 0. 01〜1 111である。セパレータの厚みは、一般 的には 10〜300 mである。セパレータの空孔率は、一般的には 30〜80%である。
[0059] 非水電解液およびこれを保持するポリマー材料力もなるポリマー電解質を、セパレ ータとして正極もしくは負極と一体ィ匕させて用いることもできる。ポリマー材料は、非水 電解液を保持できるものであればょ 、が、特にフッ化ビ-リデンとへキサフルォロプロ ピレンとの共重合体が好まし 、。
[0060] [実施例 1]
《実施例電池 Al》
(1)リチウム複合酸化物の合成
Ni原子と Co原子と A1原子とのモル比が 80 : 15 : 5になるように、硫酸ニッケルと硫 酸コバルトと硫酸アルミニウムとを混合した。この混合物 3. 2Kgを、 10Lの水に溶解 させて、原料溶液を得た。原料溶液に、水酸ィ匕ナトリウムを 400g加えて、沈殿を生成 させた。沈殿を十分に水洗し、乾燥させ、共沈水酸化物を得た。
[0061] 得られた Ni— Co— A1共沈水酸ィ匕物 3kgに、水酸化リチウム 784gを混合し、酸素 分圧が 0. 5気圧である雰囲気中で、 750°Cの合成温度で、 10時間焼成した。その結 果、元素 Mとして Niと Coを含み、元素 Lとして A1を含む Ni— Co— A1リチウム複合酸 化物 (LiNi Co Al O )を得た。得られたリチウム複合酸化物を電子顕微鏡で観
0.8 0.15 0.05 2
察したところ、一次粒子が凝集して二次粒子を形成していた。以下の実施例電池お よび比較例電池にぉ 、ても同様であった。
[0062] (2)活物質粒子の合成
〉第 1ステップ
エタノール 10L中に塩ィ匕ニオブを溶解させた溶液に、合成されたリチウム複合酸ィ匕 物 2kgを分散させた。用いた塩ィ匕ニオブの量は、リチウム複合酸化物に対して 0. 5m ol%とした。リチウム複合酸ィ匕物を分散させたエタノール溶液を、 25°Cで 3時間攪拌 した後、その溶液をろ過し、固形分を 100°Cで 2時間乾燥させた。その結果、元素 M eとしてニオブ (Nb)を表面に担持したリチウム複合酸ィ匕物が得られた。 [0063] く ii〉第 2ステップ
乾燥後の粉末を、まず、 300°Cで 6時間、乾燥空気雰囲気 (湿度 19%、圧力 101k Pa)下で予備焼成した。
続いて、予備焼成後の粉末を、 650°Cで 6時間、酸素 100%雰囲気 (圧力 lOlkPa )下で本焼成した。
最後に、本焼成後の粉末を、 400°Cで、酸素 100%雰囲気 (圧力 lOlKPa)下で、 4時間アニーリングした。
この焼成により、リチウム複合酸ィヒ物の二次粒子を含み、表層部に Nbを含む活物 質粒子 (平均粒径 12 m)が得られた。
[0064] Nbの存在は、 XPS、 EPMA、 ICP発光分析等により確認した。以下の実施例にお いても、同様に、活物質粒子中の元素 Meの存在は、 XPS、 EMPA、 ICP発光分析 等により確認した。
[0065] (3)正極の作製
得られた活物質粒子 lkgを、呉羽化学 (株)製の PVDF # 1320 (固形分 12重量% の N—メチルー 2—ピロリドン(NMP)溶液) 0. 5kg、アセチレンブラック 40g、および 適量の NMPとともに双腕式練合機にて攪拌し、正極合剤ペーストを調製した。この ペーストを厚さ 20 mのアルミニウム箔 (正極芯材:集電体)の両面に塗布し、乾燥し た。
[0066] その後、正極合剤を担持した集電体を、ギャップを 5 μ mに設定したローラで 1回だ け圧延し、総厚が 160 mの正極板を得た。その後、得られた正極板を円筒型 1865 0の電池ケースに挿入可能な幅にスリットし、正極を得た。
[0067] 正極板の一部力も正極合剤を搔き落とし、洗浄により活物質粒子だけを分離した。
分離された活物質粒子を SEMにより分析したところ、個数基準で 2%以上の粒子に おいて、表層部から二次粒子の内部にまで達するクラックが発生していた。以下の実 施例電池においても、個数基準で 2%〜5%の粒子において、表層部から二次粒子 の内部にまで達するクラックが発生して 、た。
[0068] (4)負極の作製
人造黒鉛 3kgを、日本ゼオン (株)製の BM— 400B (固形分 40重量%の変性スチ レン ブタジエンゴムの分散液) 200g、カノレボキシメチノレセノレロース(CMC) 50g、 および適量の水とともに双腕式練合機にて攪拌し、負極合剤ペーストを調製した。こ のペーストを厚さ 12 /z mの銅箔 (負極芯材:集電体)の両面に塗布し、乾燥し、総厚 力 S 160 /z mとなるように圧延した。その後、得られた負極板を円筒型 18650の電池ケ ースに挿入可能な幅にスリットし、負極を得た。
[0069] (5)電池の組立
図 1のように、正極 5と負極 6とを、セパレータ 7を介して捲回し、渦巻状の極板群を 構成した。セパレータ 7には、ポリエチレンとポリプロピレンとの複合フィルム(セルガ ード (株)製の 2300、厚さ 25 m)を用いた。
[0070] 正極 5および負極 6には、それぞれニッケル製の正極リード 5aおよび負極リード 6a を取り付けた。この極板群の上面に上部絶縁板 8a、下面に下部絶縁板 8bを配して、 電池ケース 1内に挿入し、さらに 5gの非水電解液を電池ケース 1内に注液した。
[0071] 非水電解液には、エチレンカーボネートとメチルェチルカーボネートとの体積比 10
: 30の混合溶媒に、 LiPFを 1. 5molZLの濃度で溶解させたものを用いた。
6
[0072] その後、周囲に絶縁ガスケット 3を配した封口板 2と、正極リード 5aとを導通させ、電 池ケース 1の開口部を封口板 2で封口した。こうして、円筒型 18650のリチウム二次 電池を完成させた。これを実施例電池 A1とする。
[0073] 《実施例電池 A2》
エタノール 10L中に溶解させる塩ィ匕ニオブの量を、リチウム複合酸化物に対して 2 . Omol%に変更したこと以外、電池 A1と同様にして、電池 A2を作製した。
[0074] 《実施例電池 A3》
塩化ニオブのエタノール溶液の代わりに、 pH13の水酸化ナトリウム水溶液 1L中に リチウム複合酸化物 2kgを分散させた。得られた分散液に、リチウム複合酸化物に対 して 0. 5mol%の硫酸マンガン(Mn)を lOOgの蒸留水に溶解させた水溶液を、 10 分間かけて滴下し、その後、 100°Cで 3時間攪拌した。上記以外、電池 A1と同様に して、電池 A3を作製した。
[0075] 《実施例電池 A4》
蒸留水 lOOgに溶解させる硫酸マンガンの量を、リチウム複合酸化物に対して 2. 0 mol%に変更したこと以外、電池 A3と同様にして、電池 A4を作製した。
[0076] 《実施例電池 A5》
エタノール 10L中にペンタエトキシタンタル (Ta)を溶解させた溶液に、合成されたリ チウム複合酸ィ匕物 2kgを分散させた。用いたペンタエトキシタンタルの量は、リチウム 複合酸化物に対して 0. 5mol%とした。リチウム複合酸ィ匕物を分散させたエタノール 溶液を、 60°Cで 3時間攪拌したこと以外、電池 A1と同様にして、電池 A5を作製した
[0077] 《実施例電池 A6》
エタノール 10L中に溶解させるペンタエトキシタンタルの量を、リチウム複合酸化物 に対して 2. Omol%に変更したこと以外、電池 A5と同様にして、電池 A6を作製した
[0078] 《実施例電池 A7》
硫酸マンガンをモリブデン (Mo)酸ニナトリウム二水和物に変更したこと以外、電池 A3と同様にして、電池 A7を作製した。
[0079] 《実施例電池 A8》
蒸留水 lOOgに溶解させるモリブデン酸ニナトリウム二水和物の量を、リチウム複合 酸ィ匕物に対して 2. Omol%に変更したこと以外、電池 A7と同様にして、電池 A8を作 製した。
[0080] 《実施例電池 A9》
ペンタエトキシタンタルのエタノール溶液の代わりに、エタノール 1L中に硝酸インジ ゥム (In)を溶解させた溶液を用いたこと以外、電池 A5と同様にして、電池 A9を作製 した。用いた硝酸インジウムの量は、リチウム複合酸化物に対して 0. 5mol%とした。
[0081] 《実施例電池 A10》
エタノール 1L中に溶解させる硝酸インジウムの量を、リチウム複合酸化物に対して 2. Omol%に変更したこと以外、電池 A9と同様にして、電池 A10を作製した。
[0082] 《実施例電池 Al l》
硫酸マンガンを硫酸すず (Sn)に変更したこと以外、電池 A3と同様にして、電池 A 11を作製した。 [0083] 《実施例電池 Al 2》
蒸留水 lOOgに溶解させる硫酸すずの量を、リチウム複合酸化物に対して 2. Omol %に変更したこと以外、電池 Al lと同様にして、電池 A12を作製した。
[0084] 《実施例電池 A13》
硫酸マンガンをタングステン (W)酸ナトリウムに変更したこと以外、電池 A3と同様に して、電池 A13を作製した。
[0085] 《実施例電池 A14》
蒸留水 lOOgに溶解させるタングステン酸ナトリウムの量を、リチウム複合酸化物に 対して 2. Omol%に変更したこと以外、電池 A13と同様にして、電池 A14を作製した
[0086] 《実施例電池 A15》
ペンタエトキシタンタルのエタノール溶液の代わりに、イソプロパノール 10L中にァ ルミ-ゥム (A1)トリイソプロボキシドを溶解させた溶液を用いたこと以外、電池 A5と同 様にして、電池 A15を作製した。用いたアルミニウムトリイソプロボキシドの量は、リチ ゥム複合酸化物に対して 0. 5mol%とした。
[0087] 《実施例電池 A16》
イソプロパノール 10L中に溶解させるアルミニウムトリイソプロポキシドの量を、リチウ ム複合酸化物に対して 2. Omol%に変更したこと以外、電池 A15と同様にして、電池 A16を作製した。
[0088] 《実施例電池 17》
ペンタエトキシタンタルのエタノール溶液の代わりに、ブタノール 10L中にジルコ- ゥム (Zr)テトラ一 n—ブトキシドを溶解させた溶液を用いたこと以外、電池 A5と同様 にして、電池 A17を作製した。用いたジルコニウムテトラ一 n—ブトキシドの量は、リチ ゥム複合酸化物に対して 0. 5mol%とした。
[0089] 《実施例電池 A18》
ブタノール 10L中に溶解させるジルコニウムテトラー n—ブトキシドの量を、リチウム 複合酸化物に対して 2. Omol%に変更したこと以外、電池 A17と同様にして、電池 A 18を作製した。 [0090] 《実施例電池 Al 9》
ペンタエトキシタンタルのエタノール溶液の代わりに、エタノール 1L中に酢酸マグネ シゥム(Mg)を溶解させた溶液を用いたこと以外、電池 A5と同様にして、電池 A19を 作製した。用いた酢酸マグネシウムの量は、リチウム複合酸化物に対して 0. 5mol% とした。
[0091] 《実施例電池 A20》
エタノール 1L中に溶解させる酢酸マグネシウムの量を、リチウム複合酸化物に対し て 2. Omol%に変更したこと以外、電池 A19と同様にして、電池 A20を作製した。
[0092] 《実施例電池 A21》
硫酸マンガンを硼酸 (B)に変更したこと以外、電池 A3と同様にして、電池 A21を作 製した。
[0093] 《実施例電池 A22》
蒸留水 lOOgに溶解させる硼酸の量を、リチウム複合酸化物に対して 2. Omol%に 変更したこと以外、電池 A21と同様にして、電池 A22を作製した。
[0094] 《実施例電池 A23》
ペンタエトキシタンタルのエタノール溶液の代わりに、エタノール 1L中にォレイン酸 カルシウム(Ca)を溶解させた溶液を用いたこと以外、電池 A5と同様にして、電池 A2 3を作製した。用いたォレイン酸カルシウムの量は、リチウム複合酸化物に対して 0. 5 mol%とした。
[0095] 《実施例電池 A24》
エタノール 1L中に溶解させるォレイン酸カルシウムの量を、リチウム複合酸化物に 対して 2. Omol%に変更したこと以外、電池 A23と同様にして、電池 A24を作製した
[0096] 《比較例電池 al〜a24》
正極の作製において、正極合剤ペーストを厚さ 20 μ mのアルミニウム箔の両面に 塗布し、乾燥した後、正極合剤を担持した集電体を、ギャップを 15 mに設定した口 ーラで、総厚が 160 /z mになるまで 3回〜 4回圧延して正極板を得た。上記以外、電 池 A1〜A24と同様にして、それぞれ電池 al〜a24を作製した。 正極の一部から正極合剤を搔き落とし、洗浄により活物質粒子だけを分離した。分離 された活物質粒子を SEMにより分析したところ、表層部から二次粒子の内部にまで 達するクラックが発生している粒子は全く観察されな力つた。以下の比較例電池にお いても同様であった。
[0097] [実施例 2]
《実施例電池 B1〜B24》
Ni原子と Co原子と Mn原子とのモル比が 80 : 15 : 5になるように、硫酸ニッケルと硫 酸コバルトと硫酸マンガンとを混合した。この混合物 3. 2kgを、 10Lの水に溶解させ て、原料溶液を得た。原料溶液に、水酸ィ匕ナトリウムを 400g加えて、沈殿を生成させ た。沈殿を十分に水洗し、乾燥させ、共沈水酸化物を得た。
[0098] 得られた Ni— Co— Mn共沈水酸化物 3kgに、水酸化リチウム 784gを混合し、酸素 分圧が 0. 5気圧である雰囲気中で、 750°Cの合成温度で、 10時間焼成した。その結 果、元素 Mとして Coと Mnとを含む平均粒径 12 μ mのリチウム複合酸化物(LiNi C
0.8 o Mn O )を得た。得られたリチウム複合酸ィ匕物を用いたこと以外、電池 A1〜A2
0.15 0.05 2
4と同様にして、それぞれ電池 B1〜B24を作製した。
[0099] 《比較例電池 bl〜b24》
正極の作製において、正極合剤ペーストを厚さ 20 μ mのアルミニウム箔の両面に 塗布し、乾燥した後、正極合剤を担持した集電体を、ギャップを 15 mに設定した口 ーラで、総厚が 160 /z mになるまで 3回〜 4回圧延して正極板を得た。上記以外、電 池 B1〜B24と同様にして、それぞれ電池 bl〜b 24を作製した。
[0100] [実施例 3]
《実施例電池 C1〜C24》
Ni原子と Co原子と Mn原子とのモル比が 34: 33: 33になるように、硫酸ニッケルと 硫酸コバルトと硫酸マンガンとを混合した。この混合物 3. 2kgを、 10Lの水に溶解さ せて、原料溶液を得た。原料溶液に、水酸ィ匕ナトリウムを 400g加えて、沈殿を生成さ せた。沈殿を十分に水洗し、乾燥させ、共沈水酸化物を得た。
[0101] 得られた Ni— Co— Mn共沈水酸化物 3kgに、水酸化リチウム 784gを混合し、酸素 分圧が 0. 5気圧である雰囲気中で、 750°Cの合成温度で、 10時間焼成した。その結 果、元素 Mとして Coと Mnとを含む平均粒径 12 μ mのリチウム複合酸化物(LiNi
0.34
Co Mn O )を得た。得られたリチウム複合酸化物を用いたこと以外、電池 Al〜
0.33 0.33 2
A24と同様にして、それぞれ電池 C1〜C24を作製した。
[0102] 《比較例電池 cl〜c24》
正極の作製において、正極合剤ペーストを厚さ 20 μ mのアルミニウム箔の両面に 塗布し、乾燥した後、正極合剤を担持した集電体を、ギャップを 15 mに設定した口 ーラで、総厚が 160 /z mになるまで 3回〜 4回圧延して正極板を得た。上記以外、電 池 C1〜C24と同様にして、それぞれ電池 cl〜c24を作製した。
[0103] [実施例 4]
《実施例電池 D1〜D24》
Ni原子と Co原子と Ti原子とのモル比が 80 : 15 : 5になるように、硫酸ニッケルと硫 酸コバルトと硝酸チタンとを混合した。この混合物 3. 2kgを、 10Lの水に溶解させて、 原料溶液を得た。原料溶液に、水酸ィ匕ナトリウムを 400g加えて、沈殿を生成させた。 沈殿を十分に水洗し、乾燥させ、共沈水酸化物を得た。
[0104] 得られた Ni— Co— Ti共沈水酸ィ匕物 3kgに、水酸化リチウム 784gを混合し、酸素 分圧が 0. 5気圧である雰囲気中で、 750°Cの合成温度で、 10時間焼成した。その結 果、元素 Mとして Coと Tiとを含む平均粒径 11 μ mの Ni— Co— Tiリチウム複合酸化 物 (LiNi Co Ti O )を得た。得られたリチウム複合酸化物を用いたこと以外、電
0.80 0.15 0.05 2
池 A1〜A24と同様にして、それぞれ電池 D1〜D24を作製した。
[0105] 《比較例電池 dl〜d24》
正極の作製において、正極合剤ペーストを厚さ 20 μ mのアルミニウム箔の両面に 塗布し、乾燥した後、正極合剤を担持した集電体を、ギャップを 15 mに設定した口 ーラで、総厚が 160 /z mになるまで 3回〜 4回圧延して正極板を得た。上記以外、電 池 D 1〜D24と同様にして、それぞれ電池 d 1〜d24を作製した。
[0106] [評価]
完成した電池を以下の要領で評価した。
(短絡安全性)
試験電池(容量: 2000mAh)について、以下の充電を行った。 定電流充電:電流 1400mA (0. 7C)、終止電圧 4. 25V
定電圧充電:電圧 4. 25V、終止電流 100mA (0. 05C)
充電後の電池の側面に、 2. 7mm径の鉄製丸釘を、 20°C環境下で、 180mmZ秒 の速度で貫通させ、電池の発熱状態を観測した。電池の貫通箇所近傍における 90 秒後の到達温度を表 1A〜4Aおよび 1B〜4B中に示す。
[0107] (過充電安全性)
試験電池(容量: 2000mAh)に対し、 8000mA (4C)の電流で、最大印加電圧 10
Vの条件で過充電を行い、電池の発熱状態を観測した。電池側面温度の最高到達 温度を表 1A〜4Aおよび 1B〜4B中に示す。
[0108] [表 1A]
リチウム複合酸化物: LiNio. 80Co0. 1 5AI0. 05O2 電池 No 元素 Me 内部短絡安全性 過充電安全性 添加量 釘速度 180mm/秒 4C mA 最高到達温度 取问至 ij達
(mol %) (°C) (。c)
1 0.5 71 92
Nb
2 2.0 70 90
3 0.5 73 92
Mn
4 2.0 71 91
5 0.5 69 92
Ta
6 2.0 71 92
7 0.5 75 92
Mo
8 2.0 71 92
9 0.5 70 92
In
10 2.0 72 92
1 1 0.5 68 90
Sn
12 2.0 72 90
A
13 0.5 70 91
W
14 2.0 72 91
15 0.5 70 90
Al
16 2.0 70 97
17 0.5 71 92
Zr
18 2.0 65 92
19 0.5 70 92
Mg
20 2.0 78 90
21 0.5 80 90
B
22 2.0 68 92
23 0.5 フ 1 90
Ca
24 2.0 65 90
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
上記 Ni— Co— Al共沈水酸ィ匕物の代わりに様々な原料を用いて合成したリチウム 複合酸ィ匕物についても評価を行った力 以下の実施例ではこれらの説明は省略する 産業上の利用可能性
本発明は、リチウム複合酸ィ匕物を正極活物質として含むリチウムイオン二次電池に おいて有用であり、短絡時における安全性と、過充電時における安全性とを、両立す ることがでさる。
[0118] 本発明のリチウムイオン二次電池の形状は、特に限定されず、例えばコイン型、ボ タン型、シート型、円筒型、偏平型、角型などの何れの形状でもよい。正極、負極お よびセパレータカもなる極板群の形態は、捲回型でも積層型でもよい。電池の大きさ は、小型携帯機器などに用いる小型でも電気自動車等に用いる大型でもよい。
[0119] 本発明のリチウムイオン二次電池は、例えば携帯情報端末、携帯電子機器、家庭 用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車等の電源 に用いることができる。ただし、用途は特に限定されない。

Claims

請求の範囲
[1] 充放電可能な正極、充放電可能な負極、および非水電解液を有し、
前記正極は、活物質粒子を含み、
前記活物質粒子は、リチウム複合酸化物の二次粒子を含み、
前記二次粒子の少なくとも一部は、クラックを有し、
前記活物質粒子の少なくとも表層部は、 Mn、 Al、 Mg、 Ca、 Zr、 B、 W、 Nb、 Ta、 In 、 Moおよび Snよりなる群力 選択される少なくとも 1種の元素 Meを有し、
前記元素 Meは、前記活物質粒子の内部に比べ、表層部に多く分布している、リチウ ムイオン二次電池。
[2] クラックを有する二次粒子の個数割合力 2%以上である、請求項 1記載のリチウム イオン二次電池。
[3] 前記元素 Meは、前記クラックにより形成された断面に比べ、前記表層部に多く分 布している、請求項 1記載のリチウムイオン二次電池。
[4] 前記リチウム複合酸化物が、 Li M L O (ただし、 0. 85≤x≤l. 25、 0≤y≤0. 5
χ l-y y 2
0、元素 Mは、 Niおよび Coよりなる群力 選択される少なくとも 1種、元素 Lは、アル力 リ土類元素、 Niおよび Co以外の遷移金属元素、希土類元素、 Illb族元素および IVb 族元素よりなる群力 選択される少なくとも 1種)で表される、請求項 1記載のリチウム イオン二次電池。
[5] 元素 Lが、 Al、 Mn、 Ti、 Mg、 Zr、 Nb、 Mo、 W、 Y、 Ca、 B、 Ta、 Inおよび Snよりな る群から選択される少なくとも 1種を含む、請求項 4記載のリチウムイオン二次電池。
[6] 前記元素 Meと前記元素しとが、異なる結晶構造を構成する、請求項 4記載のリチウ ムイオン二次電池。
[7] 前記活物質粒子の平均粒径が、 10 μ m以上である、請求項 1記載のリチウムィォ ン二次電池。
[8] 前記表層部において、前記元素 Meが、前記リチウム複合酸ィ匕物とは異なる結晶構 造を有する酸化物を構成して ヽる、請求項 1記載のリチウムイオン二次電池。
[9] 前記元素 Meの量が、前記リチウム複合酸ィ匕物に対して、 2mol%以下である、請求 項 1記載のリチウムイオン二次電池。
PCT/JP2006/312728 2005-07-11 2006-06-26 リチウムイオン二次電池 WO2007007542A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800251959A CN101218698B (zh) 2005-07-11 2006-06-26 锂离子二次电池
US11/915,781 US8236449B2 (en) 2005-07-11 2006-06-26 Lithium ion secondary battery with improved electrode stability and safety

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005202013A JP5260821B2 (ja) 2005-07-11 2005-07-11 リチウムイオン二次電池
JP2005-202013 2005-07-11

Publications (1)

Publication Number Publication Date
WO2007007542A1 true WO2007007542A1 (ja) 2007-01-18

Family

ID=37636938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312728 WO2007007542A1 (ja) 2005-07-11 2006-06-26 リチウムイオン二次電池

Country Status (5)

Country Link
US (1) US8236449B2 (ja)
JP (1) JP5260821B2 (ja)
KR (1) KR20080022188A (ja)
CN (1) CN101218698B (ja)
WO (1) WO2007007542A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045719A1 (ja) * 2013-09-26 2015-04-02 Necエナジーデバイス株式会社 積層型リチウムイオン二次電池用正極

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4824349B2 (ja) * 2005-06-16 2011-11-30 パナソニック株式会社 リチウムイオン二次電池
JP5085856B2 (ja) * 2005-07-07 2012-11-28 パナソニック株式会社 リチウムイオン二次電池
JP2008269928A (ja) 2007-04-19 2008-11-06 Matsushita Electric Ind Co Ltd 非水電解質二次電池
WO2009031619A1 (ja) 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池
JP5262046B2 (ja) * 2007-09-28 2013-08-14 パナソニック株式会社 乾電池とその製造方法およびその製造装置
KR100889622B1 (ko) * 2007-10-29 2009-03-20 대정이엠(주) 안전성이 우수한 리튬 이차전지용 양극 활물질 및 그제조방법과 이를 포함하는 리튬 이차전지
EP2351139B1 (en) * 2008-10-13 2013-10-09 BASF Corporation Mixed lithium nickel cobalt oxide and lithium nickel manganese cobalt oxide cathodes
JP5485674B2 (ja) * 2009-12-11 2014-05-07 三洋電機株式会社 非水電解質二次電池
US9077050B2 (en) 2010-06-04 2015-07-07 Samsung Sdi Co., Ltd. Lithium secondary battery including lithium molybdate
JP5421865B2 (ja) 2010-06-30 2014-02-19 株式会社日立製作所 リチウムイオン二次電池
KR101193166B1 (ko) 2010-07-15 2012-10-19 삼성에스디아이 주식회사 양극 활물질, 이를 사용한 리튬 전지 및 그 제조 방법
KR20120010552A (ko) * 2010-07-26 2012-02-03 삼성전자주식회사 고체 리튬 이온 이차 전지 및 이에 사용될 수 있는 전극
EP2619838A1 (de) * 2010-09-21 2013-07-31 Basf Se Verfahren zur herstellung von elektrodenmaterialien
KR101265197B1 (ko) 2010-11-25 2013-05-27 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2012129242A2 (en) 2011-03-23 2012-09-27 Pacific Biosciences Of California, Inc. Isolation of polymerase-nucleic acid complexes and loading onto substrates
US9126845B2 (en) * 2011-05-31 2015-09-08 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery
US9786908B2 (en) 2012-03-30 2017-10-10 Sanyo Electric Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
TWI520422B (zh) * 2012-11-26 2016-02-01 財團法人工業技術研究院 鋰電池電極粉體與鋰電池極板
JP6017978B2 (ja) * 2013-01-24 2016-11-02 トヨタ自動車株式会社 正極活物質及び該活物質を用いたリチウム二次電池
US20160056469A1 (en) * 2013-03-28 2016-02-25 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery, method for manufacturing positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN103400993B (zh) * 2013-08-14 2014-03-26 青海绿草地新能源科技有限公司 一种电池正极和锂离子电池
WO2015045400A1 (ja) * 2013-09-30 2015-04-02 三洋電機株式会社 偏平形非水電解質二次電池及びそれを用いた組電池
CN103715423A (zh) * 2014-01-06 2014-04-09 深圳市贝特瑞新能源材料股份有限公司 锂镍钴铝氧化物复合正极材料、其制备方法和锂离子电池
JP6128392B2 (ja) * 2014-03-13 2017-05-17 トヨタ自動車株式会社 非水電解液二次電池
KR101909317B1 (ko) * 2014-07-31 2018-10-17 주식회사 엘지화학 리튬 이차전지용 양극 활물질 및 그의 제조방법
JP6034413B2 (ja) * 2015-01-29 2016-11-30 輔仁大學學校財團法人輔仁大學 リチウムイオン電池の金属勾配ドープ正極材料
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
JP6775125B2 (ja) * 2015-09-30 2020-10-28 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質
DE202017007629U1 (de) 2016-07-05 2023-09-29 Semiconductor Energy Laboratory Co., Ltd. Positivelektrodenaktivmaterial und Sekundärbatterie
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN115188932A (zh) 2016-10-12 2022-10-14 株式会社半导体能源研究所 正极活性物质粒子以及正极活性物质粒子的制造方法
JP7177769B2 (ja) 2017-05-12 2022-11-24 株式会社半導体エネルギー研究所 正極活物質粒子及びリチウムイオン二次電池
CN115995596A (zh) 2017-05-19 2023-04-21 株式会社半导体能源研究所 锂离子二次电池
KR102553591B1 (ko) * 2017-06-12 2023-07-11 삼성전자주식회사 포스페이트계 첨가제를 포함하는 리튬이차전지
US20200176770A1 (en) 2017-06-26 2020-06-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery
KR102459627B1 (ko) * 2017-08-16 2022-10-28 삼성전자주식회사 디설포네이트계 첨가제 및 이를 포함하는 리튬이차전지
JP6749884B2 (ja) * 2017-12-05 2020-09-02 Jfeミネラル株式会社 リチウム二次電池用正極材料
WO2019243952A1 (ja) 2018-06-22 2019-12-26 株式会社半導体エネルギー研究所 正極活物質、正極、および二次電池、ならびに正極の作製方法
JP7357499B2 (ja) * 2019-09-26 2023-10-06 パナソニックホールディングス株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
US20230290941A1 (en) * 2020-08-25 2023-09-14 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material for nonaqueous-electrolyte secondary cell, and nonaqueous-electrolyte secondary cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123750A (ja) * 2001-10-05 2003-04-25 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法
JP2003173775A (ja) * 2001-12-05 2003-06-20 Japan Storage Battery Co Ltd 非水電解質二次電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3172388B2 (ja) 1995-02-27 2001-06-04 三洋電機株式会社 リチウム二次電池
DE69603116T2 (de) * 1995-04-04 2000-03-09 Furukawa Battery Co Ltd Elektrode für Sekundärbatterie mit nicht-wässrigem Elektrolyten und Verfahren zur Herstellung
JP3543437B2 (ja) 1995-07-24 2004-07-14 ソニー株式会社 正極活物質及びこの正極活物質を用いた非水電解質二次電池
JPH09231963A (ja) * 1996-02-20 1997-09-05 Fuji Photo Film Co Ltd 非水二次電池
JPH10312796A (ja) * 1997-05-14 1998-11-24 Sony Corp 電極塗布装置
JP3575735B2 (ja) 1997-05-16 2004-10-13 Necトーキン栃木株式会社 非水系の再充電可能なリチウム電池
JPH1116566A (ja) 1997-06-20 1999-01-22 Hitachi Ltd 電 池
US6372385B1 (en) * 1998-02-10 2002-04-16 Samsung Display Devices Co., Ltd. Active material for positive electrode used in lithium secondary battery and method of manufacturing same
KR100309769B1 (ko) * 1999-06-17 2001-11-01 김순택 리튬 이차 전지용 양극 활물질과 그 제조 방법
US6749965B1 (en) * 1999-02-10 2004-06-15 Samsung Sdi Co., Ltd. Positive active material for lithium secondary batteries and method of preparing the same
DE19922522A1 (de) 1999-05-15 2000-11-16 Merck Patent Gmbh Beschichtete Lithium-Mischoxid-Partikel und deren Verwendung
JP4872150B2 (ja) 1999-10-26 2012-02-08 住友化学株式会社 非水二次電池用活物質およびこれを用いた非水二次電池
JP2001185154A (ja) * 1999-12-28 2001-07-06 Shin Kobe Electric Mach Co Ltd リチウム二次電池
JP4878683B2 (ja) * 2001-01-23 2012-02-15 三洋電機株式会社 リチウム二次電池
KR100998860B1 (ko) * 2001-08-24 2010-12-08 소니 주식회사 전지
KR20050044770A (ko) * 2003-03-31 2005-05-12 세이미 케미칼 가부시끼가이샤 리튬 2차 전지용 양극활물질의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123750A (ja) * 2001-10-05 2003-04-25 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法
JP2003173775A (ja) * 2001-12-05 2003-06-20 Japan Storage Battery Co Ltd 非水電解質二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045719A1 (ja) * 2013-09-26 2015-04-02 Necエナジーデバイス株式会社 積層型リチウムイオン二次電池用正極

Also Published As

Publication number Publication date
JP5260821B2 (ja) 2013-08-14
CN101218698A (zh) 2008-07-09
US20090081547A1 (en) 2009-03-26
US8236449B2 (en) 2012-08-07
CN101218698B (zh) 2010-12-22
JP2007018985A (ja) 2007-01-25
KR20080022188A (ko) 2008-03-10

Similar Documents

Publication Publication Date Title
JP5260821B2 (ja) リチウムイオン二次電池
JP5153060B2 (ja) リチウムイオン二次電池
US8846249B2 (en) Lithium ion secondary battery
US9972835B2 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP5300502B2 (ja) 電池用活物質、非水電解質電池および電池パック
KR102437198B1 (ko) 리튬 2 차 전지용 정극 활물질, 리튬 2 차 전지용 정극 및 리튬 2 차 전지
JP5079247B2 (ja) リチウムイオン二次電池およびその製造法
JP4877898B2 (ja) 非水電解質二次電池
US20070141470A1 (en) Lithium ion secondary battery
US20110033756A1 (en) Lithium ion secondary battery
JP2007188878A (ja) リチウムイオン二次電池
JP5079291B2 (ja) 非水電解質二次電池
WO2003063275A1 (en) Positive plate active material and nonaqueous electrolyte secondary cell using same
JP2006278322A (ja) 非水電解質二次電池
JP2011134670A (ja) リチウム二次電池用正極活物質
JP5224081B2 (ja) 非水電解質二次電池
KR102436594B1 (ko) 리튬 2 차 전지용 정극 활물질, 리튬 2 차 전지용 정극 및 리튬 2 차 전지
WO2013145721A1 (ja) 非水電解質二次電池およびその製造方法
JP2007265731A (ja) リチウムイオン二次電池
CN110148711B (zh) 正极材料和锂离子电池
CN110600725A (zh) 非水电解质电池
KR20190055733A (ko) 리튬전지 전해질 첨가제, 이를 포함하는 유기전해액 및 리튬전지
KR20190079368A (ko) 유기전해액 및 이를 포함하는 리튬전지
JP7262365B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池
US20140287312A1 (en) Positive active material for a rechargeable lithium battery and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680025195.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11915781

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087000848

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767345

Country of ref document: EP

Kind code of ref document: A1