WO2007003238A1 - Öllösliche kammpolymere - Google Patents

Öllösliche kammpolymere Download PDF

Info

Publication number
WO2007003238A1
WO2007003238A1 PCT/EP2006/003213 EP2006003213W WO2007003238A1 WO 2007003238 A1 WO2007003238 A1 WO 2007003238A1 EP 2006003213 W EP2006003213 W EP 2006003213W WO 2007003238 A1 WO2007003238 A1 WO 2007003238A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
repeating units
group
monomers
derived
Prior art date
Application number
PCT/EP2006/003213
Other languages
English (en)
French (fr)
Inventor
Torsten Stöhr
Boris Eisenberg
Michael Müller
Original Assignee
Evonik Rohmax Additives Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Rohmax Additives Gmbh filed Critical Evonik Rohmax Additives Gmbh
Priority to EP06724151A priority Critical patent/EP1899393B1/de
Priority to JP2008518648A priority patent/JP5376946B2/ja
Priority to CN2006800088285A priority patent/CN101142244B/zh
Priority to KR1020077030884A priority patent/KR101317068B1/ko
Priority to BRPI0612884-0A priority patent/BRPI0612884B1/pt
Priority to US11/909,171 priority patent/US8067349B2/en
Priority to AT06724151T priority patent/ATE541874T1/de
Priority to CA2606615A priority patent/CA2606615C/en
Priority to MX2007014961A priority patent/MX2007014961A/es
Publication of WO2007003238A1 publication Critical patent/WO2007003238A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/005Macromolecular compounds, e.g. macromolecular compounds composed of alternatively specified monomers not covered by the same main group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an acyloxy radical of saturated carboxylic or carbonic acid
    • C10M2209/062Vinyl esters of saturated carboxylic or carbonic acids, e.g. vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/071Branched chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/68Shear stability

Definitions

  • the present application relates to oil-soluble comb polymers, processes for their preparation and their use
  • Polyalkyl (meth) acrylates PAMAs) - generally synthesized by simple radical copolymerization of a mixture of different alkyl methacrylates (AMAs) - cause an increase in viscosity index (VI) as oil additives depending on molecular weight and composition, compared with other viscosity index improvers (VIIs).
  • VI viscosity index
  • VIIs excellent low temperature properties (see RM Mortier, ST Orszulik (eds.), Chemistry and Technology of Lubricants, Blackie Academic & Professional, Ist ed., London 1993, 124-159 & 165-167).
  • the achievable VIs of these comb-like polymers depend on concentration, permanent shear stability index (PSSI) and base oil type in the range between 150 and 250.
  • PSSI permanent shear stability index
  • Another class of VIIs is given with the styrene-alkylmaleate copolymers, which are prepared by polymer-analogous esterification of styrene Maleic anhydride copolymers are obtained with typically C6-C24 Akoholen. The esterification is driven with the addition of butanol to a conversion of about 95%. Complete conversion of the acid functionalities is possible by adding an amine to form amide or imide groups (US Pat. No. 3,702,300, EP 0 969 077).
  • shear stable VIIs as they are required for manual transmission, automatic transmission, hydraulic or engine oils, based on conventional polymer types such as the PAMAs can be realized only with high additional amounts. VIIs with a low viscosity contribution at low temperatures, normal thickening in the VI range from 40 to 100 ° C., a high viscosity contribution above 100 ° C. and at the same time ensured good oil solubility over the entire temperature range are thus of particular interest.
  • EP 0 744 457 describes higher order comb polymers based on pure PAMA, in which the side arms themselves consist of oligomeric PAMA.
  • the patent literature knows two further patents on comb polymers in which the side chains of saturated or hydrogenated polyolefms and the backbone of short-chain monomers such as AMAs or alkylstyrenes exist.
  • EP 0 621 293 describes comb polymers in which the side chains are preferably built up from hydrogenated polybutadiene.
  • EP 0 699 694 discloses comb polymers with side arms, preferably based on saturated olefin monomers, such as, for example, the polyisobutylene or atactic polypropylene.
  • saturated olefin monomers such as, for example, the polyisobutylene or atactic polypropylene.
  • ABA triblock copolymers comb polymers with only two side arms are to be regarded.
  • triblock copolymers have been described as VII on a pure PAMA basis (P. Callais, S. Schmidt, N. Macy, SAE Technical Paper Series, No. 2004-01-3047) as well as on a polybutyl methacrylate core and hydrogenated polybutadiene or polyisoprene arms (US 5,002,676).
  • comb polymers with hydrogenated or saturated side arms are also known in entirely different applications.
  • DE 196 31 170 describes comb polymers for impact-resistant molding compositions, wherein the polymers represent a juxtaposition of polyisobutylene-containing macromonomers without additional short-chain backbone monomers.
  • the patent literature describes a way of attaching a functionalized polypropylene to a styrene-maleic anhydride backbone in a polymer-analogous reaction under the formation of a soft high-damping comb polymer gel (EP 0 955 320); The molecular weights of the polypropylene used are extremely high up to 300 OOOg / mol.
  • comb polymers with hydrogenated polybutadiene or isoprene arms are described, the backbone also containing acrylic acid in addition to AMAs (US Pat. No. 5,625,005).
  • the polymers described above are widely used commercially. Accordingly, most of these polymers show a satisfactory property profile. However, there is a continuing effort to improve the relation of Verdi l ⁇ mgs Koch, viscosity index and shear stability in order to achieve the lowest possible use of additive in lubricating oils over a wide temperature range, a desired viscosity, without this property is impaired by premature degradation of the polymers. Furthermore, the polymers should be easy and inexpensive to manufacture, in particular, commercially available components should be used. Here, the production should be possible on an industrial scale without the need for new or structurally complex systems.
  • the molar degree of branching is in the range of 0.1 to 10 mol% and the comb polymer in total at least 80 wt% of repeating units derived from polyolefin-based macromonomers, and repeating units selected from low molecular weight monomers from the group consisting of styrene monomers having 8 to 17 carbon atoms, alkyl (meth) acrylates having 1 to 10 carbon atoms in the alcohol group, vinyl esters having 1 to 11 carbon atoms in the acyl group, vinyl ethers having 1 to 10 carbon atoms in the alcohol group, (di) alkyl fumarates having 1 to 10 carbon atoms in the alcohol group, (di) alkyl maleates having 1 to 10 carbon atoms in the alcohol group and mixtures of these monomers, based on the weight of the repeat ingredients, it is not easily obtainable comb polymer in the main chain Repeating units derived from polyolefm-based macromonomers ind, and Wiederseinseinlieit
  • the comb polymers according to the invention have a particularly high viscosity index-improving effect in lubricating oils.
  • the comb polymers of the present invention can be produced particularly easily and simply. Here, conventional, large-scale systems can be used.
  • comb polymer is known per se, with longer side chains attached to a polymeric backbone, often also called a backbone,
  • the polymers of the invention have at least one repeating unit derived from polyolefin-based macromonomers The exact proportion is given by the molar degree of branching
  • the term "main chain” does not necessarily mean that the chain length of the main chain is greater than that of the side chains. Rather, this term refers to the composition of this chain.
  • the side chain has very high levels of olefinic repeating units, especially units derived from alkenes or alkadienes, for example, ethylene, propylene, n-butene, isobutene, butadiene, isoprene
  • the backbone comprises larger proportions of more polar unsaturated monomers previously used were set out.
  • the term repeat unit is well known in the art.
  • the present comb polymers may preferably be obtained via radical polymerization of macromonomers and low molecular weight monomers. This double bonds are opened to form covalent bonds. Accordingly, the repeat unit results from the monomers used. However, the present comb polymers can also be obtained by polymer-analogous reactions and / or graft copolymerization.
  • the reacted repeating unit of the main chain counts as a repeating unit derived from a polyolefin-based macromonomer.
  • the present invention describes comb polymers which preferably have high oil solubility.
  • oil-soluble means that a mixture of a base oil and a novel Kamrnpolymer without macroscopic phase formation can be produced, which has at least 0.1 wt .-%, 'preferably at least 0.5 wt .-% of the comb polymers of the invention.
  • the comb polymer may be dispersed and / or dissolved.
  • the oil solubility depends in particular on the proportion of the lipophilic side chains and on the base oil. This property is known to the person skilled in the art and can easily be adjusted for the respective base oil via the proportion of lipophilic monomers.
  • the comb polymers of the present invention include repeating units derived from polyolefin-based macromonomers.
  • Polyolefm-based macromonomers are known in the art. These repeating units comprise at least one group derived from polyolefms.
  • Polyolefins are known in the art, these being prepared by polymerization of alkenes and / or alkadienes which consist of the elements carbon and hydrogen, for example C 2 -C 10-alkenes such as ethylene, propylene, n-butene, isobutene, norbornene and / or C 4 C10 alkadienes such as butadiene, isoprene, Norbomadiene, can be obtained.
  • the repeating units derived from polyolefin-based macromonomers preferably comprise at least 70% by weight and more preferably at least 80% by weight and most preferably at least 90% by weight of groups derived from alkenes and / or alkadienes, based on Weight of repeating units derived from polyolefin-based macromonomers.
  • the polyolefinic groups may in particular also be hydrogenated.
  • repeat units derived from polyolefin-based macromonomers may include other groups. These include low levels of copolymerizable monomers.
  • These monomers are known per se and include, inter alia, alkyl (meth) acrylates, styrene monomers, fumarates, maleates, vinyl esters and / or vinyl ethers.
  • the proportion of these groups based on copolymerizable monomers is preferably at most 30% by weight, particularly preferably at most 15% by weight, based on the weight of repeating units derived from polyolefin-based macromonomers.
  • the repeating units derived from polyolefin-based macromonomers may include initial groups and / or end groups that function to functionalize or that are due to the production of repeating units derived from polyolefin-based macromonomers.
  • the proportion of these initial groups and / or end groups is preferably at most 30 wt .-%, particularly preferably at most 15 wt .-%, based on the weight of the polyolefin-based macromonomer derived repeating units.
  • the number average molecular weight of repeating units derived from polyolefin-based macromonomers is in the range of 500 to 50,000 g / mol, more preferably 700 to 10,000 g / mol, especially 1,500 to 4,900 g / mol, and most preferably 2,000 to 3000 g / mol.
  • these values result from the copolymerization of low molecular weight and macromolecular monomers via the properties of the macromolecular monomers.
  • this property results, for example, from the macroalcohols and / or macroamines used, taking into account the reacted repeating units of the main chain.
  • the graft copolymerizations it is possible to deduce the molecular weight distribution of the polyolefin via the fraction of polyolefms which has not been incorporated into the main chain.
  • the repeating units derived from polyolefin-based macromonomers preferably had a low melting temperature, measured by DSC.
  • the melting temperature of the recurring units derived from the polyolefin-based macromonomers is preferably less than or equal to -10 ° C., particularly preferably less than or equal to -20 ° C., particularly preferably less than or equal to -40 ° C. Most preferably, no melting temperature can be measured according to DSC in the repeating units derived from the polyolefin-based macromonomers.
  • the comb polymers of the present invention include repeating units selected from low molecular weight monomers selected from the group consisting of styrene monomers having 8 to 17 carbon atoms, alkyl (meth) acrylates having 1 to 10 carbon atoms in the alcohol group , Vinyl esters having 1 to 11 carbon atoms in the acyl group, vinyl ethers having 1 to 10 carbon atoms in the alcohol group, (di) alkyl fumarates having 1 to 10 carbon atoms in the alcohol group, (di) alkyl maleates having 1 to 10 carbon atoms in the alcohol group, and mixtures of these monomers are derived.
  • low molecular weight monomers selected from the group consisting of styrene monomers having 8 to 17 carbon atoms, alkyl (meth) acrylates having 1 to 10 carbon atoms in the alcohol group , Vinyl esters having 1 to 11 carbon atoms in the acyl group, vinyl ethers having 1 to 10 carbon atoms in the alcohol group,
  • low molecular weight indicates that a portion of the repeating units of the backbone of the comb polymer has a low molecular weight, which molecular weight may vary depending on the preparation of the molecular weight of the monomers used to prepare the polymers low molecular weight monomers is preferably at most 400 g / mol, more preferably at most 200 g / mol, and most preferably at most 150 g / mol.
  • styrene monomers having 8 to 17 carbon atoms are styrene, substituted styrenes having an alkyl substituent in the side chain, such.
  • styrene substituted styrenes having an alkyl substituent in the side chain
  • ⁇ -methylstyrene and ⁇ -ethylstyrene substituted styrenes having an alkyl substituent on the ring, such as vinyltoluene and p-methylstyrene
  • halogenated styrenes such as monochlorostyrenes, dichlorostyrenes, tribromostyrenes and tetrabromostyrenes.
  • (meth) acrylates includes acrylates and methacrylates as well as mixtures of acrylates and methacrylates.
  • the alkyl (meth) acrylates having 1 to 10 carbon atoms in the alcohol group include, in particular, (meth) acrylates derived from saturated alcohols, such as Methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, Hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, 2-tert-butylheptyl (meth) acrylate, octyl (meth) acrylate,
  • vinyl esters having 1 to 11 carbon atoms in the acyl group include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate.
  • Preferred vinyl esters include 2 to 9, more preferably 2 to 5 carbon atoms in the acyl group.
  • the acyl group here may be linear or branched.
  • vinyl ethers having 1 to 10 carbon atoms in the alcohol group include vinyl methyl ether, vinyl ethyl ether, vinyl propyl ether, vinyl butyl ether.
  • Preferred vinyl ethers comprise 1 to 8, more preferably 1 to 4 carbon atoms in the alcohol group.
  • the alcohol group may hereby be linear or branched.
  • the notation (di) ester means that monoesters, diesters and mixtures of esters, especially fumaric acid and / or maleic acid can be used.
  • the (di) alkyl fumarates having 1 to 10 carbon atoms in the alcohol group include, but are not limited to, monomethyl fumarate, dimethyl fumarate, monoethyl fumarate, diethyl fumarate, methyl ethyl fumarate, monobutyl fumarate, dibutyl fumarate, dipentyl fumarate and dihexyl fumarate.
  • Preferred (di) alkyl fumarates comprise 1 to 8, more preferably 1 to 4 carbon atoms in the alcohol group.
  • the alcohol group may hereby be linear or branched.
  • the (di) alkyl maleates having from 1 to 10 carbon atoms in the alcohol group include, among others, monomethyl maleate, dimethyl maleate, monoethyl maleate, diethyl maleate, methyl ethyl maleate, monobutyl maleate, dibutyl maleate.
  • Preferred (di) alkyl maleates include 1 to 8, more preferably 1 to 4 carbon atoms in the alcohol group.
  • the alcohol group may hereby be linear or branched.
  • the comb polymers according to the invention may comprise further recurring units derived from further comonomers, the proportion of which is at most 20% by weight, preferably at most 10% by weight and more preferably at most 5% by weight, based on the Weight of repeating units is.
  • alkyl (meth) acrylates having from 11 to 30 carbon atoms in the alcohol group, especially undecyl (meth) acrylate, 5-methylundecyl (meth) acrylate, dodecyl (meth) acrylate, 2-methyldodecyl ( meth) acrylate, tridecyl (meth) acrylate,
  • Aminoalkyl (meth) acrylates are derived, as
  • N, N-Dibutylaminohexadecyl (meth) acrylate include, but are not limited to, repeat units derived from aminoalkyl (meth) acrylamides, such as N, N-dimethylaminoprop) 4 (meth) acrylamide.
  • Hydroxylalkyl (meth) acrylates are derived, as
  • heterocyclic vinyl compounds such as 2-vinylpyridine, 4-vinylpyridine, 2-methyl-5-vinylpyridine, 3-ethyl-4-vinylpyridine, 2,3-dimethyl-5-vylpyridine, vinylpyrimidine, Vinylpiperidine, 9-vinylcarbazole, 3-vinylcarbazole, 4-vinylcarbazole, 1-vinylimidazole, 2-methyl-1-vinylimidazole, N-vinylpyrrolidone, N-vinylpyrrolidine, 3-vinylpyrrolidine, N-vinylcaprolactam, N-vinylbutyrolactam, vinyloxolane, vinylfuran, Vinyloxazoles and hydrogenated vinyloxazoles.
  • the aforementioned ethylenically unsaturated monomers can be used individually or as mixtures. It is further possible to vary the monomer composition during the main chain polymerization to obtain defined structures such as block copo
  • the comb polymers have a molar degree of branching in the range from 0.1 to 10 mol%, preferably 0.8 to 6 mol%, particularly preferably 0.8 to 3.4 mol% and particularly preferably 1.0 to 3, 1 and most preferably 1.4 to 2.8.
  • the molar degree of branching of the comb polymer f branch is calculated according to the formula
  • A type number of repeat units derived from polyolefin-based macromonomers
  • Monomers selected from the group consisting of styrene monomers having 8 to 17 carbon atoms, alkyl (meth) acrylates having 1 to 10 carbon atoms in the alcohol group, vinyl esters having 1 to 11 carbon atoms in the acyl group, vinyl ethers having 1 to 10 carbon atoms in the alcohol group, (Di ) alkyl fumarates having from 1 to 10 carbon atoms in the alcohol group, (di) alkyl maleates having from 1 to 10 carbon atoms in the alcohol group, and mixtures of these monomers, n a number of repeating units derived from polyolefin
  • the molar degree of branching generally results from the ratio of the monomers used, if the comb polymer was prepared by copolymerization of low molecular weight and macromolecular monomers.
  • the number average molecular weight of the macromonomer can be used here.
  • the comb polymer in particular the main chain of the comb polymer, a glass transition temperature in the range -60 to 110 ° C, preferably in the range -30 to 100 0 C, more preferably in the range 0 to 90 ° C, and most preferably in the range 20 to 80 ° C have.
  • the glass transition temperature is determined by DSC.
  • the glass transition temperature can be estimated from the glass transition temperature of the corresponding homopolymers, taking into account the proportions of repeating units in the main chain.
  • the degree of molar branching is given by known methods for the determination of the conversion.
  • polymers generally also include initial and terminal groups which may be formed by initiation reactions and termination reactions. According to a particular aspect of the present invention, therefore, the disclosure refers to at least 80 wt .-%, preferably at least 90 wt .-% of low molecular weight repeating units of monomers selected from the group consisting of styrene monomers having 8 to 17 carbon atoms, alkyl (meth acrylates having 1 to 10 carbon atoms in the alcohol group, vinyl esters having 1 to 11 carbon atoms in the acyl group, vinyl ethers having 1 to 10 carbon atoms in the alcohol group, (di) alkyl fumarates having 1 to 10 carbon atoms in the alcohol group, (di) alkyl maleates with 1 to 10 carbon atoms in the alcohol group, as well as mixtures of these monomers, and repeating units derived from polyolefin-based macromonomers, to the total weight of the comb polymers.
  • the comb polymers of the invention can be prepared in various ways.
  • a preferred method consists in the known per se radical copolymerization of low molecular weight monomers and macromolecular monomers.
  • ATRP Atom Transfer Radical Polymerization
  • RAFT Reversible Addition Fragmentation Chain Transfer
  • Useful initiators include the azo initiators well known in the art, such as AIBN and 1,1-azobiscyclohexanecarbonitrile, and peroxy compounds such as methyl ethyl ketone peroxide, acetylacetone peroxide, dilauryl peroxide, tert-butyl per-2-ethylhexanoate, ketone peroxide, tert-butyl peroctoate, methyl isobutyl ketone peroxide , Cyclohexanone peroxide, dibenzoyl peroxide, tert-butyl peroxybenzoate, tert-butyl peroxyisopropyl carbonate, 2,5-bis (2-ethylhexanoylperoxy) -2,5-dimethylhexane, tert-butylperoxy-2-ethylhexanoate, tert-butylperoxy-3,5, 5-trimethylhexanoate, dicum
  • Butylcyclohexyl) peroxydicarbonate mixtures of two or more of the aforementioned compounds with one another and mixtures of the abovementioned compounds with unspecified compounds which can also form radicals.
  • Suitable chain transfer agents are in particular oil-soluble mercaptans such as n-dodecyl mercaptan or 2-mercaptoethanol or chain transfer agents from the class of terpenes, such as terpinolene.
  • the ATRP method is known per se. It is believed that this is a "living" radical polymerization without any limitation to the description of the mechanism.
  • a transition metal compound is reacted with a compound having a transferable atomic group.
  • the transferable atomic group is transferred to the transition metal compound, whereby the metal is oxidized.
  • This reaction forms a radical that adds to ethylenic groups.
  • the transfer of the atomic group to the transition metal compound is reversible so that the atomic group is re-transferred to the growing polymer chain, forming a controlled polymerization system. Accordingly, the structure of the Polymers, the molecular weight and the molecular weight distribution are controlled.
  • polymers according to the invention can also be obtained, for example, by RAFT methods. This process is described in detail, for example, in WO 98/01478 and WO 2004/083169, to which reference is expressly made for purposes of the disclosure.
  • the polymerization can be carried out at atmospheric pressure, lower or higher pressure.
  • the polymerization temperature is not critical. In general, however, it is in the range of -20 ° - 200 ° C, preferably 50 ° - 150 ° C and particularly preferably 80 ° - 130 0 C.
  • the polymerization can be carried out with or without solvent.
  • the term of the solvent is to be understood here broadly.
  • the selection of the solvent is carried out according to the polarity of the monomers used, wherein preferably 100N-oil, lighter gas oil and / or aromatic hydrocarbons, for example toluene or xylene can be used.
  • the low molecular weight monomers to be used for the preparation of the comb polymers according to the invention in a free-radical copolymerization are generally available commercially.
  • Macromonomers which can be used according to the invention have exactly one double bond, which is preferably terminal.
  • the double bond may be conditionally present due to the preparation of the macromonomers.
  • a polyisobutylene (PIB) having a terminal double bond is formed.
  • polyolefin-based macro alcohols and / or macroamines may be subjected to transesterification or aminolysis with low molecular weight monomers comprising at least one unsaturated ester group, such as methyl (meth) acrylate or ethyl (meth) acrylate.
  • these macromonomers can be obtained by direct esterification or direct amidation, starting, for example, from methacrylic acid or methacrylic anhydride, preferably with acid catalysis by p-toluenesulfonic acid or methanesulfonic acid, or from the free methacrylic acid by the DCC method (dicyclohexylcarbodiimide).
  • the present alcohol or amide can be converted to a macromonomer by reaction with an acid chloride such as (meth) acryloyl chloride.
  • an acid chloride such as (meth) acryloyl chloride.
  • suitable macromonomers can be obtained by reacting a terminal PIB double bond with methacrylic acid or by Friedel-Crafts alkylation of the PIB double bond to styrene.
  • polymerization inhibitors such as e.g. the 4-hydroxy-2,2,6,6-tetramethylpiperidino- oxyl radical and / or hydroquinone monomethyl ether used.
  • the polyolefin-based macro alcohols and / or macroamines to be used for the reactions set forth above can be prepared in a known manner.
  • PIB polyisobutylene
  • Another supplier of suitable macro-alcohols based on hydrogenated polybutadiene is Cray Valley (Paris) as a subsidiary of Total (Paris) and the Sartomer Company (Exton / P AAJSA).
  • the preparation of macroamines is set forth, for example, in EP 0 244 616 of BASF AG.
  • the representation of the macroamines takes place via oxination and amination preferably of polyisobutylene.
  • Polyisobutylene has the advantage of showing no crystallization at low temperatures.
  • Advantageous macro-alcohols can furthermore according to the known patents of BASF AG either hydroboration (WO 2004/067583) of highly reactive polyisobutylene HR-PIB (EP 0 628 575), which contains an increased proportion of terminal ⁇ -double bonds, or by oxidation followed by Hydrogenation (EP 0 277 345) are shown.
  • the hydroboration provides higher alcohol functionalities than the oxo and hydrogenation.
  • Preferred macro-alcohols based on hydrogenated polybutadienes can be obtained according to GB 2270317 of Shell International Research Maatschappij. A high proportion of 1,2-repeat units of about 60% and more can lead to significantly lower crystallization temperatures.
  • the macromonomers set out above are also commercially available part, such as the Kraton Liquid ® L-1253 prepared from the Kraton Liquid ® L-1203 a to about 96wt% of methacrylate-functionalized hydrogenated polybutadiene having about 50% each 1,2- Repeating units and 1,4-repeat units, Kraton Polymers GmbH (Eschborn, Germany).
  • inventive comb polymers can be obtained by polymer-analogous reactions.
  • a polymer of low molecular weight monomers is first prepared in a known manner, which is subsequently reacted.
  • the backbone of a comb polymer can be synthesized from a reactive monomer such as maleic anhydride, methacrylic acid or else glycidyl methacrylate and other short chain backbone inreactive monomers.
  • the initiator systems set out above such as t-butyl perbenzoate or t-butyl per-2-ethylhexanoate and regulators such as n-dodecylmercaptan can be used.
  • the side chains which are also referred to as arms, can be generated.
  • the side chains which are also referred to as arms.
  • the macroalcohols and / or macroamines set out above can be used.
  • reaction of the initially formed backbone polymers with macroalcohols and / or macroamines corresponds essentially to the above-described reactions of the macroalcohols and / or macroamines with low molecular weight compounds.
  • the macroalcohols and / or macroamines can be converted to graft reactions known per se, for example, to the present maleic anhydride or methacrylic acid functionalities in the backbone polymer with catalysis, for example by p-toluenesulfonic acid or methanesulfonic acid to esters, amides or Luiden to the comb polymers of the invention.
  • catalysis for example by p-toluenesulfonic acid or methanesulfonic acid to esters, amides or Luiden to the comb polymers of the invention.
  • low molecular weight alcohols and / or amines such as n-butanol or N- (3-aminopropyl) -morpholine this Polymeranloge reaction is conducted especially in maleic anhydride backbones to complete conversions.
  • an addition of the macroalcohol and / or the macroamine can be carried out to form comb polymers.
  • the macro-alcohols and / or the macroamines can be reacted by a polymer-analogous alcoholysis or aminolysis with a backbone containing short-chain ester functionalities to generate comb polymers.
  • suitably functionalized polymers obtained by reacting low molecular weight monomers can be reacted with other low molecular weight monomers to form comb polymers.
  • the initially prepared backbone polymer has several functionalities that serve as initiators of multiple graft polymerizations.
  • a multiple cationic polymerization of i-butene can be initiated leading to comb polymers with polyolefin side arms.
  • Suitable for such Pfroftcopolymerisationen are also the ATRP and / or RAFT method set out above, in order to obtain comb polymers having a defined architecture.
  • the comb polymer of the present invention has a low content of olefinic double bonds.
  • the iodine number is less than or equal to 0.2 g per g of comb polymer, more preferably less than or equal to 0.1 g per g of comb polymer. This proportion can according to DIN 53241 after 24 hours Removal of carrier oil and low molecular weight residual monomers at 18O 0 C are determined in vacuo.
  • the comb polymer preferably comprises repeating units derived from styrene and repeating units derived from n-butyl methacrylate.
  • the weight ratio of styrene repeat units and n-butyl methacrylate repeat units is in the range of 90:10 to 10:90, more preferably 80:20 to 20:80.
  • the comb polymer preferably comprises repeating units derived from styrene and repeating units derived from n-butyl acrylate.
  • the weight ratio of styrene repeat units and n-butyl acrylate repeat units is in the range of 90:10 to 10:90, more preferably 80:20 to 20:80.
  • the comb polymer preferably comprises repeating units derived from methyl methacrylate and repeating units derived from n-butyl methacrylate.
  • the weight ratio of methyl methacrylate repeat units and n-butyl methacrylate repeat units is in the range of 50:50 to 0: 100, more preferably 30:70 to 0: 100.
  • the comb polymer of the present invention may be used in a lubricating oil composition.
  • a lubricating oil composition comprises at least one lubricating oil.
  • the lubricating oils include, in particular, mineral oils, synthetic oils and natural oils.
  • Mineral oils are known per se and commercially available. They are generally obtained from petroleum or crude oil by distillation and / or refining and, if appropriate, further purification and refining processes, the term "mineral oil” in particular falling to the relatively high-boiling fractions of crude oil or crude oil.
  • the boiling point of mineral oil is higher than 200 ° C, preferably higher than 300 0 C, at 5000 Pa.
  • the production by smoldering of shale oil, coking of hard coal, distillation under exclusion of air from brown coal and hydrogenation of hard coal or lignite is also possible.
  • mineral oils are also produced from raw materials of plant origin (eg from jojoba, rapeseed) or animal (eg claw oil) of origin. Accordingly, mineral oils, depending on the origin of different proportions of aromatic, cyclic, branched and linear hydrocarbons.
  • paraffin-based, naphthenic and aromatic fractions in crude oils or mineral oils, the terms paraffin-based fraction being longer-chain or highly branched isoalkanes and naphthenic fraction being cycloalkanes.
  • mineral oils depending on their origin and refinement, have different proportions of n-alkanes, iso-alkanes with a low degree of branching, so-called monomethyl-branched paraffins, and compounds with heteroatoms, in particular O, N and / or S, which are attributed to polar properties .
  • the assignment is difficult, however, since individual alkane molecules can have both long-chain branched groups and cycloalkane radicals and aromatic moieties.
  • the assignment can be made, for example, according to DIN 51 378.
  • Polar proportions may also be determined according to ASTM D 2007.
  • the proportion of n-alkanes in preferred mineral oils is less than 3 wt .-%, the proportion of O, N and / or S-containing compounds less than 6 wt .-%.
  • the proportion of aromatics and monomethyl branched paraffins is generally in the range of 0 to 40 wt .-%.
  • mineral oil mainly comprises naphthenic and paraffinic alkanes which generally have more than 13, preferably more than 18 and most preferably more than 20 carbon atoms.
  • the proportion of these compounds is generally> 60 wt .-%, preferably> 80 wt .-%, without this being a restriction.
  • a preferred mineral oil contains 0.5 to 30% by weight of aromatic fractions, 15 to 40% by weight of naphthenic fractions, 35 to 80% by weight of paraffinic fractions, up to 3% by weight of n-alkanes and 0.05% to 5 wt .-% polar compounds, each based on the total weight of the mineral oil.
  • n-alkanes having about 18 to 31 C atoms:
  • Aromatics with 14 to 32 C atoms :
  • Synthetic oils include, but are not limited to, organic esters such as diesters and polyesters, polyalkylene glycols, polyethers, synthetic hydrocarbons, especially polyolefins, of which polyalphaolefins (PAO) are preferred, silicone oils and perfluoroalkyl ethers. They are usually slightly more expensive than the mineral oils, but have advantages in terms of their performance.
  • Natural oils are animal or vegetable oils, such as claw oils or jojoba oils.
  • lubricating oils can also be used as mixtures and are often commercially available.
  • the concentration of the comb polymer in the lubricating oil composition is preferably in the range of 0.1 to 40% by weight, more preferably in the range of 1 to 20% by weight, based on the total weight of the composition.
  • a lubricating oil composition may contain other additives and additives.
  • additives include antioxidants, corrosion inhibitors, anti-foaming agents, anti-wear components, dyes, color stabilizers, detergents, pour point depressants and / or DI additives.
  • additives include viscosity index improvers, pour point depressants, dispersing aids, and / or friction modifiers, most preferably based on a linear polyalkyl (meth) acrylate having from 1 to 30 carbon atoms in the alcohol group.
  • linear polyalkyl (meth) acrylates are described in particular in the background discussed prior art, which polymers may have dispersing monomers.
  • Preferred lubricating oil compositions have a viscosity measured in accordance with ASTM D 445 at 4O 0 C in the range of 10 to 120 mm 2 / s, more preferably in the range of 22 to 100 mm 2 / s.
  • preferred lubricating oil compositions have a viscosity index determined according to ASTM D 2270 in the range from 100 to 400, more preferably in the range 150 to 350, and most preferably in the range from 200 to 300.
  • the macro amine 1 is the polyisobutylene-based macro amine in Kerocom ®
  • PIBA 03 which was obtained commercially from BASF AG.
  • Malcroalcohol 2 is a polyisobutylene-based macroalcohol obtained according to EP 0 277 345.
  • the macro alcohols 3 and 4 are polyisobutylene-based macro alcohols, which were obtained according to WO 2004/067583.
  • the Malcroalkohol 5 represents a hydrogenated polybutadiene based
  • Macroalcohol which was obtained according to GB 2270317.
  • M n represents the number average molecular weight which can be determined by GPC against polyolefin standards of the same chemistry or by osmotic methods such as vapor pressure or membrane osmosis.
  • the kinematic viscosity is described by v and the dynamic by ⁇ (ASTM D445).
  • the melting temperature correlated with f vm yi by DSC is given by T n . Table 1
  • n.a means that no melting temperature could be measured.
  • the macroamine derived macroamine is prepared by aminolysis of MMA.
  • lS50g Kerocom PIBA 03 ® (contains 35% of aliphatic hydrocarbons) in 1200g MMA with stirring at 60 ° C.
  • To the solution are added 0.6 g of hydroquinone monomethyl ether and 0.12 g of 4-hydroxy-2,2,6,6-tetramethylpiperidino-oxyl radical.
  • MMA reflux about 100 ° C
  • stabilizing air passage about 30g MMA are distilled off for azeotropic drying.
  • 24 g of Sn (Oct) 2 O are added and heated to MMA reflux. At this temperature, it is allowed to react for three hours.
  • KPE 100N-oil For macro alcohols of higher molecular weights, the addition of KPE 100N-oil may be helpful at the beginning of macromonomer synthesis.
  • the content of KPE 100N-oil introduced in the comb polymer syntheses described below must be taken into account accordingly.
  • Kraton Liquid® L-1253 is a methacrylate-functionalized hydrogenated polybutadiene made from the OH-functionalized hydrogenated polybutadiene Kraton Liquid® L-1203 and commercially available from Kraton Polymers GmbH (Eschborn, Germany).
  • the macromonomer functionality f MM of each macromonomer was derived from the GPC curves of the comb polymers themselves.
  • the GPC method for determining the weight-average molecular weight M w and the polydispersity index PDI of the comb polymers is described below.
  • the measurements were carried out in tetrahydrofuran at 35 ° C against a polymethyl methacrylate calibration curve from a set of> 25 standards (Polymer Standards Service or Polymer Laboratories), whose M pea k logarhythmisch evenly distributed over the range of 5-10 ⁇ to 2-10 2 g / mol.
  • a combination of six columns (Polymer Standards Service SDV 100 ⁇ / 2x SDV LXL / 2x SDV 100 ⁇ / Shodex KF-800D) was used.
  • an RI detector (Agilent 1100 Series) was used.
  • W MM indicates the weight fraction of macromonomers, based on all monomers.
  • the determined values for the macromonomer functionality f ⁇ M are summarized in Tab. The same response factors were assumed for all repeat units.
  • the polymerizations of the comb polymer syntheses were carried out to complete conversion of low molecular weight backbone monomers (nBMA, Sty, nBA, MMA or DiBF) with conversions> 99% (HPLC).
  • the net composition by mass was determined for each comb polymer and, in addition, the molar degree of branching taking into account the monomer molar masses .
  • the values obtained are shown in Table 3.
  • the molecular weights and PDIs are given by GPC in good for all segments of the comb polymers good solvent tetrahydrofuran according to the method described above.
  • the comb polymer was analyzed by DSC. For this purpose, a sample amount of 10 mg in the perforated DSC pan in the range of -80 ° C to + 13O 0 C at 10K / min was measured (Pyris 1, Perkin-Elmer). The glass stage T G of the backbone was determined from the second heating curve (Table 3).
  • MMA methyl methacrylate
  • nBMA n-butyl methacrylate
  • nBA n-butyl acrylate
  • C 12-15MA Alkyl methacrylate mixture with 12 to 15
  • Example 6 Also in the dynamic low-temperature viscosity at -4O 0 C according to DIN 51398 or the pour point according to ASTM D97 is extremely advantageous values for the comb polymers.
  • Example 6 further demonstrates that comb polymers based on OCP macromonomers of increased levels of 1,2 repeat units are significantly better in low temperature properties.
  • Table 5 The results obtained in the above-mentioned investigations are set forth in Table 5.
  • a comb polymer was used as VII in an ISO46 / VI160 hydraulic oil formulation based on API Group 1 100N / 600N oils and compared in PSSI according to DIN 51350 (Part 6, 20h tapered roller bearing) against a linear PAMA (Comparative Example 6). It was found that an extremely high reduction of the required solids content to less than 33% is possible with the same to slightly better PSSI.
  • the compositions of the hydraulic oil formulations and the results of the study obtained are set forth in Table 6.

Abstract

Die vorliegende Erfindung betrifft Kammpolymer umfassend in der Hauptkette Wiederholungseinheiten, die von Polyolefm-basierten Makromonomeren abgeleitet sind, und Wiederholungseinheiten, die von niedermolekularen Monomeren ausgewählt aus der Gruppe bestehend aus Styrolmonomeren mit 8 bis 17 Kohlenstoffatomen, Alkyl(meth)acrylaten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, Vinylestern mit 1 bis 11 Kohlenstoffatomen in der Acylgruppe, Vinylethern mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylfumaraten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylmaleate mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe sowie Mischungen dieser Monomeren abgeleitet sind, wobei der molare Verzweigungsgrad im Bereich von 0,1 bis 10 Mol.-% liegt und das Kammpolymer in Summe mindestens 80 Gew.-%, bezogen auf das Gewicht der Wiederholungseinheiten, an Wiederholungseinheiten, die von Polyolefin- basierten Makromonomeren abgeleitet sind, und Wiederholungseinheiten, die von niedermolekularen Monomeren ausgewählt aus der Gruppe bestehend aus Styrolmonomeren mit 8 bis 17 Kohlenstoffatomen, Alkyl(meth)acrylaten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, Vinylestern mit 1 bis 11 Kohlenstoffatomen in der Acylgruppe, Vinylethern mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylfumaraten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylmaleate mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe sowie Mischungen dieser Monomeren abgeleitet sind, umfasst.

Description

Öllösliche Kammpolymere
Die vorliegende Anmeldung betrifft öllösliche Kammpolymere, Verfahren zu deren Herstellung sowie deren Verwendung
Polyalkyl(meth)acrylate (PAMAs) - im allgemeinen synthetisiert durch einfache radikalische Copolymerisation eines Gemisches verschiedener Alkylmethacrylate (AMAs) - bewirken als Öladditive in Abhängigkeit von Molekulargewicht und Zusammensetzung eine Anhebung des Viskositätsindex (VI) gepaart mit im Vergleich zu anderen Viskositätsindexverbesseren (VIIs) hervorragenden Tieftemperatureigenschaften (vgl. R.M. Mortier, S. T. Orszulik (eds.), Chemistry and Technology of Lubricants, Blackie Academic & Professional, Ist ed., London 1993, 124-159 & 165-167). Grundvorrausetzung für die Anwendbarkeit als Öladditive ist trivialerweise die Öllöslichkeit des Polymeren, die im Falle der PAMAs auf der Anwesenheit einer ausreichend großen Anzahl an Alkylseitenketten mit typischerweise 6-24 Kohlenstoffatomen beruht. Zur Anhebung des VI von PAMA geht man häufig dazu über, kurzkettige Alkyl(meth)acrylate zu copolymerisieren, wie z.B. Methylmethacrylat oder Butylmethacrylat (vgl. EP 0 637 332, EP 0 937 769 oder EP 0 979 834). Durch die kurzkettige Komponente wird jedoch die Löslichkeit bei tiefen Temperaturen herabgesetzt, so dass der Anteil beispielsweise an Methyhnethacrylat auf etwa 25wt% beschränkt bleibt. Die so erreichbaren VIs dieser kammartigen Polymere liegen abhängig von Konzentration, permanentem Scherstabilitäts-Index (PSSI) und Grundöltyp im Bereich zwischen 150 und 250. Eine weitere Klasse von VIIs ist mit den Styrol-Alkylmaleat-Copolymeren gegeben, die durch polymeranaloge Veresterung von Styrol-Maleinsäureanhydrid- Copolymeren mit typischerweise C6-C24 Akoholen gewonnen werden. Die Veresterung wird unter Zugabe von Butanol zu einem Umsatz von etwa 95% getrieben. Vollständiger Umsatz der Säurefunktionalitäten ist durch Zugabe eines Amines unter Bildung von amidischen oder imidischen Gruppen möglich (US 3 702 300, EP 0 969 077). Die Viskositäten von Po^αnerlösungen in Mineralölen oder synthetischen Ölen sind in hohem Maße vom Molekulargewicht abhängig. Dies hat auch zur Folge, dass die Temperaturabhängigkeit der Viskosität abnimmt bzw. der VI mit steigendem Molekulargewicht zunimmt (J. Bartz, Additive für Schmierstoffe, Expert- Verlag, Renningen-Malmsheim 1994, 197-252). Im Zusammenhang mit der Temperaturerhöhung wird auch von einer Entknäuelung vom kollabierten Knäuel zum ausgedehnten wurmartigen Molekül gesprochen.
Parallel mit dem Molekulargewicht nimmt die Scherstabilität durch Kettenbruch unter hohem Schergefälle jedoch ab. Als Folge dieses gegenläufigen Effektes sind scherstabile VIIs wie sie für manuelle Getriebe-, Automatikgetriebe-, Hydraulikoder Motorenöle gefragt sind, auf Basis konventioneller Polymertypen wie den PAMAs nur mit hohen Zusatzmengen realisierbar. VIIs mit niedrigem Viskositätsbeitrag bei tiefen Temperaturen, normaler Verdickung im VI-Bereich von 40 bis 100°C, hohem Viskositätsbeitrag oberhalb von 100°C und gleichzeitig gewährleisteter guter Öllöslichkeit im gesamten Temperaturbereich sind somit von besonderem Interesse.
Neben linearen kammartigen Polymeren wie den PAMAs sind auch VIIs auf Basis von echten Kammpolymeren in der Patentliteratur bereits bekannt. Die EP 0 744 457 beschreibt Kammpolymere höherer Ordnung auf reiner PAMA- Basis, bei denen die Seitenarme selbst aus oligomerem PAMA bestehen. Zudem kennt die Patentliteratur zwei weitere Patente zu Kammpolymeren, bei denen die Seitenketten aus gesättigten bzw. hydrierten Polyolefmen und das Rückgrat aus kurzkettigen Monomeren wie AMAs oder Alkylstyrolen bestehen. So beschreibt die EP 0 621 293 Kammpolymere bei denen die Seitenketten bevorzugt aus hydriertem Polybutadien aufgebaut sind. Gleichermaßen werden in der EP 0 699 694 Kammpolymere mit Seitenarmen bevorzugt auf Basis von gesättigten Olefmmonomeren wie zum Beispiel dem Polyisobutylen oder ataktischem Polypropylen dargestellt. In weitesten Sinne sind auch A-B-A Triblockcopolymere Kammpolymere mit lediglich zwei Seitenarmen anzusehen. So wurden Triblockcopolymere als VII auf reiner PAMA-Basis (P. Callais, S. Schmidt, N. Macy, SAE Technical Paper Series, No. 2004-01-3047) als auch auf Basis eines Polybutylmethacrylatkerns und hydrierten Polybutadien- oder Polyisoprenarmen bereits beschrieben (US 5 002 676). Anionisch hergestellte A-B-A Blockcopolymere mit Polystyrolkern und beispielsweise hydriertem Polyisoprenarmen finden sogar kommerzielle Verwendung als VIIs (US 4 788 361). Derartige VIIs werden auch der Klasse der hydrierten Styrol-Dien-Copolymere zugeordnet.
Neben der oben beschriebenen Anwendung als VII sind auch Kammpolymere mit hydrierten bzw. gesättigten Seitenarmen in gänzlich anderen Anwendungen bekannt. So beschreibt die DE 196 31 170 Kammpolymere für schlagzähe Formassen, wobei die Polymeren eine Aneinanderreihung von Polyisobutylen- haltigen Makromonomeren ohne zusätzliche kurzkettige Rückgratmonomere darstellen. Auch ist in der Patentliteratur ein Weg beschrieben, an ein Styrol- Maleinsäureanhydrid-Rückgrat in einer polymeranaloger Reaktion ein funktionalisiertes Polypropylen unter Bildungen eines weichen hochdämpfenden Kammpolymer-Gels zu knüpfen (EP 0 955 320); die Molekulargewichte der verwendeten Polypropylen liegen dabei äußerst hoch bis hin zu 300 OOOg/mol. In einem Beispiel aus der Chemie der Haftklebstoffe werden Kammpolymere mit hydrierten Polybutadien- oder Isoprenarmen beschrieben, wobei das Rückgrat neben AMAs auch Acrylsäure enthält (US 5 625 005).
Die zuvor dargelegten Polymere werden vielfach kommerziell eingesetzt. Dementsprechend zeigen die meisten dieser Polymere ein befriedigendes Eigenschaftsprofil. Allerdings besteht ein dauerhaftes Bestreben die Relation von Verdiclαmgswirkung, Viskositätsindex und Scherstabilität zu verbessern, um bei möglichst geringem Einsatz an Additiv in Schmierölen über einen weiten Temperaturbereich eine gewünschte Viskosität zu erzielen, ohne dass diese Eigenschaft durch vorzeitigen Abbau der Polymere beeinträchtigt wird. Des weiteren sollten die Polymere einfach und kostengünstig hergestellt werden können, wobei insbesondere kommerziell erhältliche Komponenten eingesetzt werden sollten. Hierbei sollte die Produktion großtechnisch erfolgen können, ohne dass hierzu neue oder konstruktiv aufwendige Anlagen benötigt werden.
Gelöst werden diese sowie weitere nicht explizit genannten Aufgaben, die jedoch aus den hierin einleitend diskutierten Zusammenhängen ohne weiteres ableitbar oder erschließbar sind, durch Kammpolymere mit allen Merkmalen des Patentanspruchs 1. Zweckmäßige Abwandlungen der erfindungsgemäßen Kammpolymere werden in den auf Anspruch 1 rückbezogenen Unteransprüchen unter Schutz gestellt. Hinsichtlich des Verfahrens zur Herstellung von Kammpolymeren liefert Anspruch 18 eine Lösung der zugrunde liegenden Aufgabe, während Anspruch 26 eine Schmierölzusammensetzung umfassend die Kammpolymere der vorliegenden Erfindung schützt.
Dadurch, dass der molare Verzweigungsgrad im Bereich von 0,1 bis 10 Mol.-% liegt und das Kammpolymer in Summe mindestens 80 Gew.-% an Wiederholungseinheiten, die von Polyolefm-basierten Makromonomeren abgeleitet sind, und Wiederholungseinheiten, die von niedermolekularen Monomeren ausgewählt aus der Gruppe bestehend aus Styrolmonomeren mit 8 bis 17 Kohlenstoffatomen, Alkyl(meth)acrylaten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, Vinylestern mit 1 bis 11 Kohlenstoffatomen in der Acylgruppe, Vinylethern mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylfumaraten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylmaleate mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe sowie Mischungen dieser Monomeren abgeleitet sind, bezogen auf das Gewicht der Wiederholungseinlieiten, umfasst, gelingt es auf nicht ohne weiteres vorhersehbare Weise Kammpolymer umfassend in der Hauptkette Wiederholungseinheiten, die von Polyolefm-basierten Makromonomeren abgeleitet sind, und Wiederholungseinlieiten, die von niedermolekularen Monomeren ausgewählt aus der Gruppe bestehend aus Styrolmonomeren mit S bis 17 Kohlenstoffatomen, Alkyl(meth)acrylaten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, Vinylestern mit 1 bis 11 Kohlenstoffatomen in der Acylgruppe, Vinylethern mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylfumaraten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylmaleate mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe sowie Mischungen dieser Monomeren abgeleitet sind, zur Verfügung zu stellen, die eine geringe Scherempfmdlichkeit bei einer hohen Verdickungswirkung aufweisen.
Zugleich lassen sich durch die erfindungsgemäßen Kammpolymere eine Reihe weiterer Vorteile erzielen. Hierzu gehören unter anderem:
> Die erfmdungsgemäßen Kammpolymere weisen in Schmierölen eine besonders hohe viskositätsindexverbessernde Wirkung auf.
> Die Kammpolymere der vorliegenden Erfindung können besonders leicht und einfach hergestellt werden. Hierbei können übliche, großtechnische Anlagen eingesetzt werden.
Der hierin verwendete Begriff Kammpolymer ist an sich bekannt, wobei an eine polymere Hauptkette, häufig auch Rückgrat oder „backbone" genannt, längere Seitenketten gebunden sind. Im vorliegenden Fall weisen die erfmdungsgemäßen Polymere mindestens eine Wiederholungseinheit auf, die von Polyolefin-basierten Makromonomeren abgeleitet ist. Der genaue Anteil ergibt sich über den molaren Verzweigungsgrad. Der Begriff „Hauptkette" bedeutet nicht zwangsläufig, dass die Kettenlänge der Hauptkette größer ist als die der Seitenketten. Vielmehr bezieht sich dieser Begriff auf die Zusammensetzung dieser Kette. Während die Seitenkette sehr hohe Anteile an olefinischen Wiederholungseinheiten, insbesondere Einheiten, die von Alkenen oder Alkadienen, beispielsweise Ethylen, Propylen, n-Buten, Isobuten, Butadien, Isopren abgeleitet sind, aufweisen, umfasst die Hauptkette größere Anteile an polareren ungesättigten Monomeren, die zuvor dargelegt wurden. Der BegriffWiederholungseinheit ist in der Fachwelt weithin bekannt. Die vorliegenden Kammpolymere können vorzugsweise über radikalische Polymerisation von Makromonomeren und niedermolekularen Monomeren erhalten werden. Hierbei werden Doppelbindungen unter Bildung von kovalenten Bindungen geöffnet. Dementsprechend ergibt sich die Wiederholungseinheit aus den eingesetzten Monomeren. Allerdings können die vorliegenden Kammpolymere auch durch polymeranaloge Umsetzungen und/oder Pfropfcopolymerisation erhalten werden. In diesem Fall zählt die umgesetzte Wiederholungseinheit der Hauptkette zur Wiederholungseinheit, die von einem Polyolefm-basierten Makromonomeren abgeleitet ist. Ähnliches gilt bei der Herstellung der erfindungsgemäßen Kammpolymeren durch Pfropfcopolymerisation.
Die vorliegende Erfindung beschreibt Kammpolymere, die vorzugsweise eine hohe Öllöslichkeit aufweisen. Der Begriff öllöslich bedeutet, dass eine Mischung von einem Grundöl und einem erfindungsgemäßen Kamrnpolymer ohne makroskopische Phasenbildung herstellbar ist, die mindestens 0,1 Gew.-%, ' vorzugsweise mindestens 0,5 Gew.-% der erfindungsgemäßen Kammpolymere aufweist. In dieser Mischung kann das Kammpolymer dispergiert und/oder gelöst vorliegen. Die Öllöslichkeit hängt insbesondere vom Anteil der lipophilen Seitenketten sowie vom Grundöl ab. Diese Eigenschaft ist dem Fachmann bekannt und kann für das jeweilige Grundöl leicht über den Anteil an lipophilen Monomeren eingestellt werden.
Die erfindungsgemäßen Kammpolymere umfassen Wiederholungseinheiten, die von Polyolefm-basierten Makromonomeren abgeleitet sind. Polyolefm-basierte Makromonomere sind in der Fachwelt bekannt. Diese Wiederholungseinheiten umfassen mindestens eine Gruppe, die von Polyolefmen abgeleitet ist. Polyolefine sind in der Fachwelt bekannt, wobei diese durch Polymerisation von Alkenen und/oder Alkadienen, die aus den Elementen Kohlenstoff und Wasserstoff bestehen, beispielsweise C2-C10-Alkene wie Ethylen, Propylen, n-Buten, Isobuten, Norbornen und/oder C4-C10-Alkadiene wie Butadien, Isopren, Norbomadien, erhalten werden können. Die von Polyolefϊn-basierten Makromonomeren abgeleiteten Wiederholungseinheiten umfassen vorzugsweise mindestens 70 Gew.-% und besonders bevorzugt mindestens 80 Gew.-% und ganz besonders bevorzugt mindestens 90 Gew.-% an Gruppen die von Alkenen und/oder Alkadienen abgeleitet sind, bezogen auf das Gewicht der von Polyolefin-basierten Makromonomeren abgeleiteten Wiederholungseinheiten. Hierbei können die polyolefinischen Gruppen insbesondere auch hydriert vorliegen. Neben den Gruppen, die von Alkenen und/oder Alkadienen abgeleitet sind, können die von Polyolefin-basierten Makromonomeren abgeleiteten Wiederholungseinheiten weitere Gruppen umfassen. Hierzu gehören geringe Anteile an copolymerisierbaren Monomeren. Diese Monomeren sind an sich bekannt und umfassen unter anderem Alkyl(meth)acrylate, Styrolmonomere, Fumarate, Maleate, Vinylester und/oder Vinylether. Der Anteil dieser auf copolymerisierbaren Monomeren basierten Gruppen beträgt vorzugsweise höchstens 30 Gew.-%, besonders bevorzugt höchstens 15 Gew.-%, bezogen auf das Gewicht der von Polyolefin-basierten Makromonomeren abgeleiteten Wiederholungseinheiten. Des Weiteren können die von Polyolefin-basierten Makromonomeren abgeleiteten Wiederholungseinheiten Anfangsgruppen und/oder Endgruppen umfassen, die zur Funktionalisierung dienen oder durch die Herstellung der von Polyolefin-basierten Makromonomeren abgeleiteten Wiederholungseinheiten bedingt sind. Der Anteil dieser Anfangsgruppen und/oder Endgruppen beträgt vorzugsweise höchstens 30 Gew.-%, besonders bevorzugt höchstens 15 Gew.-%, bezogen auf das Gewicht der von Polyolefin basierten Makromonomeren abgeleiteten Wiederholungseinheiten.
Vorzugsweise liegt das Zahlenmittel des Molekulargewicht der Wiederholungseinheiten, die von Polyolefin-basierten Makromonomeren abgeleitet sind, im Bereich von 500 bis 50000 g/mol, besonders bevorzugt 700 bis 10000 g/mol, insbesondere 1500 bis 4900 g/mol und ganz besonders bevorzugt 2000 bis 3000 g/mol. Diese Werte ergeben sich im Falle der Herstellung der Kammpolymere über die Copolymerisation von niedermolekularen und makromolekularen Monomeren über die Eigenschaften der makromolekularen Monomeren. Im Falle der polymeranalogen Umsetzungen ergibt sich diese Eigenschaft beispielsweise aus den eingesetzten Makroalkoholen und/oder Makroaminen unter Berücksichtigung der umgesetzten Wiederholungseinheiten der Hauptkette. Im Falle der Pfropfcopolymerisationen kann über den Anteil an gebildeten Polyolefmen, der nicht in die Hauptkette eingebaut wurde, auf die Molekulargewichtsverteilung des Polyolefϊns geschlossen werden.
Die Wiederholungseinheiten, die von Polyolefin-basierten Makromonomeren abgeleitet sind, wiesen vorzugsweise eine niedrige Schmelztemperatur auf, wobei diese über DSC gemessen wird. Bevorzugt ist die Schmelztemperatur der von den Polyolefin-basierten Makromonomeren abgeleiteten Wiederholungseinheiten kleiner oder gleich -10°C, insbesondere bevorzugt kleiner oder gleich -20°C, besonders bevorzugt kleiner oder gleich -40°C. Ganz besonders bevorzugt kann keine Schmelztemperatur gemäß DSC bei den Wiederholungseinheiten, die von den Polyolefin-basierten Makromonomeren abgeleitet sind, gemessen werden.
Neben den Wiederholungseinheiten, die von den Polyolefin-basierten Makromonomeren abgeleitet sind, umfassen die erfindungsgemäßen Kammpolymere Wiederholungseinheiten, die von niedermolekularen Monomeren ausgewählt aus der Gruppe bestehend aus Styrolmonomeren mit 8 bis 17 Kohlenstoffatomen, Alkyl(meth)acrylaten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, Vinylestern mit 1 bis 11 Kohlenstoffatomen in der Acylgruppe, Vinylethern mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylfumaraten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylmaleate mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe sowie Mischungen dieser Monomeren abgeleitet sind. Diese Monomeren sind in der Fachwelt weithin bekannt. Der Ausdruck „niedermolekular" verdeutlicht, dass ein Teil der Wiederholungseinheiten des Rückgrats des Kammpolymeren ein geringes Molekulargewicht aufweist. Dies Molekulargewicht kann sich, je nach Herstellung, aus dem Molekulargewicht der zur Herstellung der Polymeren verwendeten Monomeren ergeben. Das Molekulargewicht der niedermolekularen Wiederholungseinheiten bzw. der niedermolekularen Monomeren beträgt vorzugsweise höchstens 400 g/mol, besonders bevorzugt höchstens 200 g/mol und ganz besonders bevorzugt höchstens 150 g/mol.
Beispiele für Styrolmonomere mit 8 bis 17 Kohlenstoffatomen sind Styrol, substituierte Styrole mit einem Alkylsubstituenten in der Seitenkette, wie z. B. α-Methylstyrol und α-Ethylstyrol, substituierte Styrole mit einem Alkylsubstitutenten am Ring, wie Vinyltoluol und p-Methylstyrol, halogenierte Styrole, wie beispielsweise Monochlorstyrole, Dichlorstyrole, Tribromstyrole und Tetrabromstyrole.
Der Begriff ,,(Meth)acrylate" umfasst Acrylate und Methacrylate sowie Mischungen von Acrylaten und Methacrylaten. Zu den Alkyl(meth)acrylaten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe gehören insbesondere (Meth)acrylate, die sich von gesättigten Alkoholen ableiten, wie Methyl(meth)acrylat, Ethyl(meth)acrylat, n-Propyl(meth)acrylat, iso-Propyl(meth)acrylat, n-Butyl(meth)acrylat, tert-Butyl(meth)acrylat, Pentyl(meth)acrylat, Hexyl(meth)acrylat, 2-Ethylhexyl(meth)acrylat, Heptyl(meth)acrylat, 2-tert.-Butylheptyl(meth)acrylat, Octyl(meth)acrylat, 3-iso- Propylheptyl(meth)acrylat, Nonyl(meth)acrylat, Decyl(meth)acrylat; (Meth)acrylate, die sich von ungesättigten Alkoholen ableiten, wie z. B. 2- Propinyl(meth)acrylat, Allyl(meth)acrylat, Vinyl(meth)acrylat, Oleyl(meth)acrylat; Cycloalkyl(meth)acrylate, wie Cyclopentyl(meth)acrylat, 3-Vinylcyclohexyl(meth)acrylat. Bevorzugte Alkyl(meth)acrylate umfassen 1 bis 8, besonders bevorzugt 1 bis 4 Kohlenstoffatomen in der Alkoholgruppe. Die Alkoholgruppe kann hierbei linear oder verzweigt sein.
Beispiele für Vinylester mit 1 bis 11 Kohlenstoffatomen in der Acylgruppe sind unter anderem Vinylformiat, Vinylacetat, Vinylpropionat, Vinylbutyrat, Bevorzugte Vinylester umfassen 2 bis 9, besonders bevorzugt 2 bis 5 Kohlenstoffatomen in der Acylgruppe. Die Acylgruppe kann hierbei linear oder verzweigt sein.
Beispiele für Vinylether mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe sind unter anderem Vinylmethylether, Vinylethylether, Vinylpropylether, Vinylbutylether. Bevorzugte Vinylether umfassen 1 bis 8, besonders bevorzugt 1 bis 4 Kohlenstoffatomen in der Alkoholgruppe. Die Alkoholgruppe kann hierbei linear oder verzweigt sein.
Die Schreibweise (Di)ester bedeutet, dass Monoester, Diester sowie Mischungen von Estern, insbesondere der Fumarsäure und/oder der Maleinsäure eingesetzt werden können. Zu den (Di)alkylfumaraten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe gehören unter anderem Monomethylfumarat, Dimethylfumarat, Monoethylfurnarat, Diethylfumarat, Methylethylfumarat, Monobutylfumarat, Dibutylfumarat, Dipentylfumarat und Dihexylfumarat. Bevorzugte (Di)alkylfumarate umfassen 1 bis 8, besonders bevorzugt 1 bis 4 Kohlenstoffatomen in der Alkoholgruppe. Die Alkoholgruppe kann hierbei linear oder verzweigt sein.
Zu den (Di)alkylmaleaten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe gehören unter anderem Monomethylmaleat, Dimethylmaleat, Monoethylmaleat, Diethylmaleat, Methylethylmaleat, Monobutylmaleat, Dibutylmaleat. Bevorzugte (Di) alkylmaleate umfassen 1 bis 8, besonders bevorzugt 1 bis 4 Kohlenstoffatomen in der Alkoholgruppe. Die Alkoholgruppe kann hierbei linear oder verzweigt sein. Neben den zuvor dargelegten Wiederholungseinheiten können die erfϊndungsgemäßen Kammpolymere weitere Wiederholungseinheiten umfassen, die von weiteren Comonomeren abgeleitet sind, wobei deren Anteil höchstens 20 Gew.-%, bevorzugt höchstens 10 Gew.-% und besonders bevorzugt höchstens 5 Gew.-%, bezogen auf das Gewicht der Wiederholungseinheiten, beträgt.
Hierzu gehören unter anderem auch Wiederholungseinheiten, die von Alkyl(meth)acrylaten mit 11 bis 30 Kohlenstoffatomen in der Alkoholgruppe abgeleitet sind, insbesondere Undecyl(meth)acrylat, 5-Methylundecyl(meth)acrylat, Dodecyl(meth)acrylat, 2-Methyldodecyl(meth)acrylat, Tridecyl(meth)acrylat,
5-Methyltiidecyl(meth)acrylat, Tetradecyl(meth)acrylat, Pentadecyl(meth)acrylat, Hexadecyl(meth)acrylat, 2-Methylhexadecyl(meth)acrylat, Heptadecyl(meth)acrylat, 5-iso-Propylheptadecyl(meth)acrylat, 4-tert.-Butyloctadecyl(meth)acrylat, 5-Ethyloctadecyl(meth)acrylat, 3 -iso-Propyloctadecyl(meth)acrylat, Octadecyl(meth)acrylat, Nonadecyl(meth)acrylat, Eicosyl(meth)acrylat, Cetyleicosyl(meth)acrylat, Stearyleicosyl(meth)acrylat, Docosyl(meth)acrylat und/oder Eicosyltetratriacontyl(meth)acrylat.
Hierzu gehören unter anderem auch Wiederholungseinheiten, die von dispergierenden Sauerstoff- und stickstoff-funktionalisierten Monomeren abgeleitet sind, wie im folgenden beispielhaft aufgezählt:
Dazu gehören unter anderem Wiederholungseinheiten, die von
Aminoalkyl(meth)acrylaten abgeleitet sind, wie
N,N-Dimethylammoethyl(meth)acrylat,
N,N-Dimethylaminopropyl(meth)acrylat,
N,N-Diethylaminopentyl(meth)acrylat,
N,N-Dibutylaminohexadecyl(meth)acrylat. Dazu gehören unter anderem Wiederholungseinheiten, die von Aminoalkyl(meth)acrylamiden abgeleitet sind, wie N,N-Dirnethylaminoprop)4(rneth)acrylaniid.
Dazu gehören unter anderem Wiederholungseinheiten, die von
Hydroxylalkyl(meth)acrylaten abeleitet sind, wie
3 -Hydroxypropyl(meth)acrylat,
3,4-Dihydroxybutyl(meth)acrylat,
2-Hydroxyethyl(meth)acrylat,
2-Hydroxypropyl(meth)acrylat,
2,5-Dimethyl- 1 ,6-hexandiol(meth)acrylat,
1 , 10-Decandiol(meth)acrylat.
Dazu gehören unter anderem Wiederholungseinheiten, die von heterocyclischen
(Meth)acrylaten abgeleitet sind, wie
2-(l-Imidazolyl)ethyl(meth)acrylat
2-(4-Morpholinyl)ethyl(meth)acrylat l-(2-Methacryloyloxyethyl)-2-pyrrolidon,
N-Methacryloylmorpholin,
N-Methacryloyl-2-pyrrolidinon,
N-(2-Methacryloyloxyethyl)-2-pyπOlidinon,
N-(3-Methacr34oyloxypropyl)-2-pyrrolidinon.
Dazu gehören unter anderem Wiederholungseinheiten, die von heterocyclischen Vinylverbindungen abgeleitet sind, wie 2-Vinylpyridin, 4-Vinylpyridin, 2-Methyl- 5-vinylpyridin, 3-Ethyl-4-vinylpyridin, 2,3-Dimethyl-5-vmylpyridin, Vinylpyrimidin, Vinylpiperidin, 9-Vinylcarbazol, 3-Vinylcarbazol, 4-Vinylcarbazol, 1-Vinylimidazol, 2-Methyl-l-vinylimidazol, N-Vinylpyrrolidon, N-Vinylpyrrolidin, 3-Vinylpyrrolidin, N-Vinylcaprolactam, N-Vinylbutyrolactam, Vinyloxolan, Vinylfuran, Vinyloxazole und hydrierte Vinyloxazole. Die zuvor genannten ethylenisch ungesättigten Monomere können einzeln oder als Mischungen eingesetzt werden. Es ist des Weiteren möglich, die Monomerzusammensetzung während der Polymerisation der Hauptkette zu variieren, um definierte Strukturen, wie beispielsweise Blockcopolymere, zu erhalten.
Erfmdungsgemäß weisen die Kammpolymere einen molaren Verzweigungsgrad im Bereich von 0,1 bis 10 Mol-%, vorzugsweise 0,8 bis 6 Mol-%, besonders bevorzugt 0,8 bis 3,4 Mol-% und insbesondere bevorzugt 1,0 bis 3,1 und ganz besonders bevorzugt 1,4 bis 2,8 auf. Der molare Verweigungsgrad des Kammpolymeren fbranch berechnet sich gemäß der Formel
Figure imgf000014_0001
mit
A = Typenzahl an Wiederholungseinheiten, die von PolyolefLn-basierten Makromonomeren abgeleitet sind,
B = Typenzahl an Wiederholungseinheiten, die von niedermolekularen
Monomeren ausgewählt aus der Gruppe bestehend aus Styrolmonomeren mit 8 bis 17 Kohlenstoffatomen, Alkyl(meth)acrylaten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, Vinylestern mit 1 bis 11 Kohlenstoffatomen in der Acylgruppe, Vinylethem mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylfumaraten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylmaleate mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe sowie Mischungen dieser Monomeren abgeleitet sind, na = Anzahl der Wiederholungseinheiten, die von Polyolefin-basierten
Makromonomeren abgeleitet sind, vom Typ a im Kammpolymermolekül nb = Anzahl der Wiederholungseinheiten, die von niedermolekularen Monomeren ausgewählt aus der Gruppe bestehend aus Styrolmonomeren mit 8 bis 17 Kohlenstoffatomen, Alkyl(meth)acrylaten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, Vinylestern mit 1 bis 11 Kohlenstoffatomen in der Acylgruppe, Vinylethern mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylfumaraten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylmaleate mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe sowie Mischungen dieser Monomeren abgeleitet sind, vom Typ b im Kammpolymermolekül
Der molare Verzweigungsgrad ergibt sich im Allgemeinen aus dem Verhältnis der eingesetzten Monomeren, falls das Kammpolymer durch Copolymerisation von niedermolekularen und makromolekularen Monomeren hergestellt wurde. Zur Berechnung kann hierbei das Zahlenmittel des Molekulargewichts des Makromonomeren eingesetzt werden.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung kann das Kammpolymer, insbesondere die Hauptkette des Kammpolymers eine Glasübergangstemperatur im Bereich -60 bis 110°C, bevorzugt im Bereich -30 bis 1000C, besonders bevorzugt im Bereich 0 bis 90°C und ganz besonders bevorzugt im Bereich 20 bis 80°C aufweisen. Die Glasübergangstemperatur wird per DSC bestimmt. Die Glasübergangstemperatur kann über die Glastemperatur der entsprechenden Homopolymere unter Berücksichtung der Anteile der Wiederholungseinheiten in der Hauptkette abgeschätzt werden.
Falls das Kammpolymer durch polymeranaloge Umsetzung oder durch Pfropfcopolymerisation erhalten wurde, ergibt sich der molare Verzweigungsgrad über bekannte Methoden zur Bestimmung des Umsatzes.
Der Anteil von mindestens 80 Gew.-%, vorzugsweise mindestens 90 Gew.-% an niedermolekularen Wiederholungseinheiten, die von Monomeren ausgewählt aus der Gruppe bestehend aus Styrolmonomeren mit S bis 17 Kohlenstoffatomen, Alkyl(meth)acrylaten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, Vinylestern mit 1 bis 11 Kohlenstoffatomen in der Acylgruppe, Vinylethern mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylfumaraten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylmaleate mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe sowie Mischungen dieser Monomeren abgeleitet sind und von Wiederholungseinheiten, die von Polyolefin-basierten Makromonomeren abgeleitet sind, bezieht sich auf das Gewicht der Wiederholungseinheiten. Neben den Wiederholungseinheiten umfassen Polymere im Allgemeinen des weiteren Anfangs- und Endgruppen, die durch Initiierungsreaktionen und Abbruchreaktionen entstehen können. Gemäß einem besonderen Aspekt der vorliegenden Erfindung bezieht sich daher die Angabe von mindestens 80 Gew.-%, vorzugsweise mindestens 90 Gew.-% an niedermolekularen Wiederholungseinheiten, die von Monomeren ausgewählt aus der Gruppe bestehend aus Styrolmonomeren mit 8 bis 17 Kohlenstoffatomen, Alkyl(meth)acrylaten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, Vinylestern mit 1 bis 11 Kohlenstoffatomen in der Acylgruppe, Vinylethern mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylfumaraten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylmaleate mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe sowie Mischungen dieser Monomeren abgeleitet sind und von Wiederholungseinheiten, die von Polyolefin-basierten Makromonomeren abgeleitet sind, auf das Gesamtgewicht der Kammpolymeren. Dem Fachmann ist die Polydispersität der Kammpolymere offensichtlich. Daher beziehen sich diese Angaben auf einen Mittelwert über alle Kammpolymere.
Die erfindungsgemäßen Kammpolymere können auf verschiedene Weise hergestellt werden. Ein bevorzugtes Verfahren besteht in der an sich bekannten radikalischen Copolymerisation von niedermolekularen Monomeren und makromolekularen Monomeren.
So können diese Polymere insbesondere durch radikalische Polymerisation, sowie verwandte Verfahren der kontrollierten radikalischen Polymerisation, wie beispielsweise ATRP (=Atom Transfer Radical Polymerisation) oder RAFT (=Reversible Addition Fragmentation Chain Transfer) erfolgen.
Die übliche freie radikalische Polymerisation ist u.a. in Ullmanns's Encyclopedia of Industrial Chemistry, Sixth Edition dargelegt. Im Allgemeinen werden hierzu ein Polymerisationsinitiator sowie ein Kettenüberträger eingesetzt.
Zu den verwendbaren Initiatoren gehören unter anderem die in der Fachwelt weithin bekannten Azoinitiatoren, wie AIBN und 1,1-Azobiscyclohexancarbonitril, sowie Peroxyverbindungen, wie Methylethylketonperoxid, Acetylacetonperoxid, Dilaurylperoxyd, tert.-Butylper- 2-ethylhexanoat, Ketonperoxid, tert-Butylperoctoat, Methylisobutylketonperoxid, Cyclohexanonperoxid, Dibenzoylperoxid, tert.-Butylperoxybenzoat, tert- Butylperoxyisopropylcarbonat, 2,5-Bis(2-ethylhexanoyl-peroxy)-2,5- dimethylhexan, tert.-Butylperoxy-2-ethylhexanoat, tert-Butylperoxy-3,5,5- trimethylhexanoat, Dicumylperoxid, 1 , 1 -Bis(tert.-butylperoxy)cyclohexan, l,l-Bis(tert.-butylperoxy)3,3,5-trimethylcyclohexan, Cumylhydroperoxid, tert- Butylhydroperoxid, Bis(4-tert.-butylcyclohexyl)peroxydicarbonat, Mischungen von zwei oder mehr der vorgenannten Verbindungen miteinander sowie Mischungen der vorgenannten Verbindungen mit nicht genannten Verbindungen, die ebenfalls Radikale bilden können. Als Kettenüberträger eignen sich insbesondere öllösliche Mercaptane wie beispielsweise n-Dodecylmercaptan oder 2-Mercaptoethanol oder auch Kettenüberträger aus der Klasse der Terpene, wie beispielsweise Terpinolen.
Das ATRP -Verfahren ist an sich bekannt. Es wird angenommen, dass es sich hierbei um eine "lebende" radikalische Polymerisation handelt, ohne dass durch die Beschreibung des Mechanismus eine Beschränkung erfolgen soll. In diesen Verfahren wird eine Übergangsmetallverbindung mit einer Verbindung umgesetzt, welche eine übertragbare Atomgruppe aufweist. Hierbei wird die übertragbare Atomgruppe auf die Übergangsmetallverbindung transferiert, wodurch das Metall oxidiert wird. Bei dieser Reaktion bildet sich ein Radikal, das an ethylenische Gruppen addiert. Die Übertragung der Atomgruppe auf die Übergangsmetallverbindung ist jedoch reversibel, so dass die Atomgruppe auf die wachsende Polymerkette rückübertragen wird, wodurch ein kontrolliertes Polymerisationssystem gebildet wird. Dementsprechend kann der Aufbau des Polymeren, das Molekulargewicht und die Molekulargewichtsverteilung gesteuert werden.
Diese Reaktionsführung wird beispielsweise von J-S. Wang, et al., J.Am.Chem.Soc, vol.117, p.5614-5615 (1995), von Matyjaszewski, Macromolecules, vol.28, p.7901 - 7910 (1995) beschrieben. Darüber hinaus offenbaren die Patentanmeldungen WO 96/30421, WO 97/47661, WO 97/18247, WO 98/40415 und WO 99/10387 Varianten der zuvor erläuterten ATRP.
Des Weiteren können die erfindungsgemäßen Polymere beispielsweise auch über RAFT-Methoden erhalten werden. Dieses Verfahren ist beispielsweise in WO 98/01478 und WO 2004/083169 ausführlich dargestellt, worauf für Zwecke der Offenbarung ausdrücklich Bezug genommen wird.
Die Polymerisation kann bei Normaldruck, Unter- od. Überdruck durchgeführt werden. Auch die Polymerisationstemperatur ist unkritisch. Im allgemeinen liegt sie jedoch im Bereich von -20° - 200°C, vorzugsweise 50° - 150°C und besonders bevorzugt 80° - 1300C.
Die Polymerisation kann mit oder ohne Lösungsmittel durchgeführt werden. Der Begriff des Lösungsmittels ist hierbei weit zu verstehen. Die Auswahl des Lösungsmittels erfolgt nach der Polarität der eingesetzten Monomeren, wobei bevorzugt 100N-Ö1, leichteres Gasöl und/oder aromatische Kohlenwasserstoffe, beispielsweise Toluol oder Xylol eingesetzt werden können.
Die zur Herstellung der erfindungsgemäßen Kammpolymeren in einer radikalischen Copolymerisation einzusetzenden niedermolekularen Monomeren sind im Allgemeinen kommerziell erhältlich.
Erfindungsgemäß verwendbare Makromonomere weisen genau eine Doppelbindung auf, die vorzugsweise endständig ist. Hierbei kann die Doppelbindung durch die Herstellung der Makromonomeren bedingt vorhanden sein. So entsteht beispielsweise bei einer kationischen Polymerisation von Isobutylen ein Polyisobutylen (PIB), welches eine endständige Doppelbindung aufweist.
Des Weiteren können funktionalisierte polyolefmische Gruppen durch geeignete Umsetzungen in ein Makromonomer umgewandelt werden.
Beispielsweise können auf Polyolefinen basierende Makroalkohole und/oder Makroamine mit niedermolekularen Monomeren, die mindestens eine ungesättigte Estergruppe umfassen, wie beispielsweise Methyl(meth)acrylat oder Ethyl(meth)acrylat einer Umesterung oder Aminolyse unterworfen werden.
Diese Umesterung ist weithin bekannt. Beispielsweise kann hierfür ein heterogenes Katalysatorsystem, wie Lithiumhydroxid/Calciumoxid-Mischung (LiOH/CaO), reines Lithiumhydroxid (LiOH), Lithiummethanolat (LiOMe) oder Natriummethanolat (NaOMe) oder ein homogenes Katalysatorsystem wie das Isopropyltitanat (Ti(OiPr)4) oder das Dioctylzinnoxid (Sn(Oct)2O) eingesetzt werden. Die Umsetzung stellt eine Gleichgewichtsreaktion dar. Daher wird üblicherweise der freigesetzte niedermolekulare Alkohol beispielsweise durch Destillation entfernt.
Des Weiteren können diese Makromonomere durch eine direkte Veresterung oder direkte Amidierung ausgehend beispielsweise von Methacrylsäure oder Methacrylsäureanhydrid, bevorzugt unter saurer Katalyse durch p-Toluolsulfonsäure oder Methansulfonsäure oder aus der freien Methacrylsäure durch die DCC-Methode (Dicyclohexylcarbodiimid) erhalten werden.
Darüber hinaus kann der vorliegende Alkohol oder das Amid durch Umsatz mit einem Säurechlorid wie dem (Meth)acrylsäurechlorid in ein Makromonomeres überführt werden. Weiterhin besteht auch die Möglichkeit, einen Makroalkohol über die Reaktion der endständigen PIB-Doppelbindung, wie sie bei kationisch polymerisiertem PIB entsteht, mit Maleinsäureanhydrid (EN-Reaktion) und nachfolgenden Umsatz mit einem α,ω-Aminoalkohol herzustellen.
Weiterhin können geeignete Makromonomere durch Umsetzung einer endständigen PIB-Doppelbindung mit Methacrylsäure oder durch eine Friedel- Crafts-Alkylierung der PIB-Doppelbindung an Styrol erhalten werden.
Bevorzugt werden bei den zuvor dargelegten Herstellungen der Makromonomere Polymerisationsinhibitoren wie z.B. das 4-Hydroxy-2,2,6,6-tetramethylpiperidino- oxyl-Radikal und/oder Hydrochinonmonomethylether eingesetzt.
Die für die zuvor dargelegten Reaktionen zu verwendenden auf Polyolefrnen basierenden Makroalkohole und/oder Makroamine können auf bekannte Weise hergestellt werden.
Des Weiteren sind diese Makroalkohole und/oder Makroamine zum Teil kommerziell erhältlich.
Zu den kommerziell erhältlichen Makroaminen zählt beispielsweise Kerocom PIBA 03. Kerocom® PIBA 03 ist ein zu etwa 75wt% NH2-funktionalisiertes Polyisobutylen (PIB) von Mn=1000g/mol, welches als Konzentrat von etwa 65wt% in aliphatischen Kohlenwasserstoffen von der BASF AG (Ludwigshafen, Deutschland) geliefert wird.
Ein weiteres Produkt ist das Kraton Liquid® L- 1203, ein zu etwa 98wt% OH-funktionalisiertes hydriertes Polybutadien (auch Olefmcopolymer OCP genannt) mit etwa je 50% 1,2- Wiederholungseinheiten und 1 ,4- Wiederholungseinheiten von Mn=4200g/mol, der Kraton Polymers GmbH (Eschborn, Deutschland). Weiterer Anbieter geeigneter Makroalkohole auf Basis von hydriertem Polybutadien ist Cray Valley (Paris) als Tochter der Total (Paris) bzw. der Sartomer Company (Exton/P AAJSA).
Die Herstellung von Makroaminen ist beispielsweise in EP 0 244 616 der BASF AG dargelegt. Die Darstellung der Makroamine erfolgt dabei über Oxierung und Aminierung bevorzugt von Polyisobutylen. Polyisobutylen bietet den Vorteil, bei tiefen Temperaturen keine Kristallisation zu zeigen.
Vorteilhafte Makroalkohole können des Weiteren nach den bekannten Patenten der BASF AG entweder über Hydroborierung (WO 2004/067583) von hochreaktivem Polyisobutylen HR-PIB (EP 0 628 575), welches einen erhöhten Anteil an endständigen α-Doppelbindungen enthält, oder durch Oxierung gefolgt von Hydrierung (EP 0 277 345) dargestellt werden. Die Hydroborierung liefert im Vergleich zur Oxierung und Hydrierung höhere Alkoholfunktionalitäten.
Bevorzugte Makroalkohole auf Basis von hydrierten Polybutadienen können gemäß GB 2270317 der Shell Internationale Research Maatschappij erhalten werden. Ein hoher Anteil an 1,2- Wiederholungseinheiten von etwa 60% und mehr kann zu deutlich tieferen Kristallisationstemperaturen führen.
Die zuvor dargelegten Makromonomere sind zum Teil auch kommerziell erhältlich, wie zum Beispiel das aus dem Kraton Liquid® L- 1203 hergestellte Kraton Liquid® L-1253, ein zu etwa 96wt% Methacrylat-funktionalisiertes hydriertes Polybutadien mit etwa je 50% 1,2-Wiederhomngseinheiten und 1,4-Wiederholungseinheiten, der Kraton Polymers GmbH (Eschborn, Deutschland).
Die Synthese des Kraton® L-1253 erfolgte nach GB 2270317 der Shell Internationale Research Maatschappij. Auf Polyolefinen basierende Makromonomere und deren Herstellung sind auch in EP 0 621 293 und EP 0 699 694 dargelegt.
Neben einer zuvor dargelegten radikalischen Copolymerisation von Makromonomeren und niedermolekularen Monomeren können die erfmdungsgemäßen Kammpolymere durch polymeranaloge Umsetzungen erhalten werden.
Hierbei wird zunächst auf bekannte Weise ein Polymer aus niedermolekularen Monomeren hergestellt, welches anschließend umgesetzt wird. Hierbei kann das Rückgrat eines Kammpolymeren aus einem reaktiven Monomeren wie Maleinsäureanhydrid, Methacrylsäure oder aber Glycidylmethacrylat und anderen inreaktiven kurzkettigen Rückgratmonomeren synthetisiert werden. Hierbei können die zuvor dargelegten Initiatorsysteme wie t-Butylperbenzoat oder t-Butyl-per-2-ethylhexanoat und Regler wie n-Dodecylmercaptan Verwendung finden.
In einem weiteren Schritt können, beispielsweise in einer Alkoholyse oder Aminolyse, die Seitenketten, welche auch als Arme bezeichnet werden, generiert werden. Hierbei können die zuvor dargelegten Makroalkohole und/oder Makroamine eingesetzt werden.
Die Umsetzung des zunächst gebildeten Rückgratpolymeren mit Makroalkoholen und/oder Makroaminen entspricht im Wesentlichen den zuvor dargelegten Umsetzungen der Makroalkohole und/oder Makroamine mit niedermolekularen Verbindungen.
So können die Makroalkohole und/oder Makroamine auf an sich bekannte Pfropfreaktionen beispielsweise an die vorliegenden Maleinsäureanhydrid- oder Methacrylsäure-Funktionalitäten im Rückgratpolymeren unter Katalyse z.B. durch p-Toluolsulfonsäure oder Methansulfonsäure zu Estern, Amiden oder Luiden zu den erfindungsgemäßen Kammpolymere umgesetzt werden. Durch Zugabe von niedermolekularen Alkoholen und/oder Aminen wie n-Butanol oder N-(3- Aminopropyl)-morpholin wird diese polymeranloge Reaktion insbesondere bei Maleinsäureanhydrid-Rückgraten zu vollständigen Umsätzen geführt.
Bei Glycidylfunktionalitäten im Rückgrat kann eine Addition des Makroalkohols und/oder des Makroamins durchgeführt werden, so dass Kammpolymere entstehen.
Des Weiteren können die Makroalkohole und/oder die Makroamine durch eine polymeranaloge Alkoholyse oder Aminolyse mit einem Rückgrat, das kurzkettige Esterfunktionalitäten enthält, umgesetzt werden, um Kammpolymere zu generieren.
Neben der Umsetzung des Rückgratpolymeren mit makromolekularen Verbindungen können geeignet funktionalisierte Polymere, die durch Umsetzung von niedermolekularen Monomeren erhalten wurden, mit weiteren niedermolekularen Monomeren unter Bildung von Kammpolymeren umgesetzt werden. Hierbei weist das zunächst hergestellte Rückgratpolymere mehrere Funktionalitäten auf, die als Initiatoren von multiplen Pfropfpolymerisationen dienen.
So kann eine multiple kationische Polymerisation von i-Buten initiiert werden, die zu Kammpolymeren mit Polyolefm-Seitenarmen führt. Geeignet sind für derartige Pfroftcopolymerisationen auch die zuvor dargelegten ATRP- und/oder RAFT- Verfahren, um Kammpolymere mit einer definierter Architektur zu erhalten.
Das Kammpolymer der vorliegenden Erfindung weist gemäß einem besonderen Aspekt der vorliegenden Erfindung einen geringen Anteil an olefmischen Doppelbindungen auf. Vorzugsweise ist die Jodzahl kleiner oder gleich 0.2 g pro g Kammpolymer, besonders bevorzugt kleiner oder gleich 0.1 g pro g Kammpolymer. Dieser Anteil kann gemäß DIN 53241 nach 24stündigem Abziehen von Trägeröl und niedermolekularen Restmonomeren bei 18O0C im Vakuum bestimmt werden.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung weist das Kammpolymer vorzugsweise Wiederholungseinheiten, die von Styrol abgeleitet sind, und Wiederholungseinheiten auf, die von n-Butylmethacrylat abgeleitet sind. Vorzugsweise liegt das Gewichtsverhältnis von Styrol- Wiederholungseinheiten und n-Butylmethacrylat- Wiederholungseinheiten im Bereich von 90:10 bis 10:90, besonders bevorzugt 80:20 bis 20:80.
Gemäß einer weiteren bevorzugten Ausfuhrungsform der vorliegenden Erfindung weist das Kammpolymer vorzugsweise Wiederholungseinheiten, die von Styrol abgeleitet sind, und Wiederholungseinheiten auf, die von n-Butylacrylat abgeleitet sind. Vorzugsweise liegt das Gewichtsverhältnis von Styrol- Wiederholungseinheiten und n-Butylacrylat- Wiederholungseinheiten im Bereich von 90:10 bis 10:90, besonders bevorzugt 80:20 bis 20:80.
Nach einem weiteren bevorzugten Gesichtspunkt der vorliegenden Erfindung weist das Kammpolymer vorzugsweise Wiederholungseinheiten, die von Methylmethacrylat abgeleitet sind, und Wiederholungseinheiten auf, die von n- Butylmethacrylat abgeleitet sind. Vorzugsweise liegt das Gewichtsverhältnis von Methylmethacrylat- Wiederholungseinheiten und n-Butylmethacrylat- Wiederholungseinheiten im Bereich von 50:50 bis 0:100, besonders bevorzugt 30:70 bis 0:100.
Vorzugsweise kann das erfindungsgemäße Kammpolymer in einer Schmierölzusammensetzung eingesetzt werden. Eine Schmierölzusammensetzung umfasst mindestens ein Schmieröl.
Zu den Schmierölen gehören insbesondere Mineralöle, synthetische Öle und natürliche Öle. Mineralöle sind an sich bekannt und kommerziell erhältlich. Sie werden im Allgemeinen aus Erdöl oder Rohöl durch Destillation und/oder Raffination und gegebenenfalls weitere Reinigungs- und Veredelungsverfahren gewonnen, wobei unter den Begriff Mineralöl insbesondere die höhersiedenden Anteile des Rohoder Erdöls fallen. Im Allgemeinen liegt der Siedepunkt von Mineralöl höher als 200 °C, vorzugsweise höher als 300 0C, bei 5000 Pa. Die Herstellung durch Schwelen von Schieferöl, Verkoken von Steinkohle, Destillation unter Luftabschluss von Braunkohle sowie Hydrieren von Stein- oder Braunkohle ist ebenfalls möglich. Zu einem geringen Anteil werden Mineralöle auch aus Rohstoffen pflanzlichen (z. B. aus Jojoba, Raps) od. tierischen (z. B. Klauenöl) Ursprungs hergestellt. Dementsprechend weisen Mineralöle, je nach Herkunft unterschiedliche Anteile an aromatischen, cyclischen, verzweigten und linearen Kohlenwasserstoffen auf.
Im Allgemeinen unterscheidet man paraffinbasische, naphthenische und aromatische Anteile in Rohölen bzw. Mineralölen, wobei die Begriffe paraffinbasischer Anteil für längerkettig bzw. stark verzweigte iso-Alkane und naphtenischer Anteil für Cycloalkane stehen. Darüber hinaus weisen Mineralöle, je nach Herkunft und Veredelung unterschiedliche Anteile an n-Alkanen, iso- Alkanen mit einem geringen Verzweigungsgrad, sogenannte monomethylverzweigten Paraffine, und Verbindungen mit Heteroatomen, insbesondere O, N und/oder S auf, denen bedingt polare Eigenschaften zugesprochen werden. Die Zuordnung ist jedoch schwierig, da einzelne Alkanmoleküle sowohl langkettig verzweigte Gruppen als auch Cyclo alkanreste und aromatische Anteile aufweisen können. Für die Zwecke der vorliegenden Erfindung kann die Zuordnung beispielsweise gemäß DIN 51 378 erfolgen. Polare Anteile können auch gemäß ASTM D 2007 bestimmt werden.
Der Anteil der n-Alkane beträgt in bevorzugten Mineralölen weniger als 3 Gew.-%, der Anteil der O, N und/oder S-haltigen Verbindungen weniger als 6 Gew.-%. Der Anteil der Aromaten und der monomethylverzweigten Paraffine liegt im Allgemeinen jeweils im Bereich von 0 bis 40 Gew.-%. Gemäß einem interssanten Aspekt umfaßt Mineralöl hauptsächlich naphtenische und paraffinbasische Alkane, die im allgemeinen mehr als 13, bevorzugt mehr als 18 und ganz besonders bevorzugt mehr als 20 Kohlenstoffatome aufweisen. Der Anteil dieser Verbindungen ist im allgemeinen > 60 Gew.-%, vorzugsweise > 80 Gew.-%, ohne dass hierdurch eine Beschränkung erfolgen soll. Ein bevorzugtes Mineralöl enthält 0,5 bis 30 Gew.-% aromatische Anteile, 15 bis 40 Gew.-% naphthenische Anteile, 35 bis 80 Gew.-% paraffinbasische Anteile, bis zu 3 Gew.- % n- Alkane und 0,05 bis 5 Gew.-% polare Verbindungen, jeweils bezogen auf das Gesamtgewicht des Mineralöls.
Eine Analyse von besonders bevorzugten Mineralölen, die mittels herkömmlicher
Verfahren, wie Harnstofftrennung und Flüssigkeitschromatographie an Kieselgel, erfolgte, zeigt beispielsweise folgende Bestandteile, wobei sich die
Prozentangaben auf das Gesamtgewicht des jeweils eingesetzten Mineralöls beziehen: n- Alkane mit ca. 18 bis 31 C- Atome:
0,7 - 1,0 %, gering verzweigte Alkane mit 18 bis 31 C- Atome:
1,0 - 8,0 %,
Aromaten mit 14 bis 32 C- Atomen:
0,4 - 10,7 %,
Iso- und Cyclo-Alkane mit 20 bis 32 C- Atomen:
60,7- 82,4 %, polare Verbindungen:
0,1 - 0,8 %,
Verlust:
6,9 - 19,4 %.
Wertvolle Hinweise hinsichtlich der Analyse von Mineralölen sowie eine Aufzählung von Mineralölen, die eine abweichende Zusammensetzung aufweisen, findet sich beispielsweise in Ullmanns Encyclopedia of Industrial Chemistry, 5th Edition on CD-ROM, 1997, Stichwort "lubricants and related products". Synthetische Öle umfassen unter anderem organische Ester, beispielsweise Diester und Polyester, Polyalkylenglykole, Polyether, synthetische Kohlenwasserstoffe, insbesondere Polyolefine, von denen Polyalphaolefϊne (PAO) bevorzugt sind, Silikonöle und Perfluoralkylether. Sie sind meist etwas teurer als die mineralischen Öle, haben aber Vorteile hinsichtlich ihrer Leistungsfähigkeit.
Natürliche Öle sind tierische oder pflanzliche Öle, wie beispielsweise Klauenöle oder Jojobaöle.
Diese Schmieröle können auch als Mischungen eingesetzt werden und sind vielfach kommerziell erhältlich.
Die Konzentration des Kammpolymeren in der Schmierölzusammensetzung liegt vorzugsweise im Bereich von 0,1 bis 40 Gew.-%, besonders bevorzugt im Bereich von 1 bis 20 Gew.-%, bezogen auf das Gesamtgewicht der Zusammensetzung.
Neben den zuvor genannten Komponenten kann eine Schmierölzusammensetzung weitere Additive und Zusatzstoffe enthalten.
Zu diesen Additiven gehören unter anderem Antioxidantien, Korrosionsinhibitoren, Antischaummittel, Anti-Wear-Komponenten, Farbstoffe, Farbstabilisatoren, Detergentien, Stockpunkterniedriger und/oder DI- Additive.
Des Weiteren umfassen diese Additive Viskositätsindexverbesserer, Stockpunktverbesserer, Dispergierhilfsmittel und/oder Reibveränderer (friction modifier), die besonders bevorzugt auf einem linearen Polyalkyl(meth)acrylat mit 1 bis 30 Kohlenstoffatomen in der Alkoholgruppe basieren können. Diese linearen Polyalkyl(meth)acrylate sind insbesondere im einleitend diskutierten Stand der Technik beschrieben, wobei diese Polymere dispergierende Monomere aufweisen können.
Bevorzugte Schmierölzusammensetzungen weisen eine gemäß ASTM D 445 bei 4O0C gemessenen Viskosität im Bereich von 10 bis 120 mm2/s, besonders bevorzugt im Bereich von 22 bis 100 mm2/s auf. Gemäß einem besonderen Aspekt der vorliegenden Erfindung weisen bevorzugte Schmierölzusammensetzung einen gemäß ASTM D 2270 bestimmten Viskositätsiiidex im Bereich von 100 bis 400, besonders bevorzugt im Bereich 150 bis 350 und ganz besonders bevorzugt im Bereich von 200 bis 300 auf.
Nachfolgend wird die Erfindung anhand von Beispielen näher erläutert, ohne dass hierdurch eine Beschränkung erfolgen soll.
A) Herstellung von Makromonomeren
Es wurden verschiedene Makromonomere hergestellt oder kommerziell erhalten. In Tabelle 1 ist eine Zusammenfassung der Eigenschaften der zur Herstellung von Makromonomeren eingesetzten Makroalkohole und/oder Makroamine dargelegt.
Das Makroamin 1 ist das auf Polyisobutylen basierende Makroamin in Kerocom®
PIBA 03, welches von der BASF AG kommerziell erhalten wurde.
Der Malcroalkohol 2 ist ein auf Polyisobutylen basierender Makroalkohol, welcher gemäß EP 0 277 345 erhalten wurde.
Die Makroalkohole 3 und 4 sind auf Polyisobutylen basierende Makroalkohole, welche gemäß WO 2004/067583 erhalten wurden.
Der Malcroalkohol 5 stellt einen auf hydriertem Polybutadien basierenden
Makroalkohol dar, welcher gemäß GB 2270317 erhalten wurde.
Mn stellt das zahlengemittelte Molekulargewicht dar, welches durch GPC gegen Polyolefmstandards derselben Chemie oder durch osmotische Methoden wie der Dampftdruck oder Membranosmose bestimmt werden kann. Die kinematische Viskosität wird durch v beschrieben und die dynamische durch η (ASTM D445). Der Anteil an 1 ,2- Wiederholungseinheiten (Vinyl- Wiederholungseinheiten) über die Summe aus 1,2- Wiederholungseinheiten und 1 ,4-Wiederholunsgseinheiten, wie er für (hydriertes) Polybutadien durch 'H-NMR-Spektroskopie bestimmbar ist, ist mit fvinyi gegeben. Die mit fvmyi korrelierende Schmelztemperatur durch DSC ist mit Tn, gegeben. Tabelle 1
Figure imgf000029_0001
Die Abkürzung „n.a." bedeutet, dass keine Schmelztemperatur gemessen werden konnte.
Das von Makroamin abgeleitete Makromonomer wird durch Aminolyse von MMA hergestellt. Hierfür werden lS50g Kerocom® PIBA 03 (enthält 35% aliphatische Kohlenwasserstoffe) in 1200g MMA unter Rühren bei 60°C aufgelöst. Zur Lösung werden 0.6g Hydrochinonmonomethylether und 0.12g 4-Hydroxy-2,2,6,6-tetramethylpiperidino-oxyl-Radikal gegeben. Nach Erwärmen zum MMA-Rückfluss (etwa 100°C) unter stabilisierender Luftdurchleitung werden zur azeotropen Trocknung etwa 30g MMA abdestilliert. Nach Abkühlen werden 24g Sn(Oct)2O zugesetzt und zum MMA-Rückfluss erwärmt. Bei dieser Temperatur lässt man drei Stunden reagieren. Nach Abkühlen werden 1000g Wasser zur Katalysatorfällung zugegeben und 4h gerührt. Das Zweiphasengemisch wird im Scheidetrichter aufgetrennt und die untere Wasserphase verworfen. Die obere organische Phase wird mit 10g Kieselgur (Celatom® FW-80) gerührt und über einen Druckfilter (Seitz KS00) filtriert. Überschüssiges MMA und aliphatische Kohlenwasserstoffe werden am Vakuumrotationsverdampfer abgezogen und das Produkt entgast. Man erhält 1300g Makromonomer. Die von Makroalkoholen abgeleiteten Makromonomeren werden durch Umesterung von MMA hergestellt. Hierfür werden jeweils etwa 350g Makroalkohol in 350g MMA unter 12stündigem Rühren bei 60°C aufgelöst. Zur Lösung werden 200mg Hydrochinonmonomethylether und 20mg 4-Hydroxy- 2,2,6,6-tetrarnethylpiperidino-oxyl-Radikal gegeben. Nach Erwärmen zum MMA- Rückfluss (etwa 100°C) unter stabilisierender Luftdurchleitung werden zur azeotropen Trocknung etwa 30g MMA abdestilliert. Nach Abkühlen werden 2.7g LiOMe zugesetzt und zum Rückfluss des Methanol/MMA-Azeotrops (etwa 64°C) erwärmt. Das Methanol/MMA-Azeotrop wird ständig abdestilliert, bis sich eine konstante Kopftemperatur von etwa 100°C einstellt. Bei dieser Temperatur lässt man noch eine weitere Stunde nachreagieren. Nach Abkühlen werden unlösliche Katalysator-Rückstände im Heißen durch Druckfiltration abgetrennt (Seitz T1000 Tiefenfilter). Das Produkt wird schließlich am Vakuumrotationsverdampfer entgast. Man erhält 350g Makromonomer.
Bei Makroalkoholen höherer Molekulargewichte kann die Zugabe von KPE 100N-Ö1 zu Beginn der Makromonomersynthese hilfreich sein. Der in die weiter unten beschriebenen Kammpolymersynthesen eingeschleppte Gehalt an KPE 100N-Ö1 ist entsprechend zu berücksichtigen.
Kraton Liquid® L- 1253 ist ein Methacrylat-funktionalisiertes hydriertes Polybutadien, das aus dem OH-funktionalisierten hydrierten Polybutadien Kraton Liquid® L- 1203 hergestellt wird, und von der Kraton Polymers GmbH (Eschborn, Deutschland) kommerziell erhalten wurde.
Die Makromonomer-Funktionalität fMM eines jeden Makromonomeren wurde aus den GPC-Kurven der Kammpolymere selbst abgeleitet. Die GPC-Methode zur Bestimmung des massengemittelten Molekulargewichts Mw sowie des Polydispersitätsindex PDI der Kammpolymeren wird im Folgenden beschrieben. Die Messungen erfolgten in Tetrahydrofuran bei 35°C gegen eine Polymethylmethacrylat-Eichkurve aus einem Satz von >25 Standards (Polymer Standards Service bzw. Polymer Laboratories), deren Mpeak logarhythmisch gleichmäßig über den Bereich von 5-10δ bis 2-102 g/mol verteilt lag. Es wurde eine Kombination aus sechs Säulen (Polymer Standards Service SDV 100Ä / 2x SDV LXL / 2x SDV 100Ä / Shodex KF-800D) verwendet. Zur Signalaumahme wurde ein RI-Detektor (Agilent 1100 Series) eingesetzt. Die Makromonomer- Funktionalität fMM wurde nun durch einfache Kalkulation aus dem Verhältnis f zwischen verbleibender integraler Fläche unter der GPC-Spur des Makromonomeren zu dem Gesamtintegral unter Makromonomerem und eigentlichem Kammpolymerem als fMM=l-f/wMM bestimmt. Dabei gibt WMM die eingewogene Gewichtsfraktion an Makromonomeren bezogen auf alle Monomere an. Die ermittelten Werte für die Makromonomer-Funktionalität f^M sind in Tab. 2 zusammengefasst. Hierbei wurden gleiche Responsefaktoren für alle Wiederholeinheiten angenommen. Die Polymerisationen der Kammpolymersynthesen wurden bis zu vollständigem Umsatz an niedermolekularem Rückgrat-Monomeren (nBMA, Sty, nBA, MMA bzw. DiBF) mit Umsätzen >99% (HPLC) durchgeführt.
Die Eigenschaften der erhaltenen Verbindungen sind in Tabelle 2 dargestellt.
Tabelle 2
Figure imgf000031_0001
B) Synthesen der Kammpolymere
Beispiele 1 bis 7 und Vergleichsbeispiele 1 bis 4
In einer Apparatur mit 4-Halskolben und KPG-Säbelrührer wird ein 15Og- Gemisch aus niedermolekularen Monomeren und Makromonomer, dessen Zusammensetzung in Tabelle 3 dargelegt ist, sowie 65 g Shell Risella 907 Öl und 35g KPE 100N-Ö1 vorgelegt. Nach Erwärmen unter Stickstoff auf 120°C werden 0.9g t-Butylperbenzoat zugesetzt und die Temperatur gehalten. 3h und 6h nach der ersten Initiatorzugabe werden jeweils nochmals 0.3g t-Butylperbenzoat nachgefüttert und über Nacht bei 12O0C gerührt. Am darauf folgenden Tag wird mit 125g KPE 100 Öl verdünnt. Man erhält 375g einer 40%igen Lösung an Kammpolymeren in Mineralöl.
Beispiele 8 bis 11
In einer Apparatur mit 4-Halskolben und KPG-Säbelrührer wird ein 150g- Gemisch aus niedermolekularen Monomeren und Makromonomer, dessen Zusammensetzung in Tabelle 3 dargelegt ist, sowie 65g Shell Risella 907 Öl und 35g KPE 100N-Ö1 vorgelegt. Nach Erwärmen unter Stickstoff auf 9O0C werden 0.3g t-Butyl-per-2-ethylhexanoat zugesetzt und die Temperatur gehalten. 3h und 6h nach der ersten Initiatorzugabe werden jeweils nochmals 0.3g t-Butyl-per-2- ethyl-hexanoat nachgefüttert und über Nacht bei 900C gerührt. Am darauf folgenden Tag wird mit 125g KPE 100 Öl verdünnt. Man erhält 375g einer 40%igen Lösung an Kammpolymeren in Mineralöl.
Beispiele 12 und 13
In einer Apparatur mit 4-Halskolben und KPG-Säbelrührer wird ein 150g- Gemisch aus niedermolekularen Monomeren und Makromonomer, dessen Zusammensetzung in Tabelle 3 dargelegt ist, sowie 100g Toluol vorgelegt. Nach Erwärmen unter Stickstoff auf 900C werden 0.3g t-Butyl-per-2-ethylhexanoat zugesetzt und die Temperatur gehalten. 2h, 4h, 6h und 8h nach der ersten Initiatorzugabe werden jeweils nochmals 0.3g t-Butylper-2-ethylhexanoat nachgefϊittert und über Nacht bei 90°C gerührt. Am darauffolgenden Tag wird mit 225 g KPE 100N-Ö1 verdünnt und das Toluol durch Entgasung am Vakuum- Rotationsverdampfer entfernt. Man erhält 375g einer 40%igen Lösung an Kammpolymeren in Mineralöl.
Unter Berücksichtigung der die 150g bildenden Brutto-Zusammensetzung aus Makromonomer und niedermolekularen Monomeren sowie der Makromonomer- Funktionalität fMM wurde für jedes Kammpolymeres die massenanteilige Netto- Zusammensetzung sowie im weiteren unter Berücksichtigung der Monomermolmassen der molare Verzweigungsgrad fbranch bestimmt. Die erhaltenen Werte sind in Tabelle 3 dargelegt. Weiterhin sind die Molekulargewichte und PDIs durch GPC im für alle Segmente der Kammpolymeren guten Lösungsmittel Tetrahydrofuran gemäß oben beschriebener Methode angegeben.
Weiterhin wurde nach 24stündigem Abziehen von Trägeröl und niedermolekularen Restmonomeren bei ISO0C im Vakuum, das Kammpolymere durch DSC analysiert. Dazu wurde eine Probemenge von 10mg in der gelochten DSC-Pfanne im Bereich von -80°C bis +13O0C bei 10K/min vermessen (Pyris 1, Perkin-Elmer). Aus der jeweils zweiten Heizkurve wurde die Glasstufe TG der Rückgrates bestimmt (Tabelle 3).
Tabelle 3
Figure imgf000034_0001
In Tabelle 3 bedeuten:
Sty: Styrol
MMA: Methylmethacylat nBMA: n-Butylmethacrylat nBA: n-Butylacrylat
DiBF: Diisobutylfumarat
C 12- 15MA: Alkylmethacrylat-Gemisch mit 12 bis 15
Kohlenstoffatomen in den Alkoholresten
C 12/14/16/18MA: Alkylmethacrylat-Gemisch mit 12, 14, 16 und 18
Kohlenstoffatomen in den Alkoholresten
Tabelle 3 (Fortsetzung)
Figure imgf000035_0001
Figure imgf000036_0001
Evaluierung der Kammpolymere
Die Charakterisierung der erhaltenen Kammpolymer- Additive erfolgt über VI- Messungen nach ASTM D2270 und über PSSI-Messungen nach ASTM D2603 Ref. B (12.5min Ultraschall) bzw. nach DIN 51381 (30 Zyklen Bosch-Pumpe) einer Lösung von eingestellter kinematischer Viskosität bei 100°C KV100=14.0mm2/s (ASTM D445) in einem 150N Grundöl (KV40=31.68mm2/s, KVl 00=5.42mm2/s, VI=I 05).
Es zeigt sich deutlich, dass die erfindungsgemäßen Kammpolymere eine wesentlich bessere Relation von VI, PSSI und Feststoffgehalt aufweisen, als die im Stand der Technik gemäß EP 0699694 dargelegten Polymere. Die Ergebnisse der dargelegten Evaluierung sind in Tabelle 4 dargelegt. Tabelle 4
Figure imgf000037_0001
Des Weiteren wurden Kamrnpolymere gemäß der vorliegenden Erfindung mit linearem äußerst scherstabilen PAMA verglichen (Vergleichsbeispiel 5). Dabei wurden die Feststoffgehalte der Polymere auf eine Lösungsviskosität von KV100=13.15mm2/s in einem Vll-freien D/I-pakethaltigen API Gruppe III Grundöl aus Polyalphaolefm und Hydrocracköl (KVl 00=5.15mm2/s, KV40=25.30mm7s, VI=137, Stockpunkt -45°C nach ASTM D97) eingestellt. Auch hier zeigen sich deutliche Vorteile in Polymergehalt als auch im VI bei vergleichbarem oder gar besserem PSSI nach DIN 51350 Teil 6 (20h bzw. 192h Kegelrollenlager). Auch in der dynamischen Tieftemperaturviskosität bei -4O0C nach DIN 51398 bzw. dem Stockpunkt nach ASTM D97 ergeben sich äußerst vorteilhafte Werte für die Kammpolymeren. Der Vergleich von Beispiel 6 gegen Beispiel 12 zeigt zusätzlich, dass Kammpolymere, die auf OCP- Makromonomeren von erhöhtem Anteil an 1,2- Wiederholungseinheiten basieren, in den Tieftemperatureigenschaften deutlich besser sind. Die erhaltenen Ergebnisse der zuvor dargelegten Untersuchungen sind in Tabelle 5 dargelegt.
Tabelle 5
Figure imgf000038_0001
Tabelle 5 (Fortsetzung)
Figure imgf000038_0002
Weiterhin wurde ein Kammpolymeres als VII in einer ISO46/VI160 Hydraulikölformulierung auf Basis von API Gruppe 1 100N/600N-Ölen eingesetzt und im PSSI gemäß DIN 51350 (Teil 6, 20h Kegelrollenlager) gegen ein lineares PAMA verglichen (Vergleichsbeispiel 6). Es zeigte sich, dass eine außerordentlich hohe Reduzierung des nötigen Feststoffgehaltes auf weniger als 33% bei gleichem bis leicht besserem PSSI möglich ist. Die Zusammensetzungen der Hydraulikölformulierungen und die erhaltenen Ergebnisse der Untersuchung sind in Tabelle 6 dargelegt.
Tabelle 6
Figure imgf000039_0001
Tabelle 6 Fortsetzun
Figure imgf000039_0002

Claims

Patentansprüche
1. Kammpolymer umfassend in der Hauptkette Wiederholungseinheiten, die von Polyolefm-basierten Makromonomeren abgeleitet sind, und Wiederholungseinheiten, die von niedermolekularen Monomeren ausgewählt aus der Gruppe bestehend aus Styrolmonomeren mit 8 bis 17 Kohlenstoffatomen, Alkyl(meth)acrylaten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, λ^inylestern mit 1 bis 11 Kohlenstoffatomen in der Acylgruppe, Vinylethern mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylfumaraten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkyhnaleate mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe sowie Mischungen dieser Monomeren abgeleitet sind, dadurch gekennzeichnet, dass der molare Verzweigungsgrad im Bereich von 0,1 bis 10 Mol.-% liegt und das Kammpolymer in Summe mindestens 80 Gew.-%, bezogen auf das Gewicht der Wiederholungseinheiten, an Wiederholungseinheiten, die von Polyolefm-basierten Makromonomeren abgeleitet sind, und Wiederholungseinheiten, die von niedermolekularen Monomeren ausgewählt aus der Gruppe bestehend aus Styrolmonomeren mit 8 bis 17 Kohlenstoffatomen, Alkyl(meth)acrylaten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, Vinylestern mit 1 bis 11 Kohlenstoffatomen in der Acylgruppe, Vinylethern mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylfumaraten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylmaleate mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe sowie Mischungen dieser Monomeren abgeleitet sind, umfasst.
2. Kammpolymere gemäß Anspruch 1, dadurch gekennzeichnet, dass die Hauptkette eine Glastemperatur im Bereich -30 bis 1000C aufweist.
3. Kammpolymer gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wiederholungseinheiten, die von Polyolefϊn basierten Makromonomeren abgeleitet sind, ein Zahlenmittel des Molekulargewicht im Bereich von 700 bis 10000 g/mol aufweisen.
4. Kammpolymer gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kammpolymer mindestens 90 Gew.-% Wiederholungseinheiten umfasst, die von Polyolefm-basierten Makromonomeren abgeleitet sind und von niedermolekularen Monomeren ausgewählt aus der Gruppe bestehend aus Styrolmonomeren mit 8 bis 17 Kohlenstoffatomen, Alkyl(meth)acrylaten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, Vinylestern mit 1 bis 11 Kohlenstoffatomen in der Acylgruppe, Vinylethern mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylfumaraten mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe, (Di)alkylmaleate mit 1 bis 10 Kohlenstoffatomen in der Alkoholgruppe sowie Mischungen dieser Monomeren abgeleitet sind.
5. Kammpolymer gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der molare Verzweigungsgrad im Bereich 0.8% bis 6.0% liegt.
6. Kammpolymer gemäß Anspruch 5, dadurch gekennzeichnet, dass der molare Verzweigungsgrad im Bereich 0.8% bis 3.4% liegt.
7. Kammpolymer gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Jodzahl kleiner oder gleich 0,2 g pro g Kammpolymer ist.
8. Kammpolymer gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die von Polyolefm-basierten Makromonomeren abgeleiteten Wiederholungseinheiten Gruppen umfassen, die von Monomeren ausgewählt aus der Gruppe bestehend aus C2-C10- Alkenen und/oder C4-C10-Alkadienen abgeleitet sind.
9. Kammpolymer gemäß Anspruch 8, dadurch gekennzeichnet, dass die von Polyolefm-basierten Makromonomeren abgeleiteten Wiederholungseinheiten mindestens 80 Gew.-% Gruppen umfassen, die von Monomeren ausgewählt aus der Gruppe bestehend aus C2-C10-Alkenen und/oder C4-C10-Alkadienen abgeleitet sind, bezogen auf das Gewicht der von Polyolefm-basierten Makromonomeren abgeleiteten Wiederholungseinheiten.
10. Kammpolymer gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die von Polyolefm-basierten Makromonomeren abgeleiteten Wiederholungseinheiten Gruppen umfassen, die von nicht-olefinischen Monomeren ausgewählt aus der Gruppe aus Styrolen, (Meth)acrylaten, Vinylestern, Vinylethern, Fumaraten und Maleaten abgeleitet sind.
11. Kammpolymer gemäß Anspruch 10, dadurch gekennzeichnet, dass die von Polyolefm-basierten Makromonomeren abgeleiteten Wiederholungseinheiten höchstens 20 Gew.-% Gruppen umfassen, die von nicht-olefinischen Monomeren ausgewählt aus der Gruppe aus Styrolen, (Meth)acrylaten, Vinylestern, Vinylethern, Fumaraten und Maleaten abgeleitet sind, bezogen auf das Gewicht der Wiederholungseinheiten.
12. Kammpolymer gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schmelztemperatur der von Polyolefm- basierten Makromonomeren abgeleiteten Wiederholungseinheiten kleiner oder gleich -10°C ist.
13. Kammpolymer gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass keine Schmelztemperatur der von Polyolefin- basierten Makromonomeren abgeleiteten Wiederholungseinheiten gemessen werden kann.
14. Kammpolymer gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kammpolymer Wiederholungseinheiten aufweist, die von Styrol abgeleitet sind, und Wiederholungseinheiten aufweist, die von n-Butylmethacrylat abgeleitet sind.
15. Kammpolymer gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kammpolymer Wiederholungseinheiten aufweist, die von Styrol abgeleitet sind, und Wiederholungseinheiten aufweist, die von n-Butylacrylat abgeleitet sind.
16. Kammpolymer gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kammpolymer Wiederholungseinheiten aufweist, die von Methylmethacrylat abgeleitet sind, und Wiederholungseinheiten aufweist, die von n-Butylmethacrylat abgeleitet sind.
17. Kammpolymer gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kammpolymer ein gewichtsgemitteltes Molekulargewicht im Bereich von 50 0000 bis 500 OOOg/mol aufweist.
18. Verfahren zur Herstellung von Kammpolymeren gemäß mindestens einem der vorhergehenden Ansprüche 1 bis 17, dadurch gekennzeichnet, dass Makromonomere und niedermolekulare Monomere copolymerisiert werden.
19. Verfahren zur Herstellung von Kammpolymeren gemäß mindestens einem der vorhergehenden Ansprüche 1 bis 17, dadurch gekennzeichnet, dass zunächst ein funktionalisiertes Hauptkettenpolymer hergestellt wird, welches aus niedermolekularen Monomeren gebildet wird, und anschließend das hergestellte Hauptkettenpolymer durch eine polymeranaloge Reaktion umgesetzt wird.
20. Verfahren gemäß Anspruch 19, dadurch gekennzeichnet, dass die polymeranaloge Reaktion eine Alkoholyse durch Makroalkohole und/oder eine Aminolyse durch Makroamine ist.
21. Verfahren gemäß Anspruch 20, dadurch gekennzeichnet, dass das Hauptkettenpolymer Säuregruppen, Amidgruppen, Estergrappen und/oder Säureanhydridgruppen umfasst.
22. Verfahren gemäß mindestens einem der vorhergehenden Ansprüche IS bis
21, dadurch gekennzeichnet, dass das Verfahren diskontinuierlich durchgeführt wird.
23. Verfahren gemäß mindestens einem der vorhergehenden Ansprüche 18 bis
22, dadurch gekennzeichnet, dass die Umsetzung in Gegenwart eines lösungsvermittelnden Trägermediums durchgeführt wird.
24. Verfahren gemäß Anspruch 23, dadurch gekennzeichnet, dass das Trägermedium aus der Gruppe der Gasöle und/oder der aromatischen Kohlenwasserstoffe ausgewählt ist.
25. Verfahren gemäß mindestens einem der vorhergehenden Ansprüche 18 bis 24, dadurch gekennzeichnet, dass die Umsetzung frei von Reglern durchgeführt wird.
26. Schmierölformulierung enthaltend Kammpolyniere gemäß mindestens einem der vorhergehenden Ansprüche 1 bis 17.
27. Schmierölformulierung gemäß Anspruch 26, dadurch gekennzeichnet, dass die Schmierölformulierung Basisöle der API Gruppe I5 II, III, IV und/oder Gruppe V umfasst.
28. Schmierölformulierung gemäß Anspruch 26 oder 27, dadurch gekennzeichnet, dass der Viskositätsindex mindestens 200 beträgt.
29. Schmierölformulierung gemäß mindestens einem der Ansprüche 26 bis 28, dadurch gekennzeichnet, dass der PSSI nach ASTM D2603 Ref. B kleiner oder gleich 45 ist.
30. Schmierölformulierung gemäß mindestens einem der Ansprüche 26 bis 29, dadurch gekennzeichnet, dass die Schmierölformulierung mindestens ein zusätzliches Additiv umfasst, das keine Kammpolymere gemäß den Ansprüchen 1 bis 17 darstellt.
31. Schmierölformulierung gemäß Anspruch 30, dadurch gekennzeichnet, dass das Additiv ein Viskositätsindexverbesserer, Stockpunktverbesserer, Dispergierhilfsmittel und/oder Reibveränderer (friction modifier) darstellt.
32. Schmierölformulierung gemäß Anspruch 30 oder 31 , dadurch gekennzeichnet, dass das Additiv auf einem linearen Polyalkyl(meth)acrylat mit 1 bis 30 Kohlenstoffatomen in der Alkoholgruppe basiert.
33. Verwendung von Kammpolymeren gemäß mindestens einem der vorhergehenden Ansprüche 1 bis 17 als Viskositätsindexverbesserer, Stockpunktverbesserer, Dispergierhilfsmittel und/oder Reibveränderer.
PCT/EP2006/003213 2005-07-01 2006-04-07 Öllösliche kammpolymere WO2007003238A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP06724151A EP1899393B1 (de) 2005-07-01 2006-04-07 Öllösliche kammpolymere
JP2008518648A JP5376946B2 (ja) 2005-07-01 2006-04-07 油溶性櫛型ポリマー
CN2006800088285A CN101142244B (zh) 2005-07-01 2006-04-07 油溶性梳形聚合物
KR1020077030884A KR101317068B1 (ko) 2005-07-01 2006-04-07 유용성 콤 중합체
BRPI0612884-0A BRPI0612884B1 (pt) 2005-07-01 2006-04-07 Polímeros em forma de pente solúveis em óleo, seu uso e seu processo de preparação, e formulação de óleo lubrificante
US11/909,171 US8067349B2 (en) 2005-07-01 2006-04-07 Oil soluble comb polymers
AT06724151T ATE541874T1 (de) 2005-07-01 2006-04-07 Öllösliche kammpolymere
CA2606615A CA2606615C (en) 2005-07-01 2006-04-07 Oil soluble comb polymers
MX2007014961A MX2007014961A (es) 2005-07-01 2006-04-07 Polimeros "comb" solubles en aceite.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005031244.6 2005-07-01
DE102005031244A DE102005031244A1 (de) 2005-07-01 2005-07-01 Öllösliche Kammpolymere

Publications (1)

Publication Number Publication Date
WO2007003238A1 true WO2007003238A1 (de) 2007-01-11

Family

ID=36568805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/003213 WO2007003238A1 (de) 2005-07-01 2006-04-07 Öllösliche kammpolymere

Country Status (11)

Country Link
US (1) US8067349B2 (de)
EP (1) EP1899393B1 (de)
JP (1) JP5376946B2 (de)
KR (1) KR101317068B1 (de)
CN (1) CN101142244B (de)
AT (1) ATE541874T1 (de)
BR (1) BRPI0612884B1 (de)
CA (1) CA2606615C (de)
DE (1) DE102005031244A1 (de)
MX (1) MX2007014961A (de)
WO (1) WO2007003238A1 (de)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100190671A1 (en) * 2007-07-09 2010-07-29 Evonik Rohmax Additives Gmbh Use of comb polymers for reducing fuel consumption
DE102009001447A1 (de) 2009-03-10 2010-09-16 Evonik Rohmax Additives Gmbh Verwendung von Kammpolymeren zur Verbesserung des Lasttragevermögens
WO2010102903A1 (de) 2009-03-10 2010-09-16 Evonik Rohmax Additives Gmbh Verwendung von kammpolymeren als antifatigue-additive
DE102010001040A1 (de) 2010-01-20 2011-07-21 Evonik RohMax Additives GmbH, 64293 (Meth)acrylat-Polymere zur Verbesserung des Viskositätsindexes
US8623962B2 (en) 2008-06-20 2014-01-07 Exxonmobil Chemical Patents Inc. Olefin functionalization by metathesis reaction
US8835563B2 (en) 2011-03-25 2014-09-16 Exxonmobil Chemical Patents Inc. Block copolymers from silylated vinyl terminated macromers
US8841397B2 (en) 2011-03-25 2014-09-23 Exxonmobil Chemical Patents Inc. Vinyl terminated higher olefin polymers and methods to produce thereof
US8841394B2 (en) 2011-03-25 2014-09-23 Exxonmobil Chemical Patents Inc. Vinyl terminated higher olefin copolymers and methods to produce thereof
US8940839B2 (en) 2011-03-25 2015-01-27 Exxonmobil Chemical Patents Inc. Diblock copolymers prepared by cross metathesis
US8981029B2 (en) 2011-03-25 2015-03-17 Exxonmobil Chemical Patents Inc. Branched vinyl terminated polymers and methods for production thereof
WO2015142482A1 (en) * 2014-03-19 2015-09-24 The Lubrizol Corporation Lubricants containing blends of polymers
US20150275130A1 (en) * 2012-06-21 2015-10-01 Shell Oil Company Lubricating composition
JPWO2016152679A1 (ja) * 2015-03-20 2017-04-27 出光興産株式会社 粘度指数向上剤、潤滑油組成物、及び潤滑油組成物の製造方法
WO2018041755A1 (en) 2016-08-31 2018-03-08 Evonik Oil Additives Gmbh Comb polymers for improving noack evaporation loss of engine oil formulations
WO2018083027A1 (en) 2016-11-02 2018-05-11 Evonik Oil Additives Gmbh Lubricant composition with an improved viscosity characteristic at low operating temperature
WO2018114673A1 (en) 2016-12-19 2018-06-28 Evonik Oil Additives Gmbh Lubricating oil composition comprising dispersant comb polymers
WO2019012031A1 (en) 2017-07-14 2019-01-17 Evonik Oil Additives Gmbh COMB POLYMERS WITH IMIDE FUNCTIONALITY
EP3450527A1 (de) 2017-09-04 2019-03-06 Evonik Oil Additives GmbH Neue viskositätsindexverbesserer mit definierten molekulargewichtsverteilungen
WO2019077105A1 (fr) 2017-10-20 2019-04-25 Total Marketing Services Composition pour refroidir et lubrifier un système de motorisation d'un véhicule
EP3498808A1 (de) 2017-12-13 2019-06-19 Evonik Oil Additives GmbH Viskositätsindexverbesserer mit verbesserter scherfestigkeit und löslichkeit nach der scherung
WO2019145307A1 (en) 2018-01-23 2019-08-01 Evonik Oil Additives Gmbh Polymeric-inorganic nanoparticle compositions, manufacturing process thereof and their use as lubricant additives
WO2019145298A1 (en) 2018-01-23 2019-08-01 Evonik Oil Additives Gmbh Polymeric-inorganic nanoparticle compositions, manufacturing process thereof and their use as lubricant additives
WO2019145287A1 (en) 2018-01-23 2019-08-01 Evonik Oil Additives Gmbh Polymeric-inorganic nanoparticle compositions, manufacturing process thereof and their use as lubricant additives
WO2019210006A1 (en) * 2018-04-27 2019-10-31 Henkel IP & Holding GmbH Curable viscosity slump resistant compositions
WO2020187954A1 (en) 2019-03-20 2020-09-24 Evonik Operations Gmbh Polyalkyl(meth)acrylates for improving fuel economy, dispersancy and deposits performance
WO2021009116A1 (en) 2019-07-17 2021-01-21 Evonik Operations Gmbh Use of nanoparticle compositions as heat transfer fluids in battery or other electrical equipment systems
EP3778839A1 (de) 2019-08-13 2021-02-17 Evonik Operations GmbH Viskositätsindexverbesserer mit verbesserter scherbeständigkeit
US11174333B2 (en) 2016-08-05 2021-11-16 Basf Se Macromonomers containing polyisobutene groups, and homopolymers or copolymers thereof
WO2022058095A1 (en) 2020-09-18 2022-03-24 Evonik Operations Gmbh Compositions comprising a graphene-based material as lubricant additives
EP4060009A1 (de) 2021-03-19 2022-09-21 Evonik Operations GmbH Viskositätsindexverbesserer und schmierstoffzusammensetzung damit
EP4119640A1 (de) 2021-07-16 2023-01-18 Evonik Operations GmbH Schmiermittelzusatzzusammensetzungen enthalten polyalkylmethacrylate
WO2023104579A1 (en) 2021-12-06 2023-06-15 Basf Se Viscosity index improver for lubricants based on polyisobutylene acrylamide comb copolymers
EP4321602A1 (de) 2022-08-10 2024-02-14 Evonik Operations GmbH Schwefelfreie polyalkyl(meth)acrylat-copolymere als viskositätsindexverbesserer in schmiermitteln
WO2024033156A1 (en) 2022-08-08 2024-02-15 Evonik Operations Gmbh Polyalkyl (meth)acrylate-based polymers with improved low temperature properties

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004018094A1 (de) * 2004-04-08 2005-11-03 Rohmax Additives Gmbh Polymere mit H-Brücken bildenden Funktionalitäten zur Verbesserung des Verschleißschutzes
DE102005015931A1 (de) 2005-04-06 2006-10-12 Rohmax Additives Gmbh Polyalkyl(meth) acrylat-Copolymere mit hervorragenden Eigenschaften
WO2007133720A2 (en) * 2006-05-11 2007-11-22 Air Products And Chemicals, Inc. Cosmetic compositions containing side chain crystalline (sec) polymers
DE102006039420A1 (de) * 2006-08-23 2008-02-28 Evonik Rohmax Additves Gmbh Verfahren zur Herstellung von Methacrylatestern
DE102007032120A1 (de) * 2007-07-09 2009-01-15 Evonik Rohmax Additives Gmbh Verwendung von Kammpolymeren zur Verringerung des Kraftstoffverbrauchs
JP2010532807A (ja) * 2007-07-12 2010-10-14 エボニック ローマックス アディティヴス ゲゼルシャフト ミット ベシュレンクテル ハフツング 連続的に変動性の組成のコポリマーを製造するための改善された方法
DE102007036856A1 (de) * 2007-08-06 2009-02-26 Evonik Rohmax Additives Gmbh Verwendung von Estergruppen-umfassenden Polymeren als Antifatigue-Additive
EP3460028A1 (de) 2009-06-04 2019-03-27 The Lubrizol Corporation Polymethacrylate als viskositätsmodifikatoren mit hohem vi
CN102459546B (zh) 2009-06-04 2016-05-25 吉坤日矿日石能源株式会社 润滑油组合物
SG176054A1 (en) 2009-06-12 2011-12-29 Evonik Rohmax Additives Gmbh A fluid having improved viscosity index
US9233063B2 (en) * 2009-12-17 2016-01-12 Air Products And Chemicals, Inc. Polymeric compositions for personal care products
FR2964115B1 (fr) 2010-08-27 2013-09-27 Total Raffinage Marketing Lubrifiant moteur
WO2012128788A1 (en) 2011-03-24 2012-09-27 Elevance Renewable Sciences, Inc. Functionalized monomers and polymers
US9315748B2 (en) 2011-04-07 2016-04-19 Elevance Renewable Sciences, Inc. Cold flow additives
JP2013147608A (ja) * 2012-01-23 2013-08-01 Sanyo Chem Ind Ltd 粘度指数向上剤及び潤滑油組成物
US9012385B2 (en) 2012-02-29 2015-04-21 Elevance Renewable Sciences, Inc. Terpene derived compounds
CA2894242C (en) 2012-12-10 2021-04-06 The Lubrizol Corporation Olefin-acrylate polymers in refinery and oilfield applications
RU2660327C2 (ru) * 2013-03-06 2018-07-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Смазывающая композиция
US20140274832A1 (en) 2013-03-12 2014-09-18 Elevance Renewable Sciences, Inc. Maleinized ester derivatives
US20150057204A1 (en) 2013-03-12 2015-02-26 Elevance Renewable Sciences, Inc. Maleanized Ester Derivatives
JP5878199B2 (ja) * 2013-04-23 2016-03-08 三洋化成工業株式会社 粘度指数向上剤及び潤滑油組成物
EP3981863A1 (de) 2013-05-14 2022-04-13 The Lubrizol Corporation Schmiermittelzusammensetzung und verfahren zum schmieren eines getriebes
JP5913431B2 (ja) * 2013-05-21 2016-04-27 三洋化成工業株式会社 粘度指数向上剤及び潤滑油組成物
JP5902230B2 (ja) * 2013-05-27 2016-04-13 三洋化成工業株式会社 粘度指数向上剤及び潤滑油組成物
WO2015040095A1 (en) * 2013-09-23 2015-03-26 Evonik Oil Additives Gmbh Hydrogenation of low molecular weight unsaturated polymers
BR112016015027B1 (pt) 2013-12-24 2021-04-27 Shell Internationale Research Maatschappij B.V. Composição lubrificante e uso da mesma
EP3093334A4 (de) 2014-02-25 2017-12-13 Sanyo Chemical Industries, Ltd. Viskositätsindexverbesserer für schmierölzusammensetzung
BR112017009463A2 (pt) 2014-11-04 2017-12-19 Shell Int Research composição lubrificante
KR102595396B1 (ko) 2015-03-20 2023-10-27 산요가세이고교 가부시키가이샤 점도 지수 향상제, 윤활유 조성물 및 윤활유 조성물의 제조 방법
JP6767249B2 (ja) * 2015-12-14 2020-10-14 三洋化成工業株式会社 粘度指数向上剤及び潤滑油組成物
EP3192857A1 (de) 2016-01-13 2017-07-19 Basf Se Verwendung von poly(meth)acrylat-copolymeren mit verzweigten c17-alkylketten in schmierölzusammensetzungen
JP6747662B2 (ja) * 2016-04-25 2020-08-26 出光興産株式会社 緩衝器用潤滑油組成物及びその製造方法、並びに減衰方法及び緩衝器
KR102287600B1 (ko) 2016-05-13 2021-08-11 에보니크 오퍼레이션즈 게엠베하 폴리올레핀 백본 및 메타크릴레이트 측쇄를 기재로 하는 그라프트 공중합체
RU2617212C1 (ru) * 2016-05-31 2017-04-24 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" Способ получения загущающей присадки к смазочным маслам
WO2018000804A1 (zh) 2016-06-28 2018-01-04 中国石油化工股份有限公司 一种梯度共聚物、其制造方法及其应用
EP3318620A1 (de) 2016-11-02 2018-05-09 Evonik Oil Additives GmbH Verwendung eines schmiermittels zur verbesserung der niedrigtemperaturviskosität von schmiermittelzusammensetzungen
CN110402261A (zh) * 2017-03-16 2019-11-01 株式会社钟化 乙烯基系梳型共聚物
JP7046916B2 (ja) 2017-03-23 2022-04-04 三洋化成工業株式会社 粘度指数向上剤及び潤滑油組成物
JP6781098B2 (ja) * 2017-04-14 2020-11-04 株式会社日本触媒 潤滑油添加剤の製造方法
US11214752B2 (en) 2017-07-28 2022-01-04 Basf Se Lubricant composition containing copolymers of polyisobutylenemethacrylate
JP6456468B1 (ja) * 2017-12-13 2019-01-23 エボニック オイル アディティヴス ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Oil Additives GmbH 改善された低温粘度および剪断抵抗を有する粘度指数向上剤
KR102586425B1 (ko) * 2017-12-22 2023-10-06 현대자동차주식회사 마찰특성 및 연비향상형 수동변속기유 조성물
KR20210092765A (ko) * 2018-11-13 2021-07-26 에보닉 오퍼레이션스 게엠베하 랜덤 공중합체의 제조 방법
DE102018131931B4 (de) * 2018-12-12 2022-06-23 Klüber Lubrication München Se & Co. Kg Schmiermittelsystem zur Verminderung von Reibegeräuschen, Verfahren zu seiner Herstellung und seine Verwendung
EP3705557A1 (de) * 2019-03-07 2020-09-09 Sasol Performance Chemicals GmbH Verwendung von polymeren als zusätze für schmierölzusammensetzungen
CN113939579B (zh) 2019-06-26 2022-11-29 三洋化成工业株式会社 粘度指数改进剂组合物和润滑油组合物
WO2021013569A1 (en) * 2019-07-19 2021-01-28 Basf Se Branched polyacrylates by reacting epoxy-polyacrylate with thioacid and subsequent polymerization
JP7402131B2 (ja) 2019-08-29 2023-12-20 三洋化成工業株式会社 α,β-不飽和カルボン酸エステルの製造方法
US11384311B2 (en) 2019-12-16 2022-07-12 Infineum International Limited High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same
US11365273B2 (en) 2019-12-16 2022-06-21 Infineum International Limited High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same
US11685874B2 (en) 2019-12-16 2023-06-27 Infineum International Limited High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same
CN111040744B (zh) * 2019-12-23 2021-11-23 中国石油集团渤海钻探工程有限公司 一种梳状丙烯酸酯共聚物润滑剂及水基钻井液
EP4143279A1 (de) 2020-04-30 2023-03-08 Evonik Operations GmbH Verfahren zur herstellung von dispergierenden polyalkyl(meth)acrylatpolymeren
KR20230004805A (ko) 2020-04-30 2023-01-06 에보니크 오퍼레이션즈 게엠베하 폴리알킬 (메트)아크릴레이트 중합체의 제조 방법
PL3907269T3 (pl) 2020-05-05 2023-09-11 Evonik Operations Gmbh Uwodornione polidienowe kopolimery liniowe jako surowiec bazowy lub dodatki smarowe do kompozycji smarowych
CN115885026A (zh) 2020-08-20 2023-03-31 三洋化成工业株式会社 粘度指数改进剂组合物和润滑油组合物
US20230287292A1 (en) 2020-09-01 2023-09-14 Shell Oil Company Engine oil composition
KR20230036141A (ko) 2020-09-14 2023-03-14 산요가세이고교 가부시키가이샤 점도 지수 향상제 및 윤활유 조성물
JP7349032B2 (ja) 2020-09-14 2023-09-21 三洋化成工業株式会社 粘度指数向上剤及び潤滑油組成物
JP2023142144A (ja) * 2022-03-24 2023-10-05 出光興産株式会社 潤滑油組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0277345A1 (de) 1987-01-08 1988-08-10 BASF Aktiengesellschaft Kraft- oder Schmierstoffzusammensetzung, enthaltend Polybutyl- oder Polyisobutylderivate
GB2270317A (en) 1992-08-31 1994-03-09 Shell Int Research Butadiene polymers having terminal functional groups
EP0621293A1 (de) * 1993-04-20 1994-10-26 Röhm GmbH Kammpolymere
EP0699694A2 (de) * 1994-09-02 1996-03-06 Röhm Gmbh Kammpolymere
WO2004067583A1 (de) 2003-01-28 2004-08-12 Basf Aktiengesellschaft Funktionalisierung von ungesättigten isobutenpolymeren durch hydroborierung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960703956A (ko) * 1993-07-08 1996-08-31 로버트 지. 반 슌넨베르그 아크릴릭-포화 고무 하이브리드 감압 접착제
US5969068A (en) * 1995-06-19 1999-10-19 The Lubrizol Corporation Dispersant-viscosity improvers for lubricating oil compositions
EP1211269B1 (de) * 1999-05-07 2009-08-26 Sekisui Chemical Co., Ltd. Acrylische kopolymere, selbstklebender acrylkleber, klebeband oder film und acrylische klebstoffzusammensetzung
US6391996B1 (en) * 1999-11-30 2002-05-21 Rohmax Additives Gmbh Copolymers obtainable by the ATRP method and a method for their preparation and their use
US20020151443A1 (en) * 2001-02-09 2002-10-17 Sanjay Srinivasan Automatic transmission fluids with improved anti-wear properties
CN100335515C (zh) * 2002-03-01 2007-09-05 罗麦斯添加剂有限公司 作为脱蜡添加剂的共聚物
DE10314776A1 (de) * 2003-03-31 2004-10-14 Rohmax Additives Gmbh Schmierölzusammensetzung mit guten Reibeigenschaften
US7429555B2 (en) * 2004-04-30 2008-09-30 Rohmax Additives Gmbh Lubricating grease with high water resistance
DE102004021717A1 (de) * 2004-04-30 2005-11-24 Rohmax Additives Gmbh Verfahren zur Herstellung von Schmierfett
DE102004021778A1 (de) * 2004-04-30 2005-12-08 Rohmax Additives Gmbh Verwendung von Polyalkyl(meth)acrylaten in Schmierölzusammensetzungen
JP2006008842A (ja) * 2004-06-25 2006-01-12 Mitsui Chemicals Inc 潤滑油用粘度指数向上剤および潤滑油組成物
DE102004034618A1 (de) * 2004-07-16 2006-02-16 Rohmax Additives Gmbh Verwendung von Pfropfcopolymeren
US7648950B2 (en) * 2005-04-22 2010-01-19 Rohmax Additives Gmbh Use of a polyalkylmethacrylate polymer
DE102006039420A1 (de) 2006-08-23 2008-02-28 Evonik Rohmax Additves Gmbh Verfahren zur Herstellung von Methacrylatestern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0277345A1 (de) 1987-01-08 1988-08-10 BASF Aktiengesellschaft Kraft- oder Schmierstoffzusammensetzung, enthaltend Polybutyl- oder Polyisobutylderivate
GB2270317A (en) 1992-08-31 1994-03-09 Shell Int Research Butadiene polymers having terminal functional groups
EP0621293A1 (de) * 1993-04-20 1994-10-26 Röhm GmbH Kammpolymere
EP0699694A2 (de) * 1994-09-02 1996-03-06 Röhm Gmbh Kammpolymere
WO2004067583A1 (de) 2003-01-28 2004-08-12 Basf Aktiengesellschaft Funktionalisierung von ungesättigten isobutenpolymeren durch hydroborierung

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101492289B1 (ko) * 2007-07-09 2015-02-12 에보니크 오일 아디티페스 게엠베하 연료 소비를 감소시키기 위한 콤 중합체의 용도
CN101687963B (zh) * 2007-07-09 2015-05-06 赢创罗麦斯添加剂有限责任公司 梳形聚合物用于降低燃料消耗的用途
US9783630B2 (en) * 2007-07-09 2017-10-10 Evonik Oil Additives Gmbh Use of comb polymers for reducing fuel consumption
US20100190671A1 (en) * 2007-07-09 2010-07-29 Evonik Rohmax Additives Gmbh Use of comb polymers for reducing fuel consumption
JP2010532805A (ja) * 2007-07-09 2010-10-14 エボニック ローマックス アディティヴス ゲゼルシャフト ミット ベシュレンクテル ハフツング 燃料消費量を減少させるための櫛形ポリマーの使用
US8623962B2 (en) 2008-06-20 2014-01-07 Exxonmobil Chemical Patents Inc. Olefin functionalization by metathesis reaction
US20110319305A1 (en) * 2009-03-10 2011-12-29 Evonik Rohmax Additives Gmbh Use of comb copolymers for improving scuffing load capacity
US20110306533A1 (en) * 2009-03-10 2011-12-15 Evonik Rohmax Additives Gmbh Use of comb polymers as antifatigue additives
US20120258899A1 (en) * 2009-03-10 2012-10-11 Evonik Rohmax Additives Gmbh Use of comb copolymers for improving scuffing load capacity
DE102009001446A1 (de) 2009-03-10 2010-09-23 Evonik Rohmax Additives Gmbh Verwendung von Kammpolymeren als Antifatigue-Additive
WO2010102903A1 (de) 2009-03-10 2010-09-16 Evonik Rohmax Additives Gmbh Verwendung von kammpolymeren als antifatigue-additive
WO2010102871A1 (de) * 2009-03-10 2010-09-16 Evonik Rohmax Additives Gmbh Verwendung von kammpolymeren zur verbesserung des lasttragevermögens
DE102009001447A1 (de) 2009-03-10 2010-09-16 Evonik Rohmax Additives Gmbh Verwendung von Kammpolymeren zur Verbesserung des Lasttragevermögens
WO2011088929A1 (de) 2010-01-20 2011-07-28 Evonik Rohmax Additives Gmbh (meth)acrylat-polymer zur verbesserung des viskositätsindexes
DE102010001040A1 (de) 2010-01-20 2011-07-21 Evonik RohMax Additives GmbH, 64293 (Meth)acrylat-Polymere zur Verbesserung des Viskositätsindexes
US8841394B2 (en) 2011-03-25 2014-09-23 Exxonmobil Chemical Patents Inc. Vinyl terminated higher olefin copolymers and methods to produce thereof
US8841397B2 (en) 2011-03-25 2014-09-23 Exxonmobil Chemical Patents Inc. Vinyl terminated higher olefin polymers and methods to produce thereof
US8981029B2 (en) 2011-03-25 2015-03-17 Exxonmobil Chemical Patents Inc. Branched vinyl terminated polymers and methods for production thereof
US8835563B2 (en) 2011-03-25 2014-09-16 Exxonmobil Chemical Patents Inc. Block copolymers from silylated vinyl terminated macromers
US8940839B2 (en) 2011-03-25 2015-01-27 Exxonmobil Chemical Patents Inc. Diblock copolymers prepared by cross metathesis
US20150275130A1 (en) * 2012-06-21 2015-10-01 Shell Oil Company Lubricating composition
WO2015142482A1 (en) * 2014-03-19 2015-09-24 The Lubrizol Corporation Lubricants containing blends of polymers
JPWO2016152679A1 (ja) * 2015-03-20 2017-04-27 出光興産株式会社 粘度指数向上剤、潤滑油組成物、及び潤滑油組成物の製造方法
US11174333B2 (en) 2016-08-05 2021-11-16 Basf Se Macromonomers containing polyisobutene groups, and homopolymers or copolymers thereof
WO2018041755A1 (en) 2016-08-31 2018-03-08 Evonik Oil Additives Gmbh Comb polymers for improving noack evaporation loss of engine oil formulations
US10633610B2 (en) 2016-08-31 2020-04-28 Evonik Operations Gmbh Comb polymers for improving Noack evaporation loss of engine oil formulations
US11015139B2 (en) 2016-08-31 2021-05-25 Evonik Operations Gmbh Comb polymers for improving Noack evaporation loss of engine oil formulations
WO2018083027A1 (en) 2016-11-02 2018-05-11 Evonik Oil Additives Gmbh Lubricant composition with an improved viscosity characteristic at low operating temperature
RU2747727C2 (ru) * 2016-11-02 2021-05-13 Эвоник Оперейшнс Гмбх Смазывающая композиция, обладающая улучшенными характеристиками вязкости при низкой рабочей температуре
WO2018114673A1 (en) 2016-12-19 2018-06-28 Evonik Oil Additives Gmbh Lubricating oil composition comprising dispersant comb polymers
US10941368B2 (en) 2016-12-19 2021-03-09 Evonik Operations Gmbh Lubricating oil composition comprising dispersant comb polymers
WO2019012031A1 (en) 2017-07-14 2019-01-17 Evonik Oil Additives Gmbh COMB POLYMERS WITH IMIDE FUNCTIONALITY
US11072677B2 (en) 2017-07-14 2021-07-27 Evonik Operations Gmbh Comb polymers comprising imide functionality
EP3450527A1 (de) 2017-09-04 2019-03-06 Evonik Oil Additives GmbH Neue viskositätsindexverbesserer mit definierten molekulargewichtsverteilungen
US10731097B2 (en) 2017-09-04 2020-08-04 Evonik Operations Gmbh Viscosity index improvers with defined molecular weight distributions
WO2019077105A1 (fr) 2017-10-20 2019-04-25 Total Marketing Services Composition pour refroidir et lubrifier un système de motorisation d'un véhicule
US10920164B2 (en) 2017-12-13 2021-02-16 Evonik Operations Gmbh Viscosity index improver with improved shear-resistance and solubility after shear
EP3498808A1 (de) 2017-12-13 2019-06-19 Evonik Oil Additives GmbH Viskositätsindexverbesserer mit verbesserter scherfestigkeit und löslichkeit nach der scherung
WO2019145287A1 (en) 2018-01-23 2019-08-01 Evonik Oil Additives Gmbh Polymeric-inorganic nanoparticle compositions, manufacturing process thereof and their use as lubricant additives
US11180712B2 (en) 2018-01-23 2021-11-23 Evonik Operations Gmbh Polymeric-inorganic nanoparticle compositions, manufacturing process thereof and their use as lubricant additives
WO2019145307A1 (en) 2018-01-23 2019-08-01 Evonik Oil Additives Gmbh Polymeric-inorganic nanoparticle compositions, manufacturing process thereof and their use as lubricant additives
WO2019145298A1 (en) 2018-01-23 2019-08-01 Evonik Oil Additives Gmbh Polymeric-inorganic nanoparticle compositions, manufacturing process thereof and their use as lubricant additives
WO2019210006A1 (en) * 2018-04-27 2019-10-31 Henkel IP & Holding GmbH Curable viscosity slump resistant compositions
US11518955B2 (en) 2019-03-20 2022-12-06 Evonik Operations Gmbh Polyalkyl(meth)acrylates for improving fuel economy, dispersancy and deposits performance
WO2020187954A1 (en) 2019-03-20 2020-09-24 Evonik Operations Gmbh Polyalkyl(meth)acrylates for improving fuel economy, dispersancy and deposits performance
WO2021009116A1 (en) 2019-07-17 2021-01-21 Evonik Operations Gmbh Use of nanoparticle compositions as heat transfer fluids in battery or other electrical equipment systems
EP3778839A1 (de) 2019-08-13 2021-02-17 Evonik Operations GmbH Viskositätsindexverbesserer mit verbesserter scherbeständigkeit
WO2022058095A1 (en) 2020-09-18 2022-03-24 Evonik Operations Gmbh Compositions comprising a graphene-based material as lubricant additives
EP4060009A1 (de) 2021-03-19 2022-09-21 Evonik Operations GmbH Viskositätsindexverbesserer und schmierstoffzusammensetzung damit
US11795413B2 (en) 2021-03-19 2023-10-24 Evonik Operations Gmbh Viscosity index improver and lubricant compositions thereof
EP4119640A1 (de) 2021-07-16 2023-01-18 Evonik Operations GmbH Schmiermittelzusatzzusammensetzungen enthalten polyalkylmethacrylate
WO2023104579A1 (en) 2021-12-06 2023-06-15 Basf Se Viscosity index improver for lubricants based on polyisobutylene acrylamide comb copolymers
WO2024033156A1 (en) 2022-08-08 2024-02-15 Evonik Operations Gmbh Polyalkyl (meth)acrylate-based polymers with improved low temperature properties
EP4321602A1 (de) 2022-08-10 2024-02-14 Evonik Operations GmbH Schwefelfreie polyalkyl(meth)acrylat-copolymere als viskositätsindexverbesserer in schmiermitteln

Also Published As

Publication number Publication date
JP5376946B2 (ja) 2013-12-25
MX2007014961A (es) 2008-04-02
ATE541874T1 (de) 2012-02-15
DE102005031244A1 (de) 2007-02-15
CN101142244B (zh) 2011-01-12
CN101142244A (zh) 2008-03-12
KR20080031225A (ko) 2008-04-08
CA2606615A1 (en) 2007-01-11
JP2008546894A (ja) 2008-12-25
EP1899393B1 (de) 2012-01-18
BRPI0612884B1 (pt) 2019-06-18
BRPI0612884A2 (pt) 2010-12-07
US8067349B2 (en) 2011-11-29
EP1899393A1 (de) 2008-03-19
US20080194443A1 (en) 2008-08-14
KR101317068B1 (ko) 2013-10-15
CA2606615C (en) 2013-12-17

Similar Documents

Publication Publication Date Title
EP1899393B1 (de) Öllösliche kammpolymere
EP2164885B1 (de) Verwendung von kammpolymeren zur verringerung des kraftstoffverbrauchs
EP1919961B1 (de) Öllösliche polymere
EP2598619B1 (de) Polyalkyl(meth)acrylat zur verbesserung von schmieröleigenschaften
WO2014170169A1 (de) Getriebeölformulierung zur verringerung des kraftstoffverbrauchs
DE102009001447A1 (de) Verwendung von Kammpolymeren zur Verbesserung des Lasttragevermögens
EP2406360A1 (de) Verwendung von kammpolymeren als antifatigue-additive
EP1608726A1 (de) Schmier lzusammensetzung mit guten reibeigenschaften
DE102007032120A1 (de) Verwendung von Kammpolymeren zur Verringerung des Kraftstoffverbrauchs
EP1776390A1 (de) Verfahren zur radikalischen polymerisation ethylenisch-ungesättigter verbindungen
DE102007046223A1 (de) Verwendung von Kammpolymeren zur Verringerung des Kraftstoffverbrauchs
EP3597681A1 (de) Vinylbasiertes und kammartiges copolymer
CN115485354B (zh) 分散剂聚(甲基)丙烯酸烷基酯聚合物的制备方法
CN115461433B (zh) 聚(甲基)丙烯酸烷基酯聚合物的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006724151

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680008828.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11909171

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2606615

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/014961

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2008518648

Country of ref document: JP

Ref document number: 1020077030884

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2006724151

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0612884

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071228