WO2018000804A1 - 一种梯度共聚物、其制造方法及其应用 - Google Patents

一种梯度共聚物、其制造方法及其应用 Download PDF

Info

Publication number
WO2018000804A1
WO2018000804A1 PCT/CN2017/000409 CN2017000409W WO2018000804A1 WO 2018000804 A1 WO2018000804 A1 WO 2018000804A1 CN 2017000409 W CN2017000409 W CN 2017000409W WO 2018000804 A1 WO2018000804 A1 WO 2018000804A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
linear alkyl
acrylate
formula
group
Prior art date
Application number
PCT/CN2017/000409
Other languages
English (en)
French (fr)
Inventor
张耀
段庆华
魏克成
刘依农
孙洪伟
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to US16/313,869 priority Critical patent/US11028334B2/en
Priority to JP2018568254A priority patent/JP7502847B2/ja
Priority to RU2019102042A priority patent/RU2737432C2/ru
Priority to EP17818805.8A priority patent/EP3476873B1/en
Priority to KR1020197002659A priority patent/KR102380697B1/ko
Priority to SG11201811787QA priority patent/SG11201811787QA/en
Publication of WO2018000804A1 publication Critical patent/WO2018000804A1/zh
Priority to ZA2019/00147A priority patent/ZA201900147B/en
Priority to JP2022063540A priority patent/JP7504148B2/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1812C12-(meth)acrylate, e.g. lauryl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/041Mixtures of base-materials and additives the additives being macromolecular compounds only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1818C13or longer chain (meth)acrylate, e.g. stearyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/003Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index

Definitions

  • the present invention relates to the field of polymers, and in particular to a gradient copolymer.
  • the invention also relates to a method and application of the gradient copolymer.
  • the base oil is an extremely complex mixture of alkanes of different structures, wherein normal paraffins and isoparaffins having a lower degree of branching have good viscosity-temperature properties, but are easily crystallized at low temperatures.
  • the wax crystal network is precipitated and formed, thereby causing the fluidity of the base oil to gradually deteriorate as the temperature is lowered.
  • CN106520261A discloses a lubricating oil pour point depressant composition, which is composed of a poly- ⁇ -olefin type pour point depressant and a fumarate type pour point depressant, wherein a poly- ⁇ -olefin type pour point depressant and a fumarate type pour point depressant.
  • the mass ratio of the agent is 3:1-5.
  • the inventors have diligently studied and found a novel gradient copolymer, and have also found that the gradient copolymer is particularly suitable for use as a pour point depressant, and thus completed the present invention.
  • the present invention relates at least to the following aspects:
  • a gradient copolymer comprising or consisting of n polymer components, wherein the n polymer components each independently represent a monomer of formula (I) a polymer (particularly a radical addition polymer) and/or a mixture thereof, or the n polymer components each independently comprise one or more structural units or basic formulas represented by formula (I-1) It is composed of one or more structural units represented by the formula (I-1), and the symbol n represents an integer within the closed interval [5, ⁇ ], preferably represents an integer within the closed interval [8, ⁇ ],
  • a method for producing a gradient copolymer comprising the steps of adding at least two monomers to a polymerization reaction system to cause an addition copolymerization reaction (particularly a radical addition copolymerization reaction) of the at least two monomers, wherein the at least two monomers each independently represent a compound of the formula (I) and/or a mixture thereof,
  • the initial time of adding the at least two monomers to the polymerization reaction system is t 0
  • the termination time is t m
  • the symbol m represents an integer within the closed interval [5, ⁇ ]
  • the relative proportions of the at least two monomers added to the polymerization reaction system are such that the NMR side chain of the mixture of the at least two monomers in the relative proportions
  • the average number of carbon atoms X x satisfies the following relationship
  • the symbol x represents an arbitrary integer from 0 to m.
  • a method for producing a gradient copolymer comprising the step of mixing p polymer components, wherein the p polymer components each independently represent an addition polymer of a monomer represented by the formula (I) (particularly Is a radical addition polymer) and/or a mixture thereof, or the p polymer components each independently comprise one or more structural units represented by formula (I-1) or consist essentially of one or A plurality of structural units represented by the formula (I-1), the symbol p is an integer from 5 to 10000, preferably an integer from 8 to 5000, or an integer from 5 to 20.
  • a method for controlling a copolymerization reaction which is an addition copolymerization reaction (particularly a radical addition copolymerization reaction) in which at least two monomers are added to a polymerization reaction system, wherein the at least The two monomers each independently represent a compound of the formula (I) and/or a mixture thereof,
  • the initial time of adding the at least two monomers to the polymerization reaction system is t 0
  • the termination time is t m
  • the symbol m represents an integer within the closed interval [5, ⁇ ], preferably represents an integer within the closed interval [8, ⁇ ]
  • the control method includes adjusting a relative proportion of the at least two monomers added to the polymerization reaction system at any monomer addition time t x such that the mixture consists of the at least two monomers in the relative proportion
  • the NMR method side chain average carbon number X x satisfies the following relationship, the symbol x represents an arbitrary integer from 0 to m,
  • the group R 1 represents H or Preferably represents H,
  • the group R 2 represents H or a C1-4 straight or branched alkyl group, preferably representing H or methyl,
  • the symbol a represents 0 or 1, preferably represents 1,
  • the group R' represents H or a group R 3 , preferably represents a group R 3 ,
  • the group R 3 represents a C 1 -C 30 straight or branched alkyl group, preferably a C 6 -C 24 straight or branched alkyl group, more preferably a C 6 -C 20 linear alkyl group.
  • the invention also relates in various other aspects to the various applications of the gradient copolymers.
  • Fig. 1 is a nuclear magnetic spectrum of a methacrylate polymer according to an embodiment of the present invention.
  • an excellent lubricating oil depressing effect can be achieved.
  • the gradient copolymer according to the present invention in one embodiment, exhibits a broad set of pour point depressing suitability for lubricating base oils.
  • the various technical effects described above can be simultaneously achieved.
  • (meth)acrylic acid means acrylic acid or methacrylic acid.
  • the expression “at least two”, “two or more” or the like, or the expression “multiple” or the like thereof, unless otherwise specified, generally means It is 2 or more, such as from 2 to 15, or from 3 to 10, such as from 5 to 8.
  • the number average molecular weight Mn and the molecular weight distribution Mw/Mn are determined by gel permeation chromatography (GPC), unless otherwise specified.
  • the gel permeation chromatography (GPC) is measured under the following conditions: the measuring instrument is a Model 1515 gel permeation chromatograph manufactured by Waters, USA; the detector is a Waters 2414 Refractive Index Detector; the solvent used in the standard is configured. Chromatographically pure tetrahydrofuran manufactured by Acros; the column is supplied by Waters and is connected in series with 3 different pore size silica gel columns.
  • the gradient copolymer may comprise or consist of n polymer components, preferably consisting of the n polymer components.
  • the gradient copolymer is actually an intermolecular gradient copolymer comprising or presenting as a mixture of the n polymer components.
  • the n polymer components each independently represent an addition polymer of a monomer of formula (I) (hereinafter referred to as polymer A), in particular a free radical addition polymer.
  • the polymer A may be a homopolymer of a single monomer of the formula (I), or a copolymer of two or more of the monomers of the formula (I).
  • Specific examples of the copolymer include a random copolymer, a block copolymer, an alternating copolymer, and the like.
  • a mixture of two or more of these polymers A may also be used as the polymer component.
  • one or more of the n polymer components may also represent a mixture of two or more of the polymers A.
  • the polymer A or the n polymer components each independently comprise one or more structural units represented by the formula (I-1) (hereinafter sometimes simply referred to as specific structural units) Or consist essentially of one or more of the specific structural units.
  • the structural unit represented by the formula (I-1) is derived from the monomer represented by the formula (I).
  • substantially means 85% or more, preferably 90% or more, more preferably 95% or more in terms of moles.
  • the remainder of these polymer structures may be other structural units or end groups other than the specific structural unit, but are generally end groups, specifically Such as initiator residues and the like.
  • the number average molecular weights Mn of the n kinds of polymer components are each independently from 10,000 to 1,000,000, preferably from 10,000 to 500,000, more preferably from 10,000 to 100,000.
  • the molecular weight distribution Mw/Mn of the n polymer components are each independently from 1.8 to 3.5, preferably from 1.9 to 3.3.
  • the gradient copolymer or the polymer A has a number average molecular weight Mn of from 10,000 to 1,000,000, preferably from 10,000 to 500,000, more preferably from 10,000 to 100,000.
  • the gradient copolymer or the polymer A has a molecular weight distribution Mw/Mn of from 1.8 to 3.5, preferably from 1.9 to 3.3.
  • the group R 1 represents H or It preferably represents H.
  • the group R' represents H or a group R 3 , preferably represents a group R 3 .
  • the group R 2 represents H or C 1-4 straight or branched alkyl, preferably H or methyl.
  • the symbol a represents 0 or 1, preferably represents 1.
  • the group R 3 represents a C 1 -C 30 straight or branched alkyl group, preferably a C 6 -C 24 straight chain or branch
  • the alkyl group more preferably represents a C 6 - C 20 linear alkyl group or a C 8 - C 24 linear alkyl group.
  • the group R 3 represents a C 10 -C 18 straight chain or branch for the polymer A or one or more of the n polymer components.
  • the proportion of the specific structural unit of the alkyl group to the total structural unit constituting these polymers is generally from 40% to 95%, preferably from 55% to 95%.
  • a mono-C 1 -C 30 linear or branched alkyl ester of fumaric acid or a di C 1 -fumaric acid may be mentioned.
  • a C 30 linear or branched alkyl ester, a C 3 -C 30 linear or branched ⁇ -olefin, and a C 1 -C 30 linear or branched alkyl ester of (meth)acrylic acid more specifically, for example, a mono C 8 -C 24 linear or branched alkyl ester of fumaric acid, a di C 8 -C 24 linear or branched alkyl ester of fumaric acid, a C 6 -C 20 linear or branched alpha olefin and a C 6 -C 20 linear or branched alkyl ester of (meth)acrylic acid, more specifically, for example, a mono C 8 -C 24 linear alkyl ester of fumaric acid and a di C 8 -C 24 fumaric acid Alkyl esters, C 6 -C 20 linear alpha-olefins and C 6 -C 20 linear alkyl (meth)acrylates. These monomers may be used alone or
  • the fumaric acid mono C 8 -C 24 straight or branched chain alkyl esters particularly such as fumaric acid mono C. 8 include linear alkyl fumarate, mono-C 10 linear alkyl ester, fumaric acid mono C 12 linear alkyl ester, fumaric acid mono C 14 linear alkyl ester, fumaric acid mono C 16 linear alkyl ester, fumaric acid mono C 18 straight Alkyl esters, fumaric acid mono C 20 linear alkyl esters, fumaric acid mono C 22 linear alkyl esters and fumaric acid mono C 24 linear alkyl esters.
  • These fumaric acid mono C 8 -C 24 linear or branched alkyl esters may be used alone or in combination of any ones in any ratio.
  • di-C 8 -C 24 linear or branched alkyl ester of fumaric acid specifically, for example, a di-C 8 linear alkyl fumarate or a fumaric acid di C can be mentioned.
  • 10 linear alkyl esters di-C 12 linear alkyl esters of fumaric acid, di-C 14 linear alkyl esters of fumaric acid, di-C 16 linear alkyl esters of fumaric acid, di C 18 straight fumarate Alkyl esters, di-C 20 linear alkyl esters of fumaric acid, di-C 22 linear alkyl esters of fumaric acid and di-C 24 linear alkyl esters of fumaric acid.
  • These di-C 8 -C 24 linear or branched alkyl esters of fumaric acid may be used singly or in combination of plural kinds in any ratio.
  • the C 6 -C 20 linear or branched ⁇ -olefin specifically, for example, 1-hexene, 1-octene, 1-decene, 1-dodecene can be mentioned. , 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene.
  • These C 6 -C 20 linear or branched ⁇ -olefins may be used alone or in combination of any ones in any ratio.
  • the C 6 -C 20 linear or branched alkyl ester of (meth)acrylic acid specifically, for example, a C 6 linear alkyl (meth)acrylate, (methyl) a C 8 linear alkyl ester of acrylic acid, a C 10 linear alkyl (meth)acrylate, a C 12 linear alkyl (meth)acrylate, a C 14 linear alkyl (meth)acrylate, A methyl C 16 linear alkyl ester, a C 18 linear alkyl (meth) acrylate, and a C 20 linear alkyl (meth) acrylate.
  • These C 6 -C 20 linear or branched alkyl esters of (meth)acrylic acid may be used singly or in combination of plural kinds in any ratio.
  • a C 6 linear alkyl (meth)acrylate may be used in combination, (methyl) C 8 linear alkyl ester of acrylic acid, C 10 linear alkyl (meth)acrylate, C 12 linear alkyl (meth)acrylate, C 14 linear alkyl (meth)acrylate, (A) Two or more of C 16 linear alkyl esters of acrylic acid and C 18 linear alkyl (meth)acrylates, or a combination of C 8 linear alkyl (meth)acrylates, (methyl) a C 10 linear alkyl ester of acrylic acid, a C 12 linear alkyl (meth)acrylate, a C 14 linear alkyl (meth)acrylate, a C 16 linear alkyl (meth)acrylate, Two or more of a C 18 linear alkyl ester of methyl)acrylic acid and a C 20 linear alkyl
  • the nuclear magnetic resonance side chain average carbon number of the i-th polymer component (hereinafter sometimes referred to simply as the side chain average carbon number) is X i , and the symbol i represents an arbitrary integer from 1 to n.
  • the following relationship is established. It can be seen from the following relationship that the n kinds of polymer components are different in structure and/or composition from each other, and the difference is at least represented by different side chain average carbon numbers.
  • side chain refers specifically to the group R 3 in the formula (I) or the formula (I-1).
  • the expression "the average number of carbon atoms in the side chain of the nuclear magnetic resonance method” or the “average carbon number in the side chain” means the average of the groups R 3 of the target substance obtained by the nuclear magnetic resonance analysis method described below. The number of carbon atoms.
  • the target substance may comprise a plurality of the structural units represented by the formula (I-1) in which the group R 3 is different (particularly, the number of alkyl carbon atoms thereof is different) (or the formula) (I) the monomers shown), and the relative proportions of these structural units (or monomers) may also be different for different target substances. Therefore, in general, the number of carbon atoms of the group R 3 contained in the target substance is suitably described by an average value.
  • the side chain average carbon number X can reflect not only the structural unit represented by the formula (I-1) in the target substance (or the monomer represented by the formula (I)) The number of species, but also reflects the relative proportions between these different types of structural units (or monomers).
  • operating temperature is room temperature
  • scanning times nt 1000
  • chemical displacement calibration ⁇ tetramethylsilane 0
  • decoupling mode dm nny (reverse gated decoupling), heavy water lock field.
  • Analytical step 1 H-NMR characterization of the sample, and the average carbon number X of the side chain of the sample was calculated by analyzing the corresponding nuclear magnetic resonance spectrum.
  • Analytical step 1 H-NMR characterization of the sample, and the average carbon number X of the side chain of the sample was calculated by analyzing the corresponding nuclear magnetic resonance spectrum.
  • the target substance in performing the nuclear magnetic resonance analytical method, may be a single substance, including a pure substance or a homogeneous composition, such as a certain polymer component, and a plurality of polymerizations. a homogeneous mixture of components, a monomer, a homogeneous mixture of a plurality of monomers, a gradient copolymer or a homogeneous mixture of a plurality of gradient copolymers, directly using the target material The sample can be characterized and analyzed accordingly.
  • the target substance may be a plurality of independently present substances, such as the n kinds of polymer components, as described above in the specification, the polymer components are in separate states from each other, and Not premixed together to form a single substance, or at least two monomers added to the polymerization reaction system at the time of addition of a certain monomer, as will be described later in the specification, which monomers are added in the monomer At the moment, it is likely that they are in separate states (for example, by separately adding to the polymerization system), and are not previously mixed together to become a single substance. Therefore, if the target substance is a plurality of substances independently present, the sample required for the nuclear magnetic resonance analysis method can be prepared in accordance with the sample preparation step as follows before performing the nuclear magnetic resonance analysis method.
  • Sample preparation step The plurality of independently present substances are mixed in a predetermined ratio until uniform, a mixture is obtained, and then the mixture is used as a sample.
  • the predetermined ratio refers to the fact that when the plurality of independently present substances are assumed to be in a state of being mixed with each other, these substances are used as the mixture (hypothetical mixture).
  • the so-called predetermined ratio refers to the relative proportion of these polymer components in the gradient copolymer comprising or consisting thereof; or, for the at least For the two monomers, the predetermined ratio refers to the relative proportion of the at least two monomers added to the polymerization reaction system at the time of the monomer addition.
  • the gradient copolymer has a side chain average carbon number X of generally from 5 to 20, preferably from 11.5 to 17, preferably from 11.5 to 16.2, more preferably from 12.2 to 15.7, more preferably from 12.2 to 15.5.
  • the side chain average carbon number X of the n polymer components is generally from 5 to 20, preferably from 11.5 to 17, preferably from 11.5 to 16.2, more preferably from 12.2 to 15.7, more preferably From 12.2 to 15.5.
  • the symbol n represents an integer within the closed interval [5, ⁇ ], preferably an integer within the closed interval [8, ⁇ ].
  • the symbol n represents an integer, and the lower limit may be 5 or 8, or may be 10 or 20.
  • the upper limit of the integer represented by the symbol n may be ⁇ , or may be 20,000, 10000, 5000, 1000, 500, 200, 100 or 50.
  • the greater the value of the integer represented by the symbol n the more the type of polymer component the gradient copolymer contains.
  • the state in which the gradient copolymer comprises the n polymer components can be confirmed and identified by gel permeation chromatography (see corresponding description below in this specification).
  • the number n of the polymer components corresponds to the number n of the effluent or split components referred to by the gel permeation chromatography resolution.
  • the larger the value of the integer represented by the symbol n not only indicates that the gradient copolymer contains more kinds of polymer components, but also indicates that the gel permeation chromatography method is used. The number of segments of effluent or split components is also greater.
  • n When the value of the integer represented by the symbol n is sufficiently large, for example, when the upper limit value reaches ⁇ , of course, this does not mean that the upper limit value actually reaches ⁇ in the numerical value, but means that the n kinds of aggregates
  • the difference in structure and/or composition between the components of the components has reached a level of continuous or stepless smoothing, which also means that the gel penetrates.
  • the value of the average carbon number X of the side chain exhibits an incremental change from X 1 to X n , such as a gradual incremental change or a linear incremental change.
  • the present invention does not particularly limit the incremental magnitude (also referred to as the step size) between any two adjacent Xs in the incremental change, as long as it is considered by those skilled in the art that the effective increment has been achieved.
  • the incremental change may be an incremental increase in equal steps, or may be an incremental change in unequal steps, and is not particularly limited.
  • the step size it is generally, for example, any value ranging from 0.01 to 4.00, or any value ranging from 0.05 to 1.5, but the present invention is not limited thereto.
  • X 1 it represents the starting point and the minimum value of the entire incremental change, such as any value in the range from 6.5 to 12.5, or in the range from 7.8 to 12.0. Any value, but the invention is not limited thereto.
  • X n it represents the end point and the maximum value of the entire incremental change, such as any value ranging from 13.8 to 19.5, or any value ranging from 14.5 to 18.2, but The invention is not limited to this.
  • the weight percentage of the i-th polymer component to the total weight of the n polymer components (or the gradient copolymer) (hereinafter sometimes referred to simply as the component ratio) is Y i
  • the symbol i represents an arbitrary integer from 1 to n, and the following relation holds.
  • the value of the composition ratio Y exhibits an incremental change from Y 1 to Y j , such as a gradually increasing change or a linear incremental change.
  • the present invention does not particularly limit the incremental magnitude (also referred to as the step size) between any two adjacent Ys in the incremental change, as long as it is considered by those skilled in the art that the effective increment has been achieved.
  • the incremental change may be an incremental increase in equal steps, or may be an incremental change in unequal steps, and is not particularly limited.
  • the step size it is generally, for example, any value ranging from 0.05% to 20%, or any value ranging from 0.1% to 5%, but the present invention is not limited thereto.
  • the Y 1 it represents the starting point and the minimum value of the entire incremental change, such as any value ranging from 0.01% to 20%, or from 0.1% to 10 Any value within the range of %, but the invention is not limited thereto.
  • the Y j it represents the end point and the maximum value of the entire incremental change, such as any value ranging from 20% to 75%, or from 25% to 65%. A value, but the invention is not limited thereto.
  • the value of the component ratio Y from Y j to Y n exhibits a decreasing change, such as a gradual decreasing change or a linear decreasing change.
  • the present invention does not particularly limit the decreasing amplitude (also referred to as the step size) between any adjacent two Ys in the decreasing variation, as long as it is considered by those skilled in the art that the effective decrement has been achieved.
  • the degressive change may be an equal step change or a unequal step change, and is not particularly limited.
  • the step size it is generally, for example, any value ranging from 0.05% to 20%, or any value ranging from 0.1% to 5%, but the present invention is not limited thereto.
  • Yj represents the starting point and the maximum value of the entire said decreasing change, such as any value ranging from 20% to 75%, Or any value ranging from 25% to 65%, but the invention is not limited thereto.
  • Y n represents the end point and the minimum value of the entire said decreasing change, and may be, for example, any value ranging from 0.01% to 20%, or from 0.1% to 10%. A value, but the invention is not limited thereto.
  • the Y n and the Y 1 may be the same or different, and are not particularly limited.
  • the value of the composition ratio Y from Y 1 to Y n exhibits a distribution state of low intermediate height on both sides, very similar to a Gaussian distribution. Therefore, according to an embodiment of the present invention, in an ideal state, the value of the component ratio Y is taken as the ordinate, the value of the side chain average carbon number X is taken as the abscissa, and from the first polymer group.
  • the fraction is changed to the nth polymer component
  • the relationship between the two conforms to or substantially conforms to the Gaussian distribution, as shown, for example, in the formula (IV).
  • substantially conforming means that the relationship between the two is slightly deviated from the Gaussian distribution shown in the formula (IV), but the deviation is within the range acceptable to those skilled in the art.
  • the symbol ⁇ represents any one of the values in the open interval (12.5, 14.2), preferably represents any one of the values in the open interval (12.6, 13.8), and the symbol ⁇ represents Open any value within the interval (0.5, 2).
  • is the pi, which can generally be 3.141592654 or 3.14.
  • e is a natural constant and can generally be 2.718281828 or 2.72.
  • the gradient copolymer can be made by one or more of the following manufacturing methods.
  • any content not specifically or specifically described for the manufacturing method such as the type of reactor, the manner of use of various additives, the pretreatment of the feed, the separation of the reaction products, etc. You can directly refer to the corresponding content known in the art.
  • the manufacturing method comprises the step of adding at least two monomers to the polymerization reaction system to cause an addition copolymerization reaction of the at least two monomers.
  • the manufacturing method is sometimes referred to as manufacturing method A.
  • the term "at least two monomers” may refer to at least two monomer compounds, and may also refer to at least two monomer mixtures, wherein the monomer mixture comprises two or more monomers. A compound, and may also refer to a combination thereof. It can thus be seen that one or more of the at least two monomers can sometimes also be present as a mixture of monomers.
  • the term "monomer”, unless otherwise stated, includes in its meaning monomeric compounds and monomer mixtures.
  • the at least two monomers are added to the polymerization reaction system.
  • the two monomers are generally added synchronously to the polymerization reaction system, that is, the two monomers simultaneously start to be added to the polymerization reaction system, and at the same time, the addition is terminated.
  • the two monomers may be separately added to the polymerization reaction system in a predetermined ratio, or may be mixed with each other in a predetermined ratio to form a monomer. The mixture is added to the polymerization reaction system, and is not particularly limited.
  • the addition is usually a continuous addition, but it may also be carried out in stages or intermittently at predetermined time intervals depending on the case, wherein continuous addition is preferred.
  • these monomers may be added to the polymerization reaction system in a manner similar to the case of the two monomers.
  • the type of the monomer exceeds two types, for example, the monomer A, the monomer B, and the monomer C, the monomer is added in a manner similar to the case of the two monomers.
  • one possible way of adding includes: monomer A and monomer B start to simultaneously add to the polymerization reaction system, and then at a certain moment, the addition of monomer B is terminated, and the addition is started at this moment. Monomer C, and finally the simultaneous addition of monomer A and monomer C.
  • the three monomers may be added separately as three feeds, or may be mixed as a monomer mixture and then added as a feed, or two of them may be mixed into a monomer mixture, and then with a third monomer. It is added separately as two kinds of feeds, and is not specifically limited.
  • these monomers may be added to the polymerization reaction system in a manner similar to the case of the three monomers, or may be thought of by those skilled in the art.
  • the addition of these monomers in various other monomer addition manners is not particularly limited.
  • one possible other monomer addition manner includes: monomer A and The monomer B is simultaneously added to the polymerization reaction system, and then at a certain moment, the addition of the monomer A and the monomer B is terminated, and at the same time, the addition of the monomer C and the monomer D is started simultaneously, and finally the addition of the single is terminated. Body C and monomer D.
  • the at least two monomers are sometimes added to the polymerization reaction system in the form of a feed mixture.
  • a solvent, a diluent, an initiator, a molecular weight modifier, a polymerization catalyst, and the like may be further contained as needed for the addition copolymerization reaction.
  • One or more additives conventionally used. Moreover, the kind and amount of these additives can be referred to the related requirements of the prior art, and the present invention is not particularly limited thereto.
  • the at least two monomers undergo addition copolymerization of a carbon-carbon double bond, particularly a radical addition copolymerization reaction, to obtain a gradient copolymer.
  • the gradient copolymer comprises the gradient copolymer of the invention described in various aspects of the specification.
  • the reaction temperature of the addition copolymerization reaction is generally from 50 ° C to 180 ° C, preferably from 55 ° C to 165 ° C, more preferably from 60 ° C to 150 ° C.
  • the reaction time of the addition copolymerization reaction is generally from 1 hour to 24 hours, preferably from 1.5 hours to 20 hours.
  • the addition copolymerization reaction may be carried out in any of bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, or the like, preferably solution polymerization.
  • the addition copolymerization reaction may sometimes be continued for 0.5 to 2 hours after the end of the monomer addition, or may be further added as needed.
  • the agent, the polymerization catalyst or the diluent, etc. the temperature of the polymerization reaction system is raised to 100 to 150 ° C, and the reaction is further continued for 0.5 to 5 hours.
  • the initiator those conventionally used in the art, particularly a radical polymerization initiator, may be used without particular limitation.
  • the initiator include an azo initiator, a peroxide initiator, and a redox initiator.
  • Specific examples of the azo initiator include dimethyl azobisisobutyrate, azobisisobutyl hydrazine hydrochloride, azodicarbonamide, and azodiisopropylimidazolium hydrochloride.
  • peroxide-based initiator examples include hydrogen peroxide, ammonium persulfate, sodium persulfate, potassium persulfate, lauroyl peroxide, t-butyl hydroperoxide, and dicumyl peroxide.
  • Di-tert-butyl peroxide benzoyl peroxide, t-butyl peroxybenzoate, t-butyl peroxypivalate, cyclohexanone peroxide, methyl ethyl ketone peroxide, diisopropyl peroxydicarbonate.
  • Specific examples of the redox initiator include sulfate-sulfite, persulfate-thiourea, persulfate-organic salt, and ammonium persulfate-fatty amine. These initiators may be used alone or in combination of any ones in any ratio.
  • the amount of the initiator to be used in the present invention is not particularly limited, and those conventionally known in the art can be applied, for example, as the total amount of the initiator in the entire addition copolymerization reaction, generally 0.01 to 2.5.
  • the parts by weight are preferably 0.05 to 2 parts by weight, more preferably 0.1 to 1.5 parts by weight, based on 100 parts by weight of the total amount of the monomers.
  • the diluent those conventionally used in the art, particularly a diluent oil, may be used without particular limitation.
  • the diluent oil include diesel oil, kerosene, mineral spirits, aromatic hydrocarbon solvents, white oil, and mineral oil base.
  • a base oil or a synthetic oil preferably a white oil, a mineral oil base oil or a synthetic oil, preferably a mineral base oil.
  • the diluent oil may be commercially available, for example, it may be a diluent oil available from Ssangyong Corporation under the designation 100N.
  • the diluent oil may or may not be separated from the gradient copolymer after the completion of the addition copolymerization reaction.
  • diluent oils may be used alone or in combination of any ones in any ratio.
  • the amount of the diluent oil to be used in the present invention is not particularly limited, and those conventionally known in the art can be applied, for example, as the total amount of the diluent oil in the entire addition copolymerization reaction, generally 10-150.
  • the parts by weight are preferably 50-100 parts by weight, more preferably 60-80 parts by weight, based on 100 parts by weight of the total amount of the monomers.
  • the molecular weight modifier those conventionally used in the art can be used without particular limitation.
  • Specific examples of the molecular weight modifier include dodecyl mercaptan or 2-mercaptoethanol. These molecular weight modifiers may be used alone or in combination of any ones in any ratio. Further, the amount of the molecular weight modifier to be used in the present invention is not particularly limited, and those conventionally known in the art can be applied.
  • the polymerization catalyst those conventionally used in the art can be used without particular limitation.
  • the polymerization catalyst include a radical polymerization catalyst, particularly a Ziegler-Natta catalyst. These polymerization catalysts may be used alone or in combination of any ones in any ratio. Further, the amount of the polymerization catalyst used in the present invention is not particularly limited, and those conventionally known in the art can be applied.
  • the addition copolymerization reaction is generally carried out in an inert atmosphere.
  • the inert atmosphere refers to an inert gas atmosphere which does not chemically react with reactants and products.
  • the inert gas include nitrogen gas, an inert gas, and the like.
  • a method of maintaining the inert atmosphere for example, a method of continuously introducing the inert gas into the polymerization reaction system can be mentioned.
  • the at least two monomers each independently represent a compound of formula (I).
  • one or more of the at least two monomers may also sometimes be present as a mixture of monomers.
  • the two or more monomer compounds contained in the monomer mixture each independently represent a compound represented by the formula (I).
  • the group R 1 represents H or It preferably represents H.
  • the group R' represents H or a group R 3 , preferably represents a group R 3 .
  • the group R 2 represents H or C 1-4 straight or branched alkyl, preferably H or methyl.
  • the symbol a represents 0 or 1, preferably represents 1.
  • the group R 3 represents a C 1 -C 30 straight or branched alkyl group, preferably a C 6 -C 24 straight or branched alkyl group, more preferably represents C 6 -C 20 linear alkyl or C 8 -C 24 linear alkyl.
  • the compound represented by the formula (I) wherein the group R 3 represents a C 10 -C 18 linear or branched alkyl group accounts for the total amount of monomers (the at least two The proportion (in terms of moles) of the total amount of monomers is generally from 40% to 95%, preferably from 55% to 95%.
  • specific examples of the compound represented by the formula (I) include a mono-C 1 -C 30 linear or branched alkyl ester of fumaric acid and a di C 1 -C fumaric acid.
  • 30 linear or branched alkyl ester, C 3 -C 30 linear or branched ⁇ -olefin and (meth)acrylic C 1 -C 30 linear or branched alkyl ester more specifically, for example, rich Mono C 8 -C 24 linear or branched alkyl esters of horse acid, di-C 8 -C 24 linear or branched alkyl esters of fumaric acid, C 6 -C 20 linear or branched ⁇ -olefins and Methyl)acrylic acid C 6 -C 20 linear or branched alkyl ester, more specifically, for example, fumaric acid mono C 8 -C 24 linear alkyl ester, fumaric acid di C 8 -C 24 linear chain Alkyl esters,
  • the fumaric acid mono C 8 -C 24 straight or branched chain alkyl esters particularly such as fumaric acid mono C. 8 include linear alkyl fumarate, mono-C 10 linear alkyl ester, fumaric acid mono C 12 linear alkyl ester, fumaric acid mono C 14 linear alkyl ester, fumaric acid mono C 16 linear alkyl ester, fumaric acid mono C 18 straight Alkyl esters, fumaric acid mono C 20 linear alkyl esters, fumaric acid mono C 22 linear alkyl esters and fumaric acid mono C 24 linear alkyl esters.
  • These fumaric acid mono C 8 -C 24 linear or branched alkyl esters may be used alone or in combination of any ones in any ratio.
  • di-C 8 -C 24 linear or branched alkyl ester of fumaric acid specifically, for example, a di-C 8 linear alkyl fumarate or a fumaric acid di C can be mentioned.
  • 10 linear alkyl esters di-C 12 linear alkyl esters of fumaric acid, di-C 14 linear alkyl esters of fumaric acid, di-C 16 linear alkyl esters of fumaric acid, di C 18 straight fumarate Alkyl esters, di-C 20 linear alkyl esters of fumaric acid, di-C 22 linear alkyl esters of fumaric acid and di-C 24 linear alkyl esters of fumaric acid.
  • These di-C 8 -C 24 linear or branched alkyl esters of fumaric acid may be used singly or in combination of plural kinds in any ratio.
  • the C 6 -C 20 linear or branched ⁇ -olefin specifically, for example, 1-hexene, 1-octene, 1-decene, 1-dodecene can be mentioned. , 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene.
  • These C 6 -C 20 linear or branched ⁇ -olefins may be used alone or in combination of any ones in any ratio.
  • the C 6 -C 20 linear or branched alkyl ester of (meth)acrylic acid specifically, for example, a C 6 linear alkyl (meth)acrylate, (methyl) a C 8 linear alkyl ester of acrylic acid, a C 10 linear alkyl (meth)acrylate, a C 12 linear alkyl (meth)acrylate, a C 14 linear alkyl (meth)acrylate, A methyl C 16 linear alkyl ester, a C 18 linear alkyl (meth) acrylate, and a C 20 linear alkyl (meth) acrylate.
  • These C 6 -C 20 linear or branched alkyl esters of (meth)acrylic acid may be used singly or in combination of plural kinds in any ratio.
  • a C 6 linear alkyl (meth)acrylate may be used in combination, (methyl) C 8 linear alkyl ester of acrylic acid, C 10 linear alkyl (meth)acrylate, C 12 linear alkyl (meth)acrylate, C 14 linear alkyl (meth)acrylate, (A) Two or more of C 16 linear alkyl esters of acrylic acid and C 18 linear alkyl (meth)acrylates, or a combination of C 8 linear alkyl (meth)acrylates, (methyl) a C 10 linear alkyl ester of acrylic acid, a C 12 linear alkyl (meth)acrylate, a C 14 linear alkyl (meth)acrylate, a C 16 linear alkyl (meth)acrylate, Two or more of a C 18 linear alkyl ester of methyl)acrylic acid and a C 20 linear alkyl
  • the compound of the formula (I) can be obtained commercially or can be produced by various methods known in the art.
  • the C 6 -C 20 linear or branched alkyl ester of (meth)acrylic acid can be esterified by (meth)acrylic acid with a C 6 -C 20 linear or branched alkanol.
  • the obtained product can also be obtained by transesterification of methyl (meth)acrylate with a C 6 -C 20 linear or branched alkanol, and is not particularly limited.
  • the initial time of adding the at least two monomers to the polymerization reaction system is t 0
  • the termination time is t m
  • the monomer addition time is generally shorter than the reaction time of the copolymerization reaction.
  • the monomer addition time is generally from 0.5 hours to 12 hours, preferably from 1 hour to 10 hours.
  • the average carbon number of the side chain of the at least two monomers is X x at any monomer addition time t x .
  • the following relationship is established.
  • the relative proportions of the at least two monomers added to the polymerization reaction system are such that the at least two monomers are formed according to the relative proportions (hypothesis)
  • the nuclear magnetic resonance method side chain average carbon number X x of the mixture satisfies the following relationship.
  • the symbol x represents an arbitrary integer from 0 to m.
  • the side chain average carbon number X x of the at least two monomers refers to a (hypothetical) mixture of the at least two monomers in a predetermined ratio.
  • the side chain average carbon number, wherein the predetermined ratio refers to the relative proportion of the at least two monomers added to the polymerization reaction system at any monomer addition time t x .
  • the relative proportion of the at least two monomers added to the polymerization reaction system at the monomer addition time t x is not particularly limited, and the relative ratio may be any value as long as It is sufficient that the side chain average carbon number X x of the hypothetical mixture satisfies the specification of the formula (V).
  • the at least two monomers represent two monomers, namely monomer A and monomer B, wherein the monomer A has a side chain average carbon number greater than the monomer B side chain average. Carbon number.
  • the addition amount of the monomer B may be maintained from the initial time t 0 to the termination time t m of the two monomers added to the polymerization reaction system. While gradually increasing the addition amount of the monomer A, or maintaining the addition amount of the monomer A unchanged, gradually reducing the addition amount of the monomer B, or changing both at the same time, as long as the monomer is made The amount of addition of B may be relatively reduced as compared with the amount of the monomer A added.
  • the amount of addition of the monomer A and the monomer B can be automatically adjusted by manual regulation or a program, so that the ratio of the addition amount of the monomer A and the monomer B is continuously changed, and the total addition amount is continuously changed.
  • the addition amount of the monomer B is maintained, and the number of the control points is manually set, and the monomer A is manually and continuously controlled in an intermittent manner.
  • the rate of addition is such that the amount of addition of the monomer B is relatively reduced as compared with the amount of addition of the monomer A.
  • the control program which is easy for the industry to develop and master. Through this control program, the rate of addition of the control unit A is continuously realized, thereby satisfying the formula (V).
  • the symbol m represents an integer within the closed interval [5, ⁇ ], preferably an integer within the closed interval [8, ⁇ ].
  • the symbol m represents an integer, and the lower limit thereof may be 5 or 8, or may be 10 or 20.
  • the upper limit of the integer represented by the symbol m may be ⁇ , or may be 20,000, 10000, 5000, 1000, 500, 200, 100 or 50.
  • the larger the value of the integer represented by the symbol m the more continuous the change of the adjacent two monomer addition timings, and the mean side chain average of the adjacent two monomer addition moments.
  • the value of the integer represented by the symbol m is sufficiently large, for example, when the upper limit value reaches ⁇ , of course, this does not mean that the upper limit value actually reaches ⁇ in the numerical value, but means that the single
  • the value of the average carbon number X of the side chain exhibits an incremental change from X 0 to X m , such as a gradually increasing change or a linear incremental change.
  • the present invention does not particularly limit the incremental magnitude (also referred to as the step size) between any two adjacent Xs in the incremental change, as long as it is considered by those skilled in the art that the effective increment has been achieved.
  • the incremental change may be an incremental increase in equal steps, or may be an incremental change in unequal steps, and is not particularly limited.
  • the step size it is generally, for example, any value ranging from 0.01 to 4.00, or any value ranging from 0.05 to 1.5, but the present invention is not limited thereto.
  • the X 0 represents the side chain average carbon of the at least two monomers at the initial time t 0 of the addition of the at least two monomers to the polymerization reaction system.
  • the number also represents the starting point and the minimum value of the entire incremental change, such as any value ranging from 6.5 to 12.5, or any value ranging from 7.8 to 12.0, but the invention is not limited thereto. .
  • the X m it represents the average number of side chains of the at least two monomers at the end time t m of the addition of the at least two monomers to the polymerization reaction system, and also represents the entire
  • the end point and maximum value of the incremental change may be, for example, any value ranging from 13.8 to 19.5, or any value ranging from 14.5 to 18.2, but the invention is not limited thereto.
  • the sum of the cumulative addition amounts of the at least two monomers to the polymerization reaction system during the monomer addition time t is G at the termination time t m of the monomer addition.
  • the sum of the addition amounts of the at least two monomers to the polymerization reaction system is G x , and the symbol x represents an arbitrary integer from 0 to m, and the following relationship holds.
  • the ratio G x /G is sometimes simply referred to as an additive amount ratio.
  • the symbol q represents the number of monomer species involved in the production method A, and may be, for example, any integer from 2 to 100 or any integer from 2 to 20, particularly an arbitrary integer from 2 to 5.
  • the individual addition amount (absolute value) of each monomer at the monomer addition timing t x to the polymerization reaction system is g s
  • the symbol s represents an arbitrary integer from 1 to q.
  • the sum of the separately added amounts is equal to the G x , and the ratio between the individual added amounts is the relative proportion of the at least two monomers added to the polymerization reaction system at the monomer addition time t x . .
  • the ratio between the individual added amounts is the relative proportion of the at least two monomers added to the polymerization reaction system at the monomer addition time t x .
  • V predetermined formula
  • the absolute value of each of the individual addition amounts of the at least two monomers is not particularly limited as long as the sum thereof reaches the G x and further causes the G x or the G x /G satisfies the specification of the formula (VI).
  • the at least two monomers represent two monomers, namely monomer A and monomer B, wherein the monomer A has a side chain average carbon number greater than the monomer B side chain average. Carbon number.
  • the two monomers are added to the polymerization reaction system.
  • the starting time t 0 to the monomer addition time t j maintaining the addition amount of the monomer B unchanged, and gradually increasing the addition amount of the monomer A, and then adding the time t j from the monomer to the
  • the termination time t m of the monomer addition gradually decreases the amount of the monomer B added while maintaining the addition amount of the monomer A unchanged.
  • the value of the addition amount ratio exhibits an incremental change from G 0 /G to G j /G, such as a gradually increasing change or a linear incremental change.
  • the present invention does not particularly limit the incremental magnitude (also referred to as the step size) between any two adjacent values in the incremental change, as long as it is considered by those skilled in the art that the effective increment has been achieved.
  • the incremental change may be an incremental increase in equal steps, or may be an incremental change in unequal steps, and is not particularly limited.
  • the step size it is generally, for example, any value ranging from 0.05% to 20%, or any value ranging from 0.1% to 5%, but the present invention is not limited thereto.
  • the addition amount ratio G 0 /G represents a starting time t 0 at which the at least two monomers are added to the polymerization reaction system, the at least two types
  • the ratio of the total (instantaneous) total addition amount of the body to the total addition amount G of the at least two monomers over the entire monomer addition time t also represents the starting point and the minimum value of the entire incremental change, such as It may be any value ranging from 0.01% to 20%, or any value ranging from 0.1% to 10%, but the invention is not limited thereto.
  • addition amount ratio G j /G it represents the ratio of the (instantaneous) total addition amount of the at least two monomers to the total addition amount G at the monomer addition timing t j , also represents the end point and maximum value of the entire incremental change, such as any value ranging from 20% to 75%, or any value ranging from 25% to 65%, but the present invention Not limited to this.
  • the value of the addition amount ratio exhibits a decreasing change from G j /G to G m /G, such as a gradual decreasing change or a linear decreasing change.
  • the present invention does not particularly limit the decreasing range (also referred to as the step size) between any two adjacent values in the decreasing variation, as long as it is considered by those skilled in the art that the effective decrement has been achieved.
  • the degressive change may be an equal step change or a unequal step change, and is not particularly limited.
  • the step size it is generally, for example, any value ranging from 0.05% to 20%, or any value ranging from 0.1% to 5%, but the present invention is not limited thereto.
  • the addition amount ratio G j /G represents the (instantaneous) total addition amount of the at least two monomers at the monomer addition timing t j with respect to the population
  • the ratio of the added amount G also represents the starting point and the maximum value of the entire said decreasing change, such as any value ranging from 20% to 75%, or any value ranging from 25% to 65%.
  • the invention is not limited thereto.
  • the addition amount ratio G m /G represents a termination time t m at which the at least two monomers are added to the polymerization reaction system, and the (instantaneous) total of the at least two monomers
  • the ratio of the added amount to the total additive amount G also represents the end point and the minimum value of the entire said decreasing change, such as any value ranging from 0.01% to 20%, or from 0.1% to 10%. Any value within the range of %, but the invention is not limited thereto.
  • the addition amount ratio G m /G and the addition amount ratio G 0 /G may be the same or different, and is not particularly limited.
  • the value of the addition amount ratio exhibits a distribution state of low intermediate high on both sides from G 0 /G to G m /G, which is very similar to a Gaussian distribution. Therefore, according to an embodiment of the present invention, in an ideal state, the value of the added amount ratio is taken as the ordinate, the value of the side chain average carbon number X is taken as the abscissa, and from the at least two types
  • the relationship between the two conforms to or substantially conforms to the Gaussian distribution.
  • substantially conforming means that the relationship between the two is slightly deviated from the Gaussian distribution shown in the formula (VII), but the deviation is within the range acceptable to those skilled in the art.
  • the symbol x represents an arbitrary integer from 0 to m
  • the symbol ⁇ represents any value within the open interval (12.5, 14.2), preferably representing an open interval (12.6, Any value within 13.8)
  • the symbol ⁇ represents any value within the open interval (0.5, 2).
  • is the pi, which can generally be 3.141592654 or 3.14.
  • e is a natural constant and can generally be 2.718281828 or 2.72.
  • the copolymerization reaction is an addition copolymerization reaction in which at least two monomers are added to a polymerization reaction system, particularly a radical addition copolymerization reaction.
  • the control method can be used to control or in particular to control the implementation of the manufacturing method A, any aspect, feature, scope or information relating to the control method, in addition to what is explicitly stated in the following aspects, The corresponding content of the manufacturing method A can be directly applied, and details are not described herein again.
  • the control method comprises adjusting a relative proportion of the at least two monomers added to the polymerization reaction system at any monomer addition time t x such that the at least two monomers are
  • the nuclear magnetic resonance method side chain average carbon number X x of the (imaginary) mixture of the relative proportions satisfies the following relationship, wherein the symbol x represents an arbitrary integer from 0 to m.
  • control method may further include adjusting a sum of G x of the addition amount of the at least two monomers at the monomer addition timing t x to the polymerization reaction system, such that the ratio is G x /G satisfies the steps of the following relationship.
  • the adjusting step or the control method can be implemented by any means known in the art, and specific examples thereof include a combination of a flow control valve and a PLC control circuit, and are not particularly limited.
  • the method of making the gradient copolymer comprises the step of mixing p polymer components.
  • the manufacturing method is sometimes referred to as manufacturing method B.
  • the p polymer components have been previously manufactured.
  • the p kinds of polymer components may be produced according to any method known in the art, or may be produced according to the manufacturing method A described in the foregoing specification, and may also be commercially available without particular limitation.
  • the p polymer components are mixed together by any means known in the art to obtain a gradient copolymer.
  • the gradient copolymer comprises the gradient copolymer of the invention described in various aspects of the specification.
  • the p polymer components each independently represent an addition polymer of a monomer of the formula (I) (hereinafter referred to as polymer B), in particular a radical addition polymer.
  • the polymer B may be a homopolymer of a single monomer of the formula (I), or a copolymer of two or more of the monomers represented by the formula (I).
  • Specific examples of the copolymer include a random copolymer, a block copolymer, an alternating copolymer, and the like.
  • a mixture of two or more of these polymers B may also be used as the polymer component.
  • one or more of the p polymer components may also represent a mixture of two or more of the polymers B.
  • the polymer B or the p polymer components each independently comprise one or more structural units represented by the formula (I-1) (hereinafter sometimes simply referred to as specific structural units) Or consist essentially of one or more of the specific structural units.
  • the structural unit represented by the formula (I-1) is derived from the monomer represented by the formula (I).
  • substantially means 85% or more, preferably 90% or more, more preferably 95% or more in terms of moles.
  • the remainder of these polymer structures may be other structural units or end groups than the specific structural units, but are generally end groups such as, for example, initiator residues and the like.
  • the number average molecular weights Mn of the p polymer components are each independently from 10,000 to 1,000,000, preferably from 10,000 to 500,000, more preferably from 10,000 to 100,000.
  • the molecular weight distribution Mw/Mn of the p polymer components are each independently from 1.8 to 3.5, preferably from 1.9 to 3.3.
  • the group R 1 represents H or It preferably represents H.
  • the group R' represents H or a group R 3 , preferably represents a group R 3 .
  • the group R 2 represents H or C 1-4 straight or branched alkyl, preferably H or methyl.
  • the symbol a represents 0 or 1, preferably represents 1.
  • the group R 3 represents a C 1 -C 30 straight or branched alkyl group, preferably a C 6 -C 24 straight chain or branch
  • the alkyl group more preferably represents a C 6 - C 20 linear alkyl group or a C 8 - C 24 linear alkyl group.
  • the group R 3 represents a C 10 -C 18 straight chain or branch for one or more of the polymer B or the p polymer components.
  • the proportion of the specific structural unit of the alkyl group to the total structural unit constituting these polymers is generally from 40% to 95%, preferably from 55% to 95%.
  • a mono-C 1 -C 30 linear or branched alkyl ester of fumaric acid or a di C 1 -fumaric acid may be mentioned.
  • a C 30 linear or branched alkyl ester, a C 3 -C 30 linear or branched ⁇ -olefin, and a C 1 -C 30 linear or branched alkyl ester of (meth)acrylic acid more specifically, for example, a mono C 8 -C 24 linear or branched alkyl ester of fumaric acid, a di C 8 -C 24 linear or branched alkyl ester of fumaric acid, a C 6 -C 20 linear or branched alpha olefin and a C 6 -C 20 linear or branched alkyl ester of (meth)acrylic acid, more specifically, for example, a mono C 8 -C 24 linear alkyl ester of fumaric acid and a di C 8 -C 24 fumaric acid Alkyl esters, C 6 -C 20 linear alpha-olefins and C 6 -C 20 linear alkyl (meth)acrylates. These monomers may be used alone or
  • the fumaric acid mono C 8 -C 24 straight or branched chain alkyl esters particularly such as fumaric acid mono C. 8 include linear alkyl fumarate, mono-C 10 linear alkyl ester, fumaric acid mono C 12 linear alkyl ester, fumaric acid mono C 14 linear alkyl ester, fumaric acid mono C 16 linear alkyl ester, fumaric acid mono C 18 straight Alkyl esters, fumaric acid mono C 20 linear alkyl esters, fumaric acid mono C 22 linear alkyl esters and fumaric acid mono C 24 linear alkyl esters.
  • These fumaric acid mono C 8 -C 24 linear or branched alkyl esters may be used alone or in combination of any ones in any ratio.
  • di-C 8 -C 24 linear or branched alkyl ester of fumaric acid specifically, for example, a di-C 8 linear alkyl fumarate or a fumaric acid di C can be mentioned.
  • 10 linear alkyl esters di-C 12 linear alkyl esters of fumaric acid, di-C 14 linear alkyl esters of fumaric acid, di-C 16 linear alkyl esters of fumaric acid, di C 18 straight fumarate Alkyl esters, di-C 20 linear alkyl esters of fumaric acid, di-C 22 linear alkyl esters of fumaric acid and di-C 24 linear alkyl esters of fumaric acid.
  • These di-C 8 -C 24 linear or branched alkyl esters of fumaric acid may be used singly or in combination of plural kinds in any ratio.
  • the C 6 -C 20 linear or branched ⁇ - olefins particularly such as may include 1-hexene, 1-octene, 1-decene, 1-dodecene , 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene.
  • These C 6 -C 20 linear or branched ⁇ -olefins may be used alone or in combination of any ones in any ratio.
  • the C 6 -C 20 linear or branched alkyl ester of (meth)acrylic acid specifically, for example, a C 6 linear alkyl (meth)acrylate, (methyl) a C 8 linear alkyl ester of acrylic acid, a C 10 linear alkyl (meth)acrylate, a C 12 linear alkyl (meth)acrylate, a C 14 linear alkyl (meth)acrylate, A methyl C 16 linear alkyl ester, a C 18 linear alkyl (meth) acrylate, and a C 20 linear alkyl (meth) acrylate.
  • These C 6 -C 20 linear or branched alkyl esters of (meth)acrylic acid may be used singly or in combination of plural kinds in any ratio.
  • a C 6 linear alkyl (meth)acrylate may be used in combination, (methyl) C 8 linear alkyl ester of acrylic acid, C 10 linear alkyl (meth)acrylate, C 12 linear alkyl (meth)acrylate, C 14 linear alkyl (meth)acrylate, (A) Two or more of C 16 linear alkyl esters of acrylic acid and C 18 linear alkyl (meth)acrylates, or a combination of C 8 linear alkyl (meth)acrylates, (methyl) a C 10 linear alkyl ester of acrylic acid, a C 12 linear alkyl (meth)acrylate, a C 14 linear alkyl (meth)acrylate, a C 16 linear alkyl (meth)acrylate, Two or more of a C 18 linear alkyl ester of methyl)acrylic acid and a C 20 linear alkyl
  • the side chain average carbon number of the i-th polymer component is X i and the symbol i represents an arbitrary integer from 1 to p, and the following relationship holds. It can be seen from the following relationship that the p polymer components are different in structure and/or composition from each other, and the difference is at least expressed as a different side chain average carbon number.
  • the symbol p is an integer from 5 to 10000, preferably an integer from 8 to 5000, or an integer from 5 to 20.
  • the value of the average carbon number X of the side chain exhibits an incremental change from X 1 to X p , such as a gradual incremental change or a linear incremental change.
  • the present invention does not particularly limit the incremental magnitude (also referred to as the step size) between any two adjacent Xs in the incremental change, as long as it is considered by those skilled in the art that the effective increment has been achieved.
  • the incremental change may be an incremental increase in equal steps, or may be an incremental change in unequal steps, and is not particularly limited.
  • the step size it is generally, for example, any value ranging from 0.01 to 4.00, or any value ranging from 0.05 to 1.5, but the present invention is not limited thereto.
  • X 1 it represents the starting point and the minimum value of the entire incremental change, such as any value in the range from 6.5 to 12.5, or in the range from 7.8 to 12.0. Any value, but the invention is not limited thereto.
  • X p it represents the end point and the maximum value of the entire incremental change, such as any value ranging from 13.8 to 19.5, or any value ranging from 14.5 to 18.2, but The invention is not limited to this.
  • the weight percentage of the i-th polymer component to the total weight of the p-type polymer component (hereinafter sometimes referred to simply as the component ratio) is Y i , and the symbol i represents from 1 to p. Any arbitrary integer, the following relationship holds.
  • the value of the composition ratio Y exhibits an incremental change from Y 1 to Y j , such as a gradually increasing change or a linear incremental change.
  • the present invention does not particularly limit the incremental magnitude (also referred to as the step size) between any two adjacent Ys in the incremental change, as long as it is considered by those skilled in the art that the effective increment has been achieved.
  • the incremental change may be an incremental increase in equal steps, or may be an incremental change in unequal steps, and is not particularly limited.
  • the step size it is generally, for example, any value ranging from 0.05% to 20%, or any value ranging from 0.1% to 5%, but the present invention is not limited thereto.
  • the Y 1 it represents the starting point and the minimum value of the entire incremental change, such as any value ranging from 0.01% to 20%, or from 0.1% to 10 Any value within the range of %, but the invention is not limited thereto.
  • the Y j it represents the end point and the maximum value of the entire incremental change, such as any value ranging from 20% to 75%, or from 25% to 65%. A value, but the invention is not limited thereto.
  • the value of the composition ratio Y appears from Y j to Y p as a decreasing change, such as a gradual decreasing change or a linear decreasing change.
  • the present invention does not particularly limit the decreasing amplitude (also referred to as the step size) between any adjacent two Ys in the decreasing variation, as long as it is considered by those skilled in the art that the effective decrement has been achieved.
  • the degressive change may be an equal step change or a unequal step change, and is not particularly limited.
  • the step size it is generally, for example, any value ranging from 0.05% to 20%, or any value ranging from 0.1% to 5%, but the present invention is not limited thereto.
  • Yj represents the starting point and the maximum value of the entire said decreasing change, such as any value ranging from 20% to 75%, Or any value ranging from 25% to 65%, but the invention is not limited thereto.
  • Y p it represents the end point and the minimum value of the entire said decreasing change, and may be, for example, any value ranging from 0.01% to 20%, or from 0.1% to 10%. A value, but the invention is not limited thereto.
  • the Y p and the Y 1 may be the same or different, and are not particularly limited.
  • the value of the composition ratio Y from Y 1 to Y p exhibits a distribution state of low intermediate height on both sides, very similar to a Gaussian distribution. Therefore, according to an embodiment of the present invention, in an ideal state, the value of the component ratio Y is taken as the ordinate, the value of the side chain average carbon number X is taken as the abscissa, and from the first polymer group.
  • the fraction is changed to the p-th polymer component
  • the relationship between the two conforms to or substantially conforms to the Gaussian distribution, as shown, for example, in the formula (XI).
  • substantially conforming means that the relationship between the two is slightly deviated from the Gaussian distribution shown by the formula (XI), but the deviation is within the range acceptable to those skilled in the art.
  • the symbol ⁇ represents any one of the values in the open interval (12.5, 14.2), preferably represents any one of the values in the open interval (12.6, 13.8), and the symbol ⁇ represents Open any value within the interval (0.5, 2).
  • is the pi, which can generally be 3.141592654 or 3.14.
  • e is a natural constant and can generally be 2.718281828 or 2.72.
  • the polymer composition comprises the gradient copolymer described in the various aspects of the present specification, or the gradient copolymer produced according to the present invention in various aspects of the present specification.
  • the polymer composition may further comprise other components depending on the intended use or the performance of the target.
  • the other components for example, an antioxidant, a lubricant, a solvent, a diluent, a filler, a polymer other than the gradient copolymer, a pigment, etc., which may be useful to those skilled in the art, may be mentioned.
  • Kind of components Moreover, those skilled in the art can routinely select these other components.
  • a poly(meth)acrylate homopolymer or copolymer for example, a poly(meth)acrylate homopolymer or copolymer, an ⁇ -olefin homopolymer or copolymer, a fumarate homopolymer or copolymer, and a vinyl acetate may be mentioned.
  • Polymer or copolymer for example, a poly(meth)acrylate homopolymer or copolymer, an ⁇ -olefin homopolymer or copolymer, a fumarate homopolymer or copolymer, and a vinyl acetate may be mentioned.
  • Polymer or copolymer for example, a poly(meth)acrylate homopolymer or copolymer, an ⁇ -olefin homopolymer or copolymer, a fumarate homopolymer or copolymer, and a vinyl acetate may be mentioned.
  • Polymer or copolymer for example, a poly(meth)acryl
  • the polymer composition may be a lubricating oil drop Coagulant.
  • the lubricating oil pour point depressant comprises the gradient copolymer described in the various aspects of the present specification, or the gradient copolymer produced according to the present invention in various aspects of the present specification.
  • the present invention also relates to the use of a gradient copolymer of the present invention in various aspects of the present specification, or a gradient copolymer produced according to the present invention in various aspects of the present specification as a lubricating oil pour point depressant . It is particularly noted that the gradient copolymer or the lubricating oil pour point depressant is capable of achieving excellent lubricating oil pour point depressing efficacy.
  • the lubricating oil pour point depressant may further contain other components depending on the target performance and the like.
  • other components for example, an antioxidant, a lubricant, a solvent, a diluent, a pour point depressant other than the gradient copolymer, and the like can be exemplified, and those skilled in the art can make a conventional selection.
  • These other components may be used alone or in combination of any ones in any ratio.
  • a lubricating oil composition is also contemplated.
  • the lubricating oil composition comprises the gradient copolymer described in the various aspects of the present specification, the gradient copolymer produced according to the invention in various aspects of the present specification, and the present invention is in the present specification.
  • the weight content of the gradient copolymer, the polymer composition or the lubricating oil pour point depressant in the lubricating base oil is generally from the gradient copolymer. From 0.01% by weight to 2% by weight, preferably from 0.05% by weight to 1.5% by weight, more preferably from 0.1% by weight to 1% by weight.
  • the lubricating base oil may be a lubricating base oil of a different source, whereby the gradient copolymer exhibits broad gel down adaptability to the lubricating base oil.
  • the lubricating base oil for example, an API Group I mineral base oil, an API II/III hydrogenated base oil, or a lubricating oil containing one or more of these base oils may be mentioned.
  • the lubricating base oil may contain other base oils in addition to the API class I or the API II/III base oil, as shown in the following, and specific examples thereof include API IV synthetic oil and API V. Synthetic oil or GTL synthetic base oil. These lubricating base oils may be used alone or in combination of any ones in any ratio.
  • the lubricating oil composition may also comprise other components.
  • other components for example, various additives which are allowed to be added in the lubricating oil composition in the art may be mentioned, and specific examples thereof include phenols, amines or sulfur-phosphorus antioxidants, carboxylates and sulfonic acids.
  • Salt or alkyl phenate detergent succinimide type ashless dispersant, polyester, poly Olefin or alkylnaphthalene type pour point depressant, methacrylate copolymer, ethylene propylene copolymer, polyisobutylene or hydrogenated styrene/butadiene copolymer viscosity index improver, sulfur/phosphorus friction modifier, sulfur / Phosphorus, boric acid type extreme pressure agent, or silicon type, non-silicon type antifoaming agent, etc.
  • the types and amounts of these additives are well known to those skilled in the art and will not be described herein. These additives may be used alone or in combination of any ones in any ratio.
  • Model 1515 gel permeation chromatograph manufactured by Waters, USA.
  • the detector is a Waters 2414 Refractive Index Detector.
  • the solvent used to configure the standard was chromatographically pure tetrahydrofuran manufactured by Acros.
  • the column is supplied by Waters and is connected in series with 3 different pore size silica gel columns. The specifications are as follows:
  • the mobile phase was tetrahydrofuran
  • the mobile phase flow rate was 1.0 mL/min
  • the column temperature was 35 ° C
  • the detector temperature was 35 ° C
  • the injection volume was 200 ⁇ L.
  • Resolution step 0.02 to 0.2 g of the sample was dissolved in 10 mL of tetrahydrofuran, and shaken to obtain a homogeneous solution. The solution was then subjected to GPC analysis on the operating instrument under the operating conditions. From the beginning of the chromatographic peak on the gel chromatogram until the end of the chromatographic peak, a volumetric flask is used, and based on the cumulative peak time of the chromatographic peak, the effluent of the detector outlet is collected separately in n stages. The n-stage effluent is labeled as L 1 , L 2 , ..., L n , respectively . The above operation was repeated 10 times, and each of the collected effluent liquids was combined.
  • n-stage split components which were weighed separately.
  • the number average molecular weight Mn and the molecular weight distribution Mw/Mn of each of the split components are measured, and the weight percentage of each split component to the total weight of all the n split components is calculated, that is, the component ratio Y.
  • operating temperature is room temperature
  • scanning times nt 1000
  • chemical displacement calibration ⁇ tetramethylsilane 0
  • decoupling mode dm nny (reverse gated decoupling), heavy water lock field.
  • Analytical step 1 H-NMR characterization of the sample, and the average carbon number X of the side chain of the sample was calculated by analyzing the corresponding nuclear magnetic resonance spectrum.
  • the methacrylate polymer, the acrylate polymer, the fumarate polymer, and the ⁇ -olefin polymer are respectively taken as an example, and the analytical process of the nuclear magnetic spectrum and the average carbon number of the side chain X are specifically described.
  • the calculation method, but the present invention is not limited thereto, and other polymers can also be similarly analyzed and calculated with reference to the contents.
  • the methacrylate polymer or the acrylate polymer generally comprises structural units as shown below.
  • the hydrogen atoms in the structural unit can be roughly divided into four kinds of H A , H B , H C and H D as shown in the figure. Areas where these areas have the relationship shown in equation (1). Since the chemical shift of H C which is covered by H B, H D, and the integration is difficult, H B, H C H D may be calculated and combined. Therefore, the formula (1) can be transformed into the formula (2) and further derived into the formula (3).
  • X represents the side chain average carbon number of the methacrylate polymer.
  • the hydrogen atoms in the structural unit can be roughly divided into three regions of H A , H B , and H D as shown in the figure, and the side of the acrylate polymer can also be calculated.
  • the chain average carbon number X is shown in formula (4).
  • the fumarate polymer generally comprises structural units as shown below.
  • the side chain average carbon number X of the fumarate polymer can also be calculated as shown in the formula (5).
  • the alpha-olefin polymer typically comprises structural units as shown below.
  • the side chain average carbon number X of the ⁇ -olefin polymer can also be calculated as shown in the formula (6).
  • the side chain average carbon of the methacrylate polymer can be known from the calculation of the formula (3).
  • the number X 14.86.
  • the ratio A/B of the dropwise addition amount (kg/hour) of the mixture A to the dropwise addition amount (kg/hour) of the mixture B is 4:1, and the sum of the two is 20 kg/hour, and then The A/B gradually decreased, and the sum of the two gradually increased until the time of dropping 3 hours, the A/B reached 5:3, and the sum of the two reached 80 kg/hour. Then, A/B gradually decreased, and the sum of the two gradually decreased until the time of dropping 6 hours, A/B reached 1:2, and the sum of the two reached 15 kg/hour, and the dropwise addition was completed.
  • the reaction vessel was kept at 95 ° C for 1 hour, and then 0.3 kg of benzoyl peroxide and 113 kg of diluent oil were added, and the mixture was heated to 103 ° C for 2 hours, and then the polymerization reaction was terminated to obtain a gradient copolymer J1.
  • the monomer conversion rate of the polymerization reaction was 99.1%
  • the number average molecular weight Mn of the gradient copolymer J1 was 47,120
  • the side chain average carbon number X was 12.5.
  • the gradient copolymer J1 was used as a sample, and was subjected to GPC resolution to obtain a 5-stage split component. The five-stage split components were measured separately, and the results are shown in Table 1.
  • the ratio A/B of the dropwise addition amount (kg/hour) of the mixture A to the dropwise addition amount (kg/hour) of the mixture B is 7:1, and the sum of the two is 12 kg/hour, and then The A/B gradually decreased, and the sum of the two gradually increased until the time of dropping 3 hours, the A/B reached 1:10, and the sum of the two reached 150 kg/hour. Then, A/B gradually decreased, and the sum of the two gradually decreased until the time of dropping 6 hours, A/B reached 1:20, and the sum of the two reached 20 kg/hour, and the dropwise addition was completed.
  • the reaction vessel was kept at 95 ° C for 1 hour, and then 0.3 kg of benzoyl peroxide and 113 kg of diluent oil were added, and the mixture was heated to 103 ° C for 2 hours, and then the polymerization reaction was terminated to obtain a gradient copolymer J2.
  • the monomer conversion rate of the polymerization reaction was 98.3%
  • the number average molecular weight Mn of the gradient copolymer J2 was 45,975
  • the side chain average carbon number X was 12.0.
  • the gradient copolymer J2 was used as a sample, and was subjected to GPC resolution to obtain an 8-stage split component. The eight-stage split components were separately measured, and the results are shown in Table 2.
  • a gradient copolymer was prepared according to the method of Example A except that the first monomer and the second monomer were uniformly mixed and then added dropwise to the reaction system at a constant rate, specifically:
  • the reaction vessel was kept at 95 ° C for 1 hour, and then 0.3 kg of peroxidation was added. Benzoyl and 113 kg of diluent oil were heated to 103 ° C for 2 hours, and the reaction was terminated to obtain a copolymer DJ1.
  • the monomer conversion rate of the polymerization reaction was 99.3%
  • the number average molecular weight Mn of the copolymer DJ1 was 41,768, and the average carbon number X of the side chain was 12.5.
  • the copolymer DJ1 was used as a sample, and was subjected to GPC resolution to obtain a 5-stage split component. The five-stage split components were separately measured, and the results are shown in Table 3.
  • the ratio A/C of the dropwise addition amount (kg/hr) of the mixture C is 1:2, the sum of the two is 100 kg/hr, then A is gradually decreased, and the sum of the two is gradually decreased until the dropwise addition is continued for 5 hours. At the moment, the A/C reached 1:3, and the sum of the two reached 10 kg/hour, and the addition was completed. Then, the reaction vessel was kept at 95 ° C for 1 hour, and then 0.5 kg of benzoyl peroxide and 113 kg of diluent oil were added, and the temperature was raised to 103 ° C for 2 hours, and the polymerization reaction was terminated to obtain a gradient copolymer J3.
  • the monomer conversion rate of the polymerization reaction was 99.6%
  • the number average molecular weight Mn of the gradient copolymer J3 was 52,120
  • the side chain average carbon number X was 11.8.
  • the reaction vessel was kept at 100 ° C for 1 hour, and then 0.3 kg of benzoyl peroxide and 113 kg of diluent oil were added, and the temperature was raised to 103 ° C for 2 hours, and then the polymerization reaction was terminated to obtain a gradient copolymer J4.
  • the monomer conversion rate of the polymerization reaction was 99.2%
  • the number average molecular weight Mn of the gradient copolymer J4 was 39,120
  • the side chain average carbon number X was 12.14.
  • the gradient copolymer J4 was used as a sample, and was subjected to GPC resolution to obtain an 8-stage split component. The eight-stage split components were separately measured, and the results are shown in Table 6.
  • the gradient copolymers J1 to J4 and the copolymer DJ1 were respectively added to the base oil in accordance with the amounts of addition specified in Table 7.
  • the amount of each copolymer, the type of base oil, and the resulting pour point depressing test results are shown in Table 7.
  • the gradient copolymer obtained by the present invention exhibits an excellent pour point depressing effect for various lubricating base oils. Moreover, even if the amount of addition is extremely small, the pour point of the lubricating base oil is remarkably lowered, indicating that the gradient copolymer obtained by the present invention also has a remarkable pour point depressing effect.
  • the reactor was kept at 95 ° C for 1 hour, then 0.3 kg of benzoyl peroxide and 113 kg of diluent oil were added, and the temperature was raised to 103 ° C for 2 hours, and the reaction was terminated to obtain a lubricating oil pour point depressant J5.
  • the monomer conversion rate of the lubricating oil pour point depressant J5 is 99.1%, the number average molecular weight of the gradient copolymer J5 is 40120, and the average carbon number X of the side chain is 13.5.
  • the gradient copolymer J5 is used as a sample and is separated by GPC. The five-stage split components were measured, and the five-stage split components were measured separately. The results are shown in Table 8.
  • the reaction vessel was kept at 95 ° C for 1 hour, then 0.3 kg of benzoyl peroxide and 113 kg of diluent oil were added, and the temperature was raised to 103 ° C for 2 hours, and the reaction was terminated to obtain a lubricating oil pour point depressant J6.
  • the monomer conversion rate of the lubricating oil pour point depressant J6 was 99.4%
  • the number average molecular weight was 41702
  • the average carbon number X of the side chain was 14.0.
  • the gradient copolymer J6 was used as a sample, and the GPC was used to obtain a 5-stage split. The components were measured separately for the 5-stage split components. The results are shown in Table 9.
  • the reactor was kept at 95 ° C for 2 hours, then 0.2 kg of benzoyl peroxide and 66 kg of diluent oil were added, and the temperature was raised to 103 ° C for 2 hours to complete the reaction.
  • the lubricating oil pour point depressant J8 was obtained, wherein the monomer conversion rate of the lubricating oil pour point depressant J8 was 99.7%, the number average molecular weight was 42637, and the average chain carbon number X of the side chain was 14.5.
  • the gradient copolymer J8 was used as a sample, and passed through GPC. Split and obtain 5 sections of split components. The 5 sections of split components are measured separately. The results are shown in Table 10.
  • the gradient copolymers provided by the present invention have excellent pour point depressing effects for the base oils of different processing processes. From the comparison of Example C-1 to Example C-6 with Example C-7, it can be seen that when the ratio of each polymer component in the gradient copolymer is controlled within a preferred range, the corresponding gradient The copolymer has a better pour point depressing effect. From the comparison of the results obtained in Example C-2 with Comparative Example C-1 to Comparative Example C-2, it can be seen that when the polymer component of the gradient copolymer satisfies the requirements of the present invention, the corresponding gradient copolymer has Better pour point depressing effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

一种梯度共聚物、其制造方法及其应用。所述梯度共聚物包含n种聚合物组分或者由所述n种聚合物组分构成。所述n种聚合物组分各自独立地代表式(I)所示单体的加成聚合物和/或其混合物,或者所述n种聚合物组分各自独立地包含一种或多种式(I-1)所示的结构单元或基本上由一种或多种式(I-1)所示的结构单元构成。符号n代表闭区间[5,∞]内的一个整数。设第i种聚合物组分的核磁共振法侧链平均碳原子数为Xi,符号i代表从1至n的任意整数,关系式X1<X2<...<Xn-1<Xn成立。所述梯度共聚物能够表现出优异的润滑油降凝效力或者广泛的基础油降凝适应性。在式(I)或者式(I-1)中,各基团和数值的定义同说明书。

Description

一种梯度共聚物、其制造方法及其应用 技术领域
本发明涉及聚合物领域,具体涉及一种梯度共聚物。本发明还涉及所述梯度共聚物的制造方法和应用。
背景技术
目前,节能、环保和发动机技术的进步已成为润滑油发展的主要驱动力,这对基础油的粘度、粘温性能、低温性能等提出了新的要求。已知的是,基础油是由不同结构的烷烃组成的极为复杂的混合物,其中正构烷烃和具有较低支化度的异构烷烃虽具有良好的粘温性能,但在低温条件下易结晶析出并形成蜡晶网状结构,由此导致基础油的流动性会随着温度下降而逐渐变差。为了避免这一不利情况,在润滑油调和时往往需要添加降凝剂以改善润滑油的低温性能。
为此,现有技术已经开发出了许多种类的降凝剂。
CN106520261A公开了一种润滑油降凝剂组合物,由聚α-烯烃型降凝剂和富马酸酯型降凝剂组成,其中聚α-烯烃型降凝剂和富马酸酯型降凝剂的质量比为3∶1-5。
随着润滑油的发展,对降凝剂的性能表现也提出了更高的要求。鉴于此,现有技术仍旧需要性能更为优良的新型降凝剂。
发明内容
本发明人经过刻苦的研究,发现了一种新型的梯度共聚物,同时还发现该梯度共聚物比如特别适合作为降凝剂使用,并由此完成了本发明。
具体而言,本发明至少涉及以下几个方面的内容:
1.一种梯度共聚物,包含n种聚合物组分或者由所述n种聚合物组分构成,其中所述n种聚合物组分各自独立地代表式(I)所示单体的加成聚合物(特别是自由基加成聚合物)和/或其混合物,或者所述n种聚合物组分各自独立地包含一种或多种式(I-1)所示的结构单元或基本上由一种或多种式(I-1)所示的结构单元构成,符号n代表闭区间[5,∞]内的一个整数,优选代表闭区间[8,∞]内的一个整数,
设第i种聚合物组分的核磁共振法侧链平均碳原子数为Xi,符号i代表从1至n的任意整数,以下关系式成立,
X1<X2<...<Xn-1<Xn      (II)
优选从X1至Xn逐渐增大,更优选从X1至Xn线性增大。
2.一种梯度共聚物的制造方法,包括向聚合反应体系中添加至少两种单体,使所述至少两种单体发生加成共聚反应(特别是自由基加成共聚反应)的步骤,其中所述至少两种单体各自独立地代表式(I)所示的化合物和/或其混合物,
设所述至少两种单体向所述聚合反应体系中添加的起始时刻为t0,终止时刻为tm,则所述至少两种单体的单体添加时间为t(t=tm-t0),在将所述单体添加时间划分为m个等份时,符号m代表闭区间[5,∞]内的一个整数,优选代表闭区间[8,∞]内的一个整数,在任一单体添加时刻tx,所述至少两种单体向所述聚合反应体系中添加的相对比例使得由所述至少两种单体按照所述相对比例构成的混合物的核磁共振法侧链平均碳原子数Xx满足以下关系式,符号x代表从0至m的任意整数,
X0<X1<...<Xm-1<Xm      (V)
优选从X0至Xm逐渐增大,更优选从X0至Xm线性增大。
3.一种梯度共聚物的制造方法,包含混合p种聚合物组分的步骤,其中所述p种聚合物组分各自独立地代表式(I)所示单体的加成聚合物(特别是自由基加成聚合物)和/或其混合物,或者所述p种聚合物组分各自独立地包含一种或多种式(I-1)所示的结构单元或基本上由一种或多种式(I-1)所示的结构单元构成,符号p是从5至10000的一个整数,优选从8至5000的一个整数,或者从5至20的一个整数,
设第i种聚合物组分的核磁共振法侧链平均碳原子数为Xi,符号i代表从1至p的任意整数,以下关系式成立,
X1<X2<...<Xp-1<Xp      (VIII)
优选从X1至Xp逐渐增大,更优选从X1至Xp线性增大。
4.一种共聚反应的控制方法,所述共聚反应是将至少两种单体添加至聚合反应体系而在其中发生的加成共聚反应(特别是自由基加成共聚反应),其中所述至少两种单体各自独立地代表式(I)所示的化合物和/或其混合物,
设所述至少两种单体向所述聚合反应体系中添加的起始时刻为t0, 终止时刻为tm,则所述至少两种单体的单体添加时间为t(t=tm-t0),在将所述单体添加时间划分为m个等份时,符号m代表闭区间[5,∞]内的一个整数,优选代表闭区间[8,∞]内的一个整数,
所述控制方法包括调节所述至少两种单体在任一单体添加时刻tx向所述聚合反应体系中添加的相对比例,使得由所述至少两种单体按照所述相对比例构成的混合物的核磁共振法侧链平均碳原子数Xx满足以下关系式的步骤,符号x代表从0至m的任意整数,
X0<X1<...<Xm-1<Xm      (V)
优选从X0至Xm逐渐增大,更优选从X0至Xm线性增大。
Figure PCTCN2017000409-appb-000001
根据前述任一项所述的方面,在式(I)或者式(I-1)中,
基团R1代表H或者
Figure PCTCN2017000409-appb-000002
优选代表H,
基团R2代表H或者C1-4直链或支链烷基,优选代表H或者甲基,
符号a代表0或者1,优选代表1,
基团R′代表H或者基团R3,优选代表基团R3
基团R3代表C1-C30直链或支链烷基,优选代表C6-C24直链或支链烷基,更优选代表C6-C20直链烷基。
本发明在其他方面还涉及所述梯度共聚物的各种应用。
附图说明
图1是本发明一个实施方式的甲基丙烯酸酯聚合物的核磁谱图。
技术效果
根据本发明的梯度共聚物,在一个实施方式中,可以实现优异的润滑油降凝效果。
根据本发明的梯度共聚物,在一个实施方式中,对润滑油基础油表现出广泛的降凝适应性。
根据本发明的梯度共聚物,在一个实施方式中,能够同时实现前述的多种技术效果。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。
除非另有定义,本发明或本说明书所用的所有技术和科学术语都具有本领域技术人员常规理解的含义。在有冲突的情况下,以本说明书的定义为准。
当本说明书以词头“本领域技术人员公知”、“现有技术”或其类似用语来导出材料、物质、方法、步骤、装置或部件等时,该词头导出的对象涵盖本申请提出时本领域常规使用的那些,但也包括目前还不常用,却将变成本领域公认为适用于类似目的的那些。
在本发明的上下文中,术语“(甲基)丙烯酸”指的是丙烯酸或者甲基丙烯酸。
在本发明的上下文中,在没有特别说明的情况下,表述“至少两种”、“两种或者多种”或其类似用语,或者单独使用表述“多种”或其类似用语时,通常指的是2以上,比如从2至15,或者从3至10,比如从5至8。
在本发明的上下文中,在没有特别说明的情况下,数均分子量Mn和分子量分布Mw/Mn是由凝胶渗透色谱法(GPC)测定的。在此,所述凝胶渗透色谱法(GPC)的测量条件为:测量仪器为美国Waters公司生产的1515型凝胶渗透色谱仪;检测器为Waters 2414示差折光检测器;配置标准品所用的溶剂为由Acros公司生产的色谱纯四氢呋喃;色谱柱由Waters公司提供,为3支不同孔径硅胶柱串联,具体规格为 (1)Waters
Figure PCTCN2017000409-appb-000003
0.5 THF,相对分子量测量范围1-1000(7.8×300mm),(2)Waters
Figure PCTCN2017000409-appb-000004
1 THF,相对分子量测量范围100-5000(7.8×300mm),(3)Waters
Figure PCTCN2017000409-appb-000005
3 THF,相对分子量测量范围5000-600,000(7.8×300mm);流动相为四氢呋喃,流动相流速为1.0mL/min,柱温为35℃,检测器温度为35℃,进样量为200μL,样品浓度为0.05mmol/L,聚合物标准样品为聚甲基丙烯酸丁酯。
最后,在没有明确指明的情况下,本说明书内所提到的所有百分数、份数、比例等都是以重量为基准的,除非以重量为基准时不符合本领域技术人员的常规认识。
在本发明的上下文中,本说明书记载的任何两个或多个方面都可以任意组合,由此而形成的组合方案构成本说明书原始记载内容的一部分,同时也落入本发明的保护范围之内,而不属于新的技术方案。
根据本发明的一个方面,涉及一种梯度共聚物。在此,所述梯度共聚物可以包含n种聚合物组分或者可以由所述n种聚合物组分构成,优选由所述n种聚合物组分构成。从这一角度来说,所述梯度共聚物实际上是一种分子间梯度共聚物,其包含或者呈现为所述n种聚合物组分的混合物。
根据本发明的一个方面,所述n种聚合物组分各自独立地代表式(I)所示单体的加成聚合物(以下称为聚合物A),特别是自由基加成聚合物。在此,所述聚合物A可能是单独一种所述式(I)所示单体的均聚物,也可能是两种或者多种所述式(I)所示单体的共聚物。作为所述共聚物,具体比如可以举出无规共聚物、嵌段共聚物或者交替共聚物等等。而且,这些聚合物A中两种或多种的混合物也可以作为所述聚合物组分。鉴于此,所述n种聚合物组分中的一个或多个也可能代表所述聚合物A中两种或多种的混合物。
根据本发明的该方面,所述聚合物A或者所述n种聚合物组分各自独立地包含一种或多种式(I-1)所示的结构单元(以下有时简称为特定结构单元)或基本上由一种或多种所述特定结构单元构成。显然的是,所述式(I-1)所示的结构单元衍生自所述式(I)所示的单体。在此,所谓“基本上”,指的是以摩尔为计,占总体的85%以上,优选90%以上,更优选95%以上。这些聚合物结构的其余部分可能是除了所述特定结构单元之外的其他结构单元或者端基,但一般是端基,具体 比如引发剂残基等。
Figure PCTCN2017000409-appb-000006
根据本发明的一个方面,所述n种聚合物组分的数均分子量Mn各自独立地为从1万至100万,优选从1万至50万,更优选从1万至10万。
根据本发明的一个方面,所述n种聚合物组分的分子量分布Mw/Mn各自独立地为从1.8至3.5,优选从1.9至3.3。
根据本发明的一个方面,所述梯度共聚物或者所述聚合物A的数均分子量Mn为从1万至100万,优选从1万至50万,更优选从1万至10万。
根据本发明的一个方面,所述梯度共聚物或者所述聚合物A的分子量分布Mw/Mn为从1.8至3.5,优选从1.9至3.3。
Figure PCTCN2017000409-appb-000007
根据本发明的一个方面,在式(I)或者式(I-1)中,基团R1代表H或者
Figure PCTCN2017000409-appb-000008
优选代表H。在此,基团R′代表H或者基团R3,优选代表基团R3
根据本发明的一个方面,在式(I)或者式(I-1)中,基团R2代表H或者C1-4直链或支链烷基,优选代表H或者甲基。
根据本发明的一个方面,在式(I)或者式(I-1)中,符号a代表0或者1,优选代表1。
根据本发明的一个方面,在式(I)或者式(I-1)中,基团R3代表C1-C30直链或支链烷基,优选代表C6-C24直链或支链烷基,更优选代表C6-C20直链烷基或者C8-C24直链烷基。
根据本发明的一个方面,优选的是,对于所述聚合物A或者所述n种聚合物组分中的一种或多种而言,基团R3代表C10-C18直链或支链烷基的所述特定结构单元占构成这些聚合物的全部结构单元的比例(以摩尔为计)一般为从40%至95%,优选从55%至95%。
根据本发明的一个方面,作为所述式(I)所示的单体,具体比如可以举出富马酸单C1-C30直链或支链烷基酯、富马酸二C1-C30直链或支链烷基酯、C3-C30直链或支链α-烯烃和(甲基)丙烯酸C1-C30直链或支链烷基酯,更具体比如可以举出富马酸单C8-C24直链或支链烷基酯、富马酸二C8-C24直链或支链烷基酯、C6-C20直链或支链α-烯烃和(甲基)丙烯酸C6-C20直链或支链烷基酯,更具体比如可以举出富马酸单C8-C24直链烷基酯、富马酸二C8-C24直链烷基酯、C6-C20直链α-烯烃和(甲基)丙烯酸C6-C20直链烷基酯。这些单体可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述富马酸单C8-C24直链或支链烷基酯,具体比如可以举出富马酸单C8直链烷基酯、富马酸单C10直链烷基酯、富马酸单C12直链烷基酯、富马酸单C14直链烷基酯、富马酸单C16直链烷基酯、富马酸单C18直链烷基酯、富马酸单C20直链烷基酯、富马酸单C22直链烷基酯和富马酸单C24直链烷基酯。这些富马酸单C8-C24直链或支链烷基酯可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述富马酸二C8-C24直链或支链烷基酯,具体比如可以举出富马酸二C8直链烷基酯、富马酸二C10直链烷基酯、富马酸二C12直链烷基酯、富马酸二C14直链烷基酯、富马酸二C16直链烷基酯、富马酸二C18直链烷基酯、富马酸二C20直链烷基酯、富马酸二C22直链烷基酯和富马酸二C24直链烷基酯。这些富马酸二C8-C24直链或支链烷基酯可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述C6-C20直链或支链α-烯烃,具体比如可以举出1-己烯、1-辛烯、1-癸烯、1-十二碳烯、1-十四碳烯、1-十六碳烯、1-十八碳烯和1-二十碳烯。这些C6-C20直链或支链α-烯烃可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述(甲基)丙烯酸C6-C20直链或 支链烷基酯,具体比如可以举出(甲基)丙烯酸C6直链烷基酯、(甲基)丙烯酸C8直链烷基酯、(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯。这些(甲基)丙烯酸C6-C20直链或支链烷基酯可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述(甲基)丙烯酸C6-C20直链或支链烷基酯,比如可以组合使用(甲基)丙烯酸C6直链烷基酯、(甲基)丙烯酸C8直链烷基酯、(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯和(甲基)丙烯酸C18直链烷基酯中的两种或多种,或者组合使用(甲基)丙烯酸C8直链烷基酯、(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯中的两种或多种,或者组合使用(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯,优选组合使用(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯,或者组合使用(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯,或者组合使用(甲基)丙烯酸C8直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯。
根据本发明的一个方面,设第i种聚合物组分的核磁共振法侧链平均碳原子数(以下有时简称为侧链平均碳数)为Xi,符号i代表从1至n的任意整数,以下关系式成立。基于以下关系式可知,所述n种聚合物组分彼此之间在结构和/或组成上是不同的,而这种差异至少表现为不同的侧链平均碳数。
X1<X2<...<Xn-1<Xn      (II)
在本发明的上下文中,术语“侧链”特指所述式(I)或者式(I-1)中的基团R3
在本发明的上下文中,表述“核磁共振法侧链平均碳原子数”或者“侧链平均碳数”指的是通过如下记载的核磁共振解析法而获得的目标物质的基团R3的平均碳原子数。
根据本发明的一个方面,所述目标物质可能包含基团R3不同(特别是其烷基碳原子数不同)的多种所述式(I-1)所示的结构单元(或者所述式(I)所示的单体),并且对于不同的目标物质而言,这些结构单元(或者单体)的相对比例也可能是不同的。因此从总体上来看,所述目标物质所包含的基团R3的碳原子数适合用平均值进行描述。鉴于此,举例而言,所述侧链平均碳数X不仅能够反映所述目标物质中所述式(I-1)所示的结构单元(或者所述式(I)所示的单体)的种类数目,而且还能够反映这些不同种类的结构单元(或者单体)之间的相对比例。
核磁共振解析法
操作仪器:美国Varian公司生产的INOVA 500MHz核磁共振波谱仪,固体双共振探头(5mm)。
操作条件:操作温度为室温,扫描次数nt=1000,化学位移定标δ四甲基硅烷=0,去偶方式dm=nny(反门控去偶),重水锁场。
解析步骤:对样品进行1H-NMR表征,通过解析相应获得的核磁谱图,计算所述样品的侧链平均碳数X。更为具体的解析过程和计算方法参见本说明书在实施例中的相应记载内容。
根据本发明的一个方面,在进行所述核磁共振解析法时,所述目标物质可能是单一物质,包括一种纯物质或者组成均一的混合物,比如某一种聚合物组分、由多种聚合物组分构成的均一混合物、某一种单体、由多种单体构成的均一混合物、某一种梯度共聚物或者由多种梯度共聚物构成的均一混合物,此时直接以该目标物质作为样品进行相应表征和解析即可。或者,所述目标物质可能是多种独立存在的物质,比如所述n种聚合物组分,如本说明书上文所述,这些聚合物组分彼此之间处于分别独立存在的状态,而并未预先混合在一起而成为单一物质,或者比如在本说明书下文中将要描述的在某一单体添加时刻向聚合反应体系中添加的至少两种单体,这些单体在所述单体添加 时刻,彼此之间很可能处于分别独立存在的状态(比如通过向所述聚合反应体系中分别添加),而并未预先混合在一起而成为单一物质。因此,如果所述目标物质是多种独立存在的物质,可以在进行所述核磁共振解析法之前,按照如下的样品准备步骤准备核磁共振解析法所需要的样品。
样品准备步骤:将所述多种独立存在的物质按照预定比例混合直至均匀,获得混合物,然后以该混合物作为样品。
根据本发明的一个方面,在所述样品准备步骤中,所谓预定比例,指的是将所述多种独立存在的物质假想为处于彼此混合状态时,这些物质作为所述混合物(假想混合物)的组分时原本具有的相对比例。作为具体举例,对于所述n种聚合物组分而言,所谓预定比例,指的是这些聚合物组分在包含其或由其构成的梯度共聚物中的相对比例;或者,对于所述至少两种单体而言,所谓预定比例,指的是所述至少两种单体在所述单体添加时刻向所述聚合反应体系中添加的相对比例。
根据本发明的一个方面,所述梯度共聚物的侧链平均碳数X一般为从5至20,优选从11.5至17,优选从11.5至16.2,更优选从12.2至15.7,更优选从12.2至15.5。
根据本发明的一个方面,所述n种聚合物组分的侧链平均碳数X一般为从5至20,优选从11.5至17,优选从11.5至16.2,更优选从12.2至15.7,更优选从12.2至15.5。
根据本发明的一个方面,所述符号n代表闭区间[5,∞]内的一个整数,优选代表闭区间[8,∞]内的一个整数。在此,所述符号n代表一个整数,其下限可以是5或者8,或者也可以是10或者20。作为所述符号n所代表的整数的上限,可以是∞,或者也可以是20000、10000、5000、1000、500、200、100或者50。
根据本发明的一个方面,所述符号n所代表的整数的值越大,表明所述梯度共聚物包含的聚合物组分的种类就越多。为了方便测量,所述梯度共聚物包含所述n种聚合物组分的状态可以通过凝胶渗透色谱拆分法(参见本说明书下文的相应记载内容)进行确认和鉴别。此时,所述聚合物组分的种类数目n也就相应于所述凝胶渗透色谱拆分法所称的流出液或者拆分组分的段数n。在此,所述符号n所代表的整数的值越大,不但表明所述梯度共聚物包含的聚合物组分的种类越多, 而且也表明通过所述凝胶渗透色谱拆分法而获得的流出液或者拆分组分的段数也越多。当所述符号n所代表的整数的值足够大,比如其上限值达到∞时,当然这并不意味着该上限值在数值上实际达到了∞,而是意味着所述n种聚合物组分彼此之间在结构和/或组成上的差异(特别是在侧链平均碳数X上的差异)已经达到了连续或无级平滑变化的程度,这也意味着所述凝胶渗透色谱拆分法实现了流出液或者拆分组分的连续拆分或无级平滑拆分。举例而言,在n=∞时,侧链平均碳数的数值从X1至Xn,不再呈现为有穷递增数列变化,而是呈现为连续递增变化,特别是无级差或平滑递增变化。
根据本发明的一个方面,如所述式(II)所示,所述侧链平均碳数X的数值从X1至Xn呈现为递增变化,比如逐渐递增变化或者线性递增变化。本发明对所述递增变化中任意相邻两个X之间的递增幅度(也称为步长)没有特别的限定,只要是本领域技术人员认为已经达到了有效递增的程度即可。而且,所述递增变化可以是等步长递增变化,也可以是不等步长递增变化,并没有特别的限定。作为所述步长,一般比如可以是从0.01至4.00范围内的任一数值,或者是从0.05至1.5范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,作为所述X1,它代表了整个所述递增变化的起点和最小值,比如可以是从6.5至12.5范围内的任一数值,或者是从7.8至12.0范围内的任一数值,但本发明并不限于此。另外,作为所述Xn,它代表了整个所述递增变化的终点和最大值,比如可以是从13.8至19.5范围内的任一数值,或者是从14.5至18.2范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,设第i种聚合物组分占所述n种聚合物组分(或者所述梯度共聚物)总重量的重量百分比(以下有时简称为组分占比)为Yi,符号i代表从1至n的任意整数,以下关系式成立。
Y1<Y2<...<Yj>...>Yn-1>Yn      (III)
根据本发明的一个方面,在所述式(III)中,符号j代表闭区间[(n+1)/4,3(n+1)/4]内的一个整数,优选代表闭区间[(n+1)/3,2(n+1)/3]内的一个整数,更优选代表闭区间[2(n+1)/5,3(n+1)/5]内的一个整数,且Y1+Y2+...+Yj+...+Yn-1+Yn=100%。
根据本发明的一个方面,如所述式(III)所示,所述组分占比Y 的数值从Y1至Yj呈现为递增变化,比如逐渐递增变化或者线性递增变化。本发明对所述递增变化中任意相邻两个Y之间的递增幅度(也称为步长)没有特别的限定,只要是本领域技术人员认为已经达到了有效递增的程度即可。而且,所述递增变化可以是等步长递增变化,也可以是不等步长递增变化,并没有特别的限定。作为所述步长,一般比如可以是从0.05%至20%范围内的任一数值,或者是从0.1%至5%范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,作为所述Y1,它代表了整个所述递增变化的起点和最小值,比如可以是从0.01%至20%范围内的任一数值,或者是从0.1%至10%范围内的任一数值,但本发明并不限于此。另外,作为所述Yj,它代表了整个所述递增变化的终点和最大值,比如可以是从20%至75%范围内的任一数值,或者是从25%至65%范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,如所述式(III)所示,所述组分占比Y的数值从Yj至Yn呈现为递减变化,比如逐渐递减变化或者线性递减变化。本发明对所述递减变化中任意相邻两个Y之间的递减幅度(也称为步长)没有特别的限定,只要是本领域技术人员认为已经达到了有效递减的程度即可。而且,所述递减变化可以是等步长递减变化,也可以是不等步长递减变化,并没有特别的限定。作为所述步长,一般比如可以是从0.05%至20%范围内的任一数值,或者是从0.1%至5%范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,作为所述Yj,如本说明书前文所述,它代表了整个所述递减变化的起点和最大值,比如可以是从20%至75%范围内的任一数值,或者是从25%至65%范围内的任一数值,但本发明并不限于此。另外,作为所述Yn,它代表了整个所述递减变化的终点和最小值,比如可以是从0.01%至20%范围内的任一数值,或者是从0.1%至10%范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,所述Yn与所述Y1可以相同,也可以不同,并没有特别的限定。
根据本发明的一个方面,如所述式(III)所示,所述组分占比Y的数值从Y1至Yn表现出两边低中间高的分布状态,非常类似于高斯分布。因此,根据本发明的一个实施方式,在理想的状态下,在以组 分占比Y的数值作为纵坐标,以侧链平均碳数X的数值作为横坐标,并且从第1种聚合物组分变化至第n种聚合物组分时,二者的关系符合或者基本上符合高斯分布,比如如式(IV)所示。在此,所谓“基本上符合”,指的是二者的关系与所述式(IV)所示的高斯分布稍有偏离,但该偏离在本领域技术人员可接受的幅度之内。
Figure PCTCN2017000409-appb-000009
根据本发明的一个方面,在所述式(IV)中,符号μ代表开区间(12.5,14.2)内的任意一个数值,优选代表开区间(12.6,13.8)内的任意一个数值,符号σ代表开区间(0.5,2)内的任意一个数值。π是圆周率,一般可以取3.141592654或3.14,e是自然常数,一般可以取2.718281828或2.72。
根据本发明的一个方面,所述梯度共聚物可以通过如下的一种或多种制造方法进行制造。在本说明书的下文中,为了简化篇幅起见,任何针对所述制造方法未详细或具体描述的内容,比如反应器类型、各种添加剂的使用方式、进料的预处理、反应产物的分离等内容,可以直接参照本领域已知的相应内容。
根据本发明的一个方面,所述制造方法包括向聚合反应体系中添加至少两种单体,使所述至少两种单体发生加成共聚反应的步骤。以下有时将所述制造方法称为制造方法A。
根据本发明的一个方面,所谓至少两种单体,可以指的是至少两种单体化合物,也可以指的是至少两种单体混合物,其中所述单体混合物包含两种或多种单体化合物,而且也可以指的是其组合情况。由此可见,所述至少两种单体中的一种或多种有时也可以呈现为单体混合物。鉴于此,在本发明的上下文中,在没有特别说明的情况下,术语“单体”在其含义中包括单体化合物和单体混合物。
根据本发明的一个方面,向所述聚合反应体系中添加所述至少两种单体,具体比如两种单体。举例而言,作为单体添加方式,所述两种单体一般向所述聚合反应体系中同步添加,即,所述两种单体向所述聚合反应体系中同时开始添加,并且同时终止添加。而且,举例而言,作为进一步的单体添加方式,所述两种单体可以向所述聚合反应体系中按照预定比例分别添加,也可以按照预定比例彼此混合成单体 混合物后再向所述聚合反应体系中添加,并没有特别的限定。在此,所述添加通常是连续添加,但也可以根据情况按照预定的时间间隔分段或者间歇添加,其中优选连续添加。另外,在所述单体的种类超过两种,比如为三种或更多种时,也可以按照与两种单体的情况类似的添加方式向所述聚合反应体系中添加这些单体。具体举例而言,在所述单体的种类超过两种,比如为单体A、单体B和单体C这三种时,作为单体添加方式,除了前述与两种单体的情况类似的添加方式之外,一种可能的添加方式包括:单体A和单体B向所述聚合反应体系中同时开始添加,然后在某一时刻,终止添加单体B,并在该时刻开始添加单体C,最终同时终止添加单体A和单体C。当然,这三种单体可以作为三种进料分别添加,也可以彼此混合成单体混合物后作为一种进料添加,也可以其中两种混合成单体混合物,再与第三种单体作为两种进料分别添加,并没有特别的限定。另外,在所述单体的种类超过三种时,也可以按照与三种单体的情况类似的添加方式向所述聚合反应体系中添加这些单体,也可以按照本领域技术人员可能想到的各种其他单体添加方式添加这些单体,并没有特别的限定。具体举例而言,在所述单体的种类为四种时,比如包括单体A、单体B、单体C和单体D,一种可能的其他单体添加方式包括:单体A和单体B向所述聚合反应体系中同时开始添加,然后在某一时刻,终止添加单体A和单体B,并在该时刻同时开始添加单体C和单体D,最终同时终止添加单体C和单体D。
根据本发明的一个方面,为了方便所述加成共聚反应的实施,所述至少两种单体有时以进料混合物的形式添加至所述聚合反应体系中。在此,作为所述进料混合物,除了包含所述至少两种单体之外,一般还可以根据需要进一步包含溶剂、稀释剂、引发剂、分子量调节剂、聚合催化剂等对于加成共聚反应而言常规使用的一种或多种添加剂。而且,这些添加剂的种类和用量可以参照现有技术的相关要求,本发明对此并没有特别的限定。
根据本发明的一个方面,在所述聚合反应体系中,所述至少两种单体发生碳碳双键的加成共聚反应,特别是自由基加成共聚反应,即可获得一种梯度共聚物。所述梯度共聚物包括本发明在本说明书的各个方面所述的梯度共聚物。
根据本发明的一个方面,所述加成共聚反应的反应温度一般为从50℃至180℃,优选从55℃至165℃,更优选从60℃至150℃。
根据本发明的一个方面,所述加成共聚反应的反应时间一般为从1小时至24小时,优选从1.5小时至20小时。
根据本发明的一个方面,所述加成共聚反应可以按照本体聚合、溶液聚合、乳液聚合、悬浮聚合等任一方式进行,优选溶液聚合。
根据本发明的一个方面,为了有利于单体转化率的提高,在单体添加结束之后,有时还可以使所述加成共聚反应继续进行0.5-2小时,或者根据需要在进一步补加了引发剂、聚合催化剂或者稀释剂等之后,将所述聚合反应体系的温度升至100-150℃,再继续反应0.5-5小时。这些反应方式是本领域技术人员已知的。
根据本发明的一个方面,作为所述引发剂,可以使用本领域常规使用的那些,特别是自由基聚合引发剂,并没有特别的限定。作为所述引发剂,具体比如可以举出偶氮类引发剂、过氧化物类引发剂和氧化还原类引发剂。作为所述偶氮类引发剂,具体比如可以举出偶氮二异丁酸二甲酯、偶氮二异丁脒盐酸盐、偶氮二甲酰胺、偶氮二异丙基咪唑啉盐酸盐、偶氮异丁氰基甲酰胺、偶氮二环己基甲腈、偶氮二氰基戊酸、偶氮二异丙基咪唑啉、偶氮二异丁腈、偶氮二异戊腈和偶氮二异庚腈。作为所述过氧化物类引发剂,具体比如可以举出过氧化氢、过硫酸铵、过硫酸钠、过硫酸钾、过氧化月桂酰、叔丁基过氧化氢、过氧化二异丙苯、过氧化二叔丁基、过氧化苯甲酰、过氧化苯甲酰叔丁酯、过氧化叔戊酸叔丁酯、过氧化环己酮、过氧化甲乙酮、过氧化二碳酸二异丙酯。作为所述氧化还原类引发剂,具体比如可以举出硫酸盐-亚硫酸盐、过硫酸盐-硫脲、过硫酸盐-有机盐和过硫酸铵-脂肪胺。这些引发剂可以单独使用一种,或者以任意的比例组合使用多种。另外,本发明对所述引发剂的用量没有特别的限定,可以适用本领域常规已知的那些,比如作为所述引发剂在整个所述加成共聚反应中的总体用量,一般为0.01-2.5重量份,优选0.05-2重量份,更优选0.1-1.5重量份,相对于100重量份单体总用量。
根据本发明的一个方面,作为所述稀释剂,可以使用本领域常规使用的那些,特别是稀释油,并没有特别的限定。作为所述稀释油,具体比如可以举出柴油、煤油、溶剂油、芳烃溶剂、白油、矿物油基 础油或者合成油,优选白油、矿物油基础油或者合成油,优选矿物基础油。所述稀释油可以通过商购得到,例如,可以为购自双龙公司牌号为100N的稀释油。所述稀释油在所述加成共聚反应结束之后,可以与所述梯度共聚物分离,也可以不分离。这些稀释油可以单独使用一种,或者以任意的比例组合使用多种。另外,本发明对所述稀释油的用量没有特别的限定,可以适用本领域常规已知的那些,比如作为所述稀释油在整个所述加成共聚反应中的总体用量,一般为10-150重量份,优选50-100重量份,更优选60-80重量份,相对于100重量份单体总用量。
根据本发明的一个方面,作为所述分子量调节剂,可以使用本领域常规使用的那些,并没有特别的限定。作为所述分子量调节剂,具体比如可以举出十二烷基硫醇或者2-巯基乙醇。这些分子量调节剂可以单独使用一种,或者以任意的比例组合使用多种。另外,本发明对所述分子量调节剂的用量没有特别的限定,可以适用本领域常规已知的那些。
根据本发明的一个方面,作为所述聚合催化剂,可以使用本领域常规使用的那些,并没有特别的限定。作为所述聚合催化剂,具体比如可以举出自由基聚合催化剂,特别是齐格勒-纳塔催化剂。这些聚合催化剂可以单独使用一种,或者以任意的比例组合使用多种。另外,本发明对所述聚合催化剂的用量没有特别的限定,可以适用本领域常规已知的那些。
根据本发明的一个方面,所述加成共聚反应通常在惰性气氛中进行。在此,所谓惰性气氛,指的是不与反应物和产物发生化学反应的非活性气体氛围。作为所述非活性气体,比如可以举出氮气和惰性气体等。作为保持所述惰性气氛的方法,比如可以举出向所述聚合反应体系中持续通入所述惰性气体的方法。
根据本发明的一个方面,所述至少两种单体各自独立地代表式(I)所示的化合物。如本说明书前文所述,所述至少两种单体中的一种或多种有时也可以呈现为单体混合物。在这种情况下,根据本发明的该方面,所述单体混合物所包含的两种或多种单体化合物各自独立地代表式(I)所示的化合物。
Figure PCTCN2017000409-appb-000010
根据本发明的一个方面,在式(I)中,基团R1代表H或者
Figure PCTCN2017000409-appb-000011
优选代表H。在此,基团R′代表H或者基团R3,优选代表基团R3
根据本发明的一个方面,在式(I)中,基团R2代表H或者C1-4直链或支链烷基,优选代表H或者甲基。
根据本发明的一个方面,在式(I)中,符号a代表0或者1,优选代表1。
根据本发明的一个方面,在式(I)中,基团R3代表C1-C30直链或支链烷基,优选代表C6-C24直链或支链烷基,更优选代表C6-C20直链烷基或者C8-C24直链烷基。
根据本发明的一个方面,优选的是,基团R3代表C10-C18直链或支链烷基的所述式(I)所示的化合物占全部单体用量(所述至少两种单体的总体用量)的比例(以摩尔为计)一般为从40%至95%,优选从55%至95%。
根据本发明的一个方面,作为所述式(I)所示的化合物,具体比如可以举出富马酸单C1-C30直链或支链烷基酯、富马酸二C1-C30直链或支链烷基酯、C3-C30直链或支链α-烯烃和(甲基)丙烯酸C1-C30直链或支链烷基酯,更具体比如可以举出富马酸单C8-C24直链或支链烷基酯、富马酸二C8-C24直链或支链烷基酯、C6-C20直链或支链α-烯烃和(甲基)丙烯酸C6-C20直链或支链烷基酯,更具体比如可以举出富马酸单C8-C24直链烷基酯、富马酸二C8-C24直链烷基酯、C6-C20直链α-烯烃和(甲基)丙烯酸C6-C20直链烷基酯。这些单体可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述富马酸单C8-C24直链或支链烷基酯,具体比如可以举出富马酸单C8直链烷基酯、富马酸单C10直链烷基酯、富马酸单C12直链烷基酯、富马酸单C14直链烷基酯、富马酸 单C16直链烷基酯、富马酸单C18直链烷基酯、富马酸单C20直链烷基酯、富马酸单C22直链烷基酯和富马酸单C24直链烷基酯。这些富马酸单C8-C24直链或支链烷基酯可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述富马酸二C8-C24直链或支链烷基酯,具体比如可以举出富马酸二C8直链烷基酯、富马酸二C10直链烷基酯、富马酸二C12直链烷基酯、富马酸二C14直链烷基酯、富马酸二C16直链烷基酯、富马酸二C18直链烷基酯、富马酸二C20直链烷基酯、富马酸二C22直链烷基酯和富马酸二C24直链烷基酯。这些富马酸二C8-C24直链或支链烷基酯可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述C6-C20直链或支链α-烯烃,具体比如可以举出1-己烯、1-辛烯、1-癸烯、1-十二碳烯、1-十四碳烯、1-十六碳烯、1-十八碳烯和1-二十碳烯。这些C6-C20直链或支链α-烯烃可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述(甲基)丙烯酸C6-C20直链或支链烷基酯,具体比如可以举出(甲基)丙烯酸C6直链烷基酯、(甲基)丙烯酸C8直链烷基酯、(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯。这些(甲基)丙烯酸C6-C20直链或支链烷基酯可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述(甲基)丙烯酸C6-C20直链或支链烷基酯,比如可以组合使用(甲基)丙烯酸C6直链烷基酯、(甲基)丙烯酸C8直链烷基酯、(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯和(甲基)丙烯酸C18直链烷基酯中的两种或多种,或者组合使用(甲基)丙烯酸C8直链烷基酯、(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯中的两种或多种,或者组合使用(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14 直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯,优选组合使用(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯,或者组合使用(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯,或者组合使用(甲基)丙烯酸C8直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯。
根据本发明的一个方面,所述式(I)所示的化合物可以通过商购得到,也可以采用现有已知的各种方法进行制造。具体举例而言,所述(甲基)丙烯酸C6-C20直链或支链烷基酯可以通过(甲基)丙烯酸与C6-C20直链或支链烷醇的酯化反应而得到,也可以通过(甲基)丙烯酸甲酯与C6-C20直链或支链烷醇的酯交换反应而得到,并没有特别的限定。
根据本发明的一个方面,设所述至少两种单体向所述聚合反应体系中添加的起始时刻为t0,终止时刻为tm,则所述至少两种单体的单体添加时间为t(t=tm-t0)。为了尽可能提高单体转化率,或者取决于所述至少两种单体的单体添加方式,所述单体添加时间通常要比所述共聚反应的反应时间短。举例而言,所述单体添加时间一般为从0.5小时至12小时,优选从1小时至10小时。
根据本发明的一个方面,在将所述单体添加时间t划分为m个等份时,在任一单体添加时刻tx,设所述至少两种单体的侧链平均碳数为Xx,以下关系式成立。换句话说,在任一单体添加时刻tx,所述至少两种单体向所述聚合反应体系中添加的相对比例使得由所述至少两种单体按照所述相对比例构成的(假想)混合物的核磁共振法侧链平均碳原子数Xx满足以下关系式。在此,符号x代表从0至m的任意整数。
X0<X1<...<Xm-1<Xm      (V)
根据本发明的一个方面,所谓至少两种单体的侧链平均碳数Xx,如本说明书前文所述,指的是由所述至少两种单体按照预定比例构成的(假想)混合物的侧链平均碳数,其中所述预定比例指的是在任一 单体添加时刻tx,所述至少两种单体向所述聚合反应体系中添加的相对比例。
根据本发明的一个方面,对所述至少两种单体在所述单体添加时刻tx向所述聚合反应体系中添加的相对比例没有特别的限定,所述相对比例可以是任意数值,只要其能够使得所述假想混合物的侧链平均碳数Xx满足所述式(V)的规定即可。简单举例而言,假设所述至少两种单体代表两种单体,即单体A和单体B,其中所述单体A的侧链平均碳数大于所述单体B的侧链平均碳数。为了满足所述式(V)的规定,从所述两种单体向所述聚合反应体系中添加的起始时刻t0至终止时刻tm,可以维持所述单体B的添加量不变,而逐渐增加所述单体A的添加量,或者维持所述单体A的添加量不变,而逐渐减少所述单体B的添加量,或者同时改变二者,只要使得所述单体B的添加量与所述单体A的添加量相比相对减少即可。
根据本发明的一个方面,可以采用手动调控或程序自动调控单体A和单体B的添加量,从而实现单体A和单体B的添加量比例持续变化,且总添加量不断改变。简单举例而言:在聚合反应的初始时刻t0至终止时刻tm,维持所述单体B的添加量不变,通过设定m个控制点,以间断的方式手动不断调控单体A的添加速率,使得间断性实现所述单体B的添加量与所述单体A的添加量相比相对减少。也可以通过设定控制程序,该程序为业内人员容易开发掌握,通过此控制程序,连续实现调控单体A的添加速率,从而满足式(V)的规定。
根据本发明的一个方面,所述符号m代表闭区间[5,∞]内的一个整数,优选代表闭区间[8,∞]内的一个整数。在此,所述符号m代表一个整数,其下限可以是5或者8,或者也可以是10或者20。作为所述符号m所代表的整数的上限,可以是∞,或者也可以是20000、10000、5000、1000、500、200、100或者50。
根据本发明的一个方面,所述符号m所代表的整数的值越大,表明相邻两个单体添加时刻的变化越连续,同时也意味着相邻两个单体添加时刻的侧链平均碳数的变化越连续。当所述符号m所代表的整数的值足够大,比如其上限值达到∞时,当然这并不意味着该上限值在数值上实际达到了∞,而是意味着随着所述单体添加时刻的连续变化,所述侧链平均碳数也已经达到了连续或无级平滑变化的程度。举例而言, 在m=∞时,所述侧链平均碳数的数值从X0至Xm,不再呈现为有穷递增数列变化,而是呈现为连续递增变化,特别是无级差或平滑递增变化。
根据本发明的一个方面,如所述式(V)所示,所述侧链平均碳数X的数值从X0至Xm呈现为递增变化,比如逐渐递增变化或者线性递增变化。本发明对所述递增变化中任意相邻两个X之间的递增幅度(也称为步长)没有特别的限定,只要是本领域技术人员认为已经达到了有效递增的程度即可。而且,所述递增变化可以是等步长递增变化,也可以是不等步长递增变化,并没有特别的限定。作为所述步长,一般比如可以是从0.01至4.00范围内的任一数值,或者是从0.05至1.5范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,作为所述X0,它代表了所述至少两种单体在所述至少两种单体向所述聚合反应体系中添加的起始时刻t0的侧链平均碳数,也代表了整个所述递增变化的起点和最小值,比如可以是从6.5至12.5范围内的任一数值,或者是从7.8至12.0范围内的任一数值,但本发明并不限于此。另外,作为所述Xm,它代表了所述至少两种单体在所述至少两种单体向所述聚合反应体系中添加的终止时刻tm的侧链平均碳数,也代表了整个所述递增变化的终点和最大值,比如可以是从13.8至19.5范围内的任一数值,或者是从14.5至18.2范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,设在所述单体添加的终止时刻tm,所述至少两种单体在所述单体添加时间t内向所述聚合反应体系中的累计添加量之和为G,并且设在任一单体添加时刻tx,所述至少两种单体向所述聚合反应体系的添加量之和为Gx,符号x代表从0至m的任意整数,以下关系式成立。以下有时将比值Gx/G简称为添加量比。
G0/G<G1/G<...<Gj/G>...>Gm-1/G>Gm/G      (VI)
根据本发明的一个方面,在所述式(VI)中,符号j代表闭区间[m/4,3m/4]内的一个整数,优选代表闭区间[m/3,2m/3]内的一个整数,更优选代表闭区间[2m/5,3m/5]内的一个整数,且G0+G1+...+Gj+...+Gm-1+Gm=G。
根据本发明的一个方面,在任一单体添加时刻tx,向所述聚合反应体系中添加所述至少两种单体,用q种单体表示。在此,符号q代表 所述制造方法A所涉及的单体种类数目,比如可以是从2至100的任意整数或者从2至20的任意整数,特别是从2至5的任意整数。在此,设每一种单体在所述单体添加时刻tx向所述聚合反应体系中的单独添加量(绝对值)为gs,符号s代表从1至q的任意整数,则这些单独添加量的总和即等于所述Gx,而这些单独添加量之间的比例即为所述至少两种单体在所述单体添加时刻tx向所述聚合反应体系中添加的相对比例。如本说明书前文所述,在任一单体添加时刻tx,要求所述相对比例使得所述假想混合物的侧链平均碳数Xx满足所述式(V)的规定。这是针对所述至少两种单体的这些单独添加量的相对值而提出的要求。根据本发明的该方面,对于所述至少两种单体的这些单独添加量各自的绝对值没有特别的限定,只要其总和达到所述Gx,并进一步使得所述Gx或者所述Gx/G满足所述式(VI)的规定即可。简单举例而言,假设所述至少两种单体代表两种单体,即单体A和单体B,其中所述单体A的侧链平均碳数大于所述单体B的侧链平均碳数。为了使所述两种单体的所述单独添加量同时满足所述式(V)的规定和所述式(VI)的规定,从所述两种单体向所述聚合反应体系中添加的起始时刻t0至单体添加时刻tj,维持所述单体B的添加量不变,而逐渐增加所述单体A的添加量,然后从所述单体添加时刻tj至所述单体添加的终止时刻tm,逐渐减少所述单体B的添加量,而维持所述单体A的添加量不变。
根据本发明的一个方面,如所述式(VI)所示,所述添加量比的数值从G0/G至Gj/G呈现为递增变化,比如逐渐递增变化或者线性递增变化。本发明对所述递增变化中任意相邻两个数值之间的递增幅度(也称为步长)没有特别的限定,只要是本领域技术人员认为已经达到了有效递增的程度即可。而且,所述递增变化可以是等步长递增变化,也可以是不等步长递增变化,并没有特别的限定。作为所述步长,一般比如可以是从0.05%至20%范围内的任一数值,或者是从0.1%至5%范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,作为所述添加量比G0/G,它代表了在所述至少两种单体向所述聚合反应体系中添加的起始时刻t0,所述至少两种单体的(瞬时)总体添加量相对于所述至少两种单体在整个所述单体添加时间t内的总体添加量G的比值,也代表了整个所述递增变化的起点和最小值,比如可以是从0.01%至20%范围内的任一数值,或者 是从0.1%至10%范围内的任一数值,但本发明并不限于此。另外,作为所述添加量比Gj/G,它代表了在所述单体添加时刻tj,所述至少两种单体的(瞬时)总体添加量相对于所述总体添加量G的比值,也代表了整个所述递增变化的终点和最大值,比如可以是从20%至75%范围内的任一数值,或者是从25%至65%范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,如所述式(VI)所示,所述添加量比的数值从Gj/G至Gm/G呈现为递减变化,比如逐渐递减变化或者线性递减变化。本发明对所述递减变化中任意相邻两个数值之间的递减幅度(也称为步长)没有特别的限定,只要是本领域技术人员认为已经达到了有效递减的程度即可。而且,所述递减变化可以是等步长递减变化,也可以是不等步长递减变化,并没有特别的限定。作为所述步长,一般比如可以是从0.05%至20%范围内的任一数值,或者是从0.1%至5%范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,作为所述添加量比Gj/G,它代表了在所述单体添加时刻tj,所述至少两种单体的(瞬时)总体添加量相对于所述总体添加量G的比值,也代表了整个所述递减变化的起点和最大值,比如可以是从20%至75%范围内的任一数值,或者是从25%至65%范围内的任一数值,但本发明并不限于此。另外,作为所述添加量比Gm/G,它代表了在所述至少两种单体向所述聚合反应体系中添加的终止时刻tm,所述至少两种单体的(瞬时)总体添加量相对于所述总体添加量G的比值,也代表了整个所述递减变化的终点和最小值,比如可以是从0.01%至20%范围内的任一数值,或者是从0.1%至10%范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,所述添加量比Gm/G与所述添加量比G0/G可以相同,也可以不同,并没有特别的限定。
根据本发明的一个方面,如所述式(VI)所示,所述添加量比的数值从G0/G至Gm/G表现出两边低中间高的分布状态,非常类似于高斯分布。因此,根据本发明的一个实施方式,在理想的状态下,在以所述添加量比的数值作为纵坐标,以侧链平均碳数X的数值作为横坐标,并且从所述至少两种单体向所述聚合反应体系中添加的起始时刻t0变化至所述至少两种单体向所述聚合反应体系中添加的终止时刻tm 时,二者的关系符合或者基本上符合高斯分布,比如如式(VII)所示。在此,所谓“基本上符合”,指的是二者的关系与所述式(VII)所示的高斯分布稍有偏离,但该偏离在本领域技术人员可接受的幅度之内。
Figure PCTCN2017000409-appb-000012
根据本发明的一个方面,在所述式(VII)中,符号x代表从0至m的任意整数,符号μ代表开区间(12.5,14.2)内的任意一个数值,优选代表开区间(12.6,13.8)内的任意一个数值,符号σ代表开区间(0.5,2)内的任意一个数值。π是圆周率,一般可以取3.141592654或3.14,e是自然常数,一般可以取2.718281828或2.72。
根据本发明的一个方面,还涉及一种共聚反应的控制方法。所述共聚反应是将至少两种单体添加至聚合反应体系而在其中发生的加成共聚反应,特别是自由基加成共聚反应。由于所述控制方法能够用来控制或者特别用来控制所述制造方法A的实施,因此除了以下方面明确记载的内容以外,有关所述控制方法的任何方面、特征、范围或信息等内容,均可以直接适用所述制造方法A的相应内容,在此不再赘述。
根据本发明的一个方面,所述控制方法包括调节所述至少两种单体在任一单体添加时刻tx向所述聚合反应体系中添加的相对比例,使得由所述至少两种单体按照所述相对比例构成的(假想)混合物的核磁共振法侧链平均碳原子数Xx满足以下关系式的步骤,其中符号x代表从0至m的任意整数。
X0<X1<...<Xm-1<Xm      (V)
根据本发明的一个方面,所述控制方法还可以包括调节所述至少两种单体在所述单体添加时刻tx向所述聚合反应体系中的添加量之和Gx,使所述比值Gx/G满足以下关系式的步骤。
G0/G<G1/G<...<Gj/G>...>Gm-1/G>Gm/G      (VI)
根据本发明的一个方面,所述调节步骤或者所述控制方式可以通过本领域已知的任何方式予以实现,具体比如可以举出流量控制阀与PLC控制回路的组合,并没有特别的限定。
根据本发明的一个方面,所述梯度共聚物的制造方法包含混合p种聚合物组分的步骤。以下有时将所述制造方法称为制造方法B。
根据本发明的一个方面,所述p种聚合物组分已经被预先制造。在此,所述p种聚合物组分可以按照本领域已知的任何方法进行制造,也可以按照本说明书前文所述的制造方法A进行制造,还可以通过商购得到,并没有特别的限定。然后,将所述p种聚合物组分通过现有技术已知的任何方式混合在一起,即可获得一种梯度共聚物。所述梯度共聚物包括本发明在本说明书的各个方面所述的梯度共聚物。
根据本发明的一个方面,所述p种聚合物组分各自独立地代表式(I)所示单体的加成聚合物(以下称为聚合物B),特别是自由基加成聚合物。在此,所述聚合物B可能是单独一种所述式(I)所示单体的均聚物,也可能是两种或者多种所述式(I)所示单体的共聚物。作为所述共聚物,具体比如可以举出无规共聚物、嵌段共聚物或者交替共聚物等等。而且,这些聚合物B中两种或多种的混合物也可以作为所述聚合物组分。鉴于此,所述p种聚合物组分中的一个或多个也可能代表所述聚合物B中两种或多种的混合物。
根据本发明的该方面,所述聚合物B或者所述p种聚合物组分各自独立地包含一种或多种式(I-1)所示的结构单元(以下有时简称为特定结构单元)或基本上由一种或多种所述特定结构单元构成。显然的是,所述式(I-1)所示的结构单元衍生自所述式(I)所示的单体。在此,所谓“基本上”,指的是以摩尔为计,占总体的85%以上,优选90%以上,更优选95%以上。这些聚合物结构的其余部分可能是除了所述特定结构单元之外的其他结构单元或者端基,但一般是端基,具体比如引发剂残基等。
Figure PCTCN2017000409-appb-000013
根据本发明的一个方面,所述p种聚合物组分的数均分子量Mn各自独立地为从1万至100万,优选从1万至50万,更优选从1万至10万。
根据本发明的一个方面,所述p种聚合物组分的分子量分布Mw/Mn各自独立地为从1.8至3.5,优选从1.9至3.3。
Figure PCTCN2017000409-appb-000014
根据本发明的一个方面,在式(I)或者式(I-1)中,基团R1代表H或者
Figure PCTCN2017000409-appb-000015
优选代表H。在此,基团R′代表H或者基团R3,优选代表基团R3
根据本发明的一个方面,在式(I)或者式(I-1)中,基团R2代表H或者C1-4直链或支链烷基,优选代表H或者甲基。
根据本发明的一个方面,在式(I)或者式(I-1)中,符号a代表0或者1,优选代表1。
根据本发明的一个方面,在式(I)或者式(I-1)中,基团R3代表C1-C30直链或支链烷基,优选代表C6-C24直链或支链烷基,更优选代表C6-C20直链烷基或者C8-C24直链烷基。
根据本发明的一个方面,优选的是,对于所述聚合物B或者所述p种聚合物组分中的一种或多种而言,基团R3代表C10-C18直链或支链烷基的所述特定结构单元占构成这些聚合物的全部结构单元的比例(以摩尔为计)一般为从40%至95%,优选从55%至95%。
根据本发明的一个方面,作为所述式(I)所示的单体,具体比如可以举出富马酸单C1-C30直链或支链烷基酯、富马酸二C1-C30直链或支链烷基酯、C3-C30直链或支链α-烯烃和(甲基)丙烯酸C1-C30直链或支链烷基酯,更具体比如可以举出富马酸单C8-C24直链或支链烷基酯、富马酸二C8-C24直链或支链烷基酯、C6-C20直链或支链α-烯烃和(甲基)丙烯酸C6-C20直链或支链烷基酯,更具体比如可以举出富马酸单C8-C24直链烷基酯、富马酸二C8-C24直链烷基酯、C6-C20直链α-烯烃和(甲基)丙烯酸C6-C20直链烷基酯。这些单体可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述富马酸单C8-C24直链或支链烷基酯,具体比如可以举出富马酸单C8直链烷基酯、富马酸单C10直链烷基酯、富马酸单C12直链烷基酯、富马酸单C14直链烷基酯、富马酸 单C16直链烷基酯、富马酸单C18直链烷基酯、富马酸单C20直链烷基酯、富马酸单C22直链烷基酯和富马酸单C24直链烷基酯。这些富马酸单C8-C24直链或支链烷基酯可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述富马酸二C8-C24直链或支链烷基酯,具体比如可以举出富马酸二C8直链烷基酯、富马酸二C10直链烷基酯、富马酸二C12直链烷基酯、富马酸二C14直链烷基酯、富马酸二C16直链烷基酯、富马酸二C18直链烷基酯、富马酸二C20直链烷基酯、富马酸二C22直链烷基酯和富马酸二C24直链烷基酯。这些富马酸二C8-C24直链或支链烷基酯可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述C6-C20直链或支链α-烯烃,具体比如可以举出1-己烯、1-辛烯、1-癸烯、1-十二碳烯、1-十四碳烯、1-十六碳烯、1-十八碳烯和1-二十碳烯。这些C6-C20直链或支链α-烯烃可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述(甲基)丙烯酸C6-C20直链或支链烷基酯,具体比如可以举出(甲基)丙烯酸C6直链烷基酯、(甲基)丙烯酸C8直链烷基酯、(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯。这些(甲基)丙烯酸C6-C20直链或支链烷基酯可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,作为所述(甲基)丙烯酸C6-C20直链或支链烷基酯,比如可以组合使用(甲基)丙烯酸C6直链烷基酯、(甲基)丙烯酸C8直链烷基酯、(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯和(甲基)丙烯酸C18直链烷基酯中的两种或多种,或者组合使用(甲基)丙烯酸C8直链烷基酯、(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯中的两种或多种,或者组合使用(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14 直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯,优选组合使用(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯,或者组合使用(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯,或者组合使用(甲基)丙烯酸C8直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯。
根据本发明的一个方面,设第i种聚合物组分的侧链平均碳数为Xi,符号i代表从1至p的任意整数,以下关系式成立。基于以下关系式可知,所述p种聚合物组分彼此之间在结构和/或组成上是不同的,而这种差异至少表现为不同的侧链平均碳数。
X1<X2<...<Xp-1<Xp      (VIII)
根据本发明的一个方面,所述符号p是从5至10000的一个整数,优选从8至5000的一个整数,或者从5至20的一个整数。
根据本发明的一个方面,如所述式(VIII)所示,所述侧链平均碳数X的数值从X1至Xp呈现为递增变化,比如逐渐递增变化或者线性递增变化。本发明对所述递增变化中任意相邻两个X之间的递增幅度(也称为步长)没有特别的限定,只要是本领域技术人员认为已经达到了有效递增的程度即可。而且,所述递增变化可以是等步长递增变化,也可以是不等步长递增变化,并没有特别的限定。作为所述步长,一般比如可以是从0.01至4.00范围内的任一数值,或者是从0.05至1.5范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,作为所述X1,它代表了整个所述递增变化的起点和最小值,比如可以是从6.5至12.5范围内的任一数值,或者是从7.8至12.0范围内的任一数值,但本发明并不限于此。另外,作为所述Xp,它代表了整个所述递增变化的终点和最大值,比如可以是从13.8至19.5范围内的任一数值,或者是从14.5至18.2范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,设第i种聚合物组分占所述p种聚合物组 分总重量的重量百分比(以下有时简称为组分占比)为Yi,符号i代表从1至p的任意整数,以下关系式成立。
Y1<Y2<...<Yj>...>Yp-1>Yp      (X)
根据本发明的一个方面,在所述式(X)中,符号j代表闭区间[(p+1)/4,3(p+1)/4]内的一个整数,优选代表闭区间[(p+1)/3,2(p+1)/3]内的一个整数,更优选代表闭区间[2(p+1)/5,3(p+1)/5]内的一个整数,且Y1+Y2+...+Yj+...+Yp-1+Yp=100%。
根据本发明的一个方面,如所述式(X)所示,所述组分占比Y的数值从Y1至Yj呈现为递增变化,比如逐渐递增变化或者线性递增变化。本发明对所述递增变化中任意相邻两个Y之间的递增幅度(也称为步长)没有特别的限定,只要是本领域技术人员认为已经达到了有效递增的程度即可。而且,所述递增变化可以是等步长递增变化,也可以是不等步长递增变化,并没有特别的限定。作为所述步长,一般比如可以是从0.05%至20%范围内的任一数值,或者是从0.1%至5%范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,作为所述Y1,它代表了整个所述递增变化的起点和最小值,比如可以是从0.01%至20%范围内的任一数值,或者是从0.1%至10%范围内的任一数值,但本发明并不限于此。另外,作为所述Yj,它代表了整个所述递增变化的终点和最大值,比如可以是从20%至75%范围内的任一数值,或者是从25%至65%范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,如所述式(X)所示,所述组分占比Y的数值从Yj至Yp呈现为递减变化,比如逐渐递减变化或者线性递减变化。本发明对所述递减变化中任意相邻两个Y之间的递减幅度(也称为步长)没有特别的限定,只要是本领域技术人员认为已经达到了有效递减的程度即可。而且,所述递减变化可以是等步长递减变化,也可以是不等步长递减变化,并没有特别的限定。作为所述步长,一般比如可以是从0.05%至20%范围内的任一数值,或者是从0.1%至5%范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,作为所述Yj,如本说明书前文所述,它代表了整个所述递减变化的起点和最大值,比如可以是从20%至75%范围内的任一数值,或者是从25%至65%范围内的任一数值,但本发 明并不限于此。另外,作为所述Yp,它代表了整个所述递减变化的终点和最小值,比如可以是从0.01%至20%范围内的任一数值,或者是从0.1%至10%范围内的任一数值,但本发明并不限于此。
根据本发明的一个方面,所述Yp与所述Y1可以相同,也可以不同,并没有特别的限定。
根据本发明的一个方面,如所述式(X)所示,所述组分占比Y的数值从Y1至Yp表现出两边低中间高的分布状态,非常类似于高斯分布。因此,根据本发明的一个实施方式,在理想的状态下,在以组分占比Y的数值作为纵坐标,以侧链平均碳数X的数值作为横坐标,并且从第1种聚合物组分变化至第p种聚合物组分时,二者的关系符合或者基本上符合高斯分布,比如如式(XI)所示。在此,所谓“基本上符合”,指的是二者的关系与所述式(XI)所示的高斯分布稍有偏离,但该偏离在本领域技术人员可接受的幅度之内。
Figure PCTCN2017000409-appb-000016
根据本发明的一个方面,在所述式(XI)中,符号μ代表开区间(12.5,14.2)内的任意一个数值,优选代表开区间(12.6,13.8)内的任意一个数值,符号σ代表开区间(0.5,2)内的任意一个数值。π是圆周率,一般可以取3.141592654或3.14,e是自然常数,一般可以取2.718281828或2.72。
根据本发明的一个方面,还涉及一种聚合物组合物。在此,所述聚合物组合物包含本发明在本说明书的各个方面所述的梯度共聚物、或者按照本发明在本说明书的各个方面所述的制造方法制造的梯度共聚物。取决于目标用途或者目标性能表现等的不同,所述聚合物组合物还可以包含其它组分。作为所述其它组分,比如可以举出抗氧剂、润滑剂、溶剂、稀释剂、填料、除了所述梯度共聚物之外的其它聚合物、颜料等等本领域技术人员可能想到有用的各种组分。而且,本领域技术人员对这些其他组分可以常规选择。作为所述其它聚合物,比如可以举出聚(甲基)丙烯酸酯均聚物或共聚物、α-烯烃均聚物或共聚物、富马酸酯均聚物或共聚物、醋酸乙烯酯均聚物或共聚物等。这些其它组分可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,所述聚合物组合物可以是一种润滑油降 凝剂。在此,所述润滑油降凝剂包含本发明在本说明书的各个方面所述的梯度共聚物、或者按照本发明在本说明书的各个方面所述的制造方法制造的梯度共聚物。鉴于此,本发明还涉及本发明在本说明书的各个方面所述的梯度共聚物、或者按照本发明在本说明书的各个方面所述的制造方法制造的梯度共聚物作为润滑油降凝剂的用途。需要特别指出的是,所述梯度共聚物或者所述润滑油降凝剂能够实现优异的润滑油降凝效力。取决于目标性能表现等的不同,所述润滑油降凝剂还可以包含其它组分。作为所述其它组分,比如可以举出抗氧剂、润滑剂、溶剂、稀释剂、除了所述梯度共聚物之外的其它降凝剂等等,本领域技术人员可以对此进行常规选择。这些其它组分可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,还涉及一种润滑油组合物。在此,所述润滑油组合物包含本发明在本说明书的各个方面所述的梯度共聚物、按照本发明在本说明书的各个方面所述的制造方法制造的梯度共聚物、本发明在本说明书的各个方面所述的聚合物组合物、或者本发明在本说明书的各个方面所述的润滑油降凝剂,以及润滑油基础油。
根据本发明的一个方面,以所述梯度共聚物为计,所述梯度共聚物、所述聚合物组合物或者所述润滑油降凝剂在所述润滑油基础油中的重量含量一般为从0.01重量%至2重量%,优选从0.05重量%至1.5重量%,更优选从0.1重量%至1重量%。
根据本发明的一个方面,所述润滑油基础油可以是不同来源的润滑油基础油,由此所述梯度共聚物对润滑油基础油表现出广泛的降凝适应性。作为所述润滑油基础油,比如可以举出API I类矿物基础油、API II/III类加氢基础油或者含有一种或多种这些基础油的润滑油。另外,根据需要,所述润滑油基础油除了所述API I类或者所述API II/III类基础油之外,还可以含有其他基础油,具体比如可以举出API IV类合成油、API V类合成油或者GTL合成基础油。这些润滑油基础油可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,所述润滑油组合物还可以包含其它组分。作为所述其它组分,比如可以举出本领域在润滑油组合物中允许添加的各种添加剂,具体比如可以举出酚类、胺类或硫磷型抗氧剂,羧酸盐、磺酸盐或烷基酚盐清净剂,丁二酰亚胺型无灰分散剂,聚酯、聚 烯烃或烷基萘型降凝剂,甲基丙烯酸酯共聚物、乙丙共聚物、聚异丁烯或氢化苯乙烯/丁二烯共聚物型粘度指数改进剂,硫/磷型摩擦改进剂,含硫/磷、硼酸型极压剂,或者硅型、非硅型抗泡剂等。这些添加剂的种类和用量为本领域技术人员所公知,在此不作赘述。这些添加剂可以单独使用一种,或者以任意的比例组合使用多种。
实施例
以下采用实施例进一步详细地说明本发明,但本发明并不限于这些实施例。
在以下的实施例和对比例中,共聚物和稀释油各自的含量以及共聚物中各单体的含量按照投料量计算得到。
在本发明的上下文中,包括在以下的实施例和对比例中,各测量方法和计算方法按照如下进行。
1.凝胶渗透色谱(GPC)拆分法
操作仪器:美国Waters公司生产的1515型凝胶渗透色谱仪。检测器为Waters 2414示差折光检测器。配置标准品所用的溶剂为由Acros公司生产的色谱纯四氢呋喃。色谱柱由Waters公司提供,为3支不同孔径硅胶柱串联,具体规格如下:
(1)Waters
Figure PCTCN2017000409-appb-000017
0.5 THF,相对分子量测量范围1-1000(7.8×300mm),
(2)Waters
Figure PCTCN2017000409-appb-000018
1 THF,相对分子量测量范围100-5000(7.8×300mm),
(3)Waters
Figure PCTCN2017000409-appb-000019
3 THF,相对分子量测量范围5000-600,000(7.8×300mm)。
操作条件:流动相为四氢呋喃,流动相流速为1.0mL/min,柱温为35℃,检测器温度为35℃,进样量为200μL。
拆分步骤:将0.02至0.2g样品溶于10mL四氢呋喃中,摇匀,获得均匀溶液。然后将所述溶液在所述操作仪器上在所述操作条件下进行GPC分析。从凝胶色谱谱图上出现色谱峰开始直至该色谱峰结束为止,采用容量瓶,以该色谱峰的累积出峰时间为基础,等分为n段来分别收集检测器流出口的流出液。将所述n段流出液分别标记为L1、L2、...、Ln。重复上述操作10次,合并每次收集的各段流出液。然后, 通过80℃蒸馏分别从各段流出液中脱除四氢呋喃,得到n段拆分组分,分别称重。测量每段拆分组分的数均分子量Mn和分子量分布Mw/Mn,并计算每段拆分组分占全部n段拆分组分总重量的重量百分比,即组分占比Y。
2.核磁共振解析法
操作仪器:美国Varian公司生产的INOVA 500MHz核磁共振波谱仪(1H-NMR),固体双共振探头(5mm)。
操作条件:操作温度为室温,扫描次数nt=1000,化学位移定标δ四甲基硅烷=0,去偶方式dm=nny(反门控去偶),重水锁场。
解析步骤:对样品进行1H-NMR表征,通过解析相应获得的核磁谱图,计算所述样品的侧链平均碳数X。
以下分别以甲基丙烯酸酯聚合物、丙烯酸酯聚合物、富马酸酯聚合物和α-烯烃聚合物为例,具体说明所述核磁谱图的解析过程以及所述侧链平均碳数X的计算方法,但本发明并不限于此,其它聚合物也可以参照该内容进行类似解析和计算。
仅作为例子,所述甲基丙烯酸酯聚合物或者所述丙烯酸酯聚合物一般包含如下所示的结构单元。
Figure PCTCN2017000409-appb-000020
根据1H-NMR谱图的明显差异性,针对甲基丙烯酸酯聚合物,可将其结构单元中的氢原子大致分为如图所示的HA、HB、HC、HD四个区域,这些区域存在式(1)所示的关系。由于HC所处化学位移被HB所覆盖,且HD处较难积分,可将HB、HC和HD合并计算。因此,可 将公式(1)变换为公式(2),并进一步推导为公式(3)。
Figure PCTCN2017000409-appb-000021
Figure PCTCN2017000409-appb-000022
Figure PCTCN2017000409-appb-000023
在这些公式中,X代表甲基丙烯酸酯聚合物的侧链平均碳数。
与甲基丙烯酸酯聚合物的解析类似,可将其结构单元中的氢原子大致分为如图所示的HA、HB、HD三个区域,同样可以计算出丙烯酸酯聚合物的侧链平均碳数X,如公式(4)所示。
Figure PCTCN2017000409-appb-000024
仅作为例子,所述富马酸酯聚合物一般包含如下所示的结构单元。
Figure PCTCN2017000409-appb-000025
与甲基丙烯酸酯聚合物的解析类似,同样可以计算出富马酸酯聚合物的侧链平均碳数X,如公式(5)所示。
Figure PCTCN2017000409-appb-000026
仅作为例子,所述α-烯烃聚合物一般包含如下所示的结构单元。
Figure PCTCN2017000409-appb-000027
与甲基丙烯酸酯聚合物的解析类似,同样可以计算出α-烯烃聚合物的侧链平均碳数X,如公式(6)所示。
Figure PCTCN2017000409-appb-000028
具体举例而言,如果某一甲基丙烯酸酯聚合物具有如图1所示的核磁谱图及积分数据,则由公式(3)计算可知,所述甲基丙烯酸酯聚合物的侧链平均碳数X=14.86。
在以下的实施例和对比例中,润滑油基础油A至F的性质如表A所示。
表A
基础油编号 A B C
级别 API-II6 API-III6 150SN
100℃粘度 5.67 5.54 5.46
粘度指数 112 121 90
倾点/℃ -18 -15 -15
实施例A
在氮气保护下,向装有机械搅拌的反应釜中加入113kg稀释油(购自双龙公司,牌号为100N,下同),加热至83-91℃,将270kg第一单体(甲基丙烯酸癸酯/甲基丙烯酸十二烷基酯/甲基丙烯酸十四烷基酯/甲基丙烯酸十六烷基酯/甲基丙烯酸十八烷基酯的混合物,其中C10=61%,C12=20%,C14=12%,C16=5%,C18=2%,X=11.1)、1.35kg过氧化苯甲酰和1.08kg十二烷基硫醇的混合物A滴加至反应釜中,同时将150kg第二单体(甲基丙烯酸十四烷基酯/甲基丙烯酸十六烷基酯/甲基丙烯酸十八烷基酯/甲基丙烯酸二十烷基酯的混合物,其中C14=27 重量%,C16=42%,C18=24%,C20=7重量%,X=16.0)、0.75kg过氧化苯甲酰和0.6kg十二烷基硫醇的混合物B滴加至反应釜中。在滴加的初始时刻,混合物A的滴加量(kg/小时)与混合物B的滴加量(kg/小时)之比A/B为4∶1,二者之和为20kg/小时,然后A/B逐渐减少,二者之和逐渐增加,直至滴加3小时的时刻,A/B达到5∶3,二者之和达到80kg/小时。然后,A/B逐渐减少,二者之和逐渐减少,直至滴加6小时的时刻,A/B达到1∶2,二者之和达到15kg/小时,滴加结束。然后,反应釜在95℃下继续保持1小时,然后加入0.3kg过氧化苯甲酰和113kg稀释油,升温至103℃下保持2小时后结束聚合反应,得到梯度共聚物J1。在此,所述聚合反应的单体转化率为99.1%,梯度共聚物J1的数均分子量Mn为47120,侧链平均碳数X为12.5。以梯度共聚物J1作为样品,经过GPC拆分,得到5段拆分组分。对所述5段拆分组分分别进行测量,结果见表1。
表1
项目 1 2 3 4 5
组分占比Y/% 7.1 16.7 50 16.7 9.5
侧链平均碳数X 12.21 12.42 12.80 13.71 14.13
数均分子量Mn 21542 35411 48214 54525 65214
实施例B
在氮气保护下,向装有机械搅拌的反应釜中加入113kg稀释油(购自双龙公司,牌号为100N,下同),加热至83-91℃,将50kg第一单体(甲基丙烯酸己酯/甲基丙烯酸辛酯/甲基丙烯酸癸酯的混合物,其中C6=71%,C8=21%,C10=8%,X=6.6)、0.32kg过氧化苯甲酰和0.21kg十二烷基硫醇的混合物A滴加至反应釜中,同时将370kg第二单体(甲基丙烯酸十二烷基酯/甲基丙烯酸十四烷基酯/甲基丙烯酸十六烷基酯的混合物,其中C12=55重量%,C14=17重量%,C16=28重量%,X=13.3)、1.8kg过氧化苯甲酰和1.5kg十二烷基硫醇的混合物B滴加至反应釜中。在滴加的初始时刻,混合物A的滴加量(kg/小时)与混合物B的滴加量(kg/小时)之比A/B为7∶1,二者之和为12kg/小时,然后A/B逐渐减少,二者之和逐渐增加,直至滴加3小时的时刻,A/B达到1∶10,二者之和达到150kg/小时。然后,A/B逐渐减少,二者之和逐渐减少, 直至滴加6小时的时刻,A/B达到1∶20,二者之和达到20kg/小时,滴加结束。然后,反应釜在95℃下继续保持1小时,然后加入0.3kg过氧化苯甲酰和113kg稀释油,升温至103℃下保持2小时后结束聚合反应,得到梯度共聚物J2。在此,所述聚合反应的单体转化率为98.3%,梯度共聚物J2的数均分子量Mn为45975,侧链平均碳数X为12.0。以梯度共聚物J2作为样品,经过GPC拆分,得到8段拆分组分。对所述8段拆分组分分别进行测量,结果见表2。
表2
项目 1 2 3 4 5 6 7 8
组分占比Y/% 4.2 5.9 8.5 9.6 43.1 14.4 8.4 6.0
侧链平均碳数X 7.30 9.84 11.17 11.82 12.44 12.65 12.70 12.89
数均分子量Mn 19542 25057 31124 38512 44215 47045 50215 59021
对比例A
按照实施例A的方法制备梯度共聚物,不同的是,将第一单体和第二单体混合均匀之后再以恒定速率滴加至反应体系中,具体地:
在氮气保护下,向装有机械搅拌的反应釜中加入113kg稀释油,加热至83-91℃,将270kg第一单体(甲基丙烯酸癸酯/甲基丙烯酸十二烷基酯/甲基丙烯酸十四烷基酯/甲基丙烯酸十六烷基酯/甲基丙烯酸十八烷基酯的混合物,其中C10=61%,C12=20%,C14=12%,C16=5%,C18=2%,X=11.1)、150kg第二单体(甲基丙烯酸十四烷基酯/甲基丙烯酸十六烷基酯/甲基丙烯酸十八烷基酯/甲基丙烯酸二十烷基酯的混合物,其中C14=27重量%,C16=42%,C18=24%,C20=7重量%,X=16.0)、2.1kg过氧化苯甲酰和1.68kg十二烷基硫醇的混合物以70kg/小时的恒定速率滴加至反应釜中,滴加时间为6小时,滴加结束时,反应釜在95℃下继续保持1小时,然后加入0.3kg过氧化苯甲酰和113kg稀释油,升温至103℃下保持2小时后结束反应,得到共聚物DJ1。在此,所述聚合反应的单体转化率为99.3%,共聚物DJ1的数均分子量Mn为41768,侧链平均碳数X为12.5。以共聚物DJ1作为样品,经过GPC拆分,得到5段拆分组分。对所述5段拆分组分分别进行测量,结果见表3。
表3
项目 1 2 3 4 5
组分占比Y/% 13.2 17.5 30.0 21.1 18.2
侧链平均碳数X 12.41 12.54 12.54 12.47 12.40
数均分子量Mn 32154 39024 45145 52153 59213
实施例C
在氮气保护下,向装有机械搅拌的反应釜中加入113kg稀释油(购自双龙公司,牌号为100N,下同),加热至83-91℃,将150kg第一单体(甲基丙烯酸癸酯/甲基丙烯酸十二烷基酯的混合物,其中C10=50%,C12=50%,X=10.9)、0.75kg过氧化苯甲酰和0.7kg十二烷基硫醇的混合物A滴加至反应釜中,前4小时,第一单体混合物的进料速度保持在10kg/小时匀速滴加,同时将100kg第二单体(甲基丙烯酸十二烷基酯/甲基丙烯酸十四烷基酯的混合物,其中C12=70重量%,C14=30%,X=12.5)、0.6kg过氧化苯甲酰和0.55kg十二烷基硫醇的混合物B滴加至反应釜中。在滴加的初始时刻,混合物A的滴加量(kg/小时)与混合物B的滴加量(kg/小时)之比A/B为2∶1,二者之和为15kg/小时,然后B逐渐增加,二者之和逐渐增加,直至滴加4小时的时刻,A/B达到1∶3,二者之和达到80kg/小时,此时第二单体进料结束,此刻,将170kg的第三单体(甲基丙烯酸十四烷基酯/甲基丙烯酸十六烷基酯/甲基丙烯酸十八烷基酯混合物的混合物,其中C14=64重量%,C16=25%,C18=11%,X=14.8)、0.8kg过氧化苯甲酰和0.7kg十二烷基硫醇的混合物C滴加至反应釜中,此时,混合物A的滴加量(kg/小时)与混合物C的滴加量(kg/小时)之比A/C为1∶2,二者之和为100kg/小时,然后A逐渐减少,二者之和逐渐减少,直至继续滴加5小时的时刻,A/C达到1∶3,二者之和达到10kg/小时,滴加结束。然后,反应釜在95℃下继续保持1小时,然后加入0.5kg过氧化苯甲酰和113kg稀释油,升温至103℃下保持2小时后结束聚合反应,得到梯度共聚物J3。在此,所述聚合反应的单体转化率为99.6%,梯度共聚物J3的数均分子量Mn为52120,侧链平均碳数X为11.8。以梯度共聚物J3作为样品,经过GPC拆分,得到5段拆分组分。对所述5段拆分组分分别进行测量,结果见表4。
表4
项目 1 2 3 4 5
组分占比Y/% 8.2 24.5 38.8 22.4 6.1
侧链平均碳数X 11.70 11.91 12.36 13.68 13.90
数均分子量Mn 20023 35289 50317 62527 74924
实施例D
准备5种不同的甲基丙烯酸直链烷基酯单体混合物A至E,各混合物的组成如表5所示。
表5
Figure PCTCN2017000409-appb-000029
在氮气保护下,向装有机械搅拌的反应釜中加入113kg稀释油(购自双龙公司,牌号为100N,下同),加热至92-100℃在滴加的初始时刻,混合物A以10kg/小时的速度恒定滴加近入反应釜中,同时,混合物B以5kg/小时的速度滴加,混合物B的进料速度逐渐增加,当达到2h时,混合物A和混合物B进料结束,接着混合物C和混合物D滴加入反应釜,混合物C的滴加量(kg/小时)与混合物D的滴加量(kg/ 小时)之比C/D为3∶1,二者之和为60kg/小时,然后C逐渐减少,混合物D逐渐增加,二者之和逐渐增加,直至滴加5小时的时刻,C/D达到1∶1,二者之和达到130kg/小时,此时,混合物C滴加结束,接着将混合物E滴加入反应釜,此时混合物D的滴加量(kg/小时)与混合物E的滴加量(kg/小时)之比D/E为10∶1,二者之和为130kg/小时,然后D逐渐减少,二者之和逐渐减少,直至滴加7小时的时刻,D/E达到1∶1,二者之和达到13kg/小时,滴加结束。然后,反应釜在100℃下继续保持1小时,然后加入0.3kg过氧化苯甲酰和113kg稀释油,升温至103℃保持2小时后结束聚合反应,得到梯度共聚物J4。在此,所述聚合反应的单体转化率为99.2%,梯度共聚物J4的数均分子量Mn为39120,侧链平均碳数X为12.14。以梯度共聚物J4作为样品,经过GPC拆分,得到8段拆分组分。对所述8段拆分组分分别进行测量,结果见表6。
表6
项目 1 2 3 4 5 6 7 8
组分占比Y/% 3.2 6.3 11.9 15.1 26.2 23.8 11.1 2.4
侧链平均碳数X 8.00 9.64 12.05 12.00 12.23 13.16 13.50 14.13
数均分子量Mn 18154 25124 30147 34987 37651 40154 49872 58326
按照表7规定的加入量,分别将梯度共聚物J1至J4以及共聚物DJ1加入基础油中。各共聚物的用量、基础油的种类以及所得的降凝测试结果如表7所示。
表7
Figure PCTCN2017000409-appb-000030
通过对比实施例和对比例所得结果可知,本发明获得的梯度共聚物对多种润滑油基础油均表现出优异的降凝效果。而且,即使添加量极少,润滑油基础油的倾点仍明显下降,表明本发明获得的梯度共聚物也具有显著的降凝效果。
实施例E
在氮气保护下,向装有机械搅拌的反应釜中加入113kg稀释油(购 自双龙公司,牌号为100N,下同),加热至83-91℃,以50kg/小时的稳定速度将270kg第一单体[甲基丙烯酸癸酯/甲基丙烯酸十二烷基酯/甲基丙烯酸十四烷基酯/甲基丙烯酸十六烷基酯/甲基丙烯酸十八烷基酯(C10=28%,C12=32%,C14=28%,C16=8%,C18=4%),X=12.3]、1.35kg过氧化苯甲酰和1.08kg十二烷基硫醇的混合物A滴加至反应釜中,稳定进料3小时,随后滴加速率线性减小,使得当总进料时间至6小时时,流量降低至30kg/小时。同时以10kg/小时的初始速度滴加150kg第二单体[甲基丙烯酸十四烷基酯/甲基丙烯酸十六烷基酯/甲基丙烯酸十八烷基酯/甲基丙烯酸二十烷基酯(C14=38%,C16=20%,C18=25%,C20=17%,X=16.2]、0.75kg过氧化苯甲酰和0.6kg十二烷基硫醇的混合物B滴加至反应釜中,混合物B处的添加量为线性增加,使得当总进料时间至3小时时,流量增加至30kg/小时,然后保持该流量进料3小时。A、B混合物均滴加结束时,反应釜在95℃下继续保持1小时,然后加入0.3kg过氧化苯甲酰和113kg稀释油,升温至103℃下保持2小时后结束反应,得到润滑油降凝剂J5,其中,润滑油降凝剂J5中单体转化率为99.1%,梯度共聚物J5的数均分子量为40120,侧链平均碳数X为13.5。以梯度共聚物J5作为样品,经过GPC拆分,得到5段拆分组分。对所述5段拆分组分分别进行测量,结果见表8。
项目 1 2 3 4 5
组分占比Y/% 17.0 19.5 28.4 18.2 16.8
侧链平均碳数X 12.90 13.21 13.54 13.83 14.01
数均分子量Mn 25987 34561 41250 48647 57854
实施例F
在氮气保护下,向装有机械搅拌的反应釜中加入113kg稀释油,加热至83-91℃,以40kg/小时的初始速度将171kg第一单体[甲基丙烯酸辛基酯/甲基丙烯酸癸烷基酯/甲基丙烯酸十二烷基酯/甲基丙烯酸十四烷基酯(C8=12%,C10=15%,C12=48%,C14=25%),X=11.5]、0.9kg过氧化苯甲酰和0.7kg十二烷基硫醇的混合物A添加至反应釜中,随后线性缓慢减小,使得当总进料时间至3小时时,流量降低至32kg/小时,随后线性快速减少,使得当总进料时间至6小时时,流量降低至10kg/小时。同时在以20kg/小时的初始速度滴加255kg第二单体[甲基 丙烯酸十四烷基酯/甲基丙烯酸十六烷基酯/甲基丙烯酸十八烷基酯/甲基丙烯酸二十烷基酯(C14=38%,C16=20%,C18=25%,C20=17%,X=16.2]、0.9kg过氧化苯甲酰和0.7kg十二烷基硫醇的混合物B添加至反应釜中,设定进料口B处泵的流量为线性增加,使得当总进料时间至3小时时,流量增加至50kg/小时,然后保持该流量进料3小时。A、B混合物添加结束时,反应釜在95℃下继续保持1小时,然后加入0.3kg过氧化苯甲酰和113kg稀释油,升温至103℃下保持2小时后结束反应,得到润滑油降凝剂J6,其中,润滑油降凝剂J6中单体转化率为99.4%,数均分子量为41702,侧链平均碳数X为14.0。以梯度共聚物J6作为样品,经过GPC拆分,得到5段拆分组分。对所述5段拆分组分分别进行测量,结果见表9。
项目 1 2 3 4 5
组分占比Y/% 18.8 16.5 25.3 20.3 19.2
侧链平均碳数X 12.81 13.30 14.00 14.86 15.10
数均分子量Mn 23781 34217 41702 51514 59248
实施例G
在氮气保护下,向装有机械搅拌的反应釜中加入100kg稀释油,加热至83-91℃,以48kg/小时的速度将166kg第一单体[甲基丙烯酸十二烷基酯/甲基丙烯酸十四烷基酯/甲基丙烯酸十六烷基酯/甲基丙烯酸十八烷基酯(C12=50%,C14=18重量%,C16=20重量%,C18=12重量%),X=13.66]、0.4kg过氧化苯甲酰和0.5kg十二烷基硫醇的混合物A添加添加至反应釜中,随后线性缓慢增加,使得当总进料时间至2h时时,流速增加至56kg/小时,随后线性快速减少,使得当总进料时间至4小时时,流量降低至6kg/小时。同时以30kg/小时的初始速度滴加303kg第二单体[甲基丙烯酸癸酯/甲基丙烯酸十二烷基酯/甲基丙烯酸十四烷基酯/甲基丙烯酸十六烷基酯/甲基丙烯酸十八烷基酯/甲基丙烯酸二十烷基酯(C10=12重量%,C12=27重量%,C14=19重量%,C16=18重量%,C18=14重量%,C20=10重量%),X=14.06]、0.75kg过氧化苯甲酰和0.9kg十二烷基硫醇的混合物添加至反应釜中,设定进料口B处泵的流量为线性增加,使得当总进料时间至2小时时,流量增加至100kg/小时,然后保持该流量进料2小时。混合物A和B均滴加结束时,反应 釜在95℃下继续保持2小时,然后加入0.2kg过氧化苯甲酰和142kg稀释油,升温至103℃下保持2小时后结束反应,得到润滑油降凝剂J7,其中,润滑油降凝剂J7中单体转化率为98.9%,数均分子量为43196,侧链平均碳数X为13.9。以梯度共聚物J7作为样品,经过GPC拆分,得到5段拆分组分。对所述5段拆分组分分别进行测量,结果见表10
项目 1 2 3 4 5
组分占比Y/% 14.0 18.7 29.4 19.9 18.1
侧链平均碳数X 13.82 13.86 13.92 14.01 14.03
数均分子量Mn 32145 37451 42101 45324 50325
实施例H
在氮气保护下,向装有机械搅拌的反应釜中加入100kg稀释油,加热至83-91℃,以40kg/小时的速度将255kg第一单体[甲基丙烯酸十二烷基酯/甲基丙烯酸十四烷基酯/甲基丙烯酸十六烷基酯/甲基丙烯酸十八烷基酯(C12=50重量%,C14=18重量%,C16=20重量%,C18=12重量%),
Figure PCTCN2017000409-appb-000031
1.2kg过氧化苯甲酰和1.0kg十二烷基硫醇的混合物A添加至反应釜中,随后线性缓慢增加,使得当总进料时间至3h时时,流速增加至50kg/小时,随后线性快速减少,使得当总进料时间至6小时时,流量降低至30kg/小时。同时在B进料口以10kg/小时的初始速度滴加150kg第二单体[甲基丙烯酸十四烷基酯/甲基丙烯酸十六烷基酯/甲基丙烯酸十八烷基酯/甲基丙烯酸二十烷基酯(C14=38重量%,C16=20重量%,C18=25重量%,C20=17重量%,X=16.20]、0.70kg过氧化苯甲酰和0.60kg十二烷基硫醇的混合物B添加至反应釜中,设定进料口B处泵的流量为线性增加,使得当总进料时间至3小时时,流量增加至30kg/小时,然后保持该流量进料3h。混合物A和B均添加结束时,反应釜在95℃下继续保持2小时,然后加入0.2kg过氧化苯甲酰和66kg稀释油,升温至103℃下保持2小时后结束反应,得到润滑油降凝剂J8,其中,润滑油降凝剂J8中单体转化率为99.7%,数均分子量为42637。侧链平均碳数X为14.5。以梯度共聚物J8作为样品,经过GPC拆分,得到5段拆分组分。对所述5段拆分组分分别进行测量,结果见表10
项目 1 2 3 4 5
组分占比Y/% 15.9 19.2 24.4 21.8 19.4
侧链平均碳数X 14.21 14.33 14.52 14.61 14.80
数均分子量Mn 35513 39425 43561 48215 55324
实施例I
在氮气保护下,向装有机械搅拌的反应釜中加入113kg稀释油,加热至95℃,并将420kg单体(甲基丙烯酸己酯/甲基丙烯酸辛酯/甲基丙烯酸癸基酯/甲基丙烯酸十二烷基酯/甲基丙烯酸十四烷基酯,X=11.2)、2.0kg过氧化苯甲酰和1.68kg十二烷基硫醇在进料罐中混合,然后将得到的单体以90kg/小时的速度添加至反应釜中,用时5小时,滴加结束后,然后加入0.3kg过氧化苯甲酰和113kg稀释油,升温至110℃下保持2小时后结束反应,得到聚合物M1。所述聚合反应的单体转化率为98.1%,聚合物M1的数均分子量Mn为35870。
按照同样的方法制造聚合物M2至M20,结果见表11。
表11
聚合物 侧链平均碳数X 数均分子量Mn 单体转化率/%
M1 11.2 35870 99.4
M2 11.4 36490 98.6
M3 11.6 36995 97.5
M4 11.8 37542 98.1
M5 12.1 38012 99.4
M6 12.3 37954 98.6
M7 12.5 39143 98.7
M8 12.7 39997 98.4
M9 13.0 42716 99.0
M10 13.1 44546 98.9
M11 13.3 44998 99.1
M12 13.5 46154 99.1
M13 13.7 47587 99.4
M14 14.0 48957 97.6
M15 14.2 50478 98.8
M16 14.5 51257 97.7
M17 14.7 53054 99.4
M18 15.0 55214 99.0
M19 15.2 56851 96.9
M20 15.5 58245 97.3
按照表9规定的比例混合这些聚合物,分别制造实施例C-1至实施例C-7的梯度共聚物以及对比例C-1至对比例C-2的对比共聚物,并考察各共聚物对润滑油基础油的降凝效果,结果见表9。
表9
Figure PCTCN2017000409-appb-000032
从表9的结果可以看出,对于不同加工工艺的基础油,采用本发明提供的梯度共聚物均具有优异的降凝效果。从实施例C-1至实施例C-6与实施例C-7的对比可以看出,当将所述梯度共聚物中各聚合物组分的配比控制在优选范围内时,对应的梯度共聚物具有更好的降凝效果。从实施例C-2与对比例C-1至对比例C-2所得结果的对比可以看出,当所述梯度共聚物的聚合物组分满足本发明的要求时,对应的梯度共聚物具有更好的降凝效果。
在本发明的说明书中,公开了大量的具体技术细节。然而,能够理解的是,本发明的某些实施方式也可以在没有这些具体细节的情况下实现。而且,在一些实施方式中,并未详细记载本领域已知的方法、结构和技术,这并不会造成本领域技术人员对本发明任何方面的理解。
类似地,应当理解,为了精简本公开并帮助理解所公开的方面中的一个或多个,在上面对本公开的示例性实施例的描述中,各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的内容解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如权利要求书所反映的那样,要求保护的技术方案可少于说明书中所描述的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都刻作为本发明的单独实施例。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限定的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本公开的实施例的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方 案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (28)

  1. 一种梯度共聚物,包含n种聚合物组分或者由所述n种聚合物组分构成,其中所述n种聚合物组分各自独立地代表式(I)所示单体的加成聚合物(特别是自由基加成聚合物)和/或其混合物,或者所述n种聚合物组分各自独立地包含一种或多种式(I-1)所示的结构单元或基本上由一种或多种式(I-1)所示的结构单元构成,符号n代表闭区间[5,∞]内的一个整数,优选代表闭区间[8,∞]内的一个整数,优选所述符号n所代表的整数的上限是20000、10000、5000、1000、500、200、100或者50,
    Figure PCTCN2017000409-appb-100001
    在式(I)或者式(I-1)中,
    基团R1代表H或者
    Figure PCTCN2017000409-appb-100002
    优选代表H,
    基团R2代表H或者C1-4直链或支链烷基,优选代表H或者甲基,
    符号a代表0或者1,优选代表1,
    基团R′代表H或者基团R3,优选代表基团R3
    基团R3代表C1-C30直链或支链烷基,优选代表C6-C24直链或支链烷基,更优选代表C6-C20直链烷基,
    设第i种聚合物组分的核磁共振法侧链平均碳原子数为Xi,符号i代表从1至n的任意整数,以下关系式成立,
    X1<X2<...<Xn-1<Xn   (II)
    优选从X1至Xn逐渐增大,更优选从X1至Xn线性增大。
  2. 根据权利要求1所述的梯度共聚物,其中设第i种聚合物组分 占所述n种聚合物组分总重量的重量百分比为Yi,符号i代表从1至n的任意整数,以下关系式成立,
    Y1<Y2<...<Yj>...>Yn-1>Yn     (III)
    在式(III)中,符号j代表闭区间[(n+1)/4,3(n+1)/4]内的一个整数,优选代表闭区间[(n+1)/3,2(n+1)/3]内的一个整数,更优选代表闭区间[2(n+1)/5,3(n+1)/5]内的一个整数,且Y1+Y2+...+Yj+...+Yn-1+Yn=100%,
    优选从Y1至Yj逐渐增大,更优选从Y1至Yj线性增大,或者从Yj至Yn逐渐降低,更优选从Yj至Yn线性降低,
    更优选Yi与Xi满足以下关系式,
    Figure PCTCN2017000409-appb-100003
    在式(IV)中,符号μ代表开区间(12.5,14.2)内的任意一个数值,优选代表开区间(12.6,13.8)内的任意一个数值,符号σ代表开区间(0.5,2)内的任意一个数值。
  3. 根据前述权利要求1-2任一项所述的梯度共聚物,其中所述梯度共聚物的核磁共振法侧链平均碳原子数为从5至20,优选从11.5至17,优选从11.5至16.2,更优选从12.2至15.7,更优选从12.2至15.5,或者所述n种聚合物组分或者所述梯度共聚物的数均分子量Mn各自独立地为从1万至100万,优选从1万至50万,更优选从1万至10万,或者所述n种聚合物组分或者所述梯度共聚物的分子量分布Mw/Mn各自独立地为从1.8至3.5,优选从1.9至3.3。
  4. 根据前述权利要求1-3任一项所述的梯度共聚物,其中所述式(I)所示的单体选自(甲基)丙烯酸C6直链烷基酯、(甲基)丙烯酸C8直链烷基酯、(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯中的一种或多种。
  5. 根据前述权利要求1-4任一项所述的梯度共聚物,其中基团R3代表C10-C18直链或支链烷基的所述一种或多种式(I-1)所示的结构单元占构成每种所述n种聚合物组分的全部结构单元的比例(以摩尔为计)为从40%至95%,优选从55%至95%。
  6. 根据前述权利要求1-5任一项所述的梯度共聚物,其中所述X1代表闭区间[6.5,12.5]内的任意一个数值,优选代表闭区间[7.8,12.0]内的任意一个数值,或者所述Xn代表闭区间[13.8,19.5]内的任意一个数值,优选代表闭区间[14.5,18.2]内的任意一个数值。
  7. 根据前述权利要求1-6任一项所述的梯度共聚物,其中所述Yj为从20%至75%,优选从25%至65%,或者所述Y1或Yn为从0.01%至20%,优选从0.1%至10%。
  8. 一种梯度共聚物的制造方法,包括向聚合反应体系中添加至少两种单体,使所述至少两种单体发生加成共聚反应(特别是自由基加成共聚反应)的步骤,其中所述至少两种单体各自独立地代表式(I)所示的化合物和/或其混合物,
    Figure PCTCN2017000409-appb-100004
    在式(I)中,
    基团R1代表H或者
    Figure PCTCN2017000409-appb-100005
    优选代表H,
    基团R2代表H或者C1-4直链或支链烷基,优选代表H或者甲基,
    符号a代表0或者1,优选代表1,
    基团R′代表H或者基团R3,优选代表基团R3
    基团R3代表C1-C30直链或支链烷基,优选代表C6-C24直链或支链烷基,更优选代表C6-C20直链烷基,
    设所述至少两种单体向所述聚合反应体系中添加的起始时刻为t0,终止时刻为tm,则所述至少两种单体的单体添加时间为t(t=tm-t0),在将所述单体添加时间划分为m个等份时,符号m代表闭区间[5,∞]内的一个整数,优选代表闭区间[8,∞]内的一个整数,优选所述符号m所代表的整数的上限是20000、10000、5000、1000、500、200、100或者50,在任一单体添加时刻tx,所述至少两种单体向所述聚合反应体系中添加的相对比例使得由所述至少两种单体按照所述相对比例构成的混合物的核磁共振法侧链平均碳原子数Xx满足以下关系式,符号x代表从0至m的任意整数,
    X0<X1<...<Xm-1<Xm     (V)
    优选从X0至Xm逐渐增大,更优选从X0至Xm线性增大。
  9. 根据前述权利要求1-8任一项所述的制造方法,其中设在所述单体添加的终止时刻tm,所述至少两种单体在所述单体添加时间内向所述聚合反应体系中的累计添加量之和为G,并且设在任一单体添加时刻tx,所述至少两种单体向所述聚合反应体系中的添加量之和为Gx,符号x代表从0至m的任意整数,以下关系式成立,
    G0/G<G1/G<...<Gj/G>...>Gm-1/G>Gm/G     (VI)
    在式(VI)中,符号j代表闭区间[m/4,3m/4]内的一个整数,优选代表闭区间[m/3,2m/3]内的一个整数,更优选代表闭区间[2m/5,3m/5]内的一个整数,且G0+G1+...+Gj+...+Gm-1+Gm=G,
    优选从G0/G至Gj/G逐渐增大,更优选从G0/G至Gj/G线性增大,或者从Gj/G至Gm/G逐渐降低,更优选从Gj/G至Gm/G线性降低,
    更优选Gx/G与Xx满足以下关系式,
    Figure PCTCN2017000409-appb-100006
    在式(VII)中,符号μ代表开区间(12.5,14.2)内的任意一个数值,优选代表开区间(12.6,13.8)内的任意一个数值,符号σ代表开区间(0.5,2)内的任意一个数值。
  10. 根据前述权利要求1-9任一项所述的制造方法,其中所述至少两种单体选自(甲基)丙烯酸C6直链烷基酯、(甲基)丙烯酸C8直链烷基酯、(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯和(甲基)丙烯酸C18直链烷基酯中的两种或多种,或者选自(甲基)丙烯酸C8直链烷基酯、(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯中的两种或多种,或者包含(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯,优选包含(甲基)丙烯酸C12直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基) 丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯,或者包含(甲基)丙烯酸C10直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯,或者包含(甲基)丙烯酸C8直链烷基酯、(甲基)丙烯酸C14直链烷基酯、(甲基)丙烯酸C16直链烷基酯、(甲基)丙烯酸C18直链烷基酯和(甲基)丙烯酸C20直链烷基酯。
  11. 根据前述权利要求1-10任一项所述的制造方法,其中基团R3代表C10-C18直链或支链烷基的所述式(I)所示的化合物占全部单体用量的比例(以摩尔为计)为从40%至95%,优选从55%至95%。
  12. 根据前述权利要求1-11任一项所述的制造方法,其中所述X0代表闭区间[6.5,12.5]内的任意一个数值,优选代表闭区间[7.8,12.0]内的任意一个数值,或者所述Xm代表闭区间[13.8,19.5]内的任意一个数值,优选代表闭区间[14.5,18.2]内的任意一个数值。
  13. 根据前述权利要求1-12任一项所述的制造方法,其中比值Gj/G为从20%至75%,优选从25%至65%,或者比值G0/G或比值Gm/G为从0.01%至20%,优选从0.1%至10%。
  14. 根据前述权利要求1-13任一项所述的制造方法,其中所述共聚反应的反应温度为从50℃至180℃,优选从55℃至165℃,更优选从60℃至150℃,所述共聚反应的反应时间为从1小时至24小时,优选从1.5小时至20小时,所述单体添加时间t为从0.5小时至12小时,优选从1小时至10小时。
  15. 一种梯度共聚物的制造方法,包含混合p种聚合物组分的步骤,其中所述p种聚合物组分各自独立地代表式(I)所示单体的加成聚合物(特别是自由基加成聚合物)和/或其混合物,或者所述p种聚合物组分各自独立地包含一种或多种式(I-1)所示的结构单元或基本上由一种或多种式(I-1)所示的结构单元构成,符号p是从5至10000的一个整数,优选从8至5000的一个整数,或者从5至20的一个整数,
    Figure PCTCN2017000409-appb-100007
    Figure PCTCN2017000409-appb-100008
    在式(I)或者式(I-1)中,
    基团R1代表H或者
    Figure PCTCN2017000409-appb-100009
    优选代表H,
    基团R2代表H或者C1-4直链或支链烷基,优选代表H或者甲基,
    符号a代表0或者1,优选代表1,
    基团R′代表H或者基团R3,优选代表基团R3
    基团R3代表C1-C30直链或支链烷基,优选代表C6-C24直链或支链烷基,更优选代表C6-C20直链烷基,
    设第i种聚合物组分的核磁共振法侧链平均碳原子数为Xi,符号i代表从1至p的任意整数,以下关系式成立,
    X1<X2<...<Xp-1<Xp    (VIII)
    优选从X1至Xp逐渐增大,更优选从X1至Xp线性增大。
  16. 根据前述权利要求1-15任一项所述的制造方法,其中设第i种聚合物组分占所述p种聚合物组分总重量的重量百分比为Yi,符号i代表从1至p的任意整数,以下关系式成立,
    Y1<Y2<...<Yj>...>Yp-1>Yp     (X)
    在式(X)中,符号j代表闭区间[(p+1)/4,3(p+1)/4]内的一个整数,优选代表闭区间[(p+1)/3,2(p+1)/3]内的一个整数,更优选代表闭区间[2(p+1)/5,3(p+1)/5]内的一个整数,且Y1+Y2+...+Yj+...+Yp-1+Yp=100%,
    优选从Y1至Yj逐渐增大,更优选从Y1至Yj线性增大,或者从Yj至Yp逐渐降低,更优选从Yj至Yp线性降低,
    更优选Yi与Xi满足以下关系式,
    Figure PCTCN2017000409-appb-100010
    在式(XI)中,符号μ代表开区间(12.5,14.2)内的任意一个数值,优选代表开区间(12.6,13.8)内的任意一个数值,符号σ代表开区间(0.5, 2)内的任意一个数值。
  17. 根据前述权利要求1-16任一项所述的制造方法,其中基团R3代表C10-C18直链或支链烷基的所述一种或多种式(I-1)所示的结构单元占构成每种所述p种聚合物组分的全部结构单元的比例(以摩尔为计)为从40%至95%,优选从55%至95%。
  18. 根据前述权利要求1-17任一项所述的制造方法,其中所述X1代表闭区间[6.5,12.5]内的任意一个数值,优选代表闭区间[7.8,12.0]内的任意一个数值,或者所述Xp代表闭区间[13.8,19.5]内的任意一个数值,优选代表闭区间[14.5,18.2]内的任意一个数值。
  19. 根据前述权利要求1-18任一项所述的制造方法,其中所述Yj为从20%至75%,优选从25%至65%,或者所述Y1或Yp为从0.01%至20%,优选从0.1%至10%。
  20. 一种聚合物组合物,包含根据前述权利要求1-19任一项所述的梯度共聚物、或者按照根据前述权利要求1-19任一项所述的制造方法制造的梯度共聚物。
  21. 一种润滑油降凝剂,包含根据前述权利要求1-19任一项所述的梯度共聚物、或者按照根据前述权利要求1-19任一项所述的制造方法制造的梯度共聚物。
  22. 一种润滑油组合物,包含根据前述权利要求1-19任一项所述的梯度共聚物、或者按照根据前述权利要求1-19任一项所述的制造方法制造的梯度共聚物、或者根据权利要求20所述的聚合物组合物、或者根据权利要求21所述的润滑油降凝剂,以及润滑油基础油,其中以所述梯度共聚物为计,其在所述润滑油基础油中的重量含量为从0.01重量%至2重量%,优选从0.05重量%至1.5重量%,更优选从0.1重量%至1重量%。
  23. 根据前述权利要求1-19任一项所述的梯度共聚物、或者按照根据前述权利要求1-19任一项所述的制造方法制造的梯度共聚物作为润滑油降凝剂的用途。
  24. 一种共聚反应的控制方法,所述共聚反应是将至少两种单体添加至聚合反应体系而在其中发生的加成共聚反应(特别是自由基加成共聚反应),其中所述至少两种单体各自独立地代表式(I)所示的化合物和/或其混合物,
    Figure PCTCN2017000409-appb-100011
    在式(I)中,
    基团R1代表H或者
    Figure PCTCN2017000409-appb-100012
    优选代表H,
    基团R2代表H或者C1-4直链或支链烷基,优选代表H或者甲基,
    符号a代表0或者1,优选代表1,
    基团R′代表H或者基团R3,优选代表基团R3
    基团R3代表C1-C30直链或支链烷基,优选代表C6-C24直链或支链烷基,更优选代表C6-C20直链烷基,
    设所述至少两种单体向所述聚合反应体系中添加的起始时刻为t0,终止时刻为tm,则所述至少两种单体的单体添加时间为t(t=tm-t0),在将所述单体添加时间划分为m个等份时,符号m代表闭区间[5,∞]内的一个整数,优选代表闭区间[8,∞]内的一个整数,优选所述符号m所代表的整数的上限是20000、10000、5000、1000、500、200、100或者50,
    所述控制方法包括调节所述至少两种单体在任一单体添加时刻tx向所述聚合反应体系中添加的相对比例,使得由所述至少两种单体按照所述相对比例构成的混合物的核磁共振法侧链平均碳原子数Xx满足以下关系式的步骤,符号x代表从0至m的任意整数,
    X0<X1<...<Xm-1<Xm    (V)
    优选从X0至Xm逐渐增大,更优选从X0至Xm线性增大。
  25. 根据前述权利要求1-24任一项所述的控制方法,其中设在所述单体添加的终止时刻tm,所述至少两种单体在所述单体添加时间内向所述聚合反应体系中的累计添加量之和为G,所述控制方法还包括调节所述至少两种单体在任一单体添加时刻tx向所述聚合反应体系中的添加量之和Gx,使比值Gx/G满足以下关系式的步骤,符号x代表从0至m的任意整数,
    G0/G<G1/G<...<Gj/G>...>Gm-1/G>Gm/G  (VI)
    在式(VI)中,符号j代表闭区间[m/4,3m/4]内的一个整数,优 选代表闭区间[m/3,2m/3]内的一个整数,更优选代表闭区间[2m/5,3m/5]内的一个整数,且G0+G1+...+Gj+...+Gm-1+Gm=G,
    优选从G0/G至Gj/G逐渐增大,更优选从G0/G至Gj/G线性增大,或者从Gj/G至Gm/G逐渐降低,更优选从Gj/G至Gm/G线性降低,
    更优选Gx/G与Xx满足以下关系式,
    Figure PCTCN2017000409-appb-100013
    在式(VII)中,符号μ代表开区间(12.5,14.2)内的任意一个数值,优选代表开区间(12.6,13.8)内的任意一个数值,符号σ代表开区间(0.5,2)内的任意一个数值。
  26. 根据前述权利要求1-25任一项所述的控制方法,其中基团R3代表C10-C18直链或支链烷基的所述式(I)所示的化合物占全部单体用量的比例(以摩尔为计)为从40%至95%,优选从55%至95%。
  27. 根据前述权利要求1-26任一项所述的控制方法,其中所述X0代表闭区间[6.5,12.5]内的任意一个数值,优选代表闭区间[7.8,12.0]内的任意一个数值,或者所述Xm代表闭区间[13.8,19.5]内的任意一个数值,优选代表闭区间[14.5,18.2]内的任意一个数值。
  28. 根据前述权利要求1-27任一项所述的控制方法,其中比值Gj/G为从20%至75%,优选从25%至65%,或者比值G0/G或比值Gm/G为从0.01%至20%,优选从0.1%至10%。
PCT/CN2017/000409 2016-06-28 2017-06-27 一种梯度共聚物、其制造方法及其应用 WO2018000804A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US16/313,869 US11028334B2 (en) 2016-06-28 2017-06-27 Gradient copolymer, its production and application thereof
JP2018568254A JP7502847B2 (ja) 2016-06-28 2017-06-27 グラジエント共重合体、その製造方法およびその応用
RU2019102042A RU2737432C2 (ru) 2016-06-28 2017-06-27 Градиентный сополимер, его получение и его применение
EP17818805.8A EP3476873B1 (en) 2016-06-28 2017-06-27 Gradient copolymer, method for producing same, and use thereof
KR1020197002659A KR102380697B1 (ko) 2016-06-28 2017-06-27 그래디언트 코폴리머, 이의 제조 방법 및 용도
SG11201811787QA SG11201811787QA (en) 2016-06-28 2017-06-27 Gradient copolymer, its production and application thereof
ZA2019/00147A ZA201900147B (en) 2016-06-28 2019-01-09 Gradient copolymer, method for producing same, and use thereof
JP2022063540A JP7504148B2 (ja) 2016-06-28 2022-04-06 グラジエント共重合体、その製造方法およびその応用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610490600 2016-06-28
CN201610490600.X 2016-06-28

Publications (1)

Publication Number Publication Date
WO2018000804A1 true WO2018000804A1 (zh) 2018-01-04

Family

ID=60785272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000409 WO2018000804A1 (zh) 2016-06-28 2017-06-27 一种梯度共聚物、其制造方法及其应用

Country Status (9)

Country Link
US (1) US11028334B2 (zh)
EP (1) EP3476873B1 (zh)
JP (2) JP7502847B2 (zh)
KR (1) KR102380697B1 (zh)
CN (1) CN107540784B (zh)
RU (1) RU2737432C2 (zh)
SG (1) SG11201811787QA (zh)
WO (1) WO2018000804A1 (zh)
ZA (1) ZA201900147B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459087B2 (ja) * 2018-11-13 2024-04-01 エボニック オペレーションズ ゲーエムベーハー 基油または潤滑剤添加剤として使用するためのランダムコポリマー
CN112694932A (zh) * 2019-10-22 2021-04-23 中国石油化工股份有限公司 一种液压油组合物及其制造方法
CN112694559B (zh) * 2019-10-22 2022-09-23 中国石油化工股份有限公司 一种共聚物组合物的制造方法、润滑油复合添加剂及润滑油组合物
CN112694929A (zh) * 2019-10-22 2021-04-23 中国石油化工股份有限公司 一种共聚物组合物及其制造方法、复合添加剂及润滑油组合物
CN112694933A (zh) * 2019-10-22 2021-04-23 中国石油化工股份有限公司 一种液压油组合物及其制造方法
PL3907269T3 (pl) 2020-05-05 2023-09-11 Evonik Operations Gmbh Uwodornione polidienowe kopolimery liniowe jako surowiec bazowy lub dodatki smarowe do kompozycji smarowych
KR102480102B1 (ko) 2021-05-14 2022-12-23 한국화학연구원 아크릴계 그라디언트 공중합체의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1193024A (zh) * 1997-02-27 1998-09-16 罗姆和哈斯公司 制备连续可变组成的共聚物的方法
WO2001040333A1 (de) * 1999-11-30 2001-06-07 Rohmax Additives Gmbh Gradientencopolymere sowie verfahren zur herstellung und verwendung
CN105524209A (zh) * 2014-10-24 2016-04-27 中国石油化工股份有限公司 丙烯酸酯系共聚物及其应用和润滑油降凝剂及其制备方法
CN105585657A (zh) * 2014-10-24 2016-05-18 中国石油化工股份有限公司 一种润滑油降凝剂及其制备方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1347713A (en) 1971-05-05 1974-02-27 Shell Int Research Alkyl methacrylate polymer compositions suitable as luboil additives
CN1011411B (zh) 1987-12-30 1991-01-30 上海高桥石油化工公司炼油厂 一种正构烷基丙烯酸酯共聚物的制备方法
US5312884A (en) * 1993-04-30 1994-05-17 Rohm And Haas Company Copolymer useful as a pour point depressant for a lubricating oil
EP0710711B1 (en) 1994-10-12 2001-11-21 Rohmax Additives GmbH Additive for lubricating oil
CA2246587C (fr) 1996-03-21 2005-06-28 Ceca S.A. Copolymeres acryliques comme additifs pour l'inhibition du depot de paraffines dans les huiles brutes et compositions les contenant
JP3999307B2 (ja) 1997-05-07 2007-10-31 三洋化成工業株式会社 低温粘度特性がよい粘度指数向上剤
JP3872167B2 (ja) * 1997-05-09 2007-01-24 三洋化成工業株式会社 流動点降下剤
DE69827653T2 (de) 1997-08-22 2006-04-27 Rohmax Additives Gmbh Additivmischungen mit hohem und niedrigem molekulargewicht zur verbesserung der fliessfähigkeit von schmierölen bei tiefen temperaturen
US5955405A (en) * 1998-08-10 1999-09-21 Ethyl Corporation (Meth) acrylate copolymers having excellent low temperature properties
GB9826448D0 (en) 1998-12-02 1999-01-27 Exxon Chemical Patents Inc Fuel oil additives and compositions
US6391996B1 (en) * 1999-11-30 2002-05-21 Rohmax Additives Gmbh Copolymers obtainable by the ATRP method and a method for their preparation and their use
US6348554B1 (en) 1999-11-30 2002-02-19 Rohmax Additives Gmbh Method for preparation of a liquid polymer composition and use of this composition
US6639029B1 (en) 2000-11-13 2003-10-28 Rohmax Additives Gmbh Process for continuous synthesis of polymer compositions as well as use of same
US20060008431A1 (en) * 2004-06-15 2006-01-12 Celine Farcet Copolymer functionalized with an iodine atom, compositions comprising the copolymer and treatment processes
DE102005015931A1 (de) 2005-04-06 2006-10-12 Rohmax Additives Gmbh Polyalkyl(meth) acrylat-Copolymere mit hervorragenden Eigenschaften
US7648950B2 (en) 2005-04-22 2010-01-19 Rohmax Additives Gmbh Use of a polyalkylmethacrylate polymer
DE102005031244A1 (de) 2005-07-01 2007-02-15 Rohmax Additives Gmbh Öllösliche Kammpolymere
EP1746146A1 (de) 2005-07-22 2007-01-24 Basf Aktiengesellschaft Copolymere auf Basis von Olefinen und Estern von ethylenisch ungesättigten Carbonsäuren zur Erniedrigung des CP-Werts von Brennstoffölen und Schmierstoffen
CA2567235A1 (en) * 2006-11-07 2008-05-07 Ciba Specialty Chemicals Holding Inc. Methacrylate copolymer pour point depressants
CN102627716A (zh) 2012-03-29 2012-08-08 沈阳长城润滑油制造有限公司 一种聚甲基丙烯酸酯降凝剂的制备方法
JP6463767B2 (ja) 2014-01-21 2019-02-06 エボニック オイル アディティヴス ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Oil Additives GmbH 老化した潤滑油の低温粘度を改善するための流動点降下剤
CN103965394B (zh) 2014-05-15 2016-08-17 宁波蓝润能源科技股份有限公司 一种聚甲基丙烯酸酯类粘度指数改进剂的制备方法
CN106520261A (zh) 2015-09-09 2017-03-22 中国石油化工股份有限公司 一种润滑油降凝剂组合物及其应用
US20180127575A1 (en) 2015-12-21 2018-05-10 General Electric Company Process for improving the cold-flow properties of paraffinic oils

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1193024A (zh) * 1997-02-27 1998-09-16 罗姆和哈斯公司 制备连续可变组成的共聚物的方法
WO2001040333A1 (de) * 1999-11-30 2001-06-07 Rohmax Additives Gmbh Gradientencopolymere sowie verfahren zur herstellung und verwendung
CN105524209A (zh) * 2014-10-24 2016-04-27 中国石油化工股份有限公司 丙烯酸酯系共聚物及其应用和润滑油降凝剂及其制备方法
CN105585657A (zh) * 2014-10-24 2016-05-18 中国石油化工股份有限公司 一种润滑油降凝剂及其制备方法

Also Published As

Publication number Publication date
EP3476873A1 (en) 2019-05-01
EP3476873B1 (en) 2021-06-02
JP7502847B2 (ja) 2024-06-19
KR20190022797A (ko) 2019-03-06
RU2019102042A3 (zh) 2020-07-28
ZA201900147B (en) 2019-08-28
JP2019524917A (ja) 2019-09-05
JP7504148B2 (ja) 2024-06-21
CN107540784A (zh) 2018-01-05
RU2737432C2 (ru) 2020-11-30
RU2019102042A (ru) 2020-07-28
KR102380697B1 (ko) 2022-03-29
CN107540784B (zh) 2021-02-09
JP2022088651A (ja) 2022-06-14
US11028334B2 (en) 2021-06-08
SG11201811787QA (en) 2019-02-27
EP3476873A4 (en) 2020-02-26
US20190169521A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
WO2018000804A1 (zh) 一种梯度共聚物、其制造方法及其应用
KR100524199B1 (ko) 연속가변-조성공중합체제조방법
CA2121705C (en) Method of making a copolymer useful as viscosity index improving additive for hydraulic fluid
KR20100044164A (ko) 연속적으로 변동가능한 조성의 공중합체를 제조하는 개선된 방법
KR101828098B1 (ko) 점도 지수 개선제로서 유용한 중합체
MX2007001464A (es) Metodo para polimerizacion a radical libre de compuestos insaturados etilenicamente.
US8163683B2 (en) Pour point depressant for lubricant
Šoljić Jerbić et al. Production and application properties of dispersive viscosity index improvers
CN107540783B (zh) 丙烯酸酯系聚合物及其应用和润滑油降凝剂及其制备方法
CN109679741B (zh) 汽油发动机润滑油组合物及其制备方法
CN112694559B (zh) 一种共聚物组合物的制造方法、润滑油复合添加剂及润滑油组合物
CN109679726B (zh) 柴油发动机润滑油组合物及其制备方法
KR20150104103A (ko) 저-점도 중합체의 제조
CN109679732B (zh) 一种润滑脂及其制备方法
CN109679727B (zh) 重负荷柴油发动机润滑油组合物及其制备方法
CN109679739B (zh) 一种润滑脂及其制备方法
CN112694929A (zh) 一种共聚物组合物及其制造方法、复合添加剂及润滑油组合物
CN109679740B (zh) 一种润滑脂及其制备方法
CN115485354B (zh) 分散剂聚(甲基)丙烯酸烷基酯聚合物的制备方法
CN109679725B (zh) 一种润滑脂及其制备方法
CN112694933A (zh) 一种液压油组合物及其制造方法
JP2022110432A (ja) 有機酸化合物由来の構造単位を含むオレフィン重合体組成物の製造方法
TW204355B (en) Dispersant polymethacrylate viscosity index improvers
CN112694932A (zh) 一种液压油组合物及其制造方法
MXPA94000838A (en) Viscosity modifier polymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17818805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568254

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197002659

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017818805

Country of ref document: EP

Effective date: 20190128