WO2006137432A1 - 基板用充填材および無機-有機複合基板成形材料用組成物 - Google Patents

基板用充填材および無機-有機複合基板成形材料用組成物 Download PDF

Info

Publication number
WO2006137432A1
WO2006137432A1 PCT/JP2006/312400 JP2006312400W WO2006137432A1 WO 2006137432 A1 WO2006137432 A1 WO 2006137432A1 JP 2006312400 W JP2006312400 W JP 2006312400W WO 2006137432 A1 WO2006137432 A1 WO 2006137432A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
inorganic
substrate
carpositimide
organic layer
Prior art date
Application number
PCT/JP2006/312400
Other languages
English (en)
French (fr)
Inventor
Nami Tsukamoto
Toshifumi Hashiba
Mayumi Mizushiri
Original Assignee
Nisshinbo Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries, Inc. filed Critical Nisshinbo Industries, Inc.
Priority to KR1020077029556A priority Critical patent/KR101336628B1/ko
Priority to CN2006800221807A priority patent/CN101203559B/zh
Priority to JP2007522312A priority patent/JP5146650B2/ja
Priority to EP06767059A priority patent/EP1894967A1/en
Priority to US11/993,350 priority patent/US20100222477A1/en
Publication of WO2006137432A1 publication Critical patent/WO2006137432A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0224Conductive particles having an insulating coating

Definitions

  • the present invention relates to a substrate filler and an inorganic-organic composite substrate molding material composition.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-230279
  • One of the most widely used surface modification methods is to coat the surface of inorganic materials with organic compounds. In this method, the adhesion of the organic compound to the inorganic surface becomes important.
  • a strong coating layer can be formed by using a compound having a substituent capable of reacting with the functional group (such as a hydroxyl group), such as a silane coupling agent (Patent Document 2). : JP-A-61-275359, Patent Document 3: JP-A-63-258958).
  • the inorganic substance itself has a high dielectric constant, it can be molded by adding a large amount of inorganic substance. Increase the dielectric constant.
  • the dispersibility of the inorganic substance is insufficient, and heat resistance is reduced by adding a dispersant or using an inorganic surface treatment agent to improve this.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-230279
  • Patent Document 2 Japanese Patent Laid-Open No. 61-275359
  • Patent Document 3 Japanese Patent Laid-Open No. 63-258958
  • the present invention has been made in view of such circumstances. Even when the resin for a substrate is highly filled, it is highly dispersed, and the electrical properties and mechanical properties of the obtained substrate are deteriorated. It is an object of the present invention to provide a substrate filler that can be suppressed, and an inorganic-organic composite substrate molding material composition comprising the filler and an organic resin.
  • the present inventors have found that a substrate filler formed by forming a calpositimide group-containing organic layer on the surface of an inorganic material is highly filled in a resin for a substrate. Even when filled, it is highly dispersed and the resulting molded product (substrate) has poor electrical properties (increased dielectric constant [1, decreased migration resistance), mechanical properties (becomes brittle), thermal The present inventors have found that the deterioration of properties can be suppressed and completed the present invention. That is, the present invention
  • a substrate filler comprising: an inorganic substance; and a carpositimide group-containing organic layer chemically bonded to the surface of the inorganic substance,
  • the substrate (1) has a diameter (M) satisfying the following formula:
  • the calpositimide group-containing organic layer has at least one kind of force of a carpositimide group-containing compound represented by the formula (1) and a carpositimide group-containing compound represented by the formula (2) [1] Filling material for substrates,
  • R 1 represents a residue from an isocyanate compound
  • X 1 and X 2 each independently represent a hydrogen atom, a halogen atom, or an unsaturated structure, which has 1 to 20 carbon atoms.
  • Z is independently a silicon atom or a titanium atom
  • A is a divalent or higher valent organic group containing a bond derived from a isocyanate group
  • m and 1 are 1 to 3
  • Represents an integer satisfying m + l 4, and n represents an integer of 1 to: LOO.
  • At least one of the terminal isocyanate groups of the carpositimide group-containing compound represented by the formula (1) is sealed with a functional group reactive with the isocyanate group! /, [6] Filling material for substrates,
  • a composition for an inorganic-organic composite substrate molding material comprising the substrate filler according to any one of [1] to [10] and an organic resin,
  • composition for an inorganic / organic composite substrate molding material according to [11] or [12], wherein the total surface area of the substrate filler contained in the composition lg is 2,000 cm 2 or more.
  • the substrate filler of the present invention is covered with an inorganic surface force s calpositimide group-containing organic layer, and therefore has excellent affinity and dispersibility with organic resin and organic solvent. A strong bond is possible because of the reaction. For this reason, even when this substrate filler is highly filled in the resin for the substrate, the mechanical strength of the resulting molded product (substrate) and the deterioration of electrical properties such as migration resistance are suppressed. be able to.
  • the substrate filler of the present invention is excellent in dispersibility with respect to organic resin, it increases the dielectric constant caused by the dispersant and heat resistance as in the conventional product, which does not require the use of a dispersant. Can be prevented.
  • the substrate filler of the present invention is used, even if the amount added is increased, the physical, electrical properties, and thermal properties of the resulting molded article (substrate) can be suppressed.
  • Various inorganic additive effects such as a decrease in the coefficient of thermal expansion can be effectively imparted to the molded product (substrate).
  • the substrate filler according to the present invention includes an inorganic substance and a carbodiimide group-containing organic layer chemically bonded to the inorganic surface.
  • the inorganic substance in the present invention is not particularly limited, for example, metals such as gold, silver, copper, iron and cobalt, alkali earth metal carbonates such as calcium carbonate, barium carbonate and magnesium carbonate, calcium silicate Alkaline earth metal silicates such as calcium, barium and magnesium silicates, alkaline earth metal phosphates such as calcium phosphate, barium phosphate and magnesium phosphate, alkalis such as calcium sulfate, barium sulfate and magnesium sulfate Earth metal sulfate, acid silicate (silica), magnesium oxide, acid aluminum, zinc oxide, iron oxide, titanium oxide, cobalt oxide, nickel oxide, manganese oxide, antimony oxide, tin oxide, acid Metal oxides such as calcium, acid potassium, potassium oxide, chromium oxide, iron hydroxide, dihydroxide Metal hydroxides such as Kell, hydroxide-aluminum, hydroxide-magnesium, calcium hydroxide, chromium hydroxide, potassium hydrox
  • an acid catalyst in view of imparting suitable functionality required for a substrate obtained from a composition obtained by blending the substrate filler of the present invention into an organic resin, an acid catalyst.
  • inorganic (water) oxides such as cobalt oxide, nickel oxide, manganese oxide, calcium oxide, and potassium oxide, metal nitrides such as silicon nitride, aluminum nitride, and boron nitride, and glass.
  • an acid salt which is usually added to reduce the coefficient of thermal expansion of the substrate is suitable.
  • the shape of the inorganic substance is the volume average particle size Inn! ⁇ 1
  • Particles of 00 ⁇ m, preferably 10 nm to 50 ⁇ m, more preferably 20 nm to 30 ⁇ m are suitable.
  • the calpositimide group-containing organic layer in the present invention includes a calpositimide group-containing compound.
  • the calpositimide group-containing compound is not limited as long as it has a carpositimide group.
  • a compound represented by the following formula (I) can be used.
  • R 1 represents a residue from an isocyanate compound, n represents an integer from 1 to LOO.
  • a compound having a carpositimide group represented by the formula (I) also promotes the carbodiimidization of the isocyanate with the organic polyisocyanate compound force. Can be obtained in the presence of a catalyst. Specifically, for example, JP-A-5
  • the weight average molecular weight of the carpositimide compound represented by the formula (I) is generally about 200 to 100,000, but considering the dispersibility in organic resin and organic solvent, 500 to 50,000 force I like it!
  • Examples of the organic isocyanate compound used in the production of the carposimide compound include 4,4'-dicyclohexylmethane diisocyanate, m-tetramethylxylylene diisocyanate, 2,4 tolylene diisocyanate.
  • Cyanate, 2, 6 Tolylene Diisocyanate, 2, 4 Mixture of Tolylene Diisocyanate and 2, 6 Tolylene Diisocyanate, Crude Tolylene Diisocyanate, 3 ⁇ 4 ⁇ Tylene Diethylene Diisocyanate, 4, 4 ', 4 "—Trifer-Milletile Triisocyanate, xylene diisocyanate, hexamethylene 1,6 diisocyanate, lysine diisocyanate, hydrogenated methylene diphenyl diisocyanate, m-phenol diisocyanate, naphthylene 1,5 diisocyanate, 4, 4'-biphenyl diisocyanate, 4, 4'-diphenylmethane diisocyanate, 3, 3'-dimethoxy 4, 4'-biphenyl-diisocyanate, 3, 3'-dimethyldiphenylmethane 4, 4 ' -Diisocyanate, isophorone diisocyanate and the like can
  • 4,4'-diphenylmethane diisocyanate, 2,4 tolylene diisocyanate, hexamethylene 1,6 diisocyanate, m-tetra- Methylxylylene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate is preferred.
  • Polycondensation occurs by carpositimidization of the isocyanate group in the organic isocyanate compound.
  • This reaction is usually carried out by heating the organic isocyanate compound in the presence of a calpositimidization catalyst.
  • a functional group having reactivity with an isocyanate group at an appropriate stage for example, a compound having a hydroxyl group, a primary or secondary amino group, a carboxyl group, or a thiol group, is added as an end-capping agent to form a carpositimide compound.
  • the molecular weight (degree of polymerization) of the resulting carpositimidide compound can be adjusted by sealing the ends.
  • the degree of polymerization can also be adjusted by the concentration of the isocyanate compound and the reaction time.
  • carpositimidization catalysts examples include: 1-phenol 2-phospholene 1-oxide, 3-methyl-1-phenyl-2-olelene 1-oxide, 1-ethyl 2-phospholene 1 1-oxide, these 3 phospholene isomers, etc. are suitable in terms of yield and other aspects.
  • the above reaction can be performed in the absence of a solvent, but may be performed in the presence of a solvent.
  • a solvent can be added during the reaction.
  • the solvent is not particularly limited as long as it does not affect the isocyanate group and the carpositimide group during the reaction, and a solvent corresponding to the polymerization method may be appropriately selected.
  • solvents that can be used include acetone, methyl ethyl ketone, and methyl isobutyrate.
  • Ketones such as ruketone and cyclohexanone; esters such as ethyl acetate, butyl acetate, ethyl propionate and cellosolve acetate; pentane, 2-methylbutane, n-hexane, cyclohexane, 2-methylpentane, 2 , 2 Dimethylbutane, 2, 3 Dimethylbutane, Heptane, n-Octane, Isooctane, 2, 2, 3 Trimethylpentane, Decane, Nonane, Cyclopentane, Methylcyclopentane, Methylcyclohexane, Ethylcyclohexane, ⁇ — Aliphatic or aromatic hydrocarbons such as menthane, benzene, toluene, xy
  • compounds represented by the following formulas (1) and (2) can also be used as the carpositimide group-containing compound.
  • a carpositimide group-containing organic layer can be efficiently formed on the surface of the inorganic material, which is particularly preferable.
  • R 1 represents a residue from an isocyanate compound.
  • the residue from the isocyanate compound is a partial structure obtained by removing the isocyanate group from the organic isocyanate compound remaining in the carpositimide compound when the (poly) carpositimide compound is produced from the isocyanate compound.
  • X 1 and X 2 are independently of each other a hydrogen atom, a halogen atom, an unsaturated structure which may contain an unsaturated structure, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkyl group having 7 to 20 carbon atoms. Represents a group or an alkoxy group having 1 to 20 carbon atoms.
  • X 1 When there are a plurality of X 1 , they may be the same as or different from each other, and the plurality of X 2 may be the same or different from each other.
  • the halogen atom may be any of fluorine, chlorine, bromine and iodine atoms.
  • alkyl group having 1 to 20 carbon atoms which may contain an unsaturated structure may have a linear, branched or cyclic structure, for example, a methyl group, an ethyl group, an n
  • examples include pyr, n-butyl, isopropyl, isobutyl, sec-butyl, tert-butyl, cyclopropyl, cyclobutyl, cyclopentyl, methylcyclopentyl, cyclohexyl and the like.
  • Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group, a tolyl group, and a biphenyl group.
  • Examples of the aralkyl group having 7 to 20 carbon atoms include a benzyl group.
  • alkoxy group having 1 to 20 carbon atoms examples include methoxy group, ethoxy group, n-butoxy group, t-butoxy group, phenoxy group and the like.
  • the alkyl group in the alkoxy group may have any structure of linear, branched or cyclic.
  • A represents a divalent or higher-valent organic group containing a bond derived from an isocyanate group.
  • the bond derived from the isocyanate group includes a bond formed by a reaction between the isocyanate group and a functional group capable of reacting with the isocyanate group.
  • the functional group capable of reacting with the isocyanate group is not particularly limited, and examples thereof include a hydroxyl group, a primary or secondary amino group, a carboxyl group, and a thiol group.
  • bonds formed by the reaction of these functional groups with isocyanate groups include, for example, urea bonds, thiourethane bonds, urea bonds, amide bonds, carpositimide bonds, allophanate bonds, burette bonds, acyl urea bonds, uretonimine bonds, isocyanate 2
  • Examples include quantitative bond, isocyanate trimeric bond, and the like. Among these, at least one selected from the medium forces of urea bond, urethane bond, thiourethane bond, and amide bond is preferred because it can easily react and form a bond at a relatively low temperature.
  • A may further include a linking group between the bond derived from the isocyanate group and Z.
  • a linking group is not particularly limited, for example, one (CH
  • X 1 When a plurality of X 1 are present, considering the reactivity of the compounds represented by formulas (1) and (2) with the inorganic surface, at least one of them has 1 to 20 carbon atoms, preferably 1 to It is preferably a 5 alkoxy group, and most preferably all having 1 to 5 carbon atoms.
  • At least one of them is preferably an alkyl group having 1 to 20 carbon atoms, preferably 1 to 5 alkoxy groups, and all of them are alkoxy groups having 1 to 5 carbon atoms. Is optimal.
  • a methoxy group and an ethoxy group are suitable.
  • m is preferably 1 (particularly in the case of formula (1)).
  • Z is independently a silicon atom or a titanium atom.
  • at least one of (X 1 ) — Z— and —Z— (X 2 ) It is preferably a site that can act as a force coupling agent.
  • the compound represented by the above formula (1) or (2) has a weight average molecular weight of 300-100, 000 force S, more preferably ⁇ 500 to 50,000, more preferably ⁇ 600 to 40, 000, the best one is from 1,000 to 20,000. If the weight average molecular weight force exceeds 100,000, the steric hindrance increases, and the surface treatment action of efficiently modifying the surface of the inorganic substance may be impaired.
  • is a force that is an integer of 1 to: L00 As described above, considering that the steric hindrance increases and the surface treatment effect decreases as the weight average molecular weight increases, 2 to 80 is more It is preferable.
  • the carpositimide group-containing compound represented by the above formula (1) or (2) is, for example, an isocyanate possessed by the carpositimide compound at any stage of the production of the compound represented by the above (I). It can be obtained by reacting a coupling agent containing a silicon or titanium atom having a functional group or a linking group capable of reacting with a group.
  • the functional group or linking group having reactivity with the isocyanate group in the coupling agent is not limited as long as it is a group capable of reacting with the isocyanate group.
  • Specific examples thereof include a hydroxyl group, an amino group (preferably primary or secondary), a carboxyl group, a thiol group, an isocyanate group, an epoxy group, a urethane bond, a urea bond, an amide bond, and an acid anhydride group.
  • a generally available amino group (preferably primary or secondary), thiol group, isocyanate group, and epoxy group are preferable.
  • silane coupling agent include the following.
  • silane coupling agent having an amino group examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyldimethylmethoxysilane, ⁇ -Aminopropylmethyl jetoxysilane, ⁇ -aminopropyldimethylethoxysilane, ⁇ -phenol ⁇ -aminopropyltrimethoxysilane, ⁇ -fell ⁇ -aminopropyltriethoxysilane, N-j8 (amino-ethyl) ) ⁇ —Aminopropyltrimethoxysilane , N—j8 (aminoethyl) ⁇ —Aminopro Pyrtriethoxysilane, N—j8 (aminoethyl) ⁇ -aminopropylmethyldimethoxys
  • Examples of the silane coupling agent having a thiol group include 3 mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyldimethylethoxysilane, (mercaptomethyl) methyljetoxysilane, 3- Examples include mercaptopropyl methyldimethoxysilane.
  • the coupling agent having an isocyanate group for example, ⁇ -isocyanate-pyrutrimethoxysilane, ⁇ -isocyanatepropyltriethoxysilane, ⁇ -isocyanatepropylmethyldimethoxylane, ⁇ isocyanatepropyldimethylmethoxysilane ⁇ Isocyanate propyl methyl jetoxy silane, ⁇ isocyanato propyl dimethyl ethoxy silane and the like.
  • Examples of the silane coupling agent having an epoxy group include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ -glycidoxy.
  • titanate coupling agent examples include titanium acylate, titanium acylate polymer, titanium phosphate polymer, titanium alcoholate and the like.
  • the coupling agents exemplified above may be used alone or in combination of two or more.
  • ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidide are excellent in terms of water resistance, adhesion to inorganic materials, coating film hardness, contamination, pot life and the like.
  • Xylpropinoremethinolegetoxysilane ⁇ -glycidoxypropinoletriethoxysilane, 13- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 13- (3,4-epoxycyclohexyl) Ethyltriethoxysilane, ⁇ -Aminopropyltrimethoxysilane, ⁇ -Aminopropyltriethoxysilane, ⁇ - ⁇ (aminoethynole) ⁇ -Aminopropyltrimethoxysilane, ⁇ - ⁇ (aminoethyl) ⁇ -a Minopropyltriethoxysilane, ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatepropyltriethoxysilane Preferred.
  • the reaction temperature between the isocyanate group and the coupling agent is generally ⁇ 50 to 200 ° C. Considering that the reaction between the carpositimide group and the coupling agent is suppressed, the reaction temperature is ⁇ 30 A relatively low temperature of about -100 ° C, particularly about -10-50 ° C is preferred.
  • the carpositimide group and the coupling agent may be reacted.
  • the calpositimide compound represented by the formulas (I), (1) and (2) described above preferably has an average number of calpositimide groups in one molecule of 1 to about LOO. More preferable Is 2 to 80 pieces. If the number of calpositimide groups is less than 1, the properties as a calpositimide compound may not be fully exhibited. If the number exceeds 100, synthesis is possible, but the polymer may become polymerized and difficult to handle.
  • the carpositimide group-containing compound in the substrate filler of the present invention at least one repeating unit represented by the following formulas (3) and (4), and a formula (5 A (co) polymer having a repeating unit represented by () can also be used.
  • a (co) polymer By using such a (co) polymer, there is an advantage that a carposimide group can be efficiently contained in various polymers.
  • R 2 represents a partial structure derived from a monomer having a polymerizable functional group and a group capable of reacting with an isocyanate group
  • B 1 represents a reaction between the isocyanate group and a group capable of reacting with the isocyanate group.
  • R 3 represents a partial structure derived from a monomer having a group capable of reacting with a carpositimide group and a polymerizable functional group
  • B 2 is formed by reacting a carpositimide group with a group capable of reacting with the carposimide group.
  • R 4 represents a partial structure derived from a monomer having a polymerizable functional group and having no functional group capable of reacting with an isocyanate group and a carpositimide group.
  • R 1 and n are the same as above.
  • R 2 is a partial structure formed by reacting a monomer having a group capable of reacting with an isocyanate group and a polymerizable functional group with a isocyanate group and further polymerizing with a polymerizable functional group, It constitutes the main chain of coalescence.
  • the functional group capable of reacting with the isocyanate group include a hydroxyl group, a primary or secondary amino group, a carboxyl group, and a thiol group.
  • R 3 is a partial structure formed by reacting a monomer having a group capable of reacting with a carpositimide group and a polymerizable functional group with a strong carbodiimide group and then polymerizing with a polymerizable functional group. Construct a chain.
  • the functional group capable of reacting with the carpositimide group include water. Examples include acid groups, amino groups (preferably primary or secondary), carboxyl groups, thiol groups, isocyanate groups, epoxy groups, urethane bonds, urea bonds, amide bonds, acid anhydrides, etc.
  • the polymerizable functional group for R 3 and R 4 is not particularly limited, but it is preferably a polymerizable double bond in view of the polymerizability and the ease of reaction operation.
  • Specific examples of the monomer having a group capable of reacting with an isocyanate group or a carpositimide group and a polymerizable functional group include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate.
  • R 4 is a partial structure formed by polymerization of a monomer having a polymerizable functional group and not having a functional group capable of reacting with an isocyanate group and a carpositimide group with the polymerizable functional group. It constitutes the main chain of coalescence. This monomer is an optional component used as necessary.
  • the monomer having the polymerizable functional group and not having the functional group capable of reacting with the isocyanate group and the carpositimide group include olefins such as ethylene and propylene, styrene, o-methylenostyrene, and m-methyl.
  • the average number of positive imide groups is preferably about 1 to about LOO, more preferably 2 to 80. If the number of calpositimide groups is less than 1, the properties of a carpositimide group-containing compound may not be fully exhibited. If the number exceeds 100, synthesis is possible, but the polymer is polymerized and difficult to handle. There is a case.
  • the weight average molecular weight of the (co) polymer is preferably 1,000 to 1,000,000. More preferred ⁇ is 2,500 to 950,000, more preferred ⁇ is 5,000 to 500,000, and the best is 10,000 to 300,000.
  • the above-mentioned various carpositimide group-containing compounds can be used for composition change, molecular weight adjustment, or end-capping segment change (in the case of formula (I), (1), (3), (4) ) And the like, it is possible to control the cohesiveness of the substrate filler and the dispersibility with respect to the organic resin. Further, all isocyanate groups in the carpositimide group-containing compound may be sealed, but the isocyanate groups may optionally remain at one or both ends.
  • Aliphatic alkyl such as methanethiol, ethanethiol, n or isopropanethiol, n or isobutanethiol, pentanethiol, hexanethiol, heptanethiol, octanethiol, nonanethiol, decanethiol, cyclohexanethiol, etc.
  • V) carbocyclic carboxylic acids such as benzoic acid, toluic acid, salicylic acid;
  • heterocyclic carboxylic acids such as furan carboxylic acid, thiophene carboxylic acid, pyridine carboxylic acid;
  • acrylic acid, methacrylic acid, crotonic acid, itacon Unsaturated mono- or dicarboxylic acids or unsaturated dibasic acids such as acid, maleic acid, fumaric acid, monobutyl itaconate, monobutyl maleate;
  • (vii) derived from carboxylic acids such as acetic anhydride, succinic anhydride, phthalic anhydride Acid anhydrates;
  • Polymeric carboxylic acids such as polyacrylic acid and polymethacrylic acid. These may be used alone or in combination of two or more.
  • epoxy compound a commercially available product can be used.
  • “Denacol” series “Denacol EX-611”, 612, 614, —614B, —622, manufactured by Nagase Chemtech Co., Ltd.
  • Epoxy compounds such as -1616 and 610U may be used.
  • Water-soluble carpositimide compounds may also be used.
  • water-soluble carpositimide compound examples include those having a hydrophilic group at the terminal of the carpositimide compound.
  • hydrophilic segment use at least one of the residues shown below.
  • R 5 represents an alkylene group of 1 to 10
  • R 6 represents an alkali metal.
  • alkyl sulfonate examples include sodium hydroxyethane sulfonate and sodium hydroxypropane sulfonate.
  • Sodium acid is preferred.
  • R 7 represents a lower alkyl group having 1 to 4 carbon atoms
  • R 8 represents an alkylene group or oxyalkylene group having 1 to 10 carbon atoms.
  • dialkylamino alcohol examples include 2-dimethylaminoethanol, 2-dimethylaminoethanol, 3 dimethylamino-1 propanol, 3 jetylamino-1 propanol, 3 jetylamino-2-propanol, 5 jetylamino-2-propanol, 2- ( (Di-n-butylamino) ethanol and the like, and 2-dimethylaminoethanol is preferred.
  • R 7 and R 8 are the same as those in the chemical formula (7), and R ′ represents a group derived from a quaternizing agent.
  • the quaternizing agent include dimethyl sulfate, p-methyl methyl toluenesulfonate. Etc.
  • R 9 is a lower alkyl group having 1 to 4 carbon atoms
  • R 1Q is a hydrogen atom or a methyl group
  • o is an integer of 2 to 30.
  • poly (anolylene oxide) examples include poly (ethylene oxide) monomethyl ether, poly (ethylene oxide) monoethyl ether, poly (ethylene oxide 'propylene oxide) monomethyl ether, poly (ethylene oxide' propylene oxide) mono Ethyl ether and the like, and poly (ethylene oxide) monomethyl ether is particularly preferable.
  • the compound that reacts with the isocyanate group described above may be used alone or in combination of two or more.
  • the compound that reacts with the isocyanate group is not limited to the typical compounds described in the above (a) to (1), but is a compound having a functional group or a linking group that reacts with other isocyanate groups. Products (for example, acid anhydrides) may be used.
  • a composition obtained by adding a filler to an organic resin is highly dispersible in organic resin and organic solvent in consideration of the properties and moldability of the filler.
  • water resistance is very important in order to prevent adverse effects on electrical properties such as acid resistance, dielectric constant, electrical conductivity, migration resistance, etc. necessary for etching treatment.
  • the end-capping segment be lipophilic rather than hydrophilic.
  • the resulting compound is preferably not water-soluble.
  • end-capping agents for obtaining the above compounds include hydroxyl group-containing compounds such as methanol, ethanol, propanol, dodecyl alcohol, octanol; oxalic acid, salicylic acid, lauric acid, myristic acid, normitic acid, stearic acid.
  • Carboxyl group-containing compounds such as arachidic acid, oleic acid, linoleic acid, linolenic acid; cyclohexylisocyanate, n-dodecylisocyanate, n-octadecylisocyanate, phenolisocyanate, naphthylisocyanate Isocyanate compounds such as methanethiol, ethanethiol, propanethiol, ammonia and other mercapto group-containing compounds; methylamine, ethylamine, dibutylamine, cyclohexylamine, n-dodecylamine and other amino group-containing compounds are preferred.
  • Containing compounds, isocyanate compounds such as file isocyanate, etc. are preferred.
  • the substrate filler of the present invention (an inorganic substance having a carpositimide group-containing organic layer, hereinafter the same) is composed of tetrahydrofuran (hereinafter THF) as a dispersion medium from the viewpoint of dispersibility of the filler in an organic solvent or an organic resin. It is preferable that the following formula is satisfied when
  • the relationship with the standard deviation (A) of the particle size distribution of the obtained inorganic substance is (A) / (A) ⁇ 1.0.
  • the substrate filler of the present invention satisfies the following formula when THF is used as a dispersion medium. preferable.
  • the substrate filler of the present invention uses pH 7 water as a dispersion medium. In such a case, it is preferable that the following formula is satisfied.
  • the relationship with the standard deviation (A) of the particle size distribution of the provided inorganic substance is (A) / (A)> 1.0.
  • the substrate filler of the present invention uses pH 7 water as a dispersion medium.
  • V it is preferable to satisfy the following formula.
  • the substrate filler of the present invention preferably satisfies the following formula when pH 7 water is used as a dispersion medium!
  • the zeta potential value (z) of an inorganic substance is I (z) I / I (z)
  • the volume average particle diameter in the above is a value measured by a particle size analyzer of a laser diffraction 'scattering type or a dynamic light scattering type. More specifically, an inorganic substance is added to THF or pH 7 water. This is a value measured using a sample prepared by dispersing and having a concentration measurable by the particle size analyzer used.
  • the standard deviation is a measure of the distribution width of the measured particle size distribution, and is a value calculated by the following formula.
  • Standard deviation (d84% -dl6%) / 2 d84%: Volume average particle size at the point where the cumulative curve is 84% (micrometer)
  • dl6% Volume average particle size at the point where the cumulative curve is 16% (micrometer)
  • the zeta potential value is This is the value measured with a Zetasizer Nano (manufactured by Sysmetas Co., Ltd.) after adding an inorganic substance so as to be 1% by mass and dispersing with an ultrasonic disperser for 15 minutes.
  • the “surface untreated inorganic substance” means an inorganic substance that does not have a carpositimide group-containing organic layer, and that has been subjected to other surface modifications (treated with a surface treatment agent !, etc.). To do.
  • each inorganic material constituting the inorganic material having the surface untreated inorganic material and the organic layer containing the carpositimide group is the same.
  • the carbodiimide group-containing organic layer in the present invention may be either a layer made of only a carbopositimide group-containing compound or a layer formed by adding a carbodiimide group to a layer made of an organic compound that does not contain a carbopositimide group.
  • a layer containing a carbodiimide group and a carbodiimide group-containing compound grafted to an organic layer that does not contain a carbodiimide group means a layer in which a carbodiimide group is added to a layer made of an organic compound. Or a copolymer layer of an organic material not containing a carpositimide group and a carpositimide group-containing compound.
  • the organic layer comprising the above-mentioned calpositimide group-containing compound when the organic layer comprising the above-mentioned calpositimide group-containing compound is formed on the inorganic surface, the functional group present on the inorganic material itself, the surface charge, the ionic component, and the calpositimide
  • the group-containing compound may be bonded directly or indirectly through a chemical bond such as a covalent bond, a hydrogen bond, a coordinate bond, or an ionic bond.
  • a known technique force may be appropriately selected according to the type of bond.
  • a compound represented by the above formulas (I), (1), (2) and a (co) polymer containing repeating units of the formulas (3), (4) are prepared in advance by polymerization.
  • a method of chemically bonding to the surface of the object can be mentioned.
  • Examples of the chemical bond between the inorganic surface and the carpositimide group-containing compound include a covalent bond, a hydrogen bond, and a coordination bond.
  • an inorganic substance and a carpositimide group-containing compound for example, a dehydration reaction, a substitution reaction, an addition reaction, an adsorption reaction, a condensation reaction, or the like can be used.
  • inorganic A covalent bond is preferred because the compound and the organic component form a strong bond.
  • the surface of the inorganic substance may be modified in advance with a compound having a reactive functional group.
  • a compound having a reactive functional group By surface modification in this way, the bond between the inorganic substance and the carpositimide group-containing organic layer can be further strengthened.
  • Examples of the reactive functional group include a hydroxyl group, an amino group (preferably primary or secondary), a carboxyl group, a thiol group, an isocyanate group, an epoxy group, a urethane bond, a urea bond, an amide bond, and an acid anhydride. ), Polymerizable double bonds, and the like.
  • the surface treatment agent examples include unsaturated fatty acids such as oleic acid, unsaturated fatty acid metal salts such as sodium oleate, calcium oleate, and potassium oleate, unsaturated fatty acid esters, unsaturated fatty acid ethers, surfactants, Vinyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxylane, methacryloxymethyltrimethoxysilane, methacryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-chloropropyl Examples thereof include, but are not limited to, silane coupling agents such as trimethoxysilane, titanate coupling agents such as titan acylate and titanium alcoholate.
  • silane coupling agents such as trimethoxysilane
  • titanate coupling agents such as titan acylate and titanium alcoholate.
  • the carpositimide group-containing compound represented by the formulas (1) and (2) may have the same reactivity as the silane coupling agent and the titanate coupling agent. Even if the surface treatment is not performed, it is possible to efficiently form a carpositimide group-containing organic layer on the inorganic surface.
  • the organic layer made of the above-mentioned compound containing a carposimide group on the inorganic surface there is a method of forming a (co) polymer layer by performing a polymerization reaction on the inorganic surface.
  • the specific method is not particularly limited, but examples include the following.
  • a monomer having a group capable of reacting with an isocyanate group or a carpositimide group and a polymerizable functional group is (co) polymerized on the inorganic surface and chemically bonded to the inorganic surface, and the polymer The chain is extended to form an organic layer that does not contain a carpositimide group.
  • a group capable of reacting with an isocyanate group or a carpositimide group of the organic material layer is reacted with, for example, a carpositimide compound of the formula (I) to form a force carbodiimide group-containing organic layer (general A method called grafting from).
  • Examples of the (co) polymerization method include addition polymerization, polycondensation, hydrogen transfer polymerization, and addition condensation.
  • Examples of the addition polymerization include radical polymerization, ionic polymerization, cation-on polymerization, and ring-opening polymerization.
  • Examples of the polycondensation include elimination polymerization, dehydrogenation polymerization, denitrogenation polymerization, and the like, and hydrogen transfer polymerization. Examples thereof include polyaddition, polyaddition, isomerization polymerization, transfer polymerization and the like.
  • radical polymerization is preferred because it is a simple and economical method for producing a polymer and is widely used for industrial synthesis of various polymers. Among them, living radical polymerization is not yet widely used industrially, but it can be easily polymerized. This is useful in that it can control the molecular weight and molecular weight distribution as well as the graft density.
  • the polymerization conditions are not particularly limited, and various known conditions may be used depending on the monomers used.
  • the reactive functional group present on or introduced to the inorganic material has a functional group capable of reacting with 0.1 mol.
  • the amount of the monomer is 1 to 300 mol, and the amount of the polymerization initiator used is usually 0.05 to 30 mol.
  • the polymerization temperature is usually from -20 to 1,000. C, and the polymerization time is usually from 0.2 to 72 hours.
  • various additives such as a dispersant, a stabilizer, and an emulsifier (surfactant) can be added to the polymerization reaction system as necessary.
  • a known radical polymerization initiator can be used as the polymerization initiator used for radical polymerization.
  • Representative examples are peroxides such as benzoyl peroxide, tamenoid peroxide, t-butyrno, id peroxide, sodium persulfate, potassium persulfate, ammonium persulfate, and azobisisobutyrate.
  • Forces including azo compounds such as tolyl, azobismethylbutyryl-tolyl, azobis-sovalero-tolyl, etc. are not limited to these. These may be used alone or in combination of two or more.
  • the solvent used in the polymerization is not particularly limited, and a conventional solvent conventionally used in polymer synthesis can be used.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone
  • esters such as ethyl acetate, butyl acetate, ethyl propionate, and cellosolvate
  • pentane 2-methylbutane, n- Hexane, cyclohexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, n-octane, isooctane, 2,2,3-trimethylpentane, decane, nonane, cyclopentane, methyl Aliphatic or aromatic hydrocarbons such as lucyclopentane, methylcyclohexane, ethylcyclohexane, p-menthane, dicyclohexyl, benzene, toluene, xylene, ethy
  • an ionic liquid can also be used as a reaction solvent.
  • manufacturing time can be shortened and the amount of organic solvent used can be reduced to zero or extremely low. Since ionic liquids can be reused, Environmental adaptability and safety can also be improved.
  • the polymerization reaction described above is carried out in an ionic liquid, the thickness of the organic layer containing the carpositimide group can be further improved, and a substrate filler that is more excellent in dispersibility in the organic resin can be obtained. .
  • the ionic liquid is a generic term for a liquid salt, particularly a salt that becomes liquid around room temperature, and is a solvent that can only act on ions.
  • the ionic liquid in the present invention is not particularly limited, but may be at least one selected from the cationic forces constituting the ionic liquid, an ammonium cation, an imidazolium cation, and a pyridinium cation force. Among the favored ones, Ammonium Machion is more preferred.
  • imidazolium cation examples include, but are not limited to, dialkyl imidazolium cation, trialkyl imidazolium cation, and the like. Specific examples include 1-ethyl 3-methylimidazolium ion, 1-butyl-3-methylimidazolium ion. 1, 2, 3 trimethylimidazolium ion, 1,2 dimethyl-3 ethyl imidazolium ion, 1,2 dimethyl-3 propyl imidazolium ion, 1-butyl-2,3 dimethyl imidazolium ion, and the like.
  • the pyridinium cation is not particularly limited, and examples thereof include N-propylpyridium ion, N-butylpyridium ion, 1-butyl-4-methylpyridium ion, 1-butyl-2,4 dimethylpyridium ion, and the like. Can be mentioned.
  • ammonium cation is not particularly limited, but an ammonium or alicyclic quaternary ammonium ion is preferably used as a cation component.
  • aliphatic and cycloaliphatic quaternary ammonium ions are not particularly limited, but are not limited to trimethylpropyl ammonium ion, trimethylhexyl ammonium ion.
  • Quaternary alkyl ammonium ions such as tetrapentyl ammonium ion, jetyl methyl (2-methoxyethyl) ammonium, jetyl methyl (2-methoxyethyl) ammonium, N-butyl-N-methylpyrrolidinium ion, N- (2-methoxyethyl) N-methylpyrrolidinium ion and the like can be mentioned.
  • the ions constituting the ionic liquid are not particularly limited.
  • Suitable ionic liquids include, for example, jetylmethyl (2-methoxyethyl) ammonium bis (trifluoromethanesulfonimide) salt, jetylmethyl (2-methoxyethyl) ammonium (tetrafluoroborate) salt, N— (2-Methoxyethyl) N-methylpyrrolidum-um bistrifluoromethanesulfonilimide salt and the like.
  • the power is not limited to these.
  • the ionic liquid may be used by mixing with various solvents conventionally used as exemplified in the polymerization reaction solvent which may be used alone.
  • the mixing amount is arbitrary. However, considering the ease of post-processing, environmental adaptability and safety, etc., the ionic liquid in the mixed solvent is used.
  • the concentration of is preferably 10% by mass or more, particularly preferably 50% by mass or more, and more preferably 80 to: L00% by mass.
  • the above-mentioned organic isocyanate compound is formed on the inorganic surface in the presence of a catalyst that promotes the carposimidization of the isocyanate.
  • the above-mentioned organic isocyanate group is formed on the surface of an inorganic substance covered with an organic layer having a group capable of reacting with an isocyanate group or a carpositimide group and not having a carpositimide group. Examples thereof include a method in which a compound is polymerized in the presence of a catalyst that promotes the calpositimide of an isocyanate to form a carpositimide group-containing organic layer.
  • the calpositimide group-containing organic layer is preferably present in an amount of at least 0.1% by mass or more based on the inorganic substance.
  • the dispersibility of the substrate filler in organic resin and the electrical and mechanical properties of the resulting substrate are preferably 0.3% by mass or more, still more preferably 0.5% by mass or more, and most preferably 1.0% by mass or more.
  • the mass% of the calpositimide group-containing organic layer is calculated based on the density measured with a densitometer (Accubic 1330, manufactured by Shimadzu Corporation: in a helium atmosphere), based on the volume of the organic layer in the substrate lcm 3 and the inorganic matter. These are calculated values obtained from these values.
  • the thickness of the carpositimide group-containing organic layer is not particularly limited, but the dispersibility of the filler for the substrate in the organic resin, and the electrical properties and mechanical properties of the obtained substrate. Considering the quality, it depends on the particle size, the type of calpositimide resin, the surface area, etc., so it cannot be said unconditionally.
  • the level is preferably 1 nm or more on average, more preferably 2 nm or more, and still more preferably 3 nm or more.
  • the thickness of the organic layer containing the carpositimide group was determined from the density measured by a densitometer (Acubic 1330, manufactured by Shimadzu Corporation: in a helium atmosphere) based on the volume of the organic layer in the substrate lcm 3 and the inorganic material. The volume and total surface area were calculated and calculated from these values. The volume and surface area at this time are based on the assumption that the substrate filler is spherical.
  • the organic resin constituting the composition for forming an inorganic / organic composite substrate of the present invention is not particularly limited.
  • polyolefin resins such as polyethylene and polypropylene
  • polystyrene resins such as polystyrene.
  • Polyhalogen vinyl derivatives such as resin, poly salt vinyl, poly salt vinylidene, polyvinyl acetate derivative resins such as polyvinyl acetate, poly (meth) acrylic resin such as polymethyl methacrylate, Polyvinyl ethers such as polybutyl methyl ether, polyvinyl ethyl ether, polyvinyl isobutyl ether, polyvinyl ketones such as polyvinyl methyl ketone, polyvinyl hexyl ketone, polymethyl isopropenyl ketone, poly N vinyl pyrrole, poly N vinyl carbazole, poly Re-N—Buleindole, Poly-N— Poly N-bulu compounds such as bulurpyrrolidone, fluorinated resin, polyamides such as nylon 6, polyesters, polycarbonate, silicone, polyacetal, thermoplastic resins such as acetyl cellulose; epoxy resin, phenol resin, urea Examples thereof include thermosetting resins such as resin, melamine
  • polystyrene-based resins in consideration of environmental adaptability, etc., polystyrene-based resins, polyolefin-based resins, poly (meth) acrylic-based resins, carboxylic acid vinyl ester-based resins such as polyvinyl acetate, and epoxy-based resins. Is preferred to use.
  • the composition may be prepared by mixing the substrate filler and the organic resin by an arbitrary method and using a solvent at the time of mixing.
  • the solvent used in the preparation of the composition is not particularly limited, for example, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; ethyl acetate, butyl acetate, ethyl propionate, cellosolve acetate Esters such as: pentane, 2-methylbutane, n-xane, cyclohexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, n-octane, isooctane, 2, 2, 3-trimethylpentane, decane, nonane, cyclopentane, methylcyclopentane, methylcyclohexane, ethylcyclohexane, p-menthane, aliphatic or aromatic hydrocarbons such as benzene, toluene, xylene
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, toluene, tetrahydrofuran, etc. are optimal. These may be used alone or in combination of two or more.
  • the total surface area of the substrate filler in the composition lg the total surface area of the substrate filler in the composition lg
  • the total surface area is a theoretical value obtained by adding the surface areas of all the fillers for substrates added to the organic resin.
  • the surface area is based on the assumption that the substrate filler is spherical, and the particle size is the volume average particle size.
  • the substrate filler of the present invention is excellent in dispersibility in an organic resin and an organic solvent, and even when it is highly filled in an organic resin, the electrical properties, mechanical properties, Since heat resistance and water absorption are not lowered, it can be blended in a high proportion of 15% by mass or more and a total surface area of 2,000 cm 2 (in the composition lg) or more in the composition.
  • the composition for an inorganic / organic composite substrate molding material of the present invention preferably has a low coefficient of thermal expansion. Moreover, it is preferable to have the following characteristics (1) to (6).
  • the organic resin constituting both compositions is the same.
  • the composition in the present invention is a concept including a molded product obtained by molding this composition in addition to a mixed amorphous composition obtained by simply mixing a substrate filler and an organic resin. .
  • Dielectric constant of inorganic-organic composite substrate molding material composition and inorganic substance having no organic layer instead of substrate filler in inorganic-organic composite substrate molding material composition is the dielectric constant of the inorganic-organic composite substrate molding material composition Z.
  • the dielectric constant of the untreated inorganic material added composition ⁇ 1.0, preferably Satisfies 0.99.
  • the dielectric constant ratio is 1.0 or more, the effect of preventing increase in dielectric constant by the organic layer containing calpositimide formed on the inorganic surface becomes insufficient.
  • the dielectric constant is a value measured at a frequency of 1 GHz using a dielectric constant measuring device (4291B Impedance Material 'Analyzer, manufactured by Agilent Technologies').
  • the elastic modulus of the inorganic-organic composite substrate molding material composition and the inorganic material having no organic layer instead of the substrate filler in the inorganic-organic composite substrate molding material composition is the elastic modulus of the composition for inorganic-organic composite substrate molding material
  • Elastic modulus of the untreated inorganic material added composition > 1.1 0, preferably 1.20.
  • the elastic modulus ratio is 1.10 or less, the mechanical strength of a molded product obtained by molding the composition may be weakened. This reason is presumed to be a result of insufficient dispersibility of the substrate filler in the organic resin.
  • the elastic modulus is a value measured at room temperature using a thermal analysis rheology system (EXTAR600, manufactured by Seiko Instruments Inc.).
  • the mechanical strength of a molded product obtained by molding the composition may be weakened. This reason is presumed to be a result of insufficient dispersibility of the substrate filler with respect to the organic resin and low adhesion between the substrate filler and the organic resin.
  • the use of the substrate filler and inorganic-organic composite substrate molding material composition of the present invention is not particularly limited, but various functionalities in the electronic material field, building material field, automotive material field, etc. are required. It can use suitably for the material made.
  • TMXDI 1,3-bis (1-isocyanatoto 1-methylethyl) benzene
  • TMXDI 1,3-bis (1-isocyanatoto 1-methylethyl) benzene
  • p-cat Phosphorene-1-oxide
  • Og was added and the mixture was stirred at 180 ° C. for 40 hours under nitrogen publishing.
  • the obtained polycarposimide compound was diluted with 50 g of toluene (manufactured by Kanto Yigaku). The polymerization degree of the obtained polycarposimide compound was about 75.
  • the obtained carpositimide compound 10 Og with aminostyrene (manufactured by Wako Pure Chemical Industries, Ltd.) 1.3 g, n-dodecylamine (manufactured by Wako Pure Chemical Industries, Ltd.) 2. Og in a nitrogen atmosphere The reaction was carried out at 0 ° C for 5 hours.
  • Substrate filler inorganic particles having a carpositimide group-containing organic layer
  • Butyl carbitol acetate (manufactured by Kanto Chemical Co., Inc.) in a 100 ml three-necked flask 20. Volume average particle diameter in Og 1. O / zm silica particles (Admafine, Admatech Co., Ltd.) 10.0 g was well dispersed. Subsequently, 1. Og of the compound obtained in Synthesis Example 2 was added, and the mixture was stirred at 65 ° C for 15 hours. Thereafter, in order to remove the compound obtained in Synthesis Example 2 that was not bonded to silica particles, the silica particles were washed with THF (manufactured by Wako Pure Chemical Industries, Ltd.), and suction filtration was repeated twice.
  • THF manufactured by Wako Pure Chemical Industries, Ltd.
  • the volume average particle diameter is a value measured by a particle size analyzer (MICROTRAC HRA 9320-XI 00, manufactured by Nikkiso Co., Ltd.).
  • butyl carbitol acetate manufactured by Kanto Chemical Co., Inc. 20.
  • 0.03 g of 3-aminopropyltriethoxysilane silane coupling agent, manufactured by Chisso Corporation was added and stirred at 65 ° C. for 30 minutes.
  • TDI 2,4-diisocyanatotoluene
  • the silica particles were washed with THF and suction filtration was repeated 4 times in order to remove unreacted monomers and calpositimide compounds that were not chemically bonded to the silica particles.
  • the IR ⁇ vector of this particle was measured with FT-IR8900 (manufactured by Shimadzu Corporation). Absorption derived from the calpositimide group appeared in the vicinity of 2,200 cm 1. Compound force It was confirmed that the compound was chemically bonded onto the silica particles.
  • Silica particles with a volume average particle size of 1. (Admafine) in butyl carbitol acetate 20. Og in a 100 ml three-neck flask 10. 3-Methacryloxypropyltriethoxysilane (silane) 0.12 g of a coupling agent (manufactured by Chisso Corporation) was added and reacted at 65 ° C. for 30 minutes. After that, 7.6 g of styrene (Kanto Chemical Co., Ltd.), 0.4 g of methacrylic acid (Kanto Chemical Co., Ltd.), and azobisisoptyl-tril (Kanto Chemical Co., Ltd.) 0.08 g were added as initiators. And reacted at 70 ° C for 15 hours.
  • silica particles were washed with THF and suction filtration was repeated four times in order to remove unreacted monomers and polymers not bonded to silica particles. After washing, it was measured by IR space Tuttle the FT-IR8900 of the particles (KK Shimadzu), 1, 720 cm absorption from the benzene ring in the vicinity of 1 in the vicinity of the peak and 700 cm 1 from force carboxylic acid From what I saw Copolymer strength of methacrylic acid and styrene Confirmed chemical bonding on silica particles 0
  • Silica particles with a volume average particle size of 1. (Admafine) in butyl carbitol acetate 20. Og in a 100 ml three-necked flask 10. In a solution in which Og is well dispersed, 3-methacryloxypropyltriethoxysilane (silane 0.12 g of a coupling agent (manufactured by Chisso Corp.) was added and reacted at 65 ° C. for 30 minutes.
  • a coupling agent manufactured by Chisso Corp.
  • the silica particles were washed with THF and suction filtration was repeated 4 times to remove unreacted monomers and polymers not chemically bonded to the silica particles. After washing, was measured in the IR spectrum of the particles FT- IR8900 ((Ltd.) manufactured by Shimadzu Corporation), 1, 720 cm absorbency derived from a carboxylic acid in the vicinity of 1, absorption derived from benzene ring in the vicinity 700Cm- 1, 2, 200cm
  • butyl carbitol acetate manufactured by Kanto Chemical Co., Inc. 20. 0 g of silica particles (Admafine) with a volume average particle size of 1. -Lumethane-4,4-Diisocyanate (Down Chemical Japan Co., Ltd., below (MDI is abbreviated) 1.5 g, p-catO. 04 g, and 0.2 g of phenol isocyanate (manufactured by Tokyo Chemical Industry Co., Ltd.) were added as end-capping agents and heated at 100 ° C. for about 3 hours.
  • the silica particles were washed with methyl ethyl ketone (manufactured by Sanyo Chemical Co., Ltd., hereinafter referred to as MEK) in order to remove unreacted monomers and polymers not chemically bonded to the silica particles.
  • MEK methyl ethyl ketone
  • the IR ⁇ vector of this particle was measured with FT-IR8900 (manufactured by Shimadzu Corporation). Absorption derived from the carbodiimide group appeared in the vicinity of 2,200 cm 1 , indicating that the polymer containing the carbodiimide group It was confirmed that a layer was formed on the silica particles.
  • the silica particles were washed with MEK in order to remove unreacted monomers and polymers not chemically bonded to the silica particles. After washing, the IR spectrum of this particle was measured with FT-IR8900 (manufactured by Shimadzu Corporation). Absorption derived from the calpositimide group appeared in the vicinity of 2,200 cm 1. It was confirmed that it was formed on silica particles.
  • the volume average particle diameter is a value measured by a particle size analyzer (MICROTRAC UPA 9340, manufactured by Nikkiso Co., Ltd.).
  • silane coupling agent manufactured by Chisso Corporation
  • the silica particles were washed with THF and suction filtered twice to remove the silane coupling agent that was not bonded to the silica particles.
  • Silica particles having a volume average particle diameter of 40 nm (manufactured by Denki Kagaku Kogyo Co., Ltd.) 10. Og was well dispersed in 100. Og of butyl carbitol acetate in a 100 ml eggplant flask. Subsequently, 0.03 g of Glycidone Co., Ltd. was added and stirred at 65 ° C for 30 minutes.
  • the silica particles were washed with THF in order to remove the silane coupling agent not bonded to the silica particles.
  • GPC measuring device C—R7A, manufactured by Shimadzu Corporation
  • Examples 1 to 5 have higher affinity to organic solvents than Examples 6 to 7, and Examples 6 to 7 have lower viscosity than Comparative Example 6
  • Examples 1 to 5 have a slightly lower viscosity and comparatively higher affinity with organic solvents than Examples 6 to 7 and Comparative Examples 6 and 6
  • Examples 1 to 5 have slightly higher viscosities and comparatively lower affinity with organic solvents than Examples 6 to 7 and Comparative Examples 6 and 6
  • the silica particles obtained in Examples 1 to 7 are excellent in dispersibility in toluene or MEK.
  • the organic substance containing the carpositimide group is chemically bonded to the inorganic surface. Dispersion in It can be seen that the property is extremely inferior.
  • silica particles of Examples 1 to 7 and Comparative Examples 1, 2, 3, and 6 were dispersed in THF and pH 7 water were prepared in advance, and volume average particle diameter and standard deviation were determined using the samples. . Specifically, first, silica particles of Examples 1 to 7 and Comparative Examples 1, 2, 3, and 6 were added so as to be 10% by mass of THF and pH 7 water, and an ultrasonic disperser (Ultrata The mixture was dispersed with Lux T18, manufactured by Nippon Seiki Seisakusho Co., Ltd. for 30 minutes.
  • volume average particle size was measured with a particle size analyzer (MICROTRAC HRA 9320-X100 (measurement range 0.7 to 700 ⁇ ), MICROTRAC UPA 9340 (measurement range 3.2 nm to 6.54 ⁇ ) Nikkiso Co., Ltd.) did.
  • MICROTRAC HRA 9320-X100 measured range 0.7 to 700 ⁇
  • MICROTRAC UPA 9340 measured range 3.2 nm to 6.54 ⁇
  • Table 3 shows the volume average particle size and standard deviation.
  • the particle size ( ⁇ 2), standard deviation ( ⁇ 2), and the particle size in water ( ⁇ 4) and standard deviation ( ⁇ 4) in THF of Examples 1 to 5 are the same as the particle size (Ml ), Standard deviation (A1) and particle size in water (M3), value divided by standard deviation (A3), particle size (M2), standard deviation (A2) and particles in water in Examples 6 and 7
  • Diameter (M4) and standard deviation (A4) are the particle size (Ml), standard deviation (A1), particle size in water (M3) and standard deviation (A3) in THF, respectively, in Comparative Example 6. The divided values are also shown in Table 3.
  • the standard deviation is a measure of the distribution width of the measured particle size distribution and is a value calculated by the following formula.
  • Example 1 0.94 0.40 0.13 0.68 19. L 8.98 21.95 24.94
  • Example 2 ⁇ .05 0.45 0.14 0.76 2.05 0.83 2.36 2.31
  • Example 3 0.98 0.43 0.13 0.73 20.0 9.05 22.99 25. 13
  • Example 4 ⁇ .03 0.45 0.14 0.76 19.0 8.90 2 L84 24.72
  • Example 5 0.87 0.38 0, 12 0.64 LSO 0.78 2.06 2, 17
  • the substrate filler of the present invention has 30% by mass, 50% by mass, and 60% by mass when only 10% by mass is used as the dispersion medium. Even when added more than%, it is possible to obtain dispersion characteristics such as the above-mentioned volume average particle diameter and standard deviation.
  • silica particles of Examples 1 to 7 and Comparative Examples 1 to 6 were added to 0.1% by mass in water at pH 7 and dispersed for 15 minutes with an ultrasonic disperser. Manufactured by Co., Ltd.). The results are shown in Table 7.
  • silica particles synthesized in Example 1 (Example 8) 4.6 lg, silica particles synthesized in Example 2 (Example 9) 4. 56 g, silica particles synthesized in Example 3 (Example 10) 4. 57 g, silica particles synthesized in Example 4 (Example 11) 4. 57 g, silica particles synthesized in Example 5 (Example 12) 4. 56 g, silica particles synthesized in Comparative Example 1 (Comparative Example 7) 4 50 g, untreated silica particles 4. 50 g (Comparative Example 8) dispersed in THF 4 g, epoxy resin (Epeakron N-740, manufactured by Dainippon Ink & Chemicals, Inc.) 3.
  • a composition was prepared by adding 0.90 g of a curing agent (Novaki Ichi HX3722, manufactured by Asahi Kasei Co., Ltd.) to a mixture of koji fat. Further, 4.50 g of untreated silica particles and 4.50 g of silica synthesized in Comparative Example 1 were bonded to the silica particles of Example 1 with the polycarbodiimide compound obtained in Synthesis Example 1, respectively.
  • a composition was prepared in the same manner as in Example 8 by adding 0.1 l lg of the same amount as that of the polyforce rubodiimide resin in Synthesis Example 1. (Comparative Examples 9 and 10)
  • silica particles synthesized in Example 6 (Example 13) 1. 38 g, silica particles synthesized in Example 7 (Example 14) 1. 42 g, silica particles synthesized in Comparative Example 2 (Comparative Example 11) 1. 35 g Untreated silica particles (Comparative Example 12) 1. 35 g of each dispersed in THF 3.5 g were epoxy resin (Epeakron N-740, manufactured by Dainippon Ink & Chemicals, Inc.) 3.60 g, Hardener (Novaki Yuichi HX3722, manufactured by Asahi Kasei Co., Ltd.) was added to 0.40 g of the mixed fat and a composition was prepared.
  • epoxy resin Peakron N-740, manufactured by Dainippon Ink & Chemicals, Inc.
  • Hardener (Novaki Yuichi HX3722, manufactured by Asahi Kasei Co., Ltd.) was added to 0.40 g of the mixed fat and a composition was prepared.
  • the addition amount of the silica particles in each Example and Comparative Example, and the addition amount of the polycarbodiimide compound in Comparative Examples 9 and 10 are included in each based on the following calculation method.
  • the mass of the virgin silica particles was made equal.
  • the density of the carpositimide compound obtained in Synthesis Example 2 is 1.07 gZcm 3 and the density of untreated silica is 2.26 g / cm 3 , so that the synthesis example becomes a surface layer in 1 cm 3
  • the volume of the carpositimide compound obtained in 1 is Xcm 3
  • the following equation is established, and X is 0.051 cm 3 .
  • the silica and polymer amounts of the silica particles obtained in Examples 2 to 7 were determined by the same method.
  • the polymer amount was 1.25% by mass in Example 2, 1.52% by mass in Example 3, and the actual amount.
  • Example 4 1.52% by mass, in Example 5, 1.25% by mass, in Example 6, 2.50% by mass, and in Example 7, 4.92% by mass.
  • the cured product (150 m) was evaluated according to the following criteria in accordance with the evaluation method of IS K 7104.
  • Silica particles are sufficiently uniformly filled, and the surface of the cured product is smooth (hand touch, visual observation).
  • Silica particles are uniformly filled, and a portion of the surface of the cured product is uneven.
  • the elastic modulus of the cured product (150 m) was measured at room temperature using a thermal analysis rheology system (EXTAR600 Seiko Instruments Inc.). The specimen used was 0.4 cm wide and 2.0 cm long.
  • the elastic modulus was slightly improved compared to Comparative Example 11 (Examples 13, 14, Comparative Example 12).
  • the dielectric constant of the cured product (150 m) was measured at a frequency of 1 GHz at room temperature using a dielectric constant measuring device (4291B Impedance Material Analyzer, manufactured by Agilent Technologies).
  • the untreated silica yarns and composites had poor moldability and varied in dielectric constant. Therefore, the average value of four locations was adopted as the dielectric constant.
  • the cured product (600 ⁇ ) was cut into a width of 100 mm and a length of 4 cm, and the maximum point bending stress was measured with a three-point bending tester (Mike Mouth Force Tester, Instron Co., Ltd.).
  • Example 8 14 As shown in Table 8, the inorganic-organic composite substrate composition of Example 8 14 using silica particles having a carpositimide group-containing organic layer obtained in Example 17 above as a filler has moldability and physical properties. It can be seen that both values are excellent.
  • Example 8 On the other hand, from the results of Example 8 and Comparative Examples 9 and 10, a carpositimide group contained in the composition It can be seen that even when the amount of the organic substance having the same amount is the same, the effect of improving the moldability and physical properties is small because the calpositimide group-containing organic substance is bonded to the inorganic surface.
  • Insulation resistance value decreased by 5% or more and less than 10%
  • the heat resistance test of the cured product (150 ⁇ m) was performed.
  • Weight reduction rate is less than 1% by mass than Comparative Example 8 (Examples 8 to 12, Comparative Examples 7, 9, 10) Weight reduction rate is less than 3% by mass than Comparative Example 12 (Examples 13, 14, Comparative Example 1)
  • the weight loss at this time is a value obtained by subtracting the weight loss of the cured product from the weight loss of the composition, even when an inorganic substance is added.
  • the cured product (600 ⁇ m) was cut into a width of 50 mm and a length of 100 mm, and the specimen was left in a high-temperature bath maintained at 50 ° C. for 24 hours. Then, it was cooled to 20 ° C in a desiccator, and the test piece was weighed.
  • Weight increase rate is less than Comparative Example 7 (Examples 8 to 12, Comparative Examples 8 to 10) Weight increase rate is less than Comparative Example 11 (Examples 13, 14, Comparative Example 12)
  • the rate of weight increase is 7 or more of Comparative Examples (Examples 8 to 12, Comparative Examples 8 to: LO)
  • the inorganic-organic composite substrate compositions of Examples 8 to 14 using the silica particles having the carpositimide group-containing organic layers obtained in Examples 1 to 7 as fillers are as follows.
  • the water resistance is improved because the inorganic substance is covered with the calpositimide resin, and since the organic substance containing the carpositimide group on the surface is firmly bonded to the resin, there is also a void trapping moisture.
  • the insulation reliability is improved because it does not easily occur.
  • the fact that the inorganic material-containing organic compound containing calpositimide groups has no adverse effect on the heat resistance.
  • inorganic substances having an organic layer containing a carposimide group have high dispersibility with respect to organic resins and organic solvents, which has been a problem in the past! can do. Therefore, it is possible to highly fill the resin while preventing deterioration of physical properties. This filler is expected to be used in various fields in the future.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

 無機物と、この無機物表面に化学結合されたカルボジイミド基含有有機層とを備える基板用充填材。この場合、カルボジイミド基含有有機層は、例えば、下記式で示されるカルボジイミド基含有化合物からなる層が挙げられる。これにより、基板用樹脂中に高充填した場合でも、高分散し、得られた基板の電気的性質および機械的性質の悪化を抑制し得る基板用充填材を提供できる。 (X1)m-Z-[A-(R1-N=C=N)n-R1-NCO]l (1) (X1)m-Z-[A-(R1-N=C=N)n-R1-A-Z-(X2)3]l (2) 〔R1はイソシアネート化合物からの残基を、X1,X2は互いに独立して水素原子、ハロゲン原子等を、Zは互いに独立してケイ素原子またはチタン原子を、Aはイソシアネート基由来の結合を含む2価以上の有機基を、mおよびlは、1~3、かつ、m+l=4を満たす整数を、nは1~100の整数を表す。〕

Description

明 細 書
基板用充填材および無機一有機複合基板成形材料用組成物
技術分野
[0001] 本発明は、基板用充填材および無機一有機複合基板成形材料用組成物に関する 背景技術
[0002] 近年、鉛フリーはんだを用いた電子基板用榭脂の高温処理が行われるようになると ともに、電子機器の小型化による電子基板の微細化が進んできている。
このため、電子基板樹脂の高耐熱性化や、低熱膨張率化が要求されている。最近 、基板用榭脂に無機物を添加することで榭脂の低熱膨張率ィ匕が実現できることがわ 力つてきた。さらに、無機物の添加量により樹脂の熱膨張率が変動することもわかつ てきた (特許文献 1:特開平 5 - 230279号公報)。
[0003] 榭脂等に無機物を配合する上で高分子材料と無機物との親和性を改善することが 極めて重要である。こうした観点力 無機物に対する表面改質処理法がしばしば行 われている。
表面改質処理方法のうち、最も汎用されているものの 1つとして、無機物の表面を 有機化合物でコーティングする方法がある。この方法では、無機物表面に対する有 機化合物の接着性が重要となってくる。
官能基を有する無機物では、その官能基 (水酸基など)と反応し得る置換基を有す る化合物、例えば、シランカップリング剤などを使用することによって強固なコーティン グ層が形成できる (特許文献 2:特開昭 61 - 275359号公報、特許文献 3:特開昭 6 3— 258958号公報)。
[0004] しかし、基板用榭脂の低熱膨張率化をより一層高めるベぐ上記表面処理を施した 従来の無機物を榭脂に高充填すると、成形品の電気的性質、機械的性質および熱 的性質の低下をもたらす。
1.電気的性質における問題点として具体的には、下記の 3点が挙げられる。
(1)無機物自体が高 ヽ誘電率を有するため、多量に無機物を添加することで成形品 の誘電率を増加させる。
(2)無機物の分散性が不十分であり、これを改善するためにコロイダルシリカ等の分 散剤を添加する必要がある力 その添カ卩によっても成形品の誘電率が増大する。
(3)無機物を添加することで耐マイグレーション性が低下する。
2.機械的性質における問題点として具体的には、下記の 2点が挙げられる。
(1)榭脂との親和性が不十分な無機物を多量に添加すると、成形品が脆くなる。
(2)無機物の分散性が不十分であるため、榭脂に無機物を高充填しにくい。
3.熱的性質における問題点としては具体的には、下記の点が挙げられる。
(1)無機物の分散性が不十分であり、これを改善するために分散剤の添加や、無機 物表面処理剤の使用により、耐熱性が低下する。
[0005] 以上のように、成形品の機械的性質および電気的性質の低下等を考慮すると、基 板用榭脂への無機物の充填量には限度があるため、無機物添カ卩によって得られる 低熱膨張ィ匕等の性質を十分に基板に付与することができな 、と 、う問題がある。
[0006] 特許文献 1 :特開平 5— 230279号公報
特許文献 2:特開昭 61— 275359号公報
特許文献 3:特開昭 63 - 258958号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、このような事情に鑑みなされたものであり、基板用榭脂中に高充填した 場合でも、高分散し、得られた基板の電気的性質および機械的性質の悪化を抑制し 得る基板用充填材、およびこの充填材と有機樹脂とを含んで構成される無機一有機 複合基板成形材料用組成物を提供することを目的とする。
課題を解決するための手段
[0008] 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、カルポジイミド 基含有有機層を無機物表面に形成してなる基板用充填材が、基板用榭脂中に高充 填した場合でも、高分散し、得られる成形品 (基板)の電気的性質の低下 (誘電率の 増力 [1、耐マイグレーション性の低下)や、機械的性質の低下 (脆くなる)、熱的性質の 低下を抑制し得ることを見出し、本発明を完成した。 すなわち、本発明は、
[1] 無機物と、この無機物表面に化学結合されたカルポジイミド基含有有機層とを 備えることを特徴とする基板用充填材、
[2] 分散媒としてテトラヒドロフランを用いたときの、表面未処理無機物の粒子径分 布の標準偏差 (A )と、前記カルポジイミド基含有有機層を備えた無機物の粒子径分
1
布の標準偏差 (A )が、下記式を満たす [1]の基板用充填材、
2
(A ) / (A )≤1. 0
2 1
[3] 分散媒としてテトラヒドロフランを用いたときの、表面未処理無機物の体積平均 粒子径 (M )と、前記カルポジイミド基含有有機層を備えた無機物の体積平均粒子
1
径 (M )とが、下記式を満たす [1]の基板用充填材、
2
(M ) / (M )≤1. 0
2 1
[4] 分散媒として pH7の水を用いたときの、表面未処理無機物の粒子径分布の標 準偏差 (A )と、前記カルポジイミド基含有有機層を備えた無機物の粒子径分布の標
3
準偏差 (A )とが、下記式を満たす [1]の基板用充填材、
4
(A ) / (A ) > 1. 0
4 3
[5] 分散媒として pH7の水を用いたときの、表面未処理無機物の体積平均粒子径( M )と、前記カルポジイミド基含有有機層を備えた無機物の体積平均粒子径 (M )と
3 4 力 下記式を満たす [1]の基板用充填材、
(M ) / (M ) > 1. 0
4 3
[6] 前記カルポジイミド基含有有機層が、式(1)で示されるカルポジイミド基含有ィ匕 合物、および式(2)で示されるカルポジイミド基含有ィ匕合物の少なくとも 1種力 なる [ 1]の基板用充填材、
(X1) Z— [A—(R1— N = C = N) — R1— NCO] (1)
m n 1
(X1) Z— [A—(R1— N = C = N) — R1— A— Z—(X2) ] (2)
m n 3 1
〔式中、 R1は、イソシァネートイ匕合物からの残基を表し、 X1および X2は、互いに独立し て水素原子、ハロゲン原子、不飽和構造を含んでいてもよい炭素数 1〜20アルキル 基、炭素数 6〜20ァリール基、炭素数 7〜20ァラルキル基、または炭素数 1〜20ァ ルコキシ基を表し、 X1および X2が複数の場合、それらは互いに同一でもそれぞれ異 なっていてもよぐ Zは、互いに独立してケィ素原子またはチタン原子を表し、 Aは、ィ ソシァネート基由来の結合を含む 2価以上の有機基を表し、 mおよび 1は、 1〜3、力 つ、 m+l=4を満たす整数を表し、 nは、 1〜: LOOの整数を表す。〕
[7] 前記式(1)で示されるカルポジイミド基含有ィ匕合物の末端イソシァネート基の少 なくとも 1つが、イソシァネート基と反応性を有する官能基で封止されて!/、る [6]の基 板用充填材、
[8] 前記イソシァネート基と反応性を有する官能基が、水酸基、 1級もしくは 2級アミ ノ基、カルボキシル基、またはチオール基である [7]の基板用充填材、
[9] 前記カルポジイミド基含有有機層が、親油性である [1]〜[8]のいずれかの基 板用充填材、
[10] 前記無機物が、体積平均粒子径 1ηπι〜100 /ζ πιの粒子である [1]〜[9]の いずれかの基板用充填材、
[11] [1]〜[10]のいずれかの基板用充填材と、有機樹脂とを含んで構成されるこ とを特徴とする無機一有機複合基板成形材料用組成物、
[12] 前記基板用充填材が、有機榭脂に対して 15質量%以上含まれる [11]の無機 一有機複合基板成形材料用組成物、
[13] 当該組成物 lg中に含まれる前記基板用充填材の総表面積が 2, 000cm2以 上である [ 11 ]または [ 12]の無機 有機複合基板成形材料用組成物
を提供する。
発明の効果
本発明の基板用充填材は、無機物表面力 sカルポジイミド基含有有機層で覆われて いるから、有機榭脂および有機溶媒との親和性および分散性に優れ、また有機榭脂 とカルポジイミド基が化学反応を起こす為、強固な結合ができる。このため、この基板 用充填材を、基板用榭脂中に高充填した場合でも、得られる成形品 (基板)の機械 的強度の低下や、耐マイグレーション性等の電気的性質の低下などを抑えることがで きる。
また、本発明の基板用充填材は、有機榭脂に対する分散性に優れているから、分 散剤を併用しなくともよぐ従来品のように分散剤に起因する誘電率の増加、耐熱性 の低下を防ぐことができる。
このように、本発明の基板用充填材を用いれば、その添加量を増やしても、得られ る成形品 (基板)の物理的、電気的性質、熱的性質の低下を抑制し得るから、熱膨張 率の低下などの様々な無機物添加効果を成形品 (基板)に効果的に付与することが できる。
発明を実施するための最良の形態
[0011] 以下、本発明についてさらに詳しく説明する。
本発明に係る基板用充填材は無機物と、この無機物表面に化学結合されたカルボ ジイミド基含有有機層とを備えている。
本発明における無機物としては、特に限定されるものではなぐ例えば、金、銀、銅 、鉄,コバルト等の金属、炭酸カルシウム,炭酸バリウム,炭酸マグネシウム等のアル カリ土類金属炭酸塩、ケィ酸カルシウム,ケィ酸バリウム,ケィ酸マグネシウム等のァ ルカリ土類金属ケィ酸塩、リン酸カルシウム,リン酸バリウム,リン酸マグネシウム等の アルカリ土類金属リン酸塩、硫酸カルシウム,硫酸バリウム,硫酸マグネシウム等のァ ルカリ土類金属硫酸塩、酸ィ匕ケィ素(シリカ),酸化マグネシウム,酸ィ匕アルミニウム, 酸化亜鉛,酸化鉄,酸化チタン,酸化コバルト,酸化ニッケル,酸化マンガン,酸化ァ ンチモン,酸化スズ,酸ィ匕カルシウム,酸ィ匕カリウム,酸化ケィ素,酸化クロム等の金 属酸化物、水酸化鉄,水酸化ニッケル,水酸ィ匕アルミニウム,水酸ィ匕マグネシウム, 水酸化カルシウム,水酸化クロム、水酸化カリウム、水酸化亜鉛等の金属水酸化物、 窒化ケィ素、窒化アルミニウム、窒化ホウ素等の金属窒化物、ケィ酸亜鉛,ケィ酸ァ ルミ-ゥム,ケィ酸銅等の金属ケィ酸塩、炭酸亜鉛,炭酸アルミニウム,炭酸コバルト ,炭酸ニッケル,塩基性炭酸銅等の金属炭酸塩等、またこれらからなるガラスや磁性 体が挙げられ、これらは 1種単独で、または 2種以上組み合わせて用いることができる
[0012] 中でも、本発明の基板用充填材を有機樹脂に配合してなる組成物から得られた基 板に、それに要求される好適な機能性を付与することを考慮すると、酸ィ匕ケィ素 (シリ 力)、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化カリウム、 水酸化亜鉛、酸化マグネシウム、酸ィ匕アルミニウム、酸化亜鉛、酸化鉄、酸化チタン、 酸化コバルト、酸ィ匕ニッケル、酸化マンガン、酸ィ匕カルシウム、酸化カリウム等の無機 (水)酸化物ゃ窒化ケィ素、窒化アルミニウム、窒化ホウ素等の金属窒化物、ガラスを 用いることが好ましぐ特に、基板の熱膨張率を低下させるために通常添加されてい る酸ィ匕ケィ素が好適である。
無機物の形状としては、有機榭脂に対する基板用充填材の分散性、基板用充填 材と有機樹脂とからなる組成物の成形性等を考慮すると、体積平均粒子径 Inn!〜 1
00 μ m、好ましくは 10nm〜50 μ m、より好ましくは 20nm〜30 μ mの粒子が好適で ある。
[0013] 本発明におけるカルポジイミド基含有有機層は、カルポジイミド基含有ィ匕合物を含 んで構成される。
この場合、カルポジイミド基含有ィ匕合物は、カルポジイミド基を有するものであれば 制限はなぐ例えば、下記式 (I)で表される化合物を用いることができる。
OCN- (R1-N = C = N) R1 - NCO (I)
(R1はイソシァネートイ匕合物からの残基を、 nは 1〜: LOOの整数を表す。)
[0014] 式 (I)で表されるカルポジイミド基を有する化合物(以下、単に「カルポジイミドィ匕合 物」ということがある)は、有機ポリイソシァネートイ匕合物力もイソシァネートのカルボジ イミド化を促進する触媒の存在下で得ることができる。具体的には、例えば、特開昭 5
1— 61599号公報に開示されている方法や、 L. M. Alberinoらの方法 (J. Appl. Poly m. Sci., 21, 190 (1990) )、特開平 2— 292316号公報に開示されている方法等によ つて製造可能なカルポジイミドィ匕合物を挙げることができる。
式 (I)で示されるカルポジイミドィ匕合物の重量平均分子量は、一般的に 200〜 100 , 000程度であるが、有機榭脂および有機溶媒への分散性を考慮すると、 500〜50 , 000力好まし!/ヽ。
[0015] カルポジイミド化合物の製造に用いられる有機イソシァネートイ匕合物としては、例え ば、 4, 4'—ジシクロへキシルメタンジイソシァネート、 m—テトラメチルキシリレンジィ ソシァネート、 2, 4 トリレンジイソシァネート、 2, 6 トリレンジイソシァネート、 2, 4 —トリレンジイソシァネートと 2, 6 トリレンジイソシァネートとの混合物、粗トリレンジィ ソシァネート、 ¾ ^チレンジフエ-ルジイソシァネート、 4, 4', 4"—トリフエ-ルメチレ ントリイソシァネート、キシレンジイソシァネート、へキサメチレン 1, 6 ジイソシァネ ート、リジンジイソシァネート、水添メチレンジフエ-ルジイソシァネート、 m—フエ-ル ジイソシァネート、ナフチレン 1, 5 ジイソシァネート、 4, 4'ービフエ二レンジイソシ ァネート、 4, 4'ージフエニルメタンジイソシァネート、 3, 3'—ジメトキシー 4, 4'ービフ ェ -ルジイソシァネート、 3, 3'—ジメチルジフエ-ルメタン 4, 4'ージイソシァネート 、イソホロンジイソシァネート等が挙げられ、これらは 1種単独でまたは 2種以上の混 合物として用いることができる。これらの中でも、反応性や電子材料用榭脂への分散 性等を考慮すると、 4, 4'ージフエ-ルメタンジイソシァネート、 2, 4 トリレンジイソシ ァネート、へキサメチレン 1, 6 ジイソシァネート、 m—テトラメチルキシリレンジイソ シァネート、 4, 4'ージシクロへキシルメタンジイソシァネートが好適である。
[0016] 上記有機イソシァネートイ匕合物中のイソシァネート基をカルポジイミドィ匕することによ つて重縮合が起こる。この反応は、通常、有機イソシァネートイ匕合物をカルポジイミド 化触媒の存在下で加熱することで行われる。この際、適当な段階でイソシァネート基 と反応性を有する官能基、例えば、水酸基、 1級もしくは 2級ァミノ基、カルボキシル 基、またはチオール基等を有する化合物を末端封止剤として投入し、カルポジイミド 化合物の末端を封止することで、得られるカルポジイミドィ匕合物の分子量 (重合度)を 調整することができる。また、重合度は、イソシァネートイ匕合物の濃度や反応時間によ つても調整することができる。
上記カルポジイミド化触媒としては、種々のものを例示することができる力 1 フエ -ル 2 ホスホレン一 1 ォキシド、 3 -メチル - 1—フエ二ノレ - 2-ホスホレン 1 —ォキシド、 1—ェチル 2 ホスホレン一 1—ォキシド、これらの 3 ホスホレン異性 体などが収率その他の面で好適である。
[0017] 上記反応は、溶媒の非存在下で行うこともできるが、溶媒存在下で行ってもよい。な お、反応途中で溶媒を添加することもできる。
溶媒としては、反応時にイソシァネート基およびカルポジイミド基に影響を与えな ヽ ものであれば特に制限されることはなぐ重合方法に応じた溶媒を適宜選択すればよ い。
使用可能な溶媒の具体例としては、アセトン、メチルェチルケトン、メチルイソブチ ルケトン、シクロへキサノン等のケトン類;酢酸ェチル、酢酸ブチル、プロピオン酸ェ チル、セロソルブアセテート等のエステル類;ペンタン、 2—メチルブタン、 n—へキサ ン、シクロへキサン、 2—メチルペンタン、 2, 2 ジメチルブタン、 2, 3 ジメチルブタ ン、ヘプタン、 n—オクタン、イソオクタン、 2, 2, 3 トリメチルペンタン、デカン、ノナ ン、シクロペンタン、メチルシクロペンタン、メチルシクロへキサン、ェチルシクロへキサ ン、 ρ—メンタン、ベンゼン、トルエン、キシレン、ェチルベンゼン等の脂肪族または芳 香族炭化水素類;四塩化炭素、トリクロロエチレン、クロ口ベンゼン、テトラブロムエタ ン等のハロゲンィ匕炭化水素類;ェチルエーテル、ジメチルエーテル、トリオキサン、テ トラヒドロフラン等のエーテル類;メチラール、ジェチルァセタール等のァセタール類; ニトロプロペン、ニトロベンゼン、ピリジン、ジメチルホルムアミド、ジメチルスルホキシド 等の硫黄、窒素含有有機化合物類等が挙げられる。これらは単独で使用してもよい し、 2種類以上を併用してもよい。
[0018] さらに、カルポジイミドィ匕合物末端力 後述する末端封止セグメント等で封止され、 親水化されている場合には、希釈剤として上記溶媒のほか、水、メタノール、エタノー ル、 1 プロパノール、 2—プロパノール、 1ーブタノール、 2—ブタノール、イソブチル ァノレコーノレ、 tert—ブチルアルコール、 1—ペンタノール、 2 ペンタノール、 3 ぺ ンタノール、 2—メチルー 1ーブタノール、イソペンチルアルコール、 tert ペンチル アルコール、 1一へキサノール、 2—メチルー 1 ペンタノール、 4ーメチルー 2 ペン タノール、 2 ェチルブタノール、 1一へプタノール、 2 へプタノール、 3 ヘプタノ ール、 2—ォクタノール、 2—ェチルー 1一へキサノール、ベンジルアルコール、シクロ へキサノール等のアルコール類;メチルセ口ソルブ、ェチルセ口ソルブ、イソプロピル セロソノレブ、ブチノレセロソノレブ、ジエチレングリコーノレモノブチノレエーテノレ等のエーテ ルアルコール類等も使用可能である。これらは単独で使用してもよいし、 2種類以上 を併用してもよい。ただし、カルポジイミド基の反応性が高いため、希釈の際は比較 的低温で行うことが好ま 、。
[0019] また、本発明の基板用充填材においては、カルポジイミド基含有ィ匕合物として、下 記式(1) , (2)で示される化合物を用いることもできる。これらの化合物を用いると、無 機物表面にカルポジイミド基含有有機層を効率よく形成でき、特に好適である。 (X1) Z— [A—(R1— N = C = N) — R1— NCO] (1) m n 1
(X1) Z— [A—(R1— N = C = N) — R1— A— Z—(X2) ] (2)
m n 3 1
[0020] 上記式(1) , (2)において、 R1はイソシァネートイ匕合物からの残基を表す。イソシァ ネート化合物からの残基とは、イソシァネートイ匕合物から (ポリ)カルポジイミド化合物 を製造した際にカルポジイミド化合物中に残存する、有機イソシァネートイ匕合物から イソシァネート基を除 、た部分構造である。
X1および X2は、互いに独立して水素原子、ハロゲン原子、不飽和構造を含んでい てもよい炭素数 1〜20アルキル基、炭素数 6〜20ァリール基、炭素数 7〜20ァラル キル基、または炭素数 1〜20アルコキシ基を表す。 X1が複数個ある場合、それらは 互いに同一でもそれぞれ異なっていてもよぐまた複数個の X2は、互いに同一でもそ れぞれ異なっていてもよい。
[0021] ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素原子のいずれでもよい。
不飽和構造を含んでいてもよい炭素数 1〜20のアルキル基としては、直鎖、分岐ま たは環状のいずれの構造を有していてもよぐ例えば、メチル基、ェチル基、 n プロ ピル基、 n ブチル基、イソプロピル基、イソブチル基、 sec ブチル基、 tert—ブチ ル基、シクロプロピル基、シクロブチル基、シクロペンチル基、メチルシクロペンチル 基、シクロへキシル基等が挙げられる。
炭素数 6〜20のァリール基としては、例えば、フエ-ル基、トリル基、ビフエ-ル基 等が挙げられる。
炭素数 7〜20のァラルキル基としては、ベンジル基等が挙げられる。
炭素数 1〜20のアルコキシ基としては、例えば、メトキシ基、エトキシ基、 n—ブトキ シ基、 t—ブトキシ基、フエノキシ基等が挙げられる。なお、アルコキシ基中のアルキル 基は、直鎖、分岐または環状のいずれの構造を有していてもよい。
[0022] Aは、イソシァネート基由来の結合を含む 2価以上の有機基を表す。
イソシァネート基由来の結合とは、イソシァネート基と、このイソシァネート基と反応 し得る官能基が反応して生成する結合を含むものである。
イソシァネート基と反応し得る官能基は、特に限定されるものではなぐ例えば、水 酸基、 1級または 2級ァミノ基、カルボキシル基、チオール基等を挙げることができる。 これら官能基とイソシァネート基が反応して生成する結合としては、例えば、ウレタ ン結合、チォウレタン結合、尿素結合、アミド結合、カルポジイミド結合、ァロファネー ト結合、ビュレット結合、ァシル尿素結合、ウレトンイミン結合、イソシァネート 2量ィ匕結 合、イソシァネート 3量ィ匕結合等が挙げられる。これらの中でも、比較的低温で容易に 反応し、結合を形成し得ることから、尿素結合、ウレタン結合、チォウレタン結合、およ びアミド結合の中力も選ばれる少なくとも 1種が好ま 、。
また、 Aは、イソシァネート基由来の結合と Zとの間に、さらに連結基を含むものであ つてもよい。このような連結基としては、特に限定されるものではなぐ例えば一(CH
2
) 一、—(CH ) -NH- (CH ) CO— NH— (CH ) —(以上において、 kは 1 k 2 k 2 k 2 k
〜20の整数を表す。)、— CO— O—、—O—などが挙げられる。
[0023] 上記 (X1) における mは、 1〜3の整数である力 m= 3 (特に、式(1)の化合物の場 m
合)であることが好ましい。
X1が、複数個存在する場合、式(1)および (2)で示される化合物の無機物表面との 反応性を考慮すると、その中の少なくとも 1つは炭素数 1〜20、好ましくは 1〜5アル コキシ基であることが好適であり、全てが炭素数 1〜5アルコキシ基であることが最適 である。
一方、 X2としても、同様の理由から、その中の少なくとも 1つは炭素数 1〜20、好ま しくは 1〜5アルコキシ基であることが好適であり、全てが炭素数 1〜5アルコキシ基で あることが最適である。
なお、炭素数 1〜5アルコキシ基としては、メトキシ基、エトキシ基が好適である。 mおよび 1は、 1〜3の整数、かつ、 m+l=4を満たす数である力 上記 mに対応し て、 1は 1 (特に、式(1)の場合)であることが好ましい。
[0024] Zは、互いに独立してケィ素またはチタン原子である。ここで、上記式(1)において は、 (X1) —Z—力 上記式(2)においては、(X1) — Z—、および— Z— (X2) の少な m m 3 くとも一方力 カップリング化剤として作用し得る部位であることが好ましい。
この点を考慮すると、式(1)の Z、および式(2)の 2つの Zがケィ素原子であることが 好ましい。この場合、上記式(1) , (2)は、それぞれ以下の式(1' ) , {2' )で示され る。 (X1) - Si- [A- (R1 -N = C=N) -R' -NCO] (1 ) m n 1
(X1) Si— [A—(R1— N = C=N) — R1— A— Si—(X2) ] (2' )
m n 3 1
(式中、 X1、 X2、 A、
Figure imgf000012_0001
1、 mおよび nは上記と同じ。 )
[0025] 上記式(1)または(2)で示される化合物は、重量平均分子量が、 300-100, 000 力 S好ましく、より好ましく ίま 500〜50, 000、さらに好ましく ίま 600〜40, 000、最良【ま 1, 000〜20, 000である。重量平均分子量力 100, 000超であると、立体的障害 が大きくなるため、無機物を効率的に表面修飾するという表面処理作用が損なわれ る虞がある。
上記 ηは、 1〜: L00の整数である力 上述のように、重量平均分子量の増大に伴つ て立体的障害が増大し、表面処理効果が低下することを考慮すると、 2〜80がより好 ましい。
[0026] 上記式(1)または(2)で表されるカルポジイミド基含有ィ匕合物は、例えば、上記 (I) で示される化合物製造の任意の段階で、カルポジイミドィ匕合物が有するイソシァネー ト基と反応し得る官能基または結合基を有するケィ素またはチタン原子を含むカップ リング化剤を反応させることで得ることができる。
このカップリング化剤中の、イソシァネート基と反応性を有する官能基または結合基 は、イソシァネート基と反応し得る基であれば制限はない。その具体例としては、水酸 基、アミノ基 (好ましくは 1級または 2級)、カルボキシル基、チオール基、イソシァネー ト基、エポキシ基、ウレタン結合、尿素結合、アミド結合、酸無水物基等が挙げられる 。中でも、汎用的に入手可能なアミノ基 (好ましくは 1級または 2級)、チオール基、ィ ソシァネート基、エポキシ基が好ましい。
[0027] シランカップリング化剤の具体例としては、下記のものが挙げられる。
アミノ基を有するシランカップリング化剤としては、例えば、 γ—ァミノプロピルトリメト キシシラン、 γ—ァミノプロピルトリエトキシシラン、 γ—ァミノプロピルメチルジメトキシ シラン、 γ—ァミノプロピルジメチルメトキシシラン、 γ—ァミノプロピルメチルジェトキ シラン、 γ—ァミノプロピルジメチルエトキシシラン、 Ν—フエ二ルー γーァミノプロピ ルトリメトキシシラン、 Ν フエ-ル一 γ—ァミノプロピルトリエトキシシラン、 N— j8 (ァ ミノェチル) Ί—ァミノプロピルトリメトキシシラン、 N— j8 (アミノエチル) γ—ァミノプロ ピルトリエトキシシラン、 N— j8 (アミノエチル) γ—ァミノプロピルメチルジメトキシシラ ン、 Ν— |8 (アミノエチル) y—ァミノプロピルメチルジメチルジェトキシシラン等が挙 げられる。
[0028] チオール基を有するシランカップリング化剤としては、例えば、 3 メルカプトプロピ ルトリメトキシシラン、 3—メルカプトプロピルトリエトキシシラン、メルカプトメチルジメチ ルエトキシシラン、(メルカプトメチル)メチルジェトキシシラン、 3—メルカプトプロピル メチルジメトキシシラン等が挙げられる。
イソシァネート基を有するカップリングイ匕剤としては、例えば、 γ イソシァネートプ 口ピルトリメトキシシラン、 γ—イソシァネートプロピルトリエトキシシラン、 γ—イソシァ ネートプロピルメチルジメトキシラン、 Ί イソシァネートプロピルジメチルメトキシシラ ン、 Ί イソシァネートプロピルメチルジェトキシシラン、 γ イソシァネートプロピル ジメチルエトキシシラン等が挙げられる。
[0029] エポキシ基を有するシランカップリング化剤としては、例えば、 γ—グリシドキシプロ ピルトリメトキシシラン、 γ—グリシドキシプロピルトリエトキシシラン、 γ—グリシドキシ
ノレジェチノレメトキシシラン、 Ίーグリシドキシプロピノレエチノレジェトキシシラン、 Ύーグ リシドキシプロピノレジェチノレエトキシシラン、 j8 (3, 4—エポキシシクロへキシノレ)ェ チノレトリメトキシシラン、 j8 (3, 4—エポキシシクロへキシノレ)ェチノレトリエトキシシラ ン、 β— (3, 4—エポキシシクロへキシル)ェチルメチルジメトキシシラン、 j8 (3, 4 エポキシシクロへキシノレ)ェチノレジメチノレメトキシシラン、 j8 (3, 4—エポキシシク 口へキシル)ェチルメチルジェトキシシラン、 j8 (3, 4—エポキシシクロへキシル)ェ チルジメチルエトキシシラン、 j8 (3, 4—エポキシシクロへキシル)ェチルェチルジ メトキシシラン、 j8 (3, 4—エポキシシクロへキシノレ)ェチノレジェチノレメトキシシラン、 β (3, 4 エポキシシクロへキシノレ)ェチノレエチノレジェトキシシラン、 13 (3, 4 エポキシシクロへキシル)ェチルジェチルエトキシシラン、 3—エポキシプロピルトリメト キシシラン、 3—エポキシプロピノレトリエトキシシラン、 3—エポキシプロピノレメチノレジメ トキシシラン、 3—エポキシプロピルジメチルメトキシシラン、 3—エポキシプロピルメチ ノレジェトキシシラン、 3—エポキシプロピノレジメチノレエトキシシラン、 3—エポキシプロ ピルェチルジメトキシシラン、 3—エポキシプロピルジェチルメトキシシラン、 3—ェポ キシプロピルェチルジェトキシシラン、 3—エポキシプロピルジェチルエトキシシラン、 4 エポキシブチリノレトリメトキシシラン、 6—エポキシへキシノレトリメトキシシラン、 8— エポキシォクチルトリメトキシシラン、 4—エポキシブチリルトリエトキシシラン、 6—ェポ キシへキシルトリエトキシシラン、 8—エポキシォクチルトリエトキシシラン等が挙げられ る。
[0030] 一方、チタネートカップリング化剤の具体例としては、チタンァシレート、チタンァシ レートポリマー、チタンフォスフェートポリマー、チタンアルコラート等が挙げられる。 以上で例示したカップリング化剤は、単独で使用してもよいし、 2種類以上を併用し てもよい。
[0031] これらのカップリング化剤の中でも、耐水性、無機物への密着性、塗膜硬度、汚染 性、ポットライフなどに優れる点から、 γ—グリシドキシプロピルトリメトキシシラン、 γ ーグリシドキシプロピノレメチノレジェトキシシラン、 γ—グリシドキシプロピノレトリエトキシ シラン、 13 - (3, 4—エポキシシクロへキシル)ェチルトリメトキシシラン、 13 - (3, 4— エポキシシクロへキシル)ェチルトリエトキシシラン、 γ—ァミノプロピルトリメトキシシラ ン、 γ—ァミノプロピルトリエトキシシラン、 Ν— β (アミノエチノレ) γ—ァミノプロピルトリ メトキシシラン、 Ν- β (アミノエチル) γ—ァミノプロピルトリエトキシシラン、 γ—イソ シァネートプロピルトリメトキシシラン、 γ—イソシァネートプロピルトリエトキシシランが 好ましい。
[0032] イソシァネート基と上記カップリング化剤との反応温度は、一般に— 50〜200°C程 度である力、カルポジイミド基とカップリング化剤との反応を抑制することを考慮すると 、— 30〜100°C、特に— 10〜50°C程度の比較的低温が好適である。
なお、カルポジイミド基含有有機層の性能が損なわれない範囲であれば、カルポジ イミド基とカップリング化剤とを反応させても構わな 、。
[0033] 以上で説明した式 (I) , (1)および(2)で示されるカルポジイミドィ匕合物は、一分子 中のカルポジイミド基数力 平均で 1〜: LOO個程度であることが好ましぐより好ましく は 2〜80個である。カルポジイミド基数力 1未満であると、カルポジイミド化合物とし ての特性が十分に発揮されない場合があり、 100超であると、合成は可能であるが、 高分子化して取り扱いが困難になる場合がある。
[0034] さらに、本発明の基板用充填材におけるカルポジイミド基含有ィ匕合物として、下記 式(3)および式 (4)で示される繰り返し単位の少なくとも 1種、並びに必要に応じて式 (5)で示される繰り返し単位を有する(共)重合体を用いることもできる。このような(共 )重合体とすることで、カルポジイミド基を効率的に各種のポリマー中に含有させるこ とができるという利点がある。
[0035] [化 1]
Figure imgf000015_0001
( 3 ) ( 4 ) ( 5 )
〔式中、 R2は、イソシァネート基と反応し得る基および重合性官能基を有するモノマー 由来の部分構造を表し、 B1は、イソシァネート基と上記イソシァネート基と反応し得る 基とが反応して生成した結合基を表す。 R3は、カルポジイミド基と反応し得る基およ び重合性官能基を有するモノマー由来の部分構造を表し、 B2は、カルポジイミド基と 上記カルポジイミド基と反応し得る基とが反応して生成した結合基を表す。 R4は、重 合性官能基を有し、イソシァネート基およびカルポジイミド基と反応し得る官能基を有 しないモノマー由来の部分構造を表す。 R1および nは、上記と同じ。〕
[0036] R2は、イソシァネート基と反応し得る基および重合性官能基を有するモノマーが、ィ ソシァネート基と反応し、さらに重合性官能基で重合してできる部分構造であり、(共) 重合体の主鎖を構成する。イソシァネート基と反応し得る官能基としては、例えば水 酸基、 1級もしくは 2級ァミノ基、カルボキシル基、チオール基等を挙げることができる
R3は、カルポジイミド基と反応し得る基および重合性官能基を有するモノマーが、力 ルボジイミド基と反応し、さらに重合性官能基で重合してできる部分構造であり、(共) 重合体の主鎖を構成する。カルポジイミド基と反応し得る官能基としては、例えば、水 酸基、アミノ基 (好ましくは 1級または 2級)、カルボキシル基、チオール基、イソシァネ ート基、エポキシ基、ウレタン結合、尿素結合、アミド結合、酸無水物等が挙げられる また、 R2, R3および R4の重合性官能基は、特に限定されるものではないが、重合性 や反応操作の簡便性を考慮すると、重合性二重結合であることが好まし 、。
[0037] イソシァネート基またはカルポジイミド基と反応し得る基、および重合性官能基を有 するモノマーの具体例としては、 2—ヒドロキシェチルアタリレート、 2—ヒドロキシェチ ルメタタリレート、 2—ヒドロキシルプロピルアタリレート、 2—ヒドロキシルプロピルメタク リレート、ペンタエリスリトールトリアタリレート、ペンタエリスリトールトリメタタリレート、グ リシジルアタリレート、グリシジルメタタリレート、ァリルアルコール、 3 ブテン 1ーォ ール、 4 ペンテン 1 オール、ァリルァミン、 N—メチルァリルァミン、 N ェチル 2—メチルァリルァミン、ジァリルァミン、ァリルシクロへキシルァミン、ブタジエンモノ ォキシド、 1, 2 エポキシ 5 へキセン、 1, 2 エポキシ 7—オタテン、ァリルダリ シジルエーテル、 2—ァリルフエノール、 2—ァリルォキシエタノール、ペンタエリスリト ールトリアリルエーテル、ポリエチレングリコールモノメタタリレート、ポリプロピレングリ コーノレモノメタタリレート、ポリエチレングリコーノレモノアタリレート、 2—スルフォェチノレ メタタリレート、ポリエチレングリコールモノァリレート、 2 ヒドロキシ 1, 3 ジメタクロ リキシプロパン、ポリプロピレングリコールモノアタリレート等が挙げられる。これらは 1 種単独で、または 2種以上混合して用いることができる。
[0038] R4は、重合性官能基を有し、イソシァネート基およびカルポジイミド基と反応し得る 官能基を有しないモノマーが、重合性官能基で重合してできる部分構造であり、これ も共重合体の主鎖を構成する。なお、このモノマーは、必要に応じて用いられる任意 成分である。
この重合性官能基を有し、イソシァネート基およびカルポジイミド基と反応し得る官 能基を有しないモノマーの具体例としては、エチレン,プロピレンなどのォレフィン類 、スチレン, o—メチノレスチレン, m—メチノレスチレン, p—メチルスチレン, α—メチノレ スチレン, ρ ェチルスチレン, 2, 4 ジメチルスチレン, ρ— η—ブチルスチレン, ρ —tーブチルスチレン, ρ—η キシルスチレン, ρ—η—ォクチルスチレン, ρ—η— ノ-ルスチレン, p— n—デシルスチレン, p— n—ドデシルスチレン, p—メトキシスチ レン, p—フエ-ノレスチレン, p—クロノレスチレン, 3, 4—ジクロノレスチレンなどのスチレ ン類、アクリル酸メチル,アクリル酸ェチル,アクリル酸 n—ブチル,アクリル酸イソブチ ル,アクリル酸プロピル,アクリル酸へキシル,アクリル酸 2—ェチルへキシル,アタリ ル酸 n—ォクチル,アクリル酸ドデシル,アクリル酸ラウリル,アクリル酸ステアリル,ァ クリル酸 2—クロルェチル,アクリル酸フエニル, α—クロルアクリル酸メチル,メタタリ ル酸メチル,メタクリル酸ェチル,メタクリル酸 η—ブチル,メタクリル酸イソブチル,メタ クリル酸プロピル,メタクリル酸へキシル,メタクリル酸 2—ェチルへキシル,メタクリル 酸 η—ォクチル,メタクリル酸ドデシル,メタクリル酸ラウリル,メタクリル酸ステアリル, ( メタ)アクリロニトリル, (メタ)アタリレート,メチル (メタ)アタリレートなどの (メタ)アクリル 酸誘導体、ビュルメチルエーテル,ビュルェチルエーテル,ビニルイソブチルエーテ ルなどのビュルエーテル類、ビュルメチルケトン,ビュルへキシルケトン,メチルイソプ ロぺニルケトンなどのビ-ルケトン類、 Ν—ビュルピロール, Ν—ビ-ルカルバゾール , Ν—ビュルインドール, Ν—ビュルピロリドンなどの Ν—ビュル化合物、フッ化ビュル ,フッ化ビ-リデン,テトラフルォロエチレン,へキサフルォロプロピレン,アクリル酸トリ フルォロェチル,アクリル酸テトラフルォロプロピルなどのフッ素化アルキル基を有す る化合物、臭化工チル, (S)— 3—ブロモ—3—メチルへキサン,クロロメタン等のハロ ゲンィ匕有機化合物等が挙げられ、これらは 1種単独でまたは 2種類以上を組み合わ せて使用することができる。これらの中でも、汎用性、反応性等を考慮するとスチレン 類、(メタ)アクリル酸誘導体が好ましぐ特に、スチレン、メタクリル酸メチルが好適で ある。
なお、上記式(3)および式 (4)で示される繰り返し単位の少なくとも 1種、並びに必 要に応じて式 (5)で示される繰り返し単位を有する(共)重合体 1分子に含まれるカル ポジイミド基の数は、平均で 1〜: LOO個程度であることが好ましぐより好ましくは 2〜8 0個である。このカルポジイミド基数力 1未満であると、カルポジイミド基含有ィ匕合物 としての特性が十分に発揮されない場合があり、 100超であると、合成は可能である が、高分子化して取り扱いが困難になる場合がある。
また、上記(共)重合体の重量平均分子量は、 1, 000〜1, 000, 000が好ましぐ より好まし <は 2, 500〜950, 000、さらに好まし <は 5, 000〜500, 000、最良は 10 , 000〜300, 000である。
[0040] なお、上述した各種カルポジイミド基含有ィ匕合物は、組成変更、分子量調節、また は末端封止セグメントの変更 (式 (I) , (1) , (3) , (4)の場合)などによって、基板用充 填材の凝集性や、有機榭脂に対する分散性をコントロールすることが可能である。ま た、カルポジイミド基含有ィ匕合物中の全てのイソシァネート基を封止してもよいが、片 末端または両末端へ任意にイソシァネート基を残存させてもよい。
封止剤になり得る、すなわちイソシァネート基と反応する一般的な化合物を以下 (a )〜(j)に例示する。
[0041] (a)水酸(一 OH)基含有化合物
(i)メタノール、エタノール、 1 プロパノール、 2—プロパノール、 n—ブタノール、 se cーブタノール、 tert—ブタノール、 n—ォクタノール、 n—ドデシルアルコール等の 1 級アルコール類;(ジエチレングリコール、プロピレンダルコール、トリメチロールプロ ノ ン、ペンタエリスリトール、 1, 2 プロパンジオール、 1, 3 プロパンジオール、 1, 3 ブタンジオール、 1, 4 ブタンジオール、ネオペンチルグリコール、ペンタンジォ ール、へキサンジオール、オクタンジオール、 1, 4ーブテンジオール、ジエチレングリ コール、トリエチレングリコール、ジプロピレングリコール等の飽和または不飽和のグリ コール類;(iii)メチルセ口ソルブ、ェチノレセロソノレブ、ブチルセ口ソルブ等のセロソル ブ類;(iv) 2—ヒドロキシェチル (メタ)アタリレート、 2—ヒドロキシプロピル (メタ)アタリ レート、 3—ヒドロキシプロピル (メタ)アタリレート、 4—ヒドロキシブチル(メタ)アタリレ ート等の (メタ)アクリル系単量体;(V)ポリエチレングリコールモノ (メタ)アタリレート、 ポリプロピレングリコールモノ (メタ)アタリレート等のポリアルキレングリコール (メタ)ァ クリル系化合物類;(vi)ヒドロキシェチルビ-ルエーテル、ヒドロキシブチルビ-ルェ 一テル等の各種ヒドロキシアルキルビュルエーテル類;(vii)ァリルアルコール、 2—ヒ ドロキシェチルァリルエーテル等の各種ァリル化合物類;(viii) n—ブチルダリシジル エーテル、 2 ェチルへキシルグリシジルエーテル等のアルキルグリシジルエーテル 類;(ix)ポリエチレングリコール、ポリプロピレングリコール等の水酸基含有高分子類 が挙げられる。これらは単独で使用してもよぐ 2種類以上を併用してもよい。 (b)メルカプト基含有化合物
(i)メタンチオール、エタンチオール、 n または iso プロパンチオール、 n また は iso ブタンチオール、ペンタンチオール、へキサンチオール、ヘプタンチオール、 オクタンチオール、ノナンチオール、デカンチオール、シクロへキサンチオール等の 脂肪族アルキル単官能チオール類; (ii) 1, 4ージチアン 2 チオール、 2—(1ーメ ルカプトメチル)—1, 4ージチアン、 2- (1 メルカプトェチル)—1, 4ージチアン、 2 一(1 メルカプトプロピル)—1, 4ージチアン、 2- (メルカプトブチル)—1, 4ージチ アン、テトラヒドロチォフェン 2 チオール、テトラヒドロチォフェン 3 チオール、 ピロリジン 2 チオール、ピロリジン 3 チオール、テトラヒドロフラン 2 チォー ル、テトラヒドロフラン 3 チオール、ピぺリジン 2 チオール、ピぺリジン 3 チ オール、ピぺリジン 4ーチオール等の複素環を有する脂肪族チオール類; (iii) 2- メルカプトエタノール、 3—メルカプトプロパノール、チォグリセロール等のヒドロキシ基 を有する脂肪族チオール類; (iv) (メタ)アクリル酸 2—メルカプトェチル、(メタ)アタリ ル酸 2—メルカプト 1 カルボキシェチル、 N— (2—メルカプトェチル)アクリルアミ ド、 N- (2—メルカプト 1 カルボキシェチル)アクリルアミド、 N- (2—メルカプト ェチル)メタクリルアミド、 N—(4 メルカプトフエ-ル)アクリルアミド、 N—(7—メルカ プトナフチル)アクリルアミド、マイレン酸モノ 2—メルカプトェチルアミド等の不飽和二 重結合を有する化合物;(v) l, 2 エタンジチオール、 1, 3 プロパンジチオール、 1, 4 ブタンジチオール、 1, 6 へキサンジチオール、 1, 8 オクタンジチオール、 1, 2—シクロへキサンジチオール、エチレングリコーノレビスチォグリコレート、エチレン グリコーノレビスチォプロピオネート、ブタンジオールビスチォグリコレート、ブタンジォ 一ルビスチォプロピオネート、トリメチロールプロパントリスチォグリコレート、トリメチロ ールプロパントリスチォプロピオネート、ペンタエリスリトールテトラキスチォグリコレート 、ペンタエリスリトールテトラキスチォプロピオネート、トリス(2—メルカプトェチル)イソ シァヌレート、トリス(3—メルカプトプロピル)イソシァヌレート等の脂肪族ジチオール 類;(vi) l, 2 ベンゼンジチオール、 1, 4 ベンゼンジチオール、 4ーメチルー 1, 2 ベンゼンジチオール、 4ーブチルー 1, 2 ベンゼンジチオール、 4 クロロー 1, 2 ベンゼンジチオール等の芳香族ジチオール類; (vii)メルカプト基を有するポリビ- ルアルコール変性体等のメルカプト基を含有する高分子類などが挙げられる。これら は単独で使用してもよぐ 2種類以上を併用してもよい。
(c)アミノ基含有化合物
(i)アンモニア、メチノレアミン、ェチノレアミン、 n—プロピルァミン、イソプロピルアミン 、モノエタノールァミン、 n—プロパノールァミン、イソプロパノールァミン、ァ-リン、シ クロへキシルァミン、 n—ブチルァミン、 n—ペンチルァミン、 n—へキシルァミン、 n— ヘプチルァミン、 n—ォクチルァミン、 n—ノ-ルァミン、 n—デシルァミン、 n—ゥンデ シルァミン、 n—ドデシルァミン、 n—トリデシルァミン、 n—テトラデシルァミン、 n—ぺ ンタデシルァミン、シクロへキシルァミン、 n—へキサデシルァミン、 n—ヘプタデシル ァミン、 n—ォクタデシルァミン、 n—エイコシルァミン、ジェチルァミン、ジエタノール ァミン、ジブチルァミン、ジ n—プロパノールァミン、ジイソプロパノールァミン、 N—メ チルエタノールァミン、 N -ェチルエタノールァミン等の脂肪族または芳香族ァミン含 有化合物;(ii)ジメチルアミノエチルアタリレート、ジェチルアミノエチルアタリレート、 ジメチルァミノメチルアタリレート、ジェチルァミノメチルアタリレート、ジアタリレートとジ ェチルァミンとの付カ卩物、トリメチロールプロパントリアタリレートとジェチルァミンとの 付加物等のアルキルアミノアクリレート類;(iii) (メタ)アクリルアミド、 a ェチル (メタ) アクリルアミド、 N メチル (メタ)アクリルアミド、 N—ブトキシメチル (メタ)アクリルアミド 、ジアセトン (メタ)アクリルアミド、 N, N ジメチル (メタ)アクリルアミド、 N, N ジェチ ル(メタ)アクリルアミド、 N, N ジメチルー p—スチレンスルホンアミド、 N, N ジメチ ルアミノエチル (メタ)アタリレート、 N, N ジェチルアミノエチル (メタ)アタリレート、 N , N ジメチルァミノプロピル (メタ)アタリレート、 N, N ジェチルァミノプロピル (メタ) アタリレート、 N— [2- (メタ)アタリロイルォキシェチル]ピぺリジン、 N— [2- (メタ)ァ クリロイルォキシエチレン]ピロリジン、 N— [2- (メタ)アタリロイルォキシェチル]モル ホリン、 4— (N, N ジメチルァミノ)スチレン、 4— (N, N ジェチルァミノ)スチレン、 4 ビュルピリジン、 2 ジメチルアミノエチルビ-ルエーテル、 2 ジェチルアミノエ チルビ-ルエーテル、 4ージメチルアミノブチルビ-ルエーテル、 4ージェチルァミノ ブチルビ-ルエーテル、 6—ジメチルァミノへキシルビ-ルエーテル等のアルキルァ ミノアルキルビュルエーテル類; (iv)アミノ基を含有した高分子類などが挙げられる。 これらは単独で使用してもよく、 2種類以上を併用してもょ 、。
[0044] (d)カルボキシル基含有化合物
(i)ギ酸、酢酸、プロピオン酸、イソ吉草酸、へキサン酸、ラウリン酸、ミルスチン酸、 パルミチン酸、ステアリン酸、ァラキン酸、ォレイン酸、リノール酸、リノレン酸等の脂肪 酸または高級脂肪などの飽和脂肪族モノカルボン酸類;(ii)シユウ酸、マロン酸、コハ ク酸等の飽和脂肪族ジカルボン酸類;(iii) 2 アタリロイルォキシェチルコハク酸、 3 アタリロイルォキシプロピルフタル酸等のエステル基を有する有機カルボン酸類;(i
V)安息香酸、トルィル酸、サリチル酸等の炭素環カルボン酸類;(V)フランカルボン酸 、チォフ ンカルボン酸、ピリジンカルボン酸等の複素環カルボン酸類;(vi)アクリル 酸、メタクリル酸、クロトン酸、ィタコン酸、マレイン酸、フマル酸、ィタコン酸モノブチル 、マレイン酸モノブチルなどの不飽和モノもしくはジカルボン酸類または不飽和二塩 基酸類;(vii)無水酢酸、無水コハク酸、無水フタル酸などのカルボン酸由来の酸無 水物類;(viii)ポリアクリル酸、ポリメタクリル酸等の高分子カルボン酸類などが挙げら れる。これらは単独で使用してもよぐ 2種類以上を併用してもよい。
[0045] (e)イソシァネート基含有化合物
(i)シクロへキシルイソシァネート、 n—デシルイソシァネート、 n—ゥンデシルイソシ ァネート、 n—ドデシルイソシァネート、 n—トリデシルイソシァネート、 n—テトラデシル イソシァネート、 n—ペンタデシルイソシァネート、 n キサデシルイソシァネート、 n プタデシルイソシァネート、 n—ォクタデシルイソシァネート、 n—エイコシルイソ シァネート、フエ-ルイソシァネート、ナフチルイソシァネート等のイソシァネート化合 物;(ii)カルポジイミド化合物に使用されるようなイソシァネート基を 2個以上有するィ ソシァネートイ匕合物などが挙げられる。
[0046] (f)エポキシ含有化合物
(i)ネオペンチルグリコールジグリシジルエーテル、 1, 6 へキサンジオールジグリ シジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジ グリシジルエーテル、へキサメチレングリコールジグリシジルエーテル、シクロへキサ ンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプ 口パントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル等の脂 肪族多価アルコールのグリシジルエーテル類;(ii)ポリエチレングリコールジグリシジ ルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコ 一ルジグリシジルエーテル等のポリアルキレングリコールのグリシジルエーテル類;(ii i)ポリエステル榭脂系のポリグリシジルイ匕物;(iv)ポリアミド榭脂系のポリグリシジノレイ匕 物;(V)ビスフエノール A系のエポキシ榭脂;(vi)フエノールノボラック系のエポキシ榭 脂;(vii)エポキシウレタン榭脂;(viii)グリシジル (メタ)アタリレート、 ( β—メチル)ダリ シジル (メタ)アタリレート、 3, 4—エポキシシクロへキシル (メタ)アタリレート、ァリルグ リシジルエーテル、 3, 4 エポキシビュルシクロへキサン、ジ(j8—メチル)グリシジル マレート、ジ(j8—メチル)グリシジルフマレート等のエポキシ基含有単量体等が挙げ られる。
[0047] なお、エポキシ化合物は、市販品を用いることもでき、例えば、ナガセケムテック (株 )製の「デナコール」シリーズ、「デナコール EX— 611」、一 612、 一 614、— 614B、 — 622、—512、—521、—411、—421、—313、—314、—321、—201、—211 、—212、—252、—810、—811、—850、—851、—821、—830、—832、—84 1、—861、—911、—941、—920、—931、—721、—111、— 212L、— 214L、 — 216L、— 321L、— 850L、—1310、—1410、—1610、— 610U等のエポキシ 化合物を用いてもよい。
[0048] また、環境負荷の低減と!/、う観点から、水溶性のカルポジイミド化合物を用いてもよ い。
水溶性のカルポジイミドィ匕合物としては、例えば、カルポジイミド化合物の末端に親 水性セグメントを有するものが挙げられる。この親水性セグメントとしては、次で示され る残基のうち少なくとも 1種を用いればょ 、。
[0049] (g)式(6)で表される反応性ヒドロキシル基を少なくとも一つ有するアルキルスルホン 酸塩の残基
R6— SO— R5— OH (6)
3
(式中、 R5は、 1〜10のアルキレン基を、 R6は、アルカリ金属を示す。 )
アルキルスルホン酸塩としては、例えば、ヒドロキシエタンスルホン酸ナトリウム、ヒド ロキシプロパンスルホン酸ナトリウム等が挙げられ、中でもヒドロキシプロパンスルホン 酸ナトリウムが好ましい。
[0050] (h)式(7)で表されるジアルキルァミノアルコールの残基の四級塩
(R7) N— R8— OH (7)
2
(式中、 R7は、炭素数 1〜4の低級アルキル基、 R8は、炭素数 1〜10のアルキレン基 またはォキシアルキレン基を示す。 )
ジアルキルァミノアルコールとしては、例えば、 2—ジメチルァミノエタノール、 2—ジ ェチルアミノエタノール、 3 ジメチルアミノー 1 プロパノール、 3 ジェチルアミノー 1 プロパノール、 3 ジェチルアミノー 2 プロパノール、 5 ジェチルアミノー 2— プロパノール、 2—(ジ—n—ブチルァミノ)エタノール等が挙げられ、中でも 2—ジメチ ルァミノエタノールが好まし 、。
[0051] (i)式 (8)で表されるァミン残基
(R7) NR, 一 R8— OH (8)
2
(式中、 R7, R8は上記化学式 (7)と同じであり、 R'は、四級化剤由来の基を示す。 ) 四級化剤としては、ジメチル硫酸、 p トルエンスルホン酸メチル等が挙げられる。
[0052] (j)式(9)で表される反応性ヒドロキシル基を少なくとも 1つ有する、アルコキシ基末端 封止されたポリ(アルキレンオキサイド)の残基
R9—(O— CHR10— CH ) -OH (9)
2
(式中、 R9は、炭素数 1〜4の低級アルキル基、 R1Qは、水素原子またはメチル基を示 し、 oは、 2〜30の整数である。 )
ポリ(ァノレキレンオキサイド)としては、例えば、ポリ(エチレンオキサイド)モノメチル エーテル、ポリ(エチレンオキサイド)モノェチルエーテル、ポリ(エチレンオキサイド' プロピレンオキサイド)モノメチルエーテル、ポリ(エチレンオキサイド 'プロピレンォキ サイド)モノェチルエーテル等が挙げられ、中でもポリ(エチレンオキサイド)モノメチ ルエーテルが好ましい。
[0053] 以上で説明したイソシァネート基と反応する化合物は、単独で使用してもよぐ 2種 以上を併用してもよい。
なお、イソシァネート基と反応する化合物は、上記 (a)〜①に記載の代表的な化合 物に限らず、その他のイソシァネート基と反応する官能基または結合基を有する化合 物(例えば、酸無水物類等)を用いてもよい。
[0054] 特に、電子材料用途にお!、て、充填材を有機樹脂に添加してなる組成物は、充填 材の性質や成形性等を考慮すると、有機榭脂および有機溶媒に対する高分散性が 求められると同時にエッチング処理等に必要な耐酸性、誘電率や導電率、耐マイグ レーシヨン性等の電気的性質への悪影響等を防止するため耐水性等が非常に重要 となる。このため、末端封止セグメントは、親水性よりも親油性であることが好ましぐ 得られる化合物は水溶性でな ヽことが好ま ヽ。
上記化合物を得るための末端封止剤としては、例えば、メタノール、エタノール、プ ロパノール、ドデシルアルコール、ォクタノール等の水酸基含有化合物;シユウ酸、サ リチル酸、ラウリン酸、ミルスチン酸、ノルミチン酸、ステアリン酸、ァラキン酸、ォレイ ン酸、リノール酸、リノレン酸等のカルボキシル基含有化合物;シクロへキシルイソシ ァネート、 n—ドデシルイソシァネート、 n—ォクタデシルイソシァネート、フエ-ルイソ シァネート、ナフチルイソシァネート等のイソシァネートイ匕合物;メタンチオール、エタ ンチオール、プロパンチオール、アンモニア等のメルカプト基含有化合物;メチルアミ ン、ェチルァミン、ジブチルァミン、シクロへキシルァミン、 n—ドデシルァミン等のアミ ノ基含有化合物等が好ましいが、榭脂への分散性、製造コスト等を考慮すると、特に 、ドデシルアルコール、ォクタノール;ジブチルァミン、シクロへキシルァミン;ラウリン 酸、ミルスチン酸、パルミチン酸、ステアリン酸、ァラキン酸、ォレイン酸等のカルボキ シル基含有ィ匕合物、フエ-ルイソシァネート等のイソシァネートイ匕合物等が好適であ る。
[0055] 本発明の基板用充填材 (カルポジイミド基含有有機層を備えた無機物、以下同様) は、充填材の有機溶媒または有機樹脂への分散性という点から、分散媒としてテトラ ヒドロフラン (以下 THFと、う)を用いた場合にぉ 、て、下記式を満たすことが好まし い。
表面未処理無機物の粒径分布の標準偏差 (A )とカルポジイミド基含有有機層を備
1
えた無機物の粒径分布の標準偏差 (A )との関係が、 (A ) / (A )≤1. 0である。
2 2 1
[0056] また、同じく充填材の有機溶媒または有機樹脂への分散性の観点から、本発明の 基板用充填材は分散媒として THFを用いた場合において、下記式を満たすことが 好ましい。
表面未処理無機物の体積平均粒子径 (M )と、カルポジイミド基含有有機層を備え
1
た無機物の体積平均粒子径 (M )との関係が、(M である。
2 2 )Z(M )≤1.0
1
[0057] さらに、充填材の親油性、基板成形時の有機榭脂に対する分散性、成形後の物理 的性質等の観点から、本発明の基板用充填材は、分散媒として pH7の水を用いた 場合において、下記式を満たすことが好ましい。
表面未処理無機物の粒径分布の標準偏差 (A )と、カルポジイミド基含有有機層を
3
備えた無機物の粒径分布の標準偏差 (A)との関係が、 (A)/(A)>1.0である。
4 4 3
さらに好ましくは、基板成形時の有機榭脂に対する分散性、成形後の物理的性質 等を考慮すると、 (A)/(A)>1.5でぁり、最適は(八)
4 3 47(八)>1.8である。
3
[0058] また、同じく充填材の親油性、基板成形時の有機榭脂に対する分散性、成形後の 物理的性質等の観点から、本発明の基板用充填材は、分散媒として pH7の水を用 V、た場合にぉ 、て、下記式を満たすことが好ま 、。
表面未処理無機物の平均粒子径 (M )と、カルポジイミド基含有有機層を備えた無
3
機物の平均粒子径 (M )との関係が、(M
4 4 )Z(M ) >1.0である。
3
さらに好ましくは、基板成形時の有機榭脂に対する分散性、成形後の物理的性質 等を考慮すると、 (M)/(M)>1.2であり、最適は (M
4 3 4 )Z(M ) >1.5である。
3
さらに、充填材の親油性を考慮すると、本発明の基板用充填材は、分散媒として p H7の水を用いた場合にぉ 、て、下記式を満たすことが好まし!/、。
表面未処理無機物のゼータ電位の値 (Z )と、カルポジイミド基含有有機層を備えた
1
無機物のゼータ電位の値 (z)とが、 I (z) I / I (z)
2 1 2 I >1.0である。
[0059] 以上における体積平均粒子径は、レーザー回折'散乱式や、動的光散乱式の粒度 分析計による測定値であり、より詳しくは、 THFまたは pH7の水に無機物を添加して これを分散させて調製した、使用する粒度分析計で測定可能な濃度の試料を用いて 測定した値である。
ここで、標準偏差は、測定した粒度分布の分布幅の目安となるもので以下の式によ り計算した値である。
標準偏差 = (d84%-dl6%)/2 d84%:累積カーブが 84%となる点の体積平均粒子径 (マイクロメートル) dl6% :累積カーブが 16%となる点の体積平均粒子径 (マイクロメートル) ゼータ電位の値は、 pH7の水に 0. 1質量%になるように無機物を添加し、超音波 分散機で 15分間分散させた後、ゼータサイザ一ナノ (シスメッタス (株)製)により測定 した値である。
なお、「表面未処理無機物」とは、カルポジイミド基含有有機層を有しないだけでな く、その他の表面修飾がなされて 、な 、(表面処理剤で処理されて!、な 、)無機物を 意味する。また、表面未処理無機物およびカルポジイミド基含有有機層を備えた無 機物を構成するそれぞれの無機物は同一のものである。
[0060] 以下、本発明の基板用充填材の製造方法について説明する。
本発明におけるカルポジイミド基含有有機層は、カルポジイミド基含有ィ匕合物のみ からなる層、カルポジイミド基を含有しな ヽ有機化合物からなる層に対してカルボジィ ミド基を付与した層のどちらでもよい。
ここで、「カルポジイミド基を含有しな 、有機化合物からなる層に対してカルポジイミ ド基を付与した層」とは、カルポジイミド基を含有しない有機層に、グラフト的にカルボ ジイミド基含有ィ匕合物を結合させてなる層、またはカルポジイミド基を含有しない有機 物とカルポジイミド基含有ィ匕合物との共重合体層などを意味する。
[0061] 本発明にお ヽて、上記カルポジイミド基含有ィ匕合物カゝらなる有機層を無機物表面 に形成する場合は、無機物自体に存在する官能基、または表面電荷、イオン成分と 、カルポジイミド基含有ィ匕合物とを直接または間接的に共有結合、水素結合、配位 結合、イオン結合等の化学結合より結合させればよい。
無機物とカルポジイミド基含有ィ匕合物との反応は、結合の種類に応じて公知の手法 力も適宜選択すればよい。例えば、重合により予め上記式 (I) , (1) , (2)で示される 化合物や、式 (3) ,式 (4)の繰り返し単位を含む (共)重合体を調製し、これらを無機 物表面へ化学結合させる方法を挙げることができる。無機物表面とカルポジイミド基 含有ィ匕合物の化学結合としては、共有結合、水素結合、配位結合等が挙げられる。 なお、無機物とカルポジイミド基含有ィ匕合物との結合反応としては、例えば、脱水反 応、置換反応、付加反応、吸着反応、縮合反応等を用いることができる。特に、無機 物と有機成分が強固な結合を作ることから、共有結合が好ましい。
[0062] 無機物自体が有する官能基を基にして有機層を形成する場合、予め反応性官能 基を持つ化合物で無機物表面を修飾してぉ ヽても良 、。このように表面修飾すること で、無機物とカルポジイミド基含有有機層との結合をより強固にできる。
この反応性官能基としては、例えば、水酸基、アミノ基 (好ましくは 1級または 2級)、 カルボキシル基、チオール基、イソシァネート基、エポキシ基、ウレタン結合、尿素結 合、アミド結合、酸無水物等)、重合性二重結合などが挙げられる。
[0063] これらの反応性官能基を持つ化合物で無機物を修飾する方法としては、公知の種 々の方法を採用できるが、導入する官能基に応じた表面処理剤で処理する方法が 簡便である。
表面処理剤としては、例えば、ォレイン酸等の不飽和脂肪酸、ォレイン酸ナトリウム ,ォレイン酸カルシウム,ォレイン酸カリウム等の不飽和脂肪酸金属塩、不飽和脂肪 酸エステル、不飽和脂肪酸エーテル、界面活性剤、ビニルトリメトキシシラン, 3—アミ ノプロピルトリエトキシシラン, 3—グリシドキシプロピルトリメトキシラン,メタクリロキシメ チルトリメトキシシラン,メタクリロキシプロピルトリメトキシシラン, 3—メルカプトプロピ ルトリメトキシシラン, 3—クロ口プロピルトリメトキシシラン等のシランカップリング剤、チ タンァシレート,チタンアルコラート等のチタネートカップリング剤等が挙げられるが、 これらに限定されるものではない。
なお、式(1) , (2)で示されるカルポジイミド基含有ィ匕合物は、シランカップリング剤 、チタネートカップリング剤と同様の反応性を有する場合もあり、この場合には、無機 物表面を表面処理しなくとも、効率よく無機物表面にカルポジイミド基含有有機層を 形成できると 、う利点を有して 、る。
[0064] 上記カルポジイミド基含有化合物からなる有機層を無機物表面に形成するその他 の方法としては、無機物表面で重合反応を行い、(共)重合体層を形成させる方法が ある。その具体的手法は特に限定されないが、例えば以下のようなものが挙げられる
(a)カルポジイミド基を含む式(3)および Zまたは (4)の繰り返し単位を与える原料 モノマー(並びに必要に応じて式(5)の繰り返し単位を与えるモノマー)の(共)重合 を無機物表面で行って、当該 (共)重合体を無機物表面に化学的に結合させるととも に、(共)重合体鎖をのばし、カルポジイミド基含有有機層を形成する方法。
(b)カルポジイミド基を含まな 、モノマーの(共)重合を無機物表面で行って、当該( 共)重合体と無機物とをィ匕学的に結合させた後、当該 (共)重合体のイソシァネート基 またはカルポジイミド基と反応し得る基とカルポジイミド基含有有機物のイソシァネー ト基またはカルポジイミド基とを反応させて、式(3) , (4)の構成単位を含む、カルボ ジイミド基含有有機層を得る方法。
[0065] (a)の場合は、まず、イソシァネート基またはカルポジイミド基と反応し得る基、およ び重合性官能基を有するモノマーと、例えば、式 (I)のカルポジイミド基含有ィ匕合物と を反応させ、式 (3)および Zまたは (4)の繰り返し単位を与える原料モノマーを調製 する。次に、この原料モノマー(および必要に応じて式(5)の繰り返し単位を与える原 料モノマー)を、無機物の表面で (共)重合させ、この(共)重合体を、無機物表面に 化学結合させるとともに、カルポジイミド基含有ィ匕合物鎖をのばしていくことで、カル ポジイミド基含有有機層を形成する(一般的に grafting fromと呼ばれる方法)。
(b)の場合は、まず、イソシァネート基またはカルポジイミド基と反応し得る基、およ び重合性官能基を有するモノマーを、無機物表面で (共)重合させ、無機物表面に 化学結合させるとともに、ポリマー鎖をのばしてカルポジイミド基を含有しない有機物 層を形成する。次に、この有機物層が有するイソシァネート基またはカルポジイミド基 と反応し得る基と、例えば、式 (I)のカルポジイミドィ匕合物とを反応させることにより、力 ルボジイミド基含有有機層を形成する(一般的に grafting fromとよばれる方法)。
[0066] (共)重合法としては、付加重合、ポリ縮合、水素移動重合、付加縮合などが挙げら れる。
付加重合としては、ラジカル重合、イオン重合、酸化ァ-オン重合、開環重合等が 挙げられ、ポリ縮合としては、脱離重合、脱水素重合、脱窒素重合等が挙げられ、水 素移動重合としては、ポリ付加、重付加、異性化重合、転移重合等が挙げられる。 特に、簡便であるとともに経済的に優れたポリマー製造法であり、種々の高分子の 工業的な合成に多く用いられているという点から、ラジカル重合が好ましい。中でも、 リビングラジカル重合は、まだ汎用的、工業的には使われていないが、容易にポリマ 一の分子量および分子量分布、並びにグラフト密度を制御することができる点におい て有用である。
[0067] 重合条件は特に限定されるものではなぐ使用するモノマー等に応じて公知の種々 の条件を用いればよい。
例えば、無機物表面でラジカル重合を行ってグラフトイ匕する場合を例に挙げると、 無機物上に存在する、あるいは導入された反応性官能基 0. lmolに対し、これと反 応し得る官能基を有するモノマーの量は 1〜300molであり、重合開始剤の使用量 は、通常、 0. O05〜30molである。また、重合温度は、通常、— 20〜1, 000。Cであ り、重合時間は、通常、 0. 2〜72時間である。
なお、重合を行うに際しては、分散剤、安定剤、乳化剤 (界面活性剤)などの各種 添加剤を、必要に応じて重合反応系内に加えることもできる。
[0068] ラジカル重合に用いられる重合開始剤としては、公知のラジカル重合開始剤を使 用できる。代表例としては、過酸化べンゾィル、タメンノヽイド口パーオキサイド、 t—ブ チルノ、イド口パーオキサイド、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモ-ゥム 等の過酸化物、ァゾビスイソブチ口-トリル、ァゾビスメチルブチ口-トリル、ァゾビスィ ソバレロ-トリル等のァゾ系化合物等が挙げられる力 これらに限定されるものではな い。これらは単独で使用してもよいし、 2種類以上を併用してもよい。
[0069] 重合に用いられる溶媒としては、特に限定されるものではなぐ従来、高分子合成 で用いられる一般的な溶媒を用いることができる。
具体例としては、アセトン、メチルェチルケトン、メチルイソブチルケトン、シクロへキ サノン等のケトン類;酢酸ェチル、酢酸ブチル、プロピオン酸ェチル、セロソルブァセ テート等のエステル類;ペンタン、 2—メチルブタン、 n—へキサン、シクロへキサン、 2 ーメチルペンタン、 2, 2—ジメチルブタン、 2, 3—ジメチルブタン、ヘプタン、 n—オタ タン、イソオクタン、 2, 2, 3—トリメチルペンタン、デカン、ノナン、シクロペンタン、メチ ルシクロペンタン、メチルシクロへキサン、ェチルシクロへキサン、 p—メンタン、ジシク 口へキシル、ベンゼン、トルエン、キシレン、ェチルベンゼン、ァニソール(メトキシベン ゼン)等の脂肪族または芳香族炭化水素類;四塩ィ匕炭素、トリクロロエチレン、クロ口 ベンゼン、テトラブロムエタン等のハロゲン化炭化水素類;ェチルエーテル、ジメチル エーテル、トリオキサン、テトラヒドロフラン等のエーテル類;メチラール、ジェチルァセ タール等のァセタール類などが挙げられる力 これらに限定されるものではない。こ れらは単独で使用してもょ 、し、 2種類以上を併用してもょ 、。
また、本発明においては、イオン液体を反応溶媒として用いることもできる。イオン 液体を用いることで、製造時間の短縮ィ匕を図ることができるとともに、有機溶媒の使用 量をゼロまたは極少量に抑えることができ、し力もイオン液体は、再利用可能であるた め、環境適応性、安全性を高めることもできる。さら〖こ、上述した重合反応をイオン液 体中で行えば、カルポジイミド基含有有機層の厚みをより一層向上でき、有機榭脂中 での分散性により優れた基板用充填材を得ることができる。
なお、イオン液体とは、液状の塩、特に、常温付近で液体となる塩の総称であり、ィ オンのみ力 なる溶媒である。
[0070] 本発明におけるイオン液体としては、特に限定されるものではな 、が、イオン液体を 構成するカチオン力 アンモ-ゥムカチオン、イミダゾリウムカチオンおよびピリジ-ゥ ムカチオン力も選ばれる少なくとも 1種であることが好ましぐ中でも、アンモニゥムカ チオンであることがより好ま U、。
イミダゾリウムカチオンとしては、特に限定はなぐ例えば、ジアルキルイミダゾリゥム カチオン、トリアルキルイミダゾリウムカチオン等が挙げられ、具体的には、 1 ェチル 3—メチルイミダゾリゥムイオン、 1ーブチルー 3—メチルイミダゾリゥムイオン、 1, 2, 3 トリメチルイミダゾリゥムイオン、 1, 2 ジメチルー 3 ェチルイミダゾリゥムイオン、 1, 2 ジメチルー 3 プロピルイミダゾリゥムイオン、 1ーブチルー 2, 3 ジメチルイミ ダゾリゥムイオンなどが挙げられる。
上記ピリジニゥムカチオンとしては、特に限定されるものではなぐ例えば、 N プロ ピルピリジ -ゥムイオン、 N ブチルピリジ-ゥムイオン、 1—ブチル—4—メチルピリ ジ -ゥムイオン、 1ーブチルー 2, 4 ジメチルピリジ-ゥムイオンなどが挙げられる。
[0071] アンモ-ゥムカチオンとしては、特に限定されるものではないが、脂肪族または脂環 式 4級アンモニゥムイオンをカチオン成分とするものであることが好ましい。
これらの脂肪族および脂環式 4級アンモ-ゥムイオンとしても、特に限定されるもの ではなぐトリメチルプロピルアンモ-ゥムイオン、トリメチルへキシルアンモ-ゥムィォ ン、テトラペンチルアンモ -ゥムイオン、ジェチルメチル(2—メトキシェチル)アンモ- ゥム、ジェチルメチル(2—メトキシェチル)アンモ-ゥム等の種々の 4級アルキルアン モ -ゥムイオン、 N—ブチルー N—メチルピロリジ -ゥムイオン、 N— (2—メトキシェチ ル) N—メチルピロリジ -ゥムイオンなどが挙げられる。
[0072] 上記イオン液体を構成するァ-オンとしては、特に限定されるものではなぐ例えば 、 BF―、 PF―、 AsF―、 SbF―、 A1C1―、 HSO―、 CIO―、 CH SO―、 CF SO―、 CF C
4 6 6 6 4 4 4 3 3 3 3 3
O一、 (CF SO ) N一、 Cl_、 Br一、 Γ等のァ-オンを用いることができる。
2 3 2 2
好適なイオン液体としては、例えば、ジェチルメチル(2—メトキシェチル)アンモ- ゥム ビス(トリフルォロメタンスルホンイミド)塩、ジェチルメチル(2—メトキシェチル) アンモ-ゥム (テトラフルォロボレート)塩、 N— (2—メトキシェチル) N—メチルビ ロリジ -ゥム ビストリフルォロメタンスルホ二ルイミド塩等が挙げられる力 これらに限 定されるものではない。
[0073] なお、本発明において、イオン液体は、それ単独で使用してもよぐ重合反応溶媒 で例示したような従来用いられて 、る各種溶媒と混合して用いることもできる。
イオン液体と、従来の溶媒とを混合して用いる場合、その混合量は任意であるが、 後処理の簡便性や、環境適応性および安全性などを考慮すると、混合溶媒中にお けるイオン液体の濃度は、 10質量%以上、特に、好ましくは 50質量%以上、より好ま しくは 80〜: L00質量%であることが好適である。
[0074] 上記カルポジイミド基含有化合物からなる有機層を無機物表面に形成するさらに他 の方法としては、無機物表面において、上述した有機イソシァネートイ匕合物を、イソシ ァネートのカルポジイミド化を促進する触媒の存在下で共重合させ、カルポジイミド基 含有有機層を形成する方法や、イソシァネート基またはカルポジイミド基と反応し得る 基を有し、カルポジイミド基を有しない有機物層で覆われた無機物表面で、上述した 有機イソシァネートイ匕合物を、イソシァネートのカルポジイミドィ匕を促進する触媒の存 在下で重合させ、カルポジイミド基含有有機層を形成する方法が挙げられる。
[0075] 本発明の基板用充填材において、カルポジイミド基含有有機層は、無機物に対し て少なくとも 0. 1質量%以上存在することが好ましい。特に、基板用充填材の有機榭 脂中での分散性、並びに得られた基板の電気的性質および機械的性質を考慮する と、より好ましくは 0. 3質量%以上、更に好ましくは 0. 5質量%以上、最適は 1. 0質 量%以上である。
なお、カルポジイミド基含有有機層の質量%は、密度計 (アキュビック 1330、(株) 島津製作所製:ヘリウム雰囲気下)による密度の測定値から、基板用充填材 lcm3中 の有機層の体積と無機物の体積をそれぞれ求め、それらの値から求めた計算値であ る。
[0076] カルポジイミド基含有有機層の厚みは、特に限定されるものではな 、が、基板用充 填材の有機榭脂中での分散性、並びに得られた基板の電気的性質および機械的性 質を考慮すると、粒子径、カルポジイミド榭脂の種類、被表面積等に依存するため、 一概には言えないが、例えば レベルだと好ましくは平均 lnm以上、より好ましくは 2 nm以上、より一層好ましくは 3nm以上である。なお、カルポジイミド基含有有機層の 厚みは、密度計 (アキュビック 1330、(株)島津製作所製:ヘリウム雰囲気下)による 密度の測定値から、基板用充填材 lcm3中の有機層の体積と無機物の体積および 全表面積を求め、それらの値から求めた計算値である。このときの体積および表面積 は、基板用充填材が真球状であると仮定したものである。
[0077] 本発明の無機一有機複合基板成形材料用組成物を構成する有機榭脂としては、 特に限定されるものではなぐ例えば、ポリエチレン,ポリプロピレン等のポリオレフィ ン系榭脂、ポリスチレン等のポリスチレン系榭脂、ポリ塩ィ匕ビニル,ポリ塩ィ匕ビユリデン 等のポリハロゲンィ匕ビニル誘導体榭脂、ポリ酢酸ビニル等のポリ酢酸ビニル誘導体榭 脂、ポリメタクリル酸メチル等のポリ (メタ)アクリル系榭脂、ポリビュルメチルエーテル, ポリビニルェチルエーテル,ポリビニルイソブチルエーテル等のポリビニルエーテル 類、ポリビニルメチルケトン,ポリビニルへキシルケトン,ポリメチルイソプロぺニルケト ン等のポリビニルケトン類、ポリ N ビニルピロール,ポリ N ビニルカルバゾール,ポ リ N—ビュルインドール,ポリ N—ビュルピロリドン等のポリ N—ビュル化合物、フッ素 系榭脂、ナイロン 6等のポリアミド類、ポリエステル類、ポリカーボネート、シリコーン 、ポリアセタール、ァセチルセルロース等の熱可塑性榭脂;エポキシ榭脂、フエノール 榭脂、尿素樹脂、メラミン榭脂、アルキド榭脂、不飽和ポリエステル榭脂等の熱硬化 性榭脂などが挙げられる。 [0078] 中でも、環境適応性等を考慮すると、ポリスチレン系榭脂、ポリオレフイン系榭脂、 ポリ (メタ)アクリル系榭脂、ポリ酢酸ビニル等のカルボン酸ビニルエステル系榭脂、ェ ポキシ系榭脂を用いることが好まし 、。
基板用充填材と有機樹脂との配合割合は、特に限定されるものではないが、基板 用充填材を配合することによる各種機能性向上効果と物性低下とのバランスを考える と、基板用充填材 (未処理無機物基準):有機樹脂 = 5 : 95 (質量比)〜 90 : 10 (質量 比)であることが好ましぐより好ましくは 10 : 90 (質量比)〜 80 : 20 (質量比)、より一 層好ましくは 15: 85 (質量比)〜85: 15 (質量比)である。
[0079] 組成物の調製は、基板用充填材と有機樹脂とを任意の方法で混合すればよぐ混 合の際の溶媒を用いることもできる。
組成物の調製時に用いる溶媒としては特に限定されるものではなぐ例えば、ァセト ン、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン等のケトン類;酢酸 ェチル、酢酸ブチル、プロピオン酸ェチル、セロソルブアセテート等のエステル類;ぺ ンタン、 2—メチルブタン、 n キサン、シクロへキサン、 2—メチルペンタン、 2, 2 - ジメチルブタン、 2, 3—ジメチルブタン、ヘプタン、 n—オクタン、イソオクタン、 2, 2, 3—トリメチルペンタン、デカン、ノナン、シクロペンタン、メチルシクロペンタン、メチル シクロへキサン、ェチルシクロへキサン、 p—メンタン、ベンゼン、トルエン、キシレン、 ェチルベンゼン等の脂肪族または芳香族炭化水素類;四塩ィ匕炭素、トリクロロェチレ ン、クロ口ベンゼン、テトラブロムエタン等のハロゲン化炭化水素類;ェチルエーテル 、ジメチルエーテル、トリオキサン、テトラヒドロフラン等のエーテル類;メチラール、ジ ェチルァセタール等のァセタール類;ニトロプロペン、ニトロベンゼン、ピリジン、ジメ チルホルムアミド、ジメチルスルホキシド等の硫黄、窒素含有有機化合物類等が挙げ られる。有機樹脂の溶解性、成形性、成形効率等を考慮すると、アセトン、メチルェチ ルケトンメチルイソブチルケトン、シクロへキサノン等のケトン類、トルエン、テトラヒドロ フラン等が最適である。これらは単独で使用してもよいし、 2種類以上を併用してもよ い。
[0080] また、本発明の組成物では、当該組成物 lg中における基板用充填材の総表面積
2、 000cm2 l, 000, 000cm2であること力 S好ましく、より好ましくは 4, 000cm2 600, 000cm2であり、より一層好まし <は 10, OOOcm2〜500, 000cm2であり、組成 物の成形性や物理的性質等を考慮すると最適は 13, OOOcm2〜300, 000cm2であ る。
ここでの総表面積とは、有機樹脂に添加した全ての基板用充填材の表面積を足し た理論値を示す。なお、表面積は、基板用充填材が真球状であると仮定したもので あり、粒子径は体積平均粒子径である。
本発明の基板用充填材は、有機榭脂および有機溶媒中での分散性に優れており 、しかも有機榭脂中に高充填した場合でも、得られる成形品の電気的性質、機械的 性質、耐熱性、および吸水性の低下を招来しないため、組成物中に 15質量%以上、 総被表面積 2, 000cm2 (組成物 lg中)以上という高割合で配合することができる。
[0081] さらに、本発明の無機一有機複合基板成形材料用組成物は、低熱膨張率であるこ とが好ましい。また、以下に示す各特性(1)〜(6)を有するものであることが好ましい 。なお、以下(1)〜(3)において、両組成物を構成する有機榭脂は同一である。本発 明における組成物とは、基板用充填材と有機樹脂とを単に混合してなる混合未定形 状態の組成物に加え、この組成物を成形してなる成形物をも包含する概念である。
[0082] (1)無機一有機複合基板成形材料用組成物の誘電率と、この無機一有機複合基板 成形材料用組成物中の基板用充填材に代えて有機層を有しない無機物を無機物 基準で同量添加した組成物 (未処理無機物添加組成物)の誘電率とが、無機一有機 複合基板成形材料用組成物の誘電率 Z未処理無機物添加組成物の誘電率 < 1. 0 、好ましくは 0. 99を満たす。
この誘電率の比が 1. 0以上であると、無機物表面に形成したカルポジイミド含有有 機層による誘電率増大防止効果が不充分となる。
なお、誘電率は、誘電率測定装置 (4291Bインピーダンス ·マテリアル 'アナライザ 、アジレント'テクノロジ一社製)を用い、周波数 1GHzで測定した値である。
[0083] (2)無機一有機複合基板成形材料用組成物の弾性率と、この無機一有機複合基板 成形材料用組成物中の基板用充填材に代えて有機層を有しない無機物を無機物 基準で同量添加した組成物 (未処理無機物添加組成物)の弾性率とが、無機一有機 複合基板成形材料用組成物の弾性率 Z未処理無機物添加組成物の弾性率 > 1. 1 0、好ましくは 1. 20を満たす。
この弾性率の比が 1. 10以下であると、当該組成物を成形してなる成形物の機械的 強度が弱くなる場合がある。なお、この理由は、有機榭脂に対する基板用充填材の 分散性が不充分となる結果であると推測される。
なお、弾性率は、熱分析レオロジーシステム(EXTAR600、セイコーインスツルメン ト (株)製)を用い、室温で測定した値である。
[0084] (3)無機一有機複合基板成形材料用組成物の折り曲げ応力と、この無機一有機複 合基板成形材料用組成物中の基板用充填材に代えて有機層を有しない無機物を 無機物基準で同量添加した組成物 (未処理無機物添加組成物)の折り曲げ応力とが 、無機一有機複合基板成形材料用組成物の折り曲げ応力 Z未処理無機物添加組 成物の折り曲げ応力 > 1. 0、好ましくは 1. 1を満たす。
この折り曲げ応力の比が 1. 0以下であると、当該組成物を成形してなる成形物の機 械的強度が弱くなる場合がある。なお、この理由は、有機榭脂に対する基板用充填 材の分散性が不充分であることや基板用充填材と有機樹脂との密着性が低いことで 起こる結果であると推測される。
[0085] 本発明の基板用充填材および無機一有機複合基板成形材料用組成物の用途とし ては、特に限定されないが、電子材料分野、建築材料分野、自動車材料分野などの 各種機能性が必要とされる材料に好適に用いることができる。
主に電子材料分野ではプリント配線材料や封止材、アンダーフィル、 LTCC等に使 われている。これらは、大型コンピュータ、自動車用電子機器、情報 ·通信システム機 、キャパシター内蔵基板、携帯電話、 AV機器、 OA機器、半導体パッケージ、デジタ ル放送受信機、基地局パワーアンプ、車載用金属基板 (電動パワーステアリング用 基板)、計測機器、コンデンサ、サーバ、ルータ等のネットワーク機器等や、半導体パ ッケージやアンダーフィル等の封止材、 LTCC、電線被覆材料などに応用される。 実施例
[0086] 以下、合成例、実施例および比較例を挙げて、本発明をより具体的に説明するが、 本発明は、下記の実施例に限定されるものではない。
[0087] [1]カルポジイミド基含有化合物の合成 [合成例 1]
300mLの三つ口フラスコに、 1, 3—ビス(1—イソシアナ一トー 1—メチルェチル) ベンゼン (武田薬品 (株)製、以下 TMXDIと略す) 100gを入れ、触媒として 1—フエ -ル— 2—ホスホレン— 1—ォキシド (触媒、以下 p— catと略す) 2. Ogを添加し、窒 素パブリング下、 180°Cで 40時間攪拌した。得られたポリカルポジイミドィ匕合物をトル ェン(関東ィ匕学製) 50gで希釈した。得られたポリカルポジイミドィ匕合物の重合度は約 75であった。
[0088] [合成例 2]
合成例 1で得られたポリカルポジイミドィ匕合物を、 0°Cに冷却し、攪拌しながら 3—ァ ミノプロピルトリエトキシシラン (シランカップリング剤、チッソ (株)製) 2. 5gをゆっくりと 滴下した。窒素雰囲気下、 0°Cで 12時間反応させた後、 IRスペクトルでポリカルポジ イミドィ匕合物のイソシァネート基のピークが消えたことを確認し、反応を停止した。
[0089] [合成例 3]
300mLの三つ口フラスコに、 4, 4,一ジシクロメタンジイソシァネート(バイエル製、 以下 HMDIと示す) 100gを入れ、触媒として p— catO. 5gを添カ卩し、窒素雰囲気下 、 180°Cで 10時間反応させた。得られたポリカルポジイミドィ匕合物の重合度は約 4で めつに。
続いて、得られたカルポジイミドィ匕合物 10. Ogにアミノスチレン (和光純薬工業 (株) 製) 1. 3g、 n—ドデシルァミン (和光純薬工業 (株)製) 2. Ogを、窒素雰囲気下、 0°C で 5時間反応させた。
[0090] [2]基板用充填材 (カルポジイミド基含有有機層を有する無機物粒子)
[実施例 1]
100mlの三つ口フラスコ中で酢酸ブチルカルビトール(関東化学 (株)製) 20. Og に体積平均粒子径 1. O /z mのシリカ粒子 (アドマファイン、アドマテック (株)製) 10. 0 gをよく分散させた。続いて、合成例 2で得られた化合物を 1. Og添加し、 65°Cで 15 時間攪拌した。その後、シリカ粒子と結合していない合成例 2で得られた化合物を取 り除くためにシリカ粒子を THF (和光純薬工業 (株)製)で洗浄、吸引ろ過を 2回繰り 返した。洗浄後、この粒子の IR ^ベクトルを FT— IR8900 ( (株)島津製作所製)で測 定したところ、 2, 200cm 1付近にカルポジイミド基の吸収が現れたことから、合成例 2 で得られたィ匕合物が、シリカ粒子上に化学結合されたことが確認された。
なお、上記体積平均粒子径は、粒度分析計(MICROTRAC HRA 9320— XI 00、 日機装 (株)製)により測定した値である。
[0091] [実施例 2]
100mlの三つ口フラスコ中で酢酸ブチルカルビトール(関東化学 (株)製) 20. Og に体積平均粒子径 1. のシリカ粒子 (アドマファイン) 10. Ogをよく分散させた。 続いて、 3—ァミノプロピルトリエトキシシラン (シランカップリング剤、チッソ (株)製) 0. 03gを添カ卩し、 65°Cで 30分間攪拌した。その後、 2, 4—ジイソシアナトトルエン (武 田薬品 (株)製、以下 TDIと略す) 0. 5gを添加し、 65°Cでさらに 1時間攪拌した後、 p -catO. 02gと末端封止剤として n—ドデシルアルコール(関東ィ匕学 (製)) 0. 12gを 添加し、 70°Cで約 15時間加熱した。
反応終了後、未反応モノマー、シリカ粒子と化学結合していないカルポジイミド化合 物を除くため、シリカ粒子を THFで洗浄、吸引ろ過を 4回繰り返した。洗浄後、この粒 子の IR ^ベクトルを FT— IR8900 ( (株)島津製作所製)で測定したところ、 2, 200c m 1付近にカルポジイミド基由来の吸収が現れたことから、ポリカルポジイミドィ匕合物 力 シリカ粒子上に化学結合されたことを確認した。
[0092] [実施例 3]
100mlの三つ口フラスコ中で酢酸ブチルカルビトール 20. Ogに体積平均粒子径 1 . のシリカ粒子(アドマファイン) 10. Ogをよく分散させた溶液に、 3—メタクリロ キシプロピルトリエトキシシラン (シランカップリング剤、チッソ (株)製) 0. 12gを添加し 、 65°Cで 30分間反応させた。その後、スチレン(関東ィ匕学 (製)) 7. 6g、メタクリル酸( 関東化学 (製)) 0. 4g、開始剤としてァゾビスイソプチ口-トリル (関東ィ匕学 (製) 0. 08 gを添加し、 70°Cで 15時間反応させた。
反応終了後、未反応モノマー、シリカ粒子と結合していないポリマーを取り除くため 、シリカ粒子を THFで洗浄、吸引ろ過を 4回繰り返した。洗浄後、この粒子の IRスぺ タトルを FT— IR8900 ( (株)島津製作所製)で測定したところ、 1, 720cm 1付近に力 ルボン酸由来のピークと 700cm 1付近にベンゼン環由来の吸収が見られたことから、 メタクリル酸とスチレンの共重合ポリマー力 シリカ粒子上に化学結合されたことを確 した 0
[0093] 引き続き、 50mL三つ口フラスコ中でシクロへキサノン(大伸化学工業 (製)) 20gに 上で調製したシリカ微粒子 10gをよく分散させた溶液に、 TDIO. 3gを添加し 65°Cで 1時間、攪拌した。後触媒として p— catO. 6mgと末端封止剤として n—ドデシルアル コール 0. 12gを添加し、 70°Cで 15時間反応させた。反応終了後、未反応モノマー を取り除くため、シリカ粒子を THFで洗浄、吸引ろ過を 4回繰り返した。洗浄後、この 粒子の IR ^ベクトルを再び測定したところ 2, 200cm 1付近にカルボジイミド化合物の カルポジイミド基の吸収が新たに現れたことから、 TDI由来のカルポジイミドィ匕合物が 、メタクリル酸とスチレンとの共重合ポリマー中のカルボキシル基と反応し、スチレン一 メタクリル酸共重合体にグラフト化されたことが確認された。
[0094] [実施例 4]
100mlの三つ口フラスコ中で酢酸ブチルカルビトール 20. Ogに体積平均粒子径 1 . のシリカ粒子(アドマファイン) 10. Ogをよく分散させた溶液に、 3—メタクリロ キシプロピルトリエトキシシラン (シランカップリング剤、チッソ (株)製) 0. 12gを添加し 、 65°Cで 30分間反応させた。その後、スチレン (関東ィ匕学 (製)) 7. 6g、合成例 3で 合成した化合物(関東ィ匕学 (製)) 4. 6g、開始剤としてァゾビスイソプチ口-トリル (関 東ィ匕学 (製) 0. 08gを添加し、 70°Cで 15時間反応させた。
反応終了後、未反応モノマー、シリカ粒子と化学結合していないポリマーを取り除く ため、シリカ粒子を THFで洗浄、吸引ろ過を 4回繰り返した。洗浄後、この粒子の IR スペクトルを FT— IR8900 ( (株)島津製作所製)で測定したところ、 1, 720cm 1付近 にカルボン酸由来の吸収力、 700cm— 1付近にベンゼン環由来の吸収力、 2, 200cm
1付近にカルポジイミド基由来の吸収が現れたことから、カルポジイミド基を含有する ポリマー層力 シリカ粒子上に形成されたことが確認された。
[0095] [実施例 5]
100mlの三つ口フラスコ中で酢酸ブチルカルビトール(関東化学 (株)製) 20. 0g に体積平均粒子径 1. のシリカ粒子 (アドマファイン) 10. 0gをよく分散させた溶 液に、ジフエ-ルメタン— 4, 4—ジイソシァナート (ダウンケミカル日本 (株)製、以下 MDIと略す) 1. 5g、 p-catO. 04g、および末端封止剤としてフエ-ルイソシァネート (東京化成工業 (株)製) 0. 2gを添加し、 100°Cで約 3時間加熱した。
反応終了後、未反応モノマー、シリカ粒子と化学結合していないポリマーを取り除く ため、シリカ粒子をメチルェチルケトン (三洋化成 (株)製、以下、 MEKという)で洗浄 した。洗浄後、この粒子の IR ^ベクトルを FT— IR8900 ( (株)島津製作所製)で測定 したところ、 2, 200cm 1付近にカルボジイミド基由来の吸収が現れたことから、カルボ ジイミド基を含有するポリマー層が、シリカ粒子上に形成されたことが確認された。
[0096] [実施例 6]
500mlの三つ口フラスコ中でメチルェチルケトン 300. 0gに体積平均粒子径 40η mのシリカ粒子 (電気化学 (株)製) 10. 0gをよく分散させた溶液に、 MDI 1. 5g、 p -catO. 04g、および末端封止剤としてフエ-ルイソシァネート (東京化成工業 (株) 製) 0. 2gを添加し、 100°Cで約 3時間加熱した。
反応終了後、未反応モノマー、シリカ粒子と化学結合していないポリマーを取り除く ため、シリカ粒子を MEKで洗浄した。洗浄後、この粒子の IRスペクトルを FT—IR89 00 ( (株)島津製作所製)で測定したところ、 2, 200cm 1付近にカルポジイミド基由来 の吸収が現れたことから、カルポジイミド基を含有するポリマー層力 シリカ粒子上に 形成されたことが確認された。
なお、上記体積平均粒子径は、粒度分析計 (MICROTRAC UPA 9340、 日機 装 (株)製)により測定した値である。
[0097] [実施例 7]
500mlの三つ口フラスコ中でメチルェチルケトン 300. 0gに体積平均粒子径 40η mのシリカ粒子 (電気化学工業 (株)製) 10. 0gをよく分散させた溶液に、合成例 2で 得られた化合物を 1. 0g添加し、 65°Cで 15時間攪拌した。
反応終了後、未反応モノマー、シリカ粒子と化学結合していないポリマーを取り除く ため、シリカ粒子を MEKで洗浄した。洗浄後、この粒子の IRスペクトルを FT—IR89 00 ( (株)島津製作所製)で測定したところ、 2, 200cm 1付近にカルポジイミド基由来 の吸収が現れたことから、カルポジイミド基を含有するポリマー層力 シリカ粒子上に 形成されたことが確認された。 [0098] [比較例 1]
100mlのナスフラスコ中で酢酸ブチルカルビトール 20. Ogに体積平均粒子径 1. 0 /z mのシリカ粒子(アドマファイン) 10. Ogをよく分散させた。続いて、 3 ァミノプロピ ルトリエトキシシラン (シランカップリング剤、チッソ (株)製) 0. 03gを添加し、 65°Cで 3 0分間攪拌した。
反応終了後、シリカ粒子と結合していないシランカップリング剤を除くため、シリカ粒 子を THFで洗浄、吸引ろ過を 2回繰り返した。
[0099] [比較例 2]
100mlのナスフラスコ中で酢酸ブチルカルビトール 100. Ogに体積平均粒子径 40 nmのシリカ粒子 (電気化学工業 (株)製) 10. Ogをよく分散させた。続いて、グリシド ン (株)製) 0. 03gを添加し、 65°Cで 30分間攪拌した。
反応終了後、シリカ粒子と結合していないシランカップリング剤を除くため、シリカ粒 子を THFで洗浄した。
[0100] 実施例 1〜7および比較例 1, 2で得られたシリカ粒子の表面有機層の厚み、および 表面有機層を形成するポリマーの重量平均分子量 (Mw)を下記手法により求めた。 結果を併せて表 1に示す。
[0101] 〈重量平均分子量測定方法〉
下記装置および条件にてゲル濾過クロマトグラフィー (GPC)で測定した。
沏 I ィ牛
GPC測定装置: C—R7A、(株)島津製作所製
検出器:紫外分光光度計検出器 (SPD— 6A)、(株)島津製作所製
ポンプ:分子量分布測定装置ポンプ (LC 6AD)、(株)島津製作所製
使用カラム: Shodex KF804L (昭和電工 (株)製) 2本、 Shodex KF806 (昭和 電工 (株)製) 1本の計 3本を直列につないだもの
使用溶媒:テトラヒドロフラン
測定温度: 40°C
[0102] 〈ポリマー層の厚み測定方法〉 密度計 (アキュビック 1330、(株)島津製作所製:ヘリウム雰囲気下)により実施例 1 〜7、および比較例 1, 2の各シリカ粒子の密度を求め、反応前のシリカ粒子密度の 値カゝら有機層を有する無機物 lcm3中のポリマー層の体積と、無機物の体積および 全表面積とを求めた。これらの値を用い、ポリマー層の厚みを計算により求めた。な お、このときシリカ粒子は真球状であると仮定して体積および全表面積を求めた。
[0103] [表 1]
Figure imgf000041_0001
(表 1中「0*」とは、計算の結果、厚みがほぼ Onmであることを意味する。 )
[0104] 〈分散性試験:粘度〉
実施例 1で合成したシリカ粒子 4. 61g、実施例 2で合成したシリカ粒子 4. 56g、実 施例 3で合成したシリカ粒子 4. 57g、実施例 4で合成したシリカ粒子 4. 57g、実施例 5で合成したシリカ粒子 4. 56g、比較例 1で合成したシリカ粒子 4. 50g、未処理シリ 力粒子 (アドマファイン) 4. 50g (比較例 3)をトルエン(関東ィ匕学 (製)) 4. 50g中にそ れぞれ分散させた。また、未処理シリカ粒子 (アドマファイン) 4. 50g、比較例 1で合 成したシリカ 4. 50gそれぞれに、合成例 1で得られた化合物を実施例 1のシリカ粒子 に結合させたカルボジイミド榭脂と同量の 0. l lg添カ卩し、これを同様にトルエン 4. 5 Og中に分散させた (比較例 4, 5)。
実施例 6で合成したシリカ粒子 4. 66g、実施例 7で合成したシリカ粒子 4. 72g、比 較例 2で合成したシリカ粒子 4. 5g、未処理シリカ粒子 4. 5g (比較例 6)を MEKlOg 中に分散させた。なお、各シリカ粒子の添加量は、上記の計算方法と同様に、それぞ れに含まれるバージンのシリカ粒子が等量になるようにした。 これらのサンプルの 30°Cにおける粘度を、デジタルレオメーター形式 DV—III (BR OCKFELD製)により測定した。結果を表 2に示す。
[0105] [表 2]
Figure imgf000042_0001
◎:実施例 1〜5は比較例 3に比べ、実施例 6〜7は比較例 6に比べ粘度が低ぐ有 機溶媒との親和性が高い
〇:実施例 1〜5は比較例 3に比べ、実施例 6〜7は比較例 6に比べ粘度がやや低く 、有機溶媒との親和性がやや高い
△:実施例 1〜5は比較例 3に比べ、実施例 6〜7は比較例 6に比べ粘度がやや高く 、有機溶媒との親和性がやや低い
X:実施例 1〜5は比較例 3に比べ、実施例 6〜7は比較例 6に比べ粘度がかなり高く 、有機溶媒との親和性が低い
[0106] 表 2に示されるように、実施例 1〜7で得られたシリカ粒子は、トルエンまたは MEK 中での分散性に優れていることがわかる。特に、実施例 1と比較例 4の結果から、シリ 力粒子に対するカルポジイミド基を有する有機物が同量含まれていても、無機物表 面にカルポジイミド基含有有機物が化学結合して 、な 、場合、トルエン中での分散 性が著しく劣ることがわかる。
[0107] 〈分散性試験:粒度分布〉
実施例 1〜7、比較例 1 , 2, 3, 6のシリカ粒子を THFと pH7の水それぞれに分散さ せた試料を予め調製し、これを用いて体積平均粒子径および標準偏差を求めた。 具体的には、まず上記実施例 1〜7、比較例 1 , 2, 3, 6のシリカ粒子を、 THFと pH 7の水 10質量%になるように添加し、超音波分散機(ウルトラタラックス T18、日本 精機製作所 (株)製)で 30分間分散させた。
その後、粒度分析計〔MICROTRAC HRA 9320—X100 (測定範囲 0. 7 〜 700 μ ) , MICROTRAC UPA 9340 (測定範囲 3. 2nm〜6. 54 μ )日機装(株) 製〕により体積平均粒子径を測定した。ここで、実施例 1〜5、比較例 1 , 3は、 MICR OTRAC HRA 9320— X100により、実施例 6, 7、比較例 2, 6は、 MICROTRA C UPA 9340により測定した。体積平均粒子径と標準偏差を表 3に示す。
また、実施例 1〜5の THF中の粒子径 (Μ2) ,標準偏差 (Α2)および水中の粒子径 (Μ4) ,標準偏差 (Α4)を、それぞれ比較例 3の THF中の粒子径 (Ml) ,標準偏差( A1)および水中の粒子径 (M3) ,標準偏差 (A3)で割った値、実施例 6, 7の THF中 の粒子径 (M2) ,標準偏差 (A2)および水中の粒子径 (M4) ,標準偏差 (A4)を、そ れぞれ比較例 6の THF中の粒子径 (Ml) ,標準偏差 (A1)および水中の粒子径 (M 3) ,標準偏差 (A3)で割った値も表 3に併せて示す。
なお、標準偏差は測定した粒度分布の分布幅の目安となるもので以下の式により 計算した値である。
標準偏差 = (d84% - dl6%) /2
d84%:累積カーブが 84%となる点の体積平均粒子径 (マイクロメートル) dl6% :累積カーブが 16%となる点の体積平均粒子径 (マイクロメートル) [0108] [表 3] THF 水
体積平均粒子径 体積平均粒子径
標準偏差 (Μ2)/(Μ1) (Α¾/(Α1) 標準偏差 (M4)/(M3) (A4)/(A3)
( m) ( μ m)
実施例 1 0.94 0.40 0.13 0.68 19. L 8.98 21.95 24.94 実施例 2 ί .05 0.45 0.14 0.76 2.05 0.83 2.36 2.31 実施例 3 0.98 0.43 0.13 0.73 20.0 9.05 22.99 25. 13 実施例 4 ί .03 0.45 0.14 0.76 19.0 8.90 2 L84 24.72 実施例 5 0.87 0.38 0, 12 0.64 LSO 0.78 2.06 2, 17 実施例 e 0.05 0.03 0,36 0.60 0.92 0.81 7,08 5.78 実施例 7 0.05 0.03 0.36 0.60 2.86 1.18 22.00 8.43 比較例 1 2.10 0.50 1.50 0.40
比較例 2 0.10 0.05 0.50 0.85
比較例 3 7.31 0.59 0 ,87 0.36
比較例 6 0.14 0.05 0.13 0.14
[0109] 実施例 1〜7、比較例 1, 2, 3, 6のシリカ粒子を THFに 30質量%になるように添加 した以外は同様の操作をし、体積平均粒子径および標準偏差を測定し、さらに下記 式で求められる体積平均粒子径比を求めた。結果を表 4に示す。
体積平均粒子径比 (30)
= 30質量%添加時の体積平均粒子径 Z10質量%添加時の体積平均粒子径
[0110] [表 4]
Figure imgf000044_0001
[0111] 実施例 1〜7、比較例 1, 2, 3, 6のシリカ粒子を THFに 50質量%になるように添加 した以外は同様の操作をし、体積平均粒子径および標準偏差を測定し、さらに下記 式で求められる体積平均粒子径比を求めた。結果を表 5に示す。
体積平均粒子径比 (50)
= 50質量%添加時の体積平均粒子径 Z10質量%添加時の体積平均粒子径
[0112] [表 5]
Figure imgf000045_0001
測定不可:粒子が凝集し測定不能
[0113] 実施例 1〜7、比較例 1, 2, 3, 6のシリカ粒子を THFに 60質量%になるように添加 した以外は同様の操作をし、体積平均粒子径および標準偏差を測定し、さらに下記 式で求められる体積平均粒子径比を求めた。結果を表 6に示す。
体積平均粒子径比 (60)
=60質量%添加時の体積平均粒子径 Z10質量%添加時の体積平均粒子径
[0114] [表 6]
THF
体積平均粒子径
標準偏差 体積平均粒子径比(60)
l m)
実施例 1 0.97 0.42 1.03
実施例 2 1.08 0.48 1.02
実施例 3 1.00 0.45 1.02
実施例 4 1.06 0.45 1.03
実施例 5 0.90 0.38 1.03
実施例 6 0.060 0.04 1.20
実施例 7 0.060 0.04 1.20
比較例 1 20.0 15.0 9.52
比較例 2 測疋不可
比較例 3 159 114 21.75
比較例 6 測疋不可
測定不可:粒子が凝集し測定不能
[0115] 以上の表 4〜6に示されるように、本発明の基板用充填材は、分散媒として THFを 用いた場合、 10質量%だけでなぐ 30質量%、 50質量%、更に 60質量%以上添カロ した場合にも、上記した体積平均粒子径、標準偏差等の分散特性を得ることが可能 である。
なお、分散溶媒として MEK、トルエン (三洋化成品 (株)製)を用いた時も 30質量% 、 50質量%、 60質量%以上添加した場合に、 THFと同様の傾向が得られた。
このように高充填分散液が粘度、凝集の増加を抑えて高分散状態で得られることに より、基板成形時の有機榭脂に対する高充填化、成形性、成形後の物理的性質等を 一層向上させられることも本発明の大きな特徴である。
[0116] 〈分散性試験:ゼータ電位〉
実施例 1〜7、比較例 1〜6のシリカ粒子を pH7の水に 0. 1質量%になるように添カロ し、超音波分散機で 15分間分散させた後、ゼータサイザ一ナノ (シスメッタス (株)製) により測定した。結果を表 7に示す。
[0117] [表 7] ゼータ電位
実施例 1 14
実施例 2 20
実施例 3 23
実施例 4 22
実施例 5 25
実施例 6 27
実施例 7 23
比較例 1 30
比較例 2 32
比較例 3 36
比較例 4 36
比較例 5 30
比較例 6 36
[3]無機一有機複合基板成形材料用組成物 (成形体)の作製
[実施例 8〜 14および比較例 7〜 12]
実施例 1で合成したシリカ粒子(実施例 8) 4. 6 lg、実施例 2で合成したシリカ粒子( 実施例 9) 4. 56g、実施例 3で合成したシリカ粒子(実施例 10) 4. 57g、実施例 4で 合成したシリカ粒子(実施例 11) 4. 57g、実施例 5で合成したシリカ粒子(実施例 12) 4. 56g、比較例 1で合成したシリカ粒子 (比較例 7) 4. 50g、未処理シリカ粒子 4. 50 g (比較例 8)をそれぞれ THF4gに分散させたものを、エポキシ榭脂(ェピークロン N — 740、大日本インキ化学工業 (株)製) 3. 60gと、硬化剤(ノバキユア一 HX3722、 旭化成 (株)製) 0. 90gとを混合した榭脂に添加して組成物を調製した。また、未処 理シリカ粒子 4. 50g、比較例 1で合成したシリカ 4. 50gそれぞれに、合成例 1で得ら れたポリカルポジイミドィ匕合物を実施例 1のシリカ粒子に結合させた合成例 1のポリ力 ルボジイミド榭脂と同量の 0. l lg添加し、実施例 8と同様に組成物を調製した (比較 例 9, 10)。
実施例 6で合成したシリカ粒子(実施例 13) 1. 38g、実施例 7で合成したシリカ粒子 (実施例 14) 1. 42g、比較例 2で合成したシリカ粒子 (比較例 11) 1. 35g、未処理シ リカ粒子 (比較例 12) 1. 35gをそれぞれ THF3. 5gに分散させたものを、エポキシ榭 脂 (ェピークロン N— 740、大日本インキ化学工業 (株)製) 3. 60gと、硬化剤 (ノバキ ユア一 HX3722、旭化成 (株)製) 0. 40gとを混合した榭脂に添加して組成物を調製 した。
なお、ここで、各実施例および比較例におけるシリカ粒子の添加量、および比較例 9、 10におけるポリカルポジイミドィ匕合物の添カ卩量は、以下の計算方法に基づいて、 それぞれに含まれるバージンのシリカ粒子の質量が等量になるようにした。
[0119] 龍方法
密度計 (アキュビック 1330、(株)島津製作所製:ヘリウム雰囲気下)を用い、実施例 1〜7で合成したシリカ、未処理シリカ粒子それぞれ 5gの密度を測定した。その結果 、未処理シリカ粒子、実施例 1で表面処理を行ったシリカはそれぞれ 2. 26gZcm3で めつに。
ここで、合成例 2で得られたカルポジイミドィ匕合物の密度は 1. 07gZcm3であり、未 処理シリカの密度は 2. 26g/cm3であるから、 1cm3中の表面層となる合成例 1で得 られたカルポジイミドィ匕合物の体積を Xcm3とすると下記式が成り立ち、 Xは 0. 051c m3となる。
1. 07X+ 2. 26 (1— X) = 2. 20
[0120] したがって、 1cm3中の合成例 2で得られたカルボジイミド化合物の質量は、 0. 051 cm3 X l.
Figure imgf000048_0001
054 (g)であり、未処理シリカ(アドマファイン)の質量は(1 -0. 051) cm3 X 2. 26g/cm3 = 2. 14 (g)である。
よって、上記合成したシリカ粒子のポリマー層は 100 X 0. 054 (g) / (2. 14 (g) + 0. 054) = 2. 46 (質量0 /0)となる。
以上より未処理シリカ、 4. 50gと実施例 1のカルポジイミド基含有有機層を有するシ リカ粒子 4. 61gに含まれるシリカが等量となる。
実施例 2〜7で得られたシリカ粒子のシリカおよびポリマー量も同様の方法で求め たところ、ポリマー量は、実施例 2では 1. 25質量%、実施例 3では 1. 52質量%、実 施例 4では 1. 52質量%、実施例 5では 1. 25質量%、実施例 6では 2. 50質量%、 実施例 7では 4. 92質量%であった。
[0121] 上記実施例 8〜 14および比較例 7〜 12で調製した組成物について、バーコート法 によりフィルムを作製した。これを終夜乾燥させた後、 100°Cで 1時間、さらに 170°C で 0. 5時間熱処理を行って硬化させた。得られた硬化物について、下記特性を評価 した。結果を表 8, 9に示す。なお、硬ィ匕物は、全てについて約 150 μ mと 600 μ mの 2種類の厚みのものを作製した。得られた硬化物について、下記物性を測定'評価し た。
[0122] 〈組成物 (成形品)の成形性および物性評価〉
(1)成形性試験
試験片の大きさ以外 ίお IS K 7104の評価方法に準拠し、上記硬化物(150 m )を下記基準により評価した。
シリカ粒子が充分均一に充填されている、硬化物の表面が滑らか (手触り、目視) △:シリカ粒子が均一に充填されている、硬化物の表面の一部に凹凸がある
X:シリカ粒子が均一に充填されていない、硬化物の表面全体に凹凸がある
[0123] (2)機械的強度試験
上記硬化物( 150 m)の弾性率を熱分析レオロジーシステム(EXTAR600 セィ コーインスツルメント (株)製)を用い、室温で測定した。試験片の大きさは幅 0. 4cm, 長さ 2. 0cmのものを用いた。
◎:比較例 7に比べ大幅に弾性率が向上した (実施例 8〜12、比較例 8〜: L0)
比較例 11に比べ大幅に弾性率が向上した(実施例 13, 14、比較例 12)
△:比較例 7に比べやや弾性率が向上した(実施例 8〜12、比較例 8〜: L0)
比較例 11に比べやや弾性率が向上した (実施例 13, 14、比較例 12)
X:弾性率が向上しな力つた
[0124] (3)誘電率試験
上記硬化物( 150 m)の誘電率を誘電率測定装置 (4291Bインピーダンス ·マテリ アル.アナライザ、アジレント'テクノロジー (株)製)を用い、室温下、周波数 1GHzに て測定した。なお、未処理品のシリカの糸且成物は成形性が悪ぐ誘電率にばらつきが でた。そのため 4箇所の平均値を誘電率として採用した。
〇:比較例 7に比べ誘電率が減少した(実施例 8〜12、比較例 8〜: L0)
比較例 11に比べ誘電率が減少した (実施例 13, 14、比較例 12)
X:誘電率が減少しな力つた (4)折り曲げ試験
上記硬化物(600 μ )を幅 100mm、長さ 4cmに切り取り 3点折り曲げ試験機(マイク 口フォース試験機 インストロン (株)製)により最大点曲げ応力を測定した。
測定条件:ポートスパン 10mm 初期荷重 5g 折り曲げ速度 lOmmZmin ◎:比較例 7に比べ折り曲げ応力が増加した(実施例 8 12、比較例 8〜: L0)
比較例 11に比べ折り曲げ応力が増力 tlした (実施例 13, 14、比較例 12) △:比較例 7に比べ折り曲げ応力がやや増加した(実施例 8 12、比較例 8〜: L0) 比較例 11に比べて折り曲げ応力がやや増力 tlした (実施例 13, 14、比較例 12) X:折り曲げ応力が増加しな力つた、または減少した
[表 8]
Figure imgf000050_0001
上記表 8において、各物性値の比は、実施例 8 12および比較例 8 10について は比較例 7のデータを、実施例 13, 14および比較例 12については比較例 11のデ ータを基準 (分母)として算出した値である。
表 8に示されるように、上記実施例 1 7で得られたカルポジイミド基含有有機層を 有するシリカ粒子を充填材としてなる実施例 8 14の無機—有機複合基板用組成物 は、成形性および物性共に優れた値を示すことがわかる。
一方、実施例 8と比較例 9, 10との結果から、組成物中に含まれるカルポジイミド基 を有する有機物量が同量であっても、無機物表面にカルポジイミド基含有有機物が 結合して!/、な 、と、成形性および物性の向上効果が少な ヽことがわかる。
[0127] (5)絶縁抵抗試験
上記硬化物(150 μ m)の絶縁信頼性を測るため、常態 (温度 20°C、湿度 65%の 恒温恒湿の空気中で 96時間処理)および煮沸処理(100°Cで煮沸中の恒温の水中 に 2時間浸漬処理)後の絶縁抵抗 (M Ω )抵抗を、絶縁抵抗率測定装置 (HP 4339
B ハイ'レジスタンス 'メーター 日本ヒュ一レット'パッカード (株)製)により測定した。 測定条件:電圧 100V (交流電圧)、電流 500 A
〇:絶縁抵抗値 5%未満低下
△:絶縁抵抗値 5%以上 10%未満低下
X:絶縁抵抗値 10%以上低下
[0128] (6)耐熱性試験
上記硬化物(150 μ m)の耐熱性試験を行った。硬化物を 288°Cで 30分間保持し た時の重量減少率を TGZDTAオートサンプラー AST— 2 (セイコーインスツルメン ッ (株)製)により測定した。
〇:重量減少率が比較例 8より少ない(実施例 8〜12、比較例 7, 9, 10)
重量減少率が比較例 12より少ない(実施例 13, 14、比較例 1)
△:重量減少率が比較例 8より 1質量%未満多い(実施例 8〜12、比較例 7, 9, 10) 重量減少率が比較例 12より 3質量%未満多い (実施例 13, 14、比較例 1) このときの重量減少は無機物が添加されて ヽな 、組成物の重量減少から上記硬化 物の重量減少を引 、た値を示す。
[0129] (7)吸水性試験
上記硬化物(600 μ m)を幅 50mm、長さ 100mmに切り取り、 50°Cに保った高温 槽中で試験片を 24時間放置した。その後、デシケーター中で 20°Cまで冷却し、試験 片の重さを量った。
次に 23°Cの蒸留水の容器に 24時間浸してから、取り出し、乾燥した布で水分を充 分ふき取り、 1分以内に吸水後の試験片の重さを量った。
〇:重量増加率が比較例 7未満 (実施例 8〜12、比較例 8〜10) 重量増加率が比較例 11未満 (実施例 13, 14、比較例 12)
X:重量増加率が比較例 7以上(実施例 8〜 12、比較例 8〜: LO)
重量増加率が比較例 11以上 (実施例 13, 14、比較例 12)
[0130] [表 9]
Figure imgf000052_0001
[0131] 表 9に示されるように、上記実施例 1〜7で得られたカルポジイミド基含有有機層を 有するシリカ粒子を充填材としてなる実施例 8〜14の無機—有機複合基板用組成物 は、カルポジイミド榭脂で無機物が覆われて ヽるため耐水性が向上して ヽることがわ かる、また、表面のカルポジイミド基含有有機物が榭脂と強固に結合するため、水分 をトラップするボイドも発生しにくいことから絶縁信頼性が向上していることがわかる。 さら〖こ、無機物表面のカルポジイミド基含有有機物が耐熱性に悪影響を及ぼして ヽ ないことがわ力る。
以上の結果から、カルポジイミド基を含有する有機層を有する無機物は、有機榭脂 および有機溶媒に対して高!、分散性を有し、従来問題となって!/、た物性の低下を抑 制することができる。したがって、物性の低下を防止しつつ、榭脂への高充填が可能 となる。この充填材は、今後、様々な分野での利用が期待されるものである。

Claims

請求の範囲
[1] 無機物と、この無機物表面に化学結合されたカルポジイミド基含有有機層とを備え ることを特徴とする基板用充填材。
[2] 分散媒としてテトラヒドロフランを用いたときの、表面未処理無機物の粒子径分布の 標準偏差 (A )と、前記カルポジイミド基含有有機層を備えた無機物の粒子径分布の
1
標準偏差 (A )が、下記式を満たす請求項 1記載の基板用充填材。
2
(A ) / (A )≤1. 0
2 1
[3] 分散媒としてテトラヒドロフランを用いたときの、表面未処理無機物の体積平均粒子 径 (M )と、前記カルポジイミド基含有有機層を備えた無機物の体積平均粒子径 (M
1 2
)とが、下記式を満たす請求項 1記載の基板用充填材。
(M ) / (M )≤1. 0
2 1
[4] 分散媒として pH7の水を用いたときの、表面未処理無機物の粒子径分布の標準偏 差 (A )と、前記カルポジイミド基含有有機層を備えた無機物の粒子径分布の標準偏
3
差 (A )とが、下記式を満たす請求項 1記載の基板用充填材。
4
(A ) / (A ) > 1. 0
4 3
[5] 分散媒として pH7の水を用いたときの、表面未処理無機物の体積平均粒子径 (M
3
)と、前記カルポジイミド基含有有機層を備えた無機物の体積平均粒子径 (M )とが、
4 下記式を満たす請求項 1記載の基板用充填材。
(M ) / (M ) > 1. 0
4 3
[6] 前記カルポジイミド基含有有機層が、式(1)で示されるカルポジイミド基含有化合物 、および式(2)で示されるカルポジイミド基含有ィ匕合物の少なくとも 1種力 なる請求 項 1記載の基板用充填材。
(X1) Z— [A—(R1— N = C = N) — R1— NCO] (1)
m n 1
(X1) Z— [A—(R1— N = C = N) — R1— A— Z— 2) ] )
m n (X (2
3 1
〔式中、 R1は、イソシァネートイ匕合物からの残基を表し、
X1および X2は、互いに独立して水素原子、ハロゲン原子、不飽和構造を含んでい てもよい炭素数 1〜20アルキル基、炭素数 6〜20ァリール基、炭素数 7〜20ァラル キル基、または炭素数 1〜20アルコキシ基を表し、 X1および X2が複数の場合、それら は互 ヽに同一でもそれぞれ異なって 、てもよく、
Zは、互いに独立してケィ素原子またはチタン原子を表し、
Aは、イソシァネート基由来の結合を含む 2価以上の有機基を表し、
mおよび 1は、 1〜3、かつ、 m+l=4を満たす整数を表し、
nは、 1〜: L00の整数を表す。〕
[7] 前記式(1)で示されるカルポジイミド基含有化合物の末端イソシァネート基の少なく とも 1つが、イソシァネート基と反応性を有する官能基で封止されている請求項 6記載 の基板用充填材。
[8] 前記イソシァネート基と反応性を有する官能基が、水酸基、 1級もしくは 2級ァミノ基 、カルボキシル基、またはチオール基である請求項 7記載の基板用充填材。
[9] 前記カルポジイミド基含有有機層が、親油性である請求項 1〜8のいずれか 1項記 載の基板用充填材。
[10] 前記無機物が、体積平均粒子径 lnm〜100 μ mの粒子である請求項 1〜9のいず れか 1項記載の基板用充填材。
[11] 請求項 1〜10のいずれか 1項記載の基板用充填材と、有機樹脂とを含んで構成さ れることを特徴とする無機 有機複合基板成形材料用組成物。
[12] 前記基板用充填材が、有機榭脂に対して 15質量%以上含まれる請求項 11記載の 無機 有機複合基板成形材料用組成物。
[13] 当該組成物 lg中に含まれる前記基板用充填材の総表面積が 2, OOOcm2以上であ る請求項 11または 12記載の無機一有機複合基板成形材料用組成物。
PCT/JP2006/312400 2005-06-21 2006-06-21 基板用充填材および無機-有機複合基板成形材料用組成物 WO2006137432A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020077029556A KR101336628B1 (ko) 2005-06-21 2006-06-21 기판용 충전재 및 무기-유기 복합 기판 성형재료용 조성물
CN2006800221807A CN101203559B (zh) 2005-06-21 2006-06-21 用于基板的填料和用作无机/有机复合基板形成材料的组合物
JP2007522312A JP5146650B2 (ja) 2005-06-21 2006-06-21 基板用充填材および無機−有機複合基板成形材料用組成物
EP06767059A EP1894967A1 (en) 2005-06-21 2006-06-21 Filler for substrate and composition for use as material for inorganic/organic composite substrate formation
US11/993,350 US20100222477A1 (en) 2005-06-21 2006-06-21 Filler for substrate and composition for use as material for inorganic/organic composite substrate formation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005181018 2005-06-21
JP2005-181018 2005-06-21

Publications (1)

Publication Number Publication Date
WO2006137432A1 true WO2006137432A1 (ja) 2006-12-28

Family

ID=37570460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312400 WO2006137432A1 (ja) 2005-06-21 2006-06-21 基板用充填材および無機-有機複合基板成形材料用組成物

Country Status (7)

Country Link
US (1) US20100222477A1 (ja)
EP (1) EP1894967A1 (ja)
JP (2) JP5146650B2 (ja)
KR (1) KR101336628B1 (ja)
CN (1) CN101203559B (ja)
TW (1) TW200704726A (ja)
WO (1) WO2006137432A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174408A (ja) * 2007-01-17 2008-07-31 National Institute Of Advanced Industrial & Technology セラミックス原料粒子・スラリー・焼結体及びその製造方法
JP2010270317A (ja) * 2009-04-20 2010-12-02 Asahi Kasei Chemicals Corp 樹脂組成物
KR20190079645A (ko) * 2016-11-01 2019-07-05 다이요 홀딩스 가부시키가이샤 프린트 배선판용의 경화성 절연성 조성물, 드라이 필름, 경화물, 프린트 배선판 및 프린트 배선판용의 경화성 절연성 조성물의 제조 방법
JP2021102673A (ja) * 2019-12-24 2021-07-15 大成建設株式会社 水性外装用木材塗料

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449074B (zh) * 2009-05-28 2015-01-28 日清纺控股株式会社 树脂组合物及其制造方法
DE102009053805A1 (de) * 2009-11-18 2011-05-26 Evonik Degussa Gmbh Siliziumschichten aus polymermodifizierten Flüssigsilan-Formulierungen
CN102648094B (zh) * 2009-12-04 2015-04-08 东洋纺织株式会社 易粘接性热塑性树脂膜
KR20170140159A (ko) 2015-01-29 2017-12-20 이머리스 탈크 아메리카, 인코포레이티드 폴리카르보네이트 충전제로서 사용하기 위한 엔지니어드 광물질 및 이것을 폴리카르보네이트의 보강에 사용하는 방법
US10058502B2 (en) 2015-12-31 2018-08-28 L'oreal Nail polish compositions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09290482A (ja) * 1996-04-26 1997-11-11 Tsutsunaka Plast Ind Co Ltd 樹脂強化用ガラス繊維および強化熱可塑性樹脂成形体
JP2005281644A (ja) * 2004-03-31 2005-10-13 Catalysts & Chem Ind Co Ltd 樹脂添加剤、その製造方法および熱可塑性樹脂フィルム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929733A (en) * 1974-10-02 1975-12-30 Upjohn Co Polycarbodiimides from 4,4{40 -methylenebis(phenyl isocyanate) and certain carbocyclic monoisocyanates
JPH05106163A (ja) * 1991-10-11 1993-04-27 Yamaha Corp 炭素繊維ならびにこれを用いた炭素繊維強化熱可塑性樹脂およびプリプレグ
JP3438957B2 (ja) * 1994-08-11 2003-08-18 日清紡績株式会社 補強材用の水性表面処理剤、該水性表面処理剤で処理された補強材及び補強材により強化された複合材
JPH09241479A (ja) * 1996-03-12 1997-09-16 Matsushita Electric Works Ltd 封止用エポキシ樹脂組成物、及び、その製造方法
US7220306B2 (en) * 2002-03-08 2007-05-22 Sakata Ink Corp. Treated pigment, use thereof, and compound for treating pigment
JP4206235B2 (ja) * 2002-08-09 2009-01-07 日清紡績株式会社 カルボジイミド樹脂層を有する複合粒子及びその製造方法
JP2004310050A (ja) * 2003-03-26 2004-11-04 Daicel Chem Ind Ltd マイクロカプセル及びその製造方法
JP2005048035A (ja) * 2003-07-31 2005-02-24 Fimatec Ltd 水酸化マグネシウム系難燃剤及び該難燃剤を含有する樹脂組成物
JP2006117445A (ja) * 2004-10-19 2006-05-11 Hakuto Co Ltd 疎水性シリカ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09290482A (ja) * 1996-04-26 1997-11-11 Tsutsunaka Plast Ind Co Ltd 樹脂強化用ガラス繊維および強化熱可塑性樹脂成形体
JP2005281644A (ja) * 2004-03-31 2005-10-13 Catalysts & Chem Ind Co Ltd 樹脂添加剤、その製造方法および熱可塑性樹脂フィルム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174408A (ja) * 2007-01-17 2008-07-31 National Institute Of Advanced Industrial & Technology セラミックス原料粒子・スラリー・焼結体及びその製造方法
JP2010270317A (ja) * 2009-04-20 2010-12-02 Asahi Kasei Chemicals Corp 樹脂組成物
KR20190079645A (ko) * 2016-11-01 2019-07-05 다이요 홀딩스 가부시키가이샤 프린트 배선판용의 경화성 절연성 조성물, 드라이 필름, 경화물, 프린트 배선판 및 프린트 배선판용의 경화성 절연성 조성물의 제조 방법
JPWO2018084121A1 (ja) * 2016-11-01 2019-09-19 太陽ホールディングス株式会社 プリント配線板用の硬化性絶縁性組成物、ドライフィルム、硬化物、プリント配線板およびプリント配線板用の硬化性絶縁性組成物の製造方法
JP7053485B2 (ja) 2016-11-01 2022-04-12 太陽ホールディングス株式会社 プリント配線板用の硬化性絶縁性組成物、ドライフィルム、硬化物、プリント配線板およびプリント配線板用の硬化性絶縁性組成物の製造方法
KR102608204B1 (ko) * 2016-11-01 2023-11-30 다이요 홀딩스 가부시키가이샤 프린트 배선판용의 경화성 절연성 조성물, 드라이 필름, 경화물, 프린트 배선판 및 프린트 배선판용의 경화성 절연성 조성물의 제조 방법
JP2021102673A (ja) * 2019-12-24 2021-07-15 大成建設株式会社 水性外装用木材塗料
JP7410710B2 (ja) 2019-12-24 2024-01-10 大成建設株式会社 水性外装用木材塗料

Also Published As

Publication number Publication date
KR101336628B1 (ko) 2013-12-04
JP5673632B2 (ja) 2015-02-18
JPWO2006137432A1 (ja) 2009-01-22
CN101203559A (zh) 2008-06-18
TW200704726A (en) 2007-02-01
EP1894967A1 (en) 2008-03-05
CN101203559B (zh) 2012-09-12
JP5146650B2 (ja) 2013-02-20
KR20080028373A (ko) 2008-03-31
JP2012255171A (ja) 2012-12-27
US20100222477A1 (en) 2010-09-02

Similar Documents

Publication Publication Date Title
WO2006137432A1 (ja) 基板用充填材および無機-有機複合基板成形材料用組成物
JP5527377B2 (ja) 難燃剤および無機−有機複合難燃性組成物
KR101128156B1 (ko) 자가결합 코팅 조성물
JP5763527B2 (ja) イミダゾール化合物含有マイクロカプセル化組成物、それを用いた硬化性組成物及びマスターバッチ型硬化剤
CA3164186A1 (en) Thermally conductive polyurethane adhesive composition
EP2799509A1 (en) Insulating adhesive composition for metal-based copper clad laminate (mccl), coated metal plate using same, and method for manufacturing same
EP3564323A1 (en) Surface-treated silica filler and resin composition containing surface-treated silica filler
KR20150118094A (ko) 수지 조성물 및 그의 제조 방법, 고열전도성 수지 성형체
CN112041403B (zh) 使用含聚合物微粒的固化性树脂组合物的粘接方法、及使用该粘接方法得到的层叠体
JP2010053353A (ja) エポキシ樹脂用マイクロカプセル型潜在性硬化剤及びその製造方法、一液性エポキシ樹脂組成物、エポキシ樹脂硬化物、接着剤、接合用フィルム、導電性材料並びに異方導電性材料
CN114206989A (zh) 树脂材料和多层印刷线路板
JP2022063605A (ja) 積層体、多層プリント配線板、積層体の製造方法及び積層体作製キット
WO2010046996A1 (ja) 半導体用接着剤組成物およびそれを用いて製造した半導体装置
JP6822651B2 (ja) シリカフィラーの表面処理方法、それにより得られたシリカフィラー、および、該シリカフィラーを含有する樹脂組成物
KR101606303B1 (ko) 광학재료용 수지 조성물
JP2002194057A (ja) 熱硬化性樹脂組成物
KR20230104970A (ko) 반도체 봉지용 수지 조성물, 언더필, 몰드 수지, 및 반도체 패키지
JP2009067890A (ja) 半導体封止材用充填剤および半導体封止材組成物
JP2021059740A (ja) 表面処理シリカフィラーおよびその製造方法、ならびに表面処理シリカフィラーを含有する樹脂組成物
JP2011082368A (ja) 樹脂組成物及び樹脂組成物を使用して作製した半導体装置
JP2021028368A (ja) 樹脂組成物、樹脂組成物の硬化物、樹脂シート、プリント配線板及び半導体装置
JP2008255312A (ja) 接着剤組成物
WO2023228964A1 (ja) 中空粒子、樹脂組成物、樹脂成形体、封止用樹脂組成物、硬化物、及び半導体装置
EP3597688B1 (en) Thermosetting resin composition
JP2021055108A (ja) シリカフィラーの表面処理方法、それにより得られたシリカフィラー、および、該シリカフィラーを含有する樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680022180.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007522312

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077029556

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006767059

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11993350

Country of ref document: US