WO2006137428A1 - 偏光板用保護フィルム - Google Patents

偏光板用保護フィルム Download PDF

Info

Publication number
WO2006137428A1
WO2006137428A1 PCT/JP2006/312396 JP2006312396W WO2006137428A1 WO 2006137428 A1 WO2006137428 A1 WO 2006137428A1 JP 2006312396 W JP2006312396 W JP 2006312396W WO 2006137428 A1 WO2006137428 A1 WO 2006137428A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
protective film
thermoplastic resin
layer
refractive index
Prior art date
Application number
PCT/JP2006/312396
Other languages
English (en)
French (fr)
Inventor
Masanori Yoshihara
Tetsuya Toyoshima
Kohei Arakawa
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to CN2006800224538A priority Critical patent/CN101203779B/zh
Priority to US11/922,598 priority patent/US9897849B2/en
Priority to KR1020077029758A priority patent/KR101226399B1/ko
Priority to EP06767055.4A priority patent/EP1895336B1/en
Priority to JP2007522310A priority patent/JP5169215B2/ja
Publication of WO2006137428A1 publication Critical patent/WO2006137428A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Definitions

  • the present invention relates to a protective film for a polarizing plate, a polarizing plate, and a liquid crystal display device, and more specifically, a liquid crystal display device that has no visual defect due to light interference such as interference fringes and has excellent scratch resistance. It is related with the protective film for polarizing plates suitable for, a polarizing plate, and this liquid crystal display device. Background art
  • a polarizing plate used in a liquid crystal display device or the like is a laminate comprising a polarizer and a protective film.
  • a polarizer constituting this polarizing plate a film in which iodine or a dichroic dye is adsorbed on a film obtained by solution casting of polyvinyl alcohol and stretched in a boric acid solution is usually used! RU
  • a triacetyl cellulose film is widely used as a protective film constituting the polarizing plate.
  • the triacetyl cellulose film has poor moisture resistance and gas barrier properties, the durability, heat resistance, mechanical strength, etc. of the polarizing plate are insufficient.
  • Patent Document 1 proposes to use a laminated film composed of a norbornene-based resin layer, a haze value, and a cocoon resin layer as a protective film. Then, it is disclosed that a polarizing plate is obtained by attaching this protective film to a polarizer containing polybulal alcohol with the surface of the norbornene-based resin layer facing.
  • Patent Document 2 discloses a resin layer having a smaller hygroscopic property than triacetyl cellulose and a positive photoelastic constant, and a resin layer having a smaller hygroscopic property than triacetyl cellulose and a negative photoelastic constant.
  • a protective film having a small photoelastic constant, in which layers are laminated, has been proposed.
  • a polarizing plate is disclosed in which this protective film is bonded to a polarizer containing polybulal alcohol.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-115085
  • Patent Document 2 JP 2000-206303 A Disclosure of the invention
  • An object of the present invention is to provide a polarizing plate protective film suitable for a liquid crystal display device and the like, which is free from poor visibility due to interference of light such as interference fringes and has excellent scratch resistance, and the liquid crystal display device. Is to provide.
  • the present inventor is a film in which k thermoplastic resin layers are laminated (k is an integer of 2 or more), and is the i-th thermoplastic resin.
  • k is an integer of 2 or more
  • the refractive index ⁇ ( ⁇ ) at a wavelength ⁇ in the range of 380 nm to 780 nm of the resin layer and the refractive index ⁇ ( ⁇ ) at the wavelength ⁇ in the range of 380 nm to 780 nm of the i + th thermoplastic resin layer Specific
  • the inventors have found that a polarizing plate having excellent scratch resistance can be obtained.
  • a film comprising k layers (k is an integer of 2 or more) each including at least one thermoplastic resin layer having a negative photoelastic coefficient and a thermoplastic resin layer having a positive photoelastic coefficient.
  • each of the thermoplastic resin layers is formed of a material having a haze of 0.5% or less and contains an amorphous thermoplastic resin, the i-th thermoplastic resin layer And the coefficient of humidity expansion e of the i + th thermoplastic resin layer e
  • thermoplastic resin layer located closest to the polarizer (first)! ⁇ 780nm Refractive index ( ⁇ ) at wavelength ⁇ in the range and 380 ⁇ of polyvinyl alcohol contained in the polarizer! Satisfy refractive index ⁇ ( ⁇ ) and force specific relationship at wavelength ⁇ in the range of ⁇ 780 nm
  • the polarizing plate obtained using the soot film has no poor visibility due to streaks with high contrast and is excellent in flexibility and scratch resistance.
  • the present invention has been completed based on these findings.
  • the present invention includes the following.
  • thermoplastic resin layers (k is an integer of 2 or more) are laminated, and the i-th thermoplastic resin layer is bent at a wavelength ⁇ ranging from 380 nm to 780 nm.
  • i represents the integer of i-k-l.
  • thermoplastic resin layers (k is an integer of 2 or more) are laminated, and each of the thermoplastic resin layers is formed of a material having a haze of 0.5% or less, And contains amorphous thermoplastic rosin,
  • a protective film for polarizing plate wherein i + 1 satisfies the relationship of formula [2].
  • i represents the integer of i-k-l.
  • the protective film for a polarizing plate according to (1) further having a hard coat layer having a refractive index of 1.6 or more directly or indirectly on the surface of the k-th thermoplastic resin layer.
  • the surface of the k-th thermoplastic resin layer has a linear recess having a depth of 50 nm or more and a width of 500 ⁇ m or less, and a linear protrusion having a height of 50 nm or more and a width of 500 nm or less.
  • the protective film for a polarizing plate according to (1) which is a flat surface having no part.
  • a polarizing plate comprising a polarizer and the protective film for a polarizing plate according to (1) laminated on at least one surface of the polarizer.
  • the polarizer contains polybulal alcohol
  • the polarizing plate protective film is laminated with the first thermoplastic resin layer facing the polarizer,
  • the polarizer contains polybulal alcohol
  • the protective film for polarizing plate is laminated with the first thermoplastic resin layer facing the polarizer, and the refractive index n (380) of the first thermoplastic resin layer at a wavelength of 380 nm and Refractive index n (780) at a wavelength of 780 nm,
  • the refractive index n (780) at m is
  • a liquid crystal display device comprising at least one polarizing plate according to (10) and a liquid crystal panel.
  • the protective film for polarizing plate of the present invention is less susceptible to light interference such as interference fringes, so that it does not cause poor visibility when laminated with a polarizer. ⁇ A polarizing plate can be obtained.
  • the retardation of the polarizing plate hardly changes due to stress due to heat or deformation. Therefore, even if unpredictable and undesired stress is applied, light leakage and color unevenness occur near the edge of the display screen. Thus, a polarizing plate without coloring or the like can be obtained. Further, the polarizer and the protective layer hardly peel even under a harsh environment.
  • the polarizing plate of the present invention does not generate streaks or the like with high contrast. In addition, since it is excellent in flexibility and scratch resistance, visibility is not deteriorated.
  • the polarizing plate of the present invention is particularly suitable for a liquid crystal display device having a large area.
  • FIG. 1 is a diagram showing the refractive index ⁇ ( ⁇ ) of each resin layer used in this example.
  • FIG. 2 is a graph showing a distribution of absolute values of differences in refractive index ⁇ ( ⁇ ) of each resin layer used in this example.
  • FIG. 3 is a graph showing the distribution of absolute values of the difference between the refractive index ⁇ ( ⁇ ) of polyvinyl alcohol used in this example and the refractive index ⁇ ( ⁇ ) of each resin layer.
  • FIG. 4 is a diagram showing measurement points of the degree of polarization and transmittance performed in this example and a comparative example.
  • FIG. 5 is a view schematically showing a polarizing plate on which the second protective film for polarizing plate of the present invention is laminated.
  • FIG. 6 is a view schematically showing a polarizing plate on which the second protective film for polarizing plate of the present invention is laminated.
  • the protective film for polarizing plate of the present invention comprises k thermoplastic resin layers (k is an integer of 2 or more). That is, the protective film for polarizing plate is laminated in this order from the first thermoplastic resin layer to the kth thermoplastic resin layer.
  • thermoplastic resin constituting the thermoplastic resin layer is, for example, polycarbonate resin, Ethersulfone resin, polyethylene terephthalate resin, polyimide resin, polymethylmethacrylate resin, polysulfone resin, polyarylate resin, polyethylene resin, polysalt bulle resin, diacetyl cellulose, triacetyl cellulose, and oil Forces such as cyclic polyolefin polymers can also be selected.
  • the alicyclic olefin polymer is a cyclic olefin random multi-component copolymer described in JP-A-05-310845, a hydrogenated polymer described in JP-A-05-97978, Examples thereof include thermoplastic dicyclopentagen-based ring-opening polymers described in JP-A-11-124429 and hydrogenated products thereof. It should be noted that not all of the exemplified thermoplastic resins can be applied to the present invention, but some of the same types of thermoplastic resins satisfy the following requirements. Select as appropriate.
  • thermoplastic resin used in the present invention includes colorants such as pigments and dyes, fluorescent brighteners, dispersants, thermal stabilizers, light stabilizers, ultraviolet absorbers, antistatic agents, antioxidants, lubricants, and the like. And a compounding agent such as a solvent may be appropriately blended.
  • Lubricants include inorganic particles such as silicon dioxide, titanium dioxide, magnesium oxide, calcium carbonate, magnesium carbonate, barium sulfate, and strontium sulfate, as well as polymethyl attalate, polymethyl methacrylate, polyacrylonitrile, Organic particles such as polystyrene, cellulose acetate, and cellulose acetate propionate. As particles constituting the lubricant, organic particles are preferred. Among these, particles made of methyl methacrylate are particularly preferred.
  • elastic particles having rubber-like elastic force can be used.
  • rubber-like elastic materials include acrylate-based rubber-like polymers, rubber-like polymers based on butadiene, and ethylene-vinyl acetate copolymers.
  • Acrylic acid ester-based rubbery polymers include butyl acrylate, 2-ethylhexyl acrylate and the like. Of these, acrylic acid ester polymers based on butyl acrylate and rubbery polymers based on butadiene are preferred.
  • a typical example of the elastic particles may be a layer of two kinds of polymers.
  • the elastic particles include alkyl acrylates such as butyl acrylate and styrene graft rubber elastic components, and methyl methacrylate.
  • alkyl acrylates such as butyl acrylate and styrene graft rubber elastic components, and methyl methacrylate.
  • examples thereof include elastic particles in which a hard resin layer made of acrylate and / or methyl methacrylate and an alkyl acrylate is in a core-shell structure.
  • the elastic particles usually have a number average particle size of 2.0 in a state dispersed in a thermoplastic resin.
  • the protective film for polarizing plates has a high haze (cloudiness) and light transmission. Since the rate is low, it is not suitable for display screens. Further, if the number average particle size force becomes too small, the flexibility tends to decrease.
  • the refractive index ⁇ ( ⁇ ) of the elastic particles at a wavelength of 380 nm to 780 nm is
  • the relationship of the formula [5] is satisfied between the refractive index ⁇ ( ⁇ ) at a wavelength of 380 nm to 780 nm of the thermoplastic resin used as the matrix.
  • n ( ⁇ ) is the average value of the main refractive index at the wavelength.
  • is r P r
  • the thermoplastic resin used in the present invention preferably has a light transmittance in the visible region of 400 to 700 nm at a thickness of 1 mm of 80% or more, preferably 85% or more, more preferably 90%. The above are more preferable.
  • the thermoplastic resin is preferably an amorphous resin from the viewpoint of transparency.
  • the thermoplastic resin preferably has a glass transition temperature of 60 to 200 ° C, more preferably 100 to 180 ° C. The glass transition temperature can be measured by differential scanning calorimetry (DSC).
  • the protective film for polarizing plate of the present invention is 380 ⁇ ! Of the i-th thermoplastic resin layer! Refractive index ⁇ ( ⁇ ) force at wavelength ⁇ in the range of ⁇ 780 ⁇ m i + 380 ⁇ of the 1st thermoplastic resin layer! The refractive index ⁇ ( ⁇ ) in the wavelength range of ⁇ 780 nm and the relationship of the formula [1].
  • i represents an integer of l to k ⁇ 1.
  • the protective film for polarizing plate satisfies the relationship of I ⁇ ) —n. ( ⁇ ) I ⁇ 0.045.
  • n ( ⁇ ) and n ( ⁇ ) are the average values of the main refractive indexes at the wavelength.
  • interference fringes may occur on the surface of the protective film for polarizing plate due to interface reflection caused by a difference in refractive index at the interface.
  • the i-th thermoplastic resin layer and the (i + 1) -th thermoplastic resin layer adjacent to each other may be in direct contact with each other, or may be in contact with each other through an adhesive layer described later. ,.
  • the protective film for polarizing plate of the present invention preferably has an absolute value of the photoelastic coefficient of 10 ⁇ 10 — 12 Pa — 1 or less.
  • the photoelastic coefficient is a value indicating the stress dependence of birefringence generated when stress is applied, and the refractive index difference ⁇ has a relationship obtained by the product of the stress ⁇ and the photoelastic coefficient C.
  • This photoelastic coefficient can be measured using a photoelastic constant measuring device under conditions of a temperature of 20 ° C ⁇ 2 ° C and a humidity of 60 ⁇ 5%.
  • the absolute value of the photoelastic coefficient is more preferably 7 ⁇ 10 — 12 Pa — 1 or less, and particularly preferably 5 ⁇ 10 — 12 Pa — 1 or less.
  • thermoplastic resin layer having a negative photoelastic coefficient is preferred.
  • the thermoplastic resin layer having a negative photoelastic coefficient is a resin layer in which ⁇ becomes negative when subjected to positive stress ⁇ .
  • a thermoplastic resin layer having a positive photoelastic coefficient is a resin layer having a positive ⁇ when subjected to a positive stress ⁇ .
  • the thermoplastic resin constituting each thermoplastic resin layer is not particularly limited as long as it can form a layer having the above coefficient, and may be one type of resin or a combination of two or more types. May be.
  • the combination of two or more types includes a thermoplastic resin having a negative photoelastic coefficient and a thermoplastic resin having a positive photoelastic coefficient, which are just combinations of thermoplastic resins having the same sign of photoelastic coefficient. It can be a combination of! /.
  • thermoplastic resin having a negative photoelastic coefficient examples include polymethylmetatalylate resin, polystyrene, poly- ⁇ -methylstyrene, and a calocopolymer with ethylene-tetracyclododecene.
  • thermoplastic resins having a positive photoelastic coefficient examples include polycarbonate resins and polysulfurs. Ring-opening polymers of norbornene-structured monomers such as phonic resin, polyarylate resin, polyethersulfone resin, polyethylene terephthalate resin, tetracyclododecene dicyclopentagen, and their hydrides, triacetyl A cellulose etc. are mentioned.
  • the thermoplastic resin layer is formed of a material having a haze of 0.5% or less and contains an amorphous thermoplastic resin. Humidity expansion coefficient e 1
  • i and the humidity expansion coefficient e i + 1 of the i + th thermoplastic resin layer satisfy the relationship of equation [2].
  • the thermoplastic resin is formed of a material having a haze of 0.5% or less and contains an amorphous thermoplastic resin.
  • the thermoplastic resin layer is preferably made of a material having a haze of 0.1% or less.
  • Haze ⁇ O IS Japanese Industrial Standards
  • K7105 5 sheets of 2mm thick flat plates made by the usual injection molding method (using a mold with no irregularities on the surface) Measure using a “turbidimeter NDH-300A” manufactured by the manufacturer, and use the arithmetic average value as the value of the haze.
  • the amorphous thermoplastic resin is a thermoplastic resin having no melting point, and can be selected from the thermoplastic resins.
  • the content of the amorphous thermoplastic resin is preferably 60 to: LOO parts by weight in 100 parts by weight of the thermoplastic resin layer.
  • the above formula [2] is more preferably I 13. - ⁇ I ⁇ 30 ppm /% RH.
  • the water absorption of at least one layer of the laminated thermoplastic resin layers can be 0.5% or less, and further 0.1% or less. be able to.
  • the durability of the polarizing plate can be increased by using a film having a low water absorption rate for the protective film for the polarizing plate.
  • the water absorption rate of the thermoplastic resin layer can be determined according to JIS K7209.
  • in-plane letter Re is preferably 50 nm or less, more preferably 1 Onm or less at a wavelength of 550 nm.
  • the film thickness direction letter Rth of the protective film for polarizing plate is preferably from 10 nm to +10 nm, more preferably from 5 nm to +5 nm, at a wavelength of 550 nm.
  • a protective film for a polarizing plate suitable for the present invention comprises at least one thermoplastic resin layer (hereinafter referred to as “k”) between the k-th thermoplastic resin layer and the first thermoplastic resin layer. And “intermediate layer”).
  • the intermediate layer may be composed of a different type of thermoplastic resin than the thermoplastic resin forming the kth thermoplastic resin layer and the first thermoplastic resin layer, or the same type of thermoplastic resin. You may comprise a thermoplastic rosin.
  • each thermoplastic resin layer constituting the protective film for polarizing plate of the present invention is not particularly limited, but the thickness of the k-th thermoplastic resin layer is usually 5 to: LOO / zm It is preferably 10 / zm or more, more preferably 10 to 50 / ⁇ ⁇ .
  • the thickness of the first thermoplastic resin layer is usually 5 to 100 ⁇ m, preferably 10 to 50 ⁇ m. At this time, it is preferable that the thickness of the kth thermoplastic resin layer is substantially equal to the thickness of the first thermoplastic resin layer.
  • the absolute value of the difference between the thickness of the first thermoplastic resin layer and the thickness of the kth thermoplastic resin layer is preferably 20 ⁇ m or less, preferably 10 m or less. More preferably.
  • the thickness of the intermediate thermoplastic resin layer provided as necessary between the first thermoplastic resin layer and the kth thermoplastic resin layer is usually 5 to: LOO / zm, preferably 10-50 / ⁇ ⁇ .
  • the ratio of the thickness of the intermediate thermoplastic resin layer to the thickness of the kth thermoplastic resin layer or the thickness of the first thermoplastic resin layer is not particularly limited, but should be 5: 1 to 1: 5 Is preferred.
  • the thickness of such a polarizing plate protective film as a whole is usually 20 to 200 m, preferably 40 to L 00 / z m.
  • thermoplastic resin forming the first thermoplastic resin layer is preferably selected from acrylic resin, alicyclic olefin polymer, and polycarbonate resin, especially polymethylmethacrylate resin. Those selected from acrylic saccharides are preferred.
  • the thermoplastic resin that forms the kth thermoplastic resin layer is preferably hard! Specifically, a pencil hardness (according to JIS K5600-5-4, except that the test load is changed to 500 g), which is harder than 2H is preferable.
  • a pencil hardness accordinging to JIS K5600-5-4, except that the test load is changed to 500 g
  • the thermoplastic resin forming the k-th thermoplastic resin layer the most preferable one is selected from acrylic resins such as polymethylmethacrylate resin.
  • the k-th thermoplastic resin layer is formed to prevent warping, bending, rounding, etc. of the polarizing plate. It is preferred that the fat and the thermoplastic resin forming the first thermoplastic resin layer are selected from the same type of thermoplastic resin.
  • the laminated thermoplastic resin layers may be in direct contact with each other, or may be in contact with each other through an adhesive layer.
  • the average thickness of the adhesive layer is usually from 0.01 to 30 / ⁇ ⁇ , preferably from 0.1 to 15 111.
  • the adhesive layer is a layer having a tensile fracture strength by 3 K7113 of 40 MPa or less.
  • Adhesives that constitute the adhesive layer include acrylic adhesives, urethane adhesives, polyester adhesives, polybutyl alcohol adhesives, polyolefin adhesives, modified polyolefin adhesives, polyvinyl alkyl ether adhesives.
  • the moisture permeability of the protective film for a polarizing plate of the present invention is not particularly limited, 40g / (m 2 - 2 4h) or less it is preferred instrument 10gZ (m 2 '24h) be less that More preferred.
  • the film has a water vapor transmission rate of 40 ° C and 92% RH under the test conditions of 24 hours. It can be measured by the cup method described in IS Z 0208.
  • the protective film for polarizing plate of the present invention is obtained when the tensile modulus of the i-th thermoplastic resin layer is A and the tensile modulus of the i + 1-th thermoplastic resin layer is A. I everything 1 i + 1
  • the k-th thermoplastic resin layer can have a tensile modulus A of 3. OGPa or more. Of the kth thermoplastic resin layer
  • the tensile modulus A is the tensile modulus A of the k-lth thermoplastic resin layer adjacent to this.
  • the tensile modulus A of the first thermoplastic resin layer can be 3. OGPa or more.
  • the total number of laminated thermoplastic resin layers is preferably 7 or less, more preferably 5 or less. If the number is larger than the number of layers, it may be difficult to control the surface shape and thickness of each layer.
  • the surface of the kth thermoplastic resin layer is not formed with linear concave portions or linear convex portions, and may have a flat surface.
  • the depth is less than 50 nm or the width is more than 50 Onm, or the height is less than 50 nm or the width is more than 500 nm. It is preferably a linear convex part.
  • it is a linear concave portion having a depth of less than 30 nm or a width of greater than 700 nm, and a linear convex portion having a height of less than 30 nm or a width of greater than 700 nm.
  • the above-described linear concave portions and linear convex portions are not formed on the surface of the first thermoplastic resin layer, similarly to the kth thermoplastic resin. By not forming the linear concave portion or the linear convex portion, it is possible to prevent light leakage or optical interference.
  • the depth of the linear concave portion, the height of the linear convex portion, and the width thereof can be obtained by the following method.
  • Light is applied to the protective film for the polarizing plate, the transmitted light is projected onto the screen, and a portion with bright or dark stripes of light appearing on the screen (this portion is the depth of the linear concave portion and the height of the linear convex portion. Cut out at 30mm square.
  • the surface of the cut-out film piece is observed using a 3D surface structure analysis microscope (viewing area 5mm x 7mm), converted into a 3D image, and a cross-sectional profile in the MD direction is converted from this 3D image.
  • Ask The cross-sectional profile is obtained at lmm intervals in the viewing area.
  • an average line is drawn and the length to the bottom of the average linear force linear recess is the depth of the linear recess, or the average linear force the length to the top of the linear protrusion is the height of the linear protrusion. It becomes.
  • the distance between the intersection of the average line and the profile is the width.
  • the maximum measured values of the linear concave depth and the linear convex height are obtained, and the width of the linear concave portion or linear convex portion showing the maximum value is obtained.
  • the maximum value of the linear recess depth and the height of the linear convex portion obtained from the above, the width of the linear concave portion and the width of the linear convex portion showing the maximum values, and the depth of the linear concave portion of the film.
  • thermoplastic resin layer having no linear convex part and linear concave part having such a size reduces the surface roughness of the lip part of the die in, for example, a T-die type extrusion molding method. Apply chrome, nickel, titanium, etc. to the tip of the lip, spray ceramics on the tip of the lip, PVD (Phisical Vapor Deposition) method on the inner surface of the lip, etc.
  • Forming a film such as diamond-like carbon), uniformly adjusting the temperature distribution around the molten resin immediately after being extruded from the die, the air flow, etc., and the melt flow rate as a resin forming a thermoplastic resin layer By selecting the same value, etc., and in the casting method, use a cast support film with a small surface roughness, reduce the surface roughness of the coating machine, Temperature distribution of the dry coating layer, drying temperature, to adjust the drying time, by performing means such as, leaves in the obtained Rukoto.
  • the protective film for polarizing plate of the present invention is not particularly limited by the production method thereof, and for example, a protective film obtained by laminating a single layer of thermoplastic resin film or a plurality of thermoplastic resins can be used together. Examples thereof include those obtained by extrusion molding and those obtained by casting a thermoplastic resin solution on a thermoplastic resin film. Among these, from the viewpoint of productivity, the protective film for polarizing plate is preferably obtained by coextrusion molding. In the case of co-extrusion molding, a complicated process (for example, a drying process or a coating process) is not required, so that there is an advantage that a film having excellent optical characteristics can be provided with little foreign matter such as dust.
  • the protective film for polarizing plate of the present invention may be provided with anti-glare means.
  • the haze of the polarizing plate protective film on which the antiglare means is formed is 5 to 60%, preferably 10 ⁇ 50%.
  • the haze can be measured using a commercially available turbidimeter, for example, NDH-30 OA haze meter manufactured by Nippon Denshoku Industries Co., Ltd.
  • the transmitted image definition of the protective film for polarizing plate of the present invention after the anti-glare means is formed is about 50 to 100%, preferably about 60 to about LOO%. is there.
  • the transmitted image definition is in the above range, the transmitted light is less blurred, so that even in a high-definition display device, it is possible to prevent the outline of the pixel from being blurred, and as a result, character blur can be prevented.
  • the transmitted image definition is a scale for quantitatively determining the blur and distortion of light transmitted through the film.
  • the transmitted image sharpness is measured through an optical comb that moves the transmitted light from the film force, and the value is calculated based on the amount of light in the light and dark portions of the optical comb.
  • the slit image formed on the optical comb becomes thick, so the amount of light at the transmissive part is 100% or less, while the light leaks at the non-transmissive part. % Or more.
  • the value C of the transmitted image definition can be obtained from the maximum value M of the transmitted light in the transparent part of the optical comb and the minimum value m of the transmitted light in the opaque part by the following equation.
  • the measurement device for measuring the transmitted image definition Suga Test Instruments Co., Ltd. image clarity measuring instrument IC M-1 can be used.
  • the optical comb an optical comb having a width of 0.125 to 2 mm can be used.
  • both the transmitted image definition and the haze after formation of the anti-glare means are in the above ranges.
  • the method for forming the anti-glare means is not particularly limited, and an appropriate anti-glare means can be employed.
  • an appropriate anti-glare means can be employed.
  • the method for forming fine irregularities is not particularly limited, and an appropriate method can be adopted.
  • a method of imparting fine irregularities by roughening by a method such as sand blasting, embossing roll, chemical etching, etc. in the state where the protective film for polarizing plate is directly or other layers are laminated.
  • the protective film for polarizing plate A method of dispersing inorganic and Z or organic fine particles in the resin constituting the rummes, and a transparent resin material containing inorganic and Z or organic fine particles on the protective film for polarizing plate described above.
  • the method of forming may be mentioned, and two or more of the above methods may be used in combination.
  • Two or more kinds of the fine particles may be used.
  • fine particles that exhibit a diffusion effect due to a difference in refractive index with the transparent resin material and fine particles that exhibit a diffusion effect by forming irregularities on the surface of the resin layer can be used in combination.
  • the fine particles may be present in a uniformly dispersed form in the resin or transparent resin material constituting the protective film for polarizing plate, or may be unevenly distributed in the film thickness direction.
  • the fine particles may exist in a form in which the surface force protrudes, but from the viewpoint of improving the clarity of the transmitted image, the fine particles protrude from the surface of the antiglare layer to 0.5 m or less. I like it.
  • two or more compositions having different refractive indexes are used, for example, by ultraviolet irradiation.
  • examples thereof include a method of forming a film layer having a phase separation structure and a method of forming a film layer containing fine particles having a refractive index different from that of the transparent resin material and the transparent resin material.
  • the protective film for polarizing plate of the present invention preferably further has an antireflection layer on the surface of the kth thermoplastic resin layer, directly or via another layer.
  • the average thickness of the antireflection layer is ⁇ , preferably ⁇ to 0.01 to 1 ⁇ m, and more preferably to 0.02 to 0.5 ⁇ m.
  • the antireflection layer can be selected from known ones. For example, a refractive index smaller than that of the k-th thermoplastic resin layer, preferably a refractive index layer of 1.30 to L45, a low refractive index layer made of an inorganic compound and an inorganic compound. Examples thereof include those obtained by repeatedly laminating a high refractive index layer made of a compound cover, and those obtained by laminating the low refractive index layer on a high refractive index layer having a high surface hardness.
  • the low refractive index layer a layer formed of a material having a minute air layer can be used.
  • a layer obtained by laminating a low refractive index layer formed of a material having a minute air layer on a high refractive index layer having a high surface hardness may be used.
  • the protective film for polarizing plates with an anti-reflection layer is a reflectance at an incident angle of 5 ° and 430 to 700 nm. Is not more than 2.0%, and the reflectance at 550 nm is preferably not more than 1.0%.
  • an antireflection layer in which a low refractive index layer formed of a material having a micro air layer on a high refractive index layer having a high surface hardness will be described.
  • An antireflection layer in which a low refractive index layer formed of a material having a micro air layer is laminated on a high refractive index layer having a high surface hardness is laminated with the low refractive index layer facing the observation side.
  • the low refractive index layer of the present invention a layer formed of a material having a minute air layer can be used.
  • the thickness of the low refractive index layer is usually 10 to: LOOOnm, preferably 30 to 500nm.
  • An air mouth gel is mentioned as a material which has a micro air layer.
  • the air mouth gel is a transparent porous material in which minute bubbles are dispersed in a matrix.
  • the bubble size is mostly 200 nm or less, and the bubble content is usually 10 to 60% by volume, preferably 20 to 40% by volume.
  • the air mouth gel includes a silica air mouth gel and a porous body in which hollow particles are dispersed in a matrix.
  • Examples of the porous body in which hollow fine particles are dispersed in a matrix include porous bodies as disclosed in JP-A-2001-233611 and JP-A-2003-149642. Note that the porous body in which the hollow fine particles are dispersed in the matrix is not included in the thermoplastic resin layer.
  • the material used for the matrix is selected so as to meet the conditions such as the dispersibility of the hollow fine particles, the transparency of the porous body, and the strength of the porous body.
  • hydrolyzable organosilicon compounds such as silane and hydrolysates thereof.
  • acrylic resin, epoxy resin, urethane resin, silicone resin, hydrolyzable organosilicon compound and hydrolyzate thereof are preferable for the dispersibility of the hollow fine particles and the strength of the porous body.
  • the hollow fine particles are not particularly limited, but inorganic hollow fine particles are preferred, and silica-based hollow fine particles are particularly preferred.
  • examples of inorganic compounds constituting the inorganic hollow fine particles include SiO and Al 2 O 3
  • the outer shell of the hollow fine particles may be a porous one having pores or may be one in which the pores are closed and the cavity is sealed against the outside of the outer shell.
  • the outer shell preferably has a multi-layered structure with inner and outer layers, which also has power.
  • a fluorine-containing organosilicon compound is used to form the outer layer, the refractive index of the hollow fine particles is lowered, the dispersibility in Matritus is improved, and the antifouling property is imparted to the low refractive index layer. Arise.
  • fluorine-containing organosilicon compound examples include 3, 3, 3-trifluoropropyltrimethoxysilane, methyl 3,3,3-trifluoropropyldimethoxysilane, heptadecafluoro-decylmethyldimethoxysilane, heptadecafluoro.
  • examples include rhodecyltrichlorosilane, heptadecafluorodecyltrimethoxysilane, and tridecafluorooctyltrimethoxysilane.
  • the thickness of the outer shell is usually 1 to 50 nm, preferably 5 to 20 nm.
  • the thickness of the outer shell is preferably in the range of 1Z50 to 1Z5, which is the average particle diameter of the inorganic hollow fine particles.
  • the cavity there may be a solvent used when preparing the hollow fine particles and Z or a gas that enters during drying, or a precursor substance for forming the cavity remains in the cavity. It may be.
  • the average particle size of the hollow fine particles is not particularly limited, but is preferably in the range of 5 to 2, OOOnm, more preferably 20: LOOnm.
  • the average particle diameter is a number average particle diameter by observation with a transmission electron microscope.
  • the high refractive index layer having a high surface hardness and the kth thermoplastic resin layer can be used together, and the thermoplastic resin layer is provided on the surface of the kth thermoplastic resin layer. It may be provided as a layer different from the oil layer (a layer provided separately may be referred to as “no coat layer”).
  • the thickness of the high refractive index layer is preferably 0.5 to 30 ⁇ m, more preferably 3 to 15 ⁇ m.
  • the refractive index of the high refractive index layer is preferably 1.6 or more.
  • the high-refractive index layer is a thermal hardness indicating a hardness of “H” or higher in the pencil hardness test shown in JIS K5600-5-4 (the test plate is a glass plate and the test load is changed to 500 g). It is also preferable to form a photocurable material force. At this time, it is preferable that the pencil hardness of the protective film for polarizing plate provided with such a hard coat layer is H or more.
  • the material for the hard coat layer include organic hard coat materials such as organosilicone, melamine, epoxy, acrylic, and urethane acrylate; and inorganic hard coat materials such as silicon dioxide. It is done. Among these, from the viewpoint of good adhesion and excellent productivity, it is preferable to use urethane acrylate and polyfunctional acrylate hard coat materials.
  • the high refractive index layer has a refractive index n force and a refractive index n of the low refractive index layer laminated thereon.
  • N ⁇ 1.53, and n 1/2 —0. 2 ⁇ n ⁇ n 1/2 +0.2.
  • the high refractive index layer various kinds of materials can be used for the purpose of adjusting the refractive index, improving the flexural modulus, stabilizing the volume shrinkage, improving heat resistance, antistatic properties, antiglare properties, etc., as desired.
  • a filler may be included.
  • various additives such as an antioxidant, an ultraviolet absorber, a light stabilizer, an antistatic agent, a leveling agent, and an antifoaming agent can be blended.
  • a filter for adjusting the refractive index and antistatic property of the high refractive index layer acid titanium, acid zirconium, zinc oxide, tin oxide, acid cerium, pentoxide, etc.
  • Antimony pentoxide, ITO, IZO, ATO, and FTO are preferred because they can maintain transparency.
  • the primary particle size of these fillers is usually from 1 nm to 10 nm, preferably from 1 nm to 30 nm.
  • filler for imparting anti-glare properties those having an average particle size of 0.5 to 10 ⁇ m are preferred. 1. Those having an average particle size of 0 to 7.0 m are more preferred 1. 0 to 4. O / zm is more preferable.
  • Specific examples of fillers that provide anti-glare properties include polymethyl methacrylate resin, vinyl fluoride resin and other fluorine resins, silicone resins, epoxy resins, nylon resins, polymers, and the like.
  • Fillers made of organic resins such as styrene resin, phenol resin, polyurethane resin, crosslinked acrylic resin, crosslinked polystyrene resin, melamine resin, benzoguanamine resin; or acid titanium, acid aluminum
  • organic resins such as styrene resin, phenol resin, polyurethane resin, crosslinked acrylic resin, crosslinked polystyrene resin, melamine resin, benzoguanamine resin; or acid titanium, acid aluminum
  • examples thereof include fillers made of an inorganic compound such as indium oxide, dumbbell oxide, antimony oxide, tin oxide, zirconium oxide, ITO, magnesium fluoride, and nickel oxide.
  • an antifouling layer may be further provided on the low refractive index layer (observation side) in order to enhance the antifouling property of the low refractive index layer.
  • the antifouling layer is a layer that can impart water repellency, oil repellency, sweat resistance, antifouling properties, etc. to the surface of the protective film for polarizing plate.
  • a fluorine-containing organic compound is suitable as a material used for forming the antifouling layer. Examples of the fluorine-containing organic compound include fluorocarbon, perfluorosilane, and high molecular compounds thereof.
  • the method for forming the antifouling layer is applied to the material to be formed.
  • the average thickness of the antifouling layer is preferably 1 to 50 nm, more preferably 3 to 35 nm.
  • the protective film for polarizing plate of the present invention may be provided with other layers such as a gas nolia layer, a transparent antistatic layer, a single layer of a primer, an electromagnetic shielding layer, and an undercoat layer.
  • the polarizing plate of the present invention can be formed by laminating the protective film for polarizing plate of the present invention on at least one surface of the polarizer. That is, the polarizing plate of the present invention may be in a mode in which the polarizing plate protective film is provided on both sides of the polarizer, or in a mode in which the polarizing plate protective film is provided only on one side of the polarizer. There may be.
  • the polarizer used in the present invention is a known polarizer used in liquid crystal display devices and the like.
  • a film obtained by adsorbing iodine or a dichroic dye on a polyvinyl alcohol film and then uniaxially stretching in a hydrofluoric acid bath or a film obtained by adsorbing iodine or a dichroic dye on a polybulu alcohol film.
  • polarizers having a function of separating polarized light into reflected light and transmitted light such as a grid polarizer, a multilayer polarizer, and a cholesteric liquid crystal polarizer.
  • polarizers containing polybutyl alcohol are preferred.
  • the degree of polarization of the polarizer used in the present invention is not particularly limited, but is preferably 98% or more, and more preferably 99% or more.
  • the average thickness of the polarizer is preferably 5 to 80 ⁇ m.
  • the protective film for polarizing plate is laminated with the first thermoplastic resin layer facing the polarizer, and the first thermoplastic resin layer
  • the first thermoplastic resin layer of the protective film for polarizing plate is laminated facing the polarizer side, and the first thermoplastic resin is laminated.
  • the fat layer The refractive index at a wavelength of 380 nm (380) and the refractive index at a wavelength of 780 nm (780), and the refractive index n (
  • the difference between the refractive index of the first thermoplastic resin layer at the wavelength near the upper limit of the visible light region and the refractive index of polyvinyl alcohol contained in the polarizer is The difference is not so different.
  • n (380) and n (380) are the average values of the principal refractive indices at the respective wavelengths.
  • n (780) is the refractive index of non-oriented polyvinyl alcohol.
  • a liquid crystal display device of the present invention comprises at least one polarizing plate of the present invention and at least a liquid crystal panel.
  • the liquid crystal panel is not particularly limited as long as it is used in a liquid crystal display device.
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • HAN Hybrid Alignment Nematic
  • IPS In Plane Switching
  • VA Vertical Alimentation
  • LCD Examples include liquid crystal panel, MVA (Multiple Vertical Alignment) type liquid crystal panel, and OCB (Optical Compensated Bend) type liquid crystal panel.
  • a preferred liquid crystal display device of the present invention is one in which the polarizing plate is provided on the observation side of the liquid crystal panel.
  • a liquid crystal display device is usually provided with two polarizing plates sandwiching a liquid crystal panel.
  • the viewing side of the liquid crystal panel is the side on which the viewer can view the displayed image.
  • the polarizing plate of the present invention particularly a polarizing plate in which the protective film for polarizing plate is laminated on the observation side, has excellent visibility.
  • the polarizing plate of the present invention has the polarizing plate protective film (first protective film for polarizing plate) laminated on one surface of the polarizer, and a polarizing plate described later on the other surface of the polarizer. It can also be set as the structure which laminated
  • This second protective film for polarizing plates has biaxiality and thickness direction letter Rt h is preferably 70 to 400 nm.
  • a biaxial film is a film satisfying n>n> n. When such a polarizing plate is used in a liquid crystal display device, it can be suitably used for a vertical alignment (VA) mode liquid crystal panel.
  • VA vertical alignment
  • the Rth of the second protective film for polarizing plates is 50 ⁇ !
  • the Rth of the second protective film for polarizing plate is preferably 100 nm to 400 nm! /.
  • Examples of the second protective film for polarizing plate include a film obtained by stretching a film containing thermoplastic resin, a film obtained by forming an optically anisotropic layer on an unstretched thermoplastic resin film, and a thermoplastic resin. After the optically anisotropic layer is formed on the film containing, a stretched film or the like can be used.
  • the stretched film may be in the form of a single layer or in the form of a plurality of layers.
  • thermoplastic resin used for the second protective film for polarizing plate the same thermoplastic resin as that mentioned for the protective film for polarizing plate should be used. Can do. Of these, alicyclic olefin polymers and cellulose esters are preferred because they are excellent in transparency, low birefringence, dimensional stability, and the like.
  • the cellulose ester those having a substitution degree of the acyl group of 2.5 to 2.9 determined according to ASTM D-817-96 can be preferably used.
  • the acyl group include an acetyl group, a propiol group, and a butyryl group.
  • a mixture of cellulose esters having different substituents such as cellulose acetate propionate can also be used preferably.
  • the acetyl group and the propiol group have a substitution degree of the acetyl group as A and propio group.
  • Cellulose esters containing the following formula when the degree of substitution of the alkyl group is B are preferred.
  • a letter-decreasing agent can be added to the thermoplastic resin if necessary.
  • a letter-decreasing agent is a compound that, when added to a thermoplastic resin, raises the letter-decision compared to when it is not added.
  • a letter raising agent is added to the cellulose ester, it is preferably used in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the cellulose acetate in the range of 0.1 to 10 parts by mass. It is more preferable to use it, and it is most preferable to use it in the range of 0.5 to 5 parts by mass, and it is most preferable to use it in the range of 0.5 to 2 parts by mass.
  • the letter decision increasing agent has a maximum absorption in a wavelength region of 250 to 400 nm. It is preferred that the letter descent enhancer has a substantial absorption in the visible region.
  • the “aromatic ring” includes an aromatic hetero ring in addition to an aromatic hydrocarbon ring.
  • the aromatic hydrocarbon ring is particularly preferably a 6-membered ring (that is, a benzene ring).
  • the aromatic heterocycle is generally an unsaturated heterocycle.
  • the aromatic heterocycle is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring.
  • Aromatic heterocycles generally have the most double bonds.
  • the heteroatom is particularly preferably a nitrogen atom, preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • aromatic heterocycles include furan, thiophene, pyrrole, oxazole, isoxazole, thiazole, isothiazole, imidazole, pyrazole, furazane, triazole, pyran, and pyridine rings. , Pyridazine ring, pyrimidine ring, pyrazine ring and 1,3,5-triazine ring.
  • aromatic ring benzene ring, furan ring, thiophene ring, pyrrole ring, oxazole ring, thiazole ring, imidazole ring, triazole ring, pyridine ring, pyrimidine ring, pyrazine ring and 1,3,5-triazine ring are preferable.
  • the number of aromatic rings contained in the letter-decreasing agent is preferably 2-20, more preferably 2-12, and even more preferably 2-8. Most preferred is ⁇ 6.
  • the bond relationship between two aromatic rings can be classified into (a) when a condensed ring is formed, (b) when directly linked by a single bond, and (c) when linked via a linking group (because of aromatic rings) Spiro bonds cannot be formed.)
  • the connection relationship may be a deviation of (a) to (c).
  • a uniaxial stretching method such as a method of uniaxial stretching in the lateral direction using a tenter
  • the biaxial stretching method in which the guide rail is stretched in the lateral direction depending on the spread angle of the guide rail, or the longitudinal direction using the difference in peripheral speed between the rolls, and then holding the clips at both ends and using the tenter
  • Biaxial stretching method such as sequential biaxial stretching method that stretches in the direction
  • Tenter stretching machine that can add feed force, pulling force or take-up force at different speeds in the horizontal or vertical direction, or horizontal or vertical direction
  • the glass transition temperature is the lowest, and the glass transition temperature of the resin is usually Tg to Tg + 20 It can be performed in the range of ° C. Further, the draw ratio may be adjusted in order to obtain desired optical characteristics, usually in the range of 1.1 to 3.0 times.
  • the second protective film for a polarizing plate has a refractive index n in the in-plane slow axis direction with respect to a wavelength of 550 nm, a refractive index n in the direction perpendicular to the in-plane slow axis, and a thickness.
  • n> n> n is satisfied.
  • n> n> n is not satisfied, when the polarizing plate on which the second protective film for polarizing plate is laminated is used in a liquid crystal display device, the contrast of the screen of the liquid crystal display device is lowered. This is because the visibility of the screen is extremely lowered because the screen is colored. For this reason, the yield at the time of the standard inspection of the second protective film for polarizing plates is lowered, and the total production efficiency of the liquid crystal display device is deteriorated.
  • a polymer compound or a liquid crystal compound can be used. These may be used alone or in combination.
  • polyamide polyimide
  • polyester polyether ketone
  • polyether ketone polyether ketone
  • Specific examples include: Japanese National Standard Publication No. 8-511812 (International Publication No. W094Z2 4191), 2000-511296 (International Publication No. WO97Z44704), etc. Things.
  • the liquid crystalline compound may be a rod-like liquid crystal or a discotic liquid crystal, and the liquid crystal compound is a polymer liquid crystal or a low molecular liquid crystal, and further, the low molecular liquid crystal is cross-linked so that it does not exhibit liquid crystallinity. Also included.
  • the rod-like liquid crystal include those described in JP-A 2000-304932.
  • Preferred examples of the discotic liquid crystal include those described in JP-A-8-50206.
  • the optically anisotropic layer is generally formed by applying a solution obtained by dissolving a discotic compound and other compounds (eg, plasticizer, surfactant, polymer, etc.) in a solvent onto the alignment film, drying it, It can be obtained by heating to a discotic nematic phase formation temperature and then cooling while maintaining the alignment state (discotic tannematic phase).
  • a solution obtained by dissolving a discotic compound and other compounds eg, plasticizer, surfactant, polymer, etc.
  • the optically anisotropic layer is formed by applying a solution of a discotic compound and another compound (for example, a polymerizable monomer, a photopolymerization initiator) dissolved in a solvent onto the alignment film, drying, and then It can be obtained by heating to a discote tanematic phase formation temperature, polymerizing by irradiation with UV light, etc., and then cooling and cooling.
  • a solution of a discotic compound and another compound for example, a polymerizable monomer, a photopolymerization initiator
  • the thickness of the optically anisotropic layer is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m, and 0.7 to 5 m. Most preferably it is. However, depending on the mode of the liquid crystal cell, it may be thick (3 to 10 / z m) in order to obtain high optical anisotropy.
  • the method for producing the second protective film for a polarizing plate including the optically anisotropic layer is not particularly limited.
  • the polymer compound and Z or a liquid crystal compound are applied to a film containing a thermoplastic resin.
  • the coated film can be manufactured by further stretching or shrinking the coated film.
  • thermoplastic resin layer has four or more layers. It also includes the case of 2 layers. Parts and% are based on weight unless otherwise specified.
  • the 40% methyl isobutyl ketone solution of) is mixed at a ratio of 50% by weight of the total solid content of the composition for forming a high refractive index layer to a high refractive index.
  • a layer forming composition H was prepared.
  • Silicone having a weight average molecular weight of 850, 21 parts of tetramethoxysilane, 36 parts of methanol, 2 parts of water, and 2 parts of 0.1N aqueous hydrochloric acid were mixed and stirred in a high-temperature bath at 25 ° C for 2 hours.
  • a resin was obtained.
  • hollow silica fine particle Z silicone resin (condensation compound equivalent) is prepared by carving hollow silica fine particle isopropanol dispersion sol (solid content 20%, average primary particle size approx. 35 nm, outer shell thickness approx. 8 nm) on the silicone resin. ) Was 8: 2 by weight ratio based on solid content.
  • the composition L for forming a low refractive index layer was prepared by diluting with methanol so that the total solid content was 1%.
  • a polybulal alcohol (PVA) film with a refractive index of 1.545 at a wavelength of 380 nm and a refractive index of 1.521 at a wavelength of 780 nm and a thickness of 75 m is uniaxially stretched 2.5 times, and 0.2 gZL of iodine and It was immersed in an aqueous solution containing 30 g of potassium iodide at 30 ° C. for 240 seconds, then immersed in an aqueous solution containing 70 g ZL of boric acid and 30 g ZL of potassium iodide, and simultaneously uniaxially stretched 6.0 times and held for 5 minutes. Finally, it was dried at room temperature for 24 hours to obtain a polarizer P having an average thickness of 30 m and a polarization degree of 99.95%.
  • Polymethylmethallate resin (abbreviated as “PMMA”, water absorption 0.3%, photoelastic coefficient—6.0 X Haze 0.08%, humidity expansion coefficient 28ppmZ% RH, tensile elastic modulus 3.3 GPa) into a double flight type single screw extruder equipped with a leaf disk-shaped polymer filter with 10 ⁇ m mesh Molten resin was fed to one of the multi-hold dies having a die slip surface roughness Ra of 0.1 ⁇ m at an outlet temperature of 260 ° C.
  • PMMA Polymethylmethallate resin
  • cycloaliphatic olefin polymers (norbornene-based ring-opening polymer hydrogenated carotenates, abbreviated as “COP”, water absorption of less than 0.01%, photoelastic coefficient 6.3 X Haze 0.02%, humidity expansion coefficient less than lppmZ% RH, tensile modulus 2.4 GPa) was introduced into a double flight type single screw extruder with a leaf disk-shaped polymer filter with a mesh opening of 10 m. Molten resin was fed to the other of the multi-hold dies having an outlet temperature of 260 ° C. and a die slip surface roughness Ra of 0.1 ⁇ m.
  • each of molten polymethyl metatalylate resin, alicyclic polyolefin polymer, and ethylene acetate butyl copolymer as an adhesive was discharged from a multi-hold die at 260 ° C, and 130 Cast to a chill roll adjusted to 50 ° C, then pass through a chill roll adjusted to 50 ° C, PMMA layer (20 ⁇ m)
  • the polymethylmethalate resin layer has a refractive index n ( ⁇ ) distribution as shown in FIG. 1, and the alicyclic olefin polymer layer has a refractive index ⁇ ( ⁇ ) shown in FIG. Had.
  • the polymethylmetatalate resin layer had a refractive index of 1.512 at a wavelength of 380 nm and a refractive index of 1.488 at a wavelength of 780 nm.
  • the alicyclic olefin polymer layer had a refractive index of 1.555 at a wavelength of 380 nm and a refractive index of 1.529 at a wavelength of 780 nm.
  • a high-frequency transmitter (Kasuga Electric Co., Ltd., high-frequency power supply AGI-024, output 0) on one side of a 100 m long unstretched film made of alicyclic olefin polymer (glass transition temperature 136 ° C) 8KW) was subjected to corona discharge treatment to obtain film 1B having a surface tension of 0.055 NZm.
  • FIG. 2 shows the distribution of the absolute value of the difference between the refractive index n ( ⁇ ) of the polymethylmethacrylate resin layer and the refractive index ⁇ ( ⁇ ) of the alicyclic polyolefin polymer layer.
  • the polymethylmetatalylate resin layer and the alicyclic olefin polymer layer satisfied the relationship of the formula [1].
  • the polyvinyl alcohol and the polymethylmetatalate resin layer contained in the polarizer satisfy the relationship of the formula [3].
  • One side of a 80 / zm thick triacetylcellulose film was coated with 25 mL Zm 2 of a 1.5 molar ZL isopropyl alcohol solution of potassium hydroxide and dried at 25 ° C. for 5 seconds. Next, the film was washed with running water for 10 seconds, and finally, the surface of the film was dried by blowing air at 25 ° C. to obtain a film 2B in which only one surface of the triacetyl cellulose film was saponified.
  • triacetylcellulose (abbreviated as “TAC”) film with water absorption of 4.4%, photoelastic coefficient of 12 X 10 _ 12 Pa _1 , haze of 0.05%, humidity expansion coefficient of 65p pmZ% RH, thickness of 40 ⁇ m
  • TAC triacetylcellulose
  • a single-layer film of polymethylmetatalylate resin having a thickness of 30 ⁇ m was laminated on both surfaces of the surface-treated triacetylcellulose film by a pressure-bonding laminate, to obtain a polarizing plate protective film 2A.
  • the protective film for polarizing plate 2A has a moisture permeability of 61 g / (m 2 '24h), a photoelastic coefficient of 3 ⁇ 10 _12 Pa _1 , and a difference in humidity expansion coefficient between adjacent layers of 37 ppmZ% RH.
  • the flat surface had no linear recesses or linear protrusions.
  • the triacetyl cellulose layer had a refractive index ⁇ ( ⁇ ) having the distribution shown in FIG.
  • Polymethylmetatalylate resin layer has a refractive index of 1.512 at a wavelength of 380 nm, wavelength The refractive index power at 780 nm was Si.
  • Fig. 2 shows the distribution of the absolute value of the difference between the refractive index ⁇ ( ⁇ ) of the polymethylmetatalate resin layer and the refractive index ⁇ ( ⁇ ) of the triacetylcellulose layer.
  • the polymethyl metatalylate resin layer and the triacetyl cellulose layer satisfied the relationship of the formula [1].
  • the polyvinyl alcohol and the polymethylmetallate resin layer contained in the polarizer satisfy the relationship of the formula [3].
  • Tables 1 and 2 The evaluation results are shown in Tables 1 and 2.
  • the both sides of the polarizing plate protective film 1A were subjected to corona discharge treatment using a high frequency transmitter (output 0.8 KW) to obtain a polarizing plate protective film 1C having a surface tension of 0.055 NZm.
  • the composition H for forming a high refractive index layer is applied to one side of the polarizing plate protective film 1A using a die coater, and dried in an oven at 80 ° C. for 5 minutes to obtain a film. It was. Furthermore, ultraviolet rays were applied (accumulated dose 300 mjZcm 2 ) to form a high refractive index layer having a thickness of 5 ⁇ m, and a laminated film 1D was obtained.
  • the refractive index of the high refractive index layer was 1.62, and the pencil hardness was 4H.
  • the low refractive index layer-forming composition L is applied to the high refractive index layer side of the laminated film 1D using a wire bar coater, and left to dry for 1 hour. 1 at 120 ° C
  • Heat treatment was performed in an oxygen atmosphere for 0 minutes to form a low refractive index layer (refractive index 1.36) having a thickness of lOOnm, and a polarizing plate protective film 1E with an antireflection layer was obtained.
  • Polymethylmetatalate rosin (water absorption 0.3%, photoelastic coefficient is 6.0 X Head 0.08%, Humidity expansion coefficient 28ppmZ% RH, Tensile modulus 3.3GPa, “PMMA” (Abbreviation) was put into a double flight type single screw extruder equipped with a leaf filter shaped polymer filter with 10 ⁇ m openings, and the molten resin was melted at a temperature of 260 ° C at the exit of the extruder and the surface roughness Ra of the die slip was 0. Supplied to one of the multi-hold dies, which is 1 ⁇ m.
  • polymethylmetatalate resin tensile modulus 2.8 GPa
  • elastic particles having a number average particle size of 0.4 m
  • an ultraviolet absorber LA31; manufactured by Asahi Denka Kogyo
  • LA31 ultraviolet absorber
  • the surface roughness Ra of the die slip was 0. Supplied to the other end of the multi-hold die that is 1 ⁇ m.
  • polymethylmetatalate resin containing no elastic particles in the molten state, and polymethylmetatalate resin containing ultraviolet absorbers and elastic particles were respectively removed from the multi-hold die at 260 ° C.
  • PMMAfi ⁇ O / zn ⁇ Zl ⁇ PMM A layer (40 ⁇ m) after being discharged and cast on a chill roll adjusted to 130 ° C and then passed through a chill roll adjusted to 50 ° C
  • a protective film 3A for polarizing plate having a width of 600 mm and a thickness of 80 ⁇ m composed of a three-layer structure of ZPMMA layers (20 ⁇ m) was obtained by coextrusion molding.
  • the protective film for polarizing plate 3A has a moisture permeability of 51 g / (m 2 '24h), a photoelastic coefficient of -5 X 10 _12 Pa _1 , and a difference in humidity expansion coefficient between adjacent layers of 2 ppmZ% RH.
  • the flat surface had no linear recesses or linear protrusions.
  • the I ⁇ —PMMA layer had a refractive index of 1.507 at a wavelength of 380 nm and a refractive index of 1.489 at a wavelength of 780 nm.
  • 8GP a abbreviated as “R 2 — PMMA”), a polymer filter in the shape of a leaf disk with an aperture of 10 m. was introduced into a double-flight type single-screw extruder, and melted resin was supplied to one of the multi-hold dies with a die slip surface roughness Ra of 0.1 ⁇ m at an extruder outlet temperature of 260 ° C. .
  • Example 5 R 2 —PMMA layer (10 m) ZR 1 —PMMA layer (20 ⁇ m) / R 2 to PMMA layer, except that R—PMMA was used instead of PMMA.
  • the protective film for polarizing plate 3B has a moisture permeability of 105g Z (m 2 '24h) and a photoelastic coefficient of -4.5 X
  • the difference in the coefficient of humidity expansion between adjacent layers was 2 ppmZ% RH, and the surface was a flat surface with no linear recesses or linear protrusions.
  • the R 2 — PMMA layer had a refractive index of 1.507 at a wavelength of 380 nm and a refractive index of 1.489 at a wavelength of 780 nm.
  • a 1.5 mol ZL isopropyl alcohol solution of potassium hydroxide in 25 mLZm 2 was applied to one side of a 80 ⁇ m-thick triacetylcellulose film and dried at 25 ° C for 5 seconds. Next, the film was washed with running water for 10 seconds, and finally the surface of the film was dried by blowing air at 25 ° C. to obtain a film 4A in which only one surface of the triacetyl cellulose film was saponified.
  • Example 1 a polycarbonate ⁇ (absorption water ratio 0.2% instead of the cycloaliphatic O reflex in polymers, photoelastic coefficient 70 X 10 _ 12 Pa _ 1 , haze 0.08%, humidity expansion coefficient of 32 ppm Z % RH, tensile modulus 2.5 GPa, abbreviated as “PC”, water absorption 0.2%)
  • PC tensile modulus 2.5 GPa
  • the polarizing plate protective film 5A has a moisture permeability of 22 g / (m 2 '24h), a photoelastic coefficient of 27 X 10 _ 12 Pa _ 1 , and a difference in humidity expansion coefficient between adjacent layers of 13 ppmZ% RH.
  • the surface was a flat surface with no linear concave portions or linear convex portions.
  • the polycarbonate resin layer has a refractive index ⁇ ( ⁇ ) having the distribution shown in FIG. 1, and the polymethylmetatalate resin layer has a refractive index ⁇ ( ⁇ ) having the distribution shown in FIG. It was.
  • Figure 2 shows the distribution of the absolute value of the difference between the refractive index n ( ⁇ ) of the polymethylmethacrylate resin layer and the refractive index ⁇ ( ⁇ ) of the polycarbonate resin layer.
  • the polymethylmetatalate resin layer and the polycarbonate resin layer fulfilled the relationship of the formula [1] and were strong.
  • the evaluation results are shown in Tables 1 and 2.
  • Example 3 a polyethylene terephthalate having a thickness of 30 ⁇ m (water absorption 0.5 %, photoelastic coefficient 120 X 10 _12 Pa _1 , haze 0.08 %, humidity expansion coefficient 12 ppmZ% instead of triacetyl cellulose film) (RH, tensile elastic modulus 5GPa, abbreviated as ⁇ PET '') Except for the use of a film, a film 6A having a three-layer structure was prepared in the same manner as in Example 3, and the film 2A was replaced with the film 6A. In the same manner as in Example 3, a polarizing plate 8 was obtained.
  • the protective film 6A for polarizing plate had a moisture permeability of 54 g / (m 2 '24h), a photoelastic coefficient of 50 ⁇ 10 _12 Pa _1 , and a difference in humidity expansion coefficient between adjacent layers of 16 ppmZ% RH.
  • the surface of the polarizing plate protective film 6A was a surface on which linear recesses having a depth of linear recesses of 20 nm to 50 nm and a width of 500 nm to less than 80 Onm were formed.
  • Polyethylene terephthalate resin layer has the refractive index ⁇ ( ⁇ ) distribution shown in Fig. 1, and all polymethylmethalate resin layers have the refractive index ⁇ ( ⁇ ) distribution shown in Fig. 1. /
  • FIG. 2 shows the distribution of the absolute value of the difference between the refractive index ⁇ ( ⁇ ) of the polymethylmethacrylate resin layer and the refractive index ⁇ ( ⁇ ) of the polyethylene terephthalate resin layer.
  • the polymethylmetatalate resin layer and the polyethylene terephthalate resin layer did not satisfy the relationship of the formula [1].
  • the evaluation results are shown in Tables 1 and 2.
  • Example 1 instead of the protective film 1A for the polarizing plate, a single-layer extruded film having a thickness of 80 ⁇ m, which is a polymethylmetallate resin (denoted as “ ⁇ ”), is used as the protective film 7A for the polarizing plate.
  • a polarizing plate 9 was obtained in the same manner as in Example 1 except that it was used.
  • the protective film 7A for polarizing plate has a moisture permeability of 40gZ (m 2 '24h), a photoelastic coefficient of -6 X 10 _12 Pa _ 1 , and the surface has a depth of linear recesses of 20 nm to 50 nm. The surface was formed with a linear recess having a width of 50 Onm or more and less than 800 nm.
  • Figure 1 shows Indicates the refractive index n ( ⁇ ) of a monolayer film of polymethylmetatalate,
  • thermoplastic resin A single layer of thermoplastic resin is formed to obtain a film with a thickness of 100 m.
  • a test piece of lcm x 25 cm is cut out and a tensile tester (Tensilon UTM-10T-PL, manufactured by Toyo Baldwin Company) based on ASTM D882. ) And a tensile speed of 25 mmZmin. Repeat the same measurement 5 times, and use the arithmetic average value as the representative value of tensile modulus.
  • a 100 m thick resin molded article was prepared and measured by a method according to the cup method described in JIS Z 0208 under the test conditions of leaving for 24 hours in an environment of 40 ° C and 92% RH.
  • the unit of moisture permeability is gZ (m 2 ⁇ 24h).
  • the measurement was carried out using a photoelastic constant measuring apparatus (PHEL-20A manufactured by Uniobuto) under the conditions of a temperature of 20 ° C ⁇ 2 ° C and a humidity of 60 ⁇ 5%.
  • PHEL-20A photoelastic constant measuring apparatus manufactured by Uniobuto
  • Humidity expansion coefficient (L L) / (L ⁇ ⁇ )
  • the depth of the linear concave portion, the height of the linear convex portion, and the width thereof were measured.
  • the maximum value of the obtained concave depth and convex height, the width of the concave showing the maximum value and The width of the convex portion was defined as the depth of the linear concave portion of the film, the height of the linear convex portion, and the width thereof, and the following criteria were used for evaluation.
  • A Depth of linear recess or height of convex part is less than 20 nm and width is 800 nm or more
  • O Depth of linear concave part or height of convex part is 20 nm or more and 50 nm or less and width 50
  • Black vinyl tape No. 21 (manufactured by Nitto Denko Corporation) is attached to one side of the polarizing plate protective film (the side to be bonded to the polarizer), and a spectrophotometer (manufactured by JASCO Corporation: “UV-visible near-infrared spectroscopy” Using a photometer V-570 "), the reflection spectrum of the other surface of the polarizing plate protective film at an incident angle of 5 ° was measured, and the reflectance (%) at a wavelength of 550 nm was determined.
  • Tx represents the light transmittance at the measurement point (X)
  • the measurement point was 10 mm from the end.
  • the diagonal intersection of the test polarizing plate was used as the measurement point.
  • the fluctuation range of the polarization degree is 0.5 or less.
  • the degree of polarization variation is greater than 0.5
  • the polarizing plate is left in a constant temperature and humidity room at 80 ° C and 95% RH for 24 hours, and then at 20 ° C and 40% R
  • the operation of leaving in a constant temperature and humidity chamber of H for 24 hours was repeated 20 times.
  • a polarizing plate was punched out into lcm ⁇ 5cm to obtain a test film.
  • the obtained test film was wound around a steel rod having a diameter of 3 mm, and it was tested whether the wound film was broken at the bar. A total of 10 tests were conducted, and the flexibility was expressed by the following index according to the number of breaks.
  • An unstretched film having a thickness of 100 m made of alicyclic olefin-based resin (ZEONOR1420R, manufactured by Nippon Zeon Co., Ltd.) was obtained by an extrusion method.
  • This unstretched film was uniaxially stretched in the longitudinal direction at a temperature of 138 ° C and a magnification of 1.41 times with a longitudinal stretching machine using a float system between rolls, and then stretched with a tenter method.
  • the film was uniaxially stretched at a temperature of 138 ° C. and a magnification of 1.41 times to obtain a second protective film R1 for polarizing plates.
  • the obtained second protective phenol R1 for polarizing plate had Re of 50 nm and Rth of 130 nm measured at a wavelength of 550 nm. Re Is a letter decision in the film plane.
  • Predetermined amounts of the following materials were mixed, the mixture was placed in a sealed container, and the mixture was gradually heated while being slowly stirred, and the temperature was raised to 45 ° C over 60 minutes to dissolve. The inside of the container was adjusted to 1.2 atmospheres. This solution was filtered using Azumi filter paper No. 244 manufactured by Azumi Filter Paper Co., Ltd. and then left as it was to obtain a dope.
  • Tinuvin 109 (Ciba Specialty Chemicals) 3 parts by mass
  • the dope prepared as described above was cast from a die onto a stainless steel belt (both of casting supports!) At a dope temperature of 30 ° C. to form a web. 25 ° C from the back of the stainless steel belt Dry the web on a temperature-controlled stainless steel belt for 1 minute by contacting with hot water at a temperature, and then contact the back of the stainless steel belt with 15 ° C cold water for 15 seconds. Peeled off. The amount of residual solvent in the web at the time of peeling was 100% by mass. Next, the film was stretched at a draw ratio of 1.15 by gripping both ends of the peeled web with a clip using a tenter and changing the clip interval in the width direction.
  • the film temperature was adjusted to 140 ° C to obtain a second protective film R2 for polarizing plate having a film thickness of 60 m.
  • Re of the second protective film for polarizing plate R2 measured at a wavelength of 550 nm was 5 Onm and Rth was 145 nm.
  • Corona discharge treatment was performed on both surfaces of the protective film for polarizing plate 1A using a high-frequency transmitter (output 0.8 KW) so that the surface tension was 0.055 NZm.
  • the composition H for forming a high refractive index layer was applied to one side of the protective film 1A for polarizing plate that had been subjected to the corona discharge treatment using a die coater, and was then placed in a drying oven at 80 ° C. Let dry for minutes.
  • ultraviolet rays were applied (accumulated dose 300 mjZcm 2 ) to form a hard coat layer having a thickness of 3 ⁇ m, and a laminated film C was obtained.
  • the refractive index of the hard coat layer was 1.62, and the pencil hardness was 4H.
  • the composition L for forming a low refractive index layer was applied using a fiber coater, and allowed to stand for 1 hour to dry.
  • a laminated film (first protective film D for polarizing plate D) having an antireflection function is formed by heat-treating in an oxygen atmosphere at ° C for 10 minutes to form a low refractive index layer (refractive index 1.37) with a thickness of lOOnm. Obtained.
  • Acrylic adhesive is applied to both sides of the polarizer P, and the corona discharge treatment surface of the first protective film D for polarizing plate and the second protective film R 1 for polarizing plate are overlapped on the polarizer P, and the roll-to-roll By this method, a bonded observer side polarizing plate CP1 was obtained.
  • Acrylic adhesive is applied to both sides of the polarizer P, and one side of the protective film 1A for the polarizing plate and the second protective film R1 for the polarizing plate R1 are laminated with the corona discharge treatment side facing the polarizer P.
  • the laminated backlight side polarizing plate BP1 was obtained by the tortole roll method.
  • the polarizing plate includes a polarizer 10 and a surface of the polarizer 10 ( A first protective film for polarizing plate 20 laminated on the upper surface in the drawing) and a second protective film for polarizing plate 30 laminated on the back surface of the polarizer 10 (lower surface in the drawing). ing.
  • the polarizing plate first protective film 20 shown in Fig. 5 has a resin layer 21 as an intermediate layer, and an adhesive layer 23 with the resin layer 21 sandwiched between the front and back surfaces of the resin layer 21. And a resin layer 22 laminated on each other.
  • the first protective film for polarizing plate has a three-layer structure excluding the adhesive layer.
  • An antireflection layer 40 is laminated on the surface of the resin layer 22.
  • the first protective film 20 for a polarizing plate shown in FIG. 6 has a resin layer 21 and an adhesive layer on the surface of the resin layer 21. And a resin layer 22 laminated through 23. That is, the first protective film for polarizing plate has a two-layer structure excluding the adhesive layer.
  • An antireflection layer 40 is laminated on the surface of the resin layer 22.
  • the polarizing plate can be disposed on at least one of the viewer side and the backlight side of the liquid crystal panel.
  • the display mode of the liquid crystal panel can be a TN (Twisted Nematic) mode, a VA (Vertical Alignment) mode, or an IPS (In Plane Switching) mode.
  • Example 7 instead of the second protective film for polarizing plate R1, the second protective film for polarizing plate An observer side polarizing plate CP2 and a knock light side polarizing plate BP2 were obtained in the same manner as in Example 7 except that the film R2 was used, and a liquid crystal display device 2 was produced. Table 2 shows the evaluation results.
  • a first protective film E for polarizing plate E was obtained in the same manner as in Example 7 except that the protective film 3A for polarizing plate was used instead of the protective film 1A for polarizing plate.
  • An observer-side polarizing plate CP3 and a backlight-side polarizing plate BP2 were obtained, and a liquid crystal display device 3 was produced.
  • a first protective film E for polarizing plate E was obtained in the same manner as in Example 8 except that the protective film 3A for polarizing plate was used instead of the protective film 1A for polarizing plate.
  • An observer-side polarizing plate CP4 and a backlight-side polarizing plate BP4 were obtained, and a liquid crystal display device 4 was produced.
  • Example 9 in place of the polarizing plate second protective film R1, the polarizing plate protective film 3B was used in the same manner as in Example 9, but the observer side polarizing plate CP5, the knock light side polarizing plate BP5 Got.
  • the viewer side polarizing plate CP5 On one side of this liquid crystal cell, the viewer side polarizing plate CP5 is placed so that the slow axis of the polarizing plate protective film 3B is parallel to the rubbing direction of the liquid crystal cell, and the polarizing plate protective film 3B side is the liquid crystal cell. Affixed to the side. Next, a backlight-side polarizing plate BP5 was attached to the other surface of the liquid crystal cell in a cross-col arrangement to obtain a liquid crystal display device 5.
  • Reflection spectrum power of specular reflection light for 5 degree incident light of CIE standard light source D65 in the wavelength range of 380 nm to 780 nm is also calculated by calculating L * value, a * value, b * value of L * a * b * color space.
  • unevenness AEab * value in CIE1976L * a * b * color space
  • the difference between AL *, a *, and b * measured at any two locations 10cm apart is the difference between AL * and Aa *
  • the brightness ratio (contrast) of a black display and a white display is measured using a luminance meter (Ez—Contrast 160D, manufactured by ELDIM).
  • the contrast value measured from the direction tilted from 0 to 80 ° in all directions with respect to the normal of the display screen is 10 or more.
  • the liquid crystal display device produced in the above evaluation test of the liquid crystal display performance was darkly displayed and left for 300 hours at a temperature of 60 ° C and a humidity of 90%. After that, the entire display screen darkly displayed in the darkroom was observed from the front and evaluated using the following indicators.
  • a protective film for polarizing plate was punched out to lcm ⁇ 5cm to obtain a test film.
  • the obtained test film was wound around a steel rod of 3 mm ⁇ , and it was tested whether or not the wound film was broken at the bar. A total of 10 tests were carried out, and the flexibility was expressed by the following index according to the number of times the force was broken.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

 熱可塑性樹脂層がk個(kは2以上の整数)積層されてなるフィルムであって、第i番目の熱可塑性樹脂層の380nm~780nmの範囲の波長λにおける屈折率ni(λ)が、第i+1番目の熱可塑性樹脂層の380nm~780nmの範囲の波長λにおける屈折率ni+1(λ)と、|ni(λ)-ni+1(λ)|≦0.05(ただし、iは1~k-1の整数を表す。)の関係を有する、偏光板用保護フィルム、該偏光板用保護フィルムと偏光子とを積層させてなる偏光板。

Description

偏光板用保護フィルム
技術分野
[0001] 本発明は、偏光板用保護フィルム、偏光板および液晶表示装置に関し、さらに詳細 には、干渉縞等の光の干渉による視認不良の無い、耐擦傷性に優れた、液晶表示 装置等に好適な偏光板用保護フィルム、偏光板および該液晶表示装置に関する。 背景技術
[0002] 液晶表示装置等に用いられる偏光板は、偏光子と保護フィルムとからなる積層体で ある。この偏光板を構成する偏光子としては、ポリビニルアルコールを溶液流延法に より製膜したフィルムにヨウ素又は二色性染料を吸着させ、ホウ酸溶液中で延伸させ たフィルムが通常使用されて!、る。
一方、偏光板を構成する保護フィルムとしてトリァセチルセルロースフィルムが広く 用いられている。し力し、トリァセチルセルロースフィルムは、防湿性とガスバリア性が 悪いので、偏光板の耐久性、耐熱性、機械的強度などが不十分である。
[0003] 偏光板の耐久性や耐熱性を向上させるために、トリァセチルセルロースフィルム以 外の保護フィルムを使用することが提案されている。例えば、特許文献 1には、ノルボ ルネン系榭脂層と、ヘイズの値力 、さい榭脂層とからなる積層フィルムを保護フィル ムとして用いることが提案されている。そして、この保護フィルムを、ポリビュルアルコ ールを含有してなる偏光子に、ノルボルネン系榭脂層の面を向けて、貼り付けて、偏 光板を得ることが開示されている。
[0004] また特許文献 2には、トリァセチルセルロースよりも吸湿性が小さく正の光弾性定数 を有する榭脂層と、トリァセチルセルロースよりも吸湿性が小さく負の光弾性定数を有 する榭脂層とが積層された、光弾性定数が小さい保護フィルムが提案されている。そ して、この保護フィルムをポリビュルアルコールを含有してなる偏光子に貼着してなる 偏光板が開示されている。
[0005] 特許文献 1:特開 2005 - 115085号公報
特許文献 2:特開 2000 - 206303号公報 発明の開示
発明が解決しょうとする課題
[0006] ところが、特許文献 1や特許文献 2に開示されて ヽる技術だけで得られる保護フィ ルムでは、液晶表示装置等に取り付けたときに、干渉縞が生じたり、摩擦によって傷 が付いたりして、観察側力もの視認性が不良となることがあった。
[0007] 本発明の目的は、干渉縞等の光の干渉による視認不良の無い、耐擦傷性に優れ た、液晶表示装置等に好適な偏光板用保護フィルム、偏光板、およびこの液晶表示 装置を提供することにある。
課題を解決するための手段
[0008] 本発明者は、前記目的を達成するために検討した結果、熱可塑性榭脂層が k個 (k は 2以上の整数)積層されてなるフィルムであって、第 i番目の熱可塑性榭脂層の 38 0nm〜780nmの範囲の波長 λにおける屈折率 η ( λ )と、第 i+ 1番目の熱可塑性 榭脂層の 380nm〜780nmの範囲の波長 λにおける屈折率 η ( λ )とが特定の関
i + 1
係を満足するフィルムを、偏光子と積層することによって、干渉縞等の光の干渉が生 じ難くなることを見出した。
[0009] 光弾性係数の絶対値が 10 X 10_12Pa_1以下であるフィルムを、偏光子と積層する ことによって、表示画面の縁近傍での光漏れ、色むら、着色等による視認不良が無く
、耐擦傷性に優れた偏光板が得られることを見出した。
[0010] 負の光弾性係数を有する熱可塑性榭脂層及び正の光弾性係数を有する熱可塑性 榭脂層をそれぞれ少なくとも一層含む k個 (kは 2以上の整数)の層からなるフィルムを
、偏光子と積層することによって、表示画面の縁近傍での光漏れ、色むら、着色等に よる視認不良が無い偏光板が得られることを見出した。
[0011] 熱可塑性榭脂層がいずれもヘイズ 0. 5%以下の材料で形成され、且つ、非晶質熱 可塑性榭脂を含んで 、ることに加え、第 i番目の熱可塑性榭脂層の湿度膨張係数 β と第 i+ 1番目の熱可塑性榭脂層の湿度膨張係数 e
i + lとが特定の関係を満たすフィ ルムを用いて得られる偏光板は、高温高湿環境下においても偏光子と保護層とが剥 離しないことを見出した。
[0012] 偏光子に最も近い位置 (第 1番目)にある熱可塑性榭脂層の 380ηπ!〜 780nmの 範囲の波長 λにおける屈折率 ( λ )と、偏光子に含有されるポリビニルアルコール の 380ηπ!〜 780nmの範囲の波長 λにおける屈折率 η ( λ )と力 特定の関係を満
b
たすフィルムを用いて得られる偏光板は、コントラストが高ぐスジ等による視認不良 が無ぐ且つ可撓性及び耐擦傷性に優れていることを見出した。
本発明は、これらの知見に基づ!/ヽて完成するに至ったものである。
[0013] 本発明は、下記のものを含む。
(1) 熱可塑性榭脂層が k個(kは 2以上の整数)積層されてなるフィルムであって、 第 i番目の熱可塑性榭脂層の波長 380nm〜780nmの範囲の波長 λにおける屈 折率 η ( λ )と、第 i+ 1番目の熱可塑性榭脂層の 380nm〜780nmの範囲の波長 λ における屈折率 η ( λ )とが、式〔1〕の関係を有する偏光板用保護フィルム。
i+ 1
I η ( λ ) -η ( λ )
i i+ 1 I ≤0. 05 式〔1〕
ただし、 iは i〜k— lの整数を表す。
(2) 光弾性係数の絶対値が 10 X 10_12Pa_1以下である(1)に記載の偏光板用保 護フィルム。
(3) 熱可塑性榭脂層が k個(kは 2以上の整数)積層されてなるフィルムであって、 前記熱可塑性榭脂層は、いずれもヘイズ 0. 5%以下の材料で形成され、且つ非晶 質熱可塑性榭脂を含んでおり、
第 i番目の熱可塑性榭脂層の湿度膨張係数 βと第 i+ 1番目の熱可塑性榭脂層の 湿度膨張係数 e
i + 1とが式〔2〕の関係を満たす偏光板用保護フィルム。
\ β - β ≤40p m/%RH 式〔2〕
i i+ 1 I p
ただし、 iは i〜k— lの整数を表す。
(4) 少なくとも 1層は吸水率 0. 5%以下の熱可塑性榭脂層である(1)に記載の偏光 板用保護フィルム。
[0014] (5) 共押出成形で得られた(1)に記載の偏光板用保護フィルム。
(6) 鉛筆硬度力 H以上である(1)に記載の偏光板用保護フィルム。
(7) 第 k番目の熱可塑性榭脂層の表面に、直接または間接的に、さらに屈折率が 1 . 6以上のハードコート層を有する(1)に記載の偏光板用保護フィルム。
(8) 第 k番目の熱可塑性榭脂層の表面に、直接または間接的に、さらに反射防止 層を有する(1)に記載の偏光板用保護フィルム。
(9) 前記第 k番目の熱可塑性榭脂層の表面は、深さ 50nm以上で、かつ幅が 500η m以下の線状凹部、および高さ 50nm以上で、かつ幅が 500nm以下の線状凸部の ない平坦な面である(1)に記載の偏光板用保護フィルム。
[0015] (10) 偏光子と、この偏光子の少なくとも一方の面に積層される(1)に記載の偏光板 用保護フィルムとを備えなる偏光板。
(11) 偏光子がポリビュルアルコールを含有するものであり、
前記偏光板用保護フィルムが第 1番目の熱可塑性榭脂層を前記偏光子側に向け て積層されており、
前記第 1番目の熱可塑性榭脂層の、 380nm〜780nmの範囲の波長における屈 折率 η ( λ )と、前記ポリビュルアルコールの、 380nm〜780nmの範囲の波長にお ける屈折率 η ( λ )とが、式〔3〕の関係を満足する(10)に記載の偏光板。
b
I η ( λ ) -η ( λ )
丄 b I ≤0. 05 式〔3〕
( 12) 偏光子がポリビュルアルコールを含有するものであり、
前記偏光板用保護フィルムが第 1番目の熱可塑性榭脂層を偏光子側に向けて積 層されており、該第 1番目の熱可塑性榭脂層の波長 380nmにおける屈折率 n (380 )及び波長 780nmにおける屈折率 n (780)と、
前記ポリビュルアルコールの波長 380nmにおける屈折率 n (380)及び波長 780η b
mにおける屈折率 n (780)とが、
b
式〔4〕の関係を満足する(10)に記載の偏光板。
I I n (380)— n (380) |
1 b
- I n (780)— n (780) | | ≤0. 02 式〔4〕
1 b
(13) (10)に記載の偏光板を少なくとも 1枚と、液晶パネルとを備える液晶表示装 置。
発明の効果
[0016] 本発明の偏光板用保護フィルムは、干渉縞等の光の干渉が起きにくぐ摩擦による 傷の発生が小さいので、偏光子と積層することによって、視認性不良となることが無 Vヽ偏光板を得ることができる。 本発明の偏光板用保護フィルムは、熱や変形による応力によって偏光板の位相差 が変化しにくいので、予測不能の好ましくない応力が加わっても、表示画面の縁近傍 で、光漏れ、色むら、着色等がない偏光板を得ることができる。また過酷な環境下に おいても偏光子と保護層とが剥離することがほとんど無い。
本発明の偏光板は、コントラストが高ぐスジ等が発生しない。また、可撓性、耐擦傷 性に優れて 、るので視認性が不良となることが無 、。
そして、本発明の偏光板は特に大面積の液晶表示装置等に好適である。 図面の簡単な説明
[0017] [図 1]本実施例で用いた、各榭脂層の屈折率 η ( λ )を示す図である。
[図 2]本実施例で用いた各榭脂層の屈折率 η ( λ )の差の絶対値の分布を示す図で ある。
[図 3]本実施例で用いたポリビニルアルコールの屈折率 η ( λ )と各榭脂層の屈折率 η ( λ )との差の絶対値の分布を示す図である。
[図 4]本実施例及び比較例で行った偏光度及び透過率の測定点を示す図である。
[図 5]本発明の偏光板用第二保護フィルムが積層された偏光板を模式的に示す図で ある。
[図 6]本発明の偏光板用第二保護フィルムが積層された偏光板を模式的に示す図で ある。
符号の説明
[0018] 10 :偏光子 ; 20 :偏光板用保護フィルム ; 30 :偏光板用第二保護フィルム ;
21, 22 :榭脂層 ; 23 :接着剤層 ; 40 :反射防止層 ; ΡΜΜΑ:ポリメチルメタ クリレート榭脂 ; COP :脂環式ォレフインポリマー ; TAC :トリァセチルセルロー ス ; PC :ポリカーボネート榭脂 ; PET:ポリエチレンテレフタレート榭脂; 発明を実施するための最良の形態
[0019] 本発明の偏光板用保護フィルムは、熱可塑性榭脂層が k個 (kは 2以上の整数)積 層されてなる。すなわち、本偏光板用保護フィルムは、第 1番目の熱可塑性榭脂層か ら第 k番目の熱可塑性榭脂層まで力 Sこの順に積層されてなる。
熱可塑性榭脂層を構成する熱可塑性榭脂は、例えば、ポリカーボネート榭脂、ポリ エーテルスルホン榭脂、ポリエチレンテレフタレート榭脂、ポリイミド榭脂、ポリメチルメ タクリレート榭脂、ポリスルホン樹脂、ポリアリレート榭脂、ポリエチレン榭脂、ポリ塩ィ匕 ビュル榭脂、ジァセチルセルロース、トリァセチルセルロース、および脂環式ォレフィ ンポリマーなど力も選択することができる。
[0020] 脂環式ォレフインポリマーは、特開平 05— 310845号公報に記載されている環状 ォレフィンランダム多元共重合体、特開平 05— 97978号公報に記載されている水素 添加重合体、特開平 11— 124429号公報に記載されている熱可塑性ジシクロペンタ ジェン系開環重合体及びその水素添加物等を挙げることができる。なお、例示した すべての熱可塑性榭脂を本発明に適用できるということではなぐ同種の熱可塑性 榭脂の中には下記の要件を満たすものと満たさないものとがあるため、下記要件を満 たすものを適宜選択する。
本発明に用いる熱可塑性榭脂は、顔料および染料等の着色剤、蛍光増白剤、分 散剤、熱安定剤、光安定剤、紫外線吸収剤、帯電防止剤、酸化防止剤、滑剤、およ び溶剤などの配合剤が適宜配合されたものであってもよい。
[0021] 滑剤としては、二酸化ケイ素、二酸化チタン、酸化マグネシウム、炭酸カルシウム、 炭酸マグネシウム、硫酸バリウム、および硫酸ストロンチウムなどの無機粒子、ならび に、ポリメチルアタリレート、ポリメチルメタタリレート、ポリアクリロニトリル、ポリスチレン 、セルロースアセテート、およびセルロースアセテートプロピオネートなどの有機粒子 が挙げられる。滑剤を構成する粒子としては、有機粒子が好ましぐこの中でもポリメ チルメタタリレート製の粒子が特に好ましい。
[0022] 滑剤としては、ゴム状弾性体力もなる弾性体粒子を用いることができる。ゴム状弾性 体としては、アクリル酸エステル系ゴム状重合体、ブタジエンを主成分とするゴム状重 合体、およびエチレン 酢酸ビニル共重合体等が挙げられる。アクリル酸エステル系 ゴム状重合体としては、ブチルアタリレート、 2—ェチルへキシルアタリレート等を主成 分とするものがある。これらのうち、ブチルアタリレ一トを主成分としたアクリル酸エステ ル系重合体およびブタジエンを主成分とするゴム状重合体が好まし 、。弾性体粒子 は、二種の重合体が層状になったものであってもよぐその代表例としては、プチルァ クリレート等のアルキルアタリレートとスチレンのグラフトイ匕ゴム弾性成分と、メチルメタ クリレート及び又はメチルメタタリレートとアルキルアタリレートの共重合体力 なる硬 質榭脂層とがコア一シェル構造で層を形成している弾性体粒子が挙げられる。
[0023] 弾性体粒子は、熱可塑性榭脂中に分散した状態における数平均粒径が通常 2. 0
/zm以下、好ましくは 0. 1〜1. O/zm、より好ましくは 0. 1〜0. 5 mである。弹'性体 粒子の一次粒子径カ S小さくても、凝集などによって形成される二次粒子の数平均粒 径が大きいと、偏光板用保護フィルムはヘイズ (曇り度)が高くなり、光線透過率が低 くなるので、表示画面用には適さなくなる。また、数平均粒径力 、さくなりすぎると可 橈性が低下する傾向にある。
[0024] 本発明にお 、て、弾性体粒子の波長 380nm〜780nmにおける屈折率 η ( λ )は
Ρ
、マトリックスとなる熱可塑性榭脂の波長 380nm〜780nmにおける屈折率 η ( λ )と の間に、式〔5〕の関係を満たすことが好ま 、。
I η (λ)-η (λ)
r I ≤ 0. 05 〔5〕
P
特に、 I n (λ)— n (λ) I≤0. 045であることがより好ましい。なお、 n (λ)及び
P r P
n ( λ )は、波長えにおける主屈折率の平均値である。 I η (λ)-η (λ) |の値が r P r
上記値を超える場合には、界面での屈折率差によって生じる界面反射により、透明 性を損なうおそれがある。
[0025] 本発明に用いる熱可塑性榭脂は、 1mm厚における、 400〜700nmの可視領域の 光の透過率が 80%以上のものが好ましぐ 85%以上のものがより好ましぐ 90%以 上のものがさらに好ましい。熱可塑性榭脂は、透明性の観点から非晶性の樹脂が好 ましい。また、熱可塑性榭脂は、ガラス転移温度が 60〜200°Cであるものが好ましく 、 100〜180°Cであるものがより好ましい。なお、ガラス転移温度は、示差走査熱量 分析 (DSC)により測定できる。
[0026] 本発明の偏光板用保護フィルムは、第 i番目の熱可塑性榭脂層の 380ηπ!〜 780η mの範囲の波長 λにおける屈折率 η ( λ )力 第 i+ 1番目の熱可塑性榭脂層の 380 ηπ!〜 780nmの範囲の波長えにおける屈折率 η (λ)と、式〔1〕の関係を有する。
i+1
I η (λ)-η (λ)
i+1 I≤0. 05 式〔1〕
i
ただし、 iは l〜k— 1の整数を表す。特に、本偏光板用保護フィルムは、 I λ )— n . (λ) I≤0. 045の関係を満たすことがより好ましい。 なお、 n ( λ )及び n ( λ )は、波長えにおける主屈折率の平均値である。
i i+ 1 I η ( λ
i
)— n ( λ ) Iの値が、 i= l〜k— 1の一部または全部の値に対して上記値を超える i + 1
場合には、界面での屈折率差によって生じる界面反射により、偏光板用保護フィルム 表面に干渉縞が生じるおそれがある。なお、相互に隣接する第 i番目の熱可塑性榭 脂層と第 i+ 1番目の熱可塑性榭脂層とは直接に接していてもよいし、後述する接着 層を介して接して 、てもよ 、。
[0027] 本発明の偏光板用保護フィルムは、光弾性係数の絶対値が 10 X 10_ 12Pa_ 1以下 であることが好ましい。
前記光弾性係数とは、応力を受けたときに生じる複屈折の応力依存性を示す値で あり、屈折率の差 Δ ηが、応力 σと光弾性係数 Cの積で求められる関係を有する。こ の光弾性係数は、温度 20°C ± 2°C、湿度 60 ± 5%の条件下で、光弾性定数測定装 置を用いて測定することができる。なお、本発明において、光弾性係数の絶対値は、 より好ましくは 7 X 10_ 12Pa_ 1以下、特に好ましくは 5 X 10_ 12Pa_ 1以下である。
[0028] 本発明の偏光板用保護フィルムは、積層された熱可塑性榭脂層の内の少なくとも 1 層が負の光弾性係数を有する熱可塑性榭脂層であり、且つ別の少なくとも 1層が正 の光弾性係数を有する熱可塑性榭脂層であることが好ましい。
[0029] 負の光弾性係数を有する熱可塑性榭脂層は、正の応力 σを受けたときに Δ ηが負 となる榭脂層である。正の光弾性係数を有する熱可塑性榭脂層は、正の応力 σを受 けたときに Δ ηが正となる榭脂層である。各熱可塑性榭脂層を構成する熱可塑性榭 脂は、上記係数を持つ層を形成できるものであれば、特に制限されず、一種類の榭 脂であってもよいし、二種以上を組み合わせてもよい。二種以上の組み合わせは、同 符号の光弾性係数を有する熱可塑性榭脂同士を組み合わせたものだけでなぐ負 の光弾性係数を有する熱可塑性榭脂と正の光弾性係数を有する熱可塑性榭脂とを 組み合わせたものであってもよ!/、。
[0030] 負の光弾性係数を有する熱可塑性榭脂としては、例えば、ポリメチルメタタリレート 榭脂、ポリスチレン、ポリ一 αメチルスチレン、エチレン一テトラシクロドデセン付カロ共 重合体などが挙げられる。
正の光弾性係数を有する熱可塑性榭脂としては、ポリカーボネート榭脂、ポリスル ホン榭脂、ポリアリレート榭脂、ポリエーテルスルホン榭脂、ポリエチレンテレフタレー ト榭脂、テトラシクロドデセンゃジシクロペンタジェンなどのノルボルネン構造含有モノ マーの開環重合体及びその水素化物、トリァセチルセルロースなどが挙げられる。
[0031] 本発明の偏光板用保護フィルムは、前記熱可塑性榭脂層がいずれもヘイズ 0. 5% 以下の材料で形成され、且つ非晶質熱可塑性榭脂を含んでおり、第 i番目の熱可塑 性榭脂層の湿度膨張係数 e 1
iと第 i+ 番目の熱可塑性榭脂層の湿度膨張係数 e i+ 1 とが式〔2〕の関係を満たすことが好ま 、。
\ β - β I ≤40ppm/%RH 式〔2〕
i i + 1
[0032] 本発明の偏光板用保護フィルムにお ヽて、前記熱可塑性榭脂が!ヽずれもヘイズ 0 . 5%以下の材料で形成され、且つ非晶質熱可塑性榭脂を含んでおり、前記式〔2〕 の関係を満たすことにより、変形が起きにくぐ摩擦による傷の発生が小さいので、視 認性が不良となることが無ぐまた過酷な環境下においても偏光子と保護層とが剥離 することが無 、偏光板を得ることができる。
[0033] 該熱可塑性榭脂層は、いずれもヘイズが 0. 1%以下の材料で形成されていること 力 Sさらに好ましい。ヘイズ ίお IS (日本工業規格) K7105に準拠して、通常の射出成 形法により(表面に凸凹の無い成形金型を用いて)作製した厚み 2mmの平板 5枚を 、 日本電色工業社製「濁度計 NDH— 300A」を用いて測定し、その算術平均値をへ ィズの値とする。
[0034] 非晶質熱可塑性榭脂は、融点を有しない熱可塑性榭脂であり、前記熱可塑性榭脂 の中から選択することができる。非晶質熱可塑性榭脂の含有量は、熱可塑性榭脂層 100重量部中に 60〜: LOO重量部であることが好ましい。なお、上記式〔2〕は、 I 13. - β I ≤30ppm/%RHであることがより好ましい。
i + 1
[0035] 本発明の偏光板用保護フィルムは、積層された熱可塑性榭脂層のうち少なくとも 1 層の吸水率を 0. 5%以下とすることができ、さらには 0. 1%以下とすることができる。 吸水率が低いものを偏光板用保護フィルムに用いることにより偏光板の耐久性を高 めることができる。熱可塑性榭脂層の吸水率は、 JIS K7209により求めることができ る。
[0036] 本発明の偏光板用保護フィルムは、その面内レターデーシヨン Re (Re = d X (n n )で定義される値、 nは面内の遅相軸の屈折率、 nは面内で遅相軸と直交する方 向の屈折率; dは偏光板用保護フィルムの平均厚みである)が小さいものが好ましぐ 具体的には波長 550nmにおいて面内レターデーシヨン Reが好ましくは 50nm以下、 より好ましくは 1 Onm以下である。
[0037] また、本発明の偏光板用保護フィルムは、膜厚方向のレターデーシヨン Rth (Rth= d X ( [n +n ]Z2— n )で定義される値; nは面内の遅相軸の屈折率、 nは面内で 遅相軸と直交する方向の屈折率; nは膜厚方向の屈折率)の絶対値が小さいものが 好ましい。具体的には、当該偏光板用保護フィルムの膜厚方向レターデーシヨン Rth は、波長 550nmにおいて一 10nm〜 + 10nmであることが好ましぐ 5nm〜 + 5n mであることがより好ましい。
[0038] 本発明の好適な偏光板用保護フィルムは、第 k番目の熱可塑性榭脂層と第 1番目 の熱可塑性榭脂層との間に、少なくとも 1層の熱可塑性榭脂層(以下、「中間層」とい う。)を有するものである。中間層は、第 k番目の熱可塑性榭脂層及び第 1番目の熱 可塑性榭脂層を形成する熱可塑性榭脂とは異なる種類の熱可塑性榭脂で構成して もよいし、同じ種類の熱可塑性榭脂で構成してもよい。
[0039] 本発明の偏光板用保護フィルムを構成する各熱可塑性榭脂層のそれぞれの厚み は特に制限されないが、第 k番目の熱可塑性榭脂層の厚みは、通常 5〜: LOO /z mで あり、好ましくは 10 /z m以上であり、さらに好ましくは 10〜50 /ζ πιである。第 1番目の 熱可塑性榭脂層の厚みは、通常 5〜100 μ mであり、好ましくは 10〜50 μ mである。 この際、第 k番目の熱可塑性榭脂層の厚みと、第 1番目の熱可塑性榭脂層の厚みと がほぼ等しいことが好ましい。具体的には、第 1番目の熱可塑性榭脂層の厚みと第 k 番目の熱可塑性榭脂層の厚みとの差の絶対値が、 20 μ m以下であることが好ましく 、 10 m以下であることがより好ましい。
[0040] また、第 1番目の熱可塑性榭脂層と第 k番目の熱可塑性榭脂層との間に、必要に 応じて設けられる中間の熱可塑性榭脂層の厚みは、通常 5〜: LOO /z mであり、好まし くは 10〜50 /ζ πιである。中間の熱可塑性榭脂層の厚みと、第 k番目の熱可塑性榭 脂層の厚みまたは第 1番目の熱可塑性榭脂層の厚みとの比(中間の層の厚み:第 1 番目の層または第 k番目の層の厚み)は、特に制限されないが、 5 : 1〜1 : 5であること が好ましい。
このような偏光板用保護フィルム全体の厚みは、通常 20〜200 mであり、好ましく は 40〜: L 00 /z mである。
[0041] 第 1番目の熱可塑性榭脂層を形成する熱可塑性榭脂は、アクリル榭脂、脂環式ォ レフインポリマー、ポリカーボネート榭脂から選択したものが好ましぐ特にポリメチルメ タクリレート榭脂などのアクリル榭脂から選択したものが好ましい。
[0042] 第 k番目の熱可塑性榭脂層を形成する熱可塑性榭脂は、硬!、ものが好ま ヽ。具 体的には鉛筆硬度 (試験荷重を 500gに変更した以外は、 JIS K5600— 5— 4に準 拠)で、 2Hより硬いものが好ましい。第 k番目の熱可塑性榭脂層を形成する熱可塑 性榭脂として、最も好まし 、ものはポリメチルメタタリレート榭脂などのアクリル榭脂か ら選択されるものである。
また、偏光板用保護フィルムを偏光子に設けて偏光板を構成した際に、偏光板の 反り、湾曲、丸まりなどを防ぐために、第 k番目の熱可塑性榭脂層を形成する熱可塑 性榭脂と、第 1番目の熱可塑性榭脂層を形成する熱可塑性榭脂とは、同じ種類の熱 可塑性榭脂から選択することが好まし 、。
[0043] 積層された熱可塑性榭脂層は、それぞれが直接に接していても良いし、接着層を 介して接していてもよい。接着層は、その平均厚みが、通常 0. 01〜30 /ζ πι、好まし くは 0. 1〜15 111でぁる。接着層は、 3 K7113による引張り破壊強度が 40MPa 以下の層である。接着層を構成する接着剤としては、アクリル系接着剤、ウレタン系 接着剤、ポリエステル系接着剤、ポリビュルアルコール系接着剤、ポリオレフイン系接 着剤、変性ポリオレフイン系接着剤、ポリビニルアルキルエーテル系接着剤、ゴム系 接着剤、塩ィ匕ビュル一酢酸ビュル系接着剤、 SEBS系接着剤、エチレン一スチレン 共重合体などのエチレン系接着剤、エチレン (メタ)アクリル酸メチル共重合体、ェ チレン (メタ)アクリル酸ェチル共重合体などのアクリル酸エステル系接着剤などが 挙げられる。
[0044] 本発明の偏光板用保護フィルムの透湿度は、特に制限されないが、 40g/ (m2- 2 4h)以下であることが好ましぐ 10gZ (m2' 24h)以下であることがより好ましい。当該 フィルムの透湿度は、 40°C、 92%R. H.の環境下に 24時間放置する試験条件で、 J IS Z 0208に記載のカップ法により測定することができる。
[0045] また、本発明の偏光板用保護フィルムは、第 i番目の熱可塑性榭脂層の引張弾性 率を A、第 i+ 1番目の熱可塑性榭脂層の引張弾性率を A とした際に、 iのすベて i i+ 1
の値に対して、 I A -A I ≥0. 5GPaとすることができる。このような構成とするこ
i+ 1 i
とにより、干渉縞等による光学性能の低下を防止しつつ、当該保護フィルムが設けら れた偏光板の強度および可撓性を高めることができる。第 k番目の熱可塑性榭脂層 の引張弾性率 Aが 3. OGPa以上とすることができる。第 k番目の熱可塑性榭脂層の
k
引張弾性率 Aは、これに隣接する第 k—l番目の熱可塑性榭脂層の引張弾性率 A
k k
_よりも大きいこととすることができる。また、第 1番目の熱可塑性榭脂層の引張弾性 率 Aが 3. OGPa以上とすることができる。
[0046] また、熱可塑性榭脂層の総積層数は、 7層以下であることが好ましぐ 5層以下であ ることがより好ましい。このような積層数より多い場合には、各層の面状や厚みの制御 が困難になるおそれがある。
[0047] また、本発明の偏光板用保護フィルムには、第 k番目の熱可塑性榭脂層の表面に 線状凹部や線状凸部が形成されず、表面が平坦な面であることが好ましい。仮に、 線状凹部や線状凸部が形成されていたとしても、深さが 50nm未満、または、幅が 50 Onmより大きい線状凹部や、高さが 50nm未満、または、幅が 500nmより大きい線状 凸部であることが好ましい。より好ましくは、深さが 30nm未満、または、幅が 700nm より大きい線状凹部であり、高さが 30nm未満、または、幅が 700nmより大きい線状 凸部である。さらに、第 1番目の熱可塑性榭脂層の表面にも、第 k番目の熱可塑性榭 脂と同様に、上述した線状凹部や線状凸部が形成されないことが好ましい。線状凹 部や線状凸部が形成されないことにより、光漏れや光干渉などを防ぐことができる。
[0048] 上述した線状凹部の深さや、線状凸部の高さ、及びこれらの幅は、次に述べる方法 で求めることができる。偏光板用保護フィルムに光を照射して、透過光をスクリーンに 映し、スクリーン上に現れる光の明又は暗の縞の有る部分 (この部分は線状凹部の深 さ及び線状凸部の高さが大きい部分である。)を 30mm角で切り出す。切り出したフィ ルム片の表面を三次元表面構造解析顕微鏡 (視野領域 5mm X 7mm)を用いて観 察し、これを 3次元画像に変換し、この 3次元画像から MD方向の断面プロファイルを 求める。断面プロファイルは視野領域で lmm間隔で求める。この断面プロファイルに 、平均線を引き、この平均線力 線状凹部の底までの長さが線状凹部深さ、または平 均線力 線状凸部の頂までの長さが線状凸部高さとなる。平均線とプロファイルとの 交点間の距離が幅となる。これら線状凹部深さ及び線状凸部高さの測定値力 それ ぞれ最大値を求め、その最大値を示した線状凹部又は線状凸部の幅をそれぞれ求 める。以上から求められた線状凹部深さ及び線状凸部高さの最大値、その最大値を 示した線状凹部の幅及び線状凸部の幅を、そのフィルムの線状凹部の深さ、線状凸 部の高さ及びそれらの幅とする。
[0049] このような大きさの線状凸部及び線状凹部を有しない熱可塑性榭脂層は、例えば、 Tダイ式の押出成形法においては、ダイのリップ部の表面粗さを小さくする、リップ先 端部にクロム、ニッケル、チタンなどのメツキを施す、リップ先端部にセラミックスを溶 射する、リップの内面に PVD (Phisical Vapor Deposition)法などにより TiN、 TiAlN、 TiC、 CrN、 DLC (ダイァモンド状カーボン)などの被膜を形成する、ダイか ら押し出された直後の溶融榭脂周りの温度分布、空気流れなどを均一に調整する、 熱可塑性榭脂層を形成する榭脂としてメルトフローレート値が同程度のものを選択す る、などの手段を行うことによって、またキャスト成形法においては、表面粗さが小さい キャスト支持フィルムを用いる、塗布機の表面粗さを小さくする、さらに塗布層の乾燥 時の温度分布、乾燥温度、乾燥時間を調整する、などの手段を行うことによって、得 ることがでさる。
[0050] 本発明の偏光板用保護フィルムは、その製法によって特に制限されず、例えば、単 層の熱可塑性榭脂フィルムを貼り合わせることによって得られたもの、複数の熱可塑 性榭脂を共押出成形して得られたもの、熱可塑性榭脂フィルムに熱可塑性榭脂溶液 をキャストして得られたものなどを挙げることができる。この中でも、生産性の観点から 、本偏光板用保護フィルムは、共押出成形で得られたものが好ましい。共押出成形 の場合には、複雑な工程 (例えば、乾燥工程や塗工工程)が不要なので、ゴミなどの 外部異物の混入が少なく光学特性に優れるフィルムを提供できる利点がある。
[0051] 本発明の偏光板用保護フィルムには、防眩手段を設けてもよい。
防眩手段が形成された偏光板用保護フィルムのヘイズは、 5〜60%、好ましくは 10 〜50%である。ヘイズは、市販の濁度計、例えば日本電色工業 (株)製、 NDH— 30 OAヘーズメーターを用いて測定できる。
[0052] 防眩手段形成後の本発明の偏光板用保護フィルムの透過像鮮明度は、 0. 5mm 幅の光学櫛を使用した場合、 50〜100%、好ましくは 60〜: LOO%程度である。透過 像鮮明度が前記範囲にあると、透過光のボケが少ないため、高精細表示装置であつ ても画素の輪郭がボケるのを防止でき、その結果文字ボケを防止できる。
[0053] 透過像鮮明度とは、フィルムを透過した光のボケや歪みを定量ィ匕する尺度である。
透過像鮮明度は、フィルム力ゝらの透過光を移動する光学櫛を通して測定し、光学櫛 の明暗部の光量により値を算出する。すなわち、フィルムが透過光をぼやかす場合、 光学櫛上に結像されるスリットの像は太くなるため、透過部での光量は 100%以下と なり、一方、不透過部では光が漏れるため 0%以上となる。透過像鮮明度の値 Cは光 学櫛の透明部の透過光最大値 Mと不透明部の透過光最小値 mから次式により求め ることがでさる。
[0054] C (%) = ( (M-m) / (M+m) ) X 100
Cの値が 100%に近づく程、像のボケが小さ!/、ことを示す。
[0055] 前記透過像鮮明度測定の測定装置としては、スガ試験機 (株)製写像性測定器 IC M— 1が使用できる。光学櫛としては、 0. 125〜2mm幅の光学櫛を用いることがで きる。
なお、本発明では、前記防眩手段形成後の前記透過像鮮明度及びヘイズの双方 力 共に前記範囲にあるのが特に好ましい。
[0056] 防眩手段の形成方法は特に制限されず、適宜な防眩手段を採用することができる 。例えば、偏光板用保護フィルムに微細凹凸を付与する方法や、屈折率が不連続で ある領域を含む皮膜層を形成して、内部散乱による防眩機能を付与する方法が挙げ られる。
微細凹凸の形成方法は特に制限されず、適宜な方式を採用することができる。たと えば、前記偏光板用保護フィルムに直接またはその他の層が積層された状態で、サ ンドブラストやエンボスロール、化学エッチング等の方式で粗面化処理して微細凹凸 を付与する方法ゃ賦形フィルムにより凹凸を転写する方法の他、偏光板用保護フィ ルムを構成する榭脂中に無機および Zまたは有機の微粒子を分散させる方法や、前 記偏光板用保護フィルム上に無機および Zまたは有機の微粒子を含む透明榭脂材 料力 なる防眩層を形成する方法が挙げられ、上記方法を 2種類以上組み合わせて 用いても良い。
[0057] 前記微粒子は、 2種類以上用いてもよい。例えば、透明榭脂材料との屈折率差によ つて拡散効果を発現する微粒子と榭脂層表面に凹凸を形成することにより拡散効果 を発現させる微粒子とを併用することができる。
前記微粒子は、偏光板用保護フィルムを構成する榭脂中又は透明榭脂材料中に、 均一に分散した形で存在しても、膜厚方向に対して偏在した形であってもよい。また 、微粒子は表面力 突出する形で存在していても構わないが、透過画像鮮明度の向 上の観点から、微粒子の防眩層の表面よりの突出は 0. 5 m以下とすることが好まし い。
[0058] 屈折率が不連続である領域を含む皮膜層を形成して、内部散乱による防眩機能を 付与する方法としては、屈折率が異なる 2種類以上の組成物を用いて紫外線照射等 により相分離構造を有する皮膜層を形成させる方法や、透明榭脂材料と透明榭脂材 料とは異なる屈折率を有する微粒子を含む皮膜層を形成する方法が挙げられる。
[0059] 本発明の偏光板用保護フィルムは、第 k番目の熱可塑性榭脂層の表面に、直接ま たは他の層を介して、さらに反射防止層を有することが好ましい。反射防止層の平均 厚み ίま、好ましく ίま 0. 01〜1 μ m、より好ましく ίま 0. 02-0. 5 μ mである。反射防止 層は、公知のものから選択できる。例えば、第 k番目の熱可塑性榭脂層よりも屈折率 の小さい、好ましくは屈折率 1. 30〜: L 45の低屈折率層を積層したもの、無機化合 物からなる低屈折率層と無機化合物カゝらなる高屈折率層とを繰り返し積層したもの、 高い表面硬度を有する高屈折率層の上に、上記低屈折率層を積層したもの、などが 挙げられる。
[0060] 低屈折率層としては、微小空気層を有する材料で形成されたもの等を用いることが できる。本発明においては、高い表面硬度を有する高屈折率層の上に微小空気層 を有する材料で形成された低屈折率層を積層したものを用いてもょ ヽ。反射防止層 が積層された偏光板用保護フィルムは、入射角 5° 、 430〜700nmにおける反射率 が 2. 0%以下であるとともに、 550nmにおける反射率が 1. 0%以下であることが好ま しい。
[0061] また、 CIE1976L*a*b*色空間の A Eab*値で示される色味ばらつき力 5cm離れ た任意の 2つの場所で 2以下であることが好ましい。 A Eab*値は、波長 380〜780n mの領域における CIE標準光源 D65の 5° 入射光に対する正反射光の反射スぺタト ルから、 L*a*b*色空間の L*値、 a*値、 b*値を算出し、色味むらとして、 5cm離れた 任意の 2つの場所で測定されたそれぞれの L*値、 a*値、 b*値について、その差であ る A L*値、 A a*値、 A b*値を求め、 A Eab* = ( A L*2+ A a*2+ A b*2) 1/2の式に 代入することにより算出される。
[0062] 次に、高い表面硬度を有する高屈折率層の上に微小空気層を有する材料で形成 された低屈折率層を積層した反射防止層について説明する。なお、高い表面硬度を 有する高屈折率層の上に微小空気層を有する材料で形成された低屈折率層を積層 した反射防止層は低屈折率層を観察側に向けて積層される。
[0063] 本発明の低屈折率層には、微小空気層を有する材料で形成されたものを用いるこ とができる。低屈折率層の厚さは、通常 10〜: LOOOnm、好ましくは 30〜500nmであ る。微小空気層を有する材料としては、エア口ゲルが挙げられる。エア口ゲルは、マト リックス中に微小な気泡が分散した透明性多孔質体である。気泡の大きさは大部分 が 200nm以下であり、気泡の含有量は、通常 10〜60体積%、好ましくは 20〜40体 積%である。エア口ゲルには、シリカエア口ゲルと、中空粒子をマトリックス中に分散さ せた多孔質体とがある。
[0064] シリカエア口ゲルは、米国特許第 4, 402, 927号公報、米国特許第 4, 432, 956 号公報および米国特許第 4, 610, 863号公報などに開示されているように、アルコ キシシランの加水分解重合反応によって得られたシリカ骨格力 なるゲル状ィ匕合物 を、アルコールあるいは二酸ィ匕炭素などの溶媒 (分散媒)で湿潤状態にし、そしてこ の溶媒を超臨界乾燥で除去することによって製造することができる。また、シリカエア 口ゲルは、米国特許第 5, 137, 279号公報、米国特許 5, 124, 364号公報などに 開示されているように、ケィ酸ナトリウムを原料として、上記と同様にして製造すること ができる。 [0065] 本発明において、特開平 5— 279011号公報および特開平 7— 138375号公報( 米国特許第 5, 496, 527号)に開示されているようにして、アルコキシシランの加水 分解、重合反応によって得られたゲル状化合物を疎水化処理して、シリカエア口ゲル に疎水性を付与することが好まし 、。この疎水性を付与した疎水性シリカエア口ゲル は、湿気や水などが浸入し難くなり、シリカエア口ゲルの屈折率や光透過性などの性 能が劣化することを防ぐことができる。
[0066] 中空微粒子がマトリックス中に分散された多孔質体としては、特開 2001— 233611 号公報および特開 2003— 149642号公報に開示されているような多孔質体が挙げ られる。なお、中空微粒子がマトリックス中に分散された多孔質体は、前記熱可塑性 榭脂層には含まれな ヽものとする。
[0067] マトリックスに用いる材料は、中空微粒子の分散性、多孔質体の透明性、多孔質体 の強度などの条件に適合する材料力 選択される。例えば、ポリエステル榭脂、アタリ ル榭脂、ウレタン榭脂、塩化ビュル榭脂、エポキシ榭脂、メラミン榭脂、フッ素榭脂、 シリコーン榭脂、プチラール榭脂、フエノール榭脂、酢酸ビュル榭脂、アルコキシシラ ンなどの加水分解性有機珪素化合物およびその加水分解物などが挙げられる。これ らの中でも中空微粒子の分散性、多孔質体の強度力もアクリル榭脂、エポキシ榭脂、 ウレタン榭脂、シリコーン榭脂、加水分解性有機珪素化合物およびその加水分解物 が好ましい。
[0068] 中空微粒子は特に制限されないが、無機中空微粒子が好ましぐ特にシリカ系中 空微粒子が好ましい。無機中空微粒子を構成する無機化合物としては、 SiO、 Al O
2 2
、 B O、 TiO、 ZrO、 SnO、 Ce O、 P O、 Sb O、 MoO、 ZnO、 WO、 TiO
3 2 3 2 2 2 2 3 2 5 2 3 3 2 3 2
-Al O、 TiO -ZrO、 In O—SnO、 Sb O—SnOなどを例示することができる
2 3 2 2 2 3 2 2 3 2
。なお、上記「-」は、複合酸化物であることを示す。
[0069] 中空微粒子の外殻は細孔を有する多孔質なものであってもよぐあるいは細孔が閉 塞されて空洞が外殻の外側に対して密封されているものであってもよい。外殻は、内 側層と外側層など力もなる多層構造であることが好まし 、。外側層の形成に含フッ素 有機珪素化合物を用いた場合は、中空微粒子の屈折率が低くなるとともに、マトリツ タスへの分散性もよくなり、さらに低屈折率層に防汚性を付与する効果も生じる。この 含フッ素有機珪素化合物の具体例としては、 3, 3, 3—トリフルォロプロピルトリメトキ シシラン、メチル 3, 3, 3—トリフルォロプロピルジメトキシシラン、ヘプタデカフルォ 口デシルメチルジメトキシシラン、ヘプタデカフルォロデシルトリクロロシラン、ヘプタデ カフルォロデシルトリメトキシシラン、トリデカフルォロォクチルトリメトキシシランなどが 挙げられる。
[0070] 外殻の厚みは通常 l〜50nm、好ましくは 5〜20nmである。また、外殻の厚みは、 無機中空微粒子の平均粒子径の 1Z50〜1Z5の範囲にあることが好ましい。
[0071] また、空洞には中空微粒子を調製するときに使用した溶媒および Zまたは乾燥時 に浸入する気体が存在してもよいし、空洞を形成するための前駆体物質が空洞に残 存していてもよい。
[0072] 中空微粒子の平均粒径は特に制限されないが、 5〜2, OOOnmの範囲力 子ましく、 20〜: LOOnmがより好ましい。ここで、平均粒径は、透過型電子顕微鏡観察による数 平均粒子径である。
[0073] 本発明においては、高い表面硬度を有する高屈折率層、第 k番目の熱可塑性榭脂 層で兼ねることができるし、第 k番目の熱可塑性榭脂層の表面に該熱可塑性榭脂層 とは別の層(この別に設ける層のことを「ノ、ードコート層」ということがある。)として設け てもよい。高屈折率層の厚さは、好ましくは 0. 5〜30 μ m、より好ましくは 3〜15 μ m である。前記高屈折率層の屈折率は、 1. 6以上であることが好ましい。
[0074] 高屈折率層(ハードコート層)は、 JIS K5600— 5— 4で示す鉛筆硬度試験 (試験 板はガラス板、試験荷重は 500gに変更)で「H」以上の硬度を示す、熱や光硬化性 の材料力も形成されることが好ましい。この際、このようなハードコート層が設けられた 偏光板用保護フィルムの鉛筆硬度力 H以上となることが好ま U、。ハードコート層用 材料としては、有機シリコーン系、メラミン系、エポキシ系、アクリル系、ウレタンアタリ レート系などの有機ハードコート材料;および、ニ酸ィ匕ケィ素などの無機ハードコート 材料;などが挙げられる。なかでも、接着力が良好であり、生産性に優れる観点から、 ウレタンアタリレート系および多官能アタリレート系ハードコート材料の使用が好ましい
[0075] 高屈折率層は、その屈折率 n 力 その上に積層される低屈折率層の屈折率 nとの 間に、 n ≥1. 53、及び n 1/2—0. 2<n <n 1/2+0. 2、の関係を有することが、反
H H L H
射防止機能を発現させるために好まし 、。
[0076] 高屈折率層には、所望により、屈折率の調整、曲げ弾性率の向上、体積収縮率の 安定化、耐熱性、帯電防止性、防眩性などの向上を図る目的で、各種フィラーを含 有せしめてもよい。さらに、酸化防止剤、紫外線吸収剤、光安定剤、帯電防止剤、レ ベリング剤、消泡剤などの各種添加剤を配合することもできる。
[0077] 高屈折率層の屈折率や帯電防止性を調整するためのフイラ一としては、酸ィ匕チタ ン、酸ィ匕ジルコニウム、酸化亜鉛、酸化錫、酸ィ匕セリウム、五酸ィ匕アンチモン、錫をド ープした酸化インジウム(ITO)、アンチモンをドープした酸化錫(IZO)、アルミニウム をドープした酸ィ匕亜鉛 (AZO)、フッ素をドープした酸ィ匕錫 (FTO)が挙げられる。透 明性を維持できるという点から五酸化アンチモン、 ITO、 IZO、 ATO、 FTOが好まし V、フイラ一として挙げられる。これらフィラーの一次粒子径は通常 lnm以上 lOOnm以 下、好ましくは lnm以上 30nm以下である。
[0078] 防眩性を付与するためのフイラ一としては、平均粒径が 0. 5〜10 μ mのものが好ま しぐ 1. 0〜7. 0 mのものがより好ましぐ 1. 0〜4. O /z mがさらに好ましい。防眩 性を付与するフイラ一の具体例としては、ポリメチルメタタリレート榭脂、フッ化ビ -リデ ン榭脂およびその他のフッ素榭脂、シリコーン榭脂、エポキシ榭脂、ナイロン榭脂、ポ リスチレン榭脂、フエノール榭脂、ポリウレタン榭脂、架橋アクリル榭脂、架橋ポリスチ レン榭脂、メラミン榭脂、ベンゾグアナミン榭脂などの有機樹脂からなるフィラー;また は酸ィ匕チタン、酸ィ匕アルミニウム、酸化インジウム、酸化亜鈴、酸ィ匕アンチモン、酸ィ匕 錫、酸ィ匕ジルコニウム、 ITO、フッ化マグネシウム、酸ィ匕ケィ素などの無機化合物から なるフィラーが挙げられる。
[0079] 本発明の偏光板用保護フィルムでは、前記低屈折率層の防汚性を高めるために、 前記低屈折率層の上 (観察側)にさらに防汚層を設けてもよい。防汚層は、偏光板用 保護フィルムの表面に撥水性、撥油性、耐汗性、防汚性などを付与できる層である。 防汚層を形成するために用いる材料としては、フッ素含有有機化合物が好適である 。フッ素含有有機化合物としては、フルォロカーボン、パーフルォロシラン、又はこれ らの高分子化合物などが挙げられる。また、防汚層の形成方法は、形成する材料に 応じて、蒸着、スパッタリング等の物理的気相成長法、化学的気相成長法、湿式コー ティング法等を用いることができる。防汚層の平均厚みは好ましくは l〜50nm、より 好ましくは 3〜35nmである。
[0080] また、本発明の偏光板用保護フィルムには、ガスノリア層、透明帯電防止層、ブラ イマ一層、電磁遮蔽層、下塗り層等のその他の層を設けてもよい。
[0081] 本発明の偏光板用保護フィルムを偏光子の少なくとも一方の面に積層させること〖こ よって本発明の偏光板を形成することができる。つまり、本発明の偏光板は、偏光子 の両面に前記偏光板用保護フィルムを設けた態様であってもよいし、偏光子の一方 の面のみに前記偏光板用保護フィルムを設けた態様であってもよい。
本発明に用いる偏光子は液晶表示装置等に用いられて!/、る公知の偏光子である。 例えば、ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させた後、ホ ゥ酸浴中で一軸延伸することによって得られるもの、またはポリビュルアルコールフィ ルムにヨウ素又は二色性染料を吸着させ延伸しさらに分子鎖中のポリビュルアルコ ール単位の一部をポリビ-レン単位に変性することによって得られるものなどが挙げ られる。その他に、グリッド偏光子、多層偏光子、コレステリック液晶偏光子などの偏 光を反射光と透過光に分離する機能を有する偏光子が挙げられる。これらのうちポリ ビュルアルコールを含有する偏光子が好まし 、。
[0082] 本発明に用いる偏光子に自然光を入射させると一方の偏光だけが透過する。本発 明に用いる偏光子の偏光度は特に限定されないが、好ましくは 98%以上、より好まし くは 99%以上である。偏光子の平均厚みは好ましくは 5〜80 μ mである。
[0083] 本発明の好ま 、偏光板は、前記偏光板用保護フィルムが第 1番目の熱可塑性榭 脂層を前記偏光子側に向けて積層されており、第 1番目の熱可塑性榭脂層の、 380 nm〜780nmの範囲の波長における屈折率 η ( λ )と、ポリビュルアルコールの、 38 Οηπ!〜 780nmの範囲の波長における屈折率 η ( λ )と力 式〔3〕の関係を満足する b
ものである。
I η ( λ ) -η ( λ ) I ≤0. 05 式〔3〕
1 b
[0084] また、本発明の好ま 、偏光板は、前記偏光板用保護フィルムの第 1番目の熱可 塑性榭脂層が偏光子側に向いて積層されており、該第 1番目の熱可塑性榭脂層の 波長 380nmにおける屈折率 (380)及び波長 780nmにおける屈折率 (780)と 、前記偏光子に含有させるポリビニルアルコールの波長 380nmにおける屈折率 n (
b
380)及び波長 780nmにおける屈折率 n (780)とが、式〔4〕の関係を満足する。
b
I I n (380)—n (380) |
1 b
- I n (780)—n (780) | | ≤0. 02 式〔4〕
1 b
[0085] すなわち可視光領域の上限付近の波長における第 1番目の熱可塑性榭脂層の屈 折率と偏光子に含有されるポリビニルアルコールの屈折率との差が、下限付近の波 長におけるその差と、それほど違わないということである。特に、 I I n (380)— n (3
1 b
80) I - I n (780)— n (780) | | ≤0. 01であることカ好まし! /、。なお、 n (380)
l b 1
、及び n (780)はそれぞれの波長における主屈折率の平均値である。 n (380)及
1 b
び n (780)は無配向のポリビニルアルコールの屈折率である。
b
[0086] 本発明の液晶表示装置は、前記本発明の偏光板を少なくとも 1枚と、液晶パネルと を少なくとも備えるものである。液晶パネルは、液晶表示装置に用いられているものな らば特に制限されない。例えば、 TN (Twisted Nematic)型液晶パネル、 STN (S uper Twisted Nematic)型液晶パネノレ、 HAN (Hybrid Alignment Nemati c)型液晶パネル、 IPS (In Plane Switching)型液晶パネル、 VA (Vertical Ali gnment)型液晶パネノレ、 MVA (Multiple Vertical Alignment)型液晶パネノレ、 OCB (Optical Compensated Bend)型液晶パネルなどが挙げられる。
[0087] 本発明の好ましい液晶表示装置は、前記偏光板が液晶パネルの観察側に備えら れているものである。液晶表示装置には、通常 2枚の偏光板が液晶パネルを挟むよう にして備えられて 、る。液晶パネルの観察側は観察者が表示画像を視認できる側で ある。本発明の偏光板、特に前記偏光板用保護フィルムを観察側に積層した偏光板 は、優れた視認性を有する
ので、液晶パネルの観察側に配置することが好ま 、。
[0088] また、本発明の偏光板は、偏光子の一方の面に前記偏光板用保護フィルム (偏光 板用第一保護フィルム)を積層し、偏光子のもう一方の面に後述する偏光板用第二 保護フィルムを積層した構成とすることもできる。
この偏光板用第二保護フィルムは、二軸性を有し、厚さ方向のレターデーシヨン Rt hが 70〜400nmであることが好ましい。なお、厚さ方向のレターデーシヨン Rthは、 前述した通り、 Rth= ( (n +n ) /2-n ) X dで示される値である。また、二軸性のフ イルムとは、 n >n >nを満たすフィルムのことである。このような偏光板を液晶表示 装置に用いた場合には、バーティカルァライメント (VA)モードの液晶パネルに好適 に用いることができる。
[0089] このような偏光板用第二保護フィルムが設けられた偏光板を、液晶表示装置に 2枚 使用する場合には、偏光板用第二保護フィルムの Rthが 50ηπ!〜 250nmであること が好ましぐ液晶表示装置に 1枚使用する場合には、偏光板用第二保護フィルムの R thが 100nm〜400nmであることが好まし!/、。
[0090] 偏光板用第二保護フィルムとしては、熱可塑性榭脂を含有するフィルムを延伸した もの、無延伸の熱可塑性榭脂フィルム上に光学異方性層を形成したもの、熱可塑性 榭脂を含有するフィルム上に光学異方性層を形成した後、さらに延伸したもの等を用 いることができる。延伸フィルムは、単層の形態であっても、複数積層した形態であつ てもよい。
[0091] 偏光板用第二保護フィルムに用いられる熱可塑性榭脂を含有するフィルムにおい て、当該熱可塑性榭脂としては、前記偏光板用保護フィルムで挙げられたものと同様 のものを用いることができる。この中でも、透明性、低複屈折性、寸法安定性等に優 れること等から、脂環式ォレフインポリマー、セルロースエステルが好ましい。
[0092] セルロースエステルとしては、 ASTM D— 817— 96に準じて求めた、ァシル基の 置換度が 2. 5〜2. 9であるものを好ましく用いることができる。ァシル基には、ァセチ ル基、プロピオ-ル基、ブチリル基が挙げられる。本発明においてはセルロースァセ テートプロピオネートのような置換基の異なるセルロースエステルを混合したものも好 ましく用いることができ、中でもァセチル基とプロピオ-ル基を、ァセチル基の置換度 を Aとしプロピオ-ル基の置換度を Bとした時に、下記式を満足するように含むセル口 ースエステルが好ましい。
(1) 2. 5< (A+B) < 2. 9
(2) 1. 5<A< 2. 9
[0093] 熱可塑性榭脂には、必要に応じてレターデーシヨン上昇剤を添加することができる 。レターデーシヨン上昇剤とは、熱可塑性榭脂に添加した際に、無添加の場合に比 ベてレターデーシヨンを上昇させる化合物のことである。セルロースエステルにレター デーシヨン上昇剤を添加する場合には、セルロースアセテート 100質量部に対して、 0. 01〜20質量部の範囲で使用することが好ましぐ 0. 1〜10質量部の範囲で使用 することがより好ましぐ 0. 2〜5質量部の範囲で使用することがさらに好ましぐ 0. 5 〜2質量部の範囲で使用することが最も好ましい。二種類以上のレターデーシヨン上 昇剤を併用してもよい。レターデーシヨン上昇剤は、 250〜400nmの波長領域に最 大吸収を有することが好ましい。レターデーシヨン上昇剤は、可視領域に実質的に吸 収を有して 、な 、ことが好まし 、。
[0094] また、レターデーシヨン上昇剤としては、少なくとも二つの芳香族環を有する化合物 を用いることが好ましい。なお、本明細書において、「芳香族環」は、芳香族炭化水素 環に加えて、芳香族性へテロ環を含む。芳香族炭化水素環は、 6員環 (すなわち、ベ ンゼン環)であることが特に好ましい。芳香族性へテロ環は、一般に、不飽和へテロ 環である。芳香族性へテロ環は、 5員環、 6員環または 7員環であることが好ましぐ 5 員環または 6員環であることがさらに好ましい。芳香族性へテロ環は、一般に、最多の 二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子および硫黄原子が好 ましぐ窒素原子が特に好ましい。芳香族性へテロ環の例には、フラン環、チォフェン 環、ピロール環、ォキサゾール環、イソォキサゾール環、チアゾール環、イソチアゾー ル環、イミダゾール環、ピラゾール環、フラザン環、トリァゾール環、ピラン環、ピリジン 環、ピリダジン環、ピリミジン環、ピラジン環および 1, 3, 5—トリァジン環が含まれる。 芳香族環としては、ベンゼン環、フラン環、チォフェン環、ピロール環、ォキサゾール 環、チアゾール環、イミダゾール環、トリァゾール環、ピリジン環、ピリミジン環、ピラジ ン環および 1, 3, 5—トリァジン環が好ましい。
[0095] レターデーシヨン上昇剤が有する芳香族環の数は、 2〜20であることが好ましぐ 2 〜 12であることがより好ましぐ 2〜8であることがさらに好ましぐ 2〜6であることが最 も好ましい。二つの芳香族環の結合関係は、(a)縮合環を形成する場合、(b)単結合 で直結する場合および (c)連結基を介して結合する場合に分類できる (芳香族環の ため、スピロ結合は形成できな 、)。結合関係は、(a)〜(c)の 、ずれでもよ 、。 [0096] 前記熱可塑性榭脂を含むフィルムを延伸する方法としては、テンターを用いて横方 向に一軸延伸する方法等の一軸延伸法;固定するクリップの間隔が開かれて縦方向 の延伸と同時にガイドレールの広がり角度により横方向に延伸する同時二軸延伸法 や、ロール間の周速の差を利用して縦方向に延伸した後にその両端部をクリップ把 持してテンターを用いて横方向に延伸する逐次二軸延伸法などの二軸延伸法;横又 は縦方向に左右異なる速度の送り力若しくは引張り力又は引取り力を付加できるよう にしたテンター延伸機や、横又は縦方向に左右等速度の送り力若しくは引張り力又 は引取り力を付加できるようにして、移動する距離が同じで延伸角度 Θを固定できる ようにした若しくは移動する距離が異なるようにしたテンター延伸機を用いて斜め延 伸する方法:が挙げられる。いずれの方法を用いたとしても、最終的に、前記熱可塑 性榭脂を含むフィルムを延伸した後に、偏光板用第二保護フィルムが、 n >n >n の関係を満たして 、ればよ 、。
[0097] 延伸温度としては、偏光板用第二保護フィルムを形成する材料、特に樹脂の中で、 ガラス転移温度が最も低 、榭脂のガラス転移温度を Tgとすると、通常 Tg〜Tg + 20 °Cの範囲で行うことができる。また、延伸倍率としては、通常 1. 1〜3. 0倍の範囲に て、所望の光学特性を得るために調整すればよい。
[0098] 前記偏光板用第二保護フィルムは、波長 550nmに対する面内の遅相軸方向の屈 折率を n、面内の遅相軸と面内で直交する方向の屈折率を n、厚さ方向の屈折率を nとしたとき、 n >n >nを満たす。 n >n >nを満たさないと、この偏光板用第二保 護フィルムが積層された前記偏光板を液晶表示装置に使用した際に、液晶表示装 置の画面のコントラストが低下する上に、画面の着色が生じるため、画面の視認性が 極端に低下するからである。このため、偏光板用第二保護フィルムの規格検査時の 歩留まりが低下し、液晶表示装置のトータルの製造効率が悪ィ匕することになる。
[0099] また、前記光学異方性層の形成には、高分子化合物や液晶性化合物を用いること ができる。これらは、単独で使用してもよいし併用してもよい。
[0100] 前記高分子化合物としては、ポリアミド、ポリイミド、ポリエステル、ポリエーテルケトン 等を使用できる。具体的には、特表平 8— 511812号(国際公開番号 W094Z2 4191号)、同 2000— 511296号(国際公開番号 WO97Z44704)等記載のィ匕合 物が挙げられる。
[0101] また、前記液晶性化合物としては、棒状液晶でも、ディスコティック液晶でも良ぐま たそれらが高分子液晶、もしくは低分子液晶、さらには、低分子液晶が架橋され液晶 性を示さなくなつたものも含まれる。棒状液晶の好ましい例としては、特開 2000— 30 4932号公報に記載のものが挙げられる。ディスコティック液晶の好ましい例としては 、特開平 8— 50206号公報に記載のものが挙げられる。
[0102] 前記光学異方性層は、一般にディスコティック化合物及び他の化合物 (例、可塑剤 、界面活性剤、ポリマー等)を溶剤に溶解した溶液を配向膜上に塗布し、乾燥し、次 いでディスコティックネマチック相形成温度まで加熱し、その後、配向状態 (ディスコテ イツタネマチック相)を維持して冷却することにより得ることができる。あるいは、前記光 学異方性層は、ディスコティック化合物及び他の化合物(更に、例えば重合性モノマ 一、光重合開始剤)を溶剤に溶解した溶液を配向膜上に塗布し、乾燥し、次いでディ スコテイツタネマチック相形成温度まで加熱したのち UV光の照射等により重合させ、 さら〖こ冷去 Pすること〖こより得ることができる。
[0103] 前記光学異方性層の厚さは、 0. 1〜10 μ mであることが好ましぐ 0. 5〜5 μ mで あることがさらに好ましぐ 0. 7〜5 mであることが最も好ましい。ただし、液晶セル のモードによっては、高い光学的異方性を得るために、厚く(3〜10/z m)する場合も ある。光学異方性層を含む偏光板用第二保護フィルムの製造方法は、特に限定され ず、例えば、前記高分子化合物および Zまたは液晶性化合物を熱可塑性榭脂を含 むフィルム等に塗工して塗工膜を製造し、その塗工膜をさらに延伸や収縮させること により製造できる。
実施例
[0104] 以下、実施例及び比較例を示し、本発明を更に具体的に説明するが、本発明は下 記の実施例に制限されるものではなぐ例えば、熱可塑性榭脂層が 4層以上の場合 や 2層の場合も含んでいる。また、部および%は、特に記載のない限り重量基準であ る。
[0105] (高屈折率層 (ハードコート層)形成用組成物の調製)
6官能ウレタンアタリレートオリゴマー 30部、ブチノレアタリレート 40部、イソポロ-ルメ タクリレート 30部及び 2, 2 ジフエ-ルェタン 1 オン 10部をホモジナイザーで混 合し、五酸ィ匕アンチモン微粒子(平均粒子径 20nm、水酸基がパイロクロア構造の表 面に現れているアンチモン原子に 1つの割合で結合している。 )の 40%メチルイソブ チルケトン溶液を、五酸ィ匕アンチモン微粒子の重量が高屈折率層形成用組成物全 固形分の 50重量%を占める割合で混合して、高屈折率層形成用組成物 Hを調製し た。
[0106] (低屈折率層形成用組成物の調製)
テトラメトキシシランのオリゴマー 21部、メタノール 36部、水 2部、及び 0. 01Nの塩 酸水溶液 2部を混合し、 25°Cの高温槽中で 2時間撹拌して、重量平均分子量 850の シリコーンレジンを得た。次に、中空シリカ微粒子のイソプロパノール分散ゾル(固形 分 20%、平均一次粒子径約 35nm、外殻厚み約 8nm)を前記シリコーンレジンにカロ えて、中空シリカ微粒子 Zシリコーンレジン (縮合ィ匕合物換算)が固形分基準の重量 比で 8 : 2となるようにした。最後に全固形分が 1%になるようにメタノールで希釈して 低屈折率層形成用組成物 Lを調製した。
[0107] (偏光子の作製)
波長 380nmにおける屈折率が 1. 545、波長 780nmにおける屈折率が 1. 521で 、厚さ 75 mのポリビュルアルコール(PVA)フィルムを、 2. 5倍に一軸延伸し、ヨウ 素 0. 2gZL及びヨウ化カリウム 60gZLを含む 30°Cの水溶液中に 240秒間浸漬し、 次いでホウ酸 70gZL及びヨウ化カリウム 30gZLを含む水溶液に浸漬すると同時に 6. 0倍に一軸延伸して 5分間保持した。最後に、室温で 24時間乾燥し、平均厚さ 30 mで、偏光度. 99. 95%の偏光子 Pを得た。
[0108] <実施例 1 >
(偏光板用保護フィルムの作製)
ポリメチルメタタリレート榭脂(「PMMA」と略記、吸水率 0. 3%、光弾性係数—6. 0 X
Figure imgf000027_0001
ヘイズ 0. 08%、湿度膨張係数 28ppmZ%RH、引張弾性係数 3. 3 GPa)を、 目開き 10 μ mのリーフディスク形状のポリマーフィルターを設置したダブル フライト型一軸押出機に投入し、押出機出口温度 260°Cで溶融榭脂をダイスリップの 表面粗さ Raが 0. 1 μ mであるマルチマ-ホールドダイの一方に供給した。 一方、脂環式ォレフインポリマー(ノルボルネン系モノマーの開環重合体水素添カロ 物、「COP」と略記、吸水率 0. 01 %未満、光弾性係数 6. 3 X
Figure imgf000028_0001
ヘイズ 0. 02%、湿度膨張係数 lppmZ%RH未満、引張弾性率 2. 4GPa)を、 目開き 10 m のリーフディスク形状のポリマーフィルターを設置したダブルフライト型の一軸押出機 に導入し、押出機出口温度 260°Cで溶融榭脂をダイスリップの表面粗さ Raが 0. 1 μ mであるマルチマ二ホールドダイの他方に供給した。
[0109] そして、溶融状態のポリメチルメタタリレート榭脂、脂環式ォレフインポリマー、接着 剤としてエチレン 酢酸ビュル共重合体のそれぞれをマルチマ-ホールドダイから 2 60°Cで吐出させ、 130°Cに温度調整された冷却ロールにキャストし、その後、 50°C に温度調整された冷却ロールに通して、 PMMA層 (20 μ m) 接着層(4 m)— C OP層(32 μ m) 接着層(4 μ m) PMMA層 (20 μ m)の 3層構成からなる、幅 60 Omm,厚さ 80 mの偏光板用保護フィルム 1Aを共押出成形により得た。偏光板用 保護フィルム 1Aは、その透湿度が 3. 5g/ (m2 - 24h)、光弾性係数が 1 X 10"12Pa" \隣接する層間の湿度膨張係数差が 27ppmZ%RH、その表面は線状凹部や線 状凸部のな 、平坦な面であった。ポリメチルメタタリレート榭脂層は 、ずれも屈折率 n ( λ )が図 1に示す分布を有し、脂環式ォレフインポリマー層は屈折率 η ( λ )が図 1に 示す分布を有していた。ポリメチルメタタリレート榭脂層は波長 380nmにおける屈折 率が 1. 512、波長 780nmにおける屈折率が 1. 488であった。脂環式ォレフインポリ マー層は波長 380nmにおける屈折率が 1. 555、波長 780nmにおける屈折率が 1. 529であった。
[0110] (偏光板の作製)
脂環式ォレフインポリマー(ガラス転移温度 136°C)からなる厚さ 100 mの長尺の 未延伸フィルムの片面に、高周波発信機 (春日電機 (株)、高周波電源 AGI— 024、 出力 0. 8KW)を用いてコロナ放電処理を行い、表面張力が 0. 055NZmのフィル ム 1Bを得た。
[0111] 偏光子 Pの両面にアクリル系接着剤を塗布し、偏光板用保護フィルム 1Aの一面及 びフィルム 1Bのコロナ放電処理面を偏光子 Pに向けて重ね、ロールトウロール法によ り貼り合わせ偏光板 1を得た。 図 2にポリメチルメタタリレート榭脂層の屈折率 n ( λ )と脂環式ォレフインポリマー層 の屈折率 η ( λ )との差の絶対値の分布を示した。ポリメチルメタタリレート榭脂層と脂 環式ォレフインポリマー層とは式〔1〕の関係を満たしていた。また図 3に示すように、 偏光子に含有されるポリビニルアルコールとポリメチルメタタリレート榭脂層は式〔3〕 の関係を満たして!/、た。評価結果を表 1及び表 2に示した。
[0112] く実施例 2 >
厚さ 80 /z mのトリアセチルセルロースフィルムの一方の面に、水酸化カリウムの 1. 5 モル ZLイソプロピルアルコール溶液を 25mLZm2塗布し、 25°Cで 5秒間乾燥した。 次いで、流水で 10秒間洗浄し、最後に 25°Cの空気を吹き付けることによりフィルムの 表面を乾燥して、トリァセチルセルロースフィルムの一方の表面のみをケン化処理し たフィルム 2Bを得た。
偏光板用保護フィルム 1Aの一方の面にアクリル系接着剤を塗布し、フィルム 2Bの ケンィ匕処理された面にポリビニルアルコール系接着剤を塗布し、偏光板用保護フィ ルム 1A、偏光子 P、フィルム 2Bとなるように重ね、ロールトウロール法により前記接着 剤で貼り合わせて偏光板 2を得た。評価結果を表 1及び表 2に示した。
[0113] く実施例 3 >
吸水率 4. 4%、光弾性係数 12 X 10_ 12Pa_1、ヘイズ 0. 05%、湿度膨張係数 65p pmZ%RH、厚さ 40 μ mのトリアセチルセルロース(「TAC」と略記)フィルムの両面 に、水酸ィ匕カリウムの 1. 5モル/ Lイソプロピルアルコール溶液を 25mL/m2塗布し 、 25°Cで 5秒間乾燥した。次いで、流水で 10秒間洗浄し、 25°Cの空気を吹き付ける ことによりフィルムの表面を乾燥した。この表面処理されたトリアセチルセルロースフィ ルムの両面に、厚さ 30 μ mのポリメチルメタタリレート榭脂の単層フィルムを圧着ラミ ネートにより積層し、偏光板用保護フィルム 2Aを得た。偏光板用保護フィルム 2Aは、 その透湿度が 61g/ (m2' 24h)、光弾性係数が 3 X 10_12Pa_1、隣接する層間の湿 度膨張係数差が 37ppmZ%RHであり、その表面は線状凹部や線状凸部のない平 坦な面であった。トリァセチルセルロース層は屈折率 η( λ )が図 1に示す分布を有し 、ポリメチルメタタリレート榭脂層はいずれも屈折率 η ( λ )が図 1に示す分布を有して いた。ポリメチルメタタリレート榭脂層は波長 380nmにおける屈折率が 1. 512、波長 780nmにおける屈折率力 Si. 488であった。
[0114] 偏光子 Pの両面にアクリル系接着剤を塗布し、偏光板保護フィルム 2Aの一面及び フィルム 1Bのコロナ放電処理面を偏光子 Pに向けて重ね、ロールトウロール法により 貼り合わせ偏光板 3を得た。
図 2にポリメチルメタタリレート榭脂層の屈折率 η ( λ )とトリアセチルセルロース層の 屈折率 η ( λ )との差の絶対値の分布を示した。ポリメチルメタタリレート榭脂層とトリア セチルセルロース層とは式〔1〕の関係を満たしていた。また図 3に示すように偏光子 に含有されるポリビニルアルコールとポリメチルメタタリレート榭脂層は式〔3〕の関係を 満たしていた。評価結果を表 1及び表 2に示した。
[0115] く実施例 4 >
(反射防止層の作成)
偏光板保護フィルム 1Aの両面に、高周波発信機(出力 0. 8KW)を用いてコロナ放 電処理を行い、表面張力が 0. 055NZmの偏光板保護フィルム 1Cを得た。
次に、高屈折率層形成用組成物 Hを前記偏光板保護フィルム 1Aの片面に、ダイコ 一ターを用いて塗工し、 80°Cの乾燥炉の中で 5分間乾燥させて被膜を得た。さらに、 紫外線を照射 (積算照射量 300mjZcm2)して、厚さ 5 μ mの高屈折率層を形成し、 積層フィルム 1Dを得た。高屈折率層の屈折率は 1. 62、鉛筆硬度は 4Hであった。
[0116] 上記積層フィルム 1Dの高屈折率層側に、低屈折率層形成用組成物 Lを、ワイヤー バーコ一ターを用いて塗工し、 1時間放置して乾燥させ、得られた被膜を 120°Cで 1
0分間、酸素雰囲気下で熱処理し、厚さ lOOnmの低屈折率層(屈折率 1. 36)を形 成し、反射防止層付きの偏光板保護フィルム 1Eを得た。
偏光子 Pの両面にアクリル系接着剤を塗布し、偏光板保護フィルム 1Eの反射防止 層が形成されて ヽな 、面及びフィルム 1 Bのコロナ放電処理面を偏光子 Pに向けて重 ね、ロールトウロール法により貼り合わせ偏光板 4を得た。評価結果を表 1及び表 2に 示した。
[0117] く実施例 5 >
ポリメチルメタタリレート榭脂(吸水率 0. 3%、光弾性係数一 6. 0 X
Figure imgf000030_0001
へ ィズ 0. 08%、湿度膨張係数 28ppmZ%RH、引張弾性率 3. 3GPa、「PMMA」と 略記)を、 目開き 10 μ mのリーフディスク形状のポリマーフィルターを設置したダブル フライト型一軸押出機に投入し、押出機出口温度 260°Cで溶融榭脂をダイスリップの 表面粗さ Raが 0. 1 μ mであるマルチマ-ホールドダイの一方に供給した。
[0118] 一方、数平均粒径 0. 4 mの弾性体粒子を含むポリメチルメタタリレート榭脂(引張 弾性率 2. 8GPa)と、紫外線吸収剤 (LA31 ;旭電化工業製)とを、前記紫外線吸収 剤の濃度が 3重量%となるように混合して混合物(吸水率 0. 3%、光弾性係数 4. 0 X
Figure imgf000031_0001
ヘイズ 0. 1%、湿度膨張係数 30ppm/%RH、表中「1^— PMMA」 と表記)を得た。これを目開き 10 μ mのリーフディスク形状のポリマーフィルターを設 置したダブルフライト型の一軸押出機に導入し、押出機出口温度 260°Cで溶融榭脂 をダイスリップの表面粗さ Raが 0. 1 μ mであるマルチマ-ホールドダイの他方に供給 した。
[0119] そして、溶融状態の弾性体粒子を含まないポリメチルメタタリレート榭脂、紫外線吸 収剤と弾性体粒子を含むポリメチルメタタリレート榭脂をそれぞれマルチマ-ホールド ダイから 260°Cで吐出させ、 130°Cに温度調整された冷却ロールにキャストし、その 後、 50°Cに温度調整された冷却ロールに通して、 PMMAfi ^O /z n^ Zl^ PMM A層(40 μ m) ZPMMA層 (20 μ m)の 3層構成からなる、幅 600mm、厚さ 80 μ m の偏光板用保護フィルム 3Aを共押出成形により得た。偏光板用保護フィルム 3Aは、 その透湿度が 51g/ (m2' 24h)、光弾性係数が— 5 X 10_12Pa_1、隣接する層間の 湿度膨張係数差が 2ppmZ%RHであり、その表面は線状凹部や線状凸部のない平 坦な面であった。 I^— PMMA層は、波長 380nmにおける屈折率が 1. 507、波長 7 80nmにおける屈折率が 1. 489であった。
[0120] 偏光子 Pの両面にアクリル系接着剤を塗布し、偏光板保護フィルム 3Aの一面及び フィルム 2Bのコロナ放電処理面を偏光子 Pに向けて重ね、ロールトウロール法により 貼り合わせ偏光板 5を得た。また評価結果を表 1及び表 2に示した。
[0121] <実施例 6 >
弾性体粒子を含むポリメチルメタタリレート榭脂(吸水率 0. 3%、光弾性係数— 5. 0 X 10_12Pa_ 1、ヘイズ 0. 1%、湿度膨張係数 30ppmZ%RH、引張弾性率 2. 8GP a、「R2— PMMA」と略記)を、 目開き 10 mのリーフディスク形状のポリマーフィルタ 一を設置したダブルフライト型一軸押出機に投入し、押出機出口温度 260°Cで溶融 榭脂をダイスリップの表面粗さ Raが 0. 1 μ mであるマルチマ-ホールドダイの一方に 供給した。実施例 5において、 PMMAの代わりに R— PMMAを用いる以外は、実施 例 5と同様にして R2—PMMA層(10 m) ZR1— PMMA層 (20 μ m) /R2~ PM MA層(10 m)の 3層構成からなる、幅 600mm、厚さ 40 mの偏光板用保護フィ ルム 3Bを共押出成形により得た。偏光板用保護フィルム 3Bは、その透湿度が 105g Z (m2 ' 24h)、光弾性係数が—4. 5 X
Figure imgf000032_0001
隣接する層間の湿度膨張係数 差が 2ppmZ%RHであり、その表面は線状凹部や線状凸部のな 、平坦な面であつ た。 R2— PMMA層は、波長 380nmにおける屈折率が 1. 507、波長 780nmにおけ る屈折率が 1. 489であった。
[0122] 厚さ 80 μ mのトリアセチルセルロースフィルムの一方の面に、水酸化カリウムの 1. 5 モル ZLイソプロピルアルコール溶液を 25mLZm2塗布し、 25°Cで 5秒間乾燥した。 次いで、流水で 10秒間洗浄し、最後に 25°Cの空気を吹き付けることによりフィルムの 表面を乾燥して、トリァセチルセルロースフィルムの一方の表面のみをケン化処理し たフィルム 4Aを得た。
[0123] 偏光子 Pの両面にアクリル系接着剤を塗布し、偏光板保護フィルム 3Bの一面及び フィルム 4Aのコロナ放電処理面を偏光子 Pに向けて重ね、ロールトウロール法により 貼り合わせ偏光板 6を得た。また評価結果を表 1及び表 2に示した。
[0124] <比較例 1 >
実施例 1において、脂環式ォレフインポリマーの代わりにポリカーボネート榭脂(吸 水率 0. 2%、光弾性係数 70 X 10_ 12Pa_ 1、ヘイズ 0. 08%、湿度膨張係数 32ppm Z%RH、引張弾性率 2. 5GPa、「PC」と略記、吸水率 0. 2%)を使用した他は実施 例 1と同様にして 3層構造のフィルム 5Aを作製し、さらにフィルム 1 Aをこのフィルム 5 Aに変えた他は実施例 1と同様にして偏光板 7を得た。偏光板用保護フィルム 5Aは、 その透湿度が 22g/ (m2 ' 24h)、光弾性係数が 27 X 10_ 12Pa_ 1、隣接する層間の 湿度膨張係数差が 13ppmZ%RHであり、その表面は線状凹部や線状凸部のない 平坦な面であった。ポリカーボネート榭脂層は屈折率 η( λ )が図 1に示す分布を有し 、ポリメチルメタタリレート榭脂層はいずれも屈折率 η ( λ )が図 1に示す分布を有して いた。
図 2にポリメチルメタタリレート榭脂層の屈折率 n ( λ )とポリカーボネート榭脂層の屈 折率 η ( λ )との差の絶対値の分布を示した。ポリメチルメタタリレート榭脂層とポリカー ボネート榭脂層とは式〔1〕の関係を満たして 、な力つた。また評価結果を表 1及び表 2に示した。
[0125] <比較例 2>
実施例 3において、トリァセチルセルロースフィルムの代わりに厚さ 30 μ mのポリエ チレンテレフタレート(吸水率 0. 5%、光弾性係数 120 X 10_12Pa_1、ヘイズ 0. 08% 、湿度膨張係数 12ppmZ%RH、引張弾性率 5GPa、「PET」と略記)フィルムを使 用した他は実施例 3と同様にして 3層構造のフィルム 6Aを作製し、さらにフィルム 2A をフィルム 6Aに変えた他は実施例 3と同様にして偏光板 8を得た。偏光板用保護フィ ルム 6Aは、その透湿度が 54g/ (m2' 24h)、光弾性係数が 50 X 10_12Pa_1、隣接 する層間の湿度膨張係数差が 16ppmZ%RHであった。偏光板用保護フィルム 6A の表面は、線状凹部の深さ等が 20nm以上 50nm以下で、かつ幅が 500nm以上 80 Onm未満の範囲の線状凹部等が形成された面であった。ポリエチレンテレフタレート 榭脂層は屈折率 η ( λ )が図 1に示す分布を有し、ポリメチルメタタリレート榭脂層はい ずれも屈折率 η ( λ )が図 1に示す分布を有して!/ヽた。
図 2にポリメチルメタタリレート榭脂層の屈折率 η ( λ )とポリエチレンテレフタレート榭 脂層の屈折率 η ( λ )との差の絶対値の分布を示した。ポリメチルメタタリレート榭脂層 とポリエチレンテレフタレート榭脂層とは式〔1〕の関係を満たしていな力つた。また評 価結果を表 1及び表 2に示した。
[0126] <比較例 3 >
実施例 1において、偏光板用保護フィルム 1Aに代えて、ポリメチルメタタリレート榭 脂(「ΡΜΜΑ」と表記)力 なる厚み 80 μ mの単層押出成形したフィルムを偏光板用 保護フィルム 7Aとして用いた他は、実施例 1と同様にして偏光板 9を得た。偏光板用 保護フィルム 7Aは、その透湿度が 40gZ (m2' 24h)、光弾性係数が— 6 X 10_12Pa _ 1であり、その表面は、線状凹部の深さ等が 20nm以上 50nm以下で、かつ幅が 50 Onm以上 800nm未満の範囲の線状凹部等が形成された面であった。なお、図 1に ポリメチルメタタリレートの単層フィルム層の屈折率 n( λ )を示す,
[0127] [表 1] 表 1
Figure imgf000034_0001
[0128] (引張弾性率)
熱可塑性榭脂を単層成形して、厚み 100 mのフィルムを得、 lcm X 25cmの試 験片を切り出し、 ASTM D 882に基づき、引張試験機(テンシロン UTM— 10T— PL、東洋ボールドウィン社製)を用いて引張速度 25mmZminの条件で測定した。 同様の測定を 5回行い、その算術平均値を引張弾性率の代表値とする。
[0129] (フィルム膜厚)
フィルムをエポキシ榭脂に包埋したのち、ミクロトーム(大和工業製 (株)、 RUB— 2 100)を用いてスライスし、走査電子顕微鏡を用いて断面を観察し、測定する。
[0130] (透過率)
ASTM D1003に準拠して、 日本電色工業社製、「濁度計 NDH— 300A」を用い て測定する。なお、同様の測定を 5回行い、その算術平均値を全光線透過率の代表 値とする。
[0131] (熱可塑性榭脂層の屈折率 η ( λ ) )
榭脂を単層成形し、プリズムカプラー (Metricon社製 model2010)を用い、温 度 20°C± 2°C、湿度 60 ± 5%の条件下で、波長 633nm、 407nm、 532nmにおけ る屈折率の値から、 Caucyの分散式により、 380nm〜780nmの屈折率を算出する
[0132] (反射防止層の屈折率)
高速分光エリプソメトリ(J. A. Woollam社製、 M— 2000U)を用い,温度 20°C± 2 °C、湿度 60 ± 5%の条件下で、入射角度 55度、 60度、及び 65度で、波長領域 400 〜1000nmのスペクトルを測定し、これらの測定結果力も算出した。
[0133] (吸水率)
JIS K7209に準じて、 23°C、 24時間で測定する。
[0134] (ヘイズ)
JIS K7105に準拠して、日本電色工業社製「濁度計 NDH— 300A」を用いて測 定する。なお、同様の測定を 5回行い、その算術平均値をヘイズの代表値とする。
[0135] (榭脂の透湿度)
100 m厚の榭脂成形品を用意し、 40°C、 92%R. H.の環境下に 24時間放置す る試験条件で、 JIS Z 0208に記載のカップ法に準じた方法で測定した。透湿度の 単位は gZ (m2 · 24h)である。
[0136] (光弾性係数)
温度 20°C± 2°C、湿度 60± 5%の条件下で、光弾性定数測定装置 (ュニオブト社 製 PHEL— 20A)を用いて測定した。
[0137] (湿度膨張係数)
フィルムサンプルを、幅方向が測定方向となるように JIS K7127に記載の試験片 タイプ 1Bに準拠して切り出し、高温恒湿槽付引張試験機 (インストロン社製)にセット し、湿度 35%RH、 23°Cの窒素雰囲気又は湿度 70%RH、、 23°Cの窒素雰囲気に 保ち、その時のサンプルの長さをそれぞれ測定し、次式にて湿度膨張係数を算出す る。なお、測定方向が切り出した試料の長手方向であり、 5回測定し、その平均値を 湿度膨張係数とした。
湿度膨張係数 = (L L ) / (L Χ ΔΗ)
70 35 35
ここで、 L : 35%RHのときのサンプル長(mm)
35
L : 70%RHのときのサンプル長(mm)
70
△H: 35 ( = 70— 35) %RHである。
[0138] (フィルム表面の線状凹部および線状凸部)
前述した方法により、線状凹部の深さ、線状凸部の高さ、およびこれらの幅を測定 した。得られた凹部深さ及び凸部高さの最大値、その最大値を示した凹部の幅及び 凸部の幅を、そのフィルムの線状凹部の深さ、線状凸部の高さ及びそれらの幅とし、 以下の基準で評価した。
◎:線状凹部の深さ、または凸部の高さが 20nm未満で,且つ幅が 800nm以上 〇:線状凹部の深さ、または凸部の高さが 20nm以上、 50nm以下で、且つ幅が 50
Onm以上、 800nm未満
X:線状凹部の深さ、または凸部の高さが 50nmを超え、且つ幅が 500nm未満
[表 2] 表 2
Figure imgf000036_0001
[0140] (干渉縞観察)
暗幕のような光を通さない黒布の上に、偏光板用保護フィルムを置き、三波長蛍光 灯 (ナショナル: FL20SS 'ENWZ 18)で照らして、偏光板保護フィルム表面を目視 観察し、以下の基準で評価した。
◎:干渉縞が見えない。
〇:干渉縞がうつすらと見える。
△:干渉縞が目立つ。
X:干渉縞が目立ち、かつギラツキが生じる。
[0141] (鉛筆硬度) 試験荷重を 500gに変更した以外〖お IS K5600— 5— 4に基づいて、 45度の角度 に傾け、上から 500gの荷重を掛けた鉛筆で、偏光板用保護フィルムの表面 (偏光子 に張り合わせる面の反対側の面)を、 5mm程度引つかき、傷の付き具合を確認した。
[0142] (反射率)
偏光板保護フィルムの一方の面 (偏光子に張り合わせる面)に黒色のビニルテープ No. 21 (日東電工社製)を貼り、分光光度計(日本分光社製:「紫外可視近赤外分 光光度計 V— 570」)を用いて、偏光板保護フィルムのもう一方の面の入射角 5° における反射スペクトルを測定し、波長 550nmにおける反射率(%)を求めた。
[0143] (光漏れ度)
2枚の試験用偏光板を保護フィルム B同士を向か 、合うようにしてクロス-コル配置 し、図 4で示した 9箇所の光線透過率を測定し、それら測定値を下記式に代入し、光 漏れ度を算出した。
光漏れ度 = ( (T2+T4+T6+T8) /4) / ( (T1 +T3+T5+T7+T9) /5) なお、 Txは、測定点 (X)における光透過率を表し、 (1) , (2) , (3) , (4) , (6) , (7) , (8) ,及び(9)は端部から 10mmの位置を測定点とした。(5)は試験用偏光板の対 角線交点を測定点とした。
〇:光漏れ度が 2以下
X:光漏れ度が 2より大きい
[0144] (偏光度変化)
偏光板を 10インチ四方の大きさに切り出し、ガラス板の片面に、感圧性接着剤を介 して、偏光板の保護フィルム Bの面がガラス板側になるように貼り合わせ、試験用偏 光板を作製した。この試験用偏光板を温度 60°C、湿度 90%の恒温槽に 500時間放 置し、試験用偏光板の対角線交点(図 4中、(5)の位置)における高温高湿下の放置 前後での偏光度の変動幅を測定した。
〇: 偏光度の変動幅が 0. 5以下
X: 偏光度の変動幅が 0. 5より大きい
[0145] (積層強度)
偏光板を、 80°C、 95%RHの恒温恒湿室に 24時間放置し、次いで 20°C、 40%R Hの恒温恒湿室に 24時間放置する操作を 20回繰り返した。保護層の各層間及び偏 光子と保護層との間の積層状態を目視観察し、偏光板の端 jから lmm以上の長さで 剥離して白く見える部分があれば X、 lmm未満の長さであれば〇として評価した。
[0146] (偏光板の可撓性)
偏光板を lcm X 5cmに打ち抜いて試験フィルムを得た。得られた試験フィルム 3m m φのスチール製の棒に巻きつけ、巻きつけたフィルムが棒のところで折れるか否か をテストした。合計 10回テストを行い、折れなカゝつた回数によって下記指標で可撓性 を表した。
〇:割れたフィルム片が 1枚以下
X:割れたフィルム片が 2枚以上
[0147] (視認性)
市販の液晶テレビ力 液晶表示パネルを取り外し、視認側に配置されて 、る偏光 板に替えて、実施例及び比較例で作製した偏光板を (保護フィルム Αが視認側にな るように)組み込み、液晶表示装置を組み直した。
組み直した液晶表示装置の暗表示時及び明表示時に、正面に対し 5度傾 、た角 度から輝度を色彩輝度計 (トプコン社製、色彩輝度計 BM— 7)を用いて測定した。そ して、明表示の輝度と暗表示の輝度の比( =明表示の輝度 Z暗表示の輝度)を計算 し、これをコントラスト (CR)とした。コントラスト !^)が大きいほど、視認性に優れるこ とを表す。
[0148] 次に、偏光板用第二保護フィルムが積層された偏光板について、実施例および比 較例に基づいて以下説明する。なお、前記した評価に加えて下記評価も実施した。
[0149] (偏光板用第二保護フィルム R1の作製)
脂環式ォレフイン系榭脂(日本ゼオン社製、 ZEONOR1420R)からなる厚さ 100 mの未延伸のフィルムを押出成形法により得た。この未延伸のフィルムを、ロール 間でのフロート方式を用いた縦延伸機にて、温度 138°C、倍率 1. 41倍で縦方向に 一軸延伸した後、テンター法を用いた延伸機にて、温度 138°C、倍率 1. 41倍で横 一軸延伸し、偏光板用第二保護フィルム R1を得た。得られた偏光板用第二保護フィ ノレム R1は、波長 550nmで測定した Reが 50nm、 Rthが 130nmであった。なお、 Re は、フィルム面内のレターデーシヨンである。
[0150] (偏光板用第二保護フィルム R2の作製)
(ドープの調整)
下記の材料を所定量混合し、その混合物を密閉容器に入れ、混合物をゆっくり撹 拌しながら徐々に昇温し、 60分かけて 45°Cまで上げて溶解させた。容器内を 1. 2気 圧に調整した。この溶液を安積濾紙社製の安積濾紙 No. 244を使用して濾過した後 、ー晚そのまま放置しドープを得た。
セルロースエステル(ァセチル基置換度 2. 88) 30重量部
セルロースエステル(ァセチル基置換度 2. 52) 70重量部
トリフエ-ノレフォスフェート 3質量部
メチルフタリルェチルダリコレート 4質量部
チヌビン 109 (チバスぺシャリティーケミカルズ社製) 3質量部
メチレンクロライド 455質量部
エタノール 36質量部
下記化 1に示すレターデーシヨン上昇剤 5質量部
[0151] [化 1]
Figure imgf000039_0001
(フィルムの作製)
上記のように調製したドープをダイからステンレスベルト(流延用支持体とも!ヽぅ)上 にドープ温度 30°Cで流延しウェブを形成した。ステンレスベルトの裏面から 25°Cの 温度の温水を接触させて温度制御されたステンレスベルト上でウェブを 1分間乾燥し た後、さらにステンレスベルトの裏面に、 15°Cの冷水を接触させて 15秒間保持した 後、ウェブをステンレスベルトから剥離した。剥離時のウェブ中の残留溶媒量は 100 質量%であった。次いでテンターを用いて剥離したウェブの両端をクリップで掴み、ク リップ間隔を巾方向に変化させることで、延伸倍率 1. 15でフィルムを延伸した。その 際のフィルム温度は 140°Cになるように調整して、膜厚 60 mの偏光板用第二保護 フィルム R2を得た。偏光板用第二保護フィルム R2の波長 550nmで測定した Reは 5 Onm、 Rthは 145nmであった。
[0153] <実施例 7>
(反射防止層の形成)
偏光板用保護フィルム 1Aの両面に、表面張力が 0. 055NZmとなるように、高周 波発信機(出力 0. 8KW)を用いてコロナ放電処理を行った。次に、高屈折率層形成 用組成物 Hを、前記コロナ放電処理を行った偏光板用保護フィルム 1Aの片面に、ダ イコーターを用いて塗工し、 80°Cの乾燥炉の中で 5分間乾燥させた。さらに、紫外線 を照射 (積算照射量 300mjZcm2)して、厚さ 3 μ mのハードコート層を形成し、積層 フィルム Cを得た。ハードコート層の屈折率は、 1. 62、鉛筆硬度は 4Hであった。
[0154] 上記積層フィルム Cのハードコート層側の面に、低屈折率層形成用組成物 Lを、ヮ ィヤーバーコ一ターを用いて塗工し、 1時間放置して乾燥させ、得られた被膜を 120
°Cで 10分間、酸素雰囲気下で熱処理し、厚さ lOOnmの低屈折率層(屈折率 1. 37) を形成し、反射防止機能を有する積層フィルム (偏光板用第一保護フィルム D)を得 た。
[0155] (観察者側偏光板 CP1の作製)
偏光子 Pの両面にアクリル系接着剤を塗布し、偏光板用第一保護フィルム Dの一面 及び偏光板用第二保護フィルム R 1のコロナ放電処理面を偏光子 Pに向けて重ね、口 ールトゥロール法により貼り合わせ観察者側偏光板 CP1を得た。
[0156] (バックライト側偏光板 BP1の作製)
偏光子 Pの両面にアクリル系接着剤を塗布し、偏光板用保護フィルム 1Aの一面及 び偏光板用第二保護フィルム R1のコロナ放電処理面を偏光子 Pに向けて重ね、ロー ルトウロール法により貼り合わせバックライト側偏光板 BP1を得た。
[0157] ここで、観察者側偏光板 CP1の構成について、図面を参照して具体的に説明する 図 5又は 6に示すように、偏光板は、偏光子 10と、偏光子 10の表面(図中の上側の 面)に積層された偏光板用第一保護フィルム 20と、偏光子 10の裏面(図中の下側の 面)に積層された偏光板用第二保護フィルム 30とを備えている。
[0158] 図 5に示す偏光板用第一保護フィルム 20は、中間層となる榭脂層 21と、この榭脂 層 21の表裏面に、榭脂層 21を挟むようにして接着剤層 23を介してそれぞれ積層さ れた榭脂層 22とを備えている。つまり、偏光板用第一保護フィルムは、接着剤層を除 いた 3層構成となっている。榭脂層 22の表面には、反射防止層 40が積層されている 図 6に示す偏光板用第一保護フィルム 20は、榭脂層 21と、この榭脂層 21の表面に 、接着剤層 23を介して積層された榭脂層 22とを備えている。つまり、この偏光板用第 一保護フィルムは、接着剤層を除いた 2層構成となっている。榭脂層 22の表面には、 反射防止層 40が積層されて 、る。
このような偏光板を液晶表示装置に用いた場合には、この偏光板を、液晶パネル の観察者側およびバックライト側の少なくともいずれか一方の側に配置することがで きる。この際、液晶パネルの表示モードとしては、 TN (Twisted Nematic)モード や、 VA (Vertical Alignment)モード、 IPS (In Plane Switching)モードとす ることがでさる。
[0159] (液晶表示装置の作製)
厚さ 2. 74 ^ m,誘電異方性が正、波長 550nmの複屈折率 Δ η=0. 09884、プレ チルト角 90° のバーチカルアラインメントモードの液晶セルの一面に観察者側偏光 板 CP1を、偏光板用保護フィルム R1が液晶パネル側になるように貼り合わせ、もう一 方の面にはバックライト側偏光板 BP1を、偏光板用保護フィルム R1が液晶パネル側 になるように貼り合わせ液晶表示装置 1を作製した。評価結果を表 2に示す。
[0160] <実施例 8 >
実施例 7において、偏光板用第二保護フィルム R1の代わりに、偏光板用第二保護 フィルム R2を用いた他は、実施例 7と同様にして観察者側偏光板 CP2、ノ ックライト 側偏光板 BP2を得、液晶表示装置 2を作製した。評価結果を表 2に示す。
[0161] <実施例 9 >
(液晶表示装置 3の作製)
偏光板用保護フィルム 1Aの代わりに偏光板用保護フィルム 3Aを用いた以外は実 施例 7と同様にして偏光板用第一保護フィルム Eを得、偏光板用第一保護フィルム E を用いて観察者側偏光板 CP3及びバックライト側偏光板 BP2を得、液晶表示装置 3 を作製した。
[0162] <実施例 10 >
(液晶表示装置 4の作製)
偏光板用保護フィルム 1Aの代わりに偏光板用保護フィルム 3Aを用いた以外は実 施例 8と同様にして偏光板用第一保護フィルム Eを得、偏光板用第一保護フィルム E を用いて観察者側偏光板 CP4、バックライト側偏光板 BP4を得、液晶表示装置 4を 作製した。
[0163] く実施例 11 >
(液晶表示装置 5の作製)
実施例 9において、偏光板用第二保護フィルム R1の代わりに、偏光板用保護フィ ルム 3Bを用いた他は、実施例 9と同様にして観察者側偏光板 CP5、ノ ックライト側偏 光板 BP5を得た。厚さ 2. 74 ^ m,誘電異方性が正、波長 550nmの複屈折率 Δ η= 0. 09884、プレチルト角 0° のインプレーンスイッチングモード(表中 IPSと記載)の 液晶セルを用いた。この液晶セルの一方の面に、観察者側偏光板 CP5を、偏光板 用保護フィルム 3Bの遅相軸が液晶セルのラビング方向と平行になるように、かつ偏 光板用保護フィルム 3B側が液晶セル側になるように貼り付けた。次 、で、液晶セル の他方の面に、バックライト側偏光板 BP5をクロス-コルの配置で貼り付け、液晶表 示装置 5を得た。
[0164] [表 3] 表 3
Figure imgf000043_0001
[0165] (レターデーシヨン)
フィルム中心部の任意の 1点を自動複屈折計 (王子計測機器社製、 KOBRA21- ADH)を用いて、温度 20°C±2°C、湿度 60± 5%の条件下で測定し、測定値とする
[0166] (色味バラツキ)
波長 380nmから 780nmの領域における CIE標準光源 D65の 5度入射光に対する 正反射光の反射スペクトル力も L*a*b*色空間の L*値、 a*値、 b*値を算出し、色味 ムラ(CIE1976L*a*b*色空間の AEab*値)として、 10cm離れた任意の 2つの場所 で測定されたそれぞれの L*、 a*、b*について、その差である AL*、 Aa*、 Ab*を式 : AEab*=(AL*2+Aa*2+ Ab*2) 1/2に代入して算出し、以下の基準にて評価し た。
O: AEab*<2.0
X: AEab*>2.0 [0167] (視野角特性の評価)
作製した液晶表示装置について、輝度計 (Ez— Contrast 160D、 ELDIM社製) を用いて、黒表示並びに白表示の明るさの比(コントラスト)を測定する。表示画面の 法線を基準として全方位に 0〜80° 傾斜させた方向から測定したコントラスト値が 10 以上となる場合を〇、 10未満を Xとする。
[0168] (色むら評価試験)
上記液晶表示性能の評価試験で作製した液晶表示装置を暗表示し、温度 60°C、 湿度 90%で 300時間放置した。その後、暗室内で暗表示した表示画面全体を真正 面から観察し、以下の指標で評価した。
〇:全体的に均一な黒表示になっており、光漏れがない。
△:額縁の上下左右に暗表示の色むらが見られる。
X:額縁の上下左右に光漏れが見られる。
[0169] (可撓性試験)
偏光板用保護フィルムを lcm X 5cmに打ち抜いて、試験フィルムを得た。得られた 試験フィルム 3mm φのスチール製の棒に巻きつけ、卷きつけたフィルムが棒のところ で折れるか否かをテストした。合計 10回テストを行い、折れな力つた回数によって下 記指標で可撓性を表した。
〇:割れたフィルム片が 1枚以下
X:割れたフィルム片が 2枚以上

Claims

請求の範囲
[1] 熱可塑性榭脂層が k個(kは 2以上の整数)積層されてなるフィルムであって、 第 i番目の熱可塑性榭脂層の波長 380nm〜780nmの範囲の波長 λにおける屈 折率 η ( λ )と、第 i+ 1番目の熱可塑性榭脂層の 380nm〜780nmの範囲の波長 λ における屈折率 η ( λ )とが、式〔1〕の関係を有する偏光板用保護フィルム。
i+ 1
I η ( λ ) -η ( λ )
i i+ 1 I ≤0. 05 式〔1〕
ただし、 iは i〜k— lの整数を表す。
[2] 光弾性係数の絶対値が 10 X 10_12Pa_1以下である請求項 1に記載の偏光板用保 護フィルム。
[3] 前記熱可塑性榭脂層は、 V、ずれもヘイズ 0. 5%以下の材料で形成され、且つ非晶 質熱可塑性榭脂を含んでおり、
第 i番目の熱可塑性榭脂層の湿度膨張係数 βと、第 i+ 1番目の熱可塑性榭脂層 の湿度膨張係数 e
i+ 1とが、式〔2〕の関係を満たす請求項 1に記載の偏光板用保護 フィルム。
\ β - β I ≤40ppm/%RH 式〔2〕
i i+ 1
[4] 少なくとも 1層は吸水率 0. 5%以下の熱可塑性榭脂層である請求項 1に記載の偏 光板用保護フィルム。
[5] 共押出成形で得られた請求項 1に記載の偏光板用保護フィルム。
[6] 鉛筆硬度が 4H以上である請求項 1に記載の偏光板用保護フィルム。
[7] 第 k番目の熱可塑性榭脂層の表面に、直接または間接的に、さらに屈折率が 1. 6 以上のハードコート層を有する請求項 1に記載の偏光板用保護フィルム。
[8] 第 k番目の熱可塑性榭脂層の表面に、直接または間接的に、さらに反射防止層を 有する請求項 1に記載の偏光板用保護フィルム。
[9] 前記第 k番目の熱可塑性榭脂層の表面は、深さ 50nm以上で、かつ幅が 500nm 以下の線状凹部、および高さ 50nm以上で、かつ幅が 500nm以下の線状凸部のな
V、平坦な面である請求項 1に記載の偏光板用保護フィルム。
[10] 偏光子と、この偏光子の少なくとも一方の面に積層される請求項 1に記載の偏光板 用保護フィルムとを備えてなる偏光板。
[11] 偏光子がポリビュルアルコールを含有するものであり、
前記偏光板用保護フィルムが第 1番目の熱可塑性榭脂層を前記偏光子側に向け て積層されており、
前記第 1番目の熱可塑性榭脂層の、 380nm〜780nmの範囲の波長における屈 折率 η ( λ )と、前記ポリビュルアルコールの、 380nm〜780nmの範囲の波長にお ける屈折率 η ( λ )とが、式〔3〕の関係を満足する請求項 10に記載の偏光板。
b
I η ( λ ) -η ( λ ) 05
1 b I ≤0. 式〔3〕
[12] 偏光子がポリビュルアルコールを含有するものであり、
前記偏光板用保護フィルムが第 1番目の熱可塑性榭脂層を偏光子側に向けて積 層されており、該第 1番目の熱可塑性榭脂層の波長 380nmにおける屈折率 n (380 )及び波長 780nmにおける屈折率 n (780)と、
前記ポリビュルアルコールの波長 380nmにおける屈折率 n (380)及び波長 780η b
mにおける屈折率 n (780)とが、
b
式〔4〕の関係を満足する請求項 10に記載の偏光板。
I I n (380)— n (380) |
1 b
- I n (780)— n (780) | | ≤0. 02 式〔4〕
丄 b
[13] 請求項 10に記載の偏光板を少なくとも 1枚と、液晶パネルとを備える液晶表示装置
PCT/JP2006/312396 2005-06-21 2006-06-21 偏光板用保護フィルム WO2006137428A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2006800224538A CN101203779B (zh) 2005-06-21 2006-06-21 用于偏振片的保护膜
US11/922,598 US9897849B2 (en) 2005-06-21 2006-06-21 Protective film for polarizing plate
KR1020077029758A KR101226399B1 (ko) 2005-06-21 2006-06-21 편광판용 보호필름
EP06767055.4A EP1895336B1 (en) 2005-06-21 2006-06-21 Protective film for polarizing plate
JP2007522310A JP5169215B2 (ja) 2005-06-21 2006-06-21 偏光板用保護フィルム

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2005-181270 2005-06-21
JP2005-181268 2005-06-21
JP2005181265 2005-06-21
JP2005-181267 2005-06-21
JP2005-181269 2005-06-21
JP2005181267 2005-06-21
JP2005181270 2005-06-21
JP2005181269 2005-06-21
JP2005181268 2005-06-21
JP2005-181265 2005-06-21
JP2005306429 2005-10-20
JP2005-306429 2005-10-20

Publications (1)

Publication Number Publication Date
WO2006137428A1 true WO2006137428A1 (ja) 2006-12-28

Family

ID=37570455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312396 WO2006137428A1 (ja) 2005-06-21 2006-06-21 偏光板用保護フィルム

Country Status (7)

Country Link
US (1) US9897849B2 (ja)
EP (1) EP1895336B1 (ja)
JP (1) JP5169215B2 (ja)
KR (1) KR101226399B1 (ja)
CN (1) CN101203779B (ja)
TW (1) TWI401161B (ja)
WO (1) WO2006137428A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109993A (ja) * 2007-10-12 2009-05-21 Sumitomo Chemical Co Ltd 偏光板のセット、ならびにこれを用いた液晶パネルおよび液晶表示装置
JP2009157347A (ja) * 2007-12-03 2009-07-16 Sumitomo Chemical Co Ltd 偏光板のセット、ならびにこれを用いた液晶パネルおよび液晶表示装置
JP2010191090A (ja) * 2009-02-17 2010-09-02 Sumitomo Chemical Co Ltd 偏光板、ならびにそれを用いた液晶パネルおよび液晶表示装置
JP2011053256A (ja) * 2009-08-31 2011-03-17 Nippon Shokubai Co Ltd 光学積層体
JP2012103470A (ja) * 2010-11-10 2012-05-31 Dainippon Printing Co Ltd 偏光板、液晶表示パネルおよび表示装置
CN101802061B (zh) * 2007-09-21 2012-10-10 Lg化学株式会社 光学膜及制备该光学膜的方法
JP2014056050A (ja) * 2012-09-11 2014-03-27 Ricoh Co Ltd 光学素子および光拡散素子および画像表示装置
JP2014119538A (ja) * 2012-12-14 2014-06-30 Fujifilm Corp 偏光板保護フィルム、偏光板および液晶表示装置
JP2016038537A (ja) * 2014-08-11 2016-03-22 旭硝子株式会社 ワイヤグリッド型偏光子、光源モジュールおよび投射型表示装置
JP2016089023A (ja) * 2014-11-04 2016-05-23 日本ゼオン株式会社 撥水性フィルムの製造方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100346180C (zh) * 2002-12-12 2007-10-31 住友化学株式会社 用于生产偏振片的方法
EP2343580B1 (en) * 2005-06-21 2012-12-05 Zeon Corporation Protective film for polarizing plate
TWI453123B (zh) * 2007-12-03 2014-09-21 Sumitomo Chemical Co 偏光板的套組,以及使用該偏光板的套組之液晶面板及液晶顯示器
JP4751486B2 (ja) * 2009-03-05 2011-08-17 日東電工株式会社 薄型高機能偏光膜の製造方法
WO2011040541A1 (ja) * 2009-09-30 2011-04-07 大日本印刷株式会社 光学積層体及び光学積層体の製造方法
WO2011118661A1 (ja) * 2010-03-25 2011-09-29 日本ゼオン株式会社 ガスバリア積層体及び円偏光板
KR101309816B1 (ko) * 2010-12-17 2013-09-23 제일모직주식회사 광학 필터 및 이를 포함하는 액정 디스플레이
JP2012212121A (ja) * 2011-03-18 2012-11-01 Sumitomo Chemical Co Ltd 偏光子保護フィルム
JP5949755B2 (ja) * 2011-03-23 2016-07-13 大日本印刷株式会社 光学積層体、偏光板及び画像表示装置
TWI627068B (zh) * 2011-10-14 2018-06-21 Nitto Denko Corp 具有接著劑層之影像顯示裝置用單元及使用該單元的影像顯示裝置
EP2881769A4 (en) * 2012-08-06 2016-03-09 Konica Minolta Inc LIGHT REFLECTIVE FILM AND LIGHT REFLECTOR MADE THEREFROM
KR101985223B1 (ko) * 2012-11-13 2019-06-03 엘지디스플레이 주식회사 플렉서블 표시장치
US9477354B2 (en) * 2012-11-16 2016-10-25 3M Innovative Properties Company Conductive trace hiding materials, articles, and methods
KR20140148204A (ko) * 2013-06-21 2014-12-31 삼성디스플레이 주식회사 표시장치용 윈도우 및 이를 포함하는 표시 장치
CN103632755A (zh) * 2013-12-04 2014-03-12 汕头万顺包装材料股份有限公司光电薄膜分公司 透明导电膜及其制作方法和光学调整层
TWI648163B (zh) * 2014-02-06 2019-01-21 日商住友化學股份有限公司 偏光器保護薄膜及偏光板
JP6122812B2 (ja) * 2014-06-30 2017-04-26 富士フイルム株式会社 偏光板および画像表示装置
KR101768754B1 (ko) * 2014-09-29 2017-08-17 주식회사 엘지화학 편광자의 제조방법 및 이를 이용하여 제조된 편광자 및 편광판
JP6258911B2 (ja) * 2014-12-22 2018-01-10 住友化学株式会社 プロテクトフィルム付偏光板及びそれを含む積層体
KR101758440B1 (ko) * 2014-12-31 2017-07-17 삼성에스디아이 주식회사 액정표시장치용 모듈 및 이를 포함하는 액정표시장치
TWI692487B (zh) * 2015-07-16 2020-05-01 日商三菱化學股份有限公司 聚乙烯醇系薄膜及偏光膜
JP2018159884A (ja) 2017-03-23 2018-10-11 三好興業株式会社 半透明レンズ、サングラス及び半透明レンズの製造方法
CN111712739B (zh) * 2017-12-22 2022-03-25 大日本印刷株式会社 光学层积体、显示面板和显示装置
DE102018214778A1 (de) * 2018-08-30 2020-03-05 Siemens Aktiengesellschaft Verfahren zur Fertigung von Leiterbahnen und Elektronikmodul
JP7226966B2 (ja) * 2018-10-26 2023-02-21 デクセリアルズ株式会社 偏光板及び偏光板の製造方法
KR102645755B1 (ko) * 2019-08-05 2024-03-11 주식회사 엘지화학 커버 더스트 적층체 및 이를 포함하는 헤드업 디스플레이
JP7517345B2 (ja) * 2019-09-30 2024-07-17 大日本印刷株式会社 光学フィルム、偏光板、画像表示装置及び光学フィルムの選定方法
CN114966936A (zh) * 2021-11-23 2022-08-30 住华科技股份有限公司 光学膜及所形成的显示装置以及光学膜抗偏光子开裂的评估方法

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402927A (en) 1980-04-22 1983-09-06 Dardel Guy Von Silica aerogel
US4432956A (en) 1981-06-04 1984-02-21 Corning France Preparation of monolithic silica aerogels, the aerogels thus obtained and their use for the preparation of silica glass articles and of heat-insulating materials
US4610863A (en) 1985-09-04 1986-09-09 The United States Of America As Represented By The United States Department Of Energy Process for forming transparent aerogel insulating arrays
US5124364A (en) 1990-12-05 1992-06-23 Basf Aktiengesellschaft Composite foams of low thermal conductivity
US5137279A (en) 1991-02-13 1992-08-11 Campaign Headquarters, Inc. Political candidate campaign board game
JPH0597978A (ja) 1991-10-09 1993-04-20 Japan Synthetic Rubber Co Ltd 水素添加重合体
JPH05279011A (ja) 1992-02-03 1993-10-26 Matsushita Electric Works Ltd 疎水性エアロゲルの製造方法
JPH05310845A (ja) 1992-05-11 1993-11-22 Mitsui Petrochem Ind Ltd 環状オレフィン系ランダム多元共重合体およびその製造方法
WO1994024191A1 (en) 1993-04-21 1994-10-27 The University Of Akron Negative birefringent polyimide films
JPH07138375A (ja) 1993-11-12 1995-05-30 Matsushita Electric Works Ltd 疎水性エアロゲルの製法
JPH0850206A (ja) 1994-05-31 1996-02-20 Fuji Photo Film Co Ltd 光学補償シート、液晶表示装置及びカラー液晶表示装置
JPH08511812A (ja) 1993-04-21 1996-12-10 ザ ユニバーシティ オブ アクロン 負複屈折のポリイミド膜
WO1997044704A1 (en) 1996-05-23 1997-11-27 Minnesota Mining And Manufacturing Company Polyimide angularity enhancement layer
JPH11124429A (ja) 1997-10-23 1999-05-11 Nippon Zeon Co Ltd 熱可塑性ジシクロペンタジエン系開環重合体、及びその製造方法
JP2000206303A (ja) 1999-01-18 2000-07-28 Sekisui Chem Co Ltd 偏光板保護フィルム及び偏光板
JP2000304932A (ja) 1999-02-17 2000-11-02 Fuji Photo Film Co Ltd 光学補償シート、楕円偏光板および液晶表示装置
JP2001174637A (ja) * 1999-10-04 2001-06-29 Sekisui Chem Co Ltd 偏光板保護フィルム及び偏光板
JP2001233611A (ja) 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材
JP2001272535A (ja) * 2000-03-24 2001-10-05 Sekisui Chem Co Ltd 偏光板保護フィルム及び偏光板
JP2002249600A (ja) * 2001-02-23 2002-09-06 Sekisui Chem Co Ltd ノルボルネン系樹脂フィルム及びその製造方法
JP2002303726A (ja) * 2001-04-06 2002-10-18 Nitto Denko Corp 偏光フィルム、偏光子用保護フィルム、偏光フィルムの製造方法、偏光フィルムを用いた光学フィルムならびに液晶表示装置
JP2003057439A (ja) * 2001-08-09 2003-02-26 Toray Ind Inc 光学フィルムおよびその製造方法
JP2003149642A (ja) 2001-11-13 2003-05-21 Matsushita Electric Works Ltd 液晶用フロントライト
JP2003291236A (ja) * 2002-03-29 2003-10-14 Lintec Corp 光学用ハードコートフィルム
JP2004345333A (ja) * 2002-06-24 2004-12-09 Fuji Photo Film Co Ltd プラスチックフイルム及び画像表示装置
JP2005115085A (ja) 2003-10-08 2005-04-28 Nippon Zeon Co Ltd 偏光板保護フィルム及び積層体

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540623A (en) * 1983-10-14 1985-09-10 The Dow Chemical Company Coextruded multi-layered articles
US4925259A (en) * 1988-10-20 1990-05-15 The United States Of America As Represented By The United States Department Of Energy Multilayer optical dielectric coating
US5122905A (en) * 1989-06-20 1992-06-16 The Dow Chemical Company Relective polymeric body
JPH0699547A (ja) * 1992-09-18 1994-04-12 Asahi Chem Ind Co Ltd 新規な積層体
JPH0862419A (ja) * 1994-08-26 1996-03-08 Teijin Ltd 偏光子用保護フィルムおよび偏光フィルム
US6080467A (en) * 1995-06-26 2000-06-27 3M Innovative Properties Company High efficiency optical devices
KR100749302B1 (ko) 1999-10-04 2007-08-14 세키스이가가쿠 고교가부시키가이샤 편광판 보호필름 및 편광판
JP2001334615A (ja) * 2000-03-22 2001-12-04 Mitsubishi Chem Mkv Co ポリオレフィン系樹脂製積層フィルム
KR100812271B1 (ko) * 2000-05-17 2008-03-13 후지필름 가부시키가이샤 위상차판, 그 제조방법, 및 그것을 이용한 원편광판, 1/2 파장판 및 반사형 액정표시 장치
JP2002316394A (ja) * 2001-04-19 2002-10-29 Mitsubishi Chem Mkv Co ポリオレフィン系樹脂製積層フィルム
US6652996B2 (en) 2002-01-31 2003-11-25 Eastman Kodak Company Radiographic phosphor panel having improved speed and sharpness
JP3794344B2 (ja) * 2002-04-19 2006-07-05 三菱化学エムケーブイ株式会社 ポリオレフィン系樹脂製積層フィルム
JP2004314509A (ja) * 2003-04-17 2004-11-11 Mitsubishi Chem Mkv Co ポリオレフィン系樹脂製積層フィルム
US7255914B2 (en) * 2003-04-29 2007-08-14 Case Western Reserve University Variable refractive index polymer materials
JP2005225127A (ja) * 2004-02-13 2005-08-25 Mitsubishi Chem Mkv Co 積層フィルム
JP4837264B2 (ja) * 2004-07-14 2011-12-14 ヤマウチ株式会社 熱プレス用クッション材
TWI529428B (zh) * 2004-11-09 2016-04-11 Zeon Corp Polarizing plate and liquid crystal display device
TW200630226A (en) * 2004-11-09 2006-09-01 Zeon Corp Antireflective film, polarizing plate and display
EP2343580B1 (en) * 2005-06-21 2012-12-05 Zeon Corporation Protective film for polarizing plate
US20070153162A1 (en) * 2005-12-30 2007-07-05 Wright Robin E Reinforced reflective polarizer films

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402927A (en) 1980-04-22 1983-09-06 Dardel Guy Von Silica aerogel
US4432956A (en) 1981-06-04 1984-02-21 Corning France Preparation of monolithic silica aerogels, the aerogels thus obtained and their use for the preparation of silica glass articles and of heat-insulating materials
US4610863A (en) 1985-09-04 1986-09-09 The United States Of America As Represented By The United States Department Of Energy Process for forming transparent aerogel insulating arrays
US5124364A (en) 1990-12-05 1992-06-23 Basf Aktiengesellschaft Composite foams of low thermal conductivity
US5137279A (en) 1991-02-13 1992-08-11 Campaign Headquarters, Inc. Political candidate campaign board game
JPH0597978A (ja) 1991-10-09 1993-04-20 Japan Synthetic Rubber Co Ltd 水素添加重合体
JPH05279011A (ja) 1992-02-03 1993-10-26 Matsushita Electric Works Ltd 疎水性エアロゲルの製造方法
JPH05310845A (ja) 1992-05-11 1993-11-22 Mitsui Petrochem Ind Ltd 環状オレフィン系ランダム多元共重合体およびその製造方法
WO1994024191A1 (en) 1993-04-21 1994-10-27 The University Of Akron Negative birefringent polyimide films
JPH08511812A (ja) 1993-04-21 1996-12-10 ザ ユニバーシティ オブ アクロン 負複屈折のポリイミド膜
JPH07138375A (ja) 1993-11-12 1995-05-30 Matsushita Electric Works Ltd 疎水性エアロゲルの製法
US5496527A (en) 1993-11-12 1996-03-05 Matsushita Electric Works. Ltd. Process of forming a hydrophobic aerogel
JPH0850206A (ja) 1994-05-31 1996-02-20 Fuji Photo Film Co Ltd 光学補償シート、液晶表示装置及びカラー液晶表示装置
WO1997044704A1 (en) 1996-05-23 1997-11-27 Minnesota Mining And Manufacturing Company Polyimide angularity enhancement layer
JP2000511296A (ja) 1996-05-23 2000-08-29 ミネソタ マイニング アンド マニュファクチャリング カンパニー ポリイミド広角化層
JPH11124429A (ja) 1997-10-23 1999-05-11 Nippon Zeon Co Ltd 熱可塑性ジシクロペンタジエン系開環重合体、及びその製造方法
JP2000206303A (ja) 1999-01-18 2000-07-28 Sekisui Chem Co Ltd 偏光板保護フィルム及び偏光板
JP2000304932A (ja) 1999-02-17 2000-11-02 Fuji Photo Film Co Ltd 光学補償シート、楕円偏光板および液晶表示装置
JP2001174637A (ja) * 1999-10-04 2001-06-29 Sekisui Chem Co Ltd 偏光板保護フィルム及び偏光板
JP2001233611A (ja) 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材
JP2001272535A (ja) * 2000-03-24 2001-10-05 Sekisui Chem Co Ltd 偏光板保護フィルム及び偏光板
JP2002249600A (ja) * 2001-02-23 2002-09-06 Sekisui Chem Co Ltd ノルボルネン系樹脂フィルム及びその製造方法
JP2002303726A (ja) * 2001-04-06 2002-10-18 Nitto Denko Corp 偏光フィルム、偏光子用保護フィルム、偏光フィルムの製造方法、偏光フィルムを用いた光学フィルムならびに液晶表示装置
JP2003057439A (ja) * 2001-08-09 2003-02-26 Toray Ind Inc 光学フィルムおよびその製造方法
JP2003149642A (ja) 2001-11-13 2003-05-21 Matsushita Electric Works Ltd 液晶用フロントライト
JP2003291236A (ja) * 2002-03-29 2003-10-14 Lintec Corp 光学用ハードコートフィルム
JP2004345333A (ja) * 2002-06-24 2004-12-09 Fuji Photo Film Co Ltd プラスチックフイルム及び画像表示装置
JP2005115085A (ja) 2003-10-08 2005-04-28 Nippon Zeon Co Ltd 偏光板保護フィルム及び積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1895336A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101802061B (zh) * 2007-09-21 2012-10-10 Lg化学株式会社 光学膜及制备该光学膜的方法
JP2009109993A (ja) * 2007-10-12 2009-05-21 Sumitomo Chemical Co Ltd 偏光板のセット、ならびにこれを用いた液晶パネルおよび液晶表示装置
JP2009157347A (ja) * 2007-12-03 2009-07-16 Sumitomo Chemical Co Ltd 偏光板のセット、ならびにこれを用いた液晶パネルおよび液晶表示装置
JP2010191090A (ja) * 2009-02-17 2010-09-02 Sumitomo Chemical Co Ltd 偏光板、ならびにそれを用いた液晶パネルおよび液晶表示装置
JP2011053256A (ja) * 2009-08-31 2011-03-17 Nippon Shokubai Co Ltd 光学積層体
JP2012103470A (ja) * 2010-11-10 2012-05-31 Dainippon Printing Co Ltd 偏光板、液晶表示パネルおよび表示装置
JP2014056050A (ja) * 2012-09-11 2014-03-27 Ricoh Co Ltd 光学素子および光拡散素子および画像表示装置
JP2014119538A (ja) * 2012-12-14 2014-06-30 Fujifilm Corp 偏光板保護フィルム、偏光板および液晶表示装置
JP2016038537A (ja) * 2014-08-11 2016-03-22 旭硝子株式会社 ワイヤグリッド型偏光子、光源モジュールおよび投射型表示装置
JP2016089023A (ja) * 2014-11-04 2016-05-23 日本ゼオン株式会社 撥水性フィルムの製造方法

Also Published As

Publication number Publication date
CN101203779B (zh) 2011-08-17
TWI401161B (zh) 2013-07-11
JPWO2006137428A1 (ja) 2009-01-22
CN101203779A (zh) 2008-06-18
KR20080027781A (ko) 2008-03-28
EP1895336B1 (en) 2014-01-22
EP1895336A1 (en) 2008-03-05
TW200720087A (en) 2007-06-01
US9897849B2 (en) 2018-02-20
KR101226399B1 (ko) 2013-01-24
EP1895336A4 (en) 2009-10-21
JP5169215B2 (ja) 2013-03-27
US20090237786A1 (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP5169215B2 (ja) 偏光板用保護フィルム
JP5447612B2 (ja) 偏光板用保護フィルムの製造方法
US8139181B2 (en) Polarization plate, liquid crystal display device and protective film
JP5380029B2 (ja) 液晶表示装置
JP5104373B2 (ja) 位相差板の製造方法
JP4915114B2 (ja) 表示画面用保護フィルム及びそれを用いた偏光板並びに表示装置
JP2007233114A (ja) 偏光板および液晶表示装置
JP2007256844A (ja) 光学フィルム、反射防止フィルム、光学フィルムの製造方法、それを用いた偏光板およびディスプレイ装置
JP5559670B2 (ja) 時分割2眼立体視の透過型液晶表示装置
JP6303544B2 (ja) 液晶表示装置及び偏光板
JP4800894B2 (ja) 透明保護フィルム、光学補償フィルム、偏光板、及び液晶表示装置
WO2015072486A1 (ja) 位相差フィルムの製造方法
JP4682897B2 (ja) 液晶表示用偏光板及び液晶表示装置
JP2011227508A (ja) 透明保護フィルム、光学補償フィルム、偏光板、及び液晶表示装置
EP1952193A1 (en) Liquid crystal display
JP2012078539A (ja) 偏光板及び液晶表示装置
JP5857091B2 (ja) 立体画像表示装置
JP2005037904A (ja) 光学補償シート、その製造方法、それを用いた偏光板及び液晶表示装置
JP5240103B2 (ja) 積層位相差板、位相差板製造用フィルム及びそれを用いた積層位相差板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680022453.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007522310

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077029758

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006767055

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11922598

Country of ref document: US