WO2006126428A1 - 光学活性3-メチルシクロペンタデカノン及びその中間体の製造方法 - Google Patents

光学活性3-メチルシクロペンタデカノン及びその中間体の製造方法 Download PDF

Info

Publication number
WO2006126428A1
WO2006126428A1 PCT/JP2006/309783 JP2006309783W WO2006126428A1 WO 2006126428 A1 WO2006126428 A1 WO 2006126428A1 JP 2006309783 W JP2006309783 W JP 2006309783W WO 2006126428 A1 WO2006126428 A1 WO 2006126428A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
optically active
substituent
formula
Prior art date
Application number
PCT/JP2006/309783
Other languages
English (en)
French (fr)
Inventor
Shigeru Tanaka
Kenya Ishida
Hiroyuki Matsuda
Original Assignee
Takasago International Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago International Corporation filed Critical Takasago International Corporation
Priority to JP2007517785A priority Critical patent/JP4932707B2/ja
Priority to US11/920,600 priority patent/US7728177B2/en
Priority to EP06746486A priority patent/EP1884509B1/en
Priority to ES06746486T priority patent/ES2397396T3/es
Priority to CN2006800146100A priority patent/CN101166708B/zh
Publication of WO2006126428A1 publication Critical patent/WO2006126428A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/385Saturated compounds containing a keto group being part of a ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/511Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups
    • C07C45/513Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups the singly bound functional group being an etherified hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/54Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition of compounds containing doubly bound oxygen atoms, e.g. esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657154Cyclic esteramides of oxyacids of phosphorus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered

Definitions

  • the present invention relates to a method for producing optically active 3-methylcyclopentadecanone and its intermediate.
  • the present invention also relates to a novel optically active ligand for producing optically active 3-methylcyclopentadecanone or an intermediate thereof.
  • Jiakou is a dried version of the musk gland secretions of the male musk deer, and has long been prized as a fragrance and herbal medicine. Aromas with a strong aroma have been considered good, but nowadays it has been refined with 2% or more of Muscon. Sika deer is a force-bearing animal that inhabits the mountainous area of the Himalayas from the mountainous area of China. Therefore, naturally produced musk can only be used that was imported before the Washington Convention, and it cannot be used in the future as long as the artificial breeding of musk mushrooms is not successful.
  • muscon 3-Methylcyclopentadecanone
  • muscon 3-Methylcyclopentadecanone
  • Both the (R)-(-)-and Mus (S)-(+)-isomers are useful as fragrances, but the (R)-(-)-isomer is (S)-( +) —Has a stronger and richer musk aroma than the body, eg (S)-(+) —the threshold of the body is 223 ppb, while (R) — (-) — The body threshold is 61 ppb, and it has been reported that the (R)-(-)-body is superior (see Non-Patent Document 1).
  • Non-patent Document 3 a method using various phosphite compounds as ligands is also known (Non-patent Document 3).
  • optical activity by using a complex of copper and a ligand such as 4- (cis-1,2,6-dimethylbiperidine) -1- (R) -dinaphthodioxaphospine derived from meso form.
  • Non-Patent Document 5 The production of Muscon (Patent Document 5) and phosphite compounds based on chiral bases of deoxycholic acid and binaphthyl groups are used as optically active ligands, combined with a copper catalyst to produce dimethylzinc The synthesis of (R) -muscone that performs asymmetric methylation is reported (Non-Patent Document 4).
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-8555
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-30022
  • Patent Document 3 JP-A-6-192161
  • Patent Document 4 Japanese Patent Publication No. 2001-316309
  • Patent Document 5 Korean Patent Publication No. 2000-49811
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2001-226306
  • Non-Patent Document 1 W. Pickenhagen et al., ACS Symposium SER.388 Flavor Chemistry, 1989 p l 51
  • Non-Patent Document 2 J. Chem. Soc. Perkin Trans. I, 1193, (1992)
  • Non-Patent Document 3 Synlett, 1999, No. 11, 1181
  • Non-Patent Document 4 Tetrahedron: Asymmetry, 15 (2004) 2533
  • an object of the present invention is to provide a practical method for producing an optically active muscone using a relatively small amount of catalyst without taking reaction conditions such as extremely low temperature and low concentration.
  • the present inventors have also found a novel catalyst and a novel optically active ligand compound for this method.
  • the present invention relates to 2 cyclopentadecene 1-one, a copper catalyst, an enol-on scavenger, and a general formula (1)
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 3 may have a substituent having 3 to 3 carbon atoms: a cycloalkyl group having LO. Or an aryl group which may have a substituent, and R 4 has an alkyl group having 1 to 10 carbon atoms, an optionally substituted cycloalkyl group having 3 to 10 carbon atoms, and a substituent.
  • A represents an aralkyl group which may have an aryl group or a substituent, and A represents an optically active biaryl diyl group.
  • a methyl group is reacted with an organometallic compound to carry out a 1,4-one conjugate addition reaction of the methyl group.
  • R represents a residue of the enol-one scavenger, * represents an asymmetric carbon atom, and a wavy line in the formula represents a cis isomer, a trans isomer, or a mixture thereof.
  • the present invention relates to a process for producing optically active 3-methylcyclopentadecanone, characterized in that an optically active 3-methyl-1-cyclopentadecene derivative represented by the formula:
  • the present invention relates to a method for producing optically active 3-methylcyclopentadecanone which is optically active 3-methylcyclopentadecanone force 3- (R) -methylcyclopentadecanone to be produced.
  • the present invention also relates to 2-cyclopentadecene 1-one, a copper catalyst, an enolone scavenger, and a general formula (1)
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 3 represents an optionally substituted cyclohexane having 3 to 10 carbon atoms
  • R 4 represents an alkyl group having 1 to 10 carbon atoms, an optionally substituted cycloalkyl group having 3 to 10 carbon atoms, and a substituent.
  • A represents an optically active biaryl group.
  • R represents a residue of an enol-one scavenger, and * represents an asymmetric carbon atom.
  • the wavy line in the formula represents a cis isomer, a trans isomer, or a mixture thereof.
  • R 1 ′ and R 2 ′ each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 3 ′ may have a substituent having 3 to 3 carbon atoms:
  • LO represents a cycloalkyl group or an aryl group that may have a substituent
  • R 4 1-naphthylmethyl group, 2-naphthylmethyl group, 3,4-methylenedioxybenzyl group, biphenylmethyl Group, anthrylmethyl group, alkyl group having 1 to 10 carbon atoms, aryl group optionally having substituent (s), having 1 to 6 carbon atoms
  • a benzyl group substituted with an alkyl group or a cycloalkyl group having 3 to 10 carbon atoms may be substituted or condensed with an aryl group.
  • a ′ represents a biaryl diyl group. It is related with the compound represented by these. This compound of the present invention is useful as a ligand for a
  • the present invention relates to an optically active 3-methyl-1-cyclopentadecene derivative represented by:
  • the optically active 3-methyl-1-cyclopentadecene derivative of the present invention is useful as an intermediate in the production of optically active 3-methylcyclopentadecane 1-one.
  • Examples of 2-cyclopentadecene 1-one used in the present invention include, for example, (E) -2-cyclopentadecene 1-one, which is not limited to this, and (Z) 2— It may be cyclopentadecene 1-one or a mixture of (E) and (Z) isomers.
  • (E) -2 Cyclopentadecenone can be obtained by a known method, for example, JP-A-1-321556, JP-A-2001-369422, JP-A-2001-226306, and Korean.
  • any of the copper catalysts conventionally used in 1,4-one conjugate addition reactions can be used.
  • these copper catalysts include, for example, copper (I I) triflate (Cu (OTf)), copper (I) triflate (Cu (OTf)), copper trifluoroacetate (II) (
  • Cupric bromide CuBr
  • copper iodide Cul
  • cupric iodide Cul
  • copper cyanide CuC
  • Examples include Cu (OTf) and Cu (OTf).
  • examples of the enolone-on scavenger used in the present invention include a compound having a group capable of binding to the oxygen atom of enolone and a group capable of leaving upon the binding, and a preferred enolone-on scavenger.
  • examples thereof include compounds capable of forming an enol derivative such as an enol ester, an enol carbonate, an enol ether, or a silyl enol ether by bonding to the hydroxyl group of the enol.
  • Specific examples of such enol-on scavengers include, for example, the following general formula (3)
  • R 5 represents an acyl group, an alkoxy carbo group, an alkyl group, or a silyl group
  • 1 represents a halogen atom, an alkyl sulfo-oxy group, an aryl sulfo-oxy group
  • OR 6 R 6 is Represents an acyl group or an alkoxycarbo group.
  • the residue of the enol-on scavenger represented by R is bonded to the oxygen atom of the enol-on in the enol-on-scavenger described above. More specifically, a group corresponding to R 5 of the enol-one scavenger represented by the above general formula (3) can be mentioned.
  • the acyl group represented by R 5 and R 6 is a saturated or unsaturated chain or cyclic aliphatic carboxylic acid having 2 to 15 carbon atoms.
  • an aromatic carboxylic acid power derivative having 7 to 15 carbon atoms that is, an alkyl carbo yl group, an alkenyl carbonyl group, an aryl carbonyl group, an aralkyl carbonyl group, etc., and these carboxylic acids are It may have a substituent such as a halogen, an alkoxy group, a lower alkyl group or a nitro group.
  • an acyl group include, for example, an acetyl group, a propanol group, a petityl group, a bivaloyl group, a valeryl group, and an isovaleryl group.
  • the alkoxycarbonyl group represented by R 5 and R 6 may be saturated or unsaturated, linear, branched or cyclic.
  • an alkoxycarbo group having 2 to 19 carbon atoms may be mentioned, and an alkyl group, a cycloalkyl group, or a alkenyl group in the alkoxycarbo group may be appropriately selected from halogen, aryl group, It may have a substituent such as an aralkyl group.
  • alkoxy carbo yl group examples include, for example, a methoxy carbo ol group, an ethoxy carbo ol group, an n propoxy carboxy group, an isopropoxy carbo ol group, an n butoxy carbo ol group, a tert Butoxycarbol, pentyloxycarbol, hexyloxycarbol, 2-ethyloxycarboxyl, lauryloxycarbol, stearyloxycarboro , Aryloxycarbol group, benzyloxycarboxyl group, 4-chlorobenzoylcarboxyl group, cyclohexyloxycarbol group and the like.
  • the alkyl group represented by R 5 includes an alkyl group which may be linear, branched or cyclic. Examples of these alkyl groups include alkyl groups having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • the alkyl group, aryl group or aralkyl group may have an appropriate substituent.
  • substituents include a hydrocarbon group, an aliphatic heterocyclic group, an aromatic heterocyclic group, an alkyl group, and an alkyl group.
  • substituents include a hydrocarbon group, an aliphatic heterocyclic group, an aromatic heterocyclic group, an alkyl group, and an alkyl group.
  • hydrocarbon group substituted for the alkyl group examples include an alkyl group, an alkyl group, an aryl group, and an aralkyl group.
  • Such an alkyl group may be linear, branched or cyclic.
  • alkenyl group examples include linear or branched alkenyl groups having, for example, 2 to 15 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms. Examples thereof include a beer group, a probe group, a 1-butur group, a pentale group, and a hexyl group.
  • aryl group for example, a monocyclic, polycyclic or condensed cyclic aryl group having 6 to 14 carbon atoms can be mentioned, and specifically, a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group. And biphenyl group and the like.
  • aralkyl group examples include a group in which at least one hydrogen atom of the alkyl group is substituted with the aralkyl group.
  • a aralkyl group having 7 to 12 carbon atoms is preferred, specifically a benzyl group, 1-naphthylmethyl group, 2 naphthylmethyl group, 9 anthrylmethyl group such as anthrylmethyl group, 4 bimethylmethyl group such as 2-bimethylmethyl group, 2 phenylethyl group, 1 phenylpropyl group, 3 naphthylpropyl group Etc.
  • Examples of the aliphatic heterocyclic group include 2 to 14 carbon atoms and at least one hetero atom. Preferably it contains 1 to 3 hetero atoms such as nitrogen, oxygen, sulfur, etc., 5-8 membered, preferably 5 or 6 membered monocyclic aliphatic heterocyclic group, polycyclic or Examples thereof include an aliphatic heterocyclic group having a condensed ring. Specific examples of the aliphatic heterocyclic group include a pyrrolidyl-2-one group, a piperidino group, a piperazinyl group, a morpholino group, a tetrahydrofuryl group, a tetrahydrovinyl group, and a tetrahydrochenyl group.
  • the aromatic heterocyclic group has, for example, 2 to 15 carbon atoms and contains at least one hetero atom, preferably 1 to 3 hetero atoms such as nitrogen atom, oxygen atom, sulfur atom, etc., 5 to 8 Member, preferably 5- or 6-membered monocyclic heteroaryl group, polycyclic or fused-ring heteroaryl group.
  • hetero atom preferably 1 to 3 hetero atoms such as nitrogen atom, oxygen atom, sulfur atom, etc.
  • 5 to 8 Member preferably 5- or 6-membered monocyclic heteroaryl group, polycyclic or fused-ring heteroaryl group.
  • Specific examples include furyl group, chael group, pyridyl group, pyrimidyl group, and bilazyl.
  • pyridazyl group pyrazolyl group, imidazolyl group, oxazolyl group, thiazolyl group, benzofuryl group, benzochel group, quinolyl group, isoquinolyl group, quinoxalyl group, phthalazyl group, quinazolyl group, naphthyridyl group, cinnolyl group, benzimidazolyl group, Examples thereof include a benzoxazolyl group and a benzothiazolyl group.
  • alkoxy group examples include a group in which an oxygen atom is bonded to the aforementioned alkyl group.
  • an alkoxy group having 1 to 6 carbon atoms can be mentioned. Specifically, a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a 2-butoxy group, an isobutoxy group, a tert-butoxy group.
  • alkylenedioxy group examples include an alkylenedioxy group having 1 to 3 carbon atoms, and specific examples include a methylenedioxy group, an ethylenedioxy group, a propylenedioxy group, and an isopropylidenedioxy group. .
  • aryloxy group examples include a group in which an oxygen atom is bonded to the above-described aryl group.
  • a C6-C14 aryloxy group is mentioned, Specifically, a phenyl group, a naphthyloxy group, an anthryloxy group etc. are mentioned.
  • aralkyloxy group examples include a group in which an oxygen atom is bonded to the above-described aralkyl group.
  • a C 7-12 aralkyloxy group is mentioned, specifically, Zircoxy group, 2-phenoloxy group, 1-phenylpropoxy group, 2-phenolpropoxy group, 3-phenolpropoxy group, 1-phenolbutoxy group, 2-vinylbutoxy group, 3-phenolbutoxy group, 4 phenylbutoxy group, 1 phenolpentyloxy group, 2 phenolpentyloxy group, 3 phenolpentyloxy group, 4 phenolpentyloxy group, 5 phenolpentyloxy group, 1 vinylhexyloxy group, 2 -phenol
  • Examples thereof include a hexyloxy group, a 3-phenylhexoxy group, a 4-phenylhexoxy group, a 5-phenylhexyloxy group, and a 6-phenylhexyloxy group.
  • heteroaryloxy group examples include a group in which an oxygen atom is bonded to the above-described aromatic heterocyclic group.
  • Examples thereof include 2-pyridyloxy group, 2-viradyloxy group, 2-pyrimidyloxy group, 2-quinolyloxy group, and the like.
  • the halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the silyl group represented by R 5 includes, for example, a key atom. Examples thereof include silyl groups in which the above hydrogen atom is substituted with a substituent such as the above-described hydrocarbon group, specifically, trimethylsilyl group, triisopropylpropylsilyl group, tertbutyldimethylsilyl group, tertbutyldiphenylsilyl group, and trifluoro group. -Rusilyl group and the like.
  • the alkyl group of the alkylsulfo-oxy group represented by X 1 may be linear, branched or cyclic.
  • Specific examples of the alkyl sulfo-oxy group include methane sulfo-oxy group, ethane sulfo-oxy group, propan sulfo-oxy group, butane sulfo-oxy group, hexane sulfo-oxy group, and the like. Is mentioned.
  • the aryl group of the aryl sulfo-oxy group represented by X 1 may be, for example, a monocyclic, polycyclic or Examples thereof include a condensed cyclic aryl group, specifically, a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a biphenyl group, and the like. These aryl groups may be appropriately substituted with an alkyl group, an alkoxy group, or a halogen atom as described above. Specific examples of the aryl sulfo-oxy group include a benzene sulfo-oxy group and a p-toluene sulfo-oxy group.
  • examples of the OR 6 isyl group and alkoxycarbonyl group represented by X 1 include an acyl group and an alkoxycarbonyl group as described above. .
  • enolone scavengers used in the present invention include acetic anhydride, propionic anhydride, butanoic anhydride, pentanoic anhydride, anhydrous benzoic acid, methacrylic acid, and the like.
  • Acid anhydrides acid anhydrides such as trifluoroacetic anhydride; acetyl chloride, acetyl bromide, salt propionyl, propionyl bromide, salt butyryl, butyryl bromide, pentanoyl chloride, bivaloyl chloride, Acid halides such as benzoyl chloride and p--trobenzoyl chloride; carbonates such as dimethyl carbonate, jetyl carbonate, dipropyl carbonate, carbonate, diphenyl carbonate, dibenzyl carbonate; trimethylsilyl chloride, triethylsilyl chloride, etc. Powers such as halogenated benzene derivatives of acid anhydrides and carbonates Preferred.
  • optically active phosphoramidite used in the production method of the present invention acts as a copper ligand and has the general formula
  • optically active phosphoramidite of the present invention has 7), And / or at least one group out of the organic residues of Z 3 , or two or more groups together exhibit asymmetric by an asymmetric carbon atom, or axial asymmetry by a rotation hindrance Good.
  • Preferred optically active phosphoramidites of the present invention include the following general formula (1)
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 3 represents an optionally substituted cyclohexane having 3 to 10 carbon atoms
  • R 4 represents an alkyl group having 1 to 10 carbon atoms, an optionally substituted cycloalkyl group having 3 to 10 carbon atoms, and a substituent.
  • A represents an optically active biaryl group.
  • R 1 ′ and R 2 ′ each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 3 ′ may have a substituent having 3 to 3 carbon atoms:
  • L0 represents a cycloalkyl group or an aryl group which may have a substituent, and R 4 , 1-naphthylmethyl group, 2-naphthylmethyl group, 3,4-methylenedioxybenzyl group, biphenylmethyl Group, anthrylmethyl group, an alkyl group having 1 to 10 carbon atoms, an aryl group optionally having a substituent, a benzyl group substituted with an alkyl group having 1 to 6 carbon atoms, or an aryl group substituted or condensed ⁇ represents a cycloalkyl group having 3 to 10 carbon atoms, and A ′ represents a biaryl diyl group).
  • examples of the alkyl group having 1 to 4 carbon atoms in RR 2 , R 1 ′ and R 2 ′ include, for example, methyl group, ethyl group, n-propyl group, isopropyl Group, n-butyl group, isobutyl group, 2-butyl group and tert-butyl group.
  • R 3 and the cycloalkyl group of the cycloalkyl group having 3 to 10 carbon atoms which may have a substituent in R 3 ′ are monocyclic, Polycyclic, condensed Examples thereof include a cyclic or bridged saturated or unsaturated aliphatic cyclic group having 3 to 10 carbon atoms, preferably 5 to 10 carbon atoms.
  • cyclopentyl group, cyclohexyl group, cyclopentale Group, cyclohexyl group and the like are monocyclic, Polycyclic, condensed Examples thereof include a cyclic or bridged saturated or unsaturated aliphatic cyclic group having 3 to 10 carbon atoms, preferably 5 to 10 carbon atoms.
  • cyclopentyl group, cyclohexyl group, cyclopentale Group, cyclohexyl group and the like are examples thereof.
  • substituent in these cycloalkyl groups include the above-described alkyl groups, norogeny alkyl groups in which one or more halogen atoms are substituted on the alkyl groups, aryl groups such as phenyl groups, and the like. Examples thereof include an alkoxy group, the aforementioned alkylenedioxy group, nitro group, cyano group, halogen atom and the like. Further, the substituent in these cycloalkyl groups may be an aryl group such as a phenyl group condensed with a cycloalkyl group.
  • Examples of such a cycloalkyl group fused with an aryl group include an indan-1-yl group and a tetralin-1-yl group.
  • Preferable examples of R 3 ′ in the general formula (1 ′) include cycloalkyl groups having 3 to 10 carbon atoms, more preferably 5 to 10 carbon atoms.
  • the aryl group of the aryl group which may have a substituent represented by R 3 and R 3 ′ is, for example, a simple group having 6 to 14 carbon atoms. Cyclic, polycyclic or fused cyclic aryl groups. Specific examples of these aryl groups include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a biphenyl group, and the like.
  • substituent in these aryl groups include the above-described alkyl group, a norogenyl alkyl group in which one or more halogen atoms are substituted on the alkyl group, the above-described alkoxy group, the above-described alkylenedioxy group, Examples thereof include a nitro group, a cyan group, and a halogen atom.
  • aryl group which may have a substituent represented by R 3 and R 3 ′ include, for example, a phenol group. , O-tolyl group, m-tolyl group, ⁇ -tolyl group, 2-ethylphenyl group, 4-n-propylphenol group, 4-isopropylphenyl group, 4-tertbutylphenol group, 3, 5 Xylyl group, 2,4 xylyl group, 2,6 xylyl group, 2,6 diisopropylphenol group, 2,4,6 trimethylphenol group, 2 trifluoromethylphenol group, 3 trifluoromethyl group Phenyl group, 4 trifluoromethyl phenol group, 3,5 di (trifluoromethyl) phenol group, 2-methoxyphenol group, 4-methoxyphenol group, 2 ethoxyphenyl group, 4 ethoxyphenyl group Group, 4 isopropoxyphenyl group, 4 tert butoxyphenyl
  • the carbon number of 1 to: L0 alkyl group includes a linear, branched or cyclic alkyl group.
  • the cycloalkyl group of the cycloalkyl group having 3 or more carbon atoms that may have a substituent represented by R 4 is a cyclic alkyl group in the above-described alkyl group.
  • substituent in these cycloalkyl groups include, for example, the aforementioned alkyl group, a norogenyl alkyl group in which one or more halogen atoms are substituted on the alkyl group, an aryl group such as a phenyl group, and the aforementioned alkoxy group. And the aforementioned alkylenedioxy group, nitrile group, cyano group, halogen atom and the like.
  • the substituent in these cycloalkyl groups may be an aryl group such as a phenyl group condensed with a cycloalkyl group. Examples of such a cycloalkyl group condensed with an aryl group include an indan 1-yl group and a tetralin 1-yl group.
  • the aryl group represented by R 4 ′ may be substituted or condensed.
  • the cycloalkyl group having 3 to 10 carbon atoms may be monocyclic, polycyclic, or condensed. Cyclic or bridged saturated or unsaturated C 3-10, preferably 5 C: aliphatic cyclic group having L 0, for example, cyclopentyl group, cyclohexyl group, cyclopentyl group And cyclohexyl group.
  • These cycloalkyl groups may be substituted or condensed with aryl groups such as phenyl groups and naphthyl groups as substituents or condensed rings.
  • the aryl group may be substituted or condensed.
  • Examples of the cycloalkyl group having 3 to 10 carbon atoms include a cycloalkyl group having 5 to 10 carbon atoms to which the aryl group is condensed.
  • Examples of the cycloalkyl group having 5 to 10 carbon atoms to which the aryl group is condensed include indane 1-yl group, indene 1-yl group, tetralin 1-yl group, and the like. .
  • the aralkyl group of the aralkyl group may have the substituent represented by R 4 , and examples thereof include the aralkyl groups as described above.
  • substituents that substitutes for these aralkyl groups include the aforementioned alkyl groups, the aforementioned alkoxy groups, the aforementioned alkylenedioxy groups, and the like. These substituents substitute for the aryl groups of the aralkyl group. .
  • the aralkyl group include a benzyl group, a 1 phenethyl group, a 1 propylpropyl group, a 2 —Methyl 1-phenylpropyl, 2-phenethyl, 2-methylbenzyl, 4-methyl Benzyl group, 4 isopropylbenzyl group, 4-tert butylbenzyl group, 2,4 dimethylbenzyl group, 2-methoxybenzyl group, 3-methoxybenzyl group, 4-methoxybenzyl group, 4-tertbutoxybenzyl group, 3, 4 —Methylenedioxybenzyl group, 1 naphthylmethyl group, 2 naphthylmethyl group, 2 bibutylmethyl group, 9 anthrylmethyl group and the like.
  • benzyl group substituted with an alkyl group having 1 to 6 carbon atoms represented by R 4 in the general formula (1 ') include a 2-methylbenzyl group, 2- Ethylbenzyl group, 2-isopropylbenzyl group, 2-tertbutylbenzyl group, 2-cyclohexyl benzyl group, 2,4 dimethylbenzyl group, 2,6 dimethylbenzyl group, 2-methyl-4-isopropylbenzyl group, etc. .
  • the biaryl diyl group of A ′ is a divalent group having a structure in which two aryl ring structures are directly bonded, and the biaryl diyl skeleton is axially asymmetric. It does not have to be more optically active, but those that are optically active due to axial asymmetry are preferred.
  • aryl ring structures include monocyclic, polycyclic or condensed cyclic 6-membered aromatic rings, preferably monocyclic or condensed cyclic 6-membered aromatic rings such as benzene, naphthalene, and phenanthrene rings. Can be mentioned.
  • the two aryl rings forming the biaryl diyl group may be different from each other, but the same is preferred.
  • the optically active biaryl diyl group A in the general formula (1) of the present invention is the biaryl diyl group described above, and the biaryl diyl skeleton is optically active due to axial asymmetry.
  • the optically active biaryl diyl group means that the biaryl diyl skeleton is optically active due to axial asymmetry, and the substituent on the nitrogen atom is optically active, for example, 2-butyl group, 1-cyclohexane. It represents that an alkyl group having an asymmetric carbon atom, such as a hexylethyl group, a 1 phenethyl group, or a 1 naphthyl group is optically active.
  • Examples of the biaryl diyl group represented by A and A include, for example, 1, 1, 1-binaphthalene, 1, 2 'diyl group, and the binaphthyl ring is an alkyl group such as a methyl group or a tert butyl group; a methoxy group , Alkoxy groups such as tert butoxy group; trialkylsilyl groups such as trimethylsilyl group, triisopropyl silyl group, tert-butyldimethylsilyl group and triphenyl It may be substituted with a triarylsilyl group such as a -rusilyl group.
  • Preferred examples of the biaryl group represented by A and A ′ in the general formula (1) or general formula (1 ′) of the present invention include, for example, the following formula (4)
  • R 7 , R 8 , R 9 , R 10 , R 11 and R 12 may be the same or different, a hydrogen atom, an alkyl group, an alkoxy group, an acyloxy group, a halogen atom, A haloalkyl group or a dialkylamino group, which may have a substituent with R 8 and R 9 , may form an alkylene chain! /, And may have a substituent with R 11 and R 12 // may be! / May form an alkylene chain! / Ring A and Ring B may each independently be a benzene ring or two or more 6-membered aromatic rings. Represents a condensed ring.
  • Examples of ring A and ring B in the general formula (4) include, for example, a benzene ring, a naphthalene ring, Examples include a phenanthrene ring.
  • Examples of the alkyl group represented by R 7 to R 12 in the general formula (4) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • Examples thereof include linear or branched alkyl groups having 1 to 6 carbon atoms such as a group, and examples of the alkoxy group include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, Examples thereof include linear or branched alkoxy groups having 1 to 6 carbon atoms such as isobutoxy group, sec-butoxy group and tert-butoxy group.
  • acyloxy group for example, a straight chain having 2 to 6 carbon atoms such as acetoxy group and propanoyloxy group Or a carbon such as a halogen-substituted alkylcarbo-loxy group or a benzoyloxy group in which a halogen atom is substituted on the alkyl group part of the above-described alkylcarbo-loxy group such as a branched alkylcarbo-loxy group or trifluoroacetoxy group
  • aryl carbo-oxy group of 7 to 16 include aralkyl carbo-oxy group.
  • halogen atom examples include a chlorine atom, a bromine atom, and a fluorine atom.
  • haloalkyl group examples include the above-described alkyl groups substituted with these halogen atoms, for example, 1 to 6 carbon atoms such as a trifluoromethyl group.
  • dialkylamino group examples include an amino group substituted with the above-described alkyl group, such as a dimethylamino group or a dimethylamino group.
  • the alkylene chain is a linear or branched alkylene having 3 to 5 carbon atoms.
  • Specific examples of preferred chains include trimethylene group, tetramethylene group and pentamethylene group.
  • Examples of the substituent of the alkylene chain which may have a substituent include the alkyl group described above and the halogen atom described above, and specific examples thereof include the alkyl group as described above having 1 to 6 carbon atoms. And a fluorine atom.
  • the biaryl diyl group of the group A becomes an optically active group of the (R) isomer or (S) isomer due to axial asymmetry. Or asymmetrical and optically active at the group R ⁇ group R 2 , group R 3 , or the carbon atom to which these groups are attached! /, Both the biaryl diyl group and the group bonded to the nitrogen atom may be asymmetric and become an optically active substance! /.
  • the compound represented by the general formula (1 ′) of the present invention is not necessarily limited to the optically active form, but like the optically active ligand represented by the above general formula (1), Preferred is a compound which becomes optically active due to the asymmetry of the biaryl diyl group in the general formula (1 ′) and the substituent on the Z or nitrogen atom.
  • optically active ligand represented by the general formula (1) of the present invention or the compound represented by the general formula (1 ') can be synthesized according to a known method, for example, According to the method described in J. Org. Chem., 58, 7313 (1993) and Tetrahedron: Asymmetry, 13,801 (2002), it can be synthesized by the following scheme. [0041] [Chemical 10]
  • a secondary amine compound or its alkali metal amide is reacted with a phosphorus compound having a leaving group to prepare a compound having a phosphorus nitrogen bond (first step), and this is prepared in the presence of a base.
  • the biaryl diol is reacted in step 2 (second step).
  • an optically active substance as the secondary amine compound to be used, an optically active ligand having an optically active substituent on the nitrogen atom can be obtained.
  • (S) optically active biaryl diols can be used to obtain optically active ligands having a biaryl skeleton.
  • an optically active substance for both the secondary amine compound and the biaryldiol it is possible to obtain a compound in which both skeletons are optically active.
  • the alkali metal of the alkali metal amide represented by M is preferably lithium, sodium, lithium, sodium, potassium, rubidium, cesium, or the like.
  • An alkali metal amide is prepared by reacting an alkali metal or alkali metal compound with a secondary amine compound.
  • alkali metal compound used include alkali metal hydrides such as sodium hydride, lithium hydride and potassium hydride; methinore lithium, n-butinorelithium, 2-butinorelithium, tert-butinorelithium, etc. Forces including alkyl lithium and the like n Preferred is butyl lithium.
  • the leaving group of the phosphorus compound having a leaving group represented by X 2 includes halogen atoms such as chlorine and bromine; methanesulfoloxy group, p-toluenesulfuroxy group, benzenesulfo group.
  • halogen atoms such as chlorine and bromine
  • methanesulfoloxy group, p-toluenesulfuroxy group, benzenesulfo group examples include sulfo-oxy groups such as -loxy group, trifluoromethanesulfo-loxy group; alkoxy groups such as methoxy group, ethoxy group, butoxy group, and phenoxy group, or aryloxy groups, among which a halogen atom is preferable.
  • the first step in this method does not necessarily require the presence of a base! /, But the second step reaction is preferably performed in the presence of a base.
  • the base used in these steps may be any of an inorganic base or an organic base, or a mixture thereof, and is not particularly limited, but is not limited to lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate.
  • alkaline earth metal carbonate such as cesium carbonate, magnesium carbonate, calcium carbonate, barium carbonate, sodium methoxide, sodium ethoxide, sodium phenoxide, sodium tert-butoxide, potassium methoxide, potassium carbonate
  • Alkoxides such as toxide, potassium phenoxide, potassium tert-butoxide, lithium methoxide, lithium ethoxide, lithium phenoxide, lithium-tert butoxide, sodium hydroxide, potassium hydroxide, lithium hydroxide, hydroxide Alkali metal or alkaline earth metal hydroxides such as lithium, potassium hydroxide, alkaline metal phosphates such as lithium phosphate, potassium phosphate, sodium phosphate, trimethylamine, triethylamine, Amines such as triisopropylamine, tricyclohexylamine, jetylamine, jetylamine, diisopropylamine, and alkali metal fluoride salts such as lithium fluoride, potassium fluor
  • the amount of the base used in the second step is preferably used in an amount of 2 moles or more based on the compound having a phosphorus nitrogen bond. If the amount of the base is less than 2 moles, the yield of the target compound may be low. In addition, a large excess of base has almost no effect on the yield of the target compound, but the post-treatment operation after the completion of the reaction becomes complicated, so the more preferable amount of base is 2 to 10-fold mol. Range. [0044] The reaction in each of the above steps is preferably performed in the presence of a solvent.
  • the solvent to be used is not particularly limited as long as it is an inert solvent for these reactions, but aliphatic organic solvents such as pentane, hexane, heptane, and octane; cyclohexane, Alicyclic organic solvents such as methylcyclohexane; Aromatic organic solvents such as benzene, toluene and xylene; Ether organic solvents such as jetyl ether, diisopropyl ether, dimethoxyethane, tetrahydrofuran, dioxane and dioxolane; Acetonitrile And aprotic polar solvents such as dimethylformamide, dimethylsulfoxide, and hexamethylphosphotriamide.
  • aliphatic organic solvents such as pentane, hexane, heptane, and octane
  • cyclohexane Alicyclic organic solvents such as methylcyclohexan
  • Preferable solvents include aromatic organic solvents such as benzene, toluene and xylene, and ether organic solvents such as jetyl ether, dimethoxyethane, tetrahydrofuran, and dioxane.
  • aromatic organic solvents such as benzene, toluene and xylene
  • ether organic solvents such as jetyl ether, dimethoxyethane, tetrahydrofuran, and dioxane.
  • reaction in each of the above steps is preferably performed in an inert gas atmosphere such as nitrogen or argon because of the properties of the compound to be handled.
  • the reaction temperature of the first step is a force that is performed in the range of 78 ° C to 40 ° C. 50 ° C to 25 ° C is preferred.
  • the reaction time depends on the reaction temperature. However, it takes about 1 to 4 hours.
  • reaction temperature of the second step is carried out in the range of 20 ° C to 40 ° C, but the reaction time of 20 ° C to 25 ° C is naturally dependent on the reaction temperature. , About 3 to 16 hours.
  • the desired compound can be obtained by treatment according to a conventional method.
  • optically active ligand used in the present invention may be biaryldiol, as in the method described in Tetrahedron, 56, 2865 (2000), Tetrahedron: Asymmetry, 9, 1179 (1998) or the like.
  • P (X 2 ) followed by reaction with a secondary amine or its alkali metal amide.
  • the method of the present invention comprises a methylated organometallic compound in the presence of 2 cyclopentadecene 1-one, a copper catalyst, an enol-on scavenger, and an optically active ligand represented by the general formula (1).
  • the 1,4-conjugate addition of a methyl group to 2 cyclopentadecene-1-one using It is characterized by producing the optically active 3-methyl-1-cyclopentadecene derivative represented by (2).
  • 2-cyclopentadecene 1-one, copper catalyst, enol-on scavenger and optically active ligand represented by the general formula (1) in this method those described above can be used. .
  • 2-cyclopentadecene 1-one, a copper catalyst, an enol-on scavenger, and the optically active ligand represented by the general formula (1) can be simultaneously present and reacted.
  • 1,4-one-conjugate addition reaction of 2-cyclopentadecene 1-one to methyl group with methyl ⁇ organic metal is added to the reaction mixture to obtain an optically active 3-methyl-1-cyclopentadecene derivative represented by the general formula (2).
  • the 1,4-conjugate addition reaction of methyl group with methyl-organometallic can be performed at a temperature around room temperature.
  • methyli-organic metal used in this method examples include dimethylzinc, methylmagnesium chloride, methylmagnesium bromide, methylmagnesium iodide, methyllithium, and trimethylaluminum.
  • Preferred examples include dimethyl zinc.
  • reaction solvent used in this method any solvent that does not participate in the reaction may be used.
  • aliphatic hydrocarbon solvents such as pentane, hexane, and heptane, toluene, xylene, mesitylene, etc.
  • Aromatic hydrocarbon solvents jetyl ether, diisopropyl etherol, methino tert-butinole ethenore, dibutino lee noetole, cyclopentino retino ethenore, 1,2 dimethoxyethane, tetrahydrofuran, 1,4 dioxane, 1, 3
  • ether solvents such as dixolane
  • halogenated hydrocarbon solvents such as methylene chloride, dichloroethane, and black benzene.
  • aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents and ether solvents are preferable. These solvents may be used alone or in combination of two or more.
  • the amount of the solvent to be used is 1 to 200 times, preferably 3 to L00, more preferably 5 to 30 times the volume of 1 part by weight of 2-cyclopentadecene 1-one.
  • the amount of copper catalyst used in this method is 2 cyclopentadecene 1 on 1 mole. Against, from 0.1 to 20 mole 0/0 mm, preferably in sufficient amount of about 1.0 to 10 mole 0/0.
  • the amount of enolurone scavenger used in this method is 2-cyclopentadecenone 1 monole, compared to 1.0 to 5.0 monole, preferably ⁇ or 1.2 to 3.0 monole. ! /
  • the amount of the optically active ligand used in this method is 2 times mol or more, preferably about 2 times mol to 3 times mol of the amount of copper catalyst used.
  • the amount of the methyli-organic metal used in this method is 1.0 to 5.0 monole, preferably ⁇ or 1.2 to 3.0 monole, for 2-cyclopentadecenone monole! Be beaten.
  • the production method of the present invention is preferably carried out in an inert gas such as nitrogen or argon.
  • the reaction temperature in this method is a force that naturally varies depending on the reagent used, and a range of about -80 ° C to 50 ° C, preferably a range of about -30 ° C to 30 ° C.
  • the 1,4-one conjugate addition reaction can be performed at a temperature around room temperature.
  • the reaction time for this method is about 10 minutes to 20 hours, preferably about 30 minutes to 10 hours.
  • the desired product can be obtained by using usual operations such as extraction, distillation, recrystallization or various chromatography.
  • R represents a residue of the enol-one scavenger. * Represents an asymmetric carbon atom. A wavy line in the formula represents a cis isomer, a trans isomer, or a mixture thereof.
  • An optically active muscone can be selectively produced by solvolysis of the enol moiety of the optically active 3-methylcyclopentadecene derivative represented by the following formula.
  • solvolysis method a commonly used solvolysis method of enols can be used.
  • the optical system represented by the general formula (2) Enol derivative strength in active 3-methyl-1-cyclopentadecene derivatives
  • a method of reacting in a solvent using a basic catalyst can be mentioned.
  • the basic catalyst used in the solvolysis include lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, and magnesium carbonate.
  • sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide and the like are preferable.
  • These basic catalysts can be used alone or in combination of two or more.
  • an enol derivative is enol ether
  • the method of making it react in a solvent using an acidic catalyst is mentioned.
  • the acidic catalyst used in this solvolysis include hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, p-toluenesulfonic acid, acetic acid, chloroacetic acid, trifluoroacetic acid, acidic ion exchange.
  • Examples include rosin.
  • Preferred acidic catalysts are hydrochloric acid, sulfuric acid, p-toluenesulfonic acid and the like. These acidic catalysts can be used alone or in combination of two or more.
  • the enol derivative is a silyl enol ether
  • a fluorine-type compound is mentioned.
  • the solvent used in the solvolysis is not limited as long as the solvolysis proceeds, for example, water; alcohols such as methanol, ethanol, isopropanol, n-butanol, and benzyl alcohol; These mixed solvents are mentioned. Of these, methanol and ethanol are preferred.
  • a cosolvent may be used as necessary. Any cosolvent may be used as long as it does not participate in the reaction, for example, jetyl ether, diisopropylpropenoatenole, methinole tert-butinoleethenore, cyclopentinolemethinoreteinole, tetra
  • ether solvents such as hydrofuran, dimethoxyethane and dioxane
  • aliphatic hydrocarbon solvents such as hexane, heptane and octane
  • aromatic solvents such as toluene and xylene.
  • the amount of the solvent used is 0.5 to L00 volume, preferably 1 to 30 volumes with respect to 1 part by weight of the optically active 3-methylcyclopentadecene derivative represented by the general formula (2).
  • the reaction is carried out at a temperature of 0 to 200 ° C., preferably about 20 to 100 ° C., and is usually carried out by reacting for about 10 minutes to 20 hours, preferably about 30 minutes to 10 hours. These reaction conditions can be appropriately changed depending on the type and amount of the solvent and catalyst used.
  • the desired product can be isolated by carrying out usual post-treatment, if necessary, using a method such as distillation or column chromatography.
  • an asymmetric methyl enzymic reaction with 1,4-addition of 2-cyclopentadecene 1-one is performed using an optically active ligand that is easy to produce and has a relatively simple structure.
  • an optically active ligand that is easy to produce and has a relatively simple structure.
  • the optically active ligand (ligand) of the present invention can efficiently advance the reaction in the presence of a small amount of catalyst having high catalytic activity.
  • the present invention provides a method capable of producing a target optically active substance with high yield and high optical purity in spite of such a simple method.
  • the present invention also provides a novel compound that is effective for such asymmetric methyl isomerization reaction and easy to produce.
  • the ligand of the present invention can easily change the structure of the two substituents substituted on the nitrogen atom of the amine, even if the amine moiety has an asymmetric structure. In addition, a variety of combinations of substituents can be selected.
  • IR Infrared absorption spectrum
  • MS Mass spectrum
  • MS M-80B mass spectrometer (ionization voltage: 20eV) (manufactured by Hitachi, Ltd.)
  • Example 1 (R) (+) —N Benzirou N— (1-Fuethyl) amamine was replaced with (R) N— (1-Naphthyl) methyl-N— (1-Fuylyl) amamine The title compound was obtained in the same manner as in Example 1 to obtain 2.07 g (3.6 mmol, yield 72%) of the title compound.
  • Example 1 In Example 1, (R) (+) —N benzilue N— (1-feuylethyl) amine was replaced with (R) N— (2-methoxybenzyl) N— (1-feuylethyl) amine. The title compound was obtained in the same manner as in Example 1 to obtain 1.89 g (3.40 mmol, yield 68%) of the title compound.
  • optically active muscone was synthesized according to the procedure of Example 5. The results are shown in Table 1 below.
  • Example 21 (R) -muscone 0.300 g (l. 26 mmol, yield) was used in the same manner as in Example 21 except that 0.29 g (2.2 mmol) of propionic anhydride, which is an enol-one scavenger, was not used. 63.1%).
  • the method of the present invention using the enol-one scavenger is a method capable of suppressing the side reaction and obtaining the target product with high yield.
  • the method of the present invention exhibits high activity with a small amount of catalyst.
  • the optically active muscone obtained by the present invention is useful, for example, in the field of fragrances, and the method of the present invention has industrial applicability as its production method.
  • the compound of the present invention is useful as a ligand in the 1,4 addition reaction of a, j8-unsaturated ketones and has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明 細 書
光学活性 3 _メチルシクロペンタデカノン及びその中間体の製造方法 技術分野
[0001] 本発明は光学活性 3—メチルシクロペンタデカノン及びその中間体の製造方法に 関する。また、本発明は、光学活性 3—メチルシクロペンタデカノン又はその中間体を 製造する際の新規な光学活性配位子に関する。
背景技術
[0002] 近年人々の自然志向が高まり、香料に関しても、 自然環境を特徴的にイメージする ような、嗜好性の高 、香料に関心が集まって 、る。
麝香 (ジヤコゥ)は、雄の麝香鹿の麝香腺分泌物を乾燥させたもので、古来から香 料や生薬として珍重されてきた。麝香は、香気の強いものが良品とされてきたが、現 在ではムスコンが 2%以上含有されているものが上品とされてきている。麝香鹿は、シ 力科の動物でヒマラヤの山岳地帯から中国の奥地に生息している力 現在ではヮシ ントン条約で輸出入が禁止されている。したがって、天然産の麝香は、ワシントン条約 以前に輸入されたものしか使用することができず、ジヤコウジ力の人工飼育が成功し な ヽ限り、将来は使うことができな 、ものである。
麝香の成分である 3—メチルシクロペンタデカノン(以下、ムスコンということがある。 )は、典型的なムスク系香料の 1種であり、メチル基の立体配置により香気に違いがあ ることが知られている。ムスコンの光学活性体である(R) - ( -)—体及び(S) - ( + ) —体は共に香料として有用であるが、 (R) - ( -)—体は(S) - ( + )—体と比べてより 強ぐより豊かなムスク香気を有しており、例えば、(S) - ( + )—体の閾値が 223ppb であるのに対し、(R)— ( -)—体の閾値は 61ppbであって、(R)— ( -)—体がより優 れたものであることが報告されている (非特許文献 1参照)。
[0003] 活性面のみならず、 自然志向の高まりや、環境面の観点からも生分解性の優れた( R)一体についての感心が高まってきており、ラセミ体ではなく光学活性体が求められ てきている。そして、ラセミ体を光学分割する方法も多数検討されてきているが (例え ば、特許文献 1参照)、この方法では(S)—体の生成も避けられない。このようなこと から、(R)—体のムスコンを選択的に製造する方法の検討が数多くなされてきた。光 学活性な原料を用いて (R)—体を製造する方法 (例えば、特許文献 2参照)や、 3 - メチル 2 シクロペンタデセン 1 オンを不斉水素化する方法 (特許文献 3参照) などが開発されてきた力 ジメチル亜鉛などのアルキル化剤による a , β 不飽和ケ トンの 1 , 4 付加反応によるアルキルィ匕が報告され (特許文献 4参照)、 2 シクロべ ンタデセン 1 オンのメチル化が注目されてきた。近年になって、 2—シクロペンタ デセン 1 オンに対する、メチル基の 1 , 4一共役付加反応による立体選択的な (R )一体のムスコンの製造法がいくつか報告されている。例えば、その例を挙げると、ボ ルナン骨格を有するキラル補助基を合成時に使用することにより、良好な結果が得ら れることが報告されている(非特許文献 2)。また、他の例としては、種々のホスファイト 化合物を配位子として用いる方法も知られて 、る(非特許文献 3)。その他の例として は、メソ体由来の 4— (シス一 2, 6 ジメチルビペリジン)一(R)—ジナフトジォキサホ スフヱピン等の配位子と銅の複合体を用いることによる光学活性ムスコンの製造 (特 許文献 5)や、デォキシコール酸(Deoxycholic acid)及びビナフチル基をキラルベー スとしたホスファイトィ匕合物を光学活性配位子として用い、これと銅触媒とを組み合わ せて、ジメチル亜鉛により不斉メチルイ匕を行う (R)—ムスコンの合成が報告されている (非特許文献 4)などが報告されてきて!/ヽる。
また、このような状況の中で、原料となる 2—シクロペンタデセン 1 オンの新たな 製造方法も開発されてきて ヽる (特許文献 6参照)。
特許文献 1 :特開 2005— 8555号公報
特許文献 2:特開 2002— 30022号公報
特許文献 3 :特開平 6— 192161号公報
特許文献 4:特表 2001— 316309号公報
特許文献 5:韓国特許公開 2000— 49811号公報
特許文献 6:特開 2001— 226306号公報
非特許文献 1 : W. Pickenhagenら、 ACSシンポジウム SER.388Flavor Chemistr y、 1989 p l 51
非特許文献 2 :J. Chem. Soc. Perkin Trans. I, 1193, ( 1992) 非特許文献 3 : Synlett, 1999, No. 11, 1181
非特許文献 4: Tetrahedron: Asymmetry, 15 (2004) 2533
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、従来の方法では高濃度で反応を行うと高分子量の副生成物が生成 し、満足できる収率が得られないという問題や、極低温や低濃度、あるいは長時間反 応などの反応条件によっては、製造コストが高くなるなどの問題がある。また、高い光 学純度を得ようとすると使用する触媒量が多くなるなどの問題もある。そこで本発明は 、極低温や低濃度などの反応条件をとらずに、比較的少ない触媒使用量による実用 的な光学活性ムスコンの製造方法を提供することを課題とする。
課題を解決するための手段
[0006] 本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、銅触媒及び光 学活性配位子の存在下で 2—シクロペンタデセン 1 オンに不斉メチル化反応を 行う際に、反応中間体として生成するエノールァ-オンを、適当なエノールァ-オン 捕捉剤によりトラップすることで光学活性なェノール誘導体が形成され、これにより不 斉メチルイ匕反応を極低温を避けて行うことが可能となるだけでなぐ副生成物の生成 を抑制でき、その後定法によりそのェノール誘導体を加溶媒分解することで、高濃度 、高収率で目的の光学活性ムスコンが得られることを見出し、本発明を完成するに至 つた o
また、本発明者らは、この方法のための新規な触媒、及び新規な光学活性な配位 子化合物を見出した。
[0007] 即ち、本発明は、 2 シクロペンタデセン 1 オンを、銅触媒、エノールァ-オン 捕捉剤、及び一般式 (1)
[0008] [化 1]
(1 )
Figure imgf000004_0001
(式中、 R1及び R2はそれぞれ独立して、水素原子又は炭素数 1〜4のアルキル基を 表し、 R3は置換基を有してもよい炭素数 3〜: LOのシクロアルキル基又は置換基を有 していてもよいァリール基を表し、 R4は炭素数 1〜 10のアルキル基、置換基を有して もよい炭素数 3〜 10のシクロアルキル基、置換基を有していてもよいァリール基、又 は置換基を有して 、てもよ 、ァラルキル基を表し、 Aは光学活性なビアリールジィル 基を表す。 )
で表される光学活性ホスホラミダイトの存在下、メチルイ匕有機金属と反応させて、メチ ル基の 1, 4一共役付加反応を行い、一般式 (2)
[0009] [化 2]
Figure imgf000005_0001
[0010] (式中、 Rはエノールァ-オン捕捉剤の残基を表し、 *は不斉炭素原子を表す。式中 の波線はシス体若しくはトランス体又はこれらの混合物であることを表す。 ) で表される光学活性 3—メチル—1—シクロペンタデセン誘導体を製造し、次いでこ れを加溶媒分解することを特徴とする光学活性 3—メチルシクロペンタデカノンの製 造方法に関する。
[0011] より詳細には、製造される光学活性 3—メチルシクロペンタデカノン力 3- (R)—メ チルシクロペンタデカノンである光学活性 3—メチルシクロペンタデカノンの製造方法 に関する。
[0012] また、本発明は、 2—シクロペンタデセン一 1—オンに、銅触媒、エノールァ-オン 捕捉剤、及び一般式 (1)
[0013] [化 3]
Figure imgf000005_0002
[0014] (式中、 R1及び R2はそれぞれ独立して水素原子又は炭素数 1〜4のアルキル基を表 し、 R3は置換基を有してもよい炭素数 3〜 10のシクロアルキル基又は置換基を有し ていてもよいァリール基を表し、 R4は炭素数 1〜10のアルキル基、置換基を有しても よい炭素数 3〜 10のシクロアルキル基、置換基を有していてもよいァリール基、又は 置換基を有していてもよいァラルキル基を表す。また、 Aは光学活性なビアリールジ ィル基を表す。 )
で表される光学活性ホスホラミダイトの存在下、メチルイ匕有機金属によりメチル基の 1 , 4—共役付加反応を行うことを特徴とする、一般式 (2)
[0015] [化 4]
Figure imgf000006_0001
[0016] (式中、 Rはエノールァ-オン捕捉剤の残基を表し、 *は不斉炭素原子を表す。式中 の波線はシス体若しくはトランス体又はこれらの混合物であることを表す。 ) で表される光学活性 3—メチルー 1ーシクロペンタデセン誘導体の製造方法に関する
[0017] さらに、本発明は、下記の一般式(1 ' )
[化 5]
Figure imgf000006_0002
[0018] (式中、 R1'及び R2'はそれぞれ独立して水素原子又は炭素数 1〜4のアルキル基を 表し、 R3'は置換基を有してもよい炭素数 3〜: LOのシクロアルキル基又は置換基を有 していてもよいァリール基を表し、 R4,は 1—ナフチルメチル基、 2—ナフチルメチル 基、 3, 4—メチレンジォキシベンジル基、ビフエ-ルメチル基、アンスリルメチル基、 炭素数 1〜10のアルキル基、置換基を有していてもよいァリール基、炭素数 1〜6の アルキル基で置換されたべンジル基、又はァリール基が置換若しくは縮合してもょ ヽ 炭素数 3〜 10のシクロアルキル基を表す。 A 'はビアリールジィル基を表す。) で表される化合物に関する。本発明のこの化合物は、光学活性 3—メチルシクロペン タデカン— 1—オンを選択的に製造する際の、触媒の配位子として有用である。
[0019] また、本発明は、次の一般式 (2)
[0020] [化 6]
Figure imgf000007_0001
[0021] (式中、 Rはエノールァ-オン捕捉剤の残基を表し、 *は不斉炭素原子を表す。式中 の波線はシス体若しくはトランス体又はこれらの混合物であることを表す。 ) で表される光学活性 3—メチルー 1ーシクロペンタデセン誘導体に関する。本発明の 光学活性 3—メチルー 1 シクロペンタデセン誘導体は、光学活性 3—メチルシクロ ペンタデカン 1 オンを製造する際の中間体として有用である。
[0022] 以下、本発明を詳細に説明する。
本発明に用いられる 2—シクロペンタデセン一 1—オンとしては、例えば、(E)— 2— シクロペンタデセン 1 オンを挙げることができる力 これに限定されるものではなく 、 (Z) 2—シクロペンタデセン 1 オン又は (E) 体及び (Z) 体の混合物でも よい。 (E)—2 シクロペンタデセノンは、公知の方法、例えば特開平 1— 321556号 公報、特開 2001— 369422号公報、特開 2001— 226306号公報、及び】. Korean
Chem. , 40, 243 (1996)等に記載の方法に準じて製造することができる。また、 市販品を用いてもよい。
本発明に用いられる銅触媒としては、従来から 1, 4一共役付加反応に用いられて いる銅触媒の何れも用いることができる。これらの銅触媒を例示すると、例えば、銅 (I I)トリフレート(Cu (OTf) )、銅 (I)トリフレート(Cu (OTf) )、トリフルォロ酢酸銅 (II) (
2
Cu(OCOCF ) )、ァセチルァセトナート銅(II) (Cu (acac) )、酢酸銅(II) (Cu (OA c) )、硫酸銅 (II) (CuSO )、塩化銅 (CuCl)、塩化第二銅 (CuCl )、臭化銅 (CuBr
2 4 2
)、臭化第二銅 (CuBr )、ヨウ化銅 (Cul)、ヨウ化第二銅 (Cul )、シアン化銅 (CuC
2 2
N)、過塩素酸銅 (CuClO )、ナフテン酸銅 (Cu (OCOC H ) )、テトラフルォロホウ
4 10 9 2
酸銅 (Π) (Cu (BF ) )、テトラクロロ銅ジリチウム (Li CuCl )などが挙げられ、好まし
4 2 2 4
くは Cu (OTf) 、Cu (OTf)などが挙げられる。
2
また、本発明において用いられるエノールァ-オン捕捉剤としては、ェノールァ-ォ ンの酸素原子に結合することができる基及び当該結合に際して脱離する基を有する 化合物が挙げられ、好ましいエノールァ-オン捕捉剤としては、例えば、ェノールの 水酸基に結合してェノールエステル類、エノールカーボネート類、ェノールエーテル 類、又はシリルエノールエーテル類などのエノール誘導体を形成できる化合物が挙 げられる。このようなエノールァ-オン捕捉剤の具体例としては、例えば、次の一般式 (3)
R5 - X1 (3)
(式中、 R5は、ァシル基、アルコキシカルボ-ル基、アルキル基、又はシリル基を示し ; 1は、ハロゲン原子、アルキルスルホ-ルォキシ基、ァリールスルホ-ルォキシ基、 OR6 (R6は、ァシル基又はアルコキシカルボ-ル基を示す。)を示す。 )
で表されるエノールァ-オン捕捉剤などを挙げることができる。
本発明における一般式(2)で表される化合物にぉ 、て、 Rで表されるエノールァ- オン捕捉剤の残基とは、前記したエノールァ-オン捕捉剤におけるエノールァ-オン の酸素原子に結合することができる基の相当するものであり、より具体的には上記の 一般式 (3)で表されるエノールァ-オン捕捉剤の R5に相当する基が挙げられる。 上記一般式(3)で示される化合物にお!ヽて、 R5及び R6で表されるァシル基として は、炭素数 2〜 15の飽和又は不飽和の鎖状又は環状の脂肪族カルボン酸、又は炭 素数 7〜 15の芳香族カルボン酸力 誘導されるァシル基、即ちアルキルカルボ-ル 基、アルケニルカルボニル基、ァリールカルボニル基、ァラルキルカルボニル基など が挙げられ、これらのカルボン酸はハロゲン、アルコキシ基、低級アルキル基、ニトロ 基などの置換基を有していてもよい。このようなァシル基の具体的としては、例えば、 ァセチル基、プロパノィル基、プチリル基、ビバロイル基、バレリル基、イソバレリル基 、へキサノィル基、オタタノィル基、デカノィル基、ドデカノィル基、シクロへキサノィル 基、ベンゾィル基、 p トルオイル基、 p -トロベンゾィル基、 p ァ-ソィル基、 p— クロ口ベンゾィル基、トリフルォロアセチル基、トリクロロアセチル基、アタリロイル基等 が挙げられる。
[0024] 上記一般式(3)で示される化合物にお!、て、 R5及び R6で表されるアルコキシカル ボニル基としては、飽和又は不飽和の、直鎖状、分岐状又は環状でもよい、例えば 炭素数 2〜 19のアルコキシカルボ-ル基が挙げられ、当該アルコキシカルボ-ル基 のアルキル基、シクロアルキル基、又はァルケ-ル基の部分は適宜、ハロゲン、ァリ ール基、ァラルキル基などの置換基を有していてもよい。このようなアルコキシカルボ -ル基の具体例としては、例えば、メトキシカルボ-ル基、エトキシカルボ-ル基、 n プロポキシカルボ-ル基、イソプロポキシカルボ-ル基、 n ブトキシカルボ-ル基 、 tert ブトキシカルボ-ル基、ペンチルォキシカルボ-ル基、へキシルォキシカル ボ-ル基、 2—ェチルへキシルォキシカルボ-ル基、ラウリルォキシカルボ-ル基、ス テアリルォキシカルボ-ル基、ァリルォキシカルボ-ル基、ベンジルォキシカルボ- ル基、 4 クロ口べンジルォキシカルボ-ル基及びシクロへキシルォキシカルボ-ル 基等が挙げられる。
上記一般式(3)で示される化合物において、 R5で表されるアルキル基としては直鎖 状、分岐状又は環状でもよいアルキル基が挙げられる。これらアルキル基としては例 えば炭素数 1〜15、好ましくは炭素数 1〜10、より好ましくは炭素数 1〜6のアルキル 基が挙げられ、具体的にはメチル基、ェチル基、 n プロピル基、イソプロピル基、 n ブチル基、 2—ブチル基、イソブチル基、 tert ブチル基、 n ペンチル基、 2—ぺ ンチル基、 tert ペンチル基、 2 メチルブチル基、 3 メチルブチル基、 2, 2 ジメ チルプロピル基、 n—へキシル基、 2 へキシル基、 3 へキシル基、 2—メチルペン チル基、 3—メチルペンチル基、 4ーメチルペンチル基、 2—メチルペンタン 3—ィ ル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基等が 挙げられる。
[0025] また、これらアルキル基、ァリール基又はァラルキル基は適宜置換基を有していて もよぐ当該置換基としては、炭化水素基、脂肪族複素環基、芳香族複素環基、アル コキシ基、アルキレンジォキシ基、ァリールォキシ基、ァラルキルォキシ基、ヘテロァリ ールォキシ基、及びハロゲン原子等が挙げられる。
アルキル基に置換する炭化水素基としては、例えばアルキル基、ァルケ-ル基、ァ リール基、ァラルキル基等が挙げられる。
このようなアルキル基としては、直鎖状、分岐状又は環状でもよぐ例えば、炭素数
1〜15、好ましくは炭素数 1〜10、より好ましくは炭素数 1〜6のアルキル基や、炭素 数 3〜15、好ましくは炭素数 3〜 10、より好ましくは炭素数 3〜6のシクロアルキル基 が挙げられ、具体的にはメチル基、ェチル基、 n プロピル基、イソプロピル基、 n— ブチル基、 2—ブチル基、イソブチル基、 tert ブチル基、 n ペンチル基、 2—ペン チル基、 tert ペンチル基、 2 メチルブチル基、 3 メチルブチル基、 2, 2 ジメチ ルプロピル基、 n—へキシル基、 2 へキシル基、 3 へキシル基、 2 メチルペンチ ル基、 3—メチルペンチル基、 4ーメチルペンチル基、 2—メチルペンタン 3—ィル 基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基等が挙 げられる。
ァルケ-ル基としては、直鎖状又は分岐状の、例えば炭素数 2〜15、好ましくは炭 素数 2〜10、より好ましくは炭素数 2〜6のァルケ-ル基が挙げられ、具体的にはビ -ル基、プロべ-ル基、 1ーブテュル基、ペンテ-ル基、へキセ -ル基等が挙げられ る。
ァリール基としては、例えば炭素数 6〜14の単環式、多環式、又は縮合環式のァリ ール基が挙げられ、具体的にはフエニル基、ナフチル基、アントリル基、フエナンスリ ル基、ビフヱニル基等が挙げられる。
ァラルキル基としては、前記アルキル基の少なくとも 1個の水素原子が前記ァリール 基で置換された基が挙げられ、例えば炭素数 7〜12のァラルキル基が好ましぐ具 体的にはべンジル基、 1—ナフチルメチル基、 2 ナフチルメチル基、 9 アンスリル メチル基などのアンスリルメチル基、 4 ビフヱ-ルメチル基などのビフヱ-ルメチル 基、 2 フエ-ルェチル基、 1 フエ-ルプロピル基、 3 ナフチルプロピル基等が挙 げられる。
脂肪族複素環基としては、例えば炭素数 2〜14で、異種原子として少なくとも 1個、 好ましくは 1〜3個の例えば窒素原子、酸素原子、硫黄原子等のへテロ原子を含ん でいる、 5〜8員、好ましくは 5又は 6員の単環の脂肪族複素環基、多環又は縮合環 の脂肪族複素環基が挙げられる。脂肪族複素環基の具体例としては、例えば、ピロリ ジルー 2—オン基、ピペリジノ基、ピペラジニル基、モルホリノ基、テトラヒドロフリル基 、テトラヒドロビラ-ル基、テトラヒドロチェニル基等が挙げられる。
芳香族複素環基としては、例えば炭素数 2〜15で、異種原子として少なくとも 1個、 好ましくは 1〜3個の窒素原子、酸素原子、硫黄原子等の異種原子を含んでいる、 5 〜8員、好ましくは 5又は 6員の単環式へテロァリール基、多環式又は縮合環式のへ テロアリール基が挙げられ、具体的にはフリル基、チェ-ル基、ピリジル基、ピリミジル 基、ビラジル基、ピリダジル基、ピラゾリル基、イミダゾリル基、ォキサゾリル基、チアゾ リル基、ベンゾフリル基、ベンゾチェ-ル基、キノリル基、イソキノリル基、キノキサリル 基、フタラジル基、キナゾリル基、ナフチリジル基、シンノリル基、ベンゾイミダゾリル基 、ベンゾォキサゾリル基、ベンゾチアゾリル基等が挙げられる。
アルコキシ基としては、前記したアルキル基に酸素原子結合した基が挙げられる。 例えば、炭素数 1〜6のアルコキシ基が挙げられ、具体的にはメトキシ基、エトキシ基 、 n—プロポキシ基、イソプロポキシ基、 n—ブトキシ基、 2—ブトキシ基、イソブトキシ 基、 tert—ブトキシ基、 n—ペンチルォキシ基、 2—メチルブトキシ基、 3—メチルブト キシ基、 2, 2—ジメチルプロピルォキシ基、 n—へキシルォキシ基、 2—メチルペンチ ルォキシ基、 3—メチルペンチルォキシ基、 4ーメチルペンチルォキシ基、 5—メチル ペンチルォキシ基、シクロへキシルォキシ基等が挙げられる。
アルキレンジォキシ基としては、例えば炭素数 1〜3のアルキレンジォキシ基が挙げ られ、具体的にはメチレンジォキシ基、エチレンジォキシ基、プロピレンジォキシ基、 イソプロピリデンジォキシ基等が挙げられる。
ァリールォキシ基としては、前記したァリール基に酸素原子が結合した基が挙げら れる。例えば、炭素数 6〜 14のァリールォキシ基が挙げられ、具体的にはフエ-ルォ キシ基、ナフチルォキシ基、アントリルォキシ基等が挙げられる。
ァラルキルォキシ基としては、前記したァラルキル基に酸素原子が結合した基が挙 げられる。例えば、炭素数 7〜 12のァラルキルォキシ基が挙げられ、具体的にはベン ジルォキシ基、 2—フエ-ルェトキシ基、 1 フエ-ルプロポキシ基、 2—フエ-ルプロ ポキシ基、 3 フエ-ルプロポキシ基、 1 フエ-ルブトキシ基、 2 フエ-ルブトキシ 基、 3 フエ-ルブトキシ基、 4 フエ-ルブトキシ基、 1 フエ-ルペンチルォキシ基 、 2 フエ-ルペンチルォキシ基、 3 フエ-ルペンチルォキシ基、 4 フエ-ルペン チルォキシ基、 5 フエ-ルペンチルォキシ基、 1 フエ-ルへキシルォキシ基、 2— フエ-ルへキシルォキシ基、 3—フエ-ルへキシルォキシ基、 4 フエ-ルへキシルォ キシ基、 5—フエ-ルへキシルォキシ基、 6—フエ-ルへキシルォキシ基等が挙げら れる。
ヘテロァリールォキシ基としては、前記した芳香族複素環基に酸素原子が結合した 基が挙げられる。例えば、異種原子として少なくとも 1個、好ましくは 1〜3個の窒素原 子、酸素原子、硫黄原子等の異種原子を含んでいる、炭素数 2〜14のへテロアリー ルォキシ基が挙げられ、具体的には、例えば、 2—ピリジルォキシ基、 2—ビラジルォ キシ基、 2—ピリミジルォキシ基、 2—キノリルォキシ基等が挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる また、上記の一般式(3)で表される化合物において、 R5で表されるシリル基として は、例えばケィ素原子上の水素原子が上記した炭化水素基等の置換基で置換され たシリル基が挙げられ、具体的にはトリメチルシリル基、トリイソプロビルシリル基、 tert ブチルジメチルシリル基、 tert ブチルジフヱ-ルシリル基及びトリフ -ルシリル 基等が挙げられる。
また、上記の一般式(3)で表される化合物において、 X1で表されるアルキルスルホ -ルォキシ基の、アルキル基としては、直鎖状でも、分岐状でも或いは環状でもよい 、例えば炭素数 1〜6のアルキル基が挙げられ、具体的なアルキルスルホ-ルォキシ 基としては、例えば、メタンスルホ-ルォキシ基、エタンスルホ-ルォキシ基、プロパ ンスルホ-ルォキシ基、ブタンスルホ-ルォキシ基、へキサンスルホ -ルォキシ基等 が挙げられる。
また、上記の一般式(3)で表される化合物において、 X1で表されるァリールスルホ -ルォキシ基の、ァリール基としては、例えば炭素数 6〜14の単環式、多環式又は 縮合環式のァリール基が挙げられ、具体的にはフエ-ル基、ナフチル基、アントリル 基、フエナンスリル基、ビフヱニル基等が挙げられる。これらァリール基は、前記したよ うなアルキル基、アルコキシ基、ハロゲン原子で適宜置換されていてもよい。具体的 なァリールスルホ-ルォキシ基としては、例えば、ベンゼンスルホ-ルォキシ基、 p— トルエンスルホ -ルォキシ基等が挙げられる。
また、上記の一般式(3)で表される化合物において、 X1で表される OR6のァシル基 及びアルコキシカルボ-ル基としては、例えば前記したようなァシル基やアルコキシ カルボニル基が挙げられる。
[0028] 本発明にお 、て用いられるエノールァ-オン捕捉剤として、具体的な化合物を例 示すると、例えば、無水酢酸、無水プロピオン酸、無水ブタン酸、無水ペンタン酸、無 水安息香酸、メタクリル酸無水物、トリフルォロ酢酸無水物等の酸無水物;塩化ァセ チル、臭化ァセチル、塩ィ匕プロピオ-ル、臭化プロピオニル、塩ィ匕ブチリル、臭化ブ チリル、塩化ペンタノィル、塩化ビバロイル、塩化べンゾィル、塩化 p— -トロベンゾィ ル等の酸ハロゲン化物;ジメチルカーボネート、ジェチルカーボネート、ジプロピル力 ーボネート、ジフエ-ルカーボネート、ジベンジルカーボネート等の炭酸エステル;トリ メチルシリルクロリド、トリェチルシリルクロリド等のハロゲンィ匕ケィ素誘導体などが挙げ られる力 酸無水物及び炭酸エステルが好ましい。
本発明の製造方法において用いられる光学活性ホスホラミダイトは銅の配位子とし て作用するものであり、一般式
(Z'-O) P-N (Z2) Z3
2
(式中、 z z\及び z3はそれぞれ独立して有機残基を示す。 )
の構造を有するものである。即ち、ホスホン酸トリエステルのひとつのエステル基がァ ミンによりアミドィ匕された構造を有するものである。本発明の光学活性ホスホラミダイト は、 7)、
Figure imgf000013_0001
及び/又は Z3の有機残基のうちの少なくとも 1つの基、又は 2つ以上の 基が一緒になつて不斉炭素原子による不斉、又は回転障害による軸性不斉を示すも のであればよい。本発明の好ましい光学活性ホスホラミダイトとしては、次の一般式( 1)
[0029] [化 7] (1)
Figure imgf000014_0001
[0030] (式中、 R1及び R2はそれぞれ独立して水素原子又は炭素数 1〜4のアルキル基を表 し、 R3は置換基を有してもよい炭素数 3〜 10のシクロアルキル基又は置換基を有し ていてもよいァリール基を表し、 R4は炭素数 1〜10のアルキル基、置換基を有しても よい炭素数 3〜 10のシクロアルキル基、置換基を有していてもよいァリール基、又は 置換基を有していてもよいァラルキル基を表す。また、 Aは光学活性なビアリールジ ィル基を表す。 )
で表される化合物、又は次の一般式(1 ' )
[0031] [化 8]
Figure imgf000014_0002
[0032] (式中、 R1'及び R2'はそれぞれ独立して水素原子又は炭素数 1〜4のアルキル基を 表し、 R3'は置換基を有してもよい炭素数 3〜: L0のシクロアルキル基又は置換基を有 していてもよいァリール基を表し、 R4,は 1—ナフチルメチル基、 2—ナフチルメチル 基、 3, 4—メチレンジォキシベンジル基、ビフエ-ルメチル基、アンスリルメチル基、 炭素数 1〜10のアルキル基、置換基を有していてもよいァリール基、炭素数 1〜6の アルキル基で置換されたべンジル基、又はァリール基が置換若しくは縮合してもょ ヽ 炭素数 3〜 10のシクロアルキル基を表す。 A 'はビアリールジィル基を表す。) で表される化合物の光学活性体が挙げられる。
一般式(1)及び一般式(1 ' )において、 R R2、 R1'及び R2'における炭素数 1〜4 のアルキル基としては、例えば、メチル基、ェチル基、 n—プロピル基、イソプロピル 基、 n—ブチル基、イソブチル基、 2—ブチル基、 tert—ブチル基が挙げられる。 一般式(1)及び一般式(1 ' )において、 R3、及び R3'における置換基を有してもよい 炭素数 3〜10のシクロアルキル基のシクロアルキル基としては、単環式、多環式、縮 合環式、又は架橋型の飽和又は不飽和の炭素数 3〜10、好ましくは炭素数 5〜10 の脂肪族環式基が挙げられ、例えば、シクロペンチル基、シクロへキシル基、シクロ ペンテ-ル基、シクロへキセ-ル基などが挙げられる。これらのシクロアルキル基にお ける置換基としては、例えば、前記したアルキル基、当該アルキル基に 1個以上のハ ロゲン原子が置換したノヽロゲンィ匕アルキル基、フエニル基などのァリール基、前記し たアルコキシ基、前記したアルキレンジォキシ基、ニトロ基、シァノ基、ハロゲン原子 等が挙げられる。また、これらのシクロアルキル基における置換基は、シクロアルキル 基に縮合するフエニル基などのァリール基であってもよい。このようなァリール基が縮 合したシクロアルキル基としては、インダン一 1—ィル基、テトラリン一 1—ィル基など が挙げられる。一般式(1 ' )の R3'における好ましい例としては、炭素数 3〜10、より好 ましくは炭素数 5〜 10のシクロアルキル基が挙げられる。
一般式(1)及び一般式(1 ' )において、 R3及び R3'で表される置換基を有していて もよぃァリール基のァリール基としては、例えば炭素数 6〜14の単環式、多環式、又 は縮合環式のァリール基が挙げられる。これらのァリール基の具体例としては、例え ば、フエ-ル基、ナフチル基、アンスリル基、フエナンスリル基、ビフエ-ル基等が挙 げられる。これらのァリール基における置換基としては、例えば、前記したアルキル基 、当該アルキル基に 1個以上のハロゲン原子が置換したノヽロゲンィ匕アルキル基、前 記したアルコキシ基、前記したアルキレンジォキシ基、ニトロ基、シァノ基、ハロゲン原 子等が挙げられる。
一般式(1)及び一般式(1 ' )において、 R3及び R3'で表される置換基を有していて もよぃァリール基の具体的な例示としては、例えば、フエ-ル基、 o トリル基、 m—ト リル基、 ρ トリル基、 2 ェチルフエ-ル基、 4— n—プロピルフエ-ル基、 4—イソプ 口ピルフエ-ル基、 4—tert ブチルフエ-ル基、 3, 5 キシリル基、 2, 4 キシリル 基、 2, 6 キシリル基、 2, 6 ジイソプロピルフエ-ル基、 2, 4, 6 トリメチルフエ- ル基、 2 トリフルォロメチルフエ-ル基、 3 トリフルォロメチルフエ-ル基、 4 トリフ ルォロメチルフエ-ル基、 3, 5 ジ(トリフルォロメチル)フエ-ル基、 2—メトキシフエ -ル基、 4—メトキシフエ-ル基、 2 エトキシフエ-ル基、 4 エトキシフエ-ル基、 4 イソプロポキシフエ-ル基、 4 tert ブトキシフエ-ル基、 2, 4 ジメトキシフエ- ル基、 2, 6 ジメトキシフエ-ル基、 2, 4, 6 トリメトキシフエ-ル基、 3, 4—メチレン ジォキシフエ-ル基、 3, 4—エチレンジォキシフエ-ル基、 3, 4—プロピレンジォキ シフエ-ル基、 3, 4—イソプロピリデンジォキシフエ-ル基、 4 -トロフエ-ル基、 4 —シァノフエ-ル基、 2 フルオロフェ-ル基、 3 フルオロフェ-ル基、 4 フルォロ フエ-ル基、 3, 5 ジフルオロフェ-ル基、 3, 4, 5 トリフルオロフェ-ル基、 2 ク ロロフエ-ル基、 4 クロ口フエ-ル基、 3, 5 ジクロロフエ-ル基、 2—メトキシ一 4— メチルフエ-ル基、 2—メチルー 4ーメトキシフエ-ル基、 2, 6 ジメチルー 4ーメトキ シフエ-ル基、 3, 5 ジメチルー 4 tert ブトキシフエ-ル基、 1 ナフチル基、 2 ナフチル基、 6—メチルナフチル基、 6—メトキシー2 ナフチル基、アンスリル基、 フエナンスリル基、ビフエ-ル基等が挙げられる。
一般式(1)及び一般式(1 ' )において、 R4及び R4,で表される炭素数 1〜: L0のアル キル基としては、直鎖状又は分岐状もしくは環状のアルキル基が挙げられ、例えばメ チル基、ェチル基、 n プロピル基、イソプロピル基、 n ブチル基、イソブチル基、 2 ブチル基、 tert ブチル基、 n—ペンチル基、 n—へキシル基、シクロペンチル基、 シクロへキシル基、 2—メチルシクロペンチル基、 2—メチルシクロへキシル基、 2, 6 ージメチルシクロペンチル基、 2, 6 ジメチルシクロへキシル基、シクロペンチルメチ ル基、シクロへキシルメチル基、(2—メチルシクロへキシル)メチル基、 1ーシクロへキ シルェチル基、 2 イソプロピル 5—メチルシクロへキシル基等が挙げられる。 一般式(1)において、 R4で表される置換基を有してもよい炭素数 3〜: L0のシクロア ルキル基のシクロアルキル基としては、前記したアルキル基の中の環状のアルキル 基であって、単環式、多環式、縮合環式、又は架橋型の飽和又は不飽和の炭素数 3 〜10、好ましくは炭素数 5〜10の脂肪族環式基が挙げられ、例えば、シクロペンチ ル基、シクロへキシル基、シクロペンテニル基、シクロへキセ-ル基などが挙げられる 。これらのシクロアルキル基における置換基としては、例えば、前記したアルキル基、 当該アルキル基に 1個以上のハロゲン原子が置換したノヽロゲンィ匕アルキル基、フエ- ル基などのァリール基、前記したアルコキシ基、前記したアルキレンジォキシ基、ニト 口基、シァノ基、ハロゲン原子等が挙げられる。また、これらのシクロアルキル基にお ける置換基は、シクロアルキル基に縮合するフエニル基などのァリール基であっても よぐこのようなァリール基が縮合したシクロアルキル基としては、インダン 1ーィル 基、テトラリン 1ーィル基などが挙げられる。
一般式(1 ' )において、 R4'で表されるァリール基が置換若しくは縮合してもよい炭 素数 3〜10のシクロアルキル基のシクロアルキル基としては、単環式、多環式、縮合 環式、又は架橋型の飽和又は不飽和の炭素数 3〜10、好ましくは炭素数 5〜: L0の 脂肪族環式基が挙げられ、例えば、シクロペンチル基、シクロへキシル基、シクロべ ンテュル基、シクロへキセ-ル基などが挙げられる。これらのシクロアルキル基には、 置換基又は縮合する環としてフエ-ル基、ナフチル基などのァリール基が置換又は 縮合して!/ヽてもよ ヽ。好ま ヽァリール基が置換若しくは縮合してもよ!、炭素数 3〜 1 0のシクロアルキル基としては、ァリール基が縮合している炭素数 5〜 10のシクロアル キル基が挙げられる。ァリール基が縮合している炭素数 5〜10のシクロアルキル基と しては、例えば、インダン一 1—ィル基、インデン一 1—ィル基、テトラリン一 1—ィル 基等が挙げられる。
一般式(1)及び一般式(1 ' )において、 R4及び R4'で表される置換基を有していて もよ!/ヽァリール基は、前記した R3及び R3'の説明で述べたような置換基を有して!/、て もよ 、ァリール基が挙げられる。
一般式(1)にお 、て R4で表される置換基を有して 、てもよ 、ァラルキル基のァラル キル基としては、前記してきたようなァラルキル基が挙げられ、具体的には、例えば、 ベンジル基、 1 ナフチルメチル基、 2 ナフチルメチル基、 9 アンスリルメチル基 などのアンスリルメチル基、 2—ビフエ-ルメチル基などのビフエ-ルメチル基、 2—フ ェ-ルェチル基、 1 フエ-ルェチル基、 3—(1 ナフチル) プロピル基等が挙げ られる。
これらァラルキル基に置換する置換基としては、前記したアルキル基、前記したァ ルコキシ基、前記したアルキレンジォキシ基等が挙げられ、これら置換基はァラルキ ル基のァリール基に置換するものである。
一般式(1)にお 、て R4で表される置換基を有して 、てもよ 、ァラルキル基の具体 的な例示としては、ベンジル基、 1 フエネチル基、 1 フエ-ルプロピル基、 2—メチ ルー 1 フエ-ルプロピル基、 2 フエネチル基、 2 メチルベンジル基、 4 メチル ベンジル基、 4 イソプロピルべンジル基、 4—tert ブチルベンジル基、 2, 4 ジメ チルベンジル基、 2—メトキシベンジル基、 3—メトキシベンジル基、 4ーメトキシベンジ ル基、 4—tert ブトキシベンジル基、 3, 4—メチレンジォキシベンジル基、 1 ナフ チルメチル基、 2 ナフチルメチル基、 2 ビフヱ-ルメチル基、 9 アンスリルメチル 基等が挙げられる。
[0035] また、一般式(1 ' )において R4,で表される、炭素数 1〜6のアルキル基で置換され たべンジル基の具体的な例示としては、 2—メチルベンジル基、 2—ェチルベンジル 基、 2—イソプロピルべンジル基、 2—tert ブチルベンジル基、 2—シクロへキシル ベンジル基、 2, 4 ジメチルベンジル基、 2, 6 ジメチルベンジル基、 2—メチルー 4 イソプロピルベンジル基等が挙げられる。
[0036] 本発明の一般式(1 ' )における A'のビアリールジィル基としては、 2個のァリール環 構造が直接結合した構造を有する 2価の基であり、ビアリールジィル骨格が軸不斉に より光学活性になっていなくてもよいが、軸不斉により光学活性となっているものが好 ましい。このようなァリール環構造としては、単環状、多環状又は縮合環状の 6員芳香 族環、好ましくは単環状又は縮合環状の 6員芳香環、例えば、ベンゼン環、ナフタレ ン環、フエナントレン環などが挙げられる。ビアリールジィル基を形成する 2個のァリー ル環はそれぞれ異なるものであってもよ ヽが、同じものが好まし 、。
本発明の一般式(1)における Aの光学活性なビアリールジィル基としては、前記し たビアリールジィル基であって、ビアリールジィル骨格が軸不斉により光学活性にな つているものである。
光学活性なビアリールジィル基とは、ビアリールジィル骨格が軸不斉により光学活 性になっていることを表し、窒素原子上の置換基が光学活性であるとは、例えば 2— ブチル基、 1ーシクロへキシルェチル基、 1 フエネチル基、 1 ナフチルェチル基 等の不斉炭素原子を有するアルキル基等が光学活性になっていることを表す。
A及び A,で表されるビアリールジィル基としては例えば、 1, 1,一ビナフタレン一 2 , 2' ジィル基が挙げられ、該ビナフチル環はメチル基、 tert ブチル基等のアル キル基;メトキシ基、 tert ブトキシ基等のアルコキシ基;トリメチルシリル基、トリイソプ 口ビルシリル基、 tert—ブチルジメチルシリル基等のトリアルキルシリル基及びトリフエ -ルシリル基等のトリアリールシリル基などで置換されてもよい。
本発明の一般式(1)又は一般式(1 ' )における A及び A'で表されるビアリールジィ ル基の好ましい例としては、例えば、下記式 (4)
[0037] [ィ匕 9]
Figure imgf000019_0001
[0038] (式中、 R7, R8, R9、 R10, R11及び R12は、同一又は異なっていてもよぐ水素原子、ァ ルキル基、アルコキシ基、ァシルォキシ基、ハロゲン原子、ハロアルキル基又はジァ ルキルアミノ基を示し、 R8及び R9とで置換基を有して 、てもよ 、アルキレン鎖を形成 して!/、てもよく、 R11及び R12とで置換基を有して!/、てもよ!/、アルキレン鎖を形成して!/ヽ てもよい。環 A及び環 Bは、それぞれ独立してベンゼン環、又は 2個以上の 6員芳香 環が縮合した環を表す。 )
で表される置換基を有してもよい 1, 1 '—ビアリールー 2, 2'—ジィル基が挙げられる 一般式 (4)における環 A及び環 Bとしては、例えば、ベンゼン環、ナフタレン環、フ ェナントレン環などが挙げられる。
一般式 (4)における R7〜R12のアルキル基としては、例えば、メチル基、ェチル基、 n—プロピル基、イソプロピル基、 n—ブチル基、イソブチル基、 sec—ブチル基及び t ert—ブチル基等の直鎖又は分岐してもよい炭素数 1〜6のアルキル基が挙げられ、 アルコキシ基としては、例えば、メトキシ基、エトキシ基、 n—プロポキシ基、イソプロボ キシ基、 n—ブトキシ基、イソブトキシ基、 sec—ブトキシ基及び tert—ブトキシ基等の 直鎖又は分岐してもよい炭素数 1〜6のアルコキシ基が挙げられる。ァシルォキシ基 としては、例えば、ァセトキシ基、プロパノィルォキシ基などの炭素数 2〜6の直鎖状 又は分枝状のアルキルカルボ-ルォキシ基、トリフルォロアセトキシ基などの前記し たアルキルカルボ-ルォキシ基のアルキル基部分にハロゲン原子が置換したハロゲ ン置換アルキルカルボ-ルォキシ基、ベンゾィルォキシ基などの炭素数 7〜 16のァリ ールカルボ-ルォキシ基ゃァラルキルカルボ-ルォキシ基などが挙げられる。ハロゲ ン原子としては、例えば塩素原子、臭素原子、フッ素原子等が挙げられ、ハロアルキ ル基としては、これらのハロゲン原子で置換された前記したアルキル基、例えばトリフ ルォロメチル基等の炭素数 1〜6のハロアルキル基が挙げられ、ジアルキルアミノ基と しては、前記したアルキル基で置換されたァミノ基、例えば、ジメチルァミノ基又はジ ェチルァミノ基等が挙げられる。
R8及び R9とでアルキレン鎖を形成する場合、及び R11及び R12とでアルキレン鎖を 形成する場合のアルキレン鎖としては、炭素数 3〜5の直鎖状又は分枝状のアルキレ ン鎖が好ましぐ具体的にはトリメチレン基、テトラメチレン基及びペンタメチレン基な どが挙げられる。また、置換基を有していてもよいアルキレン鎖の置換基としては、前 記したアルキル基及び前記したハロゲン原子等が挙げられ、具体例としては炭素数 1〜6の前記したようなアルキル基及びフッ素原子等が挙げられる。
[0039] 本発明の一般式(1)で表される光学活性配位子は、基 Aのビアリールジィル基が 軸不斉により(R)体又は(S)体の光学活性な基となっているものでよいし、また、基 R \基 R2、基 R3、又はこれらの基が結合している炭素原子において不斉となり光学活 性となって!/、るものでもよ 、し、これらのビアリールジィル基及び窒素原子に結合する 基の両方の基にぉ 、て不斉となり光学活性体となって 、るものであってもよ!/、。
本発明の一般式(1 ' )で表される化合物は、必ずしも光学活性体に限定されるも のではないが、前記した一般式(1)で表される光学活性配位子のように、一般式(1 ' )におけるビアリールジィル基、及び Z又は窒素原子上の置換基の不斉により光学 活性となって!/、る化合物が好ま U、。
[0040] 本発明の一般式(1)で表される光学活性配位子、又は一般式(1 ' )で表される化合 物は、公知の方法に準じて合成することができ、例えば、 J.Org.Chem.,58,7313(1993) 及び Tetrahedron:Asymmetry, 13,801(2002)に記載の方法に準じて、以下のスキーム により合成することができる。 [0041] [化 10]
Figure imgf000021_0001
(1 )
M = H, alkali metal X2 = leaving group
Figure imgf000021_0002
(10
[0042] (スキーム中、 I^〜R4、 '〜1^4'、 A及び A'は前記と同じ意味を表す。 Mは、水素原 子、又はアルカリ金属原子を表し、 X2は脱離基を表す。 )
すなわち、第 2級アミンィ匕合物又はそのアルカリ金属アミドに、脱離基を有するリン 化合物を反応させ、リン 窒素結合を有する化合物を調製し (第 1ステップ)、このも のに塩基の存在下でビアリールジオールを反応させる(第 2ステップ)、 2つのステツ プにより行われる。ここで、用いる第 2級アミンィ匕合物として光学活性体を用いることに より、窒素原子上の置換基が光学活性な光学活性配位子を得ることができ、又、ビア リールジオールとして (R)体又は(S)体の光学活性ビアリールジオールを用いること によりビアリール骨格が光学活性な配位子を得ることができる。当然ながら第 2級アミ ン化合物及びビアリールジオール共に光学活性体を用いることにより、両者の骨格が 光学活性な化合物が得られることは 、うまでもな 、。
上記スキーム中において Mで表される、アルカリ金属アミドのアルカリ金属としては 、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等が挙げられる力 リチウム又は ナトリウムが好ましい。
アルカリ金属アミドの調製法としては、第 2級アミンィ匕合物にアルカリ金属又はアル カリ金属化合物を作用させることにより行われる。用いられるアルカリ金属化合物とし ては、水素化ナトリウム、水素化リチウム、水素化カリウム等のアルカリ金属水素化物; メチノレリチウム、 n—ブチノレリチウム、 2—ブチノレリチウム、 tert—ブチノレリチウム等の アルキルリチウム等が挙げられる力 n ブチルリチウムが好ましい。
上記スキーム中において X2で表される、脱離基を有するリンィ匕合物の脱離基として は、塩素、臭素等のハロゲン原子;メタンスルホ-ルォキシ基、 p—トルエンスルホ- ルォキシ基、ベンゼンスルホ-ルォキシ基、トリフルォロメタンスルホ -ルォキシ基等 のスルホ-ルォキシ基;メトキシ基、エトキシ基、ブトキシ基、フエノキシ基等のアルコ キシ基又はァリールォキシ基などが挙げられるが、ハロゲン原子が好ましい。
この方法における第 1ステップでは、必ずしも塩基の存在は必須ではな!/、が、第 2ス テツプの反応は塩基の存在下で行うのが好まし 、。これらのステップで使用される塩 基 (base)としては、無機塩基若しくは有機塩基、又はこれらの混合物のいずれもよく 、特に限定されるものではないが、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸 ルビジウム、炭酸セシウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム等のァ ルカリ金属またはアルカリ土類金属の炭酸塩、ナトリウムメトキシド、ナトリウムエトキシ ド、ナトリウムフエノキシド、ナトリウム—tert—ブトキシド、カリウムメトキシド、カリウムェ トキシド、カリウムフエノキシド、カリウム tert—ブトキシド、リチウムメトキシド、リチウム エトキシド、リチウムフエノキシド、リチウム—tert ブトキシド等のアルカリ金属アルコ キシド、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化バリウム、水酸ィ匕 カリウム等のアルカリ金属またはアルカリ土類金属の水酸ィ匕物、リン酸リチウム、リン 酸カリウム、リン酸ナトリウム等のアルカリ金属のリン酸塩、トリメチルァミン、トリェチル ァミン、トリイソプロピルァミン、トリシクロへキシルァミン、ジェチルァミン、ジェチルアミ ン、ジイソプロピルアミン等のアミン類、フッ化リチウム、フッ化カリウム、フッ化ナトリウ ム、フッ化セシウム、フッ化ルビジウム等のアルカリ金属のフッ化物塩等が挙げられる 。この中でも有機塩基が好ましぐ特にトリェチルァミン、ジイソプロピルアミン等のアミ ン類が好ましい。
第 2ステップにおいて使用される塩基の量は、リン 窒素結合を有する化合物に対 し、 2倍モル以上使用するのが好ましい。塩基の量が 2倍モル未満では、 目的化合物 の収率が低くなる場合がある。また、塩基を大過剰に加えても目的化合物の収率に ほとんど影響はないが、反応終了後の後処理操作が煩雑になることから、より好まし い塩基の量は、 2〜 10倍モルの範囲である。 [0044] 上記の各ステップにおける反応は溶媒の存在下で行うことが好ましい。使用される 溶媒としては、これらの反応に不活性な溶媒であればよぐ特に制限されるものでは ないが、ペンタン、へキサン、ヘプタン、オクタン等の脂肪族系有機溶媒;シクロへキ サン、メチルシクロへキサン等の脂環式系有機溶媒;ベンゼン、トルエン、キシレン等 の芳香族系有機溶媒;ジェチルエーテル、ジイソプロピルエーテル、ジメトキシェタン 、テトラヒドロフラン、ジォキサン、ジォキソランなどのエーテル系有機溶媒;ァセトニト リル、ジメチルホルムアミド、ジメチルスルホキシド、へキサメチルホスホトリアミド等の 非プロトン性極性溶媒を挙げることができる。好ましい溶媒としては、ベンゼン、トルェ ン、キシレン等の芳香族系有機溶媒や、ジェチルエーテル、ジメトキシェタン、テトラ ヒドロフラン、ジォキサンなどのエーテル系有機溶媒が挙げられる。
また、前記の各ステップの反応は、取り扱う化合物の性質上、窒素、アルゴン等の 不活性ガス雰囲気下で行うことが好ま 、。
第 1ステップ (リン 窒素結合生成反応)の反応温度は、 78°C〜40°Cの範囲で 行われる力 50°C〜25°Cが好ましぐ反応時間は反応温度によって自ずカも異な るが、 1〜4時間程度である。
第 2ステップ(ビアリールジオールとの反応)の反応温度は、 20°C〜40°Cの範囲 で行われるが、 20°C〜25°Cが好ましぐ反応時間は反応温度によって自ずから異 なるが、 3〜16時間程度である。反応終了後、常法によって処理することにより目的と する化合物を得ることができる。
[0045] また、本発明に用いられる光学活性配位子は、 Tetrahedron,56,2865(2000)、又は T etrahedron:Asymmetry,9,1179(1998)等に記載の方法のように、先にビアリールジォ ールと P (X2) を反応させ、続いて第 2級ァミン又はそのアルカリ金属アミドを反応させ
3
てもよい。
なお、スキーム中では便宜的に R R2、 R3及び R4の場合について説明しているが
、 R 、 R2,、 R3,及び R4,の場合に関しても同様である。
[0046] 本発明の方法は、 2 シクロペンタデセン 1 オンに、銅触媒、エノールァ-オン 捕捉剤、及び一般式 (1)で表される光学活性配位子の存在下に、メチル化有機金属 によりメチル基を 2 シクロペンタデセン— 1—オンに 1, 4 共役付加させて、一般式 (2)で表される光学活性 3—メチルー 1ーシクロペンタデセン誘導体を製造することを 特徴とするものである。この方法における 2—シクロペンタデセン一 1—オン、銅触媒 、エノールァ-オン捕捉剤、及び一般式(1)で表される光学活性配位子としては、前 記したものを使用することができる。
本発明のこの方法では、 2—シクロペンタデセン 1 オン、銅触媒、エノールァ- オン捕捉剤、及び一般式(1)で表される光学活性配位子を同時に存在させて反応さ せることもできるが、好ましくは銅触媒、及び一般式(1)で表される光学活性配位子 の存在下に、 2—シクロペンタデセン 1 オンをメチルイ匕有機金属によりメチル基の 1, 4一共役付加反応を行い、ついで、反応混合物中へエノールァ-オン捕捉剤を 添加して、一般式(2)で表される光学活性 3—メチルー 1ーシクロペンタデセン誘導 体とする方法が挙げられる。後者の場合には、メチルイ匕有機金属によるメチル基の 1 , 4一共役付加反応を室温付近の温度で行うことができる。
この方法にぉ 、て用いられるメチルイ匕有機金属としては、例えばジメチル亜鉛、塩 化メチルマグネシウム、臭化メチルマグネシウム、ヨウ化メチルマグネシウム、メチルリ チウム、トリメチルアルミニウム等が挙げられる。好ましい例としては、ジメチル亜鉛な どが挙げられる。
この方法にぉ 、て用いられる反応溶媒としては、反応に関与しな 、溶媒であればよ ぐ例えば、ペンタン、へキサン、ヘプタン等の脂肪族炭化水素系溶媒、トルエン、キ シレン、メシチレン等の芳香族炭化水素系溶媒、ジェチルエーテル、ジイソプロピル エーテノレ、メチノレ tert—ブチノレエーテノレ、ジブチノレエーテノレ、シクロペンチノレメチノレ エーテノレ、 1, 2 ジメトキシェタン、テトラヒドロフラン、 1, 4 ジォキサン、 1, 3 ジ ォキソラン等のエーテル系溶媒、塩化メチレン、ジクロロェタン、クロ口ベンゼン等の ハロゲンィ匕炭化水素系溶媒等が挙げられる。これらの中でも、脂肪族炭化水素系溶 媒、芳香族炭化水素系溶媒及びエーテル系溶媒が好ましい。これら溶媒は夫々単 独で用いても二種以上適宜組み合わせて用いてもよ!、。
溶媒の使用量は、 2—シクロペンタデセン 1 オン 1重量部に対し、 1〜200倍容 量、好ましくは 3〜: L00倍容量、より好ましくは 5〜30倍容量である。
この方法における銅触媒の使用量は、 2—シクロペンタデセン 1 オン 1モルに 対し、 0. 1〜20モル0 /0程度、好ましくは 1. 0〜 10モル0 /0程度の量で十分である。 この方法におけるエノールァ-オン捕捉剤の使用量は、 2—シクロペンタデセノン 1 モノレ【こ対し、 1. 0〜5. 0モノレ、好ましく ίま 1. 2〜3. 0モノレ程度の量で用!/、られる。 この方法における光学活性配位子の使用量は、使用する銅触媒の量に対して 2倍 モル以上、好ましくは 2倍モル〜 3倍モル程度が好ま 、。
また、この方法におけるメチルイ匕有機金属の使用量は、 2—シクロペンタデセノン 1 モノレに対し、 1. 0〜5. 0モノレ、好ましく ίま 1. 2〜3. 0モノレ程度の量力用!ヽられる。 本発明の製造方法は、窒素又はアルゴン等の不活性ガス中で行うことが好ま 、。
[0048] この方法における反応温度としては、使用する試薬により自ず力 異なる力 -80 °C〜50°C程度の範囲、好ましくは— 30°C〜30°C程度の範囲が挙げられる。エノー ルァ-オン捕捉剤を 1, 4—共役付加反応の後に添加して行う場合には、当該 1, 4 一共役付加反応は室温付近の温度で行うことができる。また、この方法の反応時間と しては、 10分〜 20時間程度、好ましくは 30分〜 10時間程度の時間行われる。 反応終了後は、抽出、蒸留、再結晶又は各種クロマトグラフィー等の通常行われる 操作を用いることにより目的物を得ることができる。
[0049] また、本発明の方法では、上記のようにして得られた下記の一般式(2)
[0050] [化 11]
Figure imgf000025_0001
[0051] (式中、 Rはエノールァ-オン捕捉剤の残基を表す。 *は不斉炭素原子を表す。式 中の波線はシス体若しくはトランス体、又はこれらの混合物であることを表す。 ) で表される光学活性 3—メチルシクロペンタデセン誘導体のェノール部分を加溶媒 分解することにより光学活性ムスコンを選択的に製造することができる。
当該加溶媒分解の方法としては、通常用いられているェノール類の加溶媒分解法 を使用することができる。このような方法としては、例えば、一般式(2)で表される光学 活性 3—メチルー 1ーシクロペンタデセン誘導体におけるェノール誘導体力 エノー ルエステル類ゃェノールカーボネート類の場合には、塩基性触媒を用いて溶媒中で 反応させる方法が挙げられる。この加溶媒分解において用いられる塩基性触媒とし ては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシゥ ム、水酸ィ匕カルシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸マグネシゥ ム、炭酸カルシウム、炭酸水素ナトリウム、炭酸水素カリウム、リチウムアルコキシド (リ チウムメトキシド、リチウムエトキシド、リチウム tert—ブトキシド等)、ナトリウムアルコキ シド (ナトリウムメトキシド、ナトリウムエトキシド、ナトリウム tert—ブトキシド等)、カリウム アルコキシド (カリウムメトキシド、カリウムエトキシド、カリウム tert—ブトキシド等)など が挙げられる。これらの中でも水酸ィ匕ナトリウム、水酸ィ匕カリウム、ナトリウムメトキシド、 ナトリウムエトキシドなどが好まし 、。これら塩基性触媒は 1種又は 2種以上を混合し て使用することができる。
また、ェノール誘導体がェノールエーテル類の場合には、酸性触媒を用いて溶媒 中で反応させる方法が挙げられる。本加溶媒分解において用いられる酸性触媒とし ては、例えば、塩酸、臭化水素酸、硫酸、リン酸、メタンスルホン酸、 p—トルエンスル ホン酸、酢酸、クロ口酢酸、トリフルォロ酢酸、酸性イオン交換榭脂などが挙げられる。 好ましい酸性触媒としては、塩酸、硫酸、 p—トルエンスルホン酸などが好ましい。こ れら酸性触媒は 1種又は 2種以上を混合して使用することができる。
さらに、ェノール誘導体がシリルエノールエーテル類の場合には、上記酸性触媒を 用いて溶媒中で反応させる方法などのほか、三フッ化ホウ素又はその錯ィ匕合物、フッ 化四級アンモニゥム塩などのフッ素系化合物が挙げられる。また、加溶媒分解の際 に使用される溶媒は、加溶媒分解が進行する溶媒であればよぐ例えば、水;メタノ ール、エタノール、イソプロパノール、 n—ブタノール、ベンジルアルコール等のアル コール類及びこれらの混合溶媒が挙げられる。これらの中でも、メタノール、エタノー ルが好ましい。
さらに本加溶媒分解においては必要に応じて助溶媒が使用されてもよい。助溶媒 としては、反応に関与しないものであればよぐ例えばジェチルエーテル、ジイソプロ ピノレエーテノレ、メチノレ tert—ブチノレエーテノレ、シクロペンチノレメチノレエーテノレ、テトラ ヒドロフラン、ジメトキシェタン、ジォキサン等のエーテル系溶媒、へキサン、ヘプタン 、オクタン等の脂肪族炭化水素系溶媒、トルエン、キシレン等の芳香族系溶媒が挙 げられる。
溶媒の使用量は、一般式(2)で表される光学活性 3—メチルシクロペンタデセン誘 導体 1重量部に対し、 0. 5〜: L00倍容量、好ましくは 1〜30倍容量である。また、反 応は 0〜200°C、好ましくは 20〜100°C程度の温度で行われ、通常は 10分〜 20時 間、好ましくは 30分〜 10時間程度反応させることにより行われる。これらの反応条件 は使用する溶媒や触媒などの種類や量により適宜変更されうる。
反応終了後は通常の後処理を行うことにより、必要に応じて蒸留やカラムクロマトグ ラフィ一等の方法を用いて、目的物を単離することができる。
発明の効果
[0053] 本発明は、製造が容易で比較的簡単な構造を有する光学活性配位子を用いて 2 シクロペンタデセン 1 オンの 1, 4—付カ卩による不斉メチルイ匕反応を行うことが でき、また、当該 1, 4 付加反応において生成するエノールァ-オンをエノールァ- オン捕捉剤によりエノール誘導体として捕捉することにより、生成したェノールァ-ォ ンによる分子間の副反応を抑制することができ、基質 (2—シクロペンタデセノン)濃 度を高濃度とすることができ反応効率を向上することができるだけでなぐ 1, 4 付 加反応をより高温で行うことも可能となった。さらに、本発明の光学活性配位子 (リガ ンド)は触媒活性が高ぐ少量の触媒の存在で効率的に反応を進行させることができ る。このような簡便な方法にもかかわらず目的の光学活性体を高収率、高光学純度 で製造できる方法を提供するものである。また、本発明は、このような不斉メチルイ匕反 応に有効で、製造が容易な新規な化合物を提供するものである。さらに、本発明の 配位子は、ァミン部分が非対称の構造をしていてもよぐァミンの窒素原子に置換し ている 2つの置換基の構造を容易に変更することができ、反応条件に合わせて変化 に富んだ置換基の組み合わせを選択することができる。
発明を実施するための最良の形態
[0054] 以下、実施例により更に詳しく説明するが、本発明はこれらに限定されるものではな い。 本実施例中の分析には、次の分析機器を用 V、て行つた。
旋光度: P— 1020 (日本分光工業株式会社製)
iH— NMI^ DRXSOO型(500MHz) (ブルッカ一社製)(内部標準物質:テトラメチ ルシラン)
赤外吸収スペクトル(IR): Nicolet Avatar360 FT- IR (ニコレジャパン株式会社製) 質量スペクトル (MS): M— 80B質量分析計 (イオン化電圧: 20eV) (株式会社日 立製作所製)
: Polaris Q lontraptype (DirectEl) (Thermoelecton社製) ガスクロマトグラフィー: RTx— 1 (RESTEX社製)
高速液体クロマトグラフィー(HPLC): CHIRALPAK AS— H (ダイセル化学ェ 業株式会社)、
実施例 1
[0055] 次の化学式
[0056] [化 12]
Figure imgf000028_0001
[0057] で表される O, 0' -(R)-(l, 1,-ビナフタレン一 2, 2,一ジィル)一 N ベンジル一 N
(R)—( 1 フ ニルェチル)ホスホラミダイト(L 1)の合成
窒素気流下、温度計、滴下ロートのついた 50mL3つ口フラスコに、 THF20mL、 ( R)— ( + )— N ベンジル— N— (1—フエ-ルェチル)ァミン 1. 05g (5. Ommol)の 溶液を入れ、 50°Cに冷却し、 n—ブチルリチウム(1. 58Mへキサン溶液) 3. 2mL (5. Ommol)を滴下した。 50°Cのまま 1時間攪拌した後、三塩ィ匕リン 6. 8g (50mm ol)を加え、徐々に室温まで温度を上げ、 2時間攪拌した。その後、減圧下で溶媒及 び三塩化リンを除去し、残渣にトルエン 20mLをカ卩えた。このトルエン溶液を— 20°C に冷却し、(R)— ( + )— 1, 1,一ビ(2 ナフトール) 1. 43g (5. Ommol)、トリェチル ァミン 2. 53g (25mmol)、トルエン 10mLの混合溶液を滴下した。徐々に室温まで 温度を上げ、 16時間攪拌した。反応終了後、固体をろ過し、ろ液を濃縮し、シリカゲ ルカラムクロマトグラフィーで精製することにより、標題の化合物 1. 8g (3. 42mmol、 収率 68%)を得た。
ェ!!一 NMR(500MHz, CDC1 , δ ) ;
3
1.68-1.70( 3Η, m), 3.02( 1Η, d, J=15.1Hz), 4.03( 1Η, d, J=15.1Hz), 4.04-4.09( 1H, m), 7.02— 7.99( 22H, m)
31P (200MHz, δ ) ; 142. 8
MS m/z : 525(M+)(5), 434(100), 420(10), 391(12), 315(8), 286(14), 253(4),
239(6), 105(5), 91(5), 79(3)
実施例 2
[0058] 次の化学式
[0059] [化 13]
Figure imgf000029_0001
[0060] で表される(R)— 3—メチル 1—シクロペンタデセ-ル プロピオネートの合成
窒素雰囲気下、温度計をつけた 30ml反応フラスコに、実施例 1で得られた光学活 性配位子 O, 0' -(R)-(l, 1,-ビナフタレン一 2, 2,一ジィル)一 N ベンジル一 N — (R)—(l フエ-ルェチル)ホスホラミダイト 21. Omg (0. 04mmol)、 Cu (OTf)
2
7. 2mg (0. 02mmol)、及びトルエン 7mLを入れ、室温で 30分間攪拌した。その溶 液にジメチル亜鉛トルエン溶液(2. Omol/L) l. 4mL (2. 8mmol)をカ卩ぇ 30分間 攪拌した。その後溶液を— 20°Cに冷却し、無水プロピオン酸 0. 29g (2. 2mmol)と 2— (E)ーシクロペンタデセノン 0. 44g (2. Ommol)を滴下した。滴下終了後、 2時 間攪拌した後、 5%硫酸水溶液を加えて反応を停止し、分液した。得られた有機層を 水洗し、溶媒を減圧除去して粗生成物 0. 8gを得た。この粗生成物をシリカゲルカラ ムクロマトグラフィーで精製することにより表題ィ匕化合物を 0. 53g (l. 80mmol)収率 90%を得た。ガスクロマトグラフィーの分析から、 E/Z= l. 0/99. 0であった。 ェ!!一 NMR(500MHz, CDC1 , δ ) ;
3
0.90( 3Η, d, J=12.5Hz), 1.07- 1.15( 2Η, m), 1.20( 3Η, t, J=7.6Hz), 1.26-1.40( 15H, m), 2.14- 2.16( 1Η, m), 2.30-2.39( 2H, m),
2.40( 2H, q, J=7.6), 4.77( 1H, d, J=9.6)
MS m/z : 293(M+)(5), 265(3), 238(90), 220(30), 209(27), 195(13), 180(11),
158(7), 142(7), 125(38), 117(28), 97(60), 84(55), 69(62), 57(100), 41(37)
IR v max (cm-1): 2926, 2856, 1152
[ a ] = 79. 2 (c= l. 0 in CHC1 )
D 3
実施例 3
[0061] 次式
[0062] [化 14]
Figure imgf000030_0001
[0063] で表される (R)—ムスコンの合成
30mLナスフラスコに、実施例 2で得られた(R)—3—メチル—1—シクロペンタデセ -ル プロピオネート 0. 53g (l. 8mmol)、トルエン 20gを入れ攪拌した。 20。Cに てナトリウムメトキシド一メタノール 28%溶液 0. 39g (2. Ommol)を滴下後、 1時間攪 拌した。続いて反応液に 5%硫酸水溶液を加えた後、分液し、有機層を水洗後、溶 媒を減圧除去して粗生成物 0. 60gを得た。この粗生成物をシリカゲルカラムクロマト グラフィ一で精製することにより収率 97%で (R)—ムスコンを得た。高速液体クロマト グラフィ一にて光学純度を測定した結果、 86. l%eeであった。 実施例 4
[0064] 次の化学式
[0065] [化 15]
Figure imgf000031_0001
[0066] で表される O, 0' -(R)-(l, 1,-ビナフタレン一 2, 2,一ジィル)一 N— (1—ナフチ ル)メチル N— (R)—( 1 フ -ルェチル)ホスホラミダイト(L 2)の合成
実施例 1において、 (R) ( + )—N べンジルー N— (1—フエ-ルェチル)ァミン を (R) N— (1—ナフチル)メチル—N— (1—フエ-ルェチル)ァミンに換え、実施 例 1と同様の操作を行うことで、標題の化合物 2. 07g (3. 6mmol、収率 72%)を得 た。
ェ!!一 NMR(500MHz, CDC1 , δ ) ;
3
1.73-1.76( 3Η, m), 3.76( 1Η, d, J=15.8Hz), 4.10- 4.54( 1Η, m),
4.39( 1Η, d, J=15.8Hz), 7.02— 8.00( 24H, m)
31P (200MHz, δ ) ; 146. 1
MS m/z : 575(M+)(14), 470(22), 434(100), 391(11), 333(4), 315(10), 268(25), 246(22), 239(13), 167(7), 149(20), 141(65), 115(16), 91(13), 79(5) 実施例 5
[0067] (R)—ムスコンの合成
窒素雰囲気下、 30mL反応フラスコに、実施例 4で得られた光学活性配位子 O, O ,一 (R)— (1, 1,-ビナフタレン一 2, 2,一ジィル)一 N— (1—ナフチル)メチル N— ( R)- (1 フエ-ルェチル)ホスホラミダイト 23. Omg (0. 04mmol)、 Cu(OTf) 7.
2
2g (0. 02mmol)、トルエン 7mLを入れ、室温で 30分間攪拌した。その溶液にジメチ ル亜鉛トルエン溶液(2. Omol/L) l. 4mL (2. 8mmol)をカ卩ぇ 30分間攪拌した。そ の後、反応溶液を— 20°Cに冷却し、無水プロピオン酸 0. 29g (2. 2mmol)と 2— (E )ーシクロペンタデセノン 0. 44g (2. Ommol)を滴下した。滴下終了後、 2時間攪拌し た後、 5%硫酸水溶液を加えて反応を停止し、分液後、有機層を 2回水洗した。この 有機層にナトリウムメトキシド—メタノール 28%溶液 0. 39g (2. Ommol)を加え、室温 にて 30分攪拌した後、 5%硫酸水溶液を加えて反応を停止し、有機層を分液後水洗 した後、溶媒を減圧下で除去して粗 (R)—ムスコン 0. 50gを得た。この粗生成物をシ リカゲルカラムクロマトグラフィーで精製することにより収率 84. 8%で (R)—ムスコン を得た。高速液体クロマトグラフィにて光学純度を測定した結果、 89. 2%eeであった 実施例 6
[0068] 次の化学式
[0069] [化 16]
Figure imgf000032_0001
で表される O, 0' -(R)-(l, 1,-ビナフタレン一 2, 2,一ジィル)一 N— (2—メトキシ ベンジル) -N-(R)- (1—フエ-ルェチル)ホスホラミダイト(L 3)の合成
実施例 1において、(R) ( + )—N べンジルー N— (1—フエ-ルェチル)ァミン を (R) N— (2—メトキシベンジル) N— (1—フエ-ルェチル)ァミンに換えて、実 施例 1と同様の操作を行うことで、標題化合物 1. 89g (3. 40mmol、収率 68%)を得 た。
ェ!!一 NMR(500MHz, CDC1 , δ ) ;
1.70-1.72( 3Η, m), 3.52( 3Η, s), 3.58- 3.71( 2Η, m)
4.15-4.19( 1Η, m), 6.65— 7.98( 21H, m)
Ρ (200MHz, δ ) ; 146. 2
実施例 7
[0071] 次の化学式 / - N - - ( Z 'Ζ- Λ^^ -Λ Ί)-(Η)-{0 OW$^ [9Z00]
Figure imgf000033_0001
[8ΐ^] [SZOO] ^&^ ^t Z00]
(e)zz '(8)eoi '(ST)SST '(e)6ss
'(ei)892 '(z)eis '(ε)εεε '(ζ)ΐ6ε '(oo '{oz) '(I)(+ V)69S:Z/UI SPV
9 'S^I · (9 'zH OOS)H N-dxe
Ή02 )ΐ0·8— 8 ·9 '(ω Ή2 )68'S- 98'S '(ω 'Ηΐ )ZVf-L0'f
Figure imgf000033_0002
'Ρ 'Ηΐ )Ζβτ 'Ρ 'Ηΐ )WZ '(ω Ήε )ΐΖ·ΐ— 89·ΐ
•(9 αつ ' ZH OOS)丽 Ν— Ητ
。 (%ε9 ? Φ ι°^9ΐ Έ)§6 -\i
^¾έ ( ^エ ェ 一 ΐ) -(Η)-Ν- {Λ(^ ^ ^^ Λ^→ 'ε) -
Κ-(Λ^ - 'Ζ- Λ^^ - Ί)-(Η)-{Ο 'ο ^^ ^ ^
Figure imgf000033_0003
(Η)、¾べ^ ( ^エ ェ — ΐ)
Figure imgf000033_0004
Figure imgf000033_0005
[Ζΐ^ ] [ 00]
C8.60C/900Zdf/X3d 3ε 8ひ 9ΖΪ/900Ζ OAV ルメチル N— (R)— ( 1 フエ-ルェチル)ホスホラミダイト(L— 5)の合成 実施例 1の(R) ( + ) N ベンジル— N— (1—フエ-ルェチル)アミンを、(R) — N シクロへキシルメチル N— ( 1—フエ-ルェチル)ァミンに換え同様の操作を 行うことで、 O, 0,一 (R)—(1, 1,-ビナフタレン 2, 2,ージィノレ) N シクロへキシ ルメチルー N— (R)— (1—フエ-ルェチル)ホスホラミダイト 2. 07g (3. 9mmol、収率 78%)を得た。
ェ!!一 NMR(500MHz, CDC1 , δ ) ;
3
0.90- 1.55( 11H, m), 1.72- 1.74( 3Η, m), 2.18- 2.21( IH, m),
2.45-2.49( IH, m), 4.43- 4.48( IH, m), 6.99-7.97(17H,m) 31P-NMR(200MHz, δ ); 148. 2
MS m/z : 531(M+)(ll), 448(12), 434(17), 420(15), 391(60), 372(20), 344(15), 333(25), 315(85), 295(72), 268(100), 252(30), 239(27), 105(28),
79(10)
実施例 9
[0077] 次の化学式
[0078] [化 19]
Figure imgf000034_0001
[0079] で表される O, 0' -(R)-(l, 1,-ビナフタレン一 2, 2,一ジィル)一 N— (2—メチルベ ンジル) -N-(R)- (1ーフヱ-ルェチル)ホスホラミダイト(L 6)の合成
実施例 1の(R) ( + ) N ベンジル— N— (1—フエ-ルェチル)アミンを、(R) N— (2—メチルベンジル) N— (1—フエ-ルェチル)ァミンに換え同様の操作を 行うことで、 O, 0,一 (R)— (1, 1,-ビナフタレン一 2, 2,一ジィル)一 N— (2 ベンジ ル)— N— (R)— (1—フエ-ルェチル)ホスホラミダイト 1. 89g (3. 5mmol、収率 70% )を得た。
ェ!!一 NMR(500MHz, CDC1 , δ ) ; (9ΐ)3Π '(39)ΐ^ΐ 9)6£Ζ L)Z Z
'(32)892 '(z)eis '(8)εεε '(π)ΐ6ε '(ΟΟΪ) ; '(ozMf '(oi)(+Pv)eze : z/m S
οτ Η9 <zH oos)dxe
' )εθ·8— 90 '(zH0'SI=f 'P 'Ηΐ )6ΐ·
'(ω 'Ηΐ )Sr - 80·, '(zH0'SI=f 'Ρ 'Ηΐ )0Ζ '(ω Ήε )0 ·Η9·ΐ
•(9 αつ ' ZH OOS)丽 Ν— Ητ
。 (%99 ¾ί \ m
Ζ ·2)§0ε · Ι4^^6^^ ( /^ /—^Δ - 1 ) - (Ή) - Ν - {Λ^^ - z)-K-{^y^- 'Ζ- Λ^^ - Ί)-(Η)-{Ο 'ο ^^^ ^ C 翁^" ¥講コ ( ^エ -ェ — ΐ) - Ν - ( ^Δ-^ - Ζ ) -Ν- (Ή) ¾
Figure imgf000035_0001
( + )— (Ή)、ェ、 ^コ fi ¾?第
^O) ) ^^Y:^ ( ^エ / ェ -Ι)-(Η)-Ν- Λ(
Figure imgf000035_0002
[os ] [1800]
[0800]
Figure imgf000035_0003
(9)6Z'(8)S0r(8)6S2'(ZT)892
(s)eis '(3)εεε '(ζ)ΐ6ε ' '(oo '(8i)^e ' )(+ )6SS:Z/UI SPV
S ·9 ΐ · (9 'zH OOS)H N-dxe
Ήΐ2 )86"Z-½"9 '(ω 'Ηΐ )εΐ· 80· '(ζΗ0·9ΐ=ί" 'Ρ 'Ηΐ )Ζ8
(ΖΗ0·9ΐ=【 'Ρ'Ηΐ ) ζτ '(ω Ήε )6 ·ΐ- ΐ '(s Ήε )ΐΖ·ΐ
C8.60C/900Zdf/X3d 8ひ 9ΖΪ/900Ζ OAV 実施例 11
[0083] 次の化学式
[0084] [化 21]
Figure imgf000036_0001
で表される O, 0' -(R)-(l, 1,-ビナフタレン一 2, 2,一ジィル)一 N— (2,6 ジメチ ルベンジル) -N-(R)- (1—フエ-ルェチル)ホスホラミダイト(L 8)の合成 実施例 1の(R)— ( + )— N ベンジル— N— (1—フエ-ルェチル)アミンを、(R) — N— (2, 6 ジメチルベンジル) N— (1—フエ-ルェチル)ァミンに換え同様の 操作を行うことで、 O, 0,一 (R) (1, 1,-ビナフタレン一 2, 2,一ジィル)一 N— (2,6 —ジメチルベンジル) N— (R)— (1—フエ-ルェチル)ホスホラミダイト 0. 90g (l. 6 6mmol、収率 40%)を得た。
ェ!!一 NMR(500MHz, CDCl , δ ) ;
3
1.55-1.57( 3Η, m), 1.95( 6Η, s), 3.50( IH, d, J=13.7Hz),
3.98-4.02( IH, m),4.12( IH, d, J=13.7Hz), 6.79- 7.91( 20H, m) 31P (200MHz, δ ) ; 148.0
MS m/z : 553(M+)(1), 538(4), 434(35), 333(5), 315(6), 268(45),
252(15), 239(28), 226(8), 180(5), 132(8), 119(100), 105(90)
91(93), 79(50), 65(13)
実施例 12
[0086] 次の化学式
[0087] [化 22]
Figure imgf000037_0001
[ZZ^ [0600] ^&^ ^t [6800]
(8)S9'(2S)6Z '(8Ζ)ΐ6 '(SS)SOI '(00ΐ)6Π
)ZZl '(Ζ)6^ΐ'(9)99ΐ '(3)08ΐ '(8)922 '(0S)6S2 l)Z Z
'(oe)892 '(9)3ΐε '(3)εεε '(S)I6S'(S9) ; '(e)8se'(2)(+pv)see : z/m sw
ε"9^ΐ· (9 'zH OOS)dxe
(ω ' Z )06"Z-69"9 '(ω 'Ηΐ )Μ)· — 66·ε'(ζΗ6·3ΐ=ί" 'P 'Ηΐ )ιζ·ε
'(zH6"ei=f 'p 'HI )ει·ε '(s Ήε ) vz '(^ Ήε )ΟΓΪ 89·ΐ '(s Ήε )ζ^\
•(9 αつ ' ZH OOS)丽 Ν— Ητ
Figure imgf000037_0002
9 ·2)§6ε · Ι4^^6^^ ( /^ /—^Δ - 1 ) - (Ή) - Ν - {Λ^^ ^Λ^ ^ - z)-K-{^y^- 'Ζ- Λ^^ - Ί)-(Η)-{Ο 'ο ^^ ^
Figure imgf000037_0003
— 'Ζ)— Ν—
(Η) 、¾べ^ ( ^エ ェ — ΐ)
Figure imgf000037_0004
Figure imgf000037_0005
C8.60C/900Zdf/X3d 9S 8ひ 9ΖΪ/900Ζ OAV O)翁^"^講コ ( ^エ -ェ ー ΐ) - Ν - - Ζ ) -Ν- (Η) 、¾べ^ ( ^エ ェ — ΐ)
Figure imgf000038_0001
-^Ο) (ΙΙ-Ί) ( ^エ / ェ -Ι)-(Η)-Ν- ( /
Figure imgf000038_0002
Ζ \ [S600] ^&^ ^t [2600]
(S)S9 '(Ζ2)6Ζ '(33)ΐ6 '(Se)SOT '(33)ΖΠ '(S)2ST
'(3ΐ)23ΐ '(Ζ)99ΐ '(3)08ΐ '(0ΐ)922 '(9S)6S2 '(82)232 '(38)892
'(3ΐ)3ΐε '(3ΐ)εεε '(ει)ΐ6ε '(8 )Ο^'(ΟΟΪ) ; '(o )^2e'(s)(+ )see : z/m sw
'9flH9 <zHPV00S)dxe
Ή\Ζ )06"Z-Z8"9
'(ω 'HI )w —
Figure imgf000038_0003
'ρ Ήΐ )ιζτ
'(ω 'ΗΖ )εθ — S6'I '(ω Ήε )2 ·ΐ-0 ·ΐ '(9"Ζ=Γ Ήε )9 ·0
•(9 αつ ' ZH 00S)丽 Ν— Ητ
0^ ¾(%69*¾ίomm £ ·2)§χε ·ΐ4 ^έ ( ^エ ェ 一 ΐ) (¾) Ν— ( べ:^ /
^ェ一 S)— Ν—( / 一 ペ —J Ί)-(Η)-{0 Ό ^C ^
Ο)翁^^講^べ^ ( ^エ / -ェ ΐ) -Ν- ( べ > ^/^エー -Ν- (Η) 、¾べ^ ( ^エ ェ — ΐ)
Figure imgf000038_0004
-^Ο) (01 -Ί) ( ^エ /-ェ 一 ΐ) (¾) Ν— ( ^ >^
Figure imgf000038_0005
C8.60C/900Zdf/X3d ζε 8ひ 9ΖΪ/900Ζ OAV '(ui Ήΐ )WZ-LYZ '(ω 'Ηΐ )0Ζτ- ΥΖ '(ω 'HS)S9'I- 9·ΐ
•( 9 αつ ' ZH OOS)丽 Ν— Ητ ¾ί、Iorarao9 ·χ)§88 '(Η 、^¾έ ( ^エ ェ — ΐ)— (¾)— Ν— ( /
-I - ^ y) - N - - ( z 'Ζ- Λ^^ - Ί)-(Η)-{Ο 'ο\ ^ ζ
Figure imgf000039_0001
) -N、¾べ^ ( ^エ ェ 一 Ό
Figure imgf000039_0002
(ζι-Ί.) i ^^^ ( /^ /—^Δ - 1 ) -(Ή)-Ν- ( /y-
I - ^ y) - N - - ( Z 'Ζ- Λ^^ - Ί)-(Η)-{0 'OW?^ [Z600]
Figure imgf000039_0003
[S2^ ] [9600] ^&^ ^t [S600]
9Z)Z l '(00ΐ)39ΐ '(9)08ΐ )9ZZ '(02)6S2 '{ )Z^Z '(^)892
'(8)eis '(8)εεε ' ΐ)ΐ6ε ' ) Ο^'(ΟΟΪ) ; '(S)96 (I)(+ V)IO9 : ζ/ω SPV
9"9^ΐ· (9 'zH OOS)dxe
Ή92 )ΐ6" - ε·9 '(ω 'HI )ε8·ε— 6Γε
Figure imgf000039_0004
'Ρ 'Ηΐ )S0"S '(ω Ήε)99·ΐ- ε9·ΐ
•( 9 αつ ' ZH OOS)丽 Ν— Ητ
° (%9 揭
^ouiuigg ·\)^Ζ\ ·ΐ4 、^¾έ ( ^エ ェ — ΐ)— (¾)— Ν— ^ ( -
C8.60C/900Zdf/X3d 8ε 8ひ 9ΖΪ/900Ζ OAV ( )( )( )ΐ寸^寸ΐΐοε62ΐΐ292ΗsΗ3ΗζsSs-- * - - - * -....··
( ) )ΐε99εΓΐ99寸09寸ΗζΖΗs s- - - -·..
()( )((¾()() V _ΐΐε0寸2εε06ε寸0寸90ョsの33 pvsS - - -
〔〔〕96600
〕οοΐο
Figure imgf000040_0001
)((¾ΐsΐ6ΐε6ΐ¾ΐΗΗ3ΗsSl- * - - - -...
( )言言ρρ9ΐ6069 εΐΐε εΐΐΗ3卜ΗΗS 1 - - - * - - -..... +さ)))()さ)χ) V ΐεεε寸寸寸 ε寸ss寸 0ΐ0ε寸寸のs3ρν s:S - - [0101] 次の化学式
[0102] [化 27]
Figure imgf000041_0001
[0103] で表される O, 0' -(R)-(l, 1,-ビナフタレン一 2, 2,一ジィル)一 N— (9 アンスリ ル)メチル N— (R)—( 1 フエ-ルェチル)ホスホラミダイト(L 14)の合成
実施例 1の(R)— ( + )— N ベンジル— N— (1—フエ-ルェチル)アミンを、 (R) — N— (9 アントリル)メチル—N— (1—フ -ルェチル)ァミンに換え同様の操作を 行うことで、 O, 0,一 (R) (1, 1,-ビナフタレン一 2, 2,一ジィル)一 N— (9 アントリ ル)メチル N— (R)— (1—フエ-ルェチル)ホスホラミダイト 0. 750g (l. 20mmol、 収率 30%)を得た。
ェ!!一 NMR(500MHz, CDC1 , δ ) ;
3
1.48-1.50( 3Η, m), 3.90- 3.98( 1Η, m), 4.47( 1Η, d, J=14.1Hz), 5.11( 1Η, d, J=14.1Hz), 7.16- 8.32( 26H, m)
31P (200MHz, δ ) ; 151.5
MS m/z : 625(M+)(63),520(70), 434(100),349(13), 333(8), 315(15), 268(26),
252(8), 239(7), 205(10), 191(62), 178(10), 165(6), 105(55), 79(32)
[0104] <実施例 18〜29 >
光学活性ムスコンの合成
配位子及び反応温度を次の表 1に示すものに代えて、実施例 5の操作に準じて光 学活性ムスコンの合成を行った。結果を以下の表 1に示す。
[0105] [表 1] 実施例 配位子 温度 rc) 収率 (%) 光学純度 (e e%) 体酉己置
18 L- 3 一 20 86. 0 86. 3 (R)
1 9 L-4 - 20 84. 5 85. 5 (R)
20 L- 5 - 20 88. 7 87. 2 (R)
21 L- 6 - 20 96. 5 92. 1 (R)
22 L- 6 0 91. 8 90. 4 (R)
23 L- 7 一 20 85. 9 85. 0 (R)
24 L- 8 一 20 86. 7 84. 4 (R)
25 L- 9 一 20 84. 4 92. 2 (R)
26 L- 10 一 20 75. 2 91. 8 (R)
27 L- 1 1 一 20 70. 6 90. 3 (R)
28 L- 12 一 20 96. 6 82. 0 (S)
29 L- 13 - 20 85. 0 89. 5 (R)
[0106] 比較例 1
実施例 21において、エノールァ-オン捕捉剤である無水プロピオン酸 0.29g(2. 2mmol)を使用しない以外は、実施例 21と同様にして、(R)—ムスコン 0.300g(l. 26mmol,収率 63.1%)を得た。
この結果、エノールァ-オン捕捉剤を用いる本発明の方法が、副反応を抑え高収 率で目的物を得ることができる方法であることがわ力つた。
[0107] 比較例 2
特許文献 5 (韓国特許公開 2000— 49811号公報)に記載の方法 (特許文献 5の実 施例 4参照)では、リガンドとして次式
[0108] [化 28]
Figure imgf000042_0001
で表されるメソ体由来の 4— (シス一 2, 6—ジメチルビペリジン)一(R)—ジナフトジォ キサホスフエピンが使用されている。このリガンドを用いて、銅化合物、リガンド、及び ジメチル亜鉛の量を本発明の方法の量に変更して実験してみた。即ち、特許文献 5 に記載の方法では、銅化合物を 5.54モル%使用し、リガンドを 10.0モル%使用し 、さらにメチル化剤であるジメチル亜鉛を 4. 0当量使用している力 この触媒量を本 発明の方法に準じて、それぞれ 1. 0モル%、及び 2. 0モル%とし、ジメチル亜鉛を 1 . 4当量として、特許文献 5に記載の方法を行った。ただし、溶媒のトルエンは、本発 明の方法と同様に原料の 2—シクロペンタデセン 1 オンに対して 20倍量使用し た。
その結果、(R)—ムスコンの収率は 60. 7%に過ぎなかった。また、光学純度を測 定した結果、 79. 5%eeであった。
このように、本発明の方法は、少ない触媒量で高い活性を示すことが明らかになつ た。
産業上の利用可能性
本発明により得られる光学活性ムスコンは、例えば香料の分野で有用であり、本発 明の方法は、その製造方法として産業上の利用可能性を有する。また、本発明の化 合物は、 a , j8—不飽和ケトン類の 1 , 4 付加反応における配位子として有用であ り、産業上の利用可能性を有する。

Claims

請求の範囲
2—シクロペンタデセン— 1—オンを、銅触媒、エノールァ-オン捕捉剤、及び一般 式 (1)
[化 29]
Figure imgf000044_0001
(式中、 R1及び R2はそれぞれ独立して、水素原子又は炭素数 1〜4のアルキル基を 表し、 R3は置換基を有してもよい炭素数 3〜: L0のシクロアルキル基又は置換基を有 していてもよいァリール基を表し、 R4は炭素数 1〜 10のアルキル基、置換基を有して もよい炭素数 3〜 10のシクロアルキル基、置換基を有していてもよいァリール基、又 は置換基を有して 、てもよ 、ァラルキル基を表し、 Aは光学活性なビアリールジィル 基を表す。 )
で表される光学活性ホスホラミダイトの存在下、メチルイ匕有機金属と反応させて、メチ ル基の 1, 4一共役付加反応を行い、一般式 (2)
[化 30]
Figure imgf000044_0002
(式中、 Rはエノールァ-オン捕捉剤の残基を表し、 *は不斉炭素原子を表す。式中 の波線はシス体若しくはトランス体又はこれらの混合物であることを表す。 ) で表される光学活性 3—メチル—1—シクロペンタデセン誘導体を製造し、次いでこ れを加溶媒分解することを特徴とする光学活性 3—メチルシクロペンタデカノンの製 造方法。
光学活性 3—メチルシクロペンタデカノン力 3— (R)ーメチルシクロペンタデカノン である請求項 1に記載の方法。 2—シクロペンタデセン— 1—オンに、銅触媒、エノールァ-オン捕捉剤、及び一般 式 (1)
[化 31]
Figure imgf000045_0001
(式中、 R1及び R2はそれぞれ独立して水素原子又は炭素数 1〜4のアルキル基を表 し、 R3は置換基を有してもよい炭素数 3〜 10のシクロアルキル基又は置換基を有し ていてもよいァリール基を表し、 R4は炭素数 1〜10のアルキル基、置換基を有しても よい炭素数 3〜 10のシクロアルキル基、置換基を有していてもよいァリール基、又は 置換基を有していてもよいァラルキル基を表す。また、 Aは光学活性なビアリールジ ィル基を表す。 )
で表される光学活性ホスホラミダイトの存在下、メチルイ匕有機金属によりメチル基の 1 , 4 共役付加反応を行うことを特徴とする、一般式 (2)
[化 32]
Figure imgf000045_0002
(式中、 Rはエノールァ-オン捕捉剤の残基を表し、 *は不斉炭素原子を表す。式中 の波線はシス体若しくはトランス体又はこれらの混合物であることを表す。 ) で表される光学活性 3—メチルー 1ーシクロペンタデセン誘導体の製造方法。
[4] 一般式(2)で表される光学活性 3—メチルー 1ーシクロペンタデセン誘導体の製造 方法が、 2—シクロペンタデセン 1 オンを、銅触媒、及び一般式(1)で表される光 学活性配位子の存在下、メチル化有機金属と反応させて、メチル基の 1, 4一共役付 加反応により生成した光学活性エノールァ-オンに、エノールァ-オン捕捉剤を添 カロして製造する方法である請求項 1〜3のいずれかに記載の方法。 下記の一般式(1 ' )
Figure imgf000046_0001
(式中、 R1'及び R2'はそれぞれ独立して水素原子又は炭素数 1〜4のアルキル基を 表し、 R3'は置換基を有してもよい炭素数 3〜: L0のシクロアルキル基又は置換基を有 していてもよいァリール基を表し、 R4,は 1—ナフチルメチル基、 2—ナフチルメチル 基、 3, 4—メチレンジォキシベンジル基、ビフエ-ルメチル基、アンスリルメチル基、 炭素数 1〜10のアルキル基、置換基を有していてもよいァリール基、炭素数 1〜6の アルキル基で置換されたべンジル基、又はァリール基が置換若しくは縮合してもょ ヽ 炭素数 3〜 10のシクロアルキル基を表す。 A 'はビアリールジィル基を表す。) で表される化合物。
PCT/JP2006/309783 2005-05-23 2006-05-17 光学活性3-メチルシクロペンタデカノン及びその中間体の製造方法 WO2006126428A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007517785A JP4932707B2 (ja) 2005-05-23 2006-05-17 光学活性3−メチルシクロペンタデカノン及びその中間体の製造方法
US11/920,600 US7728177B2 (en) 2005-05-23 2006-05-17 Optically active 3-methylcyclopentadecanone and method for producing intermediate thereof
EP06746486A EP1884509B1 (en) 2005-05-23 2006-05-17 Optically active 3-methylcyclopentadecanone and method for producing intermediate thereof
ES06746486T ES2397396T3 (es) 2005-05-23 2006-05-17 3-metilciclopentadecanona ópticamente activa y método para producir un compuesto intermedio de la misma
CN2006800146100A CN101166708B (zh) 2005-05-23 2006-05-17 光学活性3-甲基环十五烷酮及其中间体的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-149667 2005-05-23
JP2005149667 2005-05-23

Publications (1)

Publication Number Publication Date
WO2006126428A1 true WO2006126428A1 (ja) 2006-11-30

Family

ID=37451853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309783 WO2006126428A1 (ja) 2005-05-23 2006-05-17 光学活性3-メチルシクロペンタデカノン及びその中間体の製造方法

Country Status (7)

Country Link
US (1) US7728177B2 (ja)
EP (1) EP1884509B1 (ja)
JP (1) JP4932707B2 (ja)
KR (1) KR20080015095A (ja)
CN (1) CN101166708B (ja)
ES (1) ES2397396T3 (ja)
WO (1) WO2006126428A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102464672B (zh) * 2010-11-16 2015-03-25 中国科学院兰州化学物理研究所 甘露醇衍生的手性双齿亚磷酸酯配体及其制备方法与用途
JP6419198B2 (ja) * 2014-01-14 2018-11-07 フイルメニツヒ ソシエテ アノニムFirmenich Sa パウダリーなムスキー付香剤大環状分子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192161A (ja) 1992-12-25 1994-07-12 Takasago Internatl Corp 光学活性ムスコンの製造方法
KR20000049811A (ko) 2000-05-02 2000-08-05 김권 (알)-(-)-무스콘의 입체선택적 제조 방법
JP2001226306A (ja) 2000-02-10 2001-08-21 Toyotama Koryo Kk 2(3)−シクロペンタデセンー1−オンの製造方法
JP2001316309A (ja) 2000-05-02 2001-11-13 Central Glass Co Ltd 光学活性α−メチル−ビス−3,5−(トリフルオロメチル)ベンジルアルコールの製造方法
JP2002030022A (ja) 2000-07-13 2002-01-29 T Hasegawa Co Ltd 光学活性3−メチル−5−シクロペンタデセン−1−オン、その製法、新規中間体および香料組成物
JP2005008555A (ja) 2003-06-19 2005-01-13 Kawaguchi Yakuhin Kk ムスコンのアセタール付加体、その調製方法、並びに(±)−ムスコンの光学分割方法
WO2006051595A1 (ja) 2004-11-11 2006-05-18 Takasago International Corporation 大環状ケトン類の製造方法およびその中間体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070259774A1 (en) * 2004-04-29 2007-11-08 Yale University Enantioselective Phosphoramidite Compounds and Catalysts

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192161A (ja) 1992-12-25 1994-07-12 Takasago Internatl Corp 光学活性ムスコンの製造方法
JP2001226306A (ja) 2000-02-10 2001-08-21 Toyotama Koryo Kk 2(3)−シクロペンタデセンー1−オンの製造方法
KR20000049811A (ko) 2000-05-02 2000-08-05 김권 (알)-(-)-무스콘의 입체선택적 제조 방법
JP2001316309A (ja) 2000-05-02 2001-11-13 Central Glass Co Ltd 光学活性α−メチル−ビス−3,5−(トリフルオロメチル)ベンジルアルコールの製造方法
JP2002030022A (ja) 2000-07-13 2002-01-29 T Hasegawa Co Ltd 光学活性3−メチル−5−シクロペンタデセン−1−オン、その製法、新規中間体および香料組成物
JP2005008555A (ja) 2003-06-19 2005-01-13 Kawaguchi Yakuhin Kk ムスコンのアセタール付加体、その調製方法、並びに(±)−ムスコンの光学分割方法
WO2006051595A1 (ja) 2004-11-11 2006-05-18 Takasago International Corporation 大環状ケトン類の製造方法およびその中間体

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
ALEXAKIS A. ET AL.: "Biphenol-based ligands for Cu-catalyzed asymmetric conjugate addition", TETRAHEDRON: ASYMMETRY, vol. 15, no. 14, 2004, pages 2199 - 2203, XP004523707 *
BOELE M.D.K. ET AL.: "Bulky monodentate phosphoramidites in palladium-catalyzed allylic alkylation reactions: Aspects of regioselectively and enantioselectivity", CHEMISTRY-A EUROPEAN JOURNAL, vol. 10, no. 24, 2004, pages 6232 - 6246, XP003002670 *
J. CHEM. SOC. PERKIN TRANS. I, 1992, pages 1193
J. KOREAN CHEM., vol. 40, 1996, pages 243
J. ORG. CHEM., vol. 58, 1993, pages 7313
LEITNER A. ET AL.: "Editing the stereochemical elements in an iridium catalyst for enantioselective allylic amination", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 101, no. 16, 20 April 2004 (2004-04-20), pages 5830 - 5833, XP003002671 *
LI X. ET AL.: "Highly enantioselective hydrogenation of enamides catalyzed by rhodium-monodentate phosphoramidite complex derived from H8-BINOL", TETRAHEDRON: ASYMMETRY, vol. 14, no. 18, 2003, pages 2687 - 2691, XP005019716 *
MONTI C. ET AL.: "Rh-catalysed asymmetric hydrogenations with a dynamic library of chiral tropos phosphorus-ligands", TETRAHEDRON LETTERS, vol. 45, no. 37, 2004, pages 6859 - 6862, XP004532463 *
NAASZ R. ET AL.: "Highly enantioselective copper-phosphoramidite catalyzed kinetic resolution of chiral 2-cyclohexenones", ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 40, no. 5, 2001, pages 927 - 930, XP003002672 *
PENA D. ET AL.: "Highly Enantioselective Rhodium-Catalyzed Hydrogenation of beta-Dehydroamino Acid Derivatives Using Monodentate Phosphoramidites", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 124, no. 49, 2002, pages 14552 - 14553, XP009057426 *
SCAFATO P. ET AL.: "Catalytic enantioselective conjugate addition of dialkyl zinc reagents to alpha,beta-unsaturated ketones mediated by new phosphite ligands containing binaphthalene/1,2-diphenylethane moieties: a practical synthesis of (R)-(-)-muscone", TETRAHEDRON: ASYMMETRY, vol. 14, no. 24, 12 December 2003 (2003-12-12), pages 3873 - 3877, XP004476259 *
SYNLETT, no. 11, 1999, pages 1181
TETRAHEDRON, vol. 56, 2000, pages 2865
TETRAHEDRON: ASYMMETRY, vol. 13, 2002, pages 801
TETRAHEDRON: ASYMMETRY, vol. 15, 2004, pages 2533
TETRAHEDRON: ASYMMETRY, vol. 9, 1998, pages 1179
VAN ZIJL A.W. ET AL.: "Highly enantioselective copper-catalyzed allylic alkylation with phosphoramidite ligands", ADVANCED SYNTHESIS & CATALYSIS, vol. 346, no. 4, 2004, pages 413 - 420, XP003002669 *
W. PICKENHAGEN ET AL.: "Flavor Chemistry", 1989, ACS SYMPOSIUM SER. 388, pages: 151

Also Published As

Publication number Publication date
CN101166708A (zh) 2008-04-23
EP1884509A1 (en) 2008-02-06
ES2397396T3 (es) 2013-03-06
EP1884509B1 (en) 2013-01-02
JP4932707B2 (ja) 2012-05-16
CN101166708B (zh) 2011-11-23
EP1884509A4 (en) 2010-04-07
KR20080015095A (ko) 2008-02-18
US7728177B2 (en) 2010-06-01
JPWO2006126428A1 (ja) 2008-12-25
US20090124826A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JPH05331128A (ja) (R)−(−)−4−シアノ−3−ヒドロキシ酪酸t−ブチルエステル及びその製造方法
WO2006126428A1 (ja) 光学活性3-メチルシクロペンタデカノン及びその中間体の製造方法
JP4649645B2 (ja) 光学活性アルコール化合物の製法
US4438033A (en) Steroidal chiral phosphines, methods for their preparation, catalytic systems containing them and catalytic processes in which they are used
JP2924000B2 (ja) 不斉誘起触媒
US20040143143A1 (en) Preparation and use of diols
JP4540197B2 (ja) (e)−3−メチル−2−シクロペンタデセノンの製造法
KR101175488B1 (ko) 결정형 t-부틸 2-((4R,6S)-6-포밀-2,2-디메틸-1,3-디옥산-4-일)아세테이트 및 이의 제조 방법
JP4399885B2 (ja) 4−メチルテトラフルオロベンジルアルコール誘導体の製造法
WO2006051595A1 (ja) 大環状ケトン類の製造方法およびその中間体
JP4157361B2 (ja) 9−スピロフルオレン化合物の製造方法
US7563916B2 (en) Process for producing an alcohol or a silyl ether thereof
JP4345118B2 (ja) エチニルシクロプロパンの製造方法
EP3199513B1 (en) Process for producing alcohol analogue
JP2003342255A (ja) ヒドロペルオキシヒドロキシオクタデカン酸エステル組成物、及び該組成物からの9−オキソノナン酸誘導体の製造方法
JP3946363B2 (ja) カロテノイド類およびその製造方法
JPH11255759A (ja) 光学活住β−ラクトン類の製造方法
JP3254746B2 (ja) 末端アセチレン化合物およびその製造法
JP3825489B2 (ja) 不飽和ハロゲン化合物およびそれを用いた性フェロモンの製造方法
JP4224590B2 (ja) 有機金属複合体及びアルドール付加体の製造方法
JP3680341B2 (ja) 光学活性1,1’−ビス(1−ヒドロキシアルキル)メタロセンの製造方法
RU2286994C2 (ru) Способ получения оптически активного тетралина
CN110857264A (zh) 制备(e2,z6)-2,6-壬二烯醛的方法
US20010020106A1 (en) Optically active epoxypropionate derivative, intermediate thereof and processes for their production
JPH11255687A (ja) 1,1′,5′,1″−テルナフタレン−2,2′,6′,2″−テトラオール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680014610.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 8243/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11920600

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007517785

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006746486

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077028368

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006746486

Country of ref document: EP