WO2006121213A1 - 高炉用コークスの製造方法 - Google Patents

高炉用コークスの製造方法 Download PDF

Info

Publication number
WO2006121213A1
WO2006121213A1 PCT/JP2006/309981 JP2006309981W WO2006121213A1 WO 2006121213 A1 WO2006121213 A1 WO 2006121213A1 JP 2006309981 W JP2006309981 W JP 2006309981W WO 2006121213 A1 WO2006121213 A1 WO 2006121213A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
coke
caking
blast furnace
temperature
Prior art date
Application number
PCT/JP2006/309981
Other languages
English (en)
French (fr)
Other versions
WO2006121213B1 (ja
Inventor
Kenji Katou
Isao Sugiyama
Yoshiaki Nakashima
Hiroshi Uematsu
Takashi Arima
Masahiko Yokomizo
Michitaka Sakaida
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP06732642.1A priority Critical patent/EP1881051B1/en
Priority to BRPI0606993-2A priority patent/BRPI0606993B1/pt
Priority to JP2007528352A priority patent/JP4102426B2/ja
Publication of WO2006121213A1 publication Critical patent/WO2006121213A1/ja
Publication of WO2006121213B1 publication Critical patent/WO2006121213B1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/06Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/08Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form in the form of briquettes, lumps and the like
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/045Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing mineral oils, bitumen, tar or the like or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • C10B57/10Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/10Treating solid fuels to improve their combustion by using additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/007Conditions of the cokes or characterised by the cokes used

Definitions

  • the present invention relates to a method for producing metallurgical coke. Specifically, after drying and classifying coal, pulverized coal is formed, and the formed coal and coarse coal are combined into a chamber-type coke.
  • the method of manufacturing blast furnace coke it contains about 8 to 12% of moisture from the viewpoint of improving coke strength by increasing charging bulk density and improving coke productivity by shortening the carbonization time.
  • the coking coal was dried to reduce the water content in the coking coal to about 5-6%, and further to 0%, and then charged into a coke oven and dry-distilled.
  • the pre-carbon method is known in which the coking coal is dried to a moisture content of 0% and preheated to an ultimate temperature of about 1550 to 2300 ° C., then charged into a coke oven and dry-distilled. (See, for example, “Coke Note [Japan Association for Fuels, 1980, Edition], pages 1 3 4”).
  • coke productivity is improved by about 35% compared to when coal is not preheated, and the coke quality such as coke strength is improved, so that the viscosity mixed in the blended coal is improved.
  • the proportion of inferior coal, such as non-slightly caking coal with low cohesion, can be increased to about 25%.
  • the recovered pulverized coal of 0.3 mm or less is only collected at a temperature of 80 ° C or less at 3 to 5%.
  • a coke manufacturing method in which a coking furnace is added to form coking charcoal by molding with a grooved roll, and the coarse coal that is the remainder of the blended charcoal is co-distilled in a coke oven has been proposed. Since all the coals obtained by these methods have higher agglomerate strength than the pseudo particles, the agglomerates can be prevented from collapsing during transportation.
  • coal as coal Since the distance between the fine powder particles becomes smaller, adhesion of the fine powder particles increases when coking coal is carbonized in a coke oven, and the effect of improving the coke strength is obtained.
  • roll molding is performed when the temperature of the pulverized coal is lower than 80 ° C when molding is performed by roll molding, etc., by adding evening coal only to dry coal or preheated coal, especially pulverized coal. There was a need.
  • the blending ratio of non-slightly caking coal with a low caking property in the blended coal was at most 2.5%.
  • the total amount of blended coal containing a large amount of inferior coal such as non-slightly caking coal with low caking properties is about 3500 ° higher than the heating temperature of the above precarbon method.
  • Non-slightly caking coal is reformed by rapidly heating to softening and melting at C or higher, and semi-molten coal with caking properties is maintained while maintaining a temperature of 3500 ° C or higher.
  • There has been proposed a method for producing coke, which is formed into coking coal and then carbonized in a coke oven see, for example, Japanese Patent Laid-Open No. 7-118 665).
  • the heating temperature varies depending on the coal particles due to the difference in the particle size between the pulverized coal and the coarse coal.
  • the caking component is dissipated and the caking property of non-slightly caking coal cannot be improved sufficiently.
  • non-slightly caking coal blended with 10 to 60% is dried and preheated at a temperature of 50 to 35 ° C, and 0.3 mm. the following coarse coal and secondary classifying the particle size of the pulverized coal particle diameter 0.
  • the fine powder portion after coal is pulverized contains more caking components such as vitrinite components than the coarse particle portion.
  • the margin for improving caking components by heating pulverized coal rapidly compared to coarse coal in coal is small. Rather, the caustic components dissipate when pulverized coal is heated to a high temperature. Or the effect of deterioration due to oxidation is greater than that of coarse coal.
  • the conventional rapid coal heating method is sufficient as a method for producing high-strength coke at a low cost while maintaining high productivity by using blended coal containing a large amount of non-slightly caking coal. That wasn't true. Disclosure of the invention
  • the present invention is to dry and classify a blended coal containing a large amount of inferior coal with low caking properties, such as inexpensive non-caking coal, and then form pulverized coal to form coal, together with coarse coal
  • inferior coal with low caking properties such as inexpensive non-caking coal
  • the purpose of the present invention is to provide a method for producing coke for blast furnace, which can improve the characteristics during dry distillation such as expansibility of the formed coal, and can produce high strength coke at low cost and high productivity.
  • the gist of the present invention is as follows.
  • the blended coal is dried or simultaneously with the drying, it is classified into pulverized coal and coarse coal, and subsequently into pulverized coal at a temperature of 80 to 35 ° C as a binder.
  • a method for producing coke for blast furnace characterized by charging and dry distillation.
  • the heavy fraction of the tar contains 80% by mass or more of a component having a boiling point at atmospheric pressure of 300 ° C. or higher, according to the above (1) or (2) A method for producing blast furnace coke.
  • the main component of the heavy fraction is composed of one or more of phenanthrene, anthracene, methylnaphthalene, and fluoranthene, according to any one of the above (1) to (3) The manufacturing method of coke for blast furnaces as described.
  • Blast furnace coke according to any one of the above (1) to (8), wherein the blended coal comprises 0 to 70% by mass of non-slightly caking coal and the balance is caking coal. Manufacturing method.
  • the collected coal is dried and classified and then recovered.
  • a caking material consisting of one or more of heavy tar fraction, soft pitch, and petroleum pitch is added, and hot press molding is performed.
  • the caking components such as vitrinite contained in the pulverized coal at a high concentration and the caking agent having a high boiling point and softening point, the coal having a high expansion rate during dry distillation is obtained.
  • High strength coke can be produced at low cost and with high productivity by carbonizing this coking coal in a coke oven.
  • Fig. 2 is a graph showing the relationship between the coefficient of expansion during coking and the coke strength DI 1 5 Q 15 .
  • FIG. 3 is a graph showing the relationship between the coefficient of expansion during dry distillation and the coke strength DI 15 Q 15 of the coals of the present invention and the comparative example.
  • Fig. 4 is a diagram showing the coke manufacturing process. BEST MODE FOR CARRYING OUT THE INVENTION
  • caking components such as vitrinite in pulverized coal having a particle size of about 0.5 mm or less after pulverization of coal. This is because, caking components such as vitrinite in coal are softer than non-softening components such as inhabitants and are concentrated in pulverized coal for easy separation when coal is pulverized. This is probably because of this.
  • caking components such as vitrinite in the pulverized coal are in the atmosphere at high temperatures after drying and classification. The caking property is easily deteriorated by oxidation of.
  • the inventor pays attention to the fact that caking components such as vitrinite are contained in pulverized coal at a high concentration.
  • caking components such as vitrinite are contained in pulverized coal at a high concentration.
  • the effect of the caking component is observed.
  • the above-mentioned tar heavy fraction, soft stick, and oil pitch binder have a higher boiling point and softening point than ordinary tar, and even when added to pulverized coal at room temperature, vitrinite in pulverized coal is used. It does not adhere to caking components such as limestone, but when added to pulverized coal at high temperatures, Increasing the fluidity of the wood, and uniformly dispersed in the pulverized coal, further close to the caking component, such as Bitorini' bets by molding, or in a state of being bonded by chemical action.
  • the present invention is based on these knowledge and technical ideas.
  • pulverized coal and coarse coal After the blended coal is dried or simultaneously with the drying, pulverized coal and coarse coal Followed by pulverized coal at a temperature of 80 to 3500 ° C., preferably at a temperature of 120 to 3500, as a caking agent, a heavy fraction of tar, a soft pitch, and After adding one or more petroleum pitches and hot pressing, The agglomerated coal and the coarse pulverized coal are mixed, charged into a coke oven, and dry-distilled.
  • the caking property of coal is a general term for properties observed in a softened and melted state when coal is carbonized, and these properties include tackiness, fluidity, expansibility, etc. (for example, see “Coal Utilization Technology ⁇ Dictionary [Japan Fuel Association, published in 1958], pages 2 5 5").
  • the expansibility of coal means the property of coal measured according to the test method described in JISM 8880.
  • coal was pulverized to a particle size of 1 5 0 ⁇ m (1 0 0 mesh) or less, and a sample mixed with 10% water was compression-molded with a molding machine at a predetermined pressure, and the minimum diameter Make a 1/50 taper lump with a length of 6 mm and a length of 60 ⁇ 0.25 mm.
  • this coal sample is put into a thin tube with an inner diameter of 8 mm, and after putting the biston on it so that a load of 150 g is applied, it is charged in an electric furnace preheated to 300 ° C. Heat at a rate of 3 ° C / min and measure the displacement of the piston due to the contraction and expansion of the coal sample.
  • the expansibility of coal is determined based on the results of measurement of the shrinkage and expansion behavior of the coal sample.
  • the start of softening of coal (when the piston drops 0.5 mm), maximum shrinkage, maximum expansion temperature, shrinkage rate and expansion It is calculated based on the rate (percentage of the initial sample length).
  • the expansion coefficient of the forming coal in the present invention is measured according to the test method described in the above-mentioned JISM 880 1.
  • the coke strength DI 15 °, 5 is measured according to the drum strength test method described in JISK 2 15 1, and the coke sample is rotated after 1 It is indicated by the mass ratio remaining on the 15 mm sieve.
  • the caking agent is one or more of a heavy tar fraction, soft pitch, and petroleum pitch for the following reasons.
  • All these binders have a higher boiling point and softening point than ordinary tar and are solid at room temperature, so when mixed with low-temperature pulverized coal and molded, The binder is unevenly distributed locally, and a sufficient interaction between the binder and other binders and the above binder cannot be obtained.
  • these caking materials are mixed with high-temperature pulverized coal at 80 to 35 ° C. specified in the present invention, so that the fluidity of the caking material is increased and uniformly dispersed in the pulverized coal, Furthermore, by forming, it becomes in a state of being bonded to caking components such as vitrinite in pulverized coal.
  • the caking furnace has a caustic component such as vitrinite and the above caking material that has a higher boiling point and softening point than ordinary tar.
  • the interaction increases the expansion rate of the coal and makes it possible to produce coke with high strength.
  • Ordinary tar is liquid at room temperature and has high fluidity, so it can be used as a binder to mix with low-temperature pulverized coal to form pseudo particles, but it improves the expansibility of coal during carbonization. Therefore, the desired coke strength cannot be obtained when coke is produced using blended coal with a high blending ratio of inferior coal with low cohesiveness such as non-slightly caking.
  • the heavy fraction of tar which is a caking agent having a higher boiling point or softening point than ordinary tar, soft pitch (at room temperature obtained by distilling coal-based distillate). Solid residue), and 1 of petroleum pitch (residue solid at room temperature obtained by distillation of petroleum heavy oil) Use seeds or two or more.
  • the heavy fraction of tar preferably contains 80% by mass or more of a component having a boiling point at normal pressure of 30 ° C. or higher.
  • the main component of the heavy fraction is more preferably one or more of phenanthrene, anthracene, methylnaphthalene, and fluoranthene.
  • the soft pitch preferably has a softening point of 30 to 200 ° C.
  • the petroleum pitch has a hydrogen Z carbon atom ratio of 0.9 or more and a softening point of 100 to 400 ° C. It is preferable that
  • the pulverized coal temperature when adding the caking additive is set to 80 to 35 ° C. for the following reasons.
  • Figure 1 shows the relationship between the pulverized coal temperature when the binder is added and the expansion rate during dry distillation of the coal.
  • Figure 2 shows the relationship between the carbonization expansion rate of coking coal and the coke strength ADI I 5 Q 15 .
  • the expansion coefficient of the forming coal shown in FIG. 1 and FIG. 2 is measured according to the test method described in the above-mentioned JISM 8880 +.
  • the coke strength DI 15 Q 15 shown in Fig. 2 is the same as that of JI 'SK 2 1 5 1 described above using a coke sample obtained by carbonizing a mixture of coking coal and coarse coal in a test carbonization furnace. To the Dora strength test method described It was measured according to this.
  • the present inventors also conducted a confirmation test similar to that shown in FIGS. 1 and 2 for soft pitches and petroleum pitches as caking materials other than the above heavy components, and similar results were obtained. Have confirmed.
  • the caking material effective for improving the expansibility of the forming coal during dry distillation has a high boiling point or softening point, the temperature of the pulverized coal when the caking material is added and mixed is increased. If it is low, the caking agent cannot be uniformly dispersed in the pulverized coal, and the caking agent is present in the state of adhering to or adhering to caking components such as violinite in the pulverized coal. It cannot be made.
  • the penetration and dispersibility of the binder into the pulverized coal are promoted with the increase of the temperature when the binder is added, but when the temperature exceeds 3500 ° C, the binder has a viscosity. Decreases rapidly, the adhesive force disappears, and the action of adhering to caking components such as vitrinite is reduced when dispersed in pulverized coal.
  • the temperature when the binder is added is set to 80 to 35 ° C.
  • the lower limit of the temperature at the time of addition of the binder is 120% because the binder is sufficiently and uniformly permeated and dispersed in the pulverized coal to promote the interaction with the binder such as vitrinite. It is preferable to exceed ° C.
  • the coal is classified into pulverized coal and coarse coal, and the pulverized coal is conveyed to a molding machine, and the pulverized coal is input to the molding machine. After adding and mixing a caking additive to charcoal, it is charged into a molding machine and molded.
  • the temperature of pulverized coal at the dryer outlet is 100 ° C or higher, the pulverized coal is cooled during the conveyance process to the inlet of the molding machine.
  • the coke strength can be improved by regulating the temperature within the above range.
  • the temperature of the pulverized coal at the dryer exit side becomes low, the temperature of the pulverized coal at the time of adding the caking additive using a heat retention device or heating device during the transport process to the dryer exit side It is also possible to adjust the range.
  • the present invention provides a more stable effect, although the intended effect of the present invention can be sufficiently obtained by defining the type of the binder and the pulverized coal temperature when the binder is added.
  • the amount of caking additive, the linear pressure during hot press molding, the blending amount of non-fine caking coal, and the particle size of pulverized coal are further defined as follows: Is more preferred
  • the amount of caking additive added to the pulverized coal is 2 to 20 from the following theory. It is preferable to set it as the mass%.
  • the added amount of the binder is less than 2% by mass, the interaction between the above-mentioned binder effective for improving the expansibility of the coal during dry distillation and the binder components such as vitrinite in the pulverized coal.
  • the amount of caking additive added exceeds 20% by mass, the amount of caking additive added to the coal will increase.
  • the charging density is lowered, and the effect of improving the coke strength cannot be obtained stably.
  • the caking additive causes generation of carbon adhering to the furnace wall in the coke oven, it is not preferable to add it excessively.
  • the binder in order to stably achieve the desired coke strength, one or more of heavy tar fraction, soft pitch, and petroleum pitch are added as the binder.
  • the addition amount of the binder is preferably 20 to 20% by mass.
  • the applied pressure during hot forming after mixing pulverized coal and caking additive is 0.5 to 10 t / cm in terms of linear pressure.
  • the linear pressure during hot press molding is less than 0.5 t / cm, the distance between the fine particles is reduced by hot forming, and the binder and the viscosity of the vitrinite in the fine powder are reduced. It becomes difficult to achieve close or adhering to the caking component in a stable manner, and the effect of improving the expansion coefficient of the coal coal due to the interaction between the caking material and the caking component during dry distillation cannot be obtained stably. .
  • the pressure applied during hot forming after mixing pulverized coal and caking additive is 0.5 to LO t Z cm in terms of linear pressure.
  • the linear pressure at the time of hot forming means a pressing force (t / cm) per unit roll width in the roll axis direction when a forming roll is used.
  • the present invention it is not necessary to limit the lower limit of the amount of non-finely caking coal in the blended coal, and even when using coal with high caking properties such as caking coal, It does not deteriorate the production of caking components such as vitrinite, which is contained in large quantities, and coke with higher strength than before can be obtained by interaction with caking materials during dry distillation.
  • the interaction between the above-mentioned binder in the coal and the caking component such as vitrinite can improve the expansion rate of the coal during dry distillation. Even if a large amount of non-coking coal is blended, the coke strength required for blast furnace raw material can be secured. However, when the blending amount of non-slightly caking coal in the blended coal exceeds 70% by mass, even if the present invention is used, due to the decrease in caking property due to the increase of non-slightly caking coal, the blast furnace Since the coke strength required as a raw material cannot be secured stably, it is preferable to set the upper limit of the amount of non-slightly caking coal to 70% by mass.
  • the blending amount of non-slightly caking coal is preferably 0 to 70% by mass. Coke is maintained while maintaining coke strength. From the viewpoint of reducing the manufacturing cost of coal, the blending amount of non-finely caking coal is more preferably 40 to 70% by mass.
  • caking components such as vitrinite in coal are softer than non-softening components such as inert components and are concentrated in pulverized coal for easy separation when coal is pulverized. Therefore, it is abundant in pulverized coal with a particle size of 0.5 mm or less after coal pulverization.
  • the above caking agent is added to the pulverized coal that causes dust generation after coal drying, and hot pressing is performed to suppress the dusting caused by the pulverized coal, and the caking components such as vitrinite are suppressed. While suppressing oxidation, the coke strength can be improved by the effect of improving the expansion coefficient of the coal coal during dry distillation by the interaction between the binder and the caking component.
  • the particle size of the pulverized coal after drying and classification of coal is preferably 0.5 mm or less.
  • the pulverized coal is mixed with the binder under the above conditions and hot-molded, and then the coarse coal which is the remainder of the blended coal is charged together into the coke oven. Carbonize.
  • the coarse coal is dried and classified from the blended coal. Even when carbonized in a coke oven, the strength of the coke obtained is improved compared to the conventional one due to the effect of improving the coefficient of expansion during carbonization of the coal according to the present invention.
  • Coarse coal to be charged into the coke oven must be heated quickly to a temperature rise rate of 3 100 to 45 ° C. at a rate of temperature rise of 10 to 100 ° CZ seconds before mixing. And are preferred.
  • the high-temperature molding of pulverized coal significantly improves the high expansion rate due to the synergistic action of the vitrinite component in the pulverized coal and the caking additive. Even when the temperature reached in rapid heating is less than 300 ° C, the coke strength can be sufficiently improved.
  • the diffusibility of the binder in the coal is improved by increasing the temperature of the coal, so high expansion due to the chemical action of the vitrinite component and the binder.
  • the rate can be further improved. Aiming at this effect, the coarse coal may be rapidly heated under the condition that the temperature reached is less than 300 ° C and then mixed with the coal formed from pulverized coal.
  • Fig. 4 shows the coke manufacturing process applied in this example.
  • Combined coal 1 is heated and dried to 80 to 20 ° C with fluidized bed drying classifier 2, and pulverized coal 3 with a particle size of 0.5 mm or less and coarse particles with a particle size of more than 0.5 mm Classified to charcoal 4.
  • Particle size 0.5 mm or less of pulverized coal 3 is used as caking additive 5 as tar with the component composition and boiling point shown in Table 2. Heavy fraction and normal evening, softening point shown in Table 3 Using a soft pitch and petroleum pitch with hydrogen Z carbon atomic ratio, add a predetermined amount of caking material 5 from caking material storage bank 6 to pulverized coal 3 under the conditions shown in Table 1, and double roll. Molding charcoal 8 was manufactured by pressure molding using a mold molding machine 7.
  • Part of the coarse coal 4 with a particle size of more than 0.5 mm after being heated, dried, and classified by the fluidized bed drying classifier 2 is not subjected to rapid heating treatment (( a) route)), and mixed as it was, and charged into a test dry distillation furnace 1 1 having a width of 4500 mm from the coal tank 10 to dry distillation to produce coke 12.
  • a portion of coarse coal 4 having a particle diameter of more than 0.5 mm after heating, drying, and classification by the fluidized bed drying classifier 2 is heated using an air-flow tower type heater 9. Speed: 300 ° C. in 2 seconds Temperature reached: 35 ° C. (Refer to (b) in FIG. 4), and then the coal 8 made of pulverized coal and After mixing, the test was conducted from coal tank 10 to width: 4500 mm.
  • Table 1 shows the manufacturing conditions and test results.
  • FIG. 3 shows the relationship between the expansion ratio of coking coal and coke strength DI 15 Q 15 in the inventive example (implemented No. 1 to 16) and the comparative example (implemented No. 17 to 26). .
  • Implementation examples shown in Table 1 ⁇ ⁇ ⁇ . 1 to 26 are examples in which the type of binder and the temperature of pulverized coal when the binder is added satisfy the range specified by the present invention.
  • the expansibility at the time was as high as 60% or more, and the excellent strength of DI 150 15 83.0 or more was obtained.
  • the invention examples of implementation Nos. 1-7 shown in Table 1 are invention examples in the case where the coarse coal is not subjected to rapid heat treatment, and the invention examples of implementation Nos. 8-26 are examples of the coarse coal. It is an example of an invention at the time of rapid-heating treatment.
  • the present invention even when using a blended coal containing a large amount of inferior coal with low caking properties such as inexpensive non-caking coal, it is possible to obtain a coal with a high expansion rate during dry distillation. It is possible to produce high-strength coke at low cost and with high productivity by carbonizing this coking coal in a coke oven. Therefore, the present invention has great applicability in the coke manufacturing industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Combustion & Propulsion (AREA)
  • Coke Industry (AREA)

Abstract

高炉用コークスの製造方法において、配合炭を、乾燥した後、または、乾燥と同時に、微粉炭と粗粒炭とに分級し、引き続き、80~350℃の温度の微粉炭に、粘結材として、タールの重質留分、軟ピッチ、および、石油ピッチの1種または2種以上を添加し、かつ、熱間加圧成型した後、該塊成炭と前記粗粉炭を混合し、コークス炉に装入して乾留する。

Description

高炉用コークスの製造方法
技術分野
発明は、 冶金用コークスの製造方法に関し、 詳しくは、 石炭を 乾燥、 分級した後、 微粉炭を成型し、 成型炭と粗粒炭を室炉式コ一
クス炉で乾留して高炉用コ一クスを製造する方法に鬨する。
背景技術 書
従来から、 高炉用コ一クスの製造法において、 装入嵩密度増加に よるコークス強度の向上および乾留時間の短縮化によるコークス生 産性の向上の点から、 水分を 8〜 1 2 %程度含む原料炭を乾燥して 原料炭中の水分量を 5〜 6 %程度まで、 さらには、 0 %まで低減し た後、 コークス炉に装入し乾留する方法が行なわれていた。
例えば、 原料炭を水分量 0 %まで乾燥するとともに 1 5 0〜 2 3 0 °C程度の到達温度まで予熱した後、 コ一クス炉に装入し乾留する 、 プレカーボン法が知られている (例えば、 「コークスノート [社 団法人 燃料協会 1 9 8 8年版] 、 1 3 4頁」 、 参照) 。
この方法により、 コ一クス生産性は石炭を予熱しない場合に比べ て約 3 5 %程度向上し、 また、 コ一クス強度などのコークスの品質 が改善されることによって配合炭中に配合する粘結性が低い非微粘 結炭などの劣質炭の割合を約 2 5 %まで増加することができる。
しかし、 原料炭の乾燥、 予熱によって原料炭中の水分量が 5 %以 下まで、 さらに 0 %近くまで低減すると、 石炭の輸送過程およびコ 一クス炉装入時に微粉炭が発塵しやすくなるという問題が生じる。
この微'粉炭の発塵問題を解決するための従来技 ¾として、 石炭を 乾燥し、 予熱した後、 分級し、 発塵の原因となる 0 . 5 m mないし 0 . 3 m m以下の微粉炭のみを塊成化する方法が提案されている。 例えば、 原料炭を乾燥し分級して回収した細粒炭のみ、 または、 該細粒炭に粗粒炭の一部を配合し、 さらにタールなどを添加して混 練して疑似粒子化することにより乾燥炭中の微粉炭に起因する発塵 をま卬制する方法が知られている (例えば、 特開平 8 — 2 3 9 6 6 9 号公報、 参照) 。
しかし、 この方法では、 原料炭の乾燥により原料炭中の水分量が 低下すると、 付着水分の低下に起因して疑似粒子の強度が低下し、 輸送中に崩壊するため、 石炭の乾燥により石炭中の水分量をあまり 低くすることができず、 結果的に石炭乾燥によるコ一クス炉内の石 炭嵩密度向上およびコークス強度向上の効果は十分に得られなかつ た。
また、 石炭を粉砕し、 3 m m以下の細粒を 8 5〜 9 5 %含有し、 残部が 1 0 m m以下の粗粒からなる配合炭を水分 0 . 3 %程度まで 乾燥、 予熱した後、 1 4 0 °Cの温度で配合炭の全てに、 3〜 8 %の タールを添加、 混合し、 1 2 0 °Cの温度でロール成型して成形炭と し、 コ一クス炉で乾留するコ一クス製造方法 (例えば、 特開昭 5 2 - 7 1 5 0 4号公報、 参照) が提案されている。 '
また、 石炭を水分量 0〜 2 . 7 %になるまで乾燥 · 分級した後、 回収した 0 . 3 m m以下の微粉炭のみに、 8 0 °C以下の温度で夕一 ルを 3〜 5 %添加し、 溝型ロールで成型して成型炭とし、 配合炭の 残部である粗粒炭とともにコ一クス炉で乾留するコークス製造方法 (例えば、 特開平 9 一 3 4 5 8号公報、 参考) が提案されている。 これらの方法によって得られる成形炭は、 いずれも、 上記擬似粒 子に比べて塊成物の強度が高まるため、 塊成物が輸送中に崩壊する ことを抑制できる。 また、 石炭を成形炭とすることにより、 石炭中 の微粉粒子間の距離が小さくなるため、 成形炭をコ一クス炉で乾留 する際に微粉粒子同士の接着が高まり、 コ一クス強度が向上する効 果が得られる。
しかし、 これらの方法によっても、 配合炭中の粘結性が低い非微 粘結炭の配合割合が高くなると、 成形炭をコークス炉で乾留する方 法でもコ一クスの強度を十分に確保することは困難であった。
また、 乾燥炭または予熱炭にタールを添加して口一ル成形などで 成形する場合は、 高い温度で成形すると夕一ル中の揮発成分がガス 化し、 ロール成形炭内部のガス内圧が増加し、 成形を困難とし、 成 形炭に割れが発生するなどの生産性および成品歩留の低下原因とな る。
特に、 乾燥炭または予熱炭を分級した後、 微粉炭のみにタールを 添加してロール成形する場合には、 粗粒炭を含有する配合炭を口一 ル成形する場合に比べ、 成形時の成形炭中の粗粒炭に起因する割れ 発生は抑制されるが、 成形時に成形炭内部で発生したガスが抜けに くいため成形炭中の内圧増加による上記問題が顕著となる。
これらの理由から、 乾燥炭または予熱炭、 特に微粉炭のみに夕一 ルを添加してロール成形などで成形する場合は、 微粉炭の温度を 8 0 °Cより低く した状態で、 ロール成形する必要があった。
一方、 原料炭として資源面から安定かつ安価に供給できるが、 粘 結性が低い非微粘結炭などの劣質炭を配合炭中に多量に配合する場 合に、 強度の高いコークスを安価に高い生産性で製造することが求 められている。
上記石炭乾燥またはプレカーボン法を用いることによって、 石炭 のコークス炉装入時の嵩密度が増加するため、 配合炭中に粘結性が 低い非微粘結炭などの劣質炭をある程度まで多く配合した場合でも 、 所定のコークス強度を確保することができる。 ' しかし、 これらの方法では、 所定のコ一クス強度を確保する上で
、 配合炭中の粘結性が低い非微粘結炭などの配合割合は多くても 2. 5 %が限界であった。
この問題を解決するための技術として、 近年、 粘結性が低い非微 粘結炭などの劣質炭を多量に含有した配合炭の全量を上記プレカー ボン法の加熱温度より高い約 3 5 0 °C以上の軟化溶融まで急速に加 熱することにより非微粘結炭を改質し、 さらに、 3 5 0 °C以上の温 度に維持しつつ粘結性を有する半溶融状態の石炭をロール成型して 成形炭とした後、 コークス炉で乾留するコークスの製造方法が提案 されている (例えば、 特開平 7 — 1 1 8 6 6 5号公報、 参照) 。
しかし、 乾燥、 予熱した配合炭の全量を気流塔によって急速加熱 する方法では、 微粉炭と粗粒炭の粒径の違いにより石炭粒子で加熱 温度のばらつきが生じ、 特に微粉炭は過加熱により粘結性成分が散 逸し、 非微粘結炭の粘結性を十分に改善できない。
そこで、 この問題解決のために、 上記配合炭のうち、 1 0〜 6 0 %配合された非微粘結炭を 5 0〜 3 5 0 °Cの温度で乾燥 , 予熱し、 0. 3 mm以下の粒径の微粉炭と 0. 3 mm超の粒径の粗粉炭とに 分級し、 前記微粉炭を軟化開始温度から最高流動温度の温度域まで 1 X 1 03〜 1 X 1 05 °C Z分の昇温速度で急速に加熱し、 次いで、 前記温度域に保持した状態で 5〜 1, O O O k gZ c m2の圧力で 熱間成型した後、 前記非微粘結炭の粗粒炭と混合してコークス炉で 乾留する高炉用コークスの製造方法が提案されている (例えば、 特 開平 8— 2 0 9 1 5 0号公報、 及び、 特開平 9一 0 4 8 9 7 7号公 報、 参照) 。
しかし、 これらの石炭の急速加熱法を用いて、 配合炭中の非微粘 結炭の全量または微粉炭のみを、 3 5 0 °C以上の軟化開始温度から 最高流動温度の高温域まで急速加熱して、 3 5 0 °C以上の高温度に 維持しつつ半溶融状態でロール成型する場合には、 以下の問題があ つ 7こ。
つまり、 半溶融状態の石炭をロール成型機に装入するのが困難と なり、 かつ、 高温状態で粘結性成分を散逸または酸化させないよう に温度を制御しつつ成形する必要がある。
また、 従来から石炭を粉碎した後の微粉部分には、 粗粒部分に比 ベて多くのビトリニッ ト成分などの粘結性成分が含有することが知 られている。 このため、 石炭中の粗粒炭に比べて微粉炭を急速加熱 することによる粘結性成分の向上代は小さく、 むしろ、 微粉炭が高 温状態に加熱される際に粘結性成分の散逸または酸化などによる劣 化の影響が粗粒炭に比べて大きくなる。
また、 この方法を用いて配合炭中に多く含有する非微粘結炭を急 速加熱して改質する場合は、 非微粘結炭中の微粉炭と粗粒炭を別々 に気流槽などにより加熱処理する必要があるため、 そのための設備 費が高く、 また操作条件も複雑である。
したがって、 従来の石炭急速加熱方法は、 非微粘結炭を多量に含 有した配合炭を用いて、 高強度のコークスを、 安価にかつ高い生産 性を維持して製造する方法として十分なものとはいえなかった。 発明の開示
本発明は、 安価な非微粘結炭等の粘結性の低い劣質炭を多量に含 有した配合炭を乾燥、 分級した後、 微粉炭を成型して成形炭とし、 粗粒炭とともに室炉式コ一クス炉で乾留し高強度コークスを製造す る際に、 乾燥炭中の微粉炭による発塵を抑制し、 かつ、 非微粘結炭 等の粘結性の低い劣質炭を成形して得られる成形炭の膨張性などの 乾留時特性を向上し、 安価にかつ高い生産性で高強度のコークス製 造できる高炉用コークスの製造方法を提供するこ を目的とする。 本発明の要旨とするところは以下の通りである。
( 1 ) 配合炭を、 乾燥した後、 または、 乾燥と同時に、 微粉炭と 粗粒炭とに分級し、 引き続き、 8 0〜 3 5 0 °Cの温度の微粉炭に、 粘結材として、 タールの重質留分、 軟ピッチ、 および、 石油ピッチ の 1種または 2種以上を添加し、 かつ、 熱間加圧成型した後、 該塊 成^と前記粗粉炭を混合し、 コークス炉に装入して乾留することを 特徴とする高炉用コークスの製造方法。
( 2 ) 1 2 0 °C超〜 3 5 0 °Cの温度の微粉炭に粘結材を添加して 熱間成型することを特徴とする上記 ( 1 ) に記載の高炉用コ一クス の製造方法。
( 3 ) 前記タールの重質留分は、 常圧での沸点 : 3 0 0 °C以上の 成分を 8 0質量%以上含有することを特徴とする上記 ( 1 ) または ( 2 ) に記載の高炉用コ一クスの製造方法。
( 4 ) 前記重質留分の主成分が、 フエナンスレン、 アントラセン 、 メチルナフタレン、 および、 フルオランテンの 1種または 2種以 上からなることを特徴とする上記 ( 1 ) 〜 ( 3 ) の何れかに記載の 高炉用コークスの製造方法。
( 5 ) 前記軟ピッチは、 軟化点が 3 0〜 2 0 0 °Cであることを特 徴とする上記 ( 1 ) 〜 ( 4 ) の何れかに記載の高炉用コークスの製 造方法。
( 6 ) 前記石油ピッチは、 水素/炭素原子比が 0. 9以上で、 軟 化点が 1 0 0〜 4 0 0 °Cであることを特徴とする上記 ( 1 ) 〜 ( 5 ) の何れかに記載の高炉用コ一クス製造法。
( 7 ) 前記粘結材の添加量が 2〜 2 0質量%であることを特徴と する上記 ( 1 ) 〜 ( 6 ) の何れかに記載の高炉用コークスの製造方 法。
( 8 ) 0. 5〜 1 0 t / c mの線圧で熱間加圧成型することを特 徵とする上記 ( 1 ) 〜 ( 7 ) の何れかに記載の高炉用コ一クスの製 造方法。
( 9 ) 前記配合炭は、 非微粘結炭を 0〜 7 0質量%含み残部が粘 結炭からなることを特徴とする上記 ( 1 ) 〜 ( 8 ) の何れかに記載 の高炉用コークスの製造方法。
"( 1 0 ) 0. 5 mm以下の微粉炭と 0. 5 mm超の粗粉炭に分級 することを特徴とする上記 ( 1 ) 〜 ( 9 ) の何れかに記載の高炉用 コークスの製造方法。
( 1 1 ) 微粉炭と粗粒炭とに分級し、 引き続き、 粗粒炭を昇温速 度 : 1 0 0〜 1 0 , 0 0 0 °C /秒で到達温度 : 3 0 0〜 4 5 0 °Cに 急速加熱した後、 該粗粒炭と前記微粉炭をコークス炉に装入し乾留 することを特徴とする上記 ( 1 ) 〜 ( 1 0 ) の何れかに記載の高炉 用コ一クスの製造方法。
本発明によれば、 安価な非微粘結炭等の粘結性の低い劣質炭を多 量に含有した配合炭を用いる場合でも、 当該配合炭を乾燥、 分級し た後、 回収した微粉炭に、 8 0〜 3 5 0 °Cの温度で、 タールの重質 留分、 軟ピッチ、 および、 石油ピッチの 1種または 2種以上からな る粘結材を添加し、 熱間加圧成型することによって、 微粉炭中に高 濃度で含有しているビトリニッ トなどの粘結性成分と上記の沸点お よび軟化点が高い粘結材の相互作用により、 乾留時に膨張率が高い 成形炭を得ることができ、 この成形炭をコークス炉で乾留すること により、 安価にかつ高い生産性で高強度コークスを製造することが できる。 図面の簡単な説明
図 1は、 粘結材 (タール重質留分 : 沸点が 3 0 0 °C以上の成分含 有量 = 8 3. 2質量%) 添加時の温度と成型炭の乾留時の膨張率と の関係を示す図である。
図 2は、 成型炭の乾留時膨張率とコークス強度 D I 1 5 Q 1 5との関 係を示す図である。
図 3は、 本発明例と比較例の成型炭の乾留時膨張率とコークス強 度 D I 1 5 Q 1 5との関係を示す図である。
図 4は、 コ一クス製造プロセスを示す図である。 発明を実施するための最良の形態
先ず、 本発明の技術思想について説明する。
従来から、 石炭を粉碎した後の粒径が約 0 . 5 m m以下の微粉炭 中にはビトリニッ トなどの粘結性成分が多く存在することが知られ ている。 これは'、 石炭中のビトリニッ トなどの粘結性成分は、 イナ 一卜成分などの非軟化成分に比べて軟らかく、 石炭を粉砕する際に 容易に分離するため微粉炭中に濃化されるためと考えられる。
しかし、 粘結性成分を多く含む微粉炭は粗粒に比べて比表面積が 大きいため、 石炭を乾燥、 分級後の高温状態では微粉炭中のビトリ ニッ トなどの粘結性成分は大気中での酸化によりその粘結性は劣化 され易い。
粘結性成分を多く含む微粉炭を成形機により加圧成することによ り比表面積を小さく し大気中の酸素によるビトリニッ トなどの粘結 性成分の酸化を抑制するとともに、 微粉粒子間距離を小さく し、 乾 留時の膨張率を向上する効果がある。
本発明者は、 微粉炭中にビトリニッ トなどの粘結性成分が高濃度 で含有していることに着眼し、 微粉炭を成形して成形炭とする際に 、 粘結性成分の作用を十分発揮させつつ、 成形炭の乾留時の膨張性 を高めることでコークス強度を向上させる方法を検討した。
その 果、 ( i ) 粘結材として、 タールの重質留分、 軟ピッチ ( 石炭系タールを蒸留して得られる室温で固体の残留物) 、 および、 石油ピッチ (石油系重質油を蒸留して得られる室温で固体の残留物
) の 1種または 2種以上を用い、 (i i ) 常温より高い'所定温度 ( 8 0〜 3 5 0 °C ) で微粉炭に前記粘結材を添加し、 微粉炭中に粘結材 を十分かつ.均一に浸透、 分散させた状態で、 熱間加圧成型すること に つて、 微粉炭中に高濃度で含有しているビトリニッ トなどの粘 結性成分と沸点および軟化点が高い粘結材の相互作用により、 成形 炭の乾留時の膨張率が顕著に向上し、 その結果、 コークス強度 D I 1 5 Q 1 5が格段に向上することを知見した (図 1および図 2、 参照) 上記タールの重質留分、 軟どツチ、 および、 石油ピッチの粘結材 は、 通常のタールに比べて沸点および軟化点が高く、 室温で微粉炭 に添加しても、 微粉炭中のビトリニッ トなどの粘結性成分と接着し ないが、 高温状態で微粉炭に添加することにより、 これらの粘結材 の流動性は高まり、 微粉炭中に均一分散し、 さらに、 成形すること によってビトリニッ トなどの粘結性成分と近接、 または、 化学作用 により接着した状態となる。
この成形炭をコークス炉で乾留すると、 ビトリニッ トなどの粘結 性成分と近接または接着した状態で存在する沸点および軟化点が高 い粘結材との相乗作用によって石炭粒子間の粘結性が向上する結果 、 コ一クス強度が向上するものと考えられる。
本発明.は、 これらの知見および技術思想を基になされたものであ り、 高炉用コークスの製造方法において、 配合炭を、 乾燥した後、 または、 乾燥と同時に、 微粉炭と粗粒炭とに分級し、 引き続き、 8 0〜 3 5 0 °Cの温度、 好ましくは 1 2 0〜 3 5 0 の温度の微粉炭 に、 粘結材として、 タールの重質留分、 軟ピッチ、 および、 石油ピ ツチの 1種または 2種以上を添加し、 かつ、 熱間加圧成型した後、 該塊成炭と前記粗粉炭を混合し、 コークス炉に装入して乾留するこ とを特徴とするものである。
なお、 本発明において、 石炭の粘結性とは、 石炭を乾留した時に 軟化溶融状態において観測される性質の総称であり、 これらの性質 には、 粘着性、 流動性、 膨張性等がある (例えば、 「石炭利用技術 用 ^辞典 [社団法人 燃料協会編、 昭和 5 8年発行]、 2 5 5頁」 、 参照) 。
また、 石炭の膨張性とは、 J I S M 8 8 0 1 に記載されてい る試験方法に準じて、 測定された石炭の性状を意味する。 つまり、 先ず、 石炭を粒径 : 1 5 0 ^m ( 1 0 0メッシュ) 以下に粉砕し、 1 0 %の水分を添加し混合した試料を成形器によって所定圧力で圧 縮成形し、 最小直径 6 mm、 長さ 6 0 ± 0. 2 5 mmの 1 / 5 0テ ーパ一付き塊状物を作成する。
次に、 この石炭試料を内径 8 mmの細管に入れ、 その上に 1 5 0 g加重がかかるようにビス トンをのせて、 3 0 0 °Cに予熱された電 気炉に装入した後、 毎分 3 °Cの昇温速度で加熱して、 石炭試料の収 縮および膨張によるピス トンの変位を測定する。
石炭の膨張性は、 この石炭試料の収縮および膨張挙動における測 定結果から、 石炭の軟化開始 (ピス トンが 0. 5 mm降下したとき ) 、 最大収縮、 最大膨張の各温度、 収縮率および膨張率 (最初の試 料長さに対する百分率) を基に求められる。
本発明における成形炭の膨張率は、 上記 J I S M 8 8 0 1 に 記載されている試験方法に準じて測定されたものである。 また、 本 発明において、 コ一クス強度 D I 15 ° , 5は、 J I S K 2 1 5 1 に記載されている ドラム強度試験方法に準じて測定されたものであ り、 コークス試料を 1 5 0回転後に 1 5 mm篩上に残存した質量比 で示され'る。 ' 次に、 本発明の特徴とする構成およびのその限定理由について説 明する。
(粘結材の種類)
本発明は、 以下の理由から、 粘結材を、 タールの重質留分、 軟ピ ツチ、 および、 石油ピッチの 1種または 2種以上とする。
これらの粘結材は、 何れも、 通常のタールに比べて沸点および軟 化点が高く、 室温で固体であるため、 低温の微粉炭と混合し、 成形 する場合には、 成形炭内で上記粘結材は局所的に偏在し、 ビトリ二 ッ 卜などの粘結性成分と上記粘結材との十分な相互作用は得られな い。
しかし、 これらの粘結材ほ、 本発明で規定する 8 0〜 3 5 0 °Cの 高温状態の微粉炭と混合することによって粘結材の流動性は高まり 、 微粉炭中で均一分散され、 さらに、 成形することによって微粉炭 中のビトリニッ トなどの粘結性成分と接着した状態となる。
その結果、 得られた成形炭をコークス炉で乾留する場合には、 微 粉炭中のビトリニッ トなどの粘結性成分と通常のタールに比べて沸 点および軟化点が高い上記粘結材との相互作用により、 成形炭の膨 張率は向上し、 強度の高いコークスを製造することが可能となる。 通常のタールは、 室温で液体であり、 流動性が高いため、 低温の 微粉炭と混合し擬似粒子とするための粘結材としては逢するが、 乾 留時の成形炭の膨張性を向上させる効果は低く、 非微粘結性等の粘 結性が低い劣質炭の配合割合が高い配合炭を用いてコークスを製造 する際に目的とするコークス強度は十分に得られない。
以上の理由から、 本発明では、 通常のタールに比べて沸点または 軟化点が高い粘結材である、 タールの重質留分、 軟ピッチ (石炭系 夕一ルを蒸留して得られる室温で固体の残留物) 、 および、 石油ピ ツチ (石油系重質油を蒸留して得られる室温で固 の残留物) の 1 種または 2種以上を用いる。
また、 本発明において、 上記タールの重質留分は、 常圧での沸点 : 3 0 0 °C以上の成分を 8 0質量%以上含有することが好ましい。 また、 重質留分の主成分は、 フエナンスレン、 アントラセン、 メチ ルナフタレン、 および、 フルオランテンの 1種または 2種以上から な^)ことがより好ましい。
上記軟ピッチは、 軟化点が 3 0〜 2 0 0 °Cであることが好ましい 上記石油ピッチは、 水素 Z炭素原子比が 0. 9以上で、 軟化点が 1 0 0〜 4 0 0 °Cであることが好ましい。
(粘結材添加時の微粉炭温度)
本発明は、 以下の理由から、 粘結材を添加する際の微粉炭温度を 8 0〜 3 5 0 °Cとする。 図 1 に粘結材添加時の微粉炭温度と成型炭 の乾留時の膨張率との関係を示す。 また、 図 2 に成型炭の乾留時膨 張率とコ一クス強度 A D I I 5 Q 15との関係を示す。
なお、 図 1 は、 粘結材としてタール重質分 (沸点が 3 0 0 °C以上 の成分含有量 = 8 3. 2質量%) を用いた場合であり、 縦軸のコ一 クス強度 A D I 15 Q 15は基準値 D I 0に対するコークス強度 D I 150 15の変化量を示す (ここでは、 コ一クス強度 D I l 5 Q,5 = 8 3. 0 を基準値 D 1 0 とし、 +は基準値から増加、 一は基準値から減少し たことを示す) 。
図 1および図 2に示す成形炭の膨張率は、 前述した上記 J I S M 8 8 0 1 に記載されている試験方法に準じて測定されたもので +ある。
また、 図 2 に示すコ一クス強度 D I 15 Q 15は、 成型炭と粗粒炭の 混合物を試験乾留炉で乾留して得られたコークス試料を用いて前述 した J I' S K 2 1 5 1 に記載されている ドラ厶強度試験方法に 準じて測定されたものである。
また、 本発明者らは、 上記夕一ル重質分以外の粘結材として軟ピ ツチ、 石油ピッチについても図 1および図 2 と同様な確認試験を行 い、 同様な結果が得られることを確認している。
本発明では、 上述したように乾留時の成形炭の膨張性を向上する ために有効な粘結材は沸点または軟化点が高いため、 粘結材を添加 し混合する際の微粉炭の温度が低い場合には、 微粉炭中に粘結材を 均一分散させることができず、 成形炭中で粘結材を微粉炭中のビト リニッ トなどの粘結性成分と近接または接着した状態で存在させる ことはできない。
その結果、 乾留時の成形炭の膨張性を向上するために有効な粘結 材と微粉炭中のビトリニッ トなどの粘結性成分との相互作用による 効果が十分に得られなくなる。
図 1および図 2から、 これらの作用による成形炭の膨張性向上効 果は、 粘結材添加時の温度が 8 0 °C以上で十分となることから、 粘 結材添加時の温度の下限を 8 0 °Cとした。
一方、 粘結材添加時の温度の増加とともに粘結材の微粉炭中への 浸透性および分散性は促進するが、 その温度が 3 5 0 °Cを超えると 、 粘結材の粘虔が急激に低下し、 粘着力が無くなり、 微粉炭中に拡 散した際にビトリニッ トなどの粘結性成分と粘着する作用が小さく なる。
また、 微粉炭と粘結材を混合する際に温度が高い場合には、 粘結 材ゃ微粉炭中の粘結性成分が酸化され、 粘結性が劣化され易くなる これらの理由から、 図 1および図 2に示されるように粘結材添加 時の温度が 3 5 0 °Cを超えると、 得られた成型炭の乾留時膨張性の 向上効果は低下し、 コークス強度の向上効果は十分に得られなくな る。
したがって、 本発明では、 粘結材添加時の温度を 8 0〜 3 5 0 °C とする。 また、 粘結材を微粉炭中に十分かつ均一に浸透、 分散させ 、 ビトリニッ 卜などの粘結性成分との相互作用を促進させる点から 、 粘結材添加時の温度の下限を 1 2 0 °C超とするのが好ましい。
なお、 本発明では、 配合炭を、 乾燥機により乾燥した後、 または 、 乾燥と同時に、 微粉炭と粗粒炭とに分級し、 微粉炭を成型機まで 搬送し、 成型機の入側で微粉炭に粘結材を添加、 混合した後、 成型 機に装入し成型する。
乾燥機出側での微粉炭の温度は 1 0 0 °C以上であるが、 成型機入 側までの搬送過程で微粉炭は冷却される。 本発明では、 上記微粉炭 の改質作用によるコ一クス強度向上効果を発揮するために、 乾燥機 出側での微粉炭の温度を規定する必要はなく、 粘結材添加時の微粉 炭の温度を上記範囲に規定することで、 コ一クス強度を向上するこ とができる。
したがって、 乾燥機出側での微粉炭の温度が低くなる場合には、 乾燥機出側までの搬送過程で、.保温装置や加熱装置を用いて粘結材 添加時の微粉炭の温度を上記範囲になるように調整することも可能 である。
本発明は、 以上のように、 粘結材の種類および粘結材添加時の微 粉炭温度を規定することにより、 本発明が目的とする効果は十分に 得られるものの、 より安定した効果、 より高い効果を得るためには 、 粘結材の添加量、 熱間加圧成型時の線圧、 非微粘結炭の配合量、 微粉炭の粒径を、 さらに、 以下のように規定するのがより好ましい
(粘結材の添加量)
微粉炭と混合する粘結材の添加量は、 以下の理 ¾から、 2〜 2 0 質量%とするのが好ましい。
粘結材の添加量が 2質量%未満では、 上述した乾留時の成形炭の 膨張性を向上するために有効な粘結材と微粉炭中のビトリニッ 卜な どの粘結性成分との相互作用による効果が安定して得られなくなる 二方、 粘結材の添加量が 2 0質量%を超える場合は、 成型炭当た りの粘結材の添加量が増加するため、 コ一クス炉に装入する際に装 入密度が低下し、 コークス強度の向上効果が安定して得られなくな るため、 好ましくない。
また、 粘結材は、 コークス炉内の炉壁付着カーボンの生成原因と なるため、 過度に添加するのは好ましく.ない。
これらの理由から、 目的とするコ一クス強度を安定して達成する ためには、 粘結材として、 タールの重質留分、 軟ピッチ、 および、 石油ピッチの 1種または 2種以上を添加する場合の粘結材の添加量 を 2〜 2 0質量%とするのが好ましい。
(熱間加圧成型時の線圧)
以下の理由から、 微粉炭と粘結材を混合後、 熱間成型する際の加 圧力は、 線圧で、 0 . 5〜 1 0 t / c mとするのが好ましい。
熱間加圧成型時の線圧が 0 . 5 t / c m未満の場合には、 熱間成 形により、 微粉粒子間の距離を小さく し、 粘結材と微粉中のビトリ ニッ 卜などの粘結性成分とを近接または接着することを安定して達 成することが困難となり、 乾留時に粘結材と粘結性成分の相互作用 による成型炭の膨張率向上効果が安定して得られなくなる。
一方、 熱間加圧成型時の線圧が 1 0 t Z c mを超える場合は、 微 粉炭が過剰な圧力で成型されることによって、 得られた成型炭に亀 裂が生じて、 成型炭の歩留まりが低下,するため、 好ましくない。
これ の理由から、 目的とするコ一クス強度を安定して達成する ためには、 微粉炭と粘結材を混合後、 熱間成型する際の加圧力は、 線圧で、 0 . 5〜; L O t Z c mとするのが好ましい。
なお、 本発明において、 熱間成型する際の線圧とは、 成型ロール を用いる場合に、 ロール軸方向の単位ロール幅当たりの加圧力 ( t / c m ) を意味する。
' '(非微粘結炭の配合量)
本発明において、 配合炭中の非微粘結炭配合量の下限は限定する 必要はなく、 粘結炭などの粘結性が高い石炭を使用する場合にも、 石炭粉砕後の微粉炭中に多く含まれるビトリニッ 卜などの粘結性成 分の作-用を劣化させず、 かつ、 乾留時の粘結材との相互作用によつ て従来に比べて高い強度のコークスが得られる。
ただし、 前述の通り、 原料資源の安定供給および製造コス トの低 減の観点から、 粘結炭に比べて粘結性が低いものの、 安価な原料で ある、 非微粘結炭を配合炭中に多量に配合しつつ、 高炉原料として 要求されるコ一クス強度を確保することが望まれる。
本発明では、 上述した成型炭中の粘結材とビトリニッ トなどの粘 結成分との相互作用により乾留時の成型炭の膨張率の向上効果が得 られるため、 従来に比べて配合炭中に多量に非微粘結炭を配合して も、 高炉原料として要求されるコークス強度を確保することができ る。 ' しかし、 配合炭中の非微粘結炭の配合量が 7 0質量%を超えると 、 本発明を用いても、 非微粘結炭の増加による粘結性の低下に起因 して、 高炉原料として要求されるコークス強度を安定して確保する ことができなくなるため、 非微粘結炭の配合量の上限を 7 0質量% とするのが好ましい。
したがって、 本発明において、 非微粘結炭の配合量は 0〜 7 0質 量%とす'るのが好ましい。 なお、 コークス強度を 保しつつコーク スの製造コス トを低減する観点から、 非微粘結炭の配合量は 4 0〜 7 0質量%とするのがより好ましい。
(微粉炭の粒径)
上述したように石炭中のビトリニッ トなどの粘結性成分は、 イナ ート成分などの非.軟化成分に比べて軟らかく、 石炭を粉砕する際に 容易に分離するため微粉炭中に濃化されるため、 石炭粉砕後の粒径 0 . 5 m m以下の微粉炭中に多く存在する。
しかし、 石炭粉砕後の粒径が小さくなるとともに、 石炭の乾燥、 分級後の高温状態で微粉炭は粗粒に比べて酸化されやすくなるため 、 微粉炭中のビトリニッ トなどの粘結成分も酸化により粘結性が劣 化されやくなる。 また、 石炭乾燥後の粒径 0 . 5 m m以下の微粉炭 は発塵の原因となっていた。
本発明では、 石炭乾燥後の発塵の原因となる微粉炭に上記粘結材 を添加して熱間加圧成型することにより微粉炭による発塵を抑制し 、 ビトリニッ トなどの粘結成分の酸化を抑制するとともに、 粘結材 と前記粘結性成分との相互作用による乾留時の成型炭の膨張率向上 効果によりコークス強度を向上することができる。
石炭粉砕後の微粉炭中に含まれるビトリニッ トなどの粘結性成分 濃度は、 微粉炭粒径が小さくなるほど高くなるものの、 高温状態で の酸化による粘結性低下が顕著となる。 したがって、 本発明では、 目的とするコークス強度を安定して達成するためには、 石炭の乾燥 、 分級後の微粉炭の粒径は 0 . 5 m m以下とするのが好ましい。
(粗粒炭の急速加熱条件) -'
本発明では、 配合炭を乾燥し、 分級した後、 微粉炭を上記条件で 粘結材と混合し熱間成型した後、 配合炭の残部である粗粒炭を一緒 にコークス炉に装入し乾留する。
この際、 粗粒炭は、 配合炭を乾燥し、 分級した 、 そのままコー クス炉で乾留しても、 本発明による成型炭の乾留時の膨張率向上効 果により、 得られるコークスの強度は従来に比べて向上する。
ただし、 配合炭中に粘結性が低い非微粘炭を多く配合する場合や コ一クス強度をより向上させたい場合には、 上記成型炭と混合しコ
—クス炉に装入する粗粒炭は、 混合する前に昇温速度 : 1 0 0〜 1 0 0 0 0 °C Z秒で到達温度 : 3 0 0〜 4 5 0 °Cに急速加熱するこ とが好ましい。
上記粗粒炭の急速加熱において、 到達温度が 3 0 0 °C未満の場合 には、 粗粒炭の粘結性の改善によるコークス強度向上効果は低くな る。
しかし、 本発明では、 上述の通り、 微粉炭の高温成型により、 微 粉炭中のビトリニッ ト成分と粘結材との相乗作用による大幅な高膨 張率の向上が図られるため、 上記粗粒炭の急速加熱における到達温 度が 3 0 0 °C未満の場合であっても、 コークス強度を十分に向上す ることができる。
また、 微粉炭を高温成型した後に、 成型炭の温度を高めることに より、 成型炭中の粘結材の拡散性が良好になるので、 ビトリニッ ト 成分と粘結材との化学作用による高膨張率の向上を、 より一層図る ことができる。 この効果を狙って、 到達温度が 3 0 0 °C未満の条件 ' で粗粒炭を急速加熱した後、 微粉炭からなる成型炭と混合してもよ い。
これにより、 コークス炉で乾留する際に、 上記成型炭の効果に加 え、 粗粒炭の粘結性の向上効果が得られ、 非微粘炭を多く配合する 場合でもコークス強度をより向上させることが可能となる。 実施例
以下に'実施例を用いて本発明の効果について説日 Jする。 なお、 本発明は、 本発明の目的および技術思想を逸脱しない限り において、 下記発明例のみに実施形態を限定されるものではない。
(実施例)
図 4に本実施例で適用したコ一クス製造プロセスを示す。
配合炭 1 を流動床乾燥分級機 2により 8 0〜 2 2 0 °Cに加熱乾燥 するとともに、 粒径 : 0. 5 mm以下の微粉炭 3 と、 粒径 : 0. 5 mm超の粗粒炭 4に分級した。
粒径 : 0. 5 mm以下の微粉炭 3は、 粘結材 5 として、 表 2に示 す成分組成および沸点を有するタール.重質留分と通常夕一ル、 表 3 に示す軟化点および水素 Z炭素原子比を有する軟ピッチと石油ピッ チをそれぞれ用いて、 表 1 に示す条件で微粉炭 3に、 粘結材貯蔵夕 ンク 6から所定量の粘結材 5を添加し、 ダブルロール型の成型機 7 を用いて加圧成型し成型炭 8 を製造した。
上記流動床乾燥分級機 2 により加熱、 乾燥、 そして、 分級した後 の粒径 : 0. 5 mm超の粗粒炭 4の一部を、 急速加熱処理を施すこ となく (図 4中、 ( a ) のルート、 参照) 、 そのまま混合し、 石炭 槽 1 0から幅 : 4 5 0 mmの試験乾留炉 1 1 に装入して乾留し、 コ —クス 1 2を製造した。
また、 上記流動床乾燥分級機 2により加熱、 乾燥、 そして、 分級 した後の粒径 : 0. 5 mm超の粗粒炭 4の一部を、 気流塔型加熱機 9 を用いて、 昇温速度 : 3 0 0 0で 秒で到達温度 : 3 5 0 °Cに急 速加熱し' (図 4中、 ( b ) のル一ト、 参照) 、 その後、 前記微粉炭 からなる成型炭 8 と混合し、 石炭槽 1 0から幅 : 4 5 0 mmの試験 乾留炉 1 1 に装入して乾留し、 コ一クス 1 2 を製造した。
乾留試験炉においては、 成型炭および粗粒炭の混合物 9 0 k gを 、 加熱温度 : 1 2 0 0 °C、 乾留時間 : 1 4時間の条件で乾留し、 コ —クスを'製造した。 成型炭 8の膨張性および得られたコ一クス 1 2 の強度を測定した。
表 1 に製造条件と試験結果を示す。 また、 図 3に本発明例 (実施 N o . 1〜 1 6 ) および比較例 (実施 N o . 1 7〜 2 6 ) の成型炭 の膨張率とコークス強度 D I 15 Q 15との関係を示す。
なお、 表 1および図 3に示す、 成形炭の膨張率は、 前述した上記 J I S M 8 8 0 1 に記載されている試験方法に準じて測定され たものである。 また、 コークス強度 D I 15 Q 15は、 前述した J I S
K 2 1 5 1 に記載されている ドラム強度試験方法に準じて測定 したものである。
表 1 に示す実施 Ν ο . 1〜 2 6の発明例は、 粘結材の種類および 粘結材添加時の微粉炭温度が本発明の規定する範囲を満足するもの であり、 成型炭の乾留時の膨張性は 6 0 %以上と高く、 目的とする D I 150 15 8 3. 0以上の強度に優れたコ一クスが得られた。
なお、 表 1 に示す実施 N o . 1〜 7の発明例は、 粗粒炭を急速加 熱処理しない場合の発明例であり、 実施 N o . 8〜 2 6の発明例は 、 粗粒炭を急速加熱処理した場合の発明例である。
これに対して、 実施 N o . 2 7〜 3 9の比較例は、 粘結材の種類 および粘結材添加時の微粉炭温度が本発明の規定する範囲から外れ ているため、 成型炭の乾留時の膨張性が 6 0 %に達せず、 目的とす る D I 150 15 8 3. 0が得られなかったものである。
表 1
Figure imgf000023_0001
表 2
Figure imgf000024_0001
表 3
Figure imgf000025_0001
産業上の利用可能性
前述したように、 本発明によれば、 安価な非微粘結炭等の粘結性 の低い劣質炭を多量に含有した配合炭を用いる場合でも、 乾留時に 膨張率が高い成形炭を得ることができ、 この成形炭をコークス炉で 乾留することにより、 安価にかつ高い生産性で高強度コ一クスを製 造することができる。 したがって、 本発明は、 コークス製造産業に おいて利用可能性の大きいものである。

Claims

1 . 配合炭を、 乾燥した後、 または、 乾燥と同時に、 微粉炭と粗 粒炭とに分級し、 引き続き、 8 0〜 3 5 0 °Cの温度の微粉炭に、 粘 結材として、 タールの重質留分、 軟ピッチ、 および、 石油ピッチの 1種または 2種以上を添加し、 かつ、 熱間加圧成型した後、 該塊成 請
炭と前記粗粉炭を混合し、 コークス炉に装入して乾留することを特 徴とする高炉用コークスの製造方法。
2 . 1 2 0 °C超〜 3 5 0 °Cの温度の微粉炭に粘結材を添加して熱 間成型することを特徴とする請求の範囲 1 に記載の高炉用コークス の製造方法。 囲
3 . 前記タールの重質留分は、 常圧での沸点 : 3 0 0 °C以上の成 分を 8 0質量%¾上含有することを特徴とする請求の範囲 1 または 2に記載の高炉用コークスの製造方法。
4 . 前記重質留分の主成分が、 フエナンスレン、 アントラセン、 メチルナフタレン、 および、 フルオランテンの 1種または 2種以上 からなることを特徴とする請求の範囲 1〜 3の何れか 1項に記載の 高炉用コークスの製造方法。
5 . 前記軟ピッチは、 軟化点が 3 0〜 2 0 0 °Cであることを特徴 とする請求の範囲 1〜 4の何れか 1項に記載の高炉用コ一クスの製 造方法。
6 . 前記石油ピッチは、 水素/炭素原子比が 0 . 9以上で、 軟化 点が 1 0 0〜 4 0 0でであることを特徴とする請求の範囲 1〜 5の 何れか 1項に記載の高炉用コークス製造法。
7 . 前記粘結材の添加量が 2〜 2 0質量%であることを特徴とす る請求の範囲 1〜 6の何れか 1項に記載の高炉用コークスの製造方 法。
8. 0. 5〜 1 0 t / c mの線圧で熱間加圧成型することを特徴 とする請求の範囲 1〜 7の何れか 1項に記載の高炉用コークスの製 造方法。
9. 前記配合炭は、 非微粘結炭を 0〜 7 0質量%含み残部が粘結 炭からなることを特徴とする請求の範囲 1〜 8の何れか 1項に記載 の高炉用コークスの製造方法。
1 0. 0. .5 mm以下の微粉炭と 0. 5 mm超の粗粒炭に分級す ることを特徴とする請求の範囲 1〜 9の何れか 1項に記載の高炉用 コ一クスの製造方法。
1 1. 微粉炭と粗粒炭とに分級し、 引き続き、 粗粒炭を昇温速度 : 1 0 0〜: L 0 , 0 0 0 °C /秒で到達温度 : 3 0 0〜 4 5 0 °Cに急 速加熱した後、 該粗粒炭と前記微粉炭をコークス炉に装入し乾留す ることを特徴とする請求の範囲 1〜 1 0の何れか 1項に記載の高炉 用コ一クスの製造方法。
PCT/JP2006/309981 2005-05-13 2006-05-12 高炉用コークスの製造方法 WO2006121213A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06732642.1A EP1881051B1 (en) 2005-05-13 2006-05-12 Process for producing blast furnace coke
BRPI0606993-2A BRPI0606993B1 (pt) 2005-05-13 2006-05-12 Método de produção de coque de alto forno
JP2007528352A JP4102426B2 (ja) 2005-05-13 2006-05-12 高炉用コークスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-141524 2005-05-13
JP2005141524 2005-05-13

Publications (2)

Publication Number Publication Date
WO2006121213A1 true WO2006121213A1 (ja) 2006-11-16
WO2006121213B1 WO2006121213B1 (ja) 2007-02-01

Family

ID=37396698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309981 WO2006121213A1 (ja) 2005-05-13 2006-05-12 高炉用コークスの製造方法

Country Status (8)

Country Link
US (1) US7846301B2 (ja)
EP (1) EP1881051B1 (ja)
JP (1) JP4102426B2 (ja)
KR (1) KR100866166B1 (ja)
CN (2) CN101115819A (ja)
BR (1) BRPI0606993B1 (ja)
TW (1) TWI316085B (ja)
WO (1) WO2006121213A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211166A (ja) * 2006-02-10 2007-08-23 Nippon Steel Corp コークス炉の操業方法
JP2008266411A (ja) * 2007-04-18 2008-11-06 Nippon Steel Corp 廃棄プラスチックを用いた高炉用コークスの製造方法
JP2010526193A (ja) * 2007-05-09 2010-07-29 シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー・ウント・コ 成形品を生産する方法
JP2016183330A (ja) * 2015-03-26 2016-10-20 三菱化学株式会社 コークス製造用成型炭の製造方法
KR20170101982A (ko) * 2014-12-31 2017-09-06 선코크 테크놀러지 앤드 디벨로프먼트 엘엘씨 코킹 재료의 다중 모달 베드
JP2018048216A (ja) * 2016-09-20 2018-03-29 新日鐵住金株式会社 コークス炉装入炭の嵩密度推定方法及び配合調整方法
CN109504406A (zh) * 2018-12-05 2019-03-22 王爱珠 一种通过长焰煤焦化工艺制备焦油的生产工艺及焦油
JP2020015792A (ja) * 2018-07-24 2020-01-30 日本製鉄株式会社 コークス炉装入炭の製造方法
JP2022139102A (ja) * 2021-03-11 2022-09-26 Jfeスチール株式会社 成型物の製造方法および成型コークスの製造方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009334144B2 (en) 2008-11-17 2012-12-13 Tm Tech Co., Ltd Light Sensor Holder for Tracking Sunlight
JP4576463B2 (ja) * 2009-02-03 2010-11-10 Jx日鉱日石エネルギー株式会社 コークス製造用粘結材の製造方法およびコークスの製造方法
WO2010116722A1 (ja) * 2009-04-09 2010-10-14 新日本製鐵株式会社 高炉用コークスの製造方法
BR112012021193B8 (pt) * 2010-02-25 2022-10-04 Nippon Steel Corp Método de produção de coque de alta resistência
JP5071578B2 (ja) * 2010-09-01 2012-11-14 Jfeスチール株式会社 コークス製造用石炭の調製方法
JP5201250B2 (ja) * 2010-09-01 2013-06-05 Jfeスチール株式会社 冶金用コークスの製造方法および冶金用コークス製造用粘結材
TWI457555B (zh) * 2010-09-01 2014-10-21 Jfe Steel Corp Evaluation method of softening and melting of coal and binder and method for manufacturing coke
KR101191964B1 (ko) * 2010-12-22 2012-10-18 주식회사 포스코 탄재 내장 괴성광 제조장치
KR101191963B1 (ko) * 2010-12-22 2012-10-17 주식회사 포스코 탄재 내장 괴성광 제조방법
WO2013128866A1 (ja) * 2012-02-29 2013-09-06 Jfeスチール株式会社 コークス製造用石炭の調製方法
CN102942942B (zh) * 2012-11-20 2014-06-04 中钢集团鞍山热能研究院有限公司 用煤粉生产半焦的方法
CN103710037A (zh) * 2013-12-20 2014-04-09 清华大学 一种低阶煤流化床提质利用系统及方法
CN103952167B (zh) * 2014-05-14 2015-12-02 中国科学院城市环境研究所 一种节能环保型低水分炼焦工艺及系统
KR101658181B1 (ko) 2014-12-15 2016-09-20 주식회사 포스코 수소 공여제, 이를 이용한 첨가제 제조 방법 및 이를 이용한 코크스 제조 방법
KR101619793B1 (ko) 2015-08-07 2016-05-13 주식회사 후상 성형률 및 강도가 우수한 성형탄 성형용 바인더와 이를 이용한 성형탄 그리고 이의 제조방법
CN106929063B (zh) * 2015-12-30 2020-05-22 北京三聚环保新材料股份有限公司 一种低阶煤的成型工艺及由该工艺制得的型煤
CN108148610B (zh) * 2017-03-17 2021-05-07 宝丰县洁石煤化有限公司 一种用于炼焦原料煤的预处理方法
KR102243573B1 (ko) 2019-08-16 2021-04-23 주식회사 이에스알 수용성 바인더를 이용한 성형탄 조성물 및 이의 제조방법
CN110540885A (zh) * 2019-09-11 2019-12-06 山西领君重工机械设备有限公司 一种型煤免烘干成型方法
CN113046106A (zh) * 2021-03-15 2021-06-29 杜玉婷 一种提高入炉煤堆密度的处理装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285690A (ja) * 1991-03-15 1992-10-09 Kawasaki Steel Corp コークス炉装入用調湿炭の製造方法
JPH04332790A (ja) * 1991-05-09 1992-11-19 Nippon Steel Corp 成型炭の製造方法
JPH10183136A (ja) * 1996-12-26 1998-07-14 Nippon Steel Chem Co Ltd コークス製造用原料炭の事前処理方法及びコークスの製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6605288A (ja) * 1965-04-21 1966-10-24
DE2555431B2 (de) 1975-12-10 1978-12-21 Fa. Carl Still, 4350 Recklinghausen Verfahren zur Herstellung von Hochofenkoks
DE2640787C3 (de) * 1976-09-10 1980-09-25 Fa. Carl Still Gmbh & Co Kg, 4350 Recklinghausen Verfahren und Vorrichtung zur Herstellung von Hochofenkoks
US4158550A (en) * 1977-09-12 1979-06-19 Firma Carl Still Apparatus for producing blast furnace coal
US4452670A (en) * 1978-07-20 1984-06-05 Koppers Company, Inc. Method and apparatus for recovering preheater coal fines
US4221570A (en) * 1979-04-16 1980-09-09 Continental Oil Company Method and apparatus for producing hardened carbonaceous agglomerates
JPH07118665A (ja) 1993-10-20 1995-05-09 Nippon Steel Corp 急速加熱粉炭の熱間成形装置及び熱間成形方法
KR0178327B1 (ko) * 1995-02-02 1999-04-01 다까시 이마이 용광로용 코크스 제조 방법
JP3611055B2 (ja) 1995-02-02 2005-01-19 社団法人日本鉄鋼連盟 高炉用コークス製造方法
JPH08239669A (ja) 1995-03-02 1996-09-17 Nippon Steel Corp コークス用石炭の事前処理方法
JP3546096B2 (ja) 1995-06-16 2004-07-21 新日本製鐵株式会社 石炭の事前処理方法
JP3668532B2 (ja) 1995-08-04 2005-07-06 社団法人日本鉄鋼連盟 高炉用コークス製造方法
JPH09241655A (ja) 1996-03-12 1997-09-16 Nippon Steel Corp コークス原料炭の事前処理方法
AUPS037402A0 (en) * 2002-02-07 2002-02-28 Commonwealth Scientific And Industrial Research Organisation A process for producing metallurgical coke
JP4274880B2 (ja) * 2003-09-11 2009-06-10 社団法人日本鉄鋼連盟 高炉用コークス製造用原料炭の改質・予備処理方法
JP4265422B2 (ja) 2004-01-30 2009-05-20 Jfeスチール株式会社 コークス炉装入用石炭の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285690A (ja) * 1991-03-15 1992-10-09 Kawasaki Steel Corp コークス炉装入用調湿炭の製造方法
JPH04332790A (ja) * 1991-05-09 1992-11-19 Nippon Steel Corp 成型炭の製造方法
JPH10183136A (ja) * 1996-12-26 1998-07-14 Nippon Steel Chem Co Ltd コークス製造用原料炭の事前処理方法及びコークスの製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211166A (ja) * 2006-02-10 2007-08-23 Nippon Steel Corp コークス炉の操業方法
JP2008266411A (ja) * 2007-04-18 2008-11-06 Nippon Steel Corp 廃棄プラスチックを用いた高炉用コークスの製造方法
JP2010526193A (ja) * 2007-05-09 2010-07-29 シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー・ウント・コ 成形品を生産する方法
US9090844B2 (en) 2007-05-09 2015-07-28 Siemens Vai Metals Technologies Gmbh Method for producing moldings
KR20170101982A (ko) * 2014-12-31 2017-09-06 선코크 테크놀러지 앤드 디벨로프먼트 엘엘씨 코킹 재료의 다중 모달 베드
KR102516994B1 (ko) 2014-12-31 2023-03-31 선코크 테크놀러지 앤드 디벨로프먼트 엘엘씨 코킹 재료의 다중 모달 베드
JP2016183330A (ja) * 2015-03-26 2016-10-20 三菱化学株式会社 コークス製造用成型炭の製造方法
JP2018048216A (ja) * 2016-09-20 2018-03-29 新日鐵住金株式会社 コークス炉装入炭の嵩密度推定方法及び配合調整方法
JP2020015792A (ja) * 2018-07-24 2020-01-30 日本製鉄株式会社 コークス炉装入炭の製造方法
CN109504406A (zh) * 2018-12-05 2019-03-22 王爱珠 一种通过长焰煤焦化工艺制备焦油的生产工艺及焦油
JP2022139102A (ja) * 2021-03-11 2022-09-26 Jfeスチール株式会社 成型物の製造方法および成型コークスの製造方法

Also Published As

Publication number Publication date
EP1881051A1 (en) 2008-01-23
CN104593029A (zh) 2015-05-06
CN104593029B (zh) 2020-10-16
EP1881051A4 (en) 2011-08-03
WO2006121213B1 (ja) 2007-02-01
US7846301B2 (en) 2010-12-07
US20080190753A1 (en) 2008-08-14
KR100866166B1 (ko) 2008-10-31
CN101115819A (zh) 2008-01-30
EP1881051B1 (en) 2018-07-25
KR20070088774A (ko) 2007-08-29
BRPI0606993B1 (pt) 2021-06-01
BRPI0606993A2 (pt) 2009-07-28
TW200700548A (en) 2007-01-01
JP4102426B2 (ja) 2008-06-18
JPWO2006121213A1 (ja) 2008-12-18
TWI316085B (en) 2009-10-21

Similar Documents

Publication Publication Date Title
WO2006121213A1 (ja) 高炉用コークスの製造方法
JPH07268349A (ja) 冶金用成形コークスの製造方法
JP4757956B2 (ja) 高炉用コークスの製造方法
JP4486552B2 (ja) 高強度コークスの製造方法
RU2713143C1 (ru) Углеродистый восстановитель для производства технического кремния и способ его получения
JP6241336B2 (ja) 高炉用コークスの製造方法
EP2940107B1 (en) Method for manufacturing coal briquettes, and apparatus for manufacturing said coal briquettes
JP4267390B2 (ja) 高炉用フェロコークスの製造方法
JP5052866B2 (ja) 高炉用コークスの製造方法
WO1996023852A1 (fr) Procede pour produire du coke metallurgique
WO2015182529A1 (ja) 高炉用コークスの製造方法及び高炉用コークス
WO2015151847A1 (ja) 石炭混合材
JP4695244B2 (ja) コークス製造方法
JP3668532B2 (ja) 高炉用コークス製造方法
JP6464912B2 (ja) コークスの製造方法
WO2010054607A1 (en) Method for brown coal coke production using single-stage thermal reprocessing
WO2024202185A1 (ja) コークスの製造方法
JP3614919B2 (ja) 高炉用コークスの製造方法
JP7493121B1 (ja) コークスの製造方法
JPH06184542A (ja) コークスの製造方法
JP4819197B2 (ja) 高強度コークスの製造方法
JP4917300B2 (ja) 製鉄用コークスの製造方法および製鉄用コークスの原料
JP2011032532A (ja) 高炉原料用塊成化物の製造方法
WO2024103137A1 (pt) Aglomerado sólido coqueificado, e, processo de fabricação do mesmo
WO2023184002A1 (pt) Processo de obtenção de produtos de alto teor de ferro a partir de finos de minério de ferro e biomassa, e seus produtos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528352

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 4523/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020077015620

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006732642

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11884184

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680004556.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006732642

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0606993

Country of ref document: BR

Kind code of ref document: A2