WO2006112501A1 - 二次電池の保護回路、電池パック、及び感熱保護スイッチ装置 - Google Patents

二次電池の保護回路、電池パック、及び感熱保護スイッチ装置 Download PDF

Info

Publication number
WO2006112501A1
WO2006112501A1 PCT/JP2006/308306 JP2006308306W WO2006112501A1 WO 2006112501 A1 WO2006112501 A1 WO 2006112501A1 JP 2006308306 W JP2006308306 W JP 2006308306W WO 2006112501 A1 WO2006112501 A1 WO 2006112501A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
heater
protection
voltage
switch
Prior art date
Application number
PCT/JP2006/308306
Other languages
English (en)
French (fr)
Inventor
Iichiro Mori
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005122729A external-priority patent/JP4884694B2/ja
Priority claimed from JP2005122765A external-priority patent/JP2006304487A/ja
Priority claimed from JP2005159889A external-priority patent/JP4815151B2/ja
Priority claimed from JP2005164485A external-priority patent/JP4691399B2/ja
Priority claimed from JP2005181125A external-priority patent/JP2007006559A/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN2006800023793A priority Critical patent/CN101103509B/zh
Publication of WO2006112501A1 publication Critical patent/WO2006112501A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/106PTC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a protection circuit that protects a secondary battery from excessive charging and excessive discharge current, a thermal protection switch device, and a battery pack including these.
  • FIG. 51 is a circuit diagram showing a configuration of a battery pack according to the background art.
  • a battery pack 1001 shown in FIG. 51 includes a protection circuit 1002 and a secondary battery 1003.
  • the secondary battery 1003 is a rechargeable secondary battery such as a lithium ion secondary battery, a lithium polymer secondary battery, a nickel hydrogen secondary battery, or a nickel cadmium secondary battery.
  • the battery pack 1001 includes a protection circuit 1002 that protects the secondary battery 1003 from excessive charging and excessive discharge current (see, for example, Patent Document 1 and Patent Document 2).
  • Protection circuit 1002 includes external connection terminals 1004 and 1005, FET (Field Effect Transistor) 1 006 and 1007, reference voltage sources 1008 and 1009, converters 1010 and 1111, resistor 1112, and a logic circuit 1013.
  • FET Field Effect Transistor
  • the external connection terminals 1004 and 1005 are connected to a charging device for charging the secondary battery 1003, mopile equipment such as a mobile phone or a digital camera driven by a discharge current from the secondary battery 1003, This is a connection terminal for connecting power sources for driving electric tools, robots, electric bicycles, etc.
  • the external connection terminal 1004, the secondary battery 1003, the FET 1006, the FET 1007, and the external connection terminal 1005 are connected in series.
  • the FET 1006 is oriented so that the anode of the parasitic diode is on the secondary battery 1003 side, and the FET 1007 is oriented so that the anode of the parasitic diode is on the external connection terminal 1005 side.
  • the FET1006 is used as an overdischarge protection switch that cuts off the discharge current when the discharge current of the secondary battery 1003 becomes excessive.
  • the FET1007 is used when the secondary battery 1003 is overcharged. Switch for overcharge protection that cuts off charging current Used as
  • the positive terminal of the secondary battery 1003 is applied to the + terminal of the comparator 1010, the reference voltage Vrefl output from the reference voltage source 1008 is applied to the-terminal of the comparator 1010, and the output terminal of the comparator 1010 is Connected to logic circuit 1013.
  • the reference voltage Vr efl a voltage for detecting overcharge of the secondary battery 1003 is set. Then, when the secondary battery 1003 is charged by the unillustrated charging device connected to the external connection terminals 1004 and 1005 and the terminal voltage of the secondary battery 1003 exceeds the reference voltage Vref 1, the comparator 1010 is overcharged. A detection signal indicating charging is output to the logic circuit 1013.
  • connection point between FET1006 and FET1007 is connected to one terminal of the comparator 1111 via the resistor 1112, and the reference voltage Vref2 output from the reference voltage source 1009 is connected to the + terminal of the comparator 1111. Applied.
  • the discharge current from the secondary battery 1003 flows through the FET 1006, and the voltage drop caused by the on-resistance of the FET 1006 is applied to the negative terminal of the comparator 1111 through the resistor 1112.
  • the reference voltage Vref 2 is set to a voltage corresponding to a voltage drop caused by the on-resistance of the FET 1006 when flowing through the maximum discharge current FET 1006 within a range not causing deterioration of the characteristics of the secondary battery 1003, for example.
  • the comparator 1111 is short-circuited, for example, when the external connection terminals 1004 and 1005 are in contact with a metal piece, or when a load device connected to the external connection terminals 1004 and 1005 is broken.
  • an excessive discharge current flows from the secondary battery 1003
  • an increase in the voltage drop in the FET 1006 is detected, and a detection signal indicating discharge of the overcurrent is output to the logic circuit 1013.
  • the logic circuit 1013 turns off the FET 1007 that stops charging the secondary battery 1003, and detects detection of overcurrent discharge from the comparator 1111.
  • the FET 1006 is turned off to stop the discharge of the secondary battery 1003.
  • the protection circuit 1002 protects the secondary battery 1003 from excessive charge and overcurrent discharge! / Speak.
  • a secondary battery 1022 and a bimetal switch 1 are used as in a battery pack 1021 shown in FIG. 023 connected in series, for example, when the charging device 1 026 connected to the external connection terminals 1024 and 1025 fails, the secondary battery 1022 generates heat or the bimetal switch 1023 self-heats due to excessive charging. When the bimetal switch 1023 is heated, the bimetal switch 1023 is turned off to cut off the charging current, and the secondary battery 1022 is protected.
  • a PTC element 1032 that is a PTC (Positive Temperature Coefficient) element that is turned off when a predetermined temperature is exceeded, and a secondary battery 1033
  • the secondary battery 1033 When the PTC element 1032 is connected in series and, for example, the charging device 1036 connected to the external connection terminals 1034 and 1035 fails, the secondary battery 1033 generates heat or the PTC element 1032 When the PTC element 1032 is heated due to heat generation or the like, it is known that the PTC element 1032 is turned off and the charging current is cut off to protect the secondary battery 1033!
  • FIG. 54 is a circuit diagram showing another configuration of the battery pack according to the background art.
  • the battery pack 1141 shown in FIG. 54 is a battery pack used for an electric device that passes a large load current, for example, 100 A (lkW), such as an electric tool, an electric bicycle, or a robot.
  • the battery pack 1141 includes a protection circuit 1142 and secondary batteries 1143 to 1146! Secondary batteries 1 143 to 1146 are secondary batteries similar to secondary battery 1003 in battery pack 1001, and a plurality of secondary batteries 1143 to 1146 that increase output power are connected in series.
  • Protection circuit 1142 includes external connection terminals 1147, 1148, FETs 1149, 1150, reference voltage sources 1151-1159, comparators 1160-1168, AND gates 1169, 1170, resistor 1171, and logic circuit 1172. And.
  • External connection terminals 1147 and 1148 are connection terminals similar to the external connection terminals 1004 and 1005 in the battery pack 1001.
  • the external connection terminal 1147, the secondary batteries 1143 to 1146, the FET 1149, the FET 1150, and the external connection terminal 1148 are connected in series.
  • FET1149 is used as an overdischarge protection switch that cuts off the discharge current when the discharge current of the secondary batteries 1143 to 1146 becomes excessive, similar to FET1006 in the battery pack 1001. Like the FET1007 in the battery pack 1001, the overcharge protection switch that cuts off the charging current when the secondary batteries 1143 to 1146 are overcharged. Used as a h
  • the comparators 1160, 1162, 1164, 1166 are comparators for detecting overcharge of the secondary batteries 1143, 1144, 1145, 114 6, and the comparators 1161, 1163, 1165, 1167 are secondary batteries 1143 , 1144, 1145, 1146 is a comparator for detecting overdischarge.
  • the comparators 1160, 1162, 1164, and 1166 compare the output voltages of the secondary batteries 1143, 1144, 1145, and 1146 with the reference voltages output from the reference voltage sources 1151, 1152, 1153 and 1154, respectively. Then, a signal indicating the comparison result is output to the AND gate 1169. When the output voltages of the secondary batteries 1143, 1144, 1145, 1146 exceed the respective reference voltages, overcharge is detected and the output voltage of the AND gate 1169 is output to the logic circuit 1172 at a low level. The FET 1150 is turned off to protect the secondary batteries 1143, 1144, 1145, 1146 power and charging power.
  • the con- trollers 1161, 1163, 1165, 1167 [Thus, the output voltages of the secondary batteries 1143, 114 4, 1145, 1146 and the reference voltage source 1155, 1156, 1157, 1158 are output. Each signal is compared with the reference voltage, and a signal indicating the comparison result is output to the AND gate 1170.
  • the output voltage of the secondary batteries 1143, 1144, 1145, 1146 falls below each reference voltage, overdischarge is detected and the output voltage of the AND gate 1169 is output to the logic circuit 1172 at a high level.
  • the FET 1149 is turned off to protect the secondary batteries 1143, 1144, 1145, 1146 power and discharge power.
  • connection point between FET1149 and FET1150 is connected to the + terminal of the comparator 1168 via the resistor 1171, and the reference voltage output from the reference voltage source 1159 is applied to one terminal of the comparator 1168. Yes.
  • the discharge current from the secondary batteries 1143 to 1146 flows through the FET 1149, and the voltage drop caused by the ON resistance of the FET 1149 is applied to the + terminal of the comparator 1168 via the resistor 1171.
  • the reference voltage source 1159 is a voltage corresponding to a voltage drop caused by the on-resistance of the FET 1149 when the maximum discharge current in the range flows through the FET 1149 without causing deterioration of the characteristics of the secondary batteries 1143 to 1146, for example. Is set.
  • the logic circuit 1172 turns off the FET 1149 for stopping the discharge of the secondary batteries 1143 to 1146. Accordingly, the protection circuit 1142 protects the secondary batteries 1143 to 1146 from excessive charge / discharge and overcurrent discharge.
  • the FET since the FET has a parasitic diode, the discharge current and the charging current in different directions of current cannot be blocked by one FET. It was necessary to provide FET1006 that cut off the discharge current and FET1007 that cut off the charging current.
  • a reference voltage source 1008 and a comparator 1 010 are required to detect overcharge
  • a reference voltage source 1009, a comparator 1111, and a resistor 1112 are required to detect an excessive discharge current.
  • 1111 requires a logic circuit 1013 to turn on and off the two FETs 1006 and 1007, which has the disadvantage of increasing the circuit scale of the protection circuit 1002.
  • Patent Document 1 Japanese Patent Laid-Open No. 4-75430
  • Patent Document 2 Japanese Patent Laid-Open No. 11-262270
  • the present invention has been made in view of such a problem, and the secondary battery is protected from excessive charging, excessive discharge current, etc. with a simple circuit, and the characteristics of the secondary battery are deteriorated. It is an object of the present invention to provide a protection circuit that can prevent this.
  • a protection circuit for a secondary battery comprises a first and second connection for connecting a charging device for charging a secondary battery and a load device driven by a discharge current from the secondary battery or Z.
  • a charging device for charging a secondary battery
  • a load device driven by a discharge current from the secondary battery or Z.
  • the temperature exceeds a preset predetermined temperature provided between the connection terminal, the third and fourth connection terminals connected to both electrodes of the secondary battery, and the first and third connection terminals.
  • the first heater When the physical quantity related to the characteristics of the secondary battery exceeds a preset physical quantity value, the first heater generates heat when the thermal switch is turned off, the first heater for heating the thermal switch, And a protection control unit for turning off the thermal switch.
  • the first heater when the physical quantity related to the characteristics of the secondary battery exceeds a preset physical quantity value, the first heater is heated by the protection control unit, and the first heater generates heat.
  • the switch When the switch is heated, the heat-sensitive switch is turned off and the charge / discharge current is cut off, so that the characteristic deterioration of the secondary battery can be reduced.
  • the circuit can be simplified because the discharge current and the charge current can be cut off by a single thermal switch.
  • FIG. 1 is an exploded perspective view showing an example of a battery pack according to Embodiment 1 of the present invention.
  • FIG. 2 is a circuit diagram showing an example of the electrical configuration of the battery pack shown in FIG. 1.
  • FIG. 3 is a graph showing an example of a current value flowing through a bimetal switch and a thermal fuse and an operation time.
  • FIG. 4 is an external perspective view showing an example of a configuration of a protection circuit according to Embodiment 1 of the present invention.
  • FIG. 5 is an explanatory diagram for explaining an example of a configuration of a protection circuit according to Embodiment 2 of the present invention
  • FIG. 5 (a) is a diagram showing a wiring pattern for attaching each component of the protection circuit.
  • FIG. 5B is a cross-sectional view showing an example of the mechanical configuration of the protection circuit.
  • FIG. 6 is a diagram showing an example of the mechanical configuration of the protection circuit shown in FIG. 5.
  • FIG. 6 (a) is a top view showing an example of the mechanical configuration of the protection circuit
  • FIG. 6 (b) is a machine of the protection circuit. It is sectional drawing which shows an example of a typical structure.
  • FIG. 7 is an explanatory diagram for explaining the operation of the movable section.
  • FIG. 8 is an explanatory diagram for explaining a state in which the container and the external terminal connection unit are combined.
  • FIG. 10 is a circuit diagram showing an example of the electrical configuration of the battery pack according to Embodiment 4 of the present invention.
  • FIG. 11 is an explanatory diagram for explaining the mechanical configuration of the protection circuit shown in FIG.
  • FIG. 12 is an explanatory diagram for explaining the mechanical configuration of the protection circuit shown in FIG.
  • FIG. 13 is an explanatory diagram for explaining the mechanical configuration of the protection circuit shown in FIG.
  • FIG. 15 is a circuit diagram showing an example of the electrical configuration of the battery pack according to Embodiment 5 of the present invention.
  • 16 is an explanatory diagram showing an example of a configuration of a series circuit of a heater R3 and a heater R4 used in the protection circuit shown in FIG.
  • FIG. 17 An explanatory diagram for explaining the mechanical configuration of the protection circuit shown in FIG. FIG. 17 (a) is a diagram showing a wiring pattern for attaching each component of the protection circuit, and FIG. 17 (b) is a cross-sectional view showing an example of the mechanical configuration of the protection circuit.
  • FIG. 18 (a) is a top view of the protection circuit shown in FIG. 17 (b).
  • Fig. 18 (b) shows the same cross section as Fig. 17 (b).
  • FIG. 19 is an explanatory diagram showing an example of the configuration of the thermistor used as the heater shown in FIG.
  • FIG. 20 is an explanatory diagram for explaining the mechanical configuration of the protection circuit using the thermistor shown in FIG.
  • FIG. 21 is a circuit diagram showing an example of the electrical configuration of the battery pack according to Embodiment 6 of the present invention.
  • FIG. 22 is an explanatory diagram for explaining the mechanical configuration of the protection circuit shown in FIG.
  • FIG. 22 (a) is a diagram showing a wiring pattern for attaching each component of the protection circuit
  • FIG. 22 (b) is a cross-sectional view showing an example of the mechanical configuration of the protection circuit.
  • FIG. 23 is an explanatory diagram for explaining the mechanical configuration of the protection circuit shown in FIG.
  • FIG. 23 (a) is a top view of the protection circuit 5 shown in FIG. 23 (b)
  • FIG. 23 (b) is a cross-sectional view showing an example of the mechanical configuration of the protection circuit.
  • FIG. 24 is a circuit diagram showing a modification of the electrical configuration of the battery pack shown in FIG. 21.
  • FIG. 25 is a circuit diagram showing an example of the electrical configuration of the battery pack according to Embodiment 7.
  • FIG. 26 shows a circuit diagram of the battery pack according to the eighth embodiment.
  • FIG. 27 shows a circuit diagram of a battery pack according to Embodiment 9.
  • FIG. 28 shows a circuit diagram of a battery pack according to Embodiment 10.
  • FIG. 29 shows a circuit diagram of a battery pack according to Embodiment 11.
  • FIG. 30 shows a circuit diagram of a battery pack according to Embodiment 12.
  • FIG. 31 shows a circuit diagram of a battery pack according to Embodiment 13.
  • FIG. 33 shows an exploded configuration diagram of the battery pack when the protection circuit storage circuit of Embodiment 12 is used, (a) shows a top view, and (b) shows a side view.
  • FIG. 34 An exploded configuration diagram of the battery pack in the case of the protection circuit product circuit of Embodiment 12 is shown, (a) shows a top view, and (b) shows a side view.
  • FIG. 35 shows an exploded configuration diagram of the battery pack when the protection circuit storage circuit of Embodiment 12 is used, (a) shows a top view, and (b) shows a side view.
  • FIG. 36 An exploded configuration diagram of the battery pack in the case of the protection circuit product circuit of Embodiment 12 is shown, (a) shows a top view, and (b) shows a side view.
  • FIG. 37 shows a circuit diagram of a battery pack according to Embodiment 14.
  • FIG. 38 is a partial view of a protection circuit board configured by incorporating a thermal switch element and a heater into a wiring board.
  • FIG. 39 is an external exploded perspective view for illustrating a schematic configuration of the battery pack according to Embodiment 15 of the present invention.
  • FIG. 40 shows a circuit diagram of the battery pack shown in FIG. 39.
  • FIG. 41 is a cross-sectional view of an essential part for explaining an example of a specific configuration of a thermal protection switch device.
  • FIG. 42 is a side view of the protective circuit board shown in FIG. 39.
  • FIG.43 Arrangement configuration of the protection circuit board for the secondary battery and the electrical connection relationship between the secondary battery and the protection circuit board when the battery pack shown in Fig. 39 is configured using the protection circuit board shown in Fig. 42 FIG.
  • FIG. 44 is a side view of a protection circuit board configured by using IC elements formed as semiconductor integrated circuits and mounting them on a wiring board.
  • FIG. 45 When the battery pack shown in FIG. 39 is configured using the protection circuit board shown in FIG. 44, the arrangement of the protection circuit board with respect to the secondary battery and the electrical connection relationship between the secondary battery and the protection circuit board FIG.
  • FIG. 46 is a circuit diagram showing another example of the electrical configuration of the battery pack shown in FIG. 39.
  • FIG. 47 is a diagram showing a battery pack having a structure different from that shown in FIG. 39, which is configured using a protection circuit board having the circuit configuration shown in FIG. 46.
  • FIG. 48 is a cross-sectional view of a principal part showing another example of the specific configuration of the thermal protection switch device.
  • FIG. 49 is a view for explaining a configuration for mounting the thermal protection switch device shown in FIG. 48 to the wiring board.
  • FIG. 50 is a cross-sectional view of a principal part showing another example of the specific configuration of the heat-sensitive protection switch device.
  • FIG. 51 is a circuit diagram showing a configuration of a battery pack according to background art.
  • FIG. 52 is a circuit diagram showing a configuration of a battery pack according to the background art.
  • FIG. 53 is a circuit diagram showing a configuration of a battery pack according to the background art.
  • FIG. 54 is a circuit diagram showing a configuration of a battery pack according to the background art.
  • FIG. 1 is an exploded perspective view showing an example of a battery pack according to an embodiment of the present invention.
  • the battery pack 1 shown in FIG. 1 includes a bottomed cylindrical container 2, an external terminal connection unit 3, and a plate-like spacer 4 inserted between the container 2 and the external terminal connection unit 3. ing.
  • the container 2 contains the secondary battery 6 and is caulked and sealed, and the positive electrode terminal 6 a provided in a convex shape on the secondary battery 6 projects the opening end force of the container 2.
  • the container 2 is configured with a steel plate force having a surface of which a nickel plating is applied, and the negative electrode of the secondary battery 6 is connected to the container 2 inside the container 2.
  • the external terminal connection unit 3 includes, for example, a resin-molded case 31, and connection terminals Tl and T2 for connecting a charging device and a load device are exposed on the surface of the case 31. It has been. Further, a connection terminal T4 made of, for example, a plate-like metal connected to the connection terminal T2 is provided so as to protrude in the direction in which the container 2 is connected.
  • FIG. 2 is a circuit diagram showing an example of the electrical configuration of battery pack 1 shown in FIG.
  • a battery pack 1 shown in FIG. 1 includes a protection circuit 5 and a secondary battery 6.
  • the secondary battery 6 is a rechargeable secondary battery such as a lithium ion secondary battery, a lithium polymer secondary battery, a nickel hydride secondary battery, or a nickel cadmium secondary battery.
  • the protection circuit 5 is a protection circuit that protects the secondary battery 6 from excessive charging and excessive discharge current force.
  • the protection circuit 5 is disposed inside the external terminal connection unit 3, and includes connection terminals T1 to T4 (first to fourth connection terminals), a bimetal switch (thermal switch) SW1, a temperature A fuse F1, a comparator CMP1, a reference voltage source E1, a resistor R1, a transistor Q1, and a heater (first heater) R2 are provided.
  • the connection terminal T1 and the connection terminal ⁇ 2 are connection terminals for connecting a charging device (not shown) that charges the secondary battery 6 and a load device that is driven by the discharge current from the battery or the secondary battery 6.
  • the load device is various electric devices driven by a battery, such as a mobile phone, a digital camera, a video camera, a portable personal computer, and an electric tool.
  • the metal switch SW1 When the metal switch SW1 is turned off when a preset operating temperature Tswl is exceeded, the charge / discharge current of the secondary battery 6 exceeds a preset preset cutoff current value Iswl.
  • This is an example of a thermal switch that turns off due to self-heating, and the operating temperature Tswl
  • the maximum temperature in the temperature range is set without degrading the characteristics of the secondary battery 6, and the maximum discharge current value in the range where the characteristics of the secondary battery 6 are not deteriorated is set as the cutoff current value Iswl.
  • Is set The bimetal switch SW1 is a return-type heat sensitive switch that turns off when the temperature drops after the temperature rises and turns off.
  • a switch using a shape memory alloy instead of a bimetal switch instead of a bimetal switch instead of a bimetal switch (for example, those described in Japanese Utility Model Publication Nos. 7-4770 and JP-A-11-224579), or a shape memory A switch using rosin can be used in the same way
  • the shape memory alloy may be any shape memory alloy having a restoring force based on thermoelastic martensitic transformation and reverse transformation such as nickel titanium alloy, copper-zinc aluminum alloy, and the like.
  • the shape change temperature range in which the deformed shape changes to the restored shape can be changed by changing the heat treatment process in which the shape memory alloy composition is appropriately selected.
  • shape memory resin a resin such as polyester, polyurethane, styrene butadiene, trans polyisoprene in which a cross-linked or partially crystallized stationary phase and a reversible phase are mixed can be used.
  • the heater R2 is, for example, a positive temperature characteristic, that is, a PTC (Positive Temperature Coefficient) thermistor whose resistance value increases or decreases in accordance with an increase or decrease in temperature.
  • a PTC Positive Temperature Coefficient
  • the final temperature Th is a temperature that exceeds the operating temperature Tswl of the bimetal switch SW1, and is set to a temperature that does not damage the secondary battery 6 and the protection circuit 5.
  • the thermal fuse F1 is arranged close to the secondary battery 6 or in close contact with an insulator, and when the secondary battery 6 generates heat due to overcharge or excessive discharge, It is a thermal fuse that blows.
  • Operating temperature at which fuse F1 blows The switch SW1 operating temperature is set to a temperature higher than Tswl.
  • the fusing characteristics are set so that the operating speed of the temperature fuse F1 is slower than that of the bimetal switch SW1.
  • the thermal fuse F1 is a non-recoverable thermal switch that does not return to a conductive state once it is blown.
  • the operating temperature Tsw1 of the bimetal switch SW1, the final temperature Th reached by the heater R2, and the operating temperature Tfusel of the thermal fuse F1 have a relationship represented by the following formula (1).
  • the setting of the operating temperature and operating speed of the bimetal switch SW1 and the thermal fuse F1 sets the characteristics of the components of the bimetal switch SW1 and the thermal fuse F1 itself, and the bimetal switch SW1 is placed before the thermal fuse F1.
  • the bimetal switch SW1 and the secondary battery 6 are set so that the thermal resistance between the bimetal switch SW1 and the secondary battery 6 is smaller than the thermal resistance between the thermal fuse F1 and the secondary battery 6.
  • the contact resistance of the bimetal switch SW1 or the resistance of the movable piece can be increased to increase the amount of self-heating, or to the surroundings when the bimetal switch SW1 dissipates heat.
  • the switch SW1 may be a temperature rise easily formed by self-heating.
  • the thermal fuse F1 has a thermal conductivity or material.
  • FIG. 3 is a graph showing an example of the current value and the operating time when the operating temperature and operating speed of the bimetal switch SW1 and the thermal fuse F1 are set so as to satisfy the above formula (1).
  • the vertical axis is the current value flowing through the bimetal switch SW1 and the thermal fuse F1
  • the horizontal axis is the current until the bimetal switch SW1 and the thermal fuse F1 are operated by passing the current along the vertical axis. It's time.
  • graphs G1 to G3 are bimetas in a state where the battery pack 1 is assembled. It is a graph which shows an example of the relationship between the electric current value which flows into the switch SWl, and operation time.
  • Graph G1 shows an ambient temperature of 30 ° C
  • Graph G2 shows an ambient temperature of 0 ° C
  • Graph G3 shows an ambient temperature of 25 ° C
  • Graph G4 shows an ambient temperature of 70 ° C.
  • Graphs G5 to G10 are graphs showing an example of the relationship between the current value flowing through the thermal fuse F1 and the operating time when the battery pack 1 is assembled.
  • Graph G5 is the minimum value when the ambient temperature is 65 ° C
  • Graph G6 is the average value when the ambient temperature is 65 ° C
  • Graph G7 is the maximum value when the ambient temperature is 65 ° C
  • Graph G8 is the ambient temperature Is the minimum value when the temperature is 25 ° C
  • graph G9 shows the average value when the ambient temperature is 25 ° C
  • graph G10 shows the maximum value when the ambient temperature is 25 ° C.
  • Graph G11 shows the characteristics of a single component of bimetal switch SW1.
  • connection terminal T1 is connected to the positive electrode of the secondary battery 6 via the bimetal switch SW1, the thermal fuse Fl, and the connection terminal T3, and the negative electrode of the secondary battery 6 is connected to the connection terminal T4.
  • connection terminal T2 Connected to connection terminal T2 via.
  • connection terminal T3 is connected to the power supply terminal of the comparator CMP1
  • connection terminal T4 is connected to the ground terminal of the comparator CMP1, so that the power supply voltage for the operation of the comparator CMP1 is supplied from the secondary battery 6. ing.
  • connection terminal T3 is connected to the + terminal of the comparator CMP1 via the resistor R1
  • connection terminal T4 is connected to the negative electrode of the reference voltage source E1
  • the positive electrode of the reference voltage source E1 is one of the comparators CMP1.
  • the output terminal of comparator CMP1 is connected to the gate terminal of transistor Q1.
  • the reference voltage source E1 is a voltage generation circuit that outputs a reference voltage Vrefl that is a determination reference for detecting overcharge of the secondary battery 6.
  • the comparator CMP1 operates when the voltage Vb is near the reference voltage Vrefl.
  • a comparator with hysteresis in the input voltage is used.
  • the comparator CMP1, the resistor Rl, and the reference voltage source El are integrated to form an integrated circuit IC1.
  • the integrated circuit IC1 corresponds to an example of a protection control unit.
  • connection terminal T1 is connected to the drain of the transistor Q1 via the heater R2, and the source of the transistor Q1 is connected to the connection terminal T4.
  • FIG. 4 is an external perspective view showing an example of the mechanical configuration of the protection circuit 5 shown in FIG.
  • an integrated circuit IC1 for example, an integrated circuit IC1, a transistor Ql, and a heater R2 are disposed on the surface of the printed wiring board PR1, and the metal switch is placed on the heater R2 via the printed wiring board PR2.
  • SW1 is provided. As a result, when the heater R2 generates heat, the metal switch SW1 is heated!
  • connection terminal T1 is also pulled out from the printed circuit board PR1, and, for example, is bent so that a part of the connection terminal T1 is exposed to the opening force of the external terminal connection unit 3. .
  • one plate-like lead wire of the thermal fuse F1 is connected to the other end of the printed wiring board PR1 and bent, and the thermal fuse F1 and the printed wiring board PR1 face each other with the insulating sheet PR3 interposed therebetween.
  • the other plate-like lead wire of the thermal fuse F1 is used as the connection terminal T3.
  • an insulating sheet PR4 is provided so as to sandwich the thermal fuse F1 between the insulating sheet PR3.
  • the protection circuit 5 is disposed inside the external terminal connection unit 3 shown in FIG. 1 in a direction facing the secondary battery 6 in which the thermal fuse F1 is accommodated in the container 2. Further, the container 2 and the external terminal connection unit 3 are combined with the spacer 4 interposed therebetween. Then, the positive electrode terminal 6a is connected to the connection terminal T3 provided in the external terminal connection unit 3 through the opening provided in the spacer 4 by spot welding, for example. Further, the connection terminal T4 connected to the connection terminal T2 and the open end of the container 2 connected to the negative electrode of the secondary battery 6 are connected by, for example, spot welding, and the negative electrode of the secondary battery 6 and the connection terminal T2 are connected. And conduct.
  • the protective circuit 5 is arranged so that the thermal fuse F1 faces the secondary battery 6.When the secondary battery 6 generates heat, the thermal fuse F1 is heated.
  • the operation of the protection circuit 5 configured as described above will be described.
  • the overcharge protection operation by the protection circuit 5 will be described.
  • the unillustrated charging device is connected to the connection terminals Tl and T2 with the bimetal switch SW1 turned on, and the voltage Vc is applied between the connection terminals Tl and T2 from the charging device, the nometal The secondary battery 6 is charged with the voltage Vb through the switch SW1, the thermal fuse F1, and the connection terminal T3.
  • the voltage Vb is, for example, a maximum of 4.2V in a normal state.
  • the reference voltage source E1 is set to output, for example, 4.3 V to the comparator CMP1 as the reference voltage Vrefl.
  • the transistor CMP1 When the charging voltage Vb exceeds 4.3 V due to, for example, a failure of the charging device (not shown) or the output voltage accuracy of the charging device is low, the transistor CMP1 is turned on by the comparator CMP1 and the current is supplied to the heater R2. Flows and the bimetal switch SW1 is heated. When the temperature of the bimetal switch SW1 reaches the operating temperature Tswl, the bimetal switch SW1 is turned off, the charging current is interrupted, and the secondary battery 6 is protected against overcharge.
  • overcharge is detected by the comparator CMP1, and the bimetal switch SW1 is turned off by heating the bimetal switch SW1 by the heater R2. Therefore, for example, as shown in FIG. 52 and FIG.
  • Overcharge protection can be detected more accurately than when overcharge protection is performed only with a temperature switch connected in series, and the secondary battery 6 is overloaded while the overcharge protection operation is not performed. It is possible to reduce the risk of being charged, the characteristics of the secondary battery 6 being deteriorated, and the secondary battery 6 being expanded or deformed.
  • the protection operation by the protection circuit 5 when the discharge current from the secondary battery 6 becomes excessive will be described.
  • a metal piece comes into contact with the connection terminals Tl and T2, or a not-shown portable device connected to the connection terminals Tl and T2 is used.
  • a load device such as a cellular phone breaks down, the connection terminals Tl and T2 are short-circuited or the resistance value between the connection terminals Tl and T2 becomes low.
  • the electric current discharged through SW1 increases, and the nometal switch SW1 is heated by the contact resistance of the bimetal switch SW1.
  • the operating condition of the bimetal switch SW1 is set so as to be turned off before the thermal fuse F1, and the return-type thermal switch without blowing the thermal fuse F1, which is a non-reset-type thermal switch, is used.
  • the bimetal switch SW1 can protect the secondary battery 6 from excessive charging or excessive discharge current force.
  • the battery pack 1 can be removed and excessive charging or excessive discharge current can be removed. After the cause of the problem is solved, the battery pack 1 can be used repeatedly without replacing the thermal fuse F1, and convenience can be improved.
  • the transistor Ql, and the heater R2 fails and the bimetal switch SW1 is turned off during overcharge. Even if this is not possible, if the secondary battery 6 generates heat due to overcharge or excessive discharge current, the thermal fuse F1 is blown and the secondary battery 6 can be protected. Reliability can be improved.
  • the protection circuit 1002 according to the background art shown in FIG. FET1006 that cuts off the discharge current, FET 1007 that cuts off the charging current, reference voltage source 1009 for detecting excessive discharge current, comparator 1111, resistor 1112, and on / off control of the two FET1006, 1007 Therefore, the protection circuit 5 can be simplified and the protection circuit 5 can be easily downsized.
  • the appearance of the battery pack la according to the second embodiment is the same as that of the battery pack 1 shown in FIG.
  • the electrical configuration of the protection circuit 5a included in the battery pack la according to Embodiment 2 of the present invention is the same as that of the protection circuit 5 shown in FIG.
  • the protection circuit 5a according to Embodiment 2 of the present invention is different in mechanical configuration from the protection circuit 5 shown in FIG.
  • FIG. 5 is an explanatory diagram for explaining the mechanical configuration of the protection circuit 5a according to Embodiment 2 of the present invention.
  • FIG. 5A is a diagram showing a wiring pattern for attaching each component of the protection circuit 5
  • FIG. 5B is a cross-sectional view showing an example of a mechanical configuration of the protection circuit 5.
  • FIG. FIG. 6 (a) is a top view of the protection circuit 5 shown in FIG. 5 (b).
  • Fig. 6 (b) shows the same cross-sectional view as Fig. 5 (b)! /
  • the wiring pattern shown in Fig. 5 (a) is an inner surface of the case 31 in the external terminal connection unit 3, that is, a secondary battery housed in the container 2 when the external terminal connection unit 3 and the container 2 are combined.
  • 6 is printed using a paste-like conductive wiring material composed of metal fine particles, for example, and the printed circuit board PR1 is not used like the protection circuit 5 shown in FIG.
  • the integrated circuit IC1, the transistor Ql, and the heater R2 are fixed directly to the inner surface of the case 31 on which the wiring pattern is printed.
  • the printed circuit board PR1 can be eliminated from the protection circuit 5 shown in FIG. 4. Therefore, the protection circuit 5 can be easily downsized by the thickness of the printed circuit board PR1.
  • support members 32 and 33 formed in a convex shape by, for example, integral molding with the case 31 are provided inside the case 31 in the external terminal connection unit 3. Yes.
  • the wiring pattern P4 drawn from the top of the support member 32 is connected to the connection terminal T1 provided on the outer surface of the case 31 by, for example, a cylindrical metal member 34 that penetrates the case 31.
  • one end force of the movable piece 35 constituting the bimetal switch SW1 is connected and fixed to the wiring pattern P4 at the top of the support member 32 by, for example, spot welding.
  • a contact 36 is provided at the other end of the movable piece 35, and the contact 36 is brought into contact with the wiring pattern P 5 formed on the top of the support member 33.
  • a bimetal 37 is provided below the movable section 35.
  • the bimetal 37 is bridged between the support member 32 and the support member 33.
  • Tswl operating temperature
  • the movable piece 35 is flipped upward by warping in the opposite direction, and the contact 36 is separated from the wiring pattern P5.
  • the support members 32 and 33, the movable piece 35, the metal 37, and the wiring patterns P4 and P5 constitute a bimetal switch SW1.
  • a switch cover 38 for dust prevention and insulation purposes is fixed so as to cover the bimetal switch SW1 configured in this way.
  • a substantially disk-shaped heater R2 is disposed below the metal 37, and when the heater R2 generates heat, the metal 37 is heated! /.
  • the bimetal switch SW1 can be configured using the support members 32 and 33 integrally formed with the case 31, so that the cost can be reduced compared to the case where the bimetal switch SW1 configured as an individual part is used. It becomes easy to reduce.
  • the bimetal switch SW1 is configured as an individual component, the bottom of the case is not necessary, and thus the size of the metal switch SW1 can be reduced.
  • the conductor leads P6 and P7 constituting the connection terminal of the thermal fuse F1 are, for example, wide plates, and the conductor leads P6 and P7 are bent so that the thermal fuse F1 and the conductor leads P6 and P7 are bent.
  • a thermal fuse F1 is attached so as to cover the integrated circuit IC1 and the transistor Q1.
  • the wiring patterns P5 and P8 provided on both sides of the integrated circuit IC1 and the transistor Q1 cross the integrated circuit IC1 and the transistor Q1 through the conductor lead P6, the thermal fuse F1, and the conductor lead P7. It is connected.
  • thermal fuse Fl and the conductor leads P6 and P7 and both side surfaces of the conductor leads P6 and P7 are covered with, for example, a sheet member 39 for the purpose of insulation and dust prevention.
  • the thermal fuse Fl, the conductor leads P6, P7, and the sheet member 39 function as a cover that covers the integrated circuit I C1 and the transistor Q1, and in addition to the thermal fuse Fl, the conductor leads P6, P7 Compared with the case where a separate cover is provided, the mounting area of the temperature fuse F1 on the surface of the case 31 can be reduced, and the protection circuit 5 can be easily downsized.
  • the thermal fuse Fl, the conductor leads P6, P7, and the sheet member 39 are used as jumper wirings for passing a current across the integrated circuit IC1 and the transistor Q1 between the wiring patterns P5 and P8. So, the occupation of the wiring pattern on the surface of the case 31 The area is reduced, and the protection circuit 5 can be easily downsized.
  • connection lead T7 is attached to the conductor lead P7, for example, by spot welding.
  • the mounting area of the connection terminal T3 is not occupied on the surface of the case 31, so that the external terminal connection unit 3 can be easily downsized.
  • the external terminal connection unit 3 is heated with the other components except the thermal fuse Fl and the conductor leads P6 and P7 mounted on the wiring pattern printed using the conductive wiring material. If the thermal fuse Fl and conductor leads P6 and P7 are attached after the conductive wiring material is cured, even if the curing temperature of the conductive wiring material is higher than the operating temperature Tfusel of the thermal fuse F1, the temperature during manufacturing Fuse F1 will not blow or deteriorate.
  • FIG. 8 is an explanatory diagram for explaining a state in which the container 2 and the external terminal connection unit 3 are combined.
  • the thermal coupling between the bimetal switch SW1 and the thermal fuse F1 and the secondary battery 6 can be strengthened, and when the secondary battery 6 generates excessive heat, the nometal switch SW1 and the temperature are increased.
  • the charge / discharge current of the secondary battery 6 can be cut off by the fuse F1.
  • the heater R2 cannot be heated when the secondary battery 6 is overcharged due to a failure of the integrated circuit IC1, the transistor Ql, the heater R2, or the like.
  • the bimetal switch SW1 and the thermal fuse F1 are heated.
  • the temperature of the bimetal switch SW1 reaches the operating temperature Tswl, the bimeter switch SW1 is turned off and the charging current is cut off, so even if the integrated circuit IC1, transistor Q1, heater R2, etc. fail.
  • the secondary battery 6 can be protected against overcharge.
  • the bimetal switch SW1 does not turn off even if the temperature of the nominal switch SW1 reaches the operating temperature Tswl.
  • the temperature fuse F1 is heated by the heat generation and the temperature of the temperature fuse F1 reaches the operating temperature Tfusel, the temperature fuse F1 is blown and the charging current is increased. Since it is shut off, the secondary battery 6 can be protected against overcharge even if the bimetal switch SW1 fails.
  • the thermal fuse F1 is disposed in close proximity to the integrated circuit IC1 and the transistor Q1, when the integrated circuit IC 1 or the transistor Q1 generates excessive heat, the thermal fuse F1 can It becomes easy to cut off the charging / discharging current of the battery 6.
  • the wiring pattern constituting the protection circuit 5a is printed on the surface of the external terminal connection unit 3 that faces the secondary battery 6 accommodated in the container 2 as shown in FIG.
  • the wiring pattern composing the circuit 5a is formed on the printed circuit board instead of being printed on the surface of the external terminal connection unit 3, and the integrated circuit IC1 and transistor Ql composing the protection circuit 5a are formed on the printed circuit board.
  • the support members 32 and 33 pass through the through-hole formed in the printed wiring board, and the movable piece 35 and the bimetal 37 are placed on the printed wiring board. It may be configured to support this.
  • the support members 32 and 33 are not limited to an example in which the support members 32 and 33 are formed integrally with the case 31, and may be configured by embedding a cylindrical metal member in the case 31, for example. Further, the structure may be such that the temperature fuse F1 is not provided and the conductor lead P6 and the conductor lead P7 are short-circuited. Alternatively, the switch cover 38 and the sheet member 39 may be integrally formed as a single part.
  • the protection circuit 5a is not limited to the example in which the protection circuit 5a is built in the battery pack la, but is incorporated in the load device, for example, and built in the load device.
  • the connection terminals Tl, T2, T3, and T4 that may be used as a protection circuit for the rechargeable secondary battery may be, for example, a wiring pattern.
  • secondary batteries such as a lithium ion secondary battery, a lithium polymer secondary battery, a nickel hydride secondary battery, or a nickel cadmium secondary battery are discharged, and the output voltage falls below a predetermined end-of-discharge voltage. If the battery continues to discharge after being reduced, the secondary battery may become overdischarged and the battery characteristics such as cycle life may deteriorate. Therefore, in a load device such as a mobile phone connected to the connection terminals Tl and T2, the output voltage between the connection terminals Tl and T2 is detected, and the output voltage between the connection terminals Tl and T2 falls below a predetermined end-of-discharge voltage. In this case, it is desirable to cut off the output current from the connection terminals Tl and T2. this Thus, it is possible to suppress the occurrence of characteristic deterioration due to overdischarge of the secondary battery 6.
  • FIG. 9 is a circuit diagram showing an example of an electrical configuration of battery pack lb according to Embodiment 3 of the present invention.
  • the battery pack lb shown in FIG. 9 is an ultra-rapid device that charges a short load of several minutes, such as an electric tool, an electric bicycle, or a mouth bot, for example, an electric device that carries a large load current, for example, lOOA (lkW). It is a battery pack used for a chargeable cell.
  • the battery pack lb shown in FIG. 9 is different from the battery pack 1 shown in FIG. 2 in that the secondary battery 62 to 65 is connected in series instead of the secondary battery 6, and the integrated circuit IC2 is used instead of the integrated circuit IC1. It differs in the point to prepare.
  • the integrated circuit IC2 corresponds to an example of the protection control unit
  • the wiring pattern that connects the integrated circuit 2, the thermal fuse F1, and the secondary battery 62 corresponds to an example of the first connection terminal.
  • the integrated circuit IC2 includes reference voltage sources El 1 to 14 similar to the reference voltage source E1, comparators CMP11 to CMP14 similar to the comparator CMP1, a NAND gate 7, and a logic circuit 8.
  • the positive electrode of the secondary battery 62 is connected to the negative terminal of the comparator CMP11, the positive terminal of the comparator CMP11 is connected to the positive electrode of the reference voltage source E11, and the negative electrode of the reference voltage source E11 is connected to the negative electrode of the secondary battery 62.
  • the output terminal of the comparator CMP11 is connected to the input terminal of the NAND gate 7.
  • the positive electrode of the secondary battery 63 is connected to one terminal of the comparator CMP12, the + terminal of the comparator CMP12 is connected to the positive electrode of the reference voltage source E12, and the negative electrode of the reference voltage source E12 is secondary Connected to the negative electrode of battery 63, the output terminal of comparator CMP12 is connected to the input terminal of NAND gate 7.
  • the positive electrode of the secondary battery 64 is connected to one terminal of the comparator CMP13, the + terminal of the comparator CMP13 is connected to the positive electrode of the reference voltage source E13, and the negative electrode of the reference voltage source E13 is connected to the positive terminal of the secondary battery 64. Connected to the negative electrode, the output terminal of comparator CMP13 is connected to the input terminal of NAND gate 7.
  • the positive electrode of the secondary battery 65 is connected to one terminal of the comparator CMP14, the + terminal of the comparator CMP14 is connected to the positive electrode of the reference voltage source E14, and the negative electrode of the reference voltage source E14 is connected to the positive terminal of the secondary battery 65.
  • the output terminal of comparator CMP14 is NAND gate Connected to the input terminal of G7.
  • the output terminal of the NAND gate 7 is connected to the signal input terminal of the logic circuit 8, and the signal output terminal of the logic circuit 8 is connected to the gate of the transistor Q1.
  • the protection circuit 5b shown in FIG. 9 uses the bimetal switch SW1 instead of the FETs 1149 and 1150 in the protection circuit 1142 shown in FIG. Since the bimetal switch SW1 can easily control a large current, it is easy to replace the FET1149, 1150 with the bimetal switch SW1. Further, as the transistor Q1, a small switch element capable of supplying a current for generating heat from the heater R2, which does not require a load current, can be used.
  • the protection circuit 5b shown in FIG. 9 has an overcharge without using FETs 1149 and 1150 having a large current rating in the protection circuit 1142 shown in FIG.
  • the secondary batteries 62 to 65 can be protected, the circuit of the protection circuit 5b can be simplified, and the protection circuit 5b can be easily downsized.
  • FETs 1149 and 1150 having a high withstand voltage and a low on-resistance are not used, power loss in the protection circuit 5 b can be reduced and cost can be easily reduced.
  • the battery pack 1 shown in FIG. 1 has a steel plate force with nickel plating applied to the surface.
  • the rechargeable battery 6 is accommodated in the bottomed container 2, the opening of the container 2 and the sealing plate are sealed with a force-sealing seal, and the positive electrode terminal 6a provided in a convex shape is the opening of the container 2.
  • the end force also protruded and the negative electrode of the secondary battery 6 was connected to the container 2 inside the container 2, the secondary battery was accommodated in the bottomed container 2 made of aluminum alloy.
  • the opening of the container 2 and the sealing plate are hermetically sealed by laser sealing, the negative electrode terminal provided on the sealing plate in a convex shape protrudes from the opening end of the container 2, and the positive electrode of the secondary battery 6 is the negative electrode terminal. If it is connected to the sealing plate in an insulated state, it can be easily implemented by reversing the connection with the protection circuit.
  • battery pack lc according to Embodiment 4 of the present invention is the same as battery pack 1 shown in FIG.
  • FIG. 10 is a circuit diagram showing an example of the electrical configuration of battery pack lc according to Embodiment 4 of the present invention.
  • the battery pack lc shown in FIG. 1 includes a protection circuit 5c and a secondary battery 6.
  • the secondary battery 6 is a rechargeable secondary battery such as a lithium ion secondary battery, a lithium polymer secondary battery, a nickel hydrogen secondary battery, or a nickel cadmium secondary battery.
  • the protection circuit 5c is a protection circuit that protects the secondary battery 6 from excessive charging and excessive discharge current.
  • the protection circuit 5c is disposed inside the external connection terminal unit 3, and includes a connection terminal T1 (first connection terminal), a connection terminal T2 (second connection terminal), and a connection terminal T3 ( (Third connection terminal), connection terminal T4 (fourth connection terminal), metal switch SW1, thermal fuse F1, comparator CMP1 (detection unit), reference voltage source E1, resistor R1, Transistor Q1 (switch section), heater R2 (first heater), and diode D1 (first rectifier) are provided.
  • the connection terminal T3 and the connection terminal T4 are connection terminals connected to both electrodes of the secondary battery 6, respectively.
  • connection terminal T1 and the connection terminal T2 are connection terminals for connecting a charging device (not shown) that charges the secondary battery 6 and a load device that is driven by a discharge current from Z or the secondary battery 6. is there.
  • the load device is various electric devices driven by a battery, such as a mobile phone, a digital camera, a video camera, a portable personal computer, and an electric tool.
  • the temperature fuse Fl and the bimetal switch SW1 have the same configuration as in the first embodiment, a description thereof will be omitted.
  • connection terminal T1 is connected to the positive electrode of the secondary battery 6 via the bimetal switch SW1, the thermal fuse Fl, the connection terminal T3, and the negative electrode of the secondary battery 6 is connected to the connection terminal T2 via the connection terminal T4. It is connected to the.
  • connection terminal T3 is connected to the power supply terminal of the comparator CMP1
  • the connection terminal T4 is connected to the ground terminal of the comparator CMP1, so that the power supply voltage for the operation of the comparator CMP1 is supplied from the secondary battery 6. ! / Speak.
  • a series circuit of the heater R2 and the diode D1 is connected in parallel with the bimethanol switch SW1.
  • the diode D1 is provided between the heater R2 and the connection terminal T1, and is forwardly directed in the direction in which the discharge current of the secondary battery 6 flows, that is, from the heater R2 to the connection terminal T1.
  • a transistor Q1 that opens and closes the connection between the connection point between the heater R2 and the diode D1 and the connection terminal T2 is provided.
  • connection terminal T3 is connected to the + terminal of the comparator CMP1 via the resistor R1
  • connection terminal T4 is connected to the negative terminal of the reference voltage source E1
  • the positive terminal of the reference voltage source E1 is one of the comparator CMP1.
  • the output terminal of comparator CMP1 is connected to the gate terminal of transistor Q1.
  • the reference voltage source E1 is a voltage generation circuit that outputs a reference voltage Vrefl that is a criterion for detecting overcharge of the secondary battery 6.
  • Vrefl is applied to the negative terminal of the comparator CMP1
  • the gate voltage of the transistor Q1 is raised to a high level by the comparator CMP1.
  • the transistor Q1 is turned on and the heater generates heat.
  • the comparator CMP1 has a voltage Vb near the reference voltage Vrefl.
  • a comparator with hysteresis in the input voltage is used.
  • the comparator CMP1, the resistor Rl, and the reference voltage source El are, for example, integrated and configured as an integrated circuit IC1.
  • the integrated circuit 1 and the transistor Q1 correspond to an example of a protection control unit.
  • FIG. 11 is an explanatory diagram for explaining the mechanical configuration of the protection circuit 5c shown in FIG.
  • FIG. 11 (a) is a diagram showing a wiring pattern for mounting each component of the protection circuit 5c.
  • FIG. 11B is a cross-sectional view showing an example of the mechanical configuration of the protection circuit 5c. Further, in FIG. 11, the mounting positions of the components are indicated by broken lines.
  • FIG. 11 (a) is a top view of the protection circuit 5 shown in FIG. 11 (b).
  • FIG. 12 (b) shows the same cross-sectional view as FIG. 11 (b).
  • the wiring pattern shown in Fig. 11 (a) is the inner surface of the case 31 of the external connection terminal unit 3, that is, the secondary housed in the container 2 when the external connection terminal unit 3 and the container 2 are combined.
  • the integrated circuit IC1, transistor Ql, heater R2, and diode D1 are fixed directly to the inner surface of the IC.
  • the protection circuit 5 can be configured without using a printed wiring board, the protection circuit 5 can be reduced in size by the thickness of the printed wiring board.
  • the wiring pattern P4 drawn from the top of the support member 32 is connected to a connection terminal T1 provided on the outer surface of the case 31 by, for example, a cylindrical metal member 34 that penetrates the case 31.
  • one end of the movable piece 35 constituting the bimetal switch SW1 is connected and fixed to the wiring pattern P4, for example, by spot welding, on the top of the support member 32.
  • a contact 36 is provided at the other end of the movable piece 35, and the contact 36 is in contact with the wiring pattern P 5 formed on the top of the support member 33.
  • a bimetal 37 is provided below the movable piece 35 and is laid in a bow shape between the support member 32 and the support member 33.
  • the bimetal 37 is warped in the opposite direction as shown in FIG. 13 to jump up the movable piece 35 and separate the contact point 36 from the wiring pattern P5.
  • the support members 32 and 33, the movable piece 35, the metal 37, and the wiring patterns P4 and P5 constitute a bimetal switch SW1.
  • a switch cover 38 for dust prevention and insulation is fixed so as to cover the bimetal switch SW1 and the diode D1 thus configured.
  • a substantially rectangular plate-shaped heater R2 is disposed below the bimetal 37. When the heater R2 generates heat, the bimetal 37 is heated.
  • the bimetal switch SW1 can be configured by using the support members 32 and 33 integrally formed with the case 31, and therefore, the cost can be reduced compared with the case of using the bimetal switch SW1 configured as an individual part. It becomes easy to reduce.
  • the bimetal switch SW1 is configured as an individual component, the bottom of the case is not necessary, and thus the size of the metal switch SW1 can be reduced.
  • the conductor leads P6 and P7 constituting the connection terminal of the thermal fuse F1 are, for example, wide plates.
  • the conductor leads P6 and P7 are bent so that the thermal fuse F1 and the conductor leads P6 and P7 are bent.
  • a thermal fuse F1 is attached so as to cover the integrated circuit IC1 and the transistor Q1.
  • the wiring patterns P5 and P8 provided on both sides of the integrated circuit IC1 and the transistor Q1 cross the integrated circuit IC1 and the transistor Q1 through the conductor lead P6, the thermal fuse F1, and the conductor lead P7. It is connected.
  • the thermal fuse Fl, the conductor leads P6, P7, and the sheet member 39 function as a cover that covers the integrated circuit I C1 and the transistor Q1, and in addition to the thermal fuse Fl, the conductor leads P6, P7, Compared with a case where a separate cover is provided, the mounting area of the temperature fuse F1 on the surface of the case 31 can be reduced, and the protection circuit 5 can be easily downsized.
  • the thermal fuse Fl, the conductor leads P6 and P7, and the sheet member 39 are used as jumper wirings for passing current between the wiring pattern P5 and the wiring pattern P8 across the integrated circuit IC1 and the transistor Q1. Therefore, the area occupied by the wiring pattern on the surface of the case 31 is reduced, and the protection circuit 5c can be easily downsized.
  • connection terminal T1 is provided with the connection terminal T1 attached by, for example, spot welding.
  • the conductive wiring material If the thermal fuse Fl and conductor leads P6 and P7 are attached after the external connection terminal unit 3 is heated to cure the conductive wiring material while attached on the printed wiring pattern, Even if the curing temperature of the conductive wiring material is higher than the operating temperature Tfusel of the thermal fuse F1, the thermal fuse F1 is not blown during manufacturing.
  • FIG. 14 is an explanatory diagram for explaining a state in which the container 2 and the external connection terminal unit 3 are combined. As shown in FIG. 14, when the bimetal switch SW1, the thermal fuse F1, the force vessel 2 and the external connection terminal unit 3 are combined, they are arranged close to the position facing the secondary battery 6 accommodated in the vessel 2. It is set up.
  • the voltage Vb is, for example, a maximum of 4.2 V in a normal state.
  • the reference voltage source E1 is set to output, for example, 4.3 V to the comparator CMP1 as the reference voltage Vrefl.
  • overcharge is detected by the comparator CMP1, and bimetal is detected by the heater R2. Since the bimetal switch SW1 is turned off by heating the switch SW1, the overcharge protection is performed only by the temperature switch connected in series with the secondary battery as shown in FIGS. 52 and 53, for example. However, the secondary battery 6 is overcharged, the characteristics of the secondary battery 6 are deteriorated, the secondary battery 6 is deteriorated, and the overcharge protection operation is not performed. The risk of causing expansion, deformation, or the like can be reduced.
  • the bimetal switch SW1 When the temperature of the bimetal switch SW1 reaches the operating temperature Tswl, the bimetal switch SW1 is turned off, the discharge current of the secondary battery 6 is cut off, and the secondary battery 6 is protected from the excessive discharge current. .
  • the discharge current of the secondary battery 6 is connected from the connection terminal T3 to the connection terminals Tl and T2 via the temperature fuse Fl, heater R2, diode Dl, and connection terminal T1. It flows to the load device (or the short-circuit failure part), and the heater R2 generates heat and heats the bimetal switch SW1.
  • the operating condition of the bimetal switch SW1 is set so as to be turned off before the thermal fuse F1, and the reset type thermal switch without blowing the thermal fuse F1, which is a non-reset type thermal switch.
  • the bimetal switch SW1 can protect the secondary battery 6 from excessive charging and excessive discharge current force.For example, the charger or load device power battery pack lc is removed and excessive charging or excessive discharge current is detected. After the cause of this is resolved, the battery pack lc can be used repeatedly without replacing the thermal fuse F1, and convenience can be improved.
  • the heater R2 generates heat due to the current flowing through the load device (not shown), and the heater R2 heats the metal switch SW1.
  • the off-state of the bimetal switch SW1 can be maintained until the load device that has caused the short-circuit failure is removed and the cause of the excessive discharge current is removed.
  • the bimetal switch SW1 is turned off and self-heating is stopped, so that the bimetal switch SW1 is turned on by natural cooling, and an excessive discharge current of the secondary battery 6 flows again through the bimetal switch SW1. It is possible to suppress the occurrence of chattering operation in which the bimetal switch SW1 is repeatedly turned on and off such that SW1 is turned off.
  • the protection circuit 1002 according to the background art shown in FIG. FET1006 that cuts off the discharge current, FET 1007 that cuts off the charging current, reference voltage source 1009 for detecting excessive discharge current, comparator 1111, resistor 1112, and on / off control of the two FET1006, 1007 Therefore, the protection circuit 5c can be simplified and the protection circuit 5c can be easily downsized.
  • the heater R2 cannot be heated when the secondary battery 6 is overcharged due to, for example, a failure of the integrated circuit IC1, the transistor Ql, the heater R2, or the like.
  • bimetal switch SW1 and thermal fuse F1 are heated. Is done.
  • the bimeter switch SW1 is turned off and the charging current is cut off, so even if the integrated circuit IC1, transistor Q1, heater R2, etc. fail.
  • the secondary battery 6 can be protected against overcharge.
  • the bimetal switch SW1 does not turn off even if the temperature of the nominal switch SW1 reaches the operating temperature Tswl.
  • the temperature fuse F1 is heated by heat generation and the temperature of the temperature fuse F1 reaches the operating temperature Tfusel, the temperature fuse F1 is blown and the charging current is cut off, so even if the bimetal switch SW1 fails, The secondary battery 6 can be protected from overcharge.
  • the thermal fuse F1 is disposed close to the integrated circuit IC1 and the transistor Q1, when the integrated circuit IC1 or the transistor Q1 generates excessive heat, the thermal fuse F1 is It becomes easy to cut off the charging / discharging current of the battery 6.
  • the wiring pattern constituting the protection circuit 5c is printed on the surface of the external connection terminal unit 3 facing the secondary battery 6 accommodated in the container 2, and the force protection is shown.
  • the wiring pattern constituting the circuit 5c is formed on the printed wiring board instead of being printed on the surface of the sealing portion.
  • the integrated circuit IC1, the transistor Ql, and the node constituting the protection circuit 5c are formed on the printed wiring board.
  • the support members 32 and 33 pass through the through-hole formed in the printed wiring board and move the movable piece 35 on the printed wiring board. Also, it may be configured to support the bimetal 37.
  • the support members 32 and 33 are not limited to an example in which the support members 32 and 33 are integrally formed with the case 31, and may be configured by embedding a cylindrical metal member in the case 31, for example. Further, the structure may be such that the temperature fuse F1 is not provided and the conductor lead P6 and the conductor lead P7 are short-circuited. Alternatively, the switch cover 38 and the sheet member 39 may be integrally formed as a single part.
  • the protection circuit 5c is not limited to the example in which the protection circuit 5c is configured to be incorporated in the battery pack lc.
  • the protection circuit 5c is incorporated in the load device and incorporated in the load device. It may be used as a protection circuit for the recharged secondary battery.
  • secondary batteries such as lithium ion secondary batteries, lithium polymer secondary batteries, nickel metal hydride secondary batteries, or nickel cadmium secondary batteries are discharged and the output voltage falls below a predetermined end-of-discharge voltage. If the battery continues to discharge after being reduced, the secondary battery may become overdischarged and the battery characteristics such as cycle life may deteriorate.
  • the output voltage between the connection terminals Tl and T2 is detected, and the output voltage between the connection terminals Tl and T2 falls below a predetermined end-of-discharge voltage.
  • FIG. 15 is a circuit diagram showing an example of the electrical configuration of battery pack Id according to Embodiment 5 of the present invention.
  • the battery pack Id shown in FIG. 15 differs from the battery pack lc shown in FIG. 10 in the configuration of the protection circuit 5c. That is, the protection circuit 5d shown in FIG. 15 has a series circuit force of the heater R3 (second heater) and the heater R4 (third heater) instead of the series circuit of the heater R2 and the diode D1. Connected in parallel.
  • the connection point T4 between the heater R3 and the heater R4 is connected to the connection terminal T4 via the transistor Q1.
  • FIG. 16 is an explanatory diagram showing an example of a configuration of a series circuit of the heater R3 and the heater R4 used in the protection circuit 5d shown in FIG.
  • the series circuit of the heater R3 and the heater R4 shown in FIG. 16 is configured using one thermistor 7.
  • the thermistor 7 is a PTC thermistor whose resistance value increases or decreases according to, for example, a positive temperature characteristic, that is, an increase or decrease in temperature.
  • the shape of the thermistor 7 is a square whose shape can physically determine the vertical and horizontal directions. It has a substantially rectangular shape such as a rectangle, or a plate shape such as an ellipse, a rhombus, or a circle with a chipped portion or a protrusion.
  • a groove 71 is formed on one surface of the thermistor 7 so as to divide one surface of the thermistor 7 into two regions.
  • first electrode 72 first electrode
  • second electrode second electrode
  • third electrode third electrode
  • the first electrode 72 and the third electrode 74 are used as connection terminals at both ends of the heater R3, and function as a partial force S heater R3 sandwiched between the first electrode 72 and the third electrode 74.
  • the third electrode 74 and the second electrode 73 are used as connection terminals at both ends of the heater R4, and function as a partial force S heater R4 sandwiched between the third electrode 74 and the second electrode 73.
  • the heater R3 and the heater R4 can be configured using one thermistor 7. Therefore, the heater R3 and the heater R4 are each protected by a single thermistor. It is possible to reduce the size and cost of the circuit 5d.
  • FIGS. 17 and 18 are explanatory diagrams for explaining the mechanical configuration of the protection circuit 5d shown in FIG.
  • FIG. 17 (a) is a diagram showing a wiring pattern for attaching each component of the protection circuit 5d
  • FIG. 17 (b) is a cross-sectional view showing an example of the mechanical configuration of the protection circuit 5d.
  • FIG. 18 (a) is a top view of the protection circuit 5d shown in FIG. 17 (b).
  • FIG. 18 (b) shows the same cross-sectional view as FIG. 17 (b).
  • the protection circuit 5d shown in FIGS. 17 and 18 differs from the protection circuit 5c shown in FIGS. 11 and 12 in the method of attaching the thermistor 7 to the case 31 on which the wiring pattern is formed.
  • the second electrode 73 is connected to the wiring pattern P4 connected to the connection terminal T1
  • the first electrode 72 is connected to the wiring pattern P5 connecting the bimetal switch SW1 and the thermal fuse F1. It has come to be.
  • the thermistor 7 has a disk shape. Since thermistor 7 has a square shape, it is easy to match the direction of the groove 71 with the direction of the space between the wiring pattern P4 and the wiring pattern P5, and in the assembly process of the protection circuit 5d Workability can be improved.
  • the groove 71a may be formed in an approximately cross shape that divides one surface of the thermistor 7a into four regions. Then, as shown in FIG. 20, two adjacent areas in the four areas divided by the groove 71a are connected to the wiring pattern P5. Accordingly, the first electrode 72 may be used, and the other region excluding the two regions used as the first electrode 72 may be used as the second electrode 73.
  • the third electrode 74 in the thermistor 7 (7a) and the wiring pattern P9 connected to the drain of the transistor Q1 are, for example, in the air using a jumper wire 75 as shown in FIG. It is connected.
  • the other configuration is the same as that of the protection circuit 5c shown in Figs. 11 and 12, and thus the description thereof will be omitted.
  • the operation of the protection circuit 5d shown in Fig. 15 will be described. First, the overcharge protection operation by the protection circuit 5d will be described. First, when the bimetal switch SW1 is turned on and a charging device (not shown) is connected to the connection terminals Tl and T2, and the voltage Vc is applied between the connection terminals Tl and T2, the bimetal switch SW1, The secondary battery 6 is charged with the voltage Vb through the thermal fuse Fl and the connection terminal T3.
  • the voltage Vb is, for example, a maximum of 4.2V in a normal state.
  • the reference voltage source E1 is set to output, for example, 4.3 V to the comparator CMP1 as the reference voltage Vrefl.
  • the transistor CMP1 is turned on by the comparator CMP1 and the heater is connected from the connection terminal T1. While current flows through R4, current flows from the secondary battery 6 to the heater R3 via the connection terminal T3 and the thermal fuse F1, and the heaters R3 and R4 generate heat to heat the bimetal switch SW1. When the temperature of the bimetal switch SW1 reaches the operating temperature Tswl, the bimetal switch SW1 is turned off, the charging current is interrupted, and the secondary battery 6 is protected from overcharging.
  • the bimetal switch SW1 is turned off, the current supply to the heaters R3 and R4 continues, and the bimetal switch SW1 is continuously heated by the heaters R3 and R4.
  • the switch SWl is maintained off and the overcharge protection operation continues.
  • the position of the groove 71 in the thermistor 7 is adjusted so that the resistance value of the heater R3 is greater than the resistance value of the heater R4, or one heater is used as each of the heaters R3 and R4.
  • the resistance value of the secondary battery 6 is reduced when the transistor Q1 is turned on by making the resistance value of the heater R4 larger than the resistance value of the heater R4, and is mainly connected to the connection terminals Tl and T2.
  • Charger power Heater R4 is heated by the supplied current, and the bi-directional switch SW1 can be maintained in the off state.
  • the bimetal switch SW1 is turned off with the overcharge protection operation, the secondary battery 6 is discharged, the output voltage of the secondary battery 6 is lowered, and the transistor CMP1 is turned off by the comparator CMP1. Even in this case, since the current does not flow to the heater and the bimetal switch SW1 is prevented from turning on, the charging operation of the rechargeable battery 6 causes the occurrence of a chattering operation in which the bimetal switch SW1 repeatedly turns on and off. Can be suppressed.
  • the bimetal switch SW1 When the temperature of the bimetal switch SW1 reaches the operating temperature Tswl, the bimetal switch SW1 is turned off, the discharge current of the secondary battery 6 is cut off, and the secondary battery 6 is protected from the excessive discharge current. .
  • the bimetal switch SW1 When the bimetal switch SW1 is turned off, the discharge current of the secondary battery 6 is not connected to the connection terminals Tl, T2 from the connection terminal T3 via the temperature fuse Fl, heater R3, heater R4, and connection terminal Tl.
  • the heater R3, R4 generates heat and heats the bimetal switch SW1.
  • the heaters R3 and R4 generate heat due to the current flowing through the load device (not shown), and the bimetal switch SW1 is heated by the heaters R3 and R4.
  • the off-state of the bimetal switch SW1 can be maintained until the cause of the excessive discharge current is removed by removing the load device or the like that has caused the short circuit failure.
  • FIG. 21 is a circuit diagram showing an example of the electrical configuration of battery pack le according to Embodiment 6 of the present invention.
  • the battery pack le shown in FIG. 21 differs from the battery pack Id shown in FIG. 15 in the configuration of the protection circuit 5e. That is, in the protection circuit 5e shown in FIG. 21, the heater R3 (first heater) is connected in parallel with the bimetal switch SW1.
  • FIG. 22 and FIG. 23 are explanatory diagrams for explaining the mechanical configuration of the protection circuit 5e shown in FIG.
  • FIG. 22 (a) is a diagram showing a wiring pattern for attaching each component of the protection circuit 5e
  • FIG. 22 (b) is a cross-sectional view showing an example of the mechanical configuration of the protection circuit 5e.
  • the component mounting positions are indicated by broken lines.
  • FIG. 23 (a) is a top view of the protection circuit 5e shown in FIG. 22 (b).
  • FIG. 23 (b) shows the same cross-sectional view as FIG. 22 (b).
  • the protection circuit 5e shown in FIGS. 22 and 23 is different from the protection circuit 5d shown in FIGS. 17 and 18 in the method of attaching the thermistor 7a to the case 31 on which the wiring pattern is formed.
  • the thermistor 7a two regions adjacent to each other in the four regions divided by the groove 71a are connected to the wiring pattern P5 that connects the bimetal switch SW1 and the thermal fuse F1 as the first electrode 72. Other region forces except for the two regions used as one electrode 72
  • the second electrode 73 is connected to the wiring pattern P9 connected to the drain of the transistor Q1.
  • the third electrode 74 in the thermistor 7a and the wiring pattern P4 connected to the connection terminal T3 are connected in the air using a jumper wire 76, for example, as shown in FIG.
  • the other configuration is the same as that of the protection circuit 5d shown in Figs. 15, 17, and 18, and thus the description thereof is omitted.
  • the operation of the protection circuit 5e shown in Fig. 21 will be described. First, the overcharge protection operation by the protection circuit 5e will be described. First, when a charging device (not shown) is connected to the connection terminals Tl and T2 with the bimetal switch SW1 turned on, and the voltage Vc is applied between the connection terminals Tl and T2 from the charging device, the nometal switch SW1 The secondary battery 6 is charged with the voltage Vb through the thermal fuse F1 and the connection terminal T3.
  • the voltage Vb is, for example, a maximum of 4.2 V in a normal state.
  • the reference voltage source E1 is set to output, for example, 4.3 V to the comparator CMP1 as the reference voltage Vrefl.
  • the charging device fails or the output voltage accuracy of the charging device is low, and the voltage Vb exceeds 4.3 V, the transistor CMP1 is turned on by the comparator CMP1, and the heater is connected from the connection terminal T1. Current flows through R4, heater R4 generates heat, and bimetal switch SW1 is heated. When the temperature of the bimetal switch SW1 reaches the operating temperature Tswl, the bimetal switch SW1 is turned off, the charging current is cut off, and the secondary battery 6 is overcharged. Power protected.
  • the output voltage of the unillustrated charging device connected to the connection terminal T1 is higher than the output voltage of the secondary battery 6, even if the transistor Q1 is turned on, the current flows from the secondary battery 6 to the heater R3. Since the secondary battery 6 that does not flow is not discharged, for example, the bimetal switch SW1 is turned off in association with the overcharge protection operation, and the secondary battery 6 is discharged, so that the output voltage of the secondary battery 6 decreases.
  • the transistor Q1 is turned off by the comparator CMP1
  • the protection operation by the protection circuit 5e when the discharge current from the secondary battery 6 becomes excessive will be described.
  • the bimetal switch SW1 is on, for example, a metal piece contacts the connection terminals Tl and T2, or a load device such as a mobile phone (not shown) connected to the connection terminals Tl and T2 breaks down.
  • a load device such as a mobile phone (not shown) connected to the connection terminals Tl and T2 breaks down.
  • the connection terminals Tl and T2 are short-circuited or the resistance value between the connection terminals Tl and T2 is low, the current discharged from the secondary battery 6 through the thermal fuse F1 and the bimetal switch SW1 is reduced. Increased, the contact resistance of the bimetal switch SW1 heats the metal switch SW1.
  • the bimetal switch SW1 When the temperature of the bimetal switch SW1 reaches the operating temperature Tswl, the bimetal switch SW1 is turned off, the discharge current of the secondary battery 6 is cut off, and the secondary battery 6 is protected from the excessive discharge current. .
  • the bimetal switch SW1 When the bimetal switch SW1 is turned off, the discharge current of the secondary battery 6 is connected to the connection terminals Tl and T2 from the connection terminal T3 via the temperature fuse Fl, heater R3, and connection terminal Tl. Heat flows to the device (or the short-circuit failure part), the heater R3 generates heat, and the bimetal switch SW1 is heated.
  • the heater R3 generates heat due to the current flowing through the load device (not shown), and the heater R3 causes the metal switch S to be heated. Since Wl is heated, for example, the off-state of bimetal switch SW1 can be maintained until the cause of the excessive discharge current is removed by removing the load device that has caused the short circuit failure.
  • the protection circuit 5e shown in Fig. 21 is supplied from a charging device (not shown) connected to the connection terminals Tl and T2 when protecting the secondary battery 6 from overcharging.
  • the heater R4 is heated by the generated current and the secondary battery 6 is protected from the excessive discharge current
  • the heater R3 is heated by the current supplied from the secondary battery 6.
  • the heat value of the heater R4 during overcharge protection is equal to the heat value of the heater R3 during protection operation from excessive discharge current. It is desirable that
  • Vcmax X Vcmax ⁇ R4 Vb X Vb ⁇ R3 (2)
  • the heater R3 and the heater R4 may be configured by individual thermistors, and the resistance value of the heater R3 and the resistance value of the heater R4 may be set so as to satisfy the above equation (2).
  • the resistance value of the heater R3 and the resistance value of the heater R4 may be set to satisfy the above equation (2)! / ⁇ .
  • a diode D2 (second rectifier element) that is a rectifier element is provided between the temperature fuse F1 and the heater R3 in the protective circuit 5e shown in FIG. 21 as in the protective circuit 5f shown in FIG. It may be provided.
  • the anode of the diode D2 is connected to the connection terminal T3 via the thermal fuse F1
  • the force sword of the diode D2 is connected to the connection terminal T3 via the heater R3, that is, connected to the connection terminal T3.
  • the secondary battery 6 is connected so as to be forward in the direction in which the discharge current flows.
  • the bimetal switch SW1 is used to protect the secondary battery 6 from overcharging by the unillustrated charging device connected to the connection terminals Tl and T2.
  • the diode D2 can prevent the charging voltage from being applied from the connection terminal T3 to the secondary battery 6 via the heater R3, thus improving the protection effect against overcharging of the secondary battery 6. Can be made.
  • FIG. 25 is a circuit diagram showing an example of the electrical configuration of battery pack lg according to Embodiment 7 of the present invention.
  • the battery pack lg shown in FIG. 25 differs from the battery pack le shown in FIG. 21 in the configuration of the protection circuit 5g. That is, the protection circuit 5g shown in FIG. 25 is different in that it further includes a thermistor R5 (detection unit), a resistor R10, and a reference voltage source E2, and an integrated circuit ICla instead of the integrated circuit IC1.
  • the thermistor R5 is a thermistor whose resistance value decreases as the temperature rises, and is used as a temperature sensor, for example.
  • the thermistor R5 is arranged so as to be close to or in contact with the secondary battery 6 via an insulator, and generates a resistance value corresponding to the temperature of the secondary battery 6.
  • the series circuit of the thermistor R5 and the resistor R10 is connected between the two poles of the reference voltage source 2, and is connected to the positive terminal of the comparator CMP 1 connecting point force between the thermistor R5 and the resistor R10!
  • the reference voltage source E2 is a constant voltage source that outputs a reference voltage for acquiring the resistance value of the thermistor R5 as a voltage.
  • the resistance value of the thermistor R5 that is, the temperature of the secondary battery 6 is input to the + terminal of the comparator CMP1.
  • the output voltage of the reference voltage source E2 is the connection point between the thermistor R5 and the resistor R10 when, for example, the temperature of the secondary battery 6 reaches a temperature that adversely affects the characteristics of the secondary battery 6. Voltage value that exceeds the reference voltage Vrefl is set in advance.
  • the comparator CMP1, the reference voltage sources El and E2, and the resistor RIO are integrated into an integrated circuit ICla.
  • the operation of the protection circuit 5g configured as described above will be described.
  • the bi-directional switch SW1 is turned on and a charging device (not shown) is connected to the connection terminals Tl and T2 and the secondary battery 6 is overcharged, the temperature of the secondary battery 6 rises.
  • the resistance value of the thermistor R5 decreases, and the voltage at the connection point between the thermistor R5 and the resistor R10 increases.
  • the voltage at the connection point between thermistor R5 and resistor R10 rises and exceeds the reference voltage Vrefl, that is, when the temperature of the secondary battery 6 reaches a temperature that adversely affects the characteristics of the secondary battery 6, for example.
  • the transistor CMP1 is turned on by the comparator CMP1, current flows from the connection terminal T1 to the heater R4, and the bimetal switch SW1 is heated.
  • the transistor CMP1 is turned on by the comparator CMP1, and the heater R3 is connected from the secondary battery 6 through the connection terminal T3 and the thermal fuse F1. , Current flows through R4, and bimetal switch SW1 is heated.
  • the bimetal switch SW1 since the bimetal switch SW1 is turned off and self-heat is not generated, the bimetal switch SW1 is turned on by natural cooling, and the charge / discharge current is again applied to the secondary battery 6 by the bimetal switch.
  • the chattering operation in which the bimetal switch SW1 is repeatedly turned on and off can be suppressed, for example, the bimetal switch SW1 is turned off after flowing through the switch SW1.
  • FIG. 26 shows a circuit diagram of a battery pack lh according to the eighth embodiment of the present invention.
  • the battery pack lh includes a protection circuit 5h and a secondary battery 6.
  • the secondary battery 6 is a rechargeable secondary battery such as a lithium ion secondary battery, a lithium polymer secondary battery, a nickel hydride secondary battery, or a nickel cadmium secondary battery.
  • the protection circuit 5h is a circuit that protects the secondary battery 6 from overcharging and overcurrent.
  • the protection circuit 5h is disposed inside the external terminal connection unit 3, and includes connection terminals Tl to ⁇ 4 (first to fourth connection terminals), bimetal switch (thermal switch) SW1, overcharge protection unit (First overcharge protection unit) 51, chattering prevention unit (second overcharge protection unit) 52, heater R21, transistor (switching unit) Ql, and OR gate (switching unit) G1.
  • the connection terminal T1 and the connection terminal T2 are connection terminals for connecting a charging device (not shown) that charges the secondary battery 6 and a load device that is driven by a discharge current from Z or the secondary battery 6.
  • the load device is various electric devices driven by a battery, such as a mobile phone, a digital camera, a video camera, a portable personal computer, and an electric tool.
  • connection terminal T3 is connected to the positive electrode of the secondary battery 6, and the connection terminal T4 is connected to the negative electrode of the secondary battery 6.
  • the bimetal switch SW1 is connected between the connection terminals T1 and T3.
  • One end of the heater R21 is connected to the connection terminal T3, and the other end is connected to the drain of the transistor Q1.
  • the transistor Q1 has a gate connected to the output terminal of the OR gate G1, and a source connected to the connection terminals T2 and T4.
  • the overcharge protection unit 51 includes a comparator A1 and a reference voltage source E21
  • the chattering prevention unit 52 includes a comparator A2 and a reference voltage source E22.
  • Comparator A1 The terminal is connected to the positive terminal of the reference voltage source E21, the + terminal is connected to the connection terminal T3, the output terminal is connected to the input terminal of the OR gate G1, the power supply terminal is connected to the connection terminal T3, and the ground terminal Is connected to connection terminals T2 and T4.
  • the negative terminal of the reference voltage source E21 is connected to connection terminals T2 and T4.
  • the + terminal is connected to the connection terminal T1
  • the-terminal is connected to the positive terminal of the reference voltage source E22
  • the output terminal is connected to the input terminal of the OR gate G1
  • the power supply terminal is connected to the connection terminal T3.
  • the ground terminal is connected to connection terminals T2 and T4.
  • the negative terminal of the reference voltage source E22 is connected to the connection terminals T2 and T4.
  • the nometal switch SW1 is a thermal switch that is turned off when it exceeds a preset operating temperature Tswl.
  • the operating temperature Tswl is, for example, a temperature range that does not deteriorate the characteristics of the secondary battery 6.
  • the maximum temperature at is set.
  • the bimetal switch SW1 is a return-type heat sensitive switch that turns off when the temperature drops after the temperature rises and turns off.
  • a switch using a shape memory alloy for example, those described in Japanese Utility Model Publication Nos. 7-4770 and 11-224579
  • a switch using a shape memory resin instead of a bimetal switch. Can be used in the same way.
  • Shape memory alloys include those that have a restoring force based on thermoelastic martensitic transformation and reverse transformation, such as nickel titanium alloy and copper-zinc aluminum alloy.
  • the shape change temperature range in which the deformed shape changes to the restored shape can be changed by appropriately selecting the composition of the shape memory alloy or changing the heat treatment process.
  • shape memory resin a resin such as polyester, polyurethane, styrene butadiene, trans polyisoprene in which a stationary phase and a reversible phase that are cross-linked or partially crystallized are mixed can be used.
  • the heater R1 for example, a positive temperature characteristic, that is, a PTC (Positive Temperature Coefficient) thermistor in which the resistance value increases or decreases with an increase or decrease in temperature is used.
  • a PTC Positive Temperature Coefficient
  • the final temperature is a temperature that exceeds the operating temperature Tswl of the bimetal switch SW1, and is set to a temperature that does not damage the secondary battery 6 or the protection circuit 5h. As a result, the secondary battery 6 and the protection circuit 5h can be prevented from being damaged by the heat generated by the heater R21.
  • the overcharge protection unit 51 detects the overcharge of the secondary battery 6, cuts off the charging current to the secondary battery 6, and puts the secondary battery 6 into the overcharge protection state. Chattering prevention unit 52 prevents chattering of bimetal switch SW1 that occurs in the overcharge protection state.
  • the reference voltage source E21 is a voltage generation circuit that outputs a reference voltage (overcharge protection voltage) Vrefl that is a determination criterion for detecting overcharge of the secondary battery 6.
  • the reference voltage source E22 is a voltage generation circuit that outputs a reference voltage (overcharge protection voltage) Vref 2 for preventing chattering of the bimetal switch SW1.
  • the comparator A1 outputs a high level signal when the reference voltage Vrefl is applied to one terminal and the voltage between the connection terminals T3 and T4, that is, the voltage Vb of the secondary battery 6, exceeds the reference voltage Vrefl.
  • the voltage Vb is lower than the reference voltage Vref 1
  • a low level signal is output.
  • the reference voltage Vref 2 is applied to one terminal of the comparator A2, and the voltage between the connection terminals Tl and T2, that is, the voltage Vc of the charging device or load device connected to the connection terminals Tl and T2, is the reference voltage Vref2.
  • the voltage exceeds, a high level signal is output.
  • the voltage Vc is lower than the reference voltage V ref2, a low level signal is output.
  • comparators having hysteresis in the input voltage are employed as the comparators Al and A2 in order to reduce the influence of noise.
  • OR gate G1 outputs a high level signal to the gate of transistor Q1 and outputs a low level from both comparators when either of comparators Al and A2 outputs a high level signal. When the signal is output, a low level signal is output to the gate of transistor Q1.
  • the transistor Q 1 uses an n-channel FET (field effect transistor) and is an OR gate.
  • the heater R21 is energized, the heater R21 is heated, the bimetal switch SW1 is turned off, and a low level signal is output from the OR gate G1. Turn off to stop energization of heater R21, stop heating of heater R21, and turn on bimetal switch SW1.
  • the operation of the protection circuit 5h will be described.
  • the overcharge protection operation by the protection circuit 5h will be described.
  • a charging device (not shown) is connected to the connection terminals Tl and T2 and the voltage Vc is applied between the connection terminals Tl and T2, the voltage Vc and Vb are both lower than the reference voltages Vrefl and Vref2.
  • the bimetal switch SW1 is turned on and the secondary battery 6 is charged.
  • the voltage Vc is, for example, a maximum of 4.2 V when it is normal.
  • the protection circuit 5h of the present embodiment is provided with the chattering prevention unit 52 while applying a force.
  • overcurrent protection by the protection circuit 5h will be described.
  • the bimetal switch SW1 when the bimetal switch SW1 is on, for example, a metal piece comes into contact with the connection terminals Tl and T2, or a load device such as a mobile phone (not shown) connected to the connection terminals Tl and T2 breaks down. If the connection terminals Tl and T2 are short-circuited or the resistance value between the connection terminals Tl and T2 becomes low resistance, an overcurrent flows from the secondary battery 6 through the bimetal switch SW1. The bimetal switch SW1 is heated by contact resistance when an overcurrent flows.
  • the bimetal switch SW1 is turned off to cut off the discharge current of the secondary battery 6, the protection circuit 5h is in the overcurrent protection state, and the secondary battery 6 is overcurrent. Protected from.
  • the overcurrent protection state continues, the outputs of the comparators Al and A2 are both low, and the heating of the heater R21 is stopped, so that the bimetal switch SW1 is naturally cooled.
  • the bimetal switch SW1 becomes lower than the operating temperature Tswl, it is turned on again, and the protection circuit 5h returns from the overcurrent protection state to the normal state.
  • the secondary battery 6 can be protected from overcharging and overcurrent using the bimetal switch SW1, which is a thermal switch.
  • the bimetal switch SW1 which is a thermal switch.
  • the FET 1006 that cuts off the discharging current the FET 1007 that cuts off the charging current
  • the reference voltage source 1009 for detecting the overcurrent the comparator 1011
  • the resistor 1112 The logic circuit 1013 for controlling on / off of the two FETs 1006 and 1007 is not required, the circuit of the protection circuit 5h can be simplified, and the protection circuit 5h can be easily downsized.
  • the secondary battery 1022 More accurate detection of overcharge than when using bimetal switch 1023 or PTC element 1032 connected in series
  • the secondary battery 6 is overcharged without the overcharge protection operation being performed, the characteristics of the secondary battery 6 are deteriorated, or the secondary battery 6 is expanded or deformed. It can be reduced.
  • the charging device is continuously connected in the overcharge protection state, the voltage Vc between the connection terminals Tl and T2 exceeds the reference voltage Vref2, and the voltage Vb is the reference voltage. Since the transistor Q1 is continuously turned on even when Vrefl or less, the heating of the metal switch SW1 is continued, and the bimetal switch SW1 is kept in the off state, thereby preventing chattering of the metal switch SW1. It is possible to prevent deterioration of the bimetal switch SW1.
  • the heater R21 is used.
  • the overcharge protection unit 51, the chattering prevention unit 52, the OR gate Gl, and the transistor Q1 are integrated circuits.
  • the metal switch SW1 may be heated using the heat of the integrated circuit generated when 1 is turned on. In this case, the heater R21 is unnecessary, and the number of parts can be reduced.
  • FIG. 27 shows a circuit diagram of a battery pack li according to the ninth embodiment.
  • the protection circuit 5i of the ninth embodiment is characterized in that, in the protection circuit 5h of the eighth embodiment, the chattering prevention unit 52 is omitted, and a short-circuit protection unit 53 and a resistor R22 are provided. Note that the same reference numerals in the ninth embodiment denote the same parts as those in the eighth embodiment, and a description thereof will be omitted.
  • the short-circuit protection unit 53 includes a comparator A3 and a reference voltage source E23.
  • the comparator A3 has one terminal connected to the connection terminal T1, the + terminal connected to the reference voltage source E23, the output terminal connected to the input terminal of the OR gate G1, and the power supply terminal connected to the connection terminal T3.
  • the ground terminal is connected to the connection terminals T2 and T4.
  • the reference voltage source E23 has a positive electrode connected to the connection terminal T3 and a negative electrode connected to the + terminal of the comparator A3. Resistor R22 is connected in parallel with bimetal switch SW1! [0217]
  • the comparator A3 detects whether or not the voltage Vb of the secondary battery 6 exceeds the voltage obtained by adding the voltage Vc between the connection terminals Tl and T2 and the reference voltage Vref3, and the voltage Vb is the reference voltage (overcurrent). If the voltage exceeds the sum of the protective voltage and the voltage! ⁇ +), A load that causes an overcurrent is connected to the connection terminals Tl and T2 in the overcurrent protection state, or a short circuit occurs. It is determined that the signal has been received, and a high level signal is output.
  • the comparator A3 is a comparator having hysteresis in the input voltage, like the comparators Al and A2.
  • IV is adopted as the reference voltage Vref 3. That is, when the voltage obtained by subtracting the voltage Va from the voltage Vb exceeds IV, a load that causes an overcurrent is connected or short-circuited to the connection terminals Tl and T2 in the overcurrent protection state. It is determined that
  • the protection circuit 5i of the present embodiment includes the short-circuit protection unit 53 while applying a force. Therefore, if the connection terminals Tl and T2 continue to be short-circuited in the overcurrent protection state, the voltage Vb exceeds the sum of the voltage Vc and the reference voltage Vref3 in the overcurrent protection state. A high level signal is output, the transistor Q1 is turned on, the resistor R1 continues to generate heat, the bimetal switch SW1 is continuously heated, and the OFF state continues. This prevents chattering of the bimetal switch SW1 caused by continued short-circuiting of the connection terminals Tl and T2 in the overcurrent protection state, and also prevents overcurrent when the nometal switch SW1 is turned on by chattering. Prevent the flow Can be stopped.
  • the secondary battery 6 can be protected from overcharge and overcurrent, like the protection circuit 5h according to the eighth embodiment.
  • the short-circuit protection unit 53 since the short-circuit protection unit 53 is provided, chattering that occurs in the overcurrent protection state can be prevented. Therefore, deterioration of the bimetal switch SW1 can be prevented.
  • the heater R1 is used, but is not limited to this.
  • the overcharge protection unit 51, the short circuit protection unit 53, the OR gate Gl, the transistor Ql, and the resistor R22 are integrated circuits.
  • the bimetal switch SW1 may be heated mainly by utilizing the heat of the integrated circuit caused by the transistor Q1 being turned on. In this case, the heater R21 is unnecessary and the number of parts can be reduced.
  • the external configuration of the battery pack lj according to Embodiment 10 is the same as that of battery pack 1 shown in FIG.
  • FIG. 28 shows a circuit diagram of the battery pack lj according to the tenth embodiment.
  • the protection circuit according to the tenth embodiment 3 ⁇ 4 is further provided with a short-circuit protection unit 53 for the protection circuit 5h according to the eighth embodiment, that is, both the chattering prevention unit 52 and the short-circuit protection unit 53 are provided. It is said.
  • comparators A1 to A3 are connected to the OR gate G1, when a high level signal is output from any of the comparators A1 to A3, the transistor Star Ql turns on, heater R21 generates heat, and bimetal switch SW1 turns off.
  • the overcharge protection unit 51 and the chattering prevention unit 52 are provided, in addition to being able to achieve the same effects as in the eighth embodiment, Since the short circuit protection unit 53 is provided, the same effects as those of the ninth embodiment can be obtained.
  • the heater R21 is used, but is not limited to this.
  • the overcharge protection unit 51, the chattering prevention unit 52, the short-circuit protection unit 53, the OR gate Gl, the transistor Ql, and the resistor R22 are included.
  • the bimetal switch SW1 may be heated by utilizing the heat of the integrated circuit mainly caused by the transistor Q1 being turned on. In this case, the heater R21 is unnecessary and the number of parts can be reduced.
  • the external configuration of the battery pack lk according to the eleventh embodiment is the same as that of the battery pack 1 shown in FIG.
  • FIG. 29 shows a circuit diagram of the battery pack lk according to the eleventh embodiment.
  • the battery pack lk according to the eleventh embodiment is characterized in that the battery pack lk according to the tenth embodiment further includes a temperature control unit 54 and an AND gate G2.
  • the temperature control unit 54 includes a temperature sensor Sl, a comparator A4, a resistor R23, and a reference voltage source E24.
  • comparator A4 One terminal of comparator A4 is connected to connection terminal T3 via temperature sensor S1, its + terminal is connected to the positive terminal of reference voltage source E24, its output terminal is connected to the input terminal of AND gate G2, The supply terminal is connected to connection terminal T3, and the ground terminal is connected to connection terminals T2 and T4.
  • One end of the resistor R23 is connected to the connection terminals T2 and T4, and the other end is connected to the negative terminal of the comparator A4.
  • the negative terminal of the reference voltage source E24 is connected to the connection terminals T2 and T4.
  • the output terminal of the OR gate G1 is connected to the AND gate G2.
  • Temperature sensor S1 employs a thermistor with negative characteristics, and the resistance decreases as the temperature of heater R21 rises.
  • the reference voltage source E24 is a voltage generation circuit that outputs a reference voltage Vref4 for detecting a predetermined upper limit temperature of the heater R21. This upper limit temperature is higher than the operating temperature Tswl of the bimeter switch SW1.
  • the reference voltage Vref4 is the heater R21 When the temperature of the capacitor exceeds the upper limit temperature, a value is set so that the + terminal voltage of comparator A4 is less than the voltage of one terminal! Speak.
  • Comparator A4 has a bimetal switch SW1 that exceeds the upper limit temperature and the voltage at one terminal is
  • comparator A4 employs a comparator having hysteresis, similar to the comparators A1 to A3.
  • the temperature protection operation of the protection circuit 5k will be described. For example, if the voltage control cannot be performed because the charging device (not shown) fails, the voltage Vb exceeds the reference voltage Vrefl. Then, a high level signal is output from the comparator A1, and a high level signal is output from the OR gate G1. At this time, the temperature of the bimetal switch SW1 has reached the maximum temperature! Because of this, a high level signal is output from the comparator A4!
  • the temperature of the heater R21 further increases, and the resistance of the temperature sensor S1 decreases accordingly.
  • the comparator A4 outputs a low level signal, the transistor Q1 is turned off, and the heater R21 stops generating heat.
  • the bimetal switch SW1 is prevented from being heated to a temperature higher than the upper limit temperature, and contact welding is prevented.
  • the heater R21 is used, but is not limited to this.
  • the gate G2, transistor Ql, resistor R22, and temperature sensor SI are integrated circuits, and the bimetal switch SW1 is heated by using the heat of the integrated circuit that is mainly generated when the transistor Q1 is turned on. Also good. In this case, heater R21 is unnecessary and the number of parts is reduced. Can be planned.
  • FIG. 30 shows a circuit diagram of battery pack 11 according to the twelfth embodiment.
  • the battery pack 11 according to the twelfth embodiment omits the chattering prevention unit 52 from the protection circuit 5h of the eighth embodiment, adopts an AND gate G2 instead of the OR gate G1, and has a temperature fuse Fl and a temperature control unit 54d. , And an upper limit temperature changing unit 55.
  • the temperature control unit 54d includes two resistors R24 and R25 connected in series to the temperature control unit 54 of the eleventh embodiment instead of the resistor R23, and when the heater R21 reaches the upper limit temperature, Stop energizing the R21.
  • the upper limit temperature changing unit 55 includes a comparator A5, a reference voltage source E 25, and a transistor Q2, and changes the upper limit temperature of the heater R21. Resistor R24 and resistor R25 are set so that the sum of the resistance values is equal to the resistance value of resistor R23 of protection circuit 5k.
  • the + terminal and the power supply terminal are connected to the connection terminal T3 through the thermal fuse F1, one terminal is connected to the positive terminal of the reference voltage source E25, and the output terminal is connected to the gate of the transistor Q2.
  • Connected and ground terminal is connected to connection terminals T2 and T4.
  • the negative terminal of the reference voltage source E25 is connected to the connection terminals T2 and T4.
  • Transistor Q2 is an n-channel FET and is connected in parallel with resistor R25!
  • the reference voltage source E25 applies the reference voltage (second overcharge protection voltage) Vref5 to one terminal of the comparator A5.
  • the reference voltage Vref5 is set to a value larger than the reference voltage Vrefl.
  • a comparator having hysteresis is adopted as in the comparators A1 to A4.
  • the thermal fuse F1 has the same configuration as that of the thermal fuse F1 of the first embodiment, and a description thereof will be omitted.
  • the protection circuit 51 is in the overcharge protection state in the same manner as the protection circuit 5k. If the overcharge protection state continues, the temperature of the heater R21 further increases, and the resistance of the temperature sensor S1 decreases accordingly. The maximum temperature Th of Talswitch SW1 is reached. Comparator A4 then outputs a low level signal, transistor Q1 is turned off, and heater R21 stops generating heat. This prevents heating above the upper limit temperature Th and prevents contact welding.
  • the comparator A1 outputs a high level signal.
  • the transistor Q1 is turned on, the heater R21 generates heat, and the bimetal switch SW1 is heated again.
  • the upper limit temperature of the heater R21 becomes higher than the operating temperature Tfusel of the thermal fuse F1.
  • the thermal fuse F1 blows and stops charging the secondary battery 6.
  • the protection circuit 51 since the temperature control unit 54d is provided, the temperature range force at which the heater R21 heats the bimetal switch SW1.
  • the operating temperature Tfuse higher than the Tswl or lower. Therefore, welding of the bimetal switch SW1 contacts can be prevented.
  • the upper temperature change unit 55 since the upper temperature change unit 55 is provided, the contact of the bi-directional switch SW1 is welded, the overcharge of the secondary battery 6 continues, and when the voltage Vb exceeds the reference voltage Vref5, the transistor Q2 is turned on, The upper limit temperature of heater R21 is higher than the operating temperature Tfusel.
  • the temperature of the heater R21 further rises, reaches the operating temperature Tfusel, and melts the thermal fuse F1, so the secondary battery 6 is overcharged even when the contact point of the bimetal switch SW1 is welded. It can be protected.
  • the heater R21 is used, but is not limited to this.
  • the sensor S1 may be an integrated circuit, and the bimetal switch SW1 may be heated mainly using the heat of the integrated circuit that is caused by the transistor Q1 being turned on. In this case, heater R21 Is eliminated, and the number of parts can be reduced. Furthermore, in this case, it is preferable to configure the battery pack 11 as shown in FIGS.
  • FIGS. 33 to 36 are exploded configuration diagrams of the battery pack 11 when the protection circuit 51 of the twelfth embodiment is an integrated circuit, where (a) is a top view and (b) is a side view. The figure is shown.
  • the battery pack 11 is composed of a frame body 110 integrally formed of an insulating material such as synthetic resin or ceramics, a first wiring conductor 120 formed of a thin metal plate, and a thin metal plate.
  • the formed second wiring conductor 130, bimetal switch 140 (SW 1), cover body 150 covering bimetal switch 140, and wiring board 160 are provided.
  • the frame body 110 includes a first support member 111, a second support member 112 disposed to face the first support member 111 at a predetermined interval, and the first support member 111 and the second support member 112. And a connecting member 113 for connecting the two.
  • a space is provided between the wiring board 160 and the connecting member 113, and the integrated circuit IC is disposed in this space portion.
  • the first wiring conductor 120 is disposed on the first support member 111.
  • the second wiring conductor 130 is disposed on the second support member 112.
  • the second wiring conductor 130 is extended to the surface of the connecting member 113.
  • the bimetal switch 140 includes a movable contact member 141, a bimetal element 142, and a protrusion 143.
  • the movable contact member 141 has an elongated shape disposed between the first wiring conductor 120 and the second wiring conductor 130, the left end is provided with a contact 141a protruding upward, and the right end is the first 2 Fixed on wiring conductor 130.
  • the bimetal element 142 has a long shape with a central portion curved toward the movable contact member 141, and is curved toward the movable contact member 141 when heated.
  • the protrusion 143 prevents the bimetal element 142 from being deformed by an external force.
  • the contact 141a is separated from the first wiring conductor 120 when the movable contact member 141 receives a downward force from the bimetal element 142. As a result, the bimetal switch 140 is turned off. On the other hand, the contact 141a contacts the first wiring conductor 120 when the movable contact member 141 does not receive a downward force from the bimetal element 142. As a result, the bimetal switch 140 is turned on.
  • connection terminals Tl and T2 are provided on the upper surface of the wiring board 160 .
  • a thermal fuse F1 is disposed on the left side of the first wiring conductor 120. Thermal fuse F1 and secondary battery 6 positive It is electrically connected to the pole terminal 6a by the connection wiring LI. Further, a connection wiring L2 for grounding the connection terminal T2 is attached to the right end of the wiring board 160.
  • the battery pack 11 according to Embodiment 12 may employ the configuration shown in FIG. 34 instead of the configuration shown in FIG.
  • the configuration shown in FIG. 34 is characterized in that the space between the wiring board 160 and the secondary battery 6 is filled with the resin 170.
  • the configuration shown in FIG. 35 may be adopted.
  • the configuration shown in FIG. 35 is characterized in that, in the configuration shown in FIG. 34, the secondary battery 6 and the wiring board 160 are screwed together with two screws 131 and 132.
  • the configuration shown in FIG. 36 may be adopted.
  • the wiring board 160 is disposed with the front surface to which the bimetal switch 140 or the like is attached facing upward and the rear surface facing the secondary battery 6 side, and the connector C1 is connected as the connection terminals Tl and T2. It is characterized by having adopted.
  • the charging device or the load device includes a connector corresponding to the connector C1, and is electrically connected to the secondary battery 6 by fitting the corresponding connector into the connector C1.
  • FIG. 31 shows a circuit diagram of battery pack lm according to the thirteenth embodiment.
  • the protection circuit 5m includes an integrated circuit IC and a bimetal switch SW1.
  • Integrated circuit IC consists of transistor (switching part) Ql, transistor (resistor) Q2, AND gate (switching part) G2, OR gate (switching part) G2, voltage reduction control part (power supply control part) 610, power supply control part 620, an overcharge control unit (first overcharge protection unit and second overcharge protection unit) 630, a short circuit protection unit 640, and a temperature control unit 650.
  • Transistor Q1 is an n-channel FET, with its gate connected to the output terminal of AND gate G2, its drain connected to connection terminal T3, and its source connected to connection terminals T2 and T4.
  • the transistor Q2 is a p-channel FET, the gate is connected to the voltage reduction control unit 610 and the power supply control unit 620, the drain is connected to the connection terminal T3, and the source is connected to the connection terminal T1.
  • the voltage drop control unit 610 controls the power supply when the voltage Vb is equal to or lower than the predetermined overdischarge prevention voltage.
  • the part 620 and the transistor Q2 are turned off to prevent the secondary battery 6 from being overdischarged.
  • the power supply control unit 620 supplies power to the overcharge control unit 630, the short circuit protection unit 640, and the temperature control unit 650.
  • the overcharge control unit 630 detects whether or not the overcharge is continued by connecting a charging device to the connection terminals Tl and T2 when the bimetal switch SW1 is turned off in the overcharge protection state. .
  • the short-circuit protection unit 640 is in an overcurrent protection state in which the bimetal switch SW1 is turned off, and a load that causes an overcurrent is connected or short-circuited to the connection terminals Tl and T2. Detect whether or not.
  • the temperature control unit 650 detects the temperature of the integrated circuit IC caused by the heat generation of the transistor Q1 that serves as both a heater element and a switch element. When this temperature exceeds a predetermined set temperature, the transistor Q1 is turned off. To do.
  • FIG. 32 is a circuit diagram showing a detailed configuration of the protection circuit 5m.
  • the voltage reduction control unit 610 includes a comparator A6 and a reference voltage source E26.
  • the reference voltage source E26 also has a voltage generation circuit power, and applies the overdischarge prevention voltage Vref 6 to the + terminal of the comparator A6.
  • the comparator A6 outputs a low level signal and turns on the transistor Q2 and the power supply control unit 620.
  • the overdischarge prevention voltage Vref6 is smaller than the reference voltages Vrefl, Vref3, and Vref4.
  • the power supply control unit 620 is connected to the power supply terminals of the comparators Al, A2, A3, and A4, and supplies power to these comparators. In FIG. 9, the connection between the comparator A2 and the power supply control unit 620 is omitted.
  • the overcharge control unit 630 includes comparators Al and A2 and a reference voltage source E21.
  • Contour router A1 and reference voltage source E21 correspond to overcharge protection unit 51 shown in protection circuit 5h according to Embodiment 8
  • comparator A2 and reference voltage source E21 correspond to chattering prevention unit 52 shown in protection circuit 5h.
  • the overcharge of the secondary battery 6 is detected to protect the secondary battery 6 from overcharge, and chattering that occurs in the bimetal switch SW1 is prevented in the overcharge protection state.
  • the short-circuit protection unit 640 includes a comparator A3 and a reference voltage source E23.
  • the comparator A3 has an output terminal connected to the input terminal of the OR gate G1, and a + terminal connected to the reference voltage source E. 23 is connected to the negative electrode, one terminal is connected to the connection terminal T1, the power supply terminal is connected to the power control unit 620, and the ground terminal is connected to the connection terminals T2 and T4.
  • Temperature control unit 650 includes comparator A4, reference voltage source E24, resistor R23, temperature sensor SI, and reference voltage source E27, and corresponds to temperature control unit 54 shown in protection circuit 5k according to the eleventh embodiment.
  • the comparator A4 has an output terminal connected to the input terminal of the AND gate G2, one terminal connected to the connection terminals T2 and T4 via the resistor R23, and a + terminal connected to the connection terminal via the reference voltage source E24. It is connected to T2 and T4, and the ground terminal is connected to connection terminals T2 and T4.
  • Reference voltage source E27 has a negative electrode connected to connection terminals T2 and T4, and a positive electrode connected to one terminal of comparator A4 via temperature sensor S1.
  • the operation of the protection circuit 5m according to the thirteenth embodiment will be described.
  • the overdischarge protection operation by the protection circuit 5m will be described.
  • the comparator A6 When the discharge of the secondary battery 6 progresses and the voltage Vb becomes equal to or lower than the overdischarge prevention voltage Vref6, the comparator A6 outputs a high level signal to turn off the transistor Q2 and the power supply control unit 620. Accordingly, the power of the secondary battery 6 is prevented from being supplied to the comparators A1 to A4, and a load is connected between the connection terminals Tl and T2. 6 can be protected.
  • connection terminal Tl and T2 When the short circuit between the connection terminals Tl and T2 is released in the overcurrent protection state, a small current flows through the connection terminal T1 via the transistor Q2 in the secondary battery 6 force. At this time, since no load is connected between the connection terminals Tl and T2, the voltage Vc and the voltage Vb are almost the same value. As a result, the difference between the voltage Vb and the voltage Vc falls below the reference voltage Vref3, so that the comparator A3 outputs a single level signal.
  • the transistor Q1 is turned off, and the bimetal switch SW1 is turned on when the heating is stopped and the operating temperature Tswl or lower is caused by natural cooling, and the protection circuit 5 is turned on. It returns from the overcurrent protection state to the normal state.
  • overcharge protection operation by the overcharge control unit 630 and the chattering prevention operation in the overcharge protection state are the same as those of the protection circuit 5h according to the eighth embodiment, and the temperature protection by the temperature control unit 650. Since the operation is the same as that of the protection circuit 5k of the eleventh embodiment, the description is omitted.
  • the protection circuit 51 of the eighth to 12th embodiments! In addition to being able to achieve the same operational effects as ⁇ 51, the secondary battery 6 can be protected from overdischarge power because it includes the reduced voltage control unit 610 and the transistor Q2.
  • the appearance of the battery pack In according to Embodiment 14 of the present invention is the same as that of the battery pack 1 shown in FIG. FIG. 37 shows a circuit diagram of battery pack In according to the fourteenth embodiment.
  • the battery pack In includes a protection circuit 5n and a secondary battery 6.
  • the secondary battery 6 is a rechargeable secondary battery such as a lithium ion secondary battery, a lithium lithium polymer secondary battery, a nickel metal hydride secondary battery, or a nickel-powered domumuni secondary battery.
  • the protection circuit 5n is a circuit that protects the secondary battery 6 from overcharging and overcurrent.
  • Protection circuit 5n includes connection terminals T1 to T4 (first to fourth connection terminals), bimetal switch SW1, thermal fuse Fl, heaters R31 and R32, overcharge protection unit 51, and thermal fuse control unit 56. Is provided.
  • the overcharge protection unit 51 includes a comparator Al, a reference voltage source E31, and a transistor Q1.
  • the thermal fuse control unit 56 includes a counter Cl and a transistor Q2.
  • connection terminal T1 and the connection terminal T2 are connection terminals for connecting a charging device (not shown) for charging the secondary battery 6 and a load device driven by Z or the discharge current from the secondary battery 6. It is a child.
  • the load device is various electric devices driven by a battery, such as a mobile phone, a digital camera, a video camera, a portable personal computer, and an electric tool.
  • the connection terminal T3 is connected to the positive electrode of the secondary battery 6, and the connection terminal T4 is connected to the negative electrode of the secondary battery 6.
  • the nometal switch SW1 is a thermal switch that is turned off when a predetermined operating temperature Tswl that is set in advance is exceeded.
  • the operating temperature Tswl is, for example, a temperature range that does not deteriorate the characteristics of the secondary battery 6.
  • the maximum temperature at is set.
  • the bimetal switch SW1 is a return-type heat sensitive switch that turns off when the temperature drops after the temperature rises and turns off.
  • a switch using a shape memory alloy for example, those described in Japanese Utility Model Publication Nos. 7-4770 and 11-224579
  • a switch using a shape memory resin instead of a bimetal switch. Can be used in the same way.
  • Shape memory alloys include those that have a restoring force based on thermoelastic martensitic transformation and reverse transformation such as nickel titanium alloy and copper-zinc aluminum alloy.
  • the shape change temperature range in which the deformed shape changes to the restored shape can be changed by appropriately selecting the composition of the shape memory alloy or changing the heat treatment process.
  • the shape memory resin a resin such as polyester, polyurethane, styrene butadiene, trans polyisoprene in which a stationary phase and a reversible phase that are cross-linked or partially crystallized are mixed can be used.
  • the thermal fuse F1 is heated by the heater R32 and is blown by the heat, and is disposed in close proximity to the secondary battery 6 or in close contact with an insulator so that the secondary battery 6 is not overheated. When a heat is generated by charging or excessive discharge, the fuse is blown by the heat.
  • the operating temperature Tfusel at which the thermal fuse F1 melts is set higher than the operating temperature Tswl of the bimetal switch SW1. In addition, the fusing characteristics are set so that the operating speed of the thermal fuse F1 is slower than that of the metal switch SW1.
  • the thermal fuse F1 is a non-recoverable thermal switch that does not return to a conductive state once it is blown.
  • the operating temperature and operating speed of the bimetal switch SW1 and thermal fuse Fl are set by the characteristics of the components of the bimetal switch SW1 and thermal fuse F1 itself, and the bimetal switch SW1 is placed before the thermal fuse F1.
  • the bimetal switch SW1 and the secondary battery 6 are set so that the thermal resistance between the bimetal switch SW1 and the secondary battery 6 is smaller than the thermal resistance between the thermal fuse F1 and the secondary battery 6.
  • the contact resistance of the bimetal switch SW1 or the resistance of the movable piece can be increased to increase the amount of self-heating, or to the surroundings when the bimetal switch SW1 dissipates heat.
  • the switch SW1 may be a temperature rise easily formed by self-heating.
  • a positive temperature characteristic that is, a PTC (Positive Temperature Coefficient) thermistor whose resistance value increases or decreases in accordance with an increase or decrease in temperature is used.
  • a PTC Platinum Temperature Coefficient
  • the final reached temperatures are constant at Thl and Th2.
  • the final temperature Thl is a temperature that exceeds the operating temperature Tswl of the bimetal switch SW1, and is set to a temperature that does not damage the secondary battery 6 and the protective circuit 5n.
  • the final temperature Th2 is a temperature that exceeds the operating temperature Tfusel of the thermal fuse F1, and is set to a level that does not damage the secondary battery 6 or the protection circuit 5n!
  • the nometal switch SW1 is connected between the connection terminal T1 and the thermal fuse F1.
  • the thermal fuse F1 is connected between the bimetal switch SW1 and the connection terminal T3.
  • Contour router A1 has its negative terminal connected to the positive terminal of reference voltage source E31, its output terminal connected to the gate of transistor Q1 and the input terminal of counter C1, and its ground terminal connected to connection terminals T2 and T4. ing.
  • the reference voltage source E31 is a voltage generation circuit that has a negative electrode connected to the connection terminals T2 and T4 and applies a predetermined overcharge protection voltage Vrefl to one terminal of the comparator A1.
  • the transistor Q1 has an n-channel field effect transistor force, is connected to the thermal fuse F1 via the drain force S-heater R31, and has a source connected to the connection terminals T2 and T4.
  • Transistor Q2 is composed of an n-channel field effect transistor, with its gate connected to the output terminal of counter C1, connected to thermal fuse F1 via drain force heater R32, and its source connected to connection terminals T2 and T4. Has been.
  • Counter C1 is configured with a known counter force, and the signal force output from comparator A1 is counted up each time the one-level force also changes to a high level. When the count value exceeds a predetermined specified value, the counter C1 is at a high level. Is output to turn on transistor Q2.
  • the operation of the protection circuit 5n will be described.
  • the overcharge protection operation by the protection circuit 5n will be described.
  • a charging device (not shown) is connected to the connection terminals Tl and T2, and the voltage Vc is applied between the charging terminals Tl and T2, the voltage Vb is in the normal state of the overcharge protection voltage Vref 1 or less.
  • the bimetal switch SW1 is turned on and the secondary battery 6 is charged.
  • the voltage Vc is, for example, a maximum of 4.2 V when it is normal.
  • the voltage Vb exceeds the overcharge protection voltage Vrefl.
  • a high level signal is output from the comparator A1, the transistor Q1 is turned on, a current flows through the heater R31, and the metal switch SW1 is heated.
  • the temperature of the bimetal switch SW1 reaches the operating temperature Tswl, the bimetal switch SW1 is turned off, the charging current is cut off, and the overcharge protection state is set. As a result, the secondary battery 6 is protected against overcharge.
  • connection terminals Tl and T2 When the bimetal switch SW1 is on, for example, a metal piece comes into contact with the connection terminals Tl and T2, or a load device such as a mobile phone (not shown) connected to the connection terminals Tl and T2 breaks down. If the connection terminals Tl and T2 are short-circuited or the resistance value between the connection terminals Tl and T2 becomes low resistance, an overcurrent will be generated from the secondary battery 6 via the thermal fuse F1 and the bimetal switch SW1. It flows. The bimetal switch SW1 is heated by contact resistance when an overcurrent flows.
  • the bimetal switch SW1 is turned off to cut off the discharge current of the secondary battery 6, the protection circuit 5n is in the overcurrent protection state, and the secondary battery 6 is overcurrent. Power is also protected.
  • the output of the comparator A1 is at a low level, and the heating of the heater R31 is stopped, so that the metal switch SW1 is naturally cooled.
  • the metal switch SW1 falls below the operating temperature Tswl, it turns on again, and the protection circuit 5n returns from the overcurrent protection state to the normal state.
  • the bimetal switch SW1 when the signal output from the comparator A1 changes from the low level to the high level, the bimetal switch SW1 is considered to generate a contact operation in which the bimetal and the contact are in a contact state or a non-contact state. Can do.
  • the counter C1 counts up every time the level of the signal output from the comparator A1 is switched.
  • the transistor Q2 is turned on, the heater R32 is heated, and the thermal fuse F1 is blown.
  • the metal switch SW1 is welded and the overcharge protection function and overcurrent protection function are activated. It is possible to prevent malfunctions and to protect the safety of users.
  • the count number of the counter C1 shows the exact value of the number of times the bimetal switch is turned off. Absent. However, it is certain that the number of times the bimetal switch is turned off increases as the count number of the counter C1 increases. Therefore, the bimetal switch SW1 is turned off due to self-heating. If set, welding of the metal switch SW1 can be reliably prevented.
  • the secondary battery 6 can be overcharged and protected against overcurrent force using the bimetal switch SW1, so that the protection according to the background art shown in FIG.
  • the FET1006 that cuts off the discharge current, the FET1007 that cuts off the charging current, the reference voltage source 1009 to detect the overcurrent, the comparator 1111, and the resistor 1112, and the two FET1006 and 1007 are turned on.
  • the circuit of the protection circuit 5n can be simplified, and the protection circuit 5n can be easily downsized.
  • overcharge is detected by the comparator A1, and the bimetal switch SW1 is turned off by heating the bimetal switch SW1 by the heater R31, for example, as shown in FIG. 52 and FIG.
  • the accuracy of overcharge detection can be improved compared to the case where overcharge protection is performed only with the bimetal switch 1023 or PTC element 1032 connected in series, and the secondary battery 6 can be operated without overcharge protection operation. It is possible to reduce the possibility that the battery is overcharged, the characteristics of the secondary battery 6 are deteriorated, and the secondary battery 6 is expanded or deformed.
  • the number of times the signal of the comparator A1 changes from the low level to the high level is counted, and when the count number reaches a predetermined value, the heater R32 is heated and the thermal fuse F1 is blown.
  • the bimetal switch SW1 is welded and the overcharge protection function and overcurrent protection function by the protection circuit 5n are prevented from functioning and the secondary battery 6 is protected. In addition to being able to, it is possible to ensure safety for the user.
  • bimetal switch SW1 may be heated by heat generated when transistor Q1 is turned on, and thermal fuse F1 may be heated by heat generated when transistor Q2 is turned on.
  • the heaters R31 and R32 are not required, and the circuit can be simplified and the cost can be reduced.
  • the overcharge protection unit 51 and the thermal fuse control unit 56 are constructed by an integrated circuit IC, and the thermal fuse F1 and the bimetal switch SW1 are arranged so that the heat of the integrated circuit IC is transmitted to the thermal fuse F1 and the bimetallic switch SW1. You may do it. In this case, the circuit can be reduced in size.
  • a self-holding type bimetal switch is used as the bimetal SW1, the overcurrent protection state can be continued.
  • the battery pack according to the fifteenth embodiment has a limitation in downsizing the protective circuit board formed by forming the protective circuit on the wiring board due to the complicated circuit configuration.
  • the object of the present invention is to solve the problem that, in the case of using a battery pack, the size reduction of the battery pack may be hindered.
  • FIG. 38 is a diagram showing a configuration of a thermal protection switch device 400 using a bimetal switch 402 that also has a force with a movable contact member, a bimetal element, and a thermal protection switch device provided in the battery pack according to the fifteenth embodiment. It is for comparison.
  • a thermal protection switch device 400 using a bimetal switch 402 consisting of a movable contact member and a bimetal element is inserted in the charge / discharge circuit of the secondary battery, overcharge detection occurs when an excessive charge current flows through the secondary battery.
  • the heater 406 Based on the detection signal output from the circuit, the heater 406 generates heat and the bimetallic switch 402 is operated to turn off the circuit and to move the movable contact member when an excessive discharge current flows through the secondary battery.
  • the bimetal switch 2 is turned on by the jewel heat generated by the contact resistance of the contact to turn off the circuit, so that excessive charging current or excessive discharging current flows to the secondary battery. It is possible to prevent it.
  • the protection circuit having such a configuration, it is possible to prevent an excessive charge current and an excessive discharge current flowing in the secondary battery only by providing the overcharge detection circuit.
  • the circuit configuration is simplified so that each component is placed on the wiring board. The substrate is also downsized.
  • FIG. 39 is an external exploded perspective view for illustrating a schematic configuration of battery pack lo according to Embodiment 15 of the present invention.
  • the battery pack lo includes a flat battery storage part 12, a circuit storage part 14 fitted to the open end side of the battery storage part 12, and a gap between the battery storage part 12 and the circuit storage part 14. It is equipped with an interspacer 16 interposed.
  • the battery storage unit 12 includes, for example, a case 18 having an open top surface made of a steel sheet with nickel plating on the surface, a lithium ion secondary battery, a lithium polymer secondary battery, a nickel hydrogen secondary battery, A secondary battery 20 such as a nickel cadmium secondary battery is accommodated so that the convex positive electrode terminal 22 protrudes also at the opening end force. After the secondary battery 20 is accommodated in the case 18, the secondary battery 20 is caulked and sealed. The negative terminal 23 of the secondary battery 20 is connected to the case 18.
  • a protection circuit board 26 that configures a protection circuit 40 to be described later is stored in a case 24 having an open bottom surface made of, for example, a synthetic resin material.
  • the plurality of windows 28 formed on the bottomed upper surface of the case 24 include a connection terminal T1 (first connection terminal) and a connection terminal T2 (second connection) corresponding to the positive terminal 22 and the negative terminal 23 of the secondary battery 20.
  • the connection terminals are exposed.
  • a connecting terminal 30 having a metal plate force extending downward is provided at the opposite end edge of the opening surface of the case 24.
  • the circuit storage unit 14 stores therein a protection circuit board 26 that constitutes the protection circuit 40, and is combined with the open end side of the battery storage unit 12 through the insulation spacer 16.
  • FIG. 40 shows a circuit diagram of battery pack lo shown in FIG.
  • the battery pack lo includes the connection terminal T1 and the connection terminal T2 described above, to which a load device such as a charging device (not shown) or a mobile phone is connected to the secondary battery 20, and the positive terminal 22 and the negative electrode of the secondary battery 20.
  • a protection circuit 40 is connected between the terminal 23 and the connection terminal T1 and the connection terminal T2 to prevent an excessive charging current from flowing to the secondary battery 20 and to prevent an excessive discharge current from flowing. Yes.
  • the protection circuit 40 includes a thermal protection switch device 42 inserted between the positive terminal 22 of the secondary battery 20 and the connection terminal T1, and the positive terminal 22 and the negative terminal 23 of the secondary battery 20.
  • the overcharge detection circuit 44 detects that the secondary battery 20 has been overcharged due to excessive charging current flowing through the secondary battery 20 and the on / off control based on the detection signal of the overcharge detection circuit 44.
  • the switching element includes a MOSFET 46 and a heater 48 that is a heating element connected between the positive terminal 22 and the negative terminal 23 of the secondary battery 20 via the MOSFET 46.
  • the thermal protection switch device 42 is configured using a bimetal switch, and when the bimetal switch is not heated by the heater 48, the charge / discharge circuit of the secondary battery 20 is turned on, When the bimetal switch is heated by the heater 48, the charge / discharge circuit of the secondary battery 20 is turned off. A specific configuration of the thermal protection switch device 42 will be described later.
  • the overcharge detection circuit 44 also includes a comparator 50 and a reference voltage source 502.
  • the + terminal of the comparator 50 is connected to the positive terminal 22 of the secondary battery 20, and the-terminal is the reference voltage.
  • the reference voltage source 502 is set to a voltage value capable of determining that the secondary battery 20 has exceeded the fully charged state and has entered an overcharged state in which an excessive charging current flows.
  • the drain D of the MOSFET 46 is connected to the heater 48, and the source S is connected to the negative terminal 23 of the secondary battery 20.
  • FIG. 41 is a cross-sectional view of a main part for explaining an example of a specific configuration of the thermal protection switch device 42. That is, the thermal protection switch device 42 is configured to be surface-mounted on a wiring board, and is a frame body integrally formed of an insulating material such as synthetic resin or ceramics. A first wiring conductor 602 formed of a thin metal plate, a second wiring conductor 604 formed of a thin metal plate, a bimetallic switch 66 that is a thermal switch element, and a bimetallic switch 66 on the surface side of the frame body 60. And a cover body 68 for covering.
  • the frame body 60 includes a first support member 70, a second support member 702 arranged to face the first support member 70 at a predetermined interval, and the first support member 70 and the second support member. And a connecting member 704 that connects the first surface (front surface) and the second surface (back surface) opposite to the first surface (between the upper and lower surfaces in the drawing).
  • This frame body 60 is formed on the back surface side of the connecting member 704 by forming the connecting member 704 at an intermediate portion between the front and back surfaces of the first supporting member 70 and the second supporting member 702.
  • a recess (space) 706 is formed between the second support member 702. Then, by opening the recess 706 to the outside, the heater 48 for heating the bimetal switch 66 to the recess 706 when the thermal protection switch device 42 is mounted on a wiring board or the like (FIG. 40). Can be arranged.
  • the first wiring conductor 602 is disposed on the upper side of the first support member 70 and constitutes a first contact (first connection point) 78.
  • the first wiring conductor 602 extends from the first contact 78 through the outer surface of the first support member 70 and constitutes a first attachment terminal 80.
  • the first mounting terminal 80 is bent outward at the back surface position of the first support member 70 so as to be flush with the back surface of the first support member 70.
  • the second wiring conductor 604 is disposed on the upper side of the second support member 702 and constitutes a second contact (second connection point) 82. Also, the second wiring conductor 604 extends from the second contact 82 via the outer side surface of the second support member 702, thereby constituting the second attachment terminal 84.
  • the second mounting terminal 84 is bent outward at the position of the back surface of the second support member 702 so as to be flush with the back surface of the second support member 702.
  • the second wiring conductor 604 is also extended on the surface of the connecting member 74. This facilitates attachment of a bimetal element 88 described later.
  • the nometal switch 66 includes a long movable contact member 86 disposed between the first contact 78 and the second contact 82, and a bimetal element 88 disposed on the surface of the connecting member 704. It is equipped with.
  • the movable contact member 86 has one end as a fixed contact 90 and the other end as a movable contact 92.
  • the fixed contact 90 is attached to the second contact 82 by spot welding or the like.
  • the moving contact 92 always contacts the first contact 78 and turns on between the first contact 78 and the second contact 82 when the bimetal switch 66 does not receive the acting force of the bimetal element 88.
  • the movable contact 92 receives the acting force of the bimetal element 88, the movable contact 92 is separated from the first contact 78 to turn off the first contact 78 and the second contact 82.
  • the bimetal element 88 has a long central shape curved toward the movable contact member 86, so that the second wiring conductor 60 is formed by one-end force S spot welding or the like positioned on the second support member 702 side.
  • the bimetal element 88 is heated, it is bent toward the movable contact member 86, and the movable contact 92 is separated from the first contact 78 by the acting force when contacting the movable contact member 86.
  • a protrusion 95 for improving the positional accuracy of the bimetal element 88 is provided on the surface side of the connecting member 704.
  • the cover body 68 is for protecting the bimetal switch 66 with a force such as external pressure and dust, and the longitudinal ends of the long insulating plate material are bent toward the first mounting terminal 80 and the second mounting terminal 84 side. It has the structure made. The end surface of the cover body 68 is fixed, for example, by adhering to the first mounting terminal 80 and the second mounting terminal 84.
  • the thermal protection switch device 42 configured as described above is configured so that the heater 48 is disposed in the recess 706 of the frame body 60 on the wiring board on which the heater 48 (Fig. 40) is mounted. Surface mounted by 80 and second mounting terminal 84.
  • the protection circuit 40 using the thermal protection switch device 42 operates as follows.
  • the charging device when the charging device is connected between the connection terminal T1 and the connection terminal T2 and the secondary battery 20 is charged, the voltage of the reference voltage source 502 is not increased until the secondary battery 20 reaches an excessively charged state. Since the voltage is higher than the voltage of the secondary battery 20, a low level signal is output from the comparator 50, the MOSFET 46 is turned off, and the heater 48 is turned off. For this reason, the thermal protection switch device 42 is kept on, and the secondary battery 20 is continuously charged. Since the charging device includes a protection circuit that stops the charging operation when the secondary battery 20 reaches full charge, the charging operation is terminated when the fully charged state is reached.
  • the bimetal element 88 constituting the bimetal switch 66 is heated and bent toward the movable contact member 86, and the movable contact 92 is separated from the first contact 78 by the acting force of the bimetal element 88.
  • the circuit in the charged state is turned off, and the supply of the charging current to the secondary battery 20 supplied from the charging device is stopped. This effectively prevents the secondary battery 20 from being charged excessively.
  • FIG. 42 is a side view of the protection circuit board 26 shown in FIG.
  • the protection circuit board 26 is configured such that the heater 48 is disposed in the recess 706 of the thermal protection switch device 42 after the heater 48 is fixed to a predetermined position on the surface of the wiring board 96 with a heat-resistant adhesive or the like.
  • Surface mounted on the wiring board 96 Specifically, the protection circuit board 26 is surface-mounted by connecting the first mounting terminal 80 and the second mounting terminal 84 to the wiring board 96 with a conductive adhesive or the like on the unillustrated land of the wiring board 96. Yes.
  • a control circuit part 98 such as a circuit part including the overcharge detection circuit 44 and the MOSFET 46, is formed as a hybrid integrated circuit and is surface-mounted by connecting to a land (not shown).
  • the wiring board 96 constituting the protection circuit board 26 has a first mounting electrode 100 for connecting to the positive terminal 22 and the negative terminal 23 of the secondary battery 20 at both ends of the surface thereof, Two mounting electrodes 102 are provided.
  • the wiring board 96 is provided with a connection terminal T1 and a connection terminal T2 on the back surface. Furthermore, the wiring board 96 includes the thermal protection switch device 42, the heater 48, the control circuit unit 98, the first mounting electrode 100, the second mounting electrode 102, the connection terminal T1, and the connection.
  • a wiring pattern (not shown) for connecting the connection terminal T2 is provided.
  • the protection circuit board 26 configured in this way is a unit that can be handled by the thermal protection switch device 42 independently of the heater 48, and the recess 706 is open to the outside. Therefore, after the heater 48 is mounted on the wiring board 96, the thermal protection switch device 42 can be mounted on the wiring board 96 independently of the mounting of the heater 48. As a result, the assembly of the protection circuit board 26 is facilitated, and the structure of the wiring board 96 is not complicated. Therefore, the size reduction of the protection circuit board 26 can be promoted. Can also be reduced.
  • FIG. 43 shows an arrangement configuration of the protection circuit board 26 with respect to the secondary battery 20 in the case where the battery pack lo shown in FIG. 39 is configured using the protection circuit board 26 shown in FIG.
  • FIG. 3 is a diagram conceptually showing an electrical connection relationship with the protective circuit board 26.
  • the case 18 for storing the secondary battery 20 and the case 24 for storing the protection circuit board 26 are removed.
  • the protection circuit board 26 is moved to the thermal protection switch device 42, etc.
  • the first mounting electrode 100 of the protection circuit board 26 and the negative electrode terminal 23 of the secondary battery 20 are connected by the connection terminal 30 (Fig. 39).
  • the second mounting electrode 102 and the positive electrode terminal 22 of the secondary battery 20 are connected by the connection terminal 104, and the connection terminal T1 and the connection terminal T2 are exposed to the window portion 28 (FIG. 39) of the case 24, so that the battery pack lo Is configured.
  • FIG. 44 uses the thermal protection switch device 42 configured as described above, and uses the IC element 210 in which the portion of the protection circuit 40 except the thermal protection switch device 42 is formed as a semiconductor integrated circuit.
  • 2 is a side view of a protection circuit board 26 configured by mounting these on a wiring board 212.
  • the protection circuit board 26 is obtained by fixing the IC element 210 to the surface of the wiring board 212 with a heat-resistant adhesive or the like so that the heater 48 faces the bimetallic element 88 side.
  • the thermal protection switch device 42 is connected to the recess 706 so that the IC element 210 is accommodated in the recess 706, and the first mounting terminal 80 and the second mounting terminal 84 are connected to the unillustrated land of the wiring board 212 by a conductive adhesive or the like. Then, it is configured by surface mounting.
  • the wiring board 212 constituting the protection circuit board 26 has a first mounting electrode 114 and a second electrode for connecting to the positive terminal 22 and the negative terminal 23 of the secondary battery 20 at both ends of the surface thereof.
  • the mounting electrode 116 is disposed, and the connection terminal T1 and the connection terminal T2 are disposed on the rear surface.
  • the protection circuit board 26 configured in this manner is open so that the recess 706 between the first support member 70 and the second support member 702 in the thermal protection switch device 42 is open to the outside.
  • the thermal protection switch device 42 can be mounted on the wiring board 212 independently of the mounting of the IC element 210 including the heater 48. This facilitates assembly and does not complicate the structure of the wiring board 212. Therefore, it is possible to promote downsizing of the protective circuit board 26, thereby reducing the size of the battery pack lo. It has the advantage that it can be promoted.
  • the IC element 210 is a semiconductor integrated circuit except for the thermal protection switch device 42, so that the space for arranging components to be mounted on the wiring board 212 is reduced. As a result, downsizing of the protection circuit board 26 can be further promoted, and thus downsizing of the battery pack lo can be further promoted.
  • the IC element 210 including the heater 48 also serves as a heating body for heating the bimetal switch 66. That is, the bimetal switch 66 is heated by the heat generated from the heater 48 and the heat generated from the IC element 210 excluding the heater 48.
  • FIG. 45 shows an arrangement configuration of the protection circuit board 26 with respect to the secondary battery 20 when the battery pack lo shown in FIG. 39 is configured using the protection circuit board 26 shown in FIG. It is a figure which shows notionally the electrical connection relationship with the protection circuit board 26, and is a figure which removes the case 18 which accommodates the secondary battery 20, and the case 24 which accommodates the protection circuit board 26.
  • the protective circuit board 26 is accommodated in the case 18 (not shown) in which the secondary battery 20 is accommodated.
  • the protection circuit board 26 is arranged so that the side on which the thermal protection switch device 42 and the like are mounted faces the secondary battery 20, and the first mounting electrode 114 of the protection circuit board 26 is provided.
  • the negative terminal 23 of the secondary battery 20 are connected by the connection terminal 30 (Fig. 39)
  • the second mounting electrode 116 and the positive terminal 22 of the secondary battery 20 are connected by the connection terminal 118, and the connection terminal
  • the battery pack lo is configured by exposing T1 and the connection terminal T2 to the window portion 28 (FIG. 39) of the case 24.
  • the cover body 68 of the thermal protection switch device 42 has a sealed structure.
  • FIG. 46 is a circuit diagram showing another example of the electrical configuration of battery pack lo shown in FIG.
  • the temperature fuse 220 is provided between the positive electrode terminal 22 of the secondary battery 20 and the thermal protection switch device 42 to configure the protection circuit 40, and the other configuration is shown in FIG. Is the same.
  • the detailed description is abbreviate
  • FIG. 47 is a diagram showing a battery pack lp having a structure different from that shown in FIG. 39 configured using the protection circuit board 26 having the circuit configuration shown in FIG. 46 in which the thermal protection switch device 42 is mounted. It is.
  • the battery pack lp has a thermal fuse 220 interposed between the positive terminal 22 of the secondary battery 20 shown in FIG. 2 and the thermal protection switch device 42, and has an opening that also has an insulating material force.
  • the secondary battery 20 is housed in the case 126 with the positive terminal 22 facing the opening side, and the protection circuit board 26 is inserted into the case 126 with the thermal protection switch device 42 of the protection circuit board 26 fitted in the opening of the case 126. It is constructed by attaching to.
  • the protection circuit board 26 in this embodiment has basically the same configuration as that shown in Fig. 44 except for the connection configuration of the connection terminal T1 and the connection terminal T2. That is, in this embodiment, the metal terminal in which the connection terminal T1 is disposed on the side surface of the wiring board 212 is used. It is composed of a metal plate connected to the second mounting terminal 84 of the thermal protection switch device 42 via the spacer 128, and the connection terminal T2 is attached to the surface edge of the wiring board 212, and is connected to the side surface of the wiring board 212. It is composed of a metal plate that is bent and extends to the back surface of the wiring board 212.
  • a thermal fuse 220 is connected between the positive terminal 22 of the secondary battery 20 and the first wiring conductor 602 of the thermal protection switch device 42.
  • the negative electrode terminal 23 of the secondary battery 20 and the connection terminal T2 are connected by the metal conductor 230, thereby forming the battery pack lp.
  • the battery pack lo has an open shape in which the concave portion 706 between the first support member 70 and the second support member 702 in the frame body 60 is open to the outside as in the above embodiment.
  • the thermal protection switch device 42 must be mounted on the wiring boards 96 and 212 independently of the mounting of the heater 48 or IC element 210 that is a heating element. Can do.
  • the assembly of the protection circuit board 26 is facilitated, and the structure of the wiring board 96 is not complicated. Therefore, the size reduction of the protection circuit board 26 can be promoted, whereby the battery pack lo, lp It is also possible to promote downsizing.
  • the battery pack lo according to Embodiment 15 of the present invention is not limited to the above-described embodiment, and various modifications as described below may be adopted as necessary. it can.
  • the thermal protection switch device 42 includes the cover body 68, but is not limited thereto.
  • the cover body 68 can be removed.
  • the thermal protection switch device 42 is provided in the frame body 60.
  • the force is such that a recess 706 is formed between the first support member 70 and the second support member 702 on the back side of the connecting member 704, and the recess 706 is opened to the outside.
  • the frame body 60 is configured such that the back surface of the connecting member 704 and the back surfaces of the first support member 70 and the second support member 702 are flush with each other. There may be no configuration between at least the first support member 70 and the second support member 702 on the back surface side.
  • the wiring board 240 on which the thermal protection switch device 42 is mounted has a depression 242 and the depression 242 has a heater 48 (or an IC element 210).
  • the thermal protection switch device 42 may be mounted on the wiring board 240 so that the first support member 70 and the second support member 702 are opposed to the depressed portion 242.
  • the heater 48 for heating the thermal switch elements such as the bimetal switch 66 through the space between the first support member 70 and the second support member 702 on the back side of the frame body 60 or the IC element 210 can be disposed. If it is open,
  • the thermal protection switch device 42 reduces the contact resistance between the movable contact 92 of the movable contact member 86 and the first contact 78 when an excessive discharge current flows in the circuit.
  • the force that activates the bimetal switch 66 by the generated Joule heat is not limited to this.
  • the thermal protection switch device 42 may be activated only when excessive charging current flows in the circuit.
  • the heat-sensitive protection switch device 42 is not limited to this force, which is configured using the bimetal switch 66 including the movable contact member 86 and the bimetal element 88.
  • the movable contact member 86 can be made of bimetal. In such a case, since the bimetal element 88 is unnecessary, the connecting member 704 is not necessarily required.
  • the heat protection switch device 42 is configured by using the bimetal switch 66.
  • the present invention is not limited to this.
  • the bimetal switch 66 which is a thermal switch element
  • another thermal switch element such as a polymer-based PTC thermistor element (positive thermistor element) whose resistance increases rapidly when a predetermined temperature is reached.
  • PTC thermistor instead of bimetal switch 66, PTC thermistor If an excessive discharge current flows when the element is used, the circuit can be substantially turned off by the PTC thermistor element having a high resistance value due to self-heating of the PTC thermistor element.
  • the pair of terminals are held just by connecting them to the first contact (first connection point) 78 and the second contact (second connection point) 82. In such a case, the connecting member 704 is not necessary.
  • the configuration shown in FIG. 40 or 46 is used as the protection circuit 40 that turns off the charge / discharge circuit when an excessive charge current or an excessive discharge current flowing in the secondary battery 20 flows.
  • the power that shows things is not limited to this.
  • a circuit for preventing chattering of the bimetal switch 66 can be added as the protection circuit 40.
  • the thermal protection switch device 42 is described as being used for the protection circuit 40 that constitutes the battery packs lo and lp, but is not limited thereto.
  • the thermal protection switch device 42 can be used as a protection circuit for electrical components other than battery packs lo and lp!
  • the thermal protection switch device 42 can be surface-mounted on a wiring board by bending the first mounting terminal 80 and the second mounting terminal 84 outward.
  • the first mounting terminal 80 can be bent on the back surface side of the first support member 70
  • the second mounting terminal 84 can be bent on the back surface side of the second support member 702 so that it can be surface-mounted on the wiring board. .
  • the heat-sensitive protection switch device 42 is a force that allows the first mounting terminal 80 and the second mounting terminal 84 to be surface-mounted.
  • the first mounting terminal 80 and the second mounting terminal 84 may be configured in an axial shape and inserted into the mounting hole of the wiring board for mounting.
  • the upper surface of the first support member 70 is attached to the lower surface of the first wiring conductor 602, and the upper surface of the second support member 702 is attached to the lower surface of the second wiring conductor 604.
  • a space is provided between the lower surface of the first support member 70 and the second support member 702 and the wiring board 96. Then, the right half of the connecting member 704 is removed, the lower surface of the second wiring conductor 604 on the connecting member 704 side and the space portion are communicated, and the wiring board 96 is placed near the right end of the lower surface of the second wiring conductor 604.
  • a pressing terminal 705 for electrically connecting the bimetal element 88 and the heater 48 may be attached by urging the heater 48 disposed on the wiring board 96 side. As a result, the bimetal element 88 and the heater 48 can be electrically and reliably connected.
  • PTC can be adopted as the heater 48.
  • the secondary battery protection circuit comprises a first and second secondary battery for connecting a charging device for charging the secondary battery and a load device driven by Z or a discharge current of the secondary battery power. Provided between the connection terminal, the third and fourth connection terminals connected to both electrodes of the secondary battery, and the first and third connection terminals, when a preset predetermined temperature is exceeded.
  • a protection control unit for turning off the thermal switch.
  • the first heater when the physical quantity related to the characteristics of the secondary battery exceeds the preset physical quantity value, the first heater is heated by the protection control unit, and the first heater makes the heat sensitive.
  • the switch When the switch is heated, the heat-sensitive switch is turned off and the charge / discharge current is cut off, so that the characteristic deterioration of the secondary battery can be reduced.
  • the circuit can be simplified because the discharge current and the charge current can be cut off by a single thermal switch.
  • the physical quantity related to the characteristics of the secondary battery is the voltage of the third connection terminal, and the protection control unit has a voltage of the third connection terminal set in advance.
  • the heater is preferably heated to turn off the thermal switch.
  • the first heater is preferably a PTC thermistor whose resistance value increases or decreases as the temperature increases or decreases.
  • the heat-sensitive switch is preferably one selected from a bimetal switch, a switch using a shape memory alloy, and a switch using a shape memory resin.
  • thermo switch one type selected from a bimetal switch, a switch using a shape memory alloy, and a switch using a shape memory resin is used as the thermal switch, so the thermal switch is set in advance.
  • the thermal switch is set in advance.
  • the battery is turned off, and when the charge / discharge current of the secondary battery exceeds a predetermined current value set in advance, the battery can be turned off by self-heating.
  • the apparatus further includes a fuse connected in series with the heat sensitive switch, and the heat sensitive switch is set with operating conditions to be turned off before the fuse.
  • the first heater is connected in parallel to the thermal switch, and the protection control unit includes a detection unit that detects a physical quantity related to characteristics of the secondary battery.
  • the thermal switch when the thermal switch is turned off, a discharge current flows through the first heater connected in parallel with the thermal switch, the first heater generates heat, and the thermal switch is heated to heat the thermal switch.
  • the switch off state is maintained.
  • the thermal switch is turned on by natural cooling and the discharge current of the secondary battery flows.
  • chattering There is a risk of chattering that the thermal switch turns on and off again, such as when the thermal switch turns off due to self-heating and interrupts the discharge current.
  • the first switch connected in parallel with the thermal switch The heater keeps the thermal switch off even after the thermal switch is turned off by self-heating, so that chattering can be suppressed. wear.
  • the physical quantity related to the characteristics of the secondary battery is the voltage of the third connection terminal, and the detection unit detects the voltage of the third connection terminal, and the protection The control unit preferably causes the first heater to generate heat and turn off the thermal switch when the voltage detected by the detection unit exceeds a preset reference voltage.
  • the voltage of the secondary battery which is a physical quantity related to the characteristics of the secondary battery, is applied to the third connection terminal. Is done.
  • the first heater is heated by the protection controller, and the thermal switch is heated by the first heater. Since the switch is turned off and the charging current is cut off, the secondary battery can be protected from excessive charging.
  • the circuit can be simplified because the discharge current and the charge current can be cut off by a single thermal switch.
  • the physical quantity related to the characteristics of the secondary battery is the temperature of the secondary battery, and the protection control unit is preset with the temperature of the secondary battery detected by the detection unit. When the temperature exceeds a predetermined temperature, the first heater is preferably heated to turn off the thermal switch.
  • the temperature of the secondary battery which is a physical quantity related to the characteristics of the secondary battery, is detected by the detection unit.
  • the first heater is heated by the protection control unit, and the thermal switch is heated by the first heater to turn off the thermal switch. Since the charge / discharge current is cut off, the secondary battery can be protected against excessive heat generation.
  • the discharge current and the charge current can be cut off by a single thermal switch, the circuit can be simplified.
  • the protection control unit further includes a switch unit that opens and closes a connection between a connection point between the first heater and the first rectifying element and the second connection terminal; When the physical quantity detected by the detection unit exceeds a preset physical quantity value, the switch unit is turned on. Preferably.
  • the first heater includes a series circuit of second and third heaters, and the protection control unit includes a connection point between the second heater and the third heater.
  • a switch unit that opens and closes the connection with the fourth connection terminal, and that the physical quantity detected by the detection unit is turned on when a preset physical quantity value is exceeded. Is preferred.
  • the second and third heaters connected in parallel with the thermal switch. Since the discharge current flows through the series circuit of the heaters, the second and third heaters generate heat, the thermal switch is heated, and the thermal switch can be kept off. Then, when the physical quantity detected by the detection unit exceeds a preset physical quantity value, the switch unit is turned on by the protection control unit and the third heater, In addition, a current path to the second connection terminal is formed through the switch portion, and the third heater generates heat to heat the thermal switch, so that the thermal switch can be turned off.
  • One end is connected to the first connection terminal and a fourth heater for heating the thermal switch is further provided, and the protection control unit is connected to the other end of the fourth heater.
  • a switch unit that opens and closes the connection with the second connection terminal is provided, and the switch unit is turned on when a physical quantity detected by the detection unit exceeds a preset physical quantity value. I like it! / [0373]
  • the thermal switch that cuts off the discharge current from the third connection terminal to the first connection terminal is turned off, the discharge current is supplied to the first heater connected in parallel with the thermal switch. Therefore, the first heater generates heat, and the thermal switch is heated so that the thermal switch can be kept in the OFF state.
  • the protection control unit turns on the switch unit and turns on the fourth heater and the switch unit from the first connection terminal force.
  • a current path to the second connection terminal is formed, and the fourth heater generates heat and the thermal switch is heated, so that the thermal switch can be turned off.
  • the first and fourth heaters generate heat from the first heater due to the discharge current of the secondary battery force connected to the third connection terminal when the thermal switch is turned off.
  • the resistance value is set to equalize the amount of heat generated by the fourth heater due to the output current from the charging device connected to the first connection terminal when the switch unit is turned on. I prefer it.
  • the first and fourth heaters have the heat generation amount of the first heater due to the discharge current of the secondary battery power connected to the third connection terminal when the thermal switch is turned off.
  • the resistance value is set to equalize the amount of heat generated by the fourth heater due to the output current of the charging device connected to the first connection terminal when the switch is turned on. Discharge current force When the thermal switch is turned off to protect the secondary battery, and when the thermal switch is turned off to protect the secondary battery from overcharging, the amount of heat generated to heat the thermal switch can be made equal. it can.
  • a second rectifier element is provided between the third connection terminal and the first heater in the forward direction and the direction in which the discharge current of the secondary battery connected to the third connection terminal flows. It is preferable to be further provided in between.
  • the second and third heaters are PTC thermistors whose resistance value increases or decreases with an increase or decrease in temperature, and the PTC thermistor has a substantially plate shape and at least one of them.
  • a groove is formed to divide the surface of the PTC thermistor into a plurality of regions, and a part of the plurality of regions on one surface of the PTC thermistor is used as the first electrode and the first electrode At least a part of the region excluding the first electrode is used as a second electrode, the other surface of the PTC thermistor is used as a third electrode, and the first and third electrodes are both ends of the second heater. It is preferable that the third and second electrodes be used as connection terminals at both ends of the third heater.
  • the first and fourth heaters are PTC thermistors whose resistance value increases or decreases in accordance with an increase or decrease in temperature, and the PTC thermistor has a substantially plate shape and at least one of them.
  • a groove is formed to divide the surface of the PTC thermistor into a plurality of regions, and a part of the plurality of regions on one surface of the PTC thermistor is used as the first electrode and the first electrode At least a portion of the region excluding the first electrode is used as a second electrode, the other surface of the PTC thermistor is used as a third electrode, and the first and third electrodes are both ends of the first heater. It is preferable that the third and second electrodes be used as connection terminals at both ends of the fourth heater.
  • the groove divides the one surface of the PTC thermistor into two regions, and one region divided by the groove is used as the first electrode and the other surface Preferably, the region is used as a second electrode.
  • one surface of the PTC thermistor is divided into two regions, and one region is used as the first electrode, and the other region is used as the second electrode.
  • one PTC thermistor can be used as two heaters.
  • the groove is a substantially cross-shaped groove that divides the one surface of the PTC thermistor into four regions, and two regions adjacent to each other in the four regions are the first electrode. Of the four regions, the other regions other than the two regions used as the first electrode are preferably used as the second electrode.
  • one surface of the PTC thermistor is divided into four regions by a substantially cross-shaped groove, and two regions adjacent to each other in the four regions are used as the first electrode. Since the other regions of the region except for the two regions used as the first electrode are used as the second electrode, the PTC is used for the wiring pattern provided to connect to the first and second electrodes.
  • the thermistor can be connected by rotating 90 °, which improves the assembly.
  • both sides are made into the same shape by a substantially cross-shaped groove, one side is connected as the first and second electrodes as described above, and the remaining one side is connected to the front side as the third electrode.
  • the target heater can be configured regardless of whether it is turned upside down or rotated 90 ° in any direction, further improving assembly.
  • the PTC thermistor has a shape capable of physically determining the vertical and horizontal directions.
  • the PTC thermistor is attached to the wiring pattern provided to connect to the first and second electrodes. In this case, it becomes easy to align the orientation of the PTC thermistor.
  • the thermal switch is turned off when it self-heats due to a flowing current and exceeds a predetermined operating temperature, and is turned off when the operating temperature is exceeded due to external heating.
  • the protection control unit includes a switching unit that controls energization of the first heater, and the switching unit when a voltage between the third and fourth connection terminals exceeds a predetermined overcharge protection voltage.
  • the first overcharge protection unit switches when the voltage between the third and fourth connection terminals (the voltage of the secondary battery) exceeds a preset overcharge protection voltage. Since the heater is energized and the thermal switch is heated by the heater to turn off and the charging current is cut off, the secondary battery can be protected against overcharge.
  • the thermal switch turns off due to self-heating and cuts off the discharge current, thus protecting the secondary battery from overcurrent protection. can do. Therefore, the FET 1006 for preventing overcurrent, the reference voltage source 1009, and the comparator 1111 for detecting overcurrent as shown in FIG. 51 are not required, and the circuit can be simplified.
  • the present invention includes the second overcharge protection unit. Therefore, in the overcharge protection state, if the charging device is connected between the first and second connection terminals and charging is continued, and the voltage between the first and second connection terminals exceeds the overcharge protection voltage. Because the first heater is energized in the switching section, even if the voltage of the secondary battery falls below the overcharge protection voltage, the thermal switch continues to turn on, resulting in chattering of the thermal switch that occurs in the overcharge protection state. Can be prevented. As a result, deterioration of the thermal switch can be prevented.
  • the first overcharge protection unit includes a first comparator that detects whether or not a voltage between the third and fourth connection terminals exceeds the overcharge protection voltage, Second error
  • the charge protection unit includes a second comparator that outputs a high-level signal when a voltage between the first and second connection terminals exceeds the overcharge protection voltage, and the switching unit includes the first comparator.
  • the first heater is energized when at least one of the first and second comparators outputs a high level signal.
  • the switching unit includes an OR gate having an input terminal connected to an output terminal of the first and second comparators, a gate connected to an output terminal of the OR gate, and a drain connected to the output terminal. It is preferable to include an n-channel field effect transistor connected to the first heater and having a source connected to the second and fourth connection terminals.
  • the switching unit is configured by the OR gate and the n-channel field effect transistor, the voltage between the third and fourth connection terminals (the voltage of the secondary battery) is the overcharge protection voltage. Or the voltage between the first and second connection terminals exceeds the overcharge protection voltage, the first heater can be heated more reliably and the thermal switch can be turned off more reliably. be able to.
  • the switching unit It is preferable to further include a short-circuit protection unit for energizing the first heater.
  • the short-circuit protection unit is in the overcurrent protection state!
  • the voltage obtained by subtracting the voltage between the first and second connection terminals from the voltage of the secondary battery reduces the short-circuit protection voltage. If exceeded, it is determined that the first and second connection terminals are short-circuited or a low resistance that causes overcurrent is connected, and the first heater is heated and the thermal switch is turned on. Since the switch is continuously turned off, chattering of the thermal switch in the overcurrent protection state can be prevented.
  • the overcharge protection state the load that generates overcurrent continues to be connected to the first and second connection terminals! In this case, overcurrent that flows when chattering is on can be prevented.
  • the first overcharge protection unit includes a first comparator that detects whether a voltage between the third and fourth connection terminals exceeds the overcharge protection voltage
  • the second overcharge protection unit includes a second comparator that outputs a high level signal when a voltage between the first and second connection terminals exceeds the overcharge protection voltage
  • the short circuit protection unit Outputs a high level signal when the voltage between the third and fourth connection terminals exceeds the voltage between the first and second connection terminals plus the short-circuit protection voltage.
  • the switching unit is configured to energize the first heater when at least one of the first to third comparators outputs a signal at a low level. Better ,.
  • the first comparator detects whether or not the voltage between the third and fourth connection terminals (the voltage of the secondary battery) exceeds the overcharge protection voltage.
  • the second comparator detects whether the voltage between the second connection terminal and the second connection terminal exceeds the overcharge protection voltage, and the voltage of the secondary battery is short-circuited to the voltage between the first and second connection terminals. Whether or not the voltage exceeds the protective voltage is detected by the third comparator, so these detections can be performed with high accuracy.
  • the switching unit includes an OR gate having an input terminal connected to an output terminal of the first to third comparators, a gate connected to an output terminal of the OR gate, and a drain being the first gate. It is preferable to include an n-channel field effect transistor connected to a heater and having a source connected to the second and fourth connection terminals.
  • the switching unit is configured by an OR gate and an n-channel field effect transistor
  • the voltage between the third and fourth connection terminals (the voltage of the secondary battery) is the overcharge protection voltage.
  • Exceeding the overcharge protection voltage, or the voltage force of the secondary battery minus the voltage between the first and second connection terminals is short-circuited.
  • the protection voltage is exceeded, the first heater can be heated more reliably, and the thermal switch can be turned off more reliably.
  • the first overcharge protection unit includes a first comparator that outputs a high-level signal when a voltage between the third and fourth connection terminals exceeds the overcharge protection voltage.
  • the second overcharge protection unit includes a second comparator that outputs a high-level signal when a voltage between the first and second connection terminals exceeds the overcharge protection voltage;
  • the short-circuit protection unit provides a high-level signal when the voltage between the third and fourth connection terminals exceeds the voltage obtained by adding the short-circuit protection voltage to the voltage between the first and second connection terminals.
  • the temperature control unit includes a temperature sensor that detects the temperature of the first heater, and a low level when the temperature detected by the temperature sensor reaches the upper limit temperature.
  • a fourth comparator that outputs a level signal.
  • the hatching section includes an OR gate having an input terminal connected to the output terminals of the first to third comparators, and an AND gate having an input terminal connected to the output terminal of the OR gate and the output terminal of the fourth comparator. And an n-channel field effect transistor having a gate connected to the output terminal of the AND gate, a drain connected to the first heater, and a source connected to the second and fourth connection terminals. It is preferable.
  • the first overcharge protection unit, the second overcharge protection unit, the short-circuit protection unit, and the temperature control unit are configured by the first to fourth comparators, and the switching unit is an OR gate.
  • the AND gate and the n-channel field effect transistor are used, the secondary battery can be more reliably protected from overcharge and overcurrent force.
  • the heat-sensitive switch is turned off when it self-heats due to a flowing current and exceeds a predetermined operating temperature, and is turned off when the operating temperature is exceeded due to external heating.
  • the protection control unit includes a switching unit that controls energization of the first heater, and the switching unit when a voltage between the third and fourth connection terminals exceeds a predetermined overcharge protection voltage. And a first overcharge protection unit for energizing the first heater at a predetermined upper limit temperature that is higher than the operating temperature of the thermal switch.
  • the switching unit includes a temperature control unit that stops energization of the first heater.
  • the temperature control unit is configured so that the temperature of the first heater is the operating temperature of the thermal switch.
  • the first heater is de-energized, so overheating protection is achieved and the thermal switch is prevented from being heated above the upper limit temperature. Can be prevented.
  • the first overcharge protection unit includes a first comparator that outputs a high-level signal when a voltage between the third and fourth connection terminals exceeds the overcharge protection voltage.
  • the second overcharge protection unit includes a second comparator that outputs a high-level signal when a voltage between the first and second connection terminals exceeds the overcharge protection voltage;
  • the short-circuit protection unit provides a high-level signal when the voltage between the third and fourth connection terminals exceeds the voltage obtained by adding the short-circuit protection voltage to the voltage between the first and second connection terminals.
  • the temperature control unit includes a temperature sensor that detects the temperature of the first heater, and a low level when the temperature detected by the temperature sensor reaches the upper limit temperature.
  • a fourth comparator that outputs a level signal.
  • the hatching section includes an OR gate having an input terminal connected to the output terminals of the first to third comparators, and an AND gate having an input terminal connected to the output terminal of the OR gate and the output terminal of the fourth comparator. And an n-channel field effect transistor having a gate connected to the output terminal of the AND gate, a drain connected to the first heater, and a source connected to the second and fourth connection terminals. It is preferable.
  • the first comparator detects whether the voltage between the third and fourth connection terminals (the voltage of the secondary battery) exceeds the overcharge protection voltage.
  • the temperature of the first heater is detected by the temperature sensor, and whether the force of the first heater exceeding the upper limit temperature is detected by the fourth comparator. it can.
  • the first overcharge protection unit includes a first comparator that outputs a high level signal when a voltage between the third and fourth connection terminals exceeds the overcharge protection voltage.
  • a temperature sensor that detects a temperature of the first heater; and a fourth sensor that outputs a low level signal when the temperature detected by the temperature sensor reaches the upper limit temperature.
  • a comparator, and the switching unit energizes the first heater when both comparators of the first and fourth comparators output a high level signal, and at least one of the comparators is selected. When a low level signal is output, it is preferable to stop energization of the first heater.
  • the switching unit is configured by an AND gate and an n-channel field effect transistor, the voltage between the third and fourth connection terminals (the voltage of the secondary battery) is the overcharge protection voltage.
  • the first heater can be turned on accurately, and when the temperature of the first heater exceeds the upper limit temperature, the heating of the first heater can be accurately stopped.
  • a thermal fuse connected between the thermal switch and the third connection terminal is further provided, and the voltage between the third and fourth connection terminals is higher than the overcharge protection voltage. It is preferable to further include an upper limit temperature changing unit that changes the upper limit temperature to a temperature higher than the fusing temperature of the thermal fuse when the second overcharge protection voltage is exceeded.
  • the thermal switch is connected between the first and third connection terminals, and is turned off and heated externally when it exceeds a predetermined operating temperature due to self-heating due to the flowing current.
  • the protection control unit is turned off when the operating temperature is exceeded, and the voltage between the switching unit that controls energization of the first heater and the third and fourth connection terminals is predetermined.
  • the overcharge protection voltage exceeds the first overcharge protection portion for energizing the first heater to the switching portion, and the voltage force between the third and fourth connection terminals
  • the first and second The voltage obtained by adding the specified short-circuit protection voltage to the voltage between the connection terminals of When exceeding, it is preferable to provide a short-circuit protection unit for energizing the first heater in the switching unit.
  • the first overcharge protection unit includes a first comparator that detects whether or not a voltage between the third and fourth connection terminals exceeds the overcharge protection voltage,
  • the short-circuit protection unit outputs a high-level signal when the voltage between the third and fourth connection terminals exceeds a voltage obtained by adding a predetermined short-circuit protection voltage to the voltage between the first and second connection terminals.
  • the switching unit energizes the first heater when at least one of the first and third comparators outputs a high level signal. It is preferable to make it.
  • the voltage between the third and fourth connection terminals (the voltage of the secondary battery) and the voltage between the first and second connection terminals are detected by the comparator. Such detection can be performed with high accuracy.
  • the switching unit includes an OR gate having an input terminal connected to an output terminal of the first and third comparators, a gate connected to an output terminal of the OR gate, and a drain being It is preferable to include an n-channel field effect transistor connected to the first heater and having a source connected to the second and fourth connection terminals.
  • the switching unit is configured by an OR gate and an n-channel field effect transistor, the voltage between the third and fourth connection terminals (the voltage of the secondary battery) is the overcharge protection voltage. If the voltage exceeds the short circuit protection voltage, or if the voltage obtained by subtracting the voltage between the first and second connection terminals from the voltage of the secondary battery exceeds the short-circuit protection voltage, the first heater can be heated more reliably. The heat sensitive switch can be turned off more reliably.
  • thermosensitive switch is a bimetal switch, and the protection control unit, when the voltage between the third and fourth connection terminals exceeds a predetermined overcharge protection voltage,
  • the overcharge protection unit that energizes the switch and turns off the bimetal switch, and the overcharge protection unit counts the number of times the bimetal switch is turned off, and the count value is determined based on the number of times the bimetal switch is guaranteed to operate.
  • the overcharge protection unit Since the heater is energized and the bimetal switch is turned off and the charging current is cut off, the secondary battery can be protected against overcharge.
  • the bimetal switch is turned off by self-heating to cut off the discharge current, thus protecting the secondary battery from overcurrent. Can do. Therefore, the FET 1006 for preventing overcurrent, the reference voltage source 1009, and the comparator 1111 for detecting overcurrent as shown in FIG. 51 are not necessary, and the circuit can be simplified.
  • the number of times the bimetal switch is turned off is counted, and the count value bimetal switch is counted. If the specified value determined based on the number of guaranteed operation of the switch is exceeded, the electrical connection with the secondary battery is cut off, so the secondary number of operations before the bimetal switch exceeds the number of compensated operations. As a result of stopping the charging / discharging of the battery, welding of the bimetal switch can be prevented, and the secondary battery can be protected from overcharge and overcurrent. Can be secured.
  • the blocking section includes a thermal fuse connected between the bimetal switch and the third connection terminal, a second heater that heats the thermal fuse, and the count value is It is preferable to include a thermal fuse control unit that energizes the second heater and blows the thermal fuse when a predetermined value is exceeded.
  • the overcharge protection unit includes a comparator and a first transistor, the temperature use control unit includes a counter and a second transistor, and the comparator includes the third and third transistors.
  • the first transistor is turned on to energize the first heater, and the counter is counted up.
  • the count value exceeds the predetermined value, it is preferable to turn on the second transistor and energize the second heater.
  • the overcharge protection unit is configured by the comparator and the first transistor
  • the temperature fuse control unit is configured by the counter and the second transistor, so that the voltage of the secondary battery is overcharged.
  • the bimetal switch can be turned off more reliably and the counter can be counted up more reliably.
  • the first heater is composed of the first transistor
  • the second heater is also composed of the second transistor force
  • the bimetal switch is configured to turn on the first transistor. It is preferable that the thermal fuse is heated by heat generated from time to time, and the thermal fuse is heated by heat generated when the second transistor is turned on.
  • a frame body having a first support member and a second support member arranged at predetermined intervals! /, And disposed on the first support member on the first surface side of the frame body.
  • the first wiring conductor constituting the attachment terminal by extending from the contact and the second support member on the first surface side of the frame body are arranged on the first support member.
  • a thermal protection switch device comprising a second wiring conductor that constitutes a mounting terminal by extending from the contact, and the thermal switch, wherein the thermal switch includes the first wiring conductor and the first wiring conductor.
  • the frame body is a second surface facing the first surface.
  • the first heater is disposed between the support members on the side. It is preferable to have a space for
  • the second surface side of the frame body is open so that the first heater that heats the thermal switch element can be disposed between the first support member and the second support member. Because the unit is a unit that can be handled independently of the first heater, the thermal protection switch is independent of the mounting of the first heater after the first heater is mounted on the wiring board. The device can be mounted on a wiring board. For this reason, the assembly of the protection circuit board is facilitated, and the structure of the wiring board is not complicated, and the downsizing of the protection circuit board can be promoted.
  • thermosensitive switch includes a movable contact member disposed between the contact points, and acts on the movable contact member when heated by the first heater.
  • a bimetal element that turns off the gap, and the frame body includes a connecting member that connects the first support member and the second support member and that disposes the bimetal element on the first surface side. I prefer to be.
  • the bimetal element can be fixed at an accurate position with respect to the movable contact member. For this reason, the bimetal element can be accurately acted on the movable contact member, and the circuit can be reliably turned off.
  • the frame body is formed on the second surface side of the connection member by forming the connection member at an intermediate portion between the first surface and the second surface of the first support member and the second support member. Concave shape It is preferable that the concave portion be the space portion.
  • the concave portion formed on the second surface side of the connecting member is open so that the first heater for heating the thermal switch element can be disposed.
  • the protective switch device can be mounted on the wiring board such that the first heater is disposed in the recess on the second surface side of the connecting member. This facilitates the positioning of the thermal protection switch device with respect to the heating element, and facilitates the assembly of the protection circuit board.
  • a cover body that covers the thermal switch is provided on the first surface side of the frame body.
  • the frame body is preferably configured by fixing the first support member and the second support member with a wiring board.
  • the frame body is configured by fixing the first support member and the second support member with the wiring board, the frame body can be made robust. Therefore, it is possible to realize a thermal protection switch device with high operational reliability.
  • a battery pack according to the present invention includes a secondary battery and the protection circuit for the secondary battery described in (1) above.
  • a bottomed container that accommodates the secondary battery, and an external terminal connection unit that includes a wiring pattern constituting the protection circuit, wherein the protection circuit includes the external terminal connection unit. It is preferred to be formed into.
  • the protection circuit for the secondary battery is formed in the external terminal connection unit, and the secondary battery housed in the bottomed container is excessively charged or excessively discharged by the protection circuit. Current force can be protected.
  • the wiring pattern is printed on the surface of the external terminal connection unit facing the secondary battery housed in the container. [0451] According to this configuration, since the wiring pattern constituting the above-described protection circuit is printed on the surface of the external terminal connection unit facing the secondary battery housed in the container, the protection circuit A separate substrate is not required to construct the protection circuit, and the protection circuit can be reduced in size.
  • thermosensitive switch is disposed at a position facing the secondary battery housed in the container in the external terminal connection unit.
  • the thermal switch since the thermal switch is disposed at a position facing the secondary battery housed in the container in the external terminal connection unit, when the secondary battery generates heat due to charge / discharge, the thermal switch is arranged. Is heated. When the temperature of the thermal switch exceeds a preset temperature, the thermal switch turns off and the charge / discharge current of the secondary battery is cut off. Can be protected.
  • a conductive cover provided so as to cover the protection control unit is further provided, and the force bar extends over the protection control unit and is formed on both sides of the protection control unit. It is preferred to be attached to connect between.
  • the protection control unit is covered with the conductive cover, and the wiring patterns formed on both sides of the protection control unit are connected by the cover, so that the control is performed.
  • the area occupied by the wiring pattern on the plane to which the part is attached is reduced, and the protective circuit can be miniaturized.
  • the apparatus further includes a fuse connected in series with the thermal switch, and the thermal switch has an operating condition set to be turned off before the fuse, and the fuse is connected to the cover. It is preferable that the battery is disposed at a position facing the secondary battery housed in the container.
  • the fuse is disposed at a position facing the secondary battery housed in the container in the cover! Therefore, it is easy to heat the fuse due to the heat generated by the secondary battery.
  • the thermal switch includes a movable piece driven by deformation according to one temperature selected from a bimetal, a shape memory alloy, and a shape memory resin, and the external terminal connection On the surface of the unit facing the secondary battery housed in the container, It is preferable that a support member for supporting the movable section is formed.
  • the thermal switch is one selected from a switch using a bimetal switch, a shape memory alloy, and a switch using a shape memory resin. Since the movable piece is supported by a support member provided on the surface of the external terminal connection unit facing the secondary battery accommodated in the container, it is not necessary to configure these thermal switches as individual components. These thermal switches can be miniaturized.
  • the protection circuit is disposed on a frame body having a first support member and a second support member arranged at a predetermined interval, and on the first support member on the first surface side of the frame body.
  • the first wiring conductor that constitutes the contact point and extends from the contact point and constitutes the attachment terminal, and the contact point disposed on the second support member on the first surface side of the frame body
  • a thermal protection switch device comprising a second wiring conductor that extends from the contact and constitutes a mounting terminal, and the thermal switch, the thermal switch comprising the first wiring conductor and
  • the frame body is disposed across the contact points of the second wiring conductor, and the second surface side of the frame body facing the first surface arranges the first heater via the support members. It is preferable to provide a space portion for installation.
  • the thermal protection switch device is disposed between a positive electrode terminal of the secondary battery and the first connection terminal, and the protection control unit is configured to charge the secondary battery excessively. It is preferable to include an overcharge detection circuit that detects this and a switch element that is on / off controlled by a detection signal of the overcharge detection circuit.
  • the first heater is energized to heat the thermal switch element constituting the thermal protection switch device, so that the charging circuit is reliably shut off. Is done. Therefore, the secondary battery can be reliably protected, and a highly reliable battery pack can be realized.
  • the overcharge detection circuit, the switch element, and the first heater are integrated in a semiconductor integrated circuit.
  • a circuit is preferable.
  • the overcharge detection circuit, the switch element, and the first heater that constitute the protection circuit are configured by the semiconductor integrated circuit, the protection circuit is reduced in size and the protection circuit board is reduced in size. More promoted. For this reason, downsizing of the battery pack is further promoted.
  • the semiconductor integrated circuit is disposed in the space portion and heats the thermal switch.
  • the thermal switch element constituting the thermal protection switch device is heated by the semiconductor integrated circuit, the amount of heat generation is increased as compared with the case of only the first heater, and the thermal switch element is Heated reliably. Therefore, the secondary battery can be reliably protected, and a highly reliable battery pack can be realized.
  • the thermal protection switch device is a thermal protection switch device that turns off the circuit by being heated by a heating body, and includes a first support member and a first support member arranged at a predetermined interval.
  • a frame body having a support member and a first contact member disposed on the first support member on the first surface side of the frame body to form a contact and extending from the contact to form a mounting terminal 1 wiring conductor and a second wiring conductor which is disposed on the second support member on the first surface side of the frame body to form a contact and which extends from the contact to form a mounting terminal
  • a thermal switch disposed between the contact points of the first wiring conductor and the second wiring conductor and configured to turn off between the contact points when heated by a heating body.
  • the second side facing the first side is each support member Through, characterized in that it is an open shape to allow install heating member for heating the heat-sensitive switch.
  • the second surface side of the frame body is open so that the heating body for heating the thermal switch element can be disposed between the first support member and the second support member, and the heating is performed. Since the unit is a unit that can be handled independently of the body, the thermal protection switch device is mounted on the wiring board independently of the mounting of the heating body after the heating body is mounted on the wiring board. be able to. This facilitates the assembly of the protection circuit board, and does not complicate the structure of the wiring board, which can promote the downsizing of the protection circuit board. wear.
  • a battery pack according to the present invention is a battery pack having a first connection terminal and a second connection terminal, the secondary battery for supplying power to a load device, and the second battery It is intended to protect the secondary battery and is characterized by comprising a protection circuit configured using the thermal protection switch device described in (56) above.
  • the present invention can protect a secondary battery from excessive charging and excessive discharge current with a simple circuit, and is useful as a mopile device or a driving power source.

Abstract

 簡素な回路で二次電池を過剰な充電や過大な放電電流から保護することができる保護回路を提供する。二次電池(6)を接続するための接続端子(T3)と、二次電池(6)を充電する充電装置及び/又は二次電池(6)からの放電電流により駆動される負荷機器を接続するための接続端子(T1)と、接続端子(T1)及び接続端子(T3)の間に介設され、予め設定された所定の温度を超えた場合にオフするバイメタルスイッチ(SW1)と、バイメタルスイッチ(SW1)を加熱するためのヒータ(R2)と、二次電池(6)により接続端子(T3)に印加された電圧が、予め設定された基準電圧を超えた場合にヒータ(R2)を発熱させてバイメタルスイッチ(SW1)をオフさせる集積回路(IC1)とを備えた。

Description

明 細 書
二次電池の保護回路、電池パック、及び感熱保護スィッチ装置
技術分野
[0001] 本発明は、二次電池を過剰な充電や過大な放電電流から保護する保護回路、感 熱保護スィッチ装置、及びこれらを備えた電池パックに関する。
背景技術
[0002] 図 51は、背景技術に係る電池パックの構成を示す回路図である。図 51に示す電 池パック 1001は、保護回路 1002と、二次電池 1003とを備えている。二次電池 100 3は、例えばリチウムイオン二次電池、リチウムポリマー二次電池、ニッケル水素二次 電池、あるいはニッケルカドミウム二次電池等の充電可能な二次電池である。このよう な二次電池は、過剰に充電されたり放電電流が過大になったりすると、サイクル寿命 等の特性が劣化したり、電池の膨張や変形等を招いたりする場合がある。そこで、電 池パック 1001は、二次電池 1003を過剰な充電や、過大な放電電流から保護する保 護回路 1002を備えている(例えば、特許文献 1、特許文献 2参照)。
[0003] 保護回路 1002は、外部接続端子 1004, 1005と、 FET (Field Effect Transistor) 1 006, 1007と、基準電圧源 1008, 1009と、コンノ レータ 1010, 1111と、抵抗 111 2と、論理回路 1013とを備えている。
[0004] 外部接続端子 1004, 1005は、二次電池 1003を充電するための充電装置を接続 したり、二次電池 1003からの放電電流により駆動される携帯電話機やデジタルカメ ラ等のモパイル機器、電動工具、ロボット、電動自転車等の駆動用電源を接続したり するための接続端子である。そして、外部接続端子 1004と、二次電池 1003と、 FE T1006と、 FET1007と、外部接続端子 1005とが直列に接続されている。
[0005] FET1006は、寄生ダイオードのアノードが二次電池 1003側になる方向にされて おり、 FET1007は、寄生ダイオードのアノードが外部接続端子 1005側になる方向 にされている。そして、 FET1006は、二次電池 1003の放電電流が過大になった場 合に放電電流を遮断する過放電保護用のスィッチとして用いられ、 FET1007は、二 次電池 1003が過充電になった場合に充電電流を遮断する過充電保護用のスィッチ として用いられる。
[0006] また、二次電池 1003の正極端子がコンパレータ 1010の +端子に印加され、基準 電圧源 1008から出力された基準電圧 Vreflがコンパレータ 1010の—端子に印加さ れ、コンパレータ 1010の出力端子が論理回路 1013に接続されている。基準電圧 Vr eflとしては、二次電池 1003の過充電を検出するための電圧が設定されている。そ して、コンパレータ 1010は、外部接続端子 1004, 1005に接続された図略の充電装 置によって二次電池 1003が充電され、二次電池 1003の端子電圧が基準電圧 Vref 1を超えると、過充電を示す検知信号を論理回路 1013へ出力する。
[0007] また、 FET1006と FET1007との接続点が、抵抗 1112を介してコンパレータ 111 1の一端子に接続され、基準電圧源 1009から出力された基準電圧 Vref 2がコンパレ ータ 1111の +端子に印加されている。これにより、二次電池 1003からの放電電流 が FET1006を流れ、 FET1006のオン抵抗により生じた電圧降下が抵抗 1112を介 してコンパレータ 1111の—端子へ印加される。また、基準電圧 Vref 2は、例えば二 次電池 1003の特性劣化を招かない範囲での最大の放電電流力FET1006を流れ た場合に FET1006のオン抵抗で生じる電圧降下に相当する電圧が設定されている
[0008] そして、コンパレータ 1111は、例えば外部接続端子 1004, 1005が、金属片に接 触したり、外部接続端子 1004, 1005に接続された負荷機器が故障したりすること等 によって短絡し、二次電池 1003から過大な放電電流が流れると、 FET1006におけ る電圧降下の上昇を検知して、過電流の放電を示す検知信号を論理回路 1013へ 出力する。
[0009] 論理回路 1013は、コンパレータ 1010から過充電を示す検知信号が出力されると、 二次電池 1003の充電を停止させるベく FET1007をオフさせ、コンパレータ 1111か ら過電流の放電を示す検知信号が出力されると、二次電池 1003の放電を停止させ るべく FET1006をオフさせる。これにより、保護回路 1002は、二次電池 1003を、過 剰な充電や過電流の放電から保護するようになって!/ヽる。
[0010] また、このように二次電池を過剰な充電や、過電流の放電から保護する保護回路と しては、図 52に示す電池パック 1021のように、二次電池 1022とバイメタルスィッチ 1 023とを直列に接続し、例えば外部接続端子 1024, 1025に接続された充電装置 1 026が故障した場合等、充電が過剰となって二次電池 1022が発熱したりバイメタル スィッチ 1023が自己発熱したりすることによって、バイメタルスィッチ 1023が加熱さ れると、バイメタルスィッチ 1023がオフして充電電流を遮断し、二次電池 1022を保 護するようにしたものが知られて 、る。
[0011] また、図 53に示す電池パック 1031のように、所定の温度を超えた場合にオフする サーミスタである PTC (Positive Temperature Coefficient)素子である PTC素子 1032 を用いて、二次電池 1033と PTC素子 1032とを直列に接続し、例えば外部接続端 子 1034, 1035に接続された充電装置 1036が故障した場合等、充電が過剰となつ て二次電池 1033が発熱したり PTC素子 1032が自己発熱したりすることによって、 P TC素子 1032が加熱されると、 PTC素子 1032がオフして充電電流を遮断し、二次 電池 1033を保護するようにしたものが知られて!/、る。
[0012] 図 54は、背景技術に係る電池パックの他の構成を示す回路図である。図 54に示す 電池パック 1141は、例えば電動工具、電動自転車、あるいはロボット等、大きな負荷 電流、例えば 100A(lkW)を流す電気機器に用いられる電池パックである。電池パ ック 1141は、保護回路 1142と、二次電池 1143〜1146とを備えて! /、る。二次電池 1 143〜1146は、電池パック 1001における二次電池 1003と同様の二次電池で、出 力電力を増大させるベぐ複数の二次電池 1143〜1146が直列に接続されている。
[0013] 保護回路 1142は、外部接続端子 1147, 1148と、 FET1149, 1150と、基準電圧 源 1151〜1159と、コンノ レータ 1160〜1168と、アンドゲート 1169, 1170と、抵抗 1171と、論理回路 1172とを備えている。
[0014] 外部接続端子 1147, 1148は、電池パック 1001における外部接続端子 1004, 10 05と同様の接続端子である。そして、外部接続端子 1147と、二次電池 1143〜114 6と、 FET1149と、 FET1150と、外部接続端子 1148とが直列に接続されている。
[0015] FET1149は、電池パック 1001における FET1006と同様、二次電池 1143〜114 6の放電電流が過大になった場合に放電電流を遮断する過放電保護用のスィッチと して用いられ、 FET1150は、電池パック 1001における FET1007と同様、二次電池 1143〜 1146が過充電になった場合に充電電流を遮断する過充電保護用のスイツ チとして用いられる。
[0016] コンパレータ 1160, 1162, 1164, 1166は、二次電池 1143, 1144, 1145, 114 6の過充電を検出するためのコンパレータで、コンパレータ 1161, 1163, 1165, 11 67は、二次電池 1143, 1144, 1145, 1146の過放電を検出するためのコンパレー タである。
[0017] そして、コンパレータ 1160, 1162, 1164, 1166によって、二次電池 1143, 1144 , 1145, 1146の出力電圧と基準電圧源 1151, 1152, 1153, 1154力ら出力され る基準電圧とがそれぞれ比較されてその比較結果を示す信号がアンドゲート 1169 へ出力される。そして、二次電池 1143, 1144, 1145, 1146の出力電圧が各基準 電圧を超えると、過充電が検出されてアンドゲート 1169の出力電圧がローレベルで 論理回路 1172へ出力され、論理回路 1172によって FET1150がオフされて、二次 電池 1143, 1144, 1145, 1146力 ¾i充電力ら保護される。
[0018] 同様【こ、コンノ レータ 1161, 1163, 1165, 1167【こよって、二次電池 1143, 114 4, 1145, 1146の出力電圧と基準電圧源 1155, 1156, 1157, 1158力ら出力され る基準電圧とがそれぞれ比較されてその比較結果を示す信号がアンドゲート 1170 へ出力される。そして、二次電池 1143, 1144, 1145, 1146の出力電圧が各基準 電圧を下回ると、過放電が検出されてアンドゲート 1169の出力電圧がハイレベルで 論理回路 1172へ出力され、論理回路 1172によって FET1149がオフされて、二次 電池 1143, 1144, 1145, 1146力 ¾i放電力ら保護される。
[0019] また、 FET1149と FET1150との接続点が、抵抗 1171を介してコンパレータ 116 8の +端子に接続され、基準電圧源 1159から出力された基準電圧がコンパレータ 1 168の一端子に印加されている。これにより、二次電池 1143〜1146からの放電電 流が FET1149を流れ、 FET1149のオン抵抗により生じた電圧降下が抵抗 1171を 介してコンパレータ 1168の +端子へ印加される。また、基準電圧源 1159は、例え ば二次電池 1143〜 1146の特性劣化を招かな 、範囲での最大の放電電流が FET 1149を流れた場合に FET1149のオン抵抗で生じる電圧降下に相当する電圧が設 定されている。
[0020] そして、コンパレータ 1168は、二次電池 1143〜1146から過大な放電電流が流れ ると、 FET1149における電圧降下の上昇を検知して、過電流の放電を示す検知信 号を論理回路 1172へ出力するようになって 、る。
[0021] 論理回路 1172は、コンパレータ 1168から過電流の放電を示す検知信号が出力さ れると、二次電池 1143〜1146の放電を停止させるベく FET1149をオフさせる。こ れ〖こより、保護回路 1142は、二次電池 1143〜1146を、過剰な充放電や過電流の 放電から保護する。
[0022] し力しながら、図 51に示す保護回路 1002は、 FETには寄生ダイオードが有るため に、電流の流れる方向が異なる放電電流と充電電流とを一つの FETで遮断すること ができず、放電電流を遮断する FET1006と、充電電流を遮断する FET1007とを備 える必要があった。また、過充電を検出するために基準電圧源 1008とコンパレータ 1 010とを必要とし、過大な放電電流を検出するために基準電圧源 1009とコンパレー タ 1111と抵抗 1112とを必要とし、コンノ レータ 1010, 1111の出力信号に基づき 2 つの FET1006, 1007をオンオフさせる論理回路 1013を必要とするため、保護回 路 1002の回路規模が増大するという不都合があった。
[0023] 特に、図 54に示す電池パック 1141のように、大きな負荷電流を流す必要のある場 合には、 FET1149, 1150として電流定格の大きなトランジスタを使用する必要があ るため FET1149, 1150が大型化し、かつコストが上昇するという不都合があった。 さらに、二次電池を直列接続して出力電圧を増大すると、 FET1149, 1150の耐電 圧を増大させる必要があるが、耐電圧の高いトランジスタはオン抵抗が増大する傾向 があるため、 FET1149, 1150における電力損失が増大するという不都合があった。
[0024] また、図 52や図 53に示すように、バイメタルスィッチや PTC素子等の温度によって 動作する温度スィッチを二次電池と直列に接続することで二次電池を過充電力 保 護する構成では、過充電を検出する精度が低いため、例えば充電電圧の制御精度 の低 、粗悪な充電装置によって電池パックの充電が行われた場合のように、温度が 急激に上昇しな!ヽ程度の充電電流で二次電池の充電が継続すると、温度スィッチが 動作しないまま二次電池が過充電され、二次電池の特性が劣化したり、電池の膨張 や変形等を招 、たりするおそれがあると 、う不都合があった。
特許文献 1:特開平 4— 75430号公報 特許文献 2:特開平 11― 262270号公報
発明の開示
[0025] 本発明は、このような問題に鑑みて為された発明であり、簡素な回路で二次電池を 過剰な充電や過大な放電電流等から保護して、二次電池の特性が劣化することを防 止することができる保護回路を提供することを目的とする。
[0026] 本発明による二次電池の保護回路は、二次電池を充電する充電装置及び Z又は 前記二次電池からの放電電流により駆動される負荷機器を接続するための第 1及び 第 2の接続端子と、前記二次電池の両極に接続される第 3及び第 4の接続端子と、前 記第 1及び第 3の接続端子間に設けられ、予め設定された所定の温度を超えた場合 にオフする感熱スィッチと、前記感熱スィッチを加熱するための第 1のヒータと、前記 二次電池の特性に関わる物理量が予め設定された物理量の値を超えた場合、前記 第 1のヒータを発熱させて前記感熱スィッチをオフさせる保護制御部とを備えることを 特徴とする。
[0027] この構成によれば、二次電池の特性に関わる物理量が予め設定された物理量の値 を超えた場合に、保護制御部によって第 1のヒータが発熱され、第 1のヒータにより感 熱スィッチが加熱されることによって感熱スィッチがオフして充放電電流を遮断する ので、二次電池の特性劣化を低減することができる。また、放電電流と充電電流とを 一つの感熱スィッチにより遮断することができるので、回路を簡素化することができる 図面の簡単な説明
[0028] [図 1]本発明の実施の形態 1に係る電池パックの一例を示す分解斜視図である。
[図 2]図 1に示す電池パックの電気的構成の一例を示す回路図である。
[図 3]バイメタルスィッチ及び温度ヒューズに流れる電流値と、動作時間との一例を示 すグラフである。
[図 4]本発明の実施の形態 1に係る保護回路の構成の一例を示す外観斜視図である
[図 5]本発明の実施の形態 2に係る保護回路の構成の一例を説明するための説明図 であり、図 5 (a)は、保護回路の各部品を取り付けるための配線パターンを示す図で あり、図 5 (b)は、保護回路の機械的構成の一例を示す断面図である。
圆 6]図 5に示す保護回路の機械的構成の一例を示す図であり、図 6 (a)は保護回路 の機械的構成の一例を示す上面図、図 6 (b)は保護回路の機械的構成の一例を示 す断面図である。
[図 7]可動切片の動作を説明するための説明図である。
圆 8]容器と外部端子接続ユニットとが組み合わされた状態を説明するための説明図 である。
圆 9]本発明の実施の形態 3に係る保護回路の構成の一例を示す回路図である。 圆 10]本発明の実施の形態 4に係る電池パックの電気的構成の一例を示す回路図 である。
圆 11]図 10に示す保護回路の機械的構成を説明するための説明図である。
圆 12]図 10に示す保護回路の機械的構成を説明するための説明図である。
圆 13]図 10に示す保護回路の機械的構成を説明するための説明図である。
圆 14]容器と外部接続端子ユニットとが組み合わされた状態を説明するための説明 図である。
圆 15]本発明の実施の形態 5に係る電池パックの電気的構成の一例を示す回路図 である。
[図 16]図 15に示す保護回路において用いられるヒータ R3とヒータ R4との直列回路 の構成の一例を示す説明図である。
圆 17]図 15に示す保護回路の機械的構成を説明するための説明図である。図 17 (a )は、保護回路の各部品を取り付けるための配線パターンを示す図であり、図 17 (b) は、保護回路の機械的構成の一例を示す断面図である。
[図 18]図 18 (a)は、図 17 (b)に示す保護回路の上面図である。図 18 (b)に図 17 (b) と同じ断面図を示している。
[図 19]図 15に示すヒータとして用いられるサーミスタの構成の一例を示す説明図であ る。
圆 20]図 19に示すサーミスタを用いた保護回路の機械的構成を説明するための説 明図である。 圆 21]本発明の実施の形態 6に係る電池パックの電気的構成の一例を示す回路図 である。
圆 22]図 21に示す保護回路の機械的構成を説明するための説明図である。図 22 (a )は、保護回路の各部品を取り付けるための配線パターンを示す図であり、図 22 (b) は、保護回路の機械的構成の一例を示す断面図である。
圆 23]図 21に示す保護回路の機械的構成を説明するための説明図である。図 23 (a )は、図 23 (b)に示す保護回路 5の上面図であり、図 23 (b)は、保護回路の機械的 構成の一例を示す断面図である。
[図 24]図 21に示す電池パックの電気的構成の変形例を示す回路図である。
[図 25]実施の形態 7に係る電池パックの電気的構成の一例を示す回路図である。
[図 26]実施の形態 8による電池パックの回路図を示している。
[図 27]実施の形態 9に係る電池パックの回路図を示している。
[図 28]実施の形態 10に係る電池パックの回路図を示している。
[図 29]実施の形態 11に係る電池パックの回路図を示して 、る。
[図 30]実施の形態 12に係る電池パックの回路図を示している。
[図 31]実施の形態 13に係る電池パックの回路図を示している。
圆 32]図 31に示す保護回路の詳細な構成を示す回路図である。
圆 33]実施の形態 12の保護回路魏積回路とした場合における電池パックの分解 構成図を示し、(a)は上面図を示し、(b)は側面図を示している。
圆 34]実施の形態 12の保護回路^^積回路とした場合における電池パックの分解 構成図を示し、(a)は上面図を示し、(b)は側面図を示している。
圆 35]実施の形態 12の保護回路魏積回路とした場合における電池パックの分解 構成図を示し、(a)は上面図を示し、(b)は側面図を示している。
圆 36]実施の形態 12の保護回路^^積回路とした場合における電池パックの分解 構成図を示し、(a)は上面図を示し、(b)は側面図を示している。
[図 37]実施の形態 14に係る電池パックの回路図を示している。
圆 38]感熱スィッチ素子とヒータとを配線基板に組み込んで構成した保護回路基板 の部分図である。 [図 39]本発明の実施の形態 15に係る電池パックの概略構成を説明するための外観 分解斜視図である。
[図 40]図 39に示す電池パックの回路図を示す。
[図 41]感熱保護スィッチ装置の具体的構成の一例を説明するための要部断面図で ある。
[図 42]図 39に示す保護回路基板の側面図である。
[図 43]図 42に示す保護回路基板を用いて図 39に示す電池パックを構成する場合の 二次電池に対する保護回路基板の配置構成と、二次電池と保護回路基板との電気 的接続関係を概念的に示す図である。
[図 44]半導体集積回路化した IC素子を用い、これらを配線基板上に実装して構成し た保護回路基板の側面図である。
[図 45]図 44に示す保護回路基板を用いて図 39に示す電池パックを構成する場合の 二次電池に対する保護回路基板の配置構成と、二次電池と保護回路基板との電気 的接続関係を概念的に示す図である。
[図 46]図 39に示す電池パックの電気的構成の他例を示す回路図である。
[図 47]図 46に示す回路構成になる保護回路基板を用いて構成した図 39に示すもの とは異なる構造の電池パックを示す図である。
[図 48]感熱保護スィッチ装置の具体的構成の他例を示す要部断面図である。
[図 49]図 48に示す感熱保護スィッチ装置の配線基板への取付構成を説明するため の図である。
[図 50]感熱保護スィッチ装置の具体的構成の他例を示す要部断面図である。
[図 51]背景技術に係る電池パックの構成を示す回路図である。
[図 52]背景技術に係る電池パックの構成を示す回路図である。
[図 53]背景技術に係る電池パックの構成を示す回路図である。
[図 54]背景技術に係る電池パックの構成を示す回路図である。
発明を実施するための最良の形態
以下、本発明にかかる実施の形態を図面に基づいて説明する。なお、各図におい て同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。 [0030] (実施の形態 1)
図 1は、本発明の一実施形態に係る電池パックの一例を示す分解斜視図である。 図 1に示す電池パック 1は、有底筒状の容器 2と、外部端子接続ユニット 3と、容器 2と 外部端子接続ユニット 3との間に挿入される板状のスぺーサ 4とを備えている。容器 2 は、二次電池 6が収容され、かしめ封口されており、二次電池 6に凸状に設けられた 正極端子 6aが容器 2の開口端力も突出するようにされている。また、容器 2は、 -ッケ ルメツキを表面に施した鋼板力 構成されており、二次電池 6の負極が容器 2の内部 で容器 2と接続されている。
[0031] 外部端子接続ユニット 3は、例えば榭脂成形されたケース 31を備えて構成され、充 電装置や負荷機器を接続するための接続端子 Tl, T2がケース 31の表面に露出し て設けられている。また、接続端子 T2と接続された、例えば板状の金属により構成さ れた接続端子 T4が、容器 2と接続される方向に突出して設けられて ヽる。
[0032] 図 2は、図 1に示す電池パック 1の電気的構成の一例を示す回路図である。図 1に 示す電池パック 1は、保護回路 5と、二次電池 6とを備えている。二次電池 6は、例え ばリチウムイオン二次電池、リチウムポリマー二次電池、ニッケル水素二次電池、ある いはニッケルカドミウム二次電池等の充電可能な二次電池である。保護回路 5は、二 次電池 6を過剰な充電や、過大な放電電流力 保護する保護回路である。
[0033] 保護回路 5は、外部端子接続ユニット 3の内部に配設されており、接続端子 T1〜T 4 (第 1〜第 4の接続端子)と、バイメタルスィッチ (感熱スィッチ) SW1と、温度ヒユー ズ F1と、コンパレータ CMP1と、基準電圧源 E1と、抵抗 R1と、トランジスタ Q1と、ヒー タ (第 1のヒータ) R2とを備えている。接続端子 T1及び接続端子 Τ2は、二次電池 6を 充電する図略の充電装置及び Ζ又は二次電池 6からの放電電流により駆動される負 荷機器を接続するための接続端子である。負荷機器は、例えば携帯電話機、デジタ ルカメラ、ビデオカメラ、携帯型パーソナルコンピュータ、電動工具等、電池で駆動さ れる種々の電気機器である。
[0034] ノ ィメタルスィッチ SW1は、予め設定された所定の動作温度 Tswlを超えた場合に オフすると共に二次電池 6の充放電電流が予め設定された所定の遮断電流値 Iswl を超えた場合に自己発熱によりオフする感熱スィッチの一例であり、動作温度 Tswl は、例えば二次電池 6の特性を劣化させな 、温度範囲における最高温度が設定され 、遮断電流値 Iswlとしては、二次電池 6の特性劣化を招かない範囲での最大の放 電電流値が設定されている。バイメタルスィッチ SW1は、温度が上昇してオフした後 、温度が低下すれば再びオンする復帰形の感熱スィッチである。なお、感熱スィッチ としては、バイメタルスィッチに代えて、バイメタルスィッチにおけるバイメタルの代わり に形状記憶合金を用いたスィッチ (例えば、実公平 7— 4770、特開平 11 - 224579 に記載のもの)や、形状記憶榭脂を用いたスィッチを、同様にして用いることができる
[0035] 形状記憶合金としては、ニッケル チタン合金系、銅一亜鉛 アルミニウム合金な どの熱弾性型マルテンサイト変態および逆変態に基づき、復元力を有する形状記憶 合金であれば良ぐこれらの合金がその変形された形状より復元された形状に変化 する形状変化温度範囲は、形状記憶合金の組成を適宜に選定した熱処理プロセス を変更することにより変更可能である。
[0036] 形状記憶榭脂としては、架橋または部分結晶化させた固定相と可逆相が混在して いるポリエステル、ポリウレタン、スチレン 'ブタジエン、トランスポリイソプレンなどの榭 脂を用いることができる。
[0037] ヒータ R2は、例えば正の温度特性、すなわち温度の増減に応じて抵抗値が増減す る PTC (Positive Temperature Coefficient)サーミスタが用いられる。これにより、ヒー タ R2に電圧を印加すると、ヒータ R2の自己発熱によってヒータ R2の抵抗値が増大し 、ヒータ R2を流れる電流が減少する結果、ヒータ R2の温度は最終的に、最終到達温 度 Thで一定となる。最終到達温度 Thは、バイメタルスィッチ SW1の動作温度 Tswl を超える温度であって、二次電池 6や保護回路 5を損傷しな 、程度の温度が設定さ れている。これにより、ヒータ R2の温度が上昇しすぎて温度ヒューズ F1を溶断したり、 ヒータ R2の発熱によって二次電池 6や保護回路 5を損傷したりすることを抑制するこ とがでさる。
[0038] 温度ヒューズ F1は、二次電池 6と近接して、あるいは絶縁物を挟んで密着されて配 設され、二次電池 6が過充電や過大な放電によって発熱した場合に、その熱で溶断 する温度ヒューズである。温度ヒューズ F1の溶断する動作温度 Tfuselは、バイメタ ルスイッチ SW1の動作温度 Tswlよりも高い温度に設定されている。また、温度ヒュ ーズ F1の動作速度は、バイメタルスィッチ SW1よりも遅くなるように、溶断特性が設 定されている。温度ヒューズ F1は、一度溶断したら、導通状態に復帰することのない 非復帰形の感熱スィッチである。この場合、バイメタルスィッチ SW1の動作温度 Tsw 1と、ヒータ R2の最終到達温度 Thと、温度ヒューズ F1の動作温度 Tfuselとは、下記 式 (1)で示す関係となる。
[0039] Tswl <Thく Tfusel · · · (1)
[0040] また、バイメタルスィッチ SW1及び温度ヒューズ F1の動作温度、及び動作速度の 設定は、バイメタルスィッチ SW1及び温度ヒューズ F1自体の部品の特性を設定する ほか、バイメタルスィッチ SW1を温度ヒューズ F1よりも先に動作させるために、例えば バイメタルスィッチ SW1と二次電池 6との間の熱抵抗が温度ヒューズ F1と二次電池 6 との間の熱抵抗よりも小さくなるようにバイメタルスィッチ SW1と二次電池 6とを近接さ せたり密着させたりする構成によってもよぐ例えば、バイメタルスィッチ SW1の接点 抵抗や可動切片における抵抗を上昇させて自己発熱量を増大させたり、バイメタル スィッチ SW1が放熱する際の周囲に対する熱抵抗を増大させたり、バイメタルスイツ チ SW1を小型化して熱容量を低減させたりすることによってノ ィメタルスィッチ SW1 を自己発熱により温度上昇し易い構成としてもよい。
[0041] また、温度ヒューズ F1の動作をバイメタルスィッチ SW1より遅らせるために、例えば 温度ヒューズ F1が放熱する際の周囲に対する熱抵抗を減少させたり、例えば温度ヒ ユーズ F1に熱伝導性のょ 、材料を接触させる等の方法により温度ヒューズ F1を大型 化することなく温度ヒューズ F1のみかけの熱容量を増大させたりすることによって、温 度ヒューズ F1を温度上昇し難 、構成としてもよ!、。
[0042] 図 3は、上記式(1)を満たすようにバイメタルスィッチ SW1及び温度ヒューズ F1の 動作温度、及び動作速度を設定した場合における電流値と、動作時間との一例を示 すグラフである。図 3に示すグラフにおいて、縦軸は、バイメタルスィッチ SW1及び温 度ヒューズ F1に流れる電流値、横軸は、縦軸の電流を流してカゝらバイメタルスィッチ SW1及び温度ヒューズ F1が動作するまでの時間である。
[0043] 図 3において、グラフ G1〜G3は、電池パック 1を組み立てた状態におけるバイメタ ルスイッチ SWlに流れる電流値と、動作時間との関係の一例を示すグラフである。グ ラフ G1は周囲温度が 30°Cの場合、グラフ G2は周囲温度が 0°Cの場合、グラフ G3 は周囲温度が 25°Cの場合、グラフ G4は周囲温度が 70°Cの場合を示している。また 、グラフ G5〜G10は、電池パック 1を組み立てた状態における温度ヒューズ F1に流 れる電流値と、動作時間との関係の一例を示すグラフである。グラフ G5は周囲温度 が 65°Cの場合における最小値、グラフ G6は周囲温度が 65°Cの場合における平均 値、グラフ G7は周囲温度が 65°Cの場合における最大値、グラフ G8は周囲温度が 2 5°Cの場合における最小値、グラフ G9は周囲温度が 25°Cの場合における平均値、 グラフ G10は周囲温度が 25°Cの場合における最大値を示している。また、グラフ G1 1は、バイメタルスィッチ SW1の部品単体での特性を示している。なお、図 3に示すデ ータの測定に際して、温度ヒューズ F1は、パナソニックエレクトロニックデバイス (株) 製 EYP2ML098を用いた。
[0044] 図 2に戻って、接続端子 T1は、バイメタルスィッチ SW1、温度ヒューズ Fl、接続端 子 T3を介して二次電池 6の正極に接続され、二次電池 6の負極は、接続端子 T4を 介して接続端子 T2に接続されている。また、接続端子 T3はコンパレータ CMP1の 電源供給端子に接続され、接続端子 T4はコンパレータ CMP1のグラウンド端子に接 続されて、二次電池 6からコンパレータ CMP1の動作用電源電圧が供給されるように なっている。
[0045] 接続端子 T3は抵抗 R1を介してコンパレータ CMP1の +端子に接続され、接続端 子 T4は基準電圧源 E 1の負極に接続され、基準電圧源 E 1の正極はコンパレータ C MP1の一端子に接続され、コンパレータ CMP1の出力端子はトランジスタ Q1のゲー ト端子に接続されている。
[0046] 基準電圧源 E1は、二次電池 6の過充電を検出するための判断基準となる基準電 圧 Vreflを出力する電圧発生回路である。これにより、コンパレータ CMP1の—端子 に基準電圧 Vreflが印加され、接続端子 T3, T4間の端子電圧、すなわち二次電池 6の電圧 Vbが基準電圧 Vreflを超えるとコンパレータ CMP1によってトランジスタ Q1 のゲート電圧がノ、ィレベルにされ、トランジスタ Q1がオンされて、ヒータが発熱する。
[0047] また、コンパレータ CMP1は、電圧 Vbが基準電圧 Vrefl付近となった場合におけ るノイズの影響を低減するために、入力電圧にヒステリシスを有するコンパレータが用 いられている。そして、コンパレータ CMP1、抵抗 Rl、及び基準電圧源 Elは、例え ば集積化されて構成され、集積回路 IC1にされている。この場合、集積回路 IC1は、 保護制御部の一例に相当して 、る。
[0048] 接続端子 T1は、ヒータ R2を介してトランジスタ Q1のドレインに接続され、トランジス タ Q 1のソースは接続端子 T4に接続されて!、る。
[0049] 図 4は、図 2に示す保護回路 5の機械的構成の一例を示す外観斜視図である。図 4 に示す保護回路 5は、例えばプリント配線基板 PR1の表面に、集積回路 IC1、トラン ジスタ Ql、及びヒータ R2が配設され、ヒータ R2の上にプリント配線基板 PR2を介し てノ ィメタルスィッチ SW1が配設されている。これにより、ヒータ R2が発熱すると、ノ ィメタルスィッチ SW1が加熱されるようになって!/ヽる。
[0050] また、プリント配線基板 PR1の一端部力も接続端子 T1が引き出され、例えば屈曲 加工されて接続端子 T1の一部が外部端子接続ユニット 3の開口部力 外部に露出 するようにされている。そして、プリント配線基板 PR1の他端部に、温度ヒューズ F1の 一方の板状にされたリード線が接続されると共に屈曲され、絶縁シート PR3を挟んで 温度ヒューズ F1とプリント配線基板 PR1とが対向するようにされている。さらに、温度 ヒューズ F1の他方の板状にされたリード線が接続端子 T3として用いられるようになつ ている。また、絶縁シート PR3との間に温度ヒューズ F1を挟むように、絶縁シート PR4 が設けられている。
[0051] そして、保護回路 5は、図 1に示す外部端子接続ユニット 3の内部に、温度ヒューズ F1が容器 2に収容された二次電池 6と対向する向きに配設されている。さらに、間に スぺーサ 4を挟んで容器 2と外部端子接続ユニット 3とが組み合わされる。そして、正 極端子 6aが、スぺーサ 4に設けられた開口部を貫通して外部端子接続ユニット 3に設 けられた接続端子 T3と、例えばスポット溶接により接続される。また、接続端子 T2と 接続された接続端子 T4と、二次電池 6の負極と接続された容器 2の開口端部とが例 えばスポット溶接により接続され、二次電池 6の負極と接続端子 T2とが導通するよう になっている。また、保護回路 5は、温度ヒューズ F1が二次電池 6と対向するように配 設されており、二次電池 6が発熱すると、温度ヒューズ F1が加熱されるようになってい る。
[0052] 次に、上述のように構成された保護回路 5の動作について説明する。まず、保護回 路 5による過充電の保護動作について説明する。まず、バイメタルスィッチ SW1がォ ンしている状態で接続端子 Tl, T2に図略の充電装置が接続され、充電装置から電 圧 Vcが接続端子 Tl, T2間に印加されると、ノ ィメタルスィッチ SW1、温度ヒューズ F 1、及び接続端子 T3を介して二次電池 6へ電圧 Vbによる充電が行われる。
[0053] 電圧 Vbは、正常時は例えば最大 4. 2Vである。そして、基準電圧源 E1は、基準電 圧 Vreflとして例えば 4. 3Vをコンパレータ CMP1へ出力するように設定されている
[0054] そして、例えば図略の充電装置が故障したり充電装置の出力電圧精度が低いため に充電電圧 Vbが 4. 3Vを超えると、コンパレータ CMP1によってトランジスタ Q1がォ ンされ、ヒータ R2に電流が流れてバイメタルスィッチ SW1が加熱される。そして、バイ メタルスィッチ SW1の温度が動作温度 Tswlに達すると、バイメタルスィッチ SW1が オフして充電電流が遮断され、二次電池 6が過充電力 保護される。
[0055] 次に、バイメタルスィッチ SW1がオフして充電電流が遮断されることによって、接続 端子 T3の電圧が基準電圧 Vrefl以下になると、コンパレータ CMP1によってトランジ スタ Q1がオフされ、ヒータ R2に流れる電流がゼロにされる。そして、自然冷却により バイメタルスィッチ SW1の温度が復帰温度を下回ると、バイメタルスィッチ SW1がォ ンして過充電保護状態力 通常状態に復帰する。
[0056] この場合、コンパレータ CMP1によって過充電が検出され、ヒータ R2によりバイメタ ルスイッチ SW1を加熱することによってバイメタルスィッチ SW1をオフさせるので、例 えば図 52や図 53に示すように二次電池と直列に接続された温度スィッチのみによつ て過充電保護を行う場合よりも過充電を検出する精度を向上させることができ、過充 電保護動作が行われな ヽまま二次電池 6が過充電されたり、二次電池 6の特性が劣 化したり、二次電池 6の膨張や変形等を招いたりするおそれを低減することができる。
[0057] 次に、二次電池 6からの放電電流が過大になった場合の保護回路 5による保護動 作について説明する。まず、バイメタルスィッチ SW1がオンしている状態で、例えば 接続端子 Tl, T2に金属片が接触したり、接続端子 Tl, T2に接続された図略の携 帯電話機等の負荷機器が故障したりすることによって、接続端子 Tl, T2が短絡、又 は接続端子 Tl, T2間の抵抗値が低抵抗になると、二次電池 6から温度ヒューズ F1と バイメタルスィッチ SW1とを介して放電される電流が増大し、バイメタルスィッチ SW1 の接点抵抗によってノ ィメタルスィッチ SW1が加熱される。
[0058] そして、バイメタルスィッチ SW1の温度が動作温度 Tswlに達すると、バイメタルス イッチ SW1がオフして二次電池 6の放電電流が遮断され、二次電池 6が過大な放電 電流から保護される。
[0059] この場合、バイメタルスィッチ SW1は、温度ヒューズ F1よりも先にオフするべく動作 条件が設定されており、非復帰形の感熱スィッチである温度ヒューズ F1を溶断させる ことなく復帰形の感熱スィッチであるバイメタルスィッチ SW1によって二次電池 6を過 剰な充電や過大な放電電流力 保護することができるので、例えば充電装置や負荷 装置力 電池パック 1が取り外されて過剰な充電や過大な放電電流の原因が解消し た後は、温度ヒューズ F1を交換することなく繰り返し電池パック 1を使用することがで き、利便性を向上させることができる。
[0060] また、例えばバイメタルスィッチ SW1の接点が溶着して短絡故障した場合や、集積 回路 IC1、トランジスタ Ql、及びヒータ R2のうちいずれかが故障して過充電時にバイ メタルスィッチ SW1をオフさせることができな 、場合であっても、過充電や過大な放 電電流によって二次電池 6が発熱すると、温度ヒューズ F1が溶断し、二次電池 6を保 護することができるので、保護回路 5の信頼性を向上させることができる。
[0061] また、感熱スィッチであるバイメタルスィッチ SW1を用いて二次電池 6を過剰な充電 及び過大な放電電流力 保護することができるので、図 51に示す背景技術に係る保 護回路 1002のように、放電電流を遮断する FET1006と、充電電流を遮断する FET 1007と、過大な放電電流を検出するための基準電圧源 1009、コンパレータ 1111、 及び抵抗 1112と、二つの FET1006, 1007のオンオフを制御するための論理回路 1113とを必要とせず、保護回路 5の回路を簡素化することができると共に、保護回路 5を小型化することが容易となる。
[0062] (実施の形態 2)
次に、本発明の実施の形態 2に係る電池パックについて説明する。本発明の実施 の形態 2に係る電池パック laの外観は、図 1に示す電池パック 1と同様である。また、 本発明の実施の形態 2に係る電池パック laが備える保護回路 5aの電気的構成は、 図 2に示す保護回路 5と同様である。本発明の実施の形態 2に係る保護回路 5aは、 図 4に示す保護回路 5とは、機械的構成が異なる。
[0063] 図 5は、本発明の実施の形態 2に係る保護回路 5aの機械的構成を説明するための 説明図である。図 5 (a)は、保護回路 5の各部品を取り付けるための配線パターンを 示す図であり、図 5 (b)は、保護回路 5の機械的構成の一例を示す断面図である。図 6 (a)は、図 5 (b)に示す保護回路 5の上面図である。また、対比のため、図 6 (b)に図 5 (b)と同じ断面図を示して!/、る。
[0064] 図 5 (a)に示す配線パターンは、外部端子接続ユニット 3におけるケース 31の内面 、すなわち外部端子接続ユニット 3と容器 2とが組み合わされた場合における容器 2 に収容された二次電池 6と対向する側の表面に、例えば金属微粒子により構成され たペースト状の導電性配線材料を用いて印刷形成されており、図 4に示す保護回路 5のように、プリント配線基板 PR1を用いず、配線パターンが印刷形成されたケース 3 1の内面に直接、集積回路 IC1、トランジスタ Ql、及びヒータ R2が固着される。
[0065] これにより、図 4に示す保護回路 5からプリント配線基板 PR1をなくすことができるの で、プリント配線基板 PR1の厚みだけ保護回路 5を小型化することが容易となる。
[0066] また、図 5 (b)に示すように、外部端子接続ユニット 3におけるケース 31の内側には 、例えばケース 31と一体成形により凸状に形成された支持部材 32, 33が設けられて いる。そして、支持部材 32の頂部から引き出された配線パターン P4が、例えばケー ス 31を貫通する円柱状の金属部材 34によって、ケース 31の外側表面に設けられた 接続端子 T1と接続されている。さらに、支持部材 32の頂部には、バイメタルスィッチ SW1を構成する可動切片 35の一端力 例えばスポット溶接により配線パターン P4と 接続されて固定されている。可動切片 35の他端には接点 36が設けられており、接点 36は、支持部材 33の頂部に形成された配線パターン P5に接触するようにされて ヽ る。
[0067] また、可動切片 35の下部には、支持部材 32と支持部材 33との間に弓なりに掛け 渡されたバイメタル 37が設けられている。バイメタル 37は、動作温度 Tswlになると、 図 7に示すように逆向きに反り返ることにより可動切片 35を上方に跳ね上げて、接点 36を配線パターン P5から引き離すようになつている。そして、支持部材 32, 33、可 動切片 35、 ノ ィメタル 37、及び配線パターン P4, P5によって、バイメタルスィッチ S W1が構成されている。また、このように構成されたバイメタルスィッチ SW1を覆うよう に、防塵や絶縁を目的としたスィッチカバー 38が固着されている。また、ノ ィメタル 3 7の下部には、略円盤状のヒータ R2が配設されており、ヒータ R2が発熱すると、ノ ィ メタル 37が加熱されるようになって!/、る。
[0068] これにより、ケース 31と一体成形された支持部材 32, 33を用いてバイメタルスイツ チ SW1を構成することができるので、個別部品として構成されたバイメタルスィッチ S W1を用いる場合よりもコストを低減することが容易となる。また、バイメタルスィッチ S W1を個別部品として構成した場合におけるケースの底部が不要となるので、ノ ィメタ ルスイッチ SW1を小型化することができる。
[0069] また、温度ヒューズ F1の接続端子を構成する導体リード P6, P7は、例えば幅広の 板状にされており、導体リード P6, P7を屈曲させて、温度ヒューズ F1と導体リード P6 , P7とで集積回路 IC1とトランジスタ Q1とを覆うように温度ヒューズ F1が取り付けられ ている。そして、集積回路 IC1とトランジスタ Q1との両側に設けられた配線パターン P 5, P8間が、集積回路 IC1とトランジスタ Q1とを跨いで導体リード P6、温度ヒューズ F 1、及び導体リード P7を介して接続されている。
[0070] そして、温度ヒューズ Fl、及び導体リード P6, P7の外側表面、及び導体リード P6, P7の両側面は、例えば絶縁や防塵を目的とするシート部材 39によって覆われている
[0071] これにより、温度ヒューズ Fl、導体リード P6, P7、及びシート部材 39は、集積回路 I C1とトランジスタ Q1とを覆うカバーとして機能し、温度ヒューズ Fl、導体リード P6, P 7の他に別途カバーを備える場合と比較して、ケース 31の表面上における温度ヒユー ズ F1の実装面積を削減することができ、保護回路 5を小型化することが容易となる。
[0072] また、温度ヒューズ Fl、導体リード P6, P7、及びシート部材 39は、配線パターン P5 と配線パターン P8との間で集積回路 IC1及びトランジスタ Q1を跨いで電流を流すジ ヤンパ配線として用いられるので、ケース 31の表面上における配線パターンの占有 面積が縮小し、保護回路 5を小型化することが容易となる。
[0073] また、導体リード P7〖こは、接続端子 T3が例えばスポット溶接により取り付けられて いる。これにより、ケース 31の表面上に接続端子 T3の取付面積を占有することがな いので、外部端子接続ユニット 3を小型化することが容易となる。
[0074] さらに、温度ヒューズ Fl、導体リード P6, P7を除く他の部品を、導電性配線材料を 用いて印刷形成された配線パターン上に取り付けた状態で、外部端子接続ユニット 3 を加熱して導電性配線材料を硬化させた後に温度ヒューズ Fl、導体リード P6, P7を 取り付けるようにすれば、導電性配線材料の硬化温度が温度ヒューズ F1の動作温度 Tfuselより高温であっても、製造時に温度ヒューズ F1を溶断させたり劣化させたりす ることがない。
[0075] 図 8は、容器 2と外部端子接続ユニット 3とが組み合わされた状態を説明するための 説明図である。図 8に示すように、バイメタルスィッチ SW1と温度ヒューズ F1と力 容 器 2と外部端子接続ユニット 3とが組み合わされた状態において容器 2に収容された 二次電池 6と対向する位置に近接して配設されて ヽるので、バイメタルスィッチ SW1 及び温度ヒューズ F1と、二次電池 6との熱結合を強化することができ、二次電池 6が 過度に発熱した場合にノ ィメタルスィッチ SW1及び温度ヒューズ F1により二次電池 6の充放電電流を遮断することができる。
[0076] これにより、例えば集積回路 IC1や、トランジスタ Ql、ヒータ R2等の故障により、二 次電池 6の過充電時にヒータ R2を発熱させることができな 、状態であっても、過充電 により二次電池 6が発熱すると、バイメタルスィッチ SW1及び温度ヒューズ F1が加熱 される。そして、バイメタルスィッチ SW1の温度が動作温度 Tswlに達すると、バイメ タルスィッチ SW1がオフして充電電流が遮断されるので、集積回路 IC1や、トランジ スタ Q1、ヒータ R2等が故障した場合であっても二次電池 6を過充電力 保護すること ができる。
[0077] また、例えばバイメタルスィッチ SW1の接点が溶着して短絡故障した場合、ノ ィメタ ルスイッチ SW1の温度が動作温度 Tswlに達してもバイメタルスィッチ SW1がオフし なくなるが、さらに二次電池 6の発熱によって温度ヒューズ F1が加熱され、温度ヒユー ズ F1の温度が動作温度 Tfuselに達すると、温度ヒューズ F1が溶断して充電電流が 遮断されるので、バイメタルスィッチ SW1が故障した場合であっても二次電池 6を過 充電力 保護することができる。
[0078] また、温度ヒューズ F1は、集積回路 IC1及びトランジスタ Q1とも近接して配設される ので、集積回路 IC 1やトランジスタ Q 1が過度に発熱した場合に温度ヒューズ F 1によ り二次電池 6の充放電電流を遮断することが容易となる。
[0079] なお、保護回路 5aを構成する配線パターンは、外部端子接続ユニット 3における容 器 2に収容された二次電池 6と対向する側の表面に印刷形成されている例を示した 力 保護回路 5aを構成する配線パターンは、外部端子接続ユニット 3の表面に印刷 形成される代わりにプリント配線基板上に形成され、そのプリント配線基板上に、保護 回路 5aを構成する集積回路 IC1、トランジスタ Ql、及びバイメタルスィッチ SW1が配 設される構成としてもよぐこの場合、支持部材 32, 33は、プリント配線基板に形成さ れた貫通孔を貫通してプリント配線基板上に可動切片 35及びバイメタル 37を支持す る構成としてちよい。
[0080] また、支持部材 32, 33は、ケース 31と一体成形される例に限られず、例えば円柱 状の金属部材をケース 31に埋め込むことによって構成してもよい。また、温度ヒユー ズ F1を備えず、導体リード P6と導体リード P7とが短絡された構成としてもよい。また、 スィッチカバー 38とシート部材 39とを一体成形して一部品として構成してもよい。
[0081] また、保護回路 5aは、電池パック laに組み込まれて構成される例を示した力 電池 ノ^ク laに組み込まれる例に限られず、例えば負荷機器に組み込まれて、負荷機器 に内蔵された二次電池の保護回路として用いられてもよぐ接続端子 Tl, T2, T3, T4は、例えば配線パターンであってもよい。
[0082] また、リチウムイオン二次電池、リチウムポリマー二次電池、ニッケル水素二次電池 、あるいはニッケルカドミウム二次電池等の二次電池は、放電が進んで出力電圧が 所定の放電末期電圧以下に低下した後、さらに放電を続けると、二次電池が過放電 状態となってサイクル寿命等の電池特性が劣化してしまう場合がある。そこで、接続 端子 Tl, T2に接続される携帯電話機等の負荷機器において、接続端子 Tl, T2間 の出力電圧を検出し、接続端子 Tl, T2間の出力電圧が所定の放電末期電圧以下 に低下した場合、接続端子 Tl, T2からの出力電流を遮断することが望ましい。これ により、二次電池 6の過放電による特性劣化の発生を抑制することができる。
[0083] (実施の形態 3)
図 9は、本発明の実施の形態 3に係る電池パック lbの電気的構成の一例を示す回 路図である。図 9に示す電池パック lbは、例えば電動工具、電動自転車、あるいは口 ボット等、大きな負荷電流、例えば lOOA(lkW)を流す電気機器、および数分間程 度の短時間での充電を行う超急速充電対応セルに用いられる電池パックである。図 9に示す電池パック lbは、図 2に示す電池パック 1とは、二次電池 6の代わりに直列に 接続された二次電池 62〜65を備え、集積回路 IC1の代わりに集積回路 IC2を備え る点で異なる。この場合、集積回路 IC2が保護制御部の一例に相当し、集積回路 2と温度ヒューズ F1と二次電池 62とを接続する配線パターンが第 1の接続端子の一 例に相当している。
[0084] 集積回路 IC2は、基準電圧源 E1と同様の基準電圧源 El l〜14と、コンパレータ CMP1と同様のコンパレータ CMP11〜CMP14と、 NANDゲート 7と、論理回路 8と を備えている。そして、二次電池 62の正極はコンパレータ CMP11の—端子に接続 され、コンパレータ CMP11の +端子は基準電圧源 E11の正極に接続され、基準電 圧源 E11の負極は二次電池 62の負極に接続され、コンパレータ CMP11の出力端 子は NANDゲート 7の入力端子に接続されて 、る。
[0085] また、二次電池 63の正極はコンパレータ CMP12の一端子に接続され、コンパレー タ CMP 12の +端子は基準電圧源 E 12の正極に接続され、基準電圧源 E 12の負極 は二次電池 63の負極に接続され、コンパレータ CMP12の出力端子は NANDゲー ト 7の入力端子に接続されて ヽる。
[0086] また、二次電池 64の正極はコンパレータ CMP13の一端子に接続され、コンパレー タ CMP13の +端子は基準電圧源 E13の正極に接続され、基準電圧源 E13の負極 は二次電池 64の負極に接続され、コンパレータ CMP13の出力端子は NANDゲー ト 7の入力端子に接続されて ヽる。
[0087] また、二次電池 65の正極はコンパレータ CMP14の一端子に接続され、コンパレー タ CMP14の +端子は基準電圧源 E14の正極に接続され、基準電圧源 E14の負極 は二次電池 65の負極に接続され、コンパレータ CMP14の出力端子は NANDゲー ト 7の入力端子に接続されている。そして、 NANDゲート 7の出力端子は論理回路 8 の信号入力端子に接続され、論理回路 8の信号出力端子がトランジスタ Q1のゲート に接続されている。
[0088] 次に、上述のように構成された電池パック lbの動作について説明する。まず、過充 電によって、二次電池 62の両端電圧が基準電圧源 E11の出力電圧を超えると、コン パレータ CMP11の出力信号がローレベルとなり、 NANDゲート 7の出力信号がハイ レベルで論理回路 8へ出力される。そうすると、論理回路 8によってトランジスタ Q1が オンされ、ヒータ R2に電流が流れて発熱し、バイメタルスィッチ SW1がオフされて、 二次電池 62が過充電力 保護される。
[0089] 同様に、二次電池 63〜65が過充電されると、コンパレータ CMP12〜CMP14によ つて過充電が検出され、 NANDゲート 7及び論理回路 8によって、トランジスタ Q1が オンされ、ヒータ R2に電流が流れて発熱し、バイメタルスィッチ SW1がオフされて、 二次電池 63〜65が過充電力 保護される。
[0090] その他の構成及び動作は、図 2に示す電池パック 1と同様であるので、その説明を 省略する。
[0091] この場合、図 9に示す保護回路 5bでは、図 54に示す保護回路 1142における FET 1149, 1150の代わりにバイメタルスィッチ SW1を用いている。バイメタルスィッチ S W1は大電流を制御することが容易であるため、 FET1149, 1150をバイメタルスイツ チ SW1に置き換えることは容易である。また、トランジスタ Q1としては、負荷電流を流 す必要がなぐヒータ R2を発熱させるための電流を流せる程度の小型のスィッチ素 子を用いることができる。
[0092] これにより、図 9に示す保護回路 5bは、図 54に示す保護回路 1142における電流 定格の大きな、従って外形が大きな FET1149, 1150を用いることなぐ過充電、及 び過大な放電電流力も二次電池 62〜65を保護することができ、保護回路 5bの回路 を簡素化することができると共に保護回路 5bを小型化することが容易となる。また、耐 電圧が高ぐし力もオン抵抗の小さい FET1149, 1150を用いないので、保護回路 5 bにおける電力損失の低減と同時にコストの低減が容易となる。
[0093] なお、図 1に示した電池パック 1は、ニッケルメツキを表面に施した鋼板力 構成され ている有底の容器 2に二次電池 6が収容され、容器 2の開口部と封口板とが、力しめ 封口により密閉されており、凸状に設けられた正極端子 6aが容器 2の開口端力も突 出し、二次電池 6の負極が容器 2の内部で容器 2と接続されている例を示したが、ァ ルミニゥム合金から構成されている有底の容器 2に二次電池が収容され、容器 2の開 口部と封口板とがレーザー封口により密閉されており、凸状に封口板上に設けられた 負極端子が容器 2の開口端から突出し、二次電池 6の正極が負極端子と絶縁された 状態で封口板に接続されている場合は、保護回路との接続を逆にすることにより、容 易に実施することができる。
[0094] (実施の形態 4)
次に、本発明の実施の形態 4に係る電池パックについて説明する。本発明の実施 の形態 4に係る電池パック lcの外観は、図 1に示す電池パック 1と同様である。
[0095] 図 10は、本発明の実施の形態 4に係る電池パック lcの電気的構成の一例を示す 回路図である。図 1に示す電池パック lcは、保護回路 5cと、二次電池 6とを備えてい る。二次電池 6は、例えばリチウムイオン二次電池、リチウムポリマー二次電池、ニッ ケル水素二次電池、ある 、はニッケルカドミウム二次電池等の充電可能な二次電池 である。保護回路 5cは、二次電池 6を過剰な充電や、過大な放電電流から保護する 保護回路である。
[0096] 保護回路 5cは、外部接続端子ユニット 3の内部に配設されており、接続端子 T1 (第 1の接続端子)と、接続端子 T2 (第 2の接続端子)と、接続端子 T3 (第 3の接続端子) と、接続端子 T4 (第 4の接続端子)と、ノ ィメタルスィッチ SW1と、温度ヒューズ F1と、 コンパレータ CMP1 (検出部)と、基準電圧源 E1と、抵抗 R1と、トランジスタ Q1 (スィ ツチ部)と、ヒータ R2 (第 1のヒータ)と、ダイオード D1 (第 1の整流素子)とを備えてい る。接続端子 T3及び接続端子 T4は、二次電池 6の両極に、それぞれ接続される接 続端子である。
[0097] 接続端子 T1及び接続端子 T2は、二次電池 6を充電する図略の充電装置及び Z 又は二次電池 6からの放電電流により駆動される負荷機器を接続するための接続端 子である。負荷機器は、例えば携帯電話機、デジタルカメラ、ビデオカメラ、携帯型パ 一ソナルコンピュータ、電動工具等、電池で駆動される種々の電気機器である。 [0098] 温度ヒューズ Fl、バイメタルスィッチ SW1は実施の形態 1と同一構成であるため説 明を省く。
[0099] 接続端子 T1は、バイメタルスィッチ SW1、温度ヒューズ Fl、接続端子 T3を介して 二次電池 6の正極に接続され、二次電池 6の負極は、接続端子 T4を介して接続端 子 T2に接続されている。また、接続端子 T3はコンパレータ CMP1の電源供給端子 に接続され、接続端子 T4はコンパレータ CMP1のグラウンド端子に接続されて、二 次電池 6からコンパレータ CMP1の動作用電源電圧が供給されるようになって!/ヽる。
[0100] また、ヒータ R2とダイオード D1との直列回路が、バイメタノレスィッチ SW1と並列に 接続されている。ダイオード D1は、ヒータ R2と接続端子 T1との間に設けられ、二次 電池 6の放電電流を流す方向、すなわちヒータ R2から接続端子 T1へ向力 方向に 順方向にされている。そして、ヒータ R2とダイオード D1との接続点と、接続端子 T2と の間の接続を開閉するトランジスタ Q1を備えている。
[0101] 接続端子 T3は抵抗 R1を介してコンパレータ CMP1の +端子に接続され、接続端 子 T4は基準電圧源 E 1の負極に接続され、基準電圧源 E 1の正極はコンパレータ C MP1の一端子に接続され、コンパレータ CMP1の出力端子はトランジスタ Q1のゲー ト端子に接続されている。
[0102] 基準電圧源 E1は、二次電池 6の過充電を検出するための判断基準となる基準電 圧 Vreflを出力する電圧発生回路である。これにより、コンパレータ CMP1の—端子 に基準電圧 Vreflが印加され、接続端子 T3, T4間の端子電圧である電圧 Vbが基 準電圧 Vreflを超えるとコンパレータ CMP1によってトランジスタ Q1のゲート電圧が ハイレベルにされ、トランジスタ Q1がオンされて、ヒータが発熱するようになっている。
[0103] また、コンパレータ CMP1は、電圧 Vbが基準電圧 Vrefl付近となった場合
におけるノイズの影響を低減するために、入力電圧にヒステリシスを有するコンパレー タが用いられている。そして、コンパレータ CMP1、抵抗 Rl、及び基準電圧源 Elは 、例えば集積化されて構成され、集積回路 IC1にされている。この場合、集積回路 1及びトランジスタ Q1は、保護制御部の一例に相当して 、る。
[0104] 図 11は、図 10に示す保護回路 5cの機械的構成を説明するための説明図である。
図 11 (a)は、保護回路 5cの各部品を取り付けるための配線パターンを示す図であり 、図 11 (b)は、保護回路 5cの機械的構成の一例を示す断面図である。また、図 11に おいて、部品の実装位置を破線で示している。図 11 (a)は、図 11 (b)に示す保護回 路 5の上面図である。また、対比のため、図 12 (b)に図 11 (b)と同じ断面図を示して いる。
[0105] 図 11 (a)に示す配線パターンは、外部接続端子ユニット 3におけるケース 31の内 面、すなわち外部接続端子ユニット 3と容器 2とが組み合わされた場合における容器 2に収容された二次電池 6と対向する側の表面に、例えば金属微粒子により構成され たペースト状の導電性配線材料を用いて印刷形成されており、プリント配線基板を用 いず、配線パターンが印刷形成されたケース 31の内面に直接、集積回路 IC1、トラ ンジスタ Ql、ヒータ R2、及びダイオード D1が固着される。
[0106] これにより、プリント配線基板を用いることなく保護回路 5を構成することができるの で、プリント配線基板の厚みだけ保護回路 5を小型化することができる。
[0107] また、図 11 (b)に示すように、外部接続端子ユニット 3におけるケース 31の内側に は、例えばケース 31と一体成形により凸状に形成された支持部材 32, 33が設けられ ている。そして、支持部材 32の頂部から引き出された配線パターン P4が、例えばケ ース 31を貫通する円柱状の金属部材 34によって、ケース 31の外側表面に設けられ た接続端子 T1と接続されている。さらに、支持部材 32の頂部には、バイメタルスイツ チ SW1を構成する可動切片 35の一端が、例えばスポット溶接により配線パターン P4 と接続されて固定されている。可動切片 35の他端には接点 36が設けられており、接 点 36は、支持部材 33の頂部に形成された配線パターン P5に接触するようにされて いる。
[0108] また、可動切片 35の下部には、支持部材 32と支持部材 33との間に弓なりに掛け 渡されたバイメタル 37が設けられている。バイメタル 37は、動作温度 Tswlになると、 図 13に示すように逆向きに反り返ることにより可動切片 35を上方に跳ね上げて、接 点 36を配線パターン P5から引き離すようになつている。そして、支持部材 32, 33、 可動切片 35、ノ ィメタル 37、及び配線パターン P4, P5によって、バイメタルスィッチ SW1が構成されている。また、このように構成されたバイメタルスィッチ SW1とダイォ ード D1とを覆うように、防塵や絶縁を目的としたスィッチカバー 38が固着されている。 また、バイメタル 37の下部には、略方形板状のヒータ R2が配設されており、ヒータ R2 が発熱すると、バイメタル 37が加熱される。
[0109] これにより、ケース 31と一体成形された支持部材 32, 33を用いてバイメタルスイツ チ SW1を構成することができるので、個別部品として構成されたバイメタルスィッチ S W1を用いる場合よりもコストを低減することが容易となる。また、バイメタルスィッチ S W1を個別部品として構成した場合におけるケースの底部が不要となるので、ノ ィメタ ルスイッチ SW1を小型化することができる。
[0110] また、温度ヒューズ F1の接続端子を構成する導体リード P6, P7は、例えば幅広の 板状にされており、導体リード P6, P7を屈曲させて、温度ヒューズ F1と導体リード P6 , P7とで集積回路 IC1とトランジスタ Q1とを覆うように温度ヒューズ F1が取り付けられ ている。そして、集積回路 IC1とトランジスタ Q1との両側に設けられた配線パターン P 5, P8間が、集積回路 IC1とトランジスタ Q1とを跨いで導体リード P6、温度ヒューズ F 1、及び導体リード P7を介して接続されている。
[0111] そして、温度ヒューズ Fl、及び導体リード P6, P7の外側表面、及び導体リード P6, P7の両側面は、例えば絶縁や防塵を目的とするシート部材 39によって覆われている
[0112] これにより、温度ヒューズ Fl、導体リード P6, P7、及びシート部材 39は、集積回路 I C1とトランジスタ Q1とを覆うカバーとして機能し、温度ヒューズ Fl、導体リード P6, P 7の他に別途カバーを備える場合と比較して、ケース 31の表面上における温度ヒユー ズ F1の実装面積を削減することができ、保護回路 5を小型化することが容易となる。
[0113] また、温度ヒューズ Fl、導体リード P6, P7、及びシート部材 39は、配線パターン P5 と配線パターン P8との間で集積回路 IC1及びトランジスタ Q1を跨いで電流を流すジ ヤンパ配線として用いられるので、ケース 31の表面上における配線パターンの占有 面積が縮小し、保護回路 5cを小型化することが容易となる。
[0114] また、導体リード P7〖こは、接続端子 T1が例えばスポット溶接により取り付けられて いる。これにより、ケース 31の表面上に接続端子 T1の取付面積を占有することがな いので、外部接続端子ユニット 3を小型化することが容易となる。
[0115] さらに、温度ヒューズ Fl、導体リード P6, P7を除く他の部品を、導電性配線材料を 用いて印刷形成された配線パターン上に取り付けた状態で、外部接続端子ユニット 3 を加熱して導電性配線材料を硬化させた後に温度ヒューズ Fl、導体リード P6, P7を 取り付けるようにすれば、導電性配線材料の硬化温度が温度ヒューズ F1の動作温度 Tfuselより高温であっても、製造時に温度ヒューズ F1を溶断させることがない。
[0116] 図 14は、容器 2と外部接続端子ユニット 3とが組み合わされた状態を説明するため の説明図である。図 14に示すように、バイメタルスィッチ SW1と温度ヒューズ F1と力 容器 2と外部接続端子ユニット 3とが組み合わされた状態において容器 2に収容され た二次電池 6と対向する位置に近接して配設されて ヽる。
[0117] 次に、上述のように構成された保護回路 5cの動作について説明する。まず、保護 回路 5cによる過充電の保護動作について説明する。まず、バイメタルスィッチ SW1 がオンしている状態で接続端子 Tl, T2に図略の充電装置が接続され、充電装置か ら電圧 Vcが接続端子 Tl, T2間に印加されると、バイメタルスィッチ SW1、温度ヒュ ーズ F1、及び接続端子 T3を介して二次電池 6へ電圧 Vbによる充電が行われる。
[0118] 電圧 Vbは、正常時は例えば最大 4. 2Vである。そして、基準電圧源 E1は、基準電 圧 Vreflとして例えば 4. 3Vをコンパレータ CMP1へ出力するように設定されている
[0119] そして、例えば図略の充電装置が故障する又は充電装置の出力電圧精度が低い ために電圧 Vbが 4. 3Vを超えると、コンパレータ CMP1によってトランジスタ Q1がォ ンされ、接続端子 T1からバイメタルスィッチ SW1を介してヒータ R2に電流が流れ、バ ィメタルスィッチ SW1が加熱される。そして、バイメタルスィッチ SW1の温度が動作温 度 Tswlに達すると、バイメタルスィッチ SW1がオフして充電電流が遮断され、二次 電池 6が過充電から保護される。
[0120] 次に、バイメタルスィッチ SW1がオフして充電電流が遮断されることによって、電圧 Vbが基準電圧 Vrefl以下になると、コンパレータ CMP1によってトランジスタ Q1がォ フされ、ヒータ R2に流れる電流がゼロにされる。そして、自然冷却によりバイメタルス イッチ SW1の温度が復帰温度を下回ると、バイメタルスィッチ SW1がオンして過充電 保護状態から通常状態に復帰する。
[0121] この場合、コンパレータ CMP1によって過充電が検出され、ヒータ R2によりバイメタ ルスイッチ SW1を加熱することによってバイメタルスィッチ SW1をオフさせるので、例 えば図 52や図 53に示すように二次電池と直列に接続された温度スィッチのみによつ て過充電保護を行う場合よりも過充電を検出する精度を向上させることができ、過充 電保護動作が行われな ヽまま二次電池 6が過充電されたり、二次電池 6の特性が劣 化したり、二次電池 6の膨張や変形等を招いたりするおそれを低減することができる。
[0122] 次に、二次電池 6からの放電電流が過大になった場合の保護回路 5cによる保護動 作について説明する。まず、バイメタルスィッチ SW1がオンしている状態で、例えば 接続端子 Tl, T2に金属片が接触したり、接続端子 Tl, T2に接続された図略の携 帯電話機等の負荷機器が故障したりすることによって、接続端子 Tl, T2が短絡、又 は接続端子 Tl, T2間の抵抗値が低抵抗になると、二次電池 6から温度ヒューズ F1と バイメタルスィッチ SW1とを介して放電される電流が増大し、バイメタルスィッチ SW1 の接点抵抗によってノ ィメタルスィッチ SW1が加熱される。
[0123] そして、バイメタルスィッチ SW1の温度が動作温度 Tswlに達すると、バイメタルス イッチ SW1がオフして二次電池 6の放電電流が遮断され、二次電池 6が過大な放電 電流から保護される。そして、バイメタルスィッチ SW1がオフすると、二次電池 6の放 電電流は接続端子 T3から温度ヒューズ Fl、ヒータ R2、ダイオード Dl、及び接続端 子 T1を介して接続端子 Tl, T2に接続された図略の負荷機器 (あるいは短絡故障部 分)に流れ、ヒータ R2が発熱してバイメタルスィッチ SW1を加熱する。
[0124] この場合、バイメタルスィッチ SW1は、温度ヒューズ F1よりも先にオフするべく動作 条件が設定されており、非復帰形の感熱スィッチである温度ヒューズ F1を溶断させる ことなく復帰形の感熱スィッチであるバイメタルスィッチ SW1によって二次電池 6を過 剰な充電や過大な放電電流力 保護することができるので、例えば充電装置や負荷 装置力 電池パック lcが取り外されて過剰な充電や過大な放電電流の原因が解消 した後は、温度ヒューズ F1を交換することなく繰り返し電池パック lcを使用することが でき、利便性を向上させることができる。
[0125] また、例えばバイメタルスィッチ SW1の接点が溶着して短絡故障した場合や、集積 回路 IC1、トランジスタ Ql、及びヒータ R2のうちいずれかが故障して過充電時にバイ メタルスィッチ SW1をオフさせることができな 、場合であっても、過充電や過大な放 電電流によって二次電池 6が発熱すると、温度ヒューズ F1が溶断し、二次電池 6を保 護することができるので、保護回路 5cの信頼性を向上させることができる。
[0126] さらに、バイメタルスィッチ SW1がオフして自己発熱がなくなっても、図略の負荷機 器等に流れる電流によりヒータ R2が発熱し、ヒータ R2によってノ ィメタルスィッチ SW 1が加熱されるので、例えば短絡故障を生じた負荷機器等が取り外されて放電電流 が過大となる要因が除去されるまで、バイメタルスィッチ SW1のオフ状態を維持する ことができる。
[0127] これにより、例えばバイメタルスィッチ SW1がオフして自己発熱しなくなつたために 自然冷却によりバイメタルスィッチ SW1がオンし、再び二次電池 6の過大な放電電流 がバイメタルスィッチ SW1を流れてバイメタルスィッチ SW1がオフする、というように、 バイメタルスィッチ SW1がオンオフを繰り返すチャタリング動作の発生を抑制すること ができる。
[0128] また、感熱スィッチであるバイメタルスィッチ SW1を用いて二次電池 6を過剰な充電 及び過大な放電電流力 保護することができるので、図 51に示す背景技術に係る保 護回路 1002のように、放電電流を遮断する FET1006と、充電電流を遮断する FET 1007と、過大な放電電流を検出するための基準電圧源 1009、コンパレータ 1111、 及び抵抗 1112と、二つの FET1006, 1007のオンオフを制御するための論理回路 1013とを必要とせず、保護回路 5cの回路を簡素化することができると共に、保護回 路 5cを小型化することが容易となる。
[0129] そして、図 14に示すように、バイメタルスィッチ SW1と温度ヒューズ F1と力 容器 2と 外部接続端子ユニット 3とが組み合わされた状態において容器 2に収容された二次 電池 6と対向する位置に近接して配設され、バイメタルスィッチ SW1及び温度ヒユー ズ F1と、二次電池 6との熱結合が強化されているので、二次電池 6が過度に発熱した 場合にバイメタルスィッチ SW1及び温度ヒューズ F1により二次電池 6の充放電電流 を遮断することができる。
[0130] これにより、例えば集積回路 IC1や、トランジスタ Ql、ヒータ R2等の故障により、二 次電池 6の過充電時にヒータ R2を発熱させることができな 、状態であっても、過充電 により二次電池 6が発熱すると、バイメタルスィッチ SW1及び温度ヒューズ F1が加熱 される。そして、バイメタルスィッチ SW1の温度が動作温度 Tswlに達すると、バイメ タルスィッチ SW1がオフして充電電流が遮断されるので、集積回路 IC1や、トランジ スタ Q1、ヒータ R2等が故障した場合であっても二次電池 6を過充電力 保護すること ができる。
[0131] また、例えばバイメタルスィッチ SW1の接点が溶着して短絡故障した場合、ノ ィメタ ルスイッチ SW1の温度が動作温度 Tswlに達してもバイメタルスィッチ SW1がオフし なくなるが、さらに二次電池 6の発熱によって温度ヒューズ F1が加熱され、温度ヒユー ズ F1の温度が動作温度 Tfuselに達すると、温度ヒューズ F1が溶断して充電電流が 遮断されるので、バイメタルスィッチ SW1が故障した場合であっても二次電池 6を過 充電力 保護することができる。
[0132] また、温度ヒューズ F1は、集積回路 IC1及びトランジスタ Q1とも近接して配設される ので、集積回路 IC 1やトランジスタ Q 1が過度に発熱した場合に温度ヒューズ F 1によ り二次電池 6の充放電電流を遮断することが容易となる。
[0133] なお、保護回路 5cを構成する配線パターンは、外部接続端子ユニット 3における容 器 2に収容された二次電池 6と対向する側の表面に印刷形成されている例を示した 力 保護回路 5cを構成する配線パターンは、封口部の表面に印刷形成される代わり にプリント配線基板上に形成され、そのプリント配線基板上に、保護回路 5cを構成す る集積回路 IC1、トランジスタ Ql、 ノ ィメタルスィッチ SW1、及びダイオード D1が配 設される構成としてもよぐこの場合、支持部材 32, 33は、プリント配線基板に形成さ れた貫通孔を貫通してプリント配線基板上に可動切片 35及びバイメタル 37を支持す る構成としてちよい。
[0134] また、支持部材 32, 33は、ケース 31と一体成形される例に限られず、例えば円柱 状の金属部材をケース 31に埋め込むことによって構成してもよい。また、温度ヒユー ズ F1を備えず、導体リード P6と導体リード P7とが短絡された構成としてもよい。また、 スィッチカバー 38とシート部材 39とを一体成形して一部品として構成してもよい。
[0135] また、保護回路 5cは、電池パック lcに組み込まれて構成される例を示した力 電池 ノ^ク lcに組み込まれる例に限られず、例えば負荷機器に組み込まれて、負荷機器 に内蔵された二次電池の保護回路として用いられてもよい。 [0136] また、リチウムイオン二次電池、リチウムポリマー二次電池、ニッケル水素二次電池 、あるいはニッケルカドミウム二次電池等の二次電池は、放電が進んで出力電圧が 所定の放電末期電圧以下に低下した後、さらに放電を続けると、二次電池が過放電 状態となってサイクル寿命等の電池特性が劣化してしまう場合がある。そこで、接続 端子 Tl, T2に接続される携帯電話機等の負荷機器において、接続端子 Tl, T2間 の出力電圧を検出し、接続端子 Tl, T2間の出力電圧が所定の放電末期電圧以下 に低下した場合、接続端子 Tl, T2からの出力電流を遮断することが望ましい。これ により、二次電池 6の過放電による特性劣化の発生を抑制することができる。
[0137] (実施の形態 5)
次に、本発明の実施の形態 5に係る保護回路を備えた電池パックについて説明す る。本発明の実施の形態 5に係る電池パック Idの外観は、図 1に示す電池パック 1と 同様である。図 15は、本発明の実施の形態 5に係る電池パック Idの電気的構成の 一例を示す回路図である。図 15に示す電池パック Idは、図 10に示す電池パック lc とは、保護回路 5cの構成が異なる。すなわち、図 15に示す保護回路 5dは、ヒータ R 2とダイオード D1との直列回路の代わりにヒータ R3 (第 2のヒータ)とヒータ R4 (第 3の ヒータ)との直列回路力 バイメタルスィッチ SW1と並列に接続されている。そして、ヒ ータ R3とヒータ R4との接続点力 トランジスタ Q1を介して接続端子 T4に接続されて いる。
[0138] その他の構成は図 10に示す電池パック lcと同様であるのでその説明を省略し、以 下本実施形態の特徴的な点について説明する。図 16は、図 15に示す保護回路 5d において用いられるヒータ R3とヒータ R4との直列回路の構成の一例を示す説明図で ある。図 16に示すヒータ R3とヒータ R4との直列回路は、一つのサーミスタ 7を用いて 構成されている。
[0139] サーミスタ 7は、例えば正の温度特性、すなわち温度の増減に応じて抵抗値が増減 する PTCサーミスタであり、その形状としては、物理的に縦'横の方向が決定出来る 形状である正方形、長方形等の略方形や、楕円、菱形、一部に欠けや突部のある円 形などの板状の形状にされている。また、サーミスタ 7の一方の面には、サーミスタ 7 の一方の面を二つの領域に分割するように形成された溝 71が形成されている。 [0140] そして、溝 71によって分割された一方の領域が第 1電極 72 (第 1の電極)として用 V、られると共に他方の領域が第 2電極 73 (第 2の電極)として用いられ、サーミスタ 7 の他方の面が第 3電極 74 (第 3の電極)として用いられる。この場合、第 1電極 72及 び第 3電極 74がヒータ R3における両端の接続端子として用いられ、第 1電極 72と第 3電極 74とに挟まれた部分力 Sヒータ R3として機能する。また、第 3電極 74及び第 2電 極 73がヒータ R4における両端の接続端子として用いられ、第 3電極 74と第 2電極 73 とに挟まれた部分力 Sヒータ R4として機能する。
[0141] これにより、ヒータ R3と、ヒータ R4とを一つのサーミスタ 7を用いて構成することがで きるので、ヒータ R3と、ヒータ R4とをそれぞれ一つのサーミスタで構成する場合と比 ベて保護回路 5dの小型化と、低コストィ匕を図ることができる。
[0142] 図 17、図 18は、図 15に示す保護回路 5dの機械的構成を説明するための説明図 である。図 17 (a)は、保護回路 5dの各部品を取り付けるための配線パターンを示す 図であり、図 17 (b)は、保護回路 5dの機械的構成の一例を示す断面図である。図 1 7において、部品の実装位置を破線で示している。図 18 (a)は、図 17 (b)に示す保 護回路 5dの上面図である。また、対比のため、図 18 (b)に図 17 (b)と同じ断面図を 示している。図 17、図 18に示す保護回路 5dは、図 11、図 12に示す保護回路 5cとは 、配線パターンが形成されたケース 31へのサーミスタ 7の取付方法が異なる。
[0143] サーミスタ 7は、接続端子 T1と接続された配線パターン P4に第 2電極 73が接続さ れ、バイメタルスィッチ SW1と温度ヒューズ F 1とを接続する配線パターン P5に第 1電 極 72が接続されるようになっている。この場合、配線パターン P4と配線パターン P5と の間隔部分と、サーミスタ 7における溝 71とを一致させてサーミスタ 7をケース 31に取 り付ける必要があるが、例えばサーミスタ 7が円板形状である場合と比べて、サーミス タ 7が方形形状にされているので、溝 71の方向を配線パターン P4と配線パターン P5 との間隔部分の方向と一致させることが容易となり、保護回路 5dの組み立て工程に おける作業性を向上させることができる。
[0144] なお、図 19に示すように、溝 71aを、サーミスタ 7aの一方の面を四つの領域に分割 する略十文字形に形成してもよい。そして、図 20に示すように、溝 71aにより分割され た四つの領域における互いに隣接する二つの領域を、配線パターン P5に接続する ことにより第 1電極 72として用い、第 1電極 72として用いられる二つの領域を除く他の 領域を、第 2電極 73として用いるようにしてもよい。
[0145] これにより、溝 71aが設けられたサーミスタ 7aを配線パターン P4と配線パターン P5 とに接続する際に、サーミスタ 7aと同一平面内で 90° 回転して取り付けられてもサー ミスタ 7aは正常にヒータ R3, R4として機能するので、サーミスタ 7aの取付方向の制 限が低減され、保護回路 5dの組み立て工程における作業性を向上させることができ る。
[0146] また、サーミスタ 7 (7a)における第 3電極 74と、トランジスタ Q1のドレインに接続され た配線パターン P9とは、例えば図 18 (a)に示すように、ジヤンパ線 75を用いて空中 で接続されている。
[0147] その他の構成は図 11、図 12に示す保護回路 5cと同様であるのでその説明を省略 し、図 15に示す保護回路 5dの動作について説明する。まず、保護回路 5dによる過 充電の保護動作について説明する。まず、バイメタルスィッチ SW1がオンしている状 態で接続端子 Tl, T2に図略の充電装置が接続され、充電装置から電圧 Vcが接続 端子 Tl, T2間に印加されると、バイメタルスィッチ SW1、温度ヒューズ Fl、及び接続 端子 T3を介して二次電池 6へ電圧 Vbによる充電が行われる。
[0148] 電圧 Vbは、正常時は例えば最大 4. 2Vである。そして、基準電圧源 E1は、基準電 圧 Vreflとして例えば 4. 3Vをコンパレータ CMP1へ出力するように設定されている
[0149] そして、例えば図略の充電装置が故障したり充電装置の出力電圧精度が低いため に電圧 Vbが 4. 3Vを超えると、コンパレータ CMP1によってトランジスタ Q1がオンさ れ、接続端子 T1からヒータ R4に電流が流れると共に、二次電池 6から接続端子 T3 及び温度ヒューズ F1を介してヒータ R3に電流が流れ、ヒータ R3, R4が発熱してバイ メタルスィッチ SW1が加熱される。そして、バイメタルスィッチ SW1の温度が動作温 度 Tswlに達すると、バイメタルスィッチ SW1がオフして充電電流が遮断され、二次 電池 6が過充電から保護される。
[0150] この場合、バイメタルスィッチ SW1がオフしても、ヒータ R3, R4への電流供給は継 続し、ヒータ R3, R4によるバイメタルスィッチ SW1の加熱が継続するので、バイメタ ルスイッチ SWlはオフで維持され、過充電保護動作が継続される。また、例えばヒー タ R3の抵抗値力ヒータ R4の抵抗値よりも大きくなるように、サーミスタ 7における溝 71 の位置を調整したり、ヒータ R3, R4としてそれぞれ一つずっサーミスタを用いてヒー タ R3の抵抗値をヒータ R4の抵抗値よりも大きくしたりすることにより、トランジスタ Q1 がオンした場合における二次電池 6の放電電流を低減し、主に接続端子 Tl, T2に 接続された図略の充電装置力 供給される電流によってヒータ R4を発熱させ、バイメ タルスィッチ SW1のオフ状態を維持させることができる。
[0151] さらに、二次電池 6から接続端子 T1及び温度ヒューズ F1を介してヒータ R3に電流 が流れ続け、二次電池 6の放電により二次電池 6の出力電圧が基準電圧 Vrefl以下 に低下すると、コンパレータ CMP1によってトランジスタ Q1がオフされる。そうすると、 二次電池 6の出力電圧よりも接続端子 Tl, T2に接続された充電装置の出力電圧の 方が高いので、接続端子 T1からヒータ R4、ヒータ R3、温度ヒューズ Fl、及び接続端 子 T3を介して二次電池 6へ微少な充電電流が流れ、ヒータ R4, R3の発熱が継続し 、 ノ ィメタルスィッチ SW1がオフ状態で維持され、過充電保護動作が継続される。
[0152] そして、ヒータ R4, R3を経由する充電電流で二次電池 6が充電され、電圧 Vbが再 び 4. 3Vを超えると、コンパレータ CMP1によってトランジスタ Q1がオンされ、接続端 子 T1からヒータ R4に電流が流れると共に、二次電池 6から接続端子 T3及び温度ヒュ ーズ F1を介してヒータ R3に電流が流れ、ヒータ R3, R4が発熱してバイメタルスイツ チ SW1が加熱され、ノ ィメタルスィッチ SW1がオフ状態で維持され、過充電保護動 作が継続される。
[0153] このように、二次電池 6の充放電動作に伴って、トランジスタ Q1のオンオフ動作が 繰り返されつつバイメタルスィッチ SW1はオフ状態のまま維持され、二次電池 6の過 充電保護動作が継続されるので、例えば、過充電保護動作に伴ってバイメタルスイツ チ SW1がオフし、二次電池 6が放電することによって二次電池 6の出力電圧が低下 し、コンパレータ CMP1によってトランジスタ Q1がオフされた場合であっても、ヒータ に電流が流れなくなってバイメタルスィッチ SW1がオンすることが抑制されるので、二 次電池 6の充放電動作に伴ってバイメタルスィッチ SW1がオンオフを繰り返すチヤタ リング動作の発生を抑制することができる。 [0154] 次に、二次電池 6からの放電電流が過大になった場合の保護回路 5dによる保護動 作について説明する。まず、バイメタルスィッチ SW1がオンしている状態で、例えば 接続端子 Tl, T2に金属片が接触したり、接続端子 Tl, T2に接続された図略の携 帯電話機等の負荷機器が故障したりすることによって、接続端子 Tl, T2が短絡、又 は接続端子 Tl, T2間の抵抗値が低抵抗になると、二次電池 6から温度ヒューズ F1と バイメタルスィッチ SW1とを介して放電される電流が増大し、バイメタルスィッチ SW1 の接点抵抗によってノ ィメタルスィッチ SW1が加熱される。
[0155] そして、バイメタルスィッチ SW1の温度が動作温度 Tswlに達すると、バイメタルス イッチ SW1がオフして二次電池 6の放電電流が遮断され、二次電池 6が過大な放電 電流から保護される。そして、バイメタルスィッチ SW1がオフすると、二次電池 6の放 電電流は接続端子 T3から温度ヒューズ Fl、ヒータ R3、ヒータ R4、及び接続端子 Tl を介して接続端子 Tl, T2に接続された図略の負荷機器 (あるいは短絡故障部分) に流れ、ヒータ R3, R4が発熱してバイメタルスィッチ SW1を加熱する。
[0156] この場合、バイメタルスィッチ SW1がオフして自己発熱がなくなっても、図略の負荷 機器等に流れる電流によりヒータ R3, R4が発熱し、ヒータ R3, R4によってバイメタル スィッチ SW1が加熱されるので、例えば短絡故障を生じた負荷機器等が取り外され て放電電流が過大となる要因が除去されるまで、バイメタルスィッチ SW1のオフ状態 を維持することができる。
[0157] (実施の形態 6)
次に、本発明の実施の形態 6に係る保護回路を備えた電池パックについて説明す る。本発明の実施の形態 6に係る電池パック leの外観は、図 1に示す電池パック 1と 同様である。図 21は、本発明の実施の形態 6に係る電池パック leの電気的構成の一 例を示す回路図である。図 21に示す電池パック leは、図 15に示す電池パック Idと は、保護回路 5eの構成が異なる。すなわち、図 21に示す保護回路 5eは、ヒータ R3 ( 第 1のヒータ)がバイメタルスィッチ SW1と並列に接続されている。そして、ヒータ R3と ヒータ R4との接続点が接続端子 T1に接続され、他端がトランジスタ Q1を介して接続 端子 T2に接続されている。この場合、ヒータ R4は、接続端子 T1に一端が接続される と共にバイメタルスィッチ SW1を加熱する第 4のヒータに相当している。 [0158] 図 22、図 23は、図 21に示す保護回路 5eの機械的構成を説明するための説明図 である。図 22 (a)は、保護回路 5eの各部品を取り付けるための配線パターンを示す 図であり、図 22 (b)は、保護回路 5eの機械的構成の一例を示す断面図である。図 2 2において、部品の実装位置を破線で示している。図 23 (a)は、図 22 (b)に示す保 護回路 5eの上面図である。また、対比のため、図 23 (b)に図 22 (b)と同じ断面図を 示している。図 22、図 23に示す保護回路 5eは、図 17、図 18に示す保護回路 5dとは 、配線パターンが形成されたケース 31へのサーミスタ 7aの取付方法が異なる。
[0159] サーミスタ 7aは、溝 71aにより分割された四つの領域における互いに隣接する二つ の領域が、第 1電極 72としてバイメタルスィッチ SW1と温度ヒューズ F1とを接続する 配線パターン P5に接続され、第 1電極 72として用いられる二つの領域を除く他の領 域力 第 2電極 73としてトランジスタ Q1のドレインに接続される配線パターン P9と接 続されている。また、サーミスタ 7aにおける第 3電極 74と、接続端子 T3と接続された 配線パターン P4とは、例えば図 23 (a)に示すように、ジヤンパ線 76を用いて空中で 接続されている。
[0160] その他の構成は図 15、図 17、及び図 18に示す保護回路 5dと同様であるのでその 説明を省略し、図 21に示す保護回路 5eの動作について説明する。まず、保護回路 5eによる過充電の保護動作について説明する。まず、バイメタルスィッチ SW1がオン している状態で接続端子 Tl, T2に図略の充電装置が接続され、充電装置から電圧 Vcが接続端子 Tl, T2間に印加されると、ノ ィメタルスィッチ SW1、温度ヒューズ F1 、及び接続端子 T3を介して二次電池 6へ電圧 Vbによる充電が行われる。
[0161] 電圧 Vbは、正常時は例えば最大 4. 2Vである。そして、基準電圧源 E1は、基準電 圧 Vreflとして例えば 4. 3Vをコンパレータ CMP1へ出力するように設定されている
[0162] そして、例えば図略の充電装置が故障したり充電装置の出力電圧精度が低いため に電圧 Vbが 4. 3Vを超えると、コンパレータ CMP1によってトランジスタ Q1がオンさ れ、接続端子 T1からヒータ R4に電流が流れ、ヒータ R4が発熱してバイメタルスィッチ SW1が加熱される。そして、バイメタルスィッチ SW1の温度が動作温度 Tswlに達す ると、バイメタルスィッチ SW1がオフして充電電流が遮断され、二次電池 6が過充電 力 保護される。
[0163] この場合、バイメタルスィッチ SW1がオフしても、接続端子 T1に接続された図略の 充電装置カゝらヒータ R4への電流供給は継続し、ヒータ R4によるバイメタルスィッチ S W1の加熱が継続するのでバイメタルスィッチ SW1はオフで維持され、過充電保護 動作が継続される。
[0164] また、接続端子 T1に接続された図略の充電装置の出力電圧は、二次電池 6の出 力電圧より高いので、トランジスタ Q1がオンしても二次電池 6からヒータ R3へ電流が 流れることがなぐ二次電池 6は放電しないので、例えば、過充電保護動作に伴って バイメタルスィッチ SW1がオフし、二次電池 6が放電することによって二次電池 6の出 力電圧が低下し、コンパレータ CMP1によってトランジスタ Q1がオフされることによつ てヒータに電流が流れなくなってバイメタルスィッチ SW1がオンして再び二次電池 6 が充電されると 、つた動作を繰り返し、二次電池 6の充放電動作に伴ってバイメタル スィッチ SW1がオンオフを繰り返すチャタリング動作の発生を抑制することができる。
[0165] 次に、二次電池 6からの放電電流が過大になった場合の保護回路 5eによる保護動 作について説明する。まず、バイメタルスィッチ SW1がオンしている状態で、例えば 接続端子 Tl, T2に金属片が接触したり、接続端子 Tl, T2に接続された図略の携 帯電話機等の負荷機器が故障したりすることによって、接続端子 Tl, T2が短絡、又 は接続端子 Tl, T2間の抵抗値が低抵抗になると、二次電池 6から温度ヒューズ F1と バイメタルスィッチ SW1とを介して放電される電流が増大し、バイメタルスィッチ SW1 の接点抵抗によってノ ィメタルスィッチ SW1が加熱される。
[0166] そして、バイメタルスィッチ SW1の温度が動作温度 Tswlに達すると、バイメタルス イッチ SW1がオフして二次電池 6の放電電流が遮断され、二次電池 6が過大な放電 電流から保護される。そして、バイメタルスィッチ SW1がオフすると、二次電池 6の放 電電流は接続端子 T3から温度ヒューズ Fl、ヒータ R3、及び接続端子 Tlを介して接 続端子 Tl, T2に接続された図略の負荷機器 (あるいは短絡故障部分)に流れ、ヒー タ R3が発熱してバイメタルスィッチ SW1をカ卩熱する。
[0167] この場合、バイメタルスィッチ SW1がオフして自己発熱がなくなっても、図略の負荷 機器等に流れる電流によりヒータ R3が発熱し、ヒータ R3によってノ ィメタルスィッチ S Wlが加熱されるので、例えば短絡故障を生じた負荷機器等が取り外されて放電電 流が過大となる要因が除去されるまで、バイメタルスィッチ SW1のオフ状態を維持す ることがでさる。
[0168] 以上説明したように、図 21に示す保護回路 5eは、過充電から二次電池 6を保護す る場合には、接続端子 Tl, T2に接続された図略の充電装置から供給される電流に よってヒータ R4を発熱させ、過大な放電電流から二次電池 6を保護する場合には、 二次電池 6から供給される電流によってヒータ R3を発熱させる。この場合、バイメタル スィッチ SW1が動作する動作温度 Tswlは一定であるから、過充電保護時における ヒータ R4の発熱量と、過大な放電電流からの保護動作時におけるヒータ R3の発熱 量とは、等しくされていることが望ましい。
[0169] そこで、充電装置の出力最大電圧を Vcmax、二次電池 6の出力電圧を Vb、ヒータ R3の抵抗値を R3、ヒータ R4の抵抗値を R4とすると、 R3と R4とは、下記の式(2)を 満たすように設定されることが望ま 、。
[0170] Vcmax X Vcmax ÷ R4 = Vb X Vb ÷ R3 · · · (2)
[0171] これにより、過充電保護時におけるヒータ R4の発熱量と、過大な放電電流からの保 護動作時におけるヒータ R3の発熱量とを等しくすることができる。この場合、例えば、 ヒータ R3とヒータ R4とを個別のサーミスタによって構成し、ヒータ R3の抵抗値とヒータ R4の抵抗値とを上記式(2)を満たすように設定してもよぐ例えば、図 16に示すサー ミスタ 7を用いて溝 71の位置を調整することにより、ヒータ R3の抵抗値とヒータ R4の 抵抗値とを上記式 (2)を満たすように設定してもよ!/ヽ。
[0172] なお、図 24に示す保護回路 5fのように、図 21に示す保護回路 5eにおける温度ヒュ ーズ F1とヒータ R3との間に整流素子であるダイオード D2 (第 2の整流素子)を設けて もよい。ダイオード D2のアノードは、温度ヒューズ F1を介して接続端子 T3に接続さ れ、ダイオード D2の力ソードは、ヒータ R3を介して接続端子 T3に接続されており、す なわち接続端子 T3に接続された二次電池 6の放電電流を流す方向に順方向となる ように接続されている。
[0173] これ〖こより、図 24に示す保護回路 5fにおいて、接続端子 Tl, T2に接続された図 略の充電装置による過充電から二次電池 6を保護すべくバイメタルスィッチ SW1が オフした後、ダイオード D2によって、充電電圧が接続端子 T3からヒータ R3を介して 二次電池 6へ印加されることを阻止することができるので、二次電池 6の過充電から の保護効果を向上させることができる。
[0174] (実施の形態 7)
次に、本発明の実施の形態 7に係る保護回路を備えた電池パックについて説明す る。本発明の第実施の形態 7に係る電池パック lgの外観は、図 1に示す電池パック 1 と同様である。図 25は、本発明の実施の形態 7に係る電池パック lgの電気的構成の 一例を示す回路図である。図 25に示す電池パック lgは、図 21に示す電池パック le とは、保護回路 5gの構成が異なる。すなわち、図 25に示す保護回路 5gは、サーミス タ R5 (検出部)、抵抗 R10、及び基準電圧源 E2をさらに備え、集積回路 IC1の代わり に集積回路 IClaを備える点で異なる。
[0175] サーミスタ R5は、例えば、温度が上昇すると抵抗値が低下するサーミスタで、温度 センサとして用いられている。そして、サーミスタ R5は、二次電池 6と近接、あるいは 絶縁物を介して接触するように配設されており、二次電池 6の温度に応じた抵抗値を 生じるようにされている。そして、サーミスタ R5と抵抗 R10との直列回路が基準電圧 源 2の両極間に接続され、サーミスタ R5と抵抗 R10との接続点力 コンパレータ CM P 1の +端子に接続されて!、る。
[0176] 基準電圧源 E2は、サーミスタ R5の抵抗値を電圧として取得するための基準電圧を 出力する定電圧源である。これにより、サーミスタ R5の抵抗値、すなわち二次電池 6 の温度が、コンパレータ CMP1の +端子に入力されるようになっている。また、基準 電圧源 E2の出力電圧は、例えば、二次電池 6の温度が、二次電池 6の特性に悪影 響を与えるような温度になった場合にサーミスタ R5と抵抗 R10との接続点に生じる電 圧力 基準電圧 Vreflを超えるような電圧値が予め設定されている。また、例えば、コ ンパレータ CMP1、基準電圧源 El, E2、及び抵抗 RIOは、集積回路化されて集積 回路 IClaにされている。
[0177] 次に、上述のように構成された保護回路 5gの動作について説明する。まず、バイメ タルスィッチ SW1がオンしている状態で、接続端子 Tl, T2に図略の充電装置が接 続され、二次電池 6が過充電されると、二次電池 6の温度が上昇する。 [0178] そして、二次電池 6の温度が上昇するとサーミスタ R5の抵抗値が低下し、サーミス タ R5と抵抗 R10との接続点の電圧が上昇する。さら〖こ、サーミスタ R5と抵抗 R10との 接続点の電圧が上昇して基準電圧 Vreflを超え、すなわち二次電池 6の温度が例え ば二次電池 6の特性に悪影響を与えるような温度になると、コンパレータ CMP1によ つてトランジスタ Q1がオンされ、接続端子 T1からヒータ R4に電流が流れ、バイメタル スィッチ SW1が加熱される。
[0179] そして、バイメタルスィッチ SW1の温度が動作温度 Tswlに達すると、バイメタルス イッチ SW1がオフして充電電流が遮断され、二次電池 6が過充電による発熱力 保 護される。
[0180] また、バイメタルスィッチ SW1がオンしている状態で、接続端子 Tl, T2に電力負荷 となる電気機器が接続されたり、短絡故障が発生したりすることにより過大な放電電 流が流れると、二次電池 6の温度が上昇する。そして、上述したように、二次電池 6の 温度が上昇し、バイメタルスィッチ SW1が自己発熱によりオフする前に二次電池 6の 温度が例えば二次電池 6の特性に悪影響を与えるような温度になると、サーミスタ R5 と抵抗 R10との接続点の電圧が上昇して基準電圧 Vreflを超え、コンパレータ CMP 1によってトランジスタ Q1がオンされ、二次電池 6から接続端子 T3、温度ヒューズ F1 を介してヒータ R3, R4に電流が流れ、バイメタルスィッチ SW1が加熱される。
[0181] そして、バイメタルスィッチ SW1の温度が動作温度 Tswlに達すると、バイメタルス イッチ SW1がオフして放電電流が遮断され、二次電池 6が過大な放電電流による発 熱から保護される。
[0182] さらに、バイメタルスィッチ SW1がオフした後も、二次電池 6から接続端子 T3、温度 ヒューズ F1を介してヒータ R3、 R4に電流が流れ、バイメタルスィッチ SW1が加熱さ れてバイメタルスィッチ SW1のオフ状態が維持される。
[0183] これにより、二次電池 6が過剰に発熱した場合に、放電電流と充電電流とを一つの バイメタルスィッチ SW1により遮断することができるので、簡素な回路を用いて、二次 電池 6を過充電や過大な放電電流による過度の発熱力も保護することができる。
[0184] また、例えばバイメタルスィッチ SW1がオフして自己発熱しなくなつたために自然冷 却によりバイメタルスィッチ SW1がオンし、再び二次電池 6に充放電電流がバイメタ ルスイッチ SW1を流れてバイメタルスィッチ SW1がオフする、というように、バイメタル スィッチ SW1がオンオフを繰り返すチャタリング動作の発生を抑制することができる。
[0185] その他の構成及び動作は、図 21に示す電池パック leと同様であるので、その説明 を省略する。なお、図 25に示すサーミスタ R5と集積回路 IClaとを、電池パック 1〜: Lf にお 、て、集積回路 1の代わりに備える構成としてもょ 、。
[0186] (実施の形態 8)
次に本発明の実施の形態 8に係る電池パックについて説明する。実施の形態 8に 係る電池パック lhの外観は図 1に示す電池パック 1と同様である。図 26は、本発明の 実施の形態 8による電池パック lhの回路図を示している。電池パック lhは、保護回 路 5hと、二次電池 6とを備えている。二次電池 6は、例えばリチウムイオン二次電池、 リチウムポリマー二次電池、ニッケル水素二次電池、あるいはニッケルカドミウム二次 電池等の充電可能な二次電池である。保護回路 5hは、二次電池 6を過充電や、過 電流から保護する回路である。
[0187] 保護回路 5hは、外部端子接続ユニット 3の内部に配設されており、接続端子 Tl〜 Τ4 (第 1〜第 4の接続端子)、バイメタルスィッチ (感熱スィッチ) SW1、過充電保護部 (第 1の過充電保護部) 51、チャタリング防止部 (第 2の過充電保護部) 52、ヒータ R2 1、トランジスタ (スイッチング部) Ql、及び ORゲート (スイッチング部) G1を備えてい る。接続端子 T1及び接続端子 T2は、二次電池 6を充電する図略の充電装置及び Z又は二次電池 6からの放電電流により駆動される負荷機器を接続するための接続 端子である。負荷機器は、例えば携帯電話機、デジタルカメラ、ビデオカメラ、携帯型 パーソナルコンピュータ、電動工具等、電池で駆動される種々の電気機器である。
[0188] 接続端子 T3は二次電池 6の正極に接続され、接続端子 T4は二次電池 6の負極に 接続されている。バイメタルスィッチ SW1は、接続端子 T1及び T3間に接続されてい る。ヒータ R21は、一端が接続端子 T3に接続され、他端がトランジスタ Q1のドレイン に接続されている。トランジスタ Q1は、ゲートが ORゲート G1の出力端子に接続され 、ソースが接続端子 T2, T4に接続されている。
[0189] 過充電保護部 51は、コンパレータ A1及び基準電圧源 E21を備え、チャタリング防 止部 52は、コンパレータ A2及び基準電圧源 E22を備えている。コンパレータ A1は —端子が基準電圧源 E21の正極と接続され、 +端子が接続端子 T3と接続され、出 力端子が ORゲート G1の入力端子に接続され、電源供給端子が接続端子 T3と接続 され、グラウンド端子が接続端子 T2, T4と接続されている。基準電圧源 E21の負極 は接続端子 T2, T4と接続されている。
[0190] コンパレータ A2は、 +端子が接続端子 T1と接続され、—端子が基準電圧源 E22 の正極と接続され、出力端子が ORゲート G1の入力端子と接続され、電源供給端子 が接続端子 T3に接続され、グラウンド端子が接続端子 T2, T4と接続されている。基 準電圧源 E22の負極は接続端子 T2, T4と接続されている。
[0191] ノ ィメタルスィッチ SW1は、予め設定された所定の動作温度 Tswlを超えた場合に オフする感熱スィッチであり、動作温度 Tswlは、例えば二次電池 6の特性を劣化さ せな 、温度範囲における最高温度が設定されて 、る。
[0192] また、バイメタルスィッチ SW1は、温度が上昇してオフした後、温度が低下すれば 再びオンする復帰形の感熱スィッチである。なお、感熱スィッチとしては、バイメタル スィッチに代えて、形状記憶合金を用いたスィッチ(例えば、実公平 7—4770、特開 平 11— 224579に記載のもの)や、形状記憶榭脂を用いたスィッチを、同様にして用 いることがでさる。
[0193] 形状記憶合金としては、ニッケル チタン合金系、銅一亜鉛 アルミニウム合金な どの熱弾性型マルテンサイト変態および逆変態に基づき、復元力を有する形状記憶 合金であれば良ぐこれらの合金がその変形された形状より復元された形状に変化 する形状変化温度範囲は、形状記憶合金の組成を適宜に選定したり、熱処理プロセ スを変更したりすることにより変更可能である。
[0194] 形状記憶榭脂としては、架橋または部分結晶化させた固定相と可逆相が混在して いるポリエステル、ポリウレタン、スチレン 'ブタジエン、トランスポリイソプレンなどの榭 脂を用いることができる。
[0195] ヒータ R1は、例えば正の温度特性、すなわち温度の増減に応じて抵抗値が増減す る PTC (Positive Temperature Coefficient)サーミスタが用いられる。これにより、ヒー タ R21に電圧を印加すると、ヒータ R21の自己発熱によってヒータ R21の抵抗値が増 大し、ヒータ R21を流れる電流が減少する結果、ヒータ R21の温度は最終的に、最終 到達温度で一定となる。最終到達温度は、バイメタルスィッチ SW1の動作温度 Tswl を超える温度であって、二次電池 6や保護回路 5hを損傷しな 、程度の温度が設定さ れている。これにより、ヒータ R21の発熱によって二次電池 6や保護回路 5hを損傷し たりすることを抑制することができる。
[0196] 過充電保護部 51は、二次電池 6の過充電を検知し、二次電池 6への充電電流を遮 断させ、二次電池 6を過充電保護状態にする。チャタリング防止部 52は、過充電保 護状態において生じるバイメタルスィッチ SW1のチャタリングを防止する。
[0197] 基準電圧源 E21は、二次電池 6の過充電を検出するための判断基準となる基準電 圧 (過充電保護電圧) Vreflを出力する電圧発生回路である。基準電圧源 E22は、 バイメタルスィッチ SW1のチャタリングを防止するための基準電圧 (過充電保護電圧 )Vref 2を出力する電圧発生回路である。
[0198] 本実施の形態では、基準電圧 Vreflと基準電圧 Vref 2とはほぼ等しぐ具体的には 基準電圧 Vrefl =基準電圧 Vref 2=4. 3Vである。
[0199] コンパレータ A1は、一端子に基準電圧 Vreflが印加され、接続端子 T3, T4間の 電圧、すなわち二次電池 6の電圧 Vbが基準電圧 Vreflを超えた場合、ハイレベルの 信号を出力し、電圧 Vbが基準電圧 Vref 1以下の場合、ローレベルの信号を出力す る。
[0200] コンパレータ A2は、一端子に基準電圧 Vref 2が印加され、接続端子 Tl, T2間の 電圧、すなわち、接続端子 Tl, T2に接続される充電装置又は負荷機器の電圧 Vc が基準電圧 Vref2を超えた場合、ハイレベルの信号を出力し、電圧 Vcが基準電圧 V ref2以下の場合、ローレベルの信号を出力する。
[0201] 本実施の形態では、コンパレータ Al, A2として、ノイズの影響を低減するために、 入力電圧にヒステリシスを有するコンパレータが採用されている。
[0202] ORゲート G1は、コンパレータ Al, A2のうちいずれか一方のコンパレータからハイ レベルの信号が出力された場合、トランジスタ Q 1のゲートにハイレベルの信号を出 力し、両コンパレータからローレベルの信号が出力された場合、トランジスタ Q1のゲ ートにローレベルの信号を出力する。
[0203] トランジスタ Q 1は、 nチャネル FET (電界効果型トランジスタ)が採用され、 ORゲー ト Glからハイレベルの信号が出力された場合、オンしてヒータ R21を通電し、ヒータ R 21を加熱させ、バイメタルスィッチ SW1をオフさせ、 ORゲート G1からローレベルの 信号が出力された場合、オフしてヒータ R21の通電を停止し、ヒータ R21の加熱を停 止させ、バイメタルスィッチ SW1をオンさせる。
[0204] 次に、保護回路 5hの動作について説明する。まず、保護回路 5hによる過充電保 護動作について説明する。接続端子 Tl, T2に図略の充電装置が接続され、充電装 置カゝら電圧 Vcが接続端子 Tl, T2間に印加されると、電圧 Vc, Vbが共に基準電圧 Vrefl, Vref2以下の通常状態において、バイメタルスィッチ SW1はオンし、二次電 池 6が充電される。ここで、電圧 Vcは、正常時は例えば最大 4. 2Vである。
[0205] そして、例えば図略の充電装置が故障する等して電圧制御がきかなくなると、電圧 Vbが基準電圧 Vreflを超える。そうすると、コンパレータ A1からハイレベルの信号が 出力され、 ORゲート G1からハイレベルの信号が出力され、トランジスタ Q1がオンさ れ、接続端子 T3からヒータ R21に電流が流れ、バイメタルスィッチ SW1が加熱される 。そして、バイメタルスィッチ SW1の温度が動作温度 Tswlに達すると、バイメタルス イッチ SW1がオフして充電電流が遮断され、過充電保護状態とされる。これにより、 二次電池 6は過充電力 保護される。
[0206] 過充電保護状態において、ヒータ R21により二次電池 6の電力が消耗されると、電 圧 Vbが低下して、コンパレータ A1の出力はローレベルになる。ここで、チャタリング 防止部 52が存在しない場合を考える。すると、トランジスタ Q1はオフされ、ヒータ R21 に電流が流れず、バイメタルスィッチ SW1の加熱が停止される。そして、ノ ィメタルス イッチ SW1は自然冷却され、動作温度 Tswl以下になると、再びオンし、充電装置か らの充電電流を流し、二次電池 6を再び充電する。二次電池 6の充電が «続されると 、電圧 Vbが基準電圧 Vreflを超え、再び、バイメタルスィッチ SW1はオフする。この ように、過充電保護状態において、接続端子 Tl, T2間に充電装置が接続され続け ると、チャタリングが発生する。
[0207] し力しながら、本実施の形態の保護回路 5hはチャタリング防止部 52を備えている。
これにより、過充電保護状態において、接続端子 Tl, T2間に充電装置が接続され 続け、電圧 Vcが基準電圧 Vref2を超える場合であっても、コンパレータ A2からはハ ィレベルの信号が出力され、 ORゲート G1からはハイレベルの信号が出力され、トラ ンジスタ Q1はオンされ、接続端子 T3からヒータ R1に電流が流れ、バイメタルスィッチ SW1が継続して加熱され、バイメタルスィッチ SW1はオフを継続する。これにより、過 充電保護状態にぉ ヽて、充電装置が接続され続けることで生じるバイメタルスィッチ SW1のチャタリングが防止されることとなる。
[0208] 次に、保護回路 5hによる過電流保護について説明する。まず、バイメタルスィッチ S W1がオンしている状態で、例えば接続端子 Tl, T2に金属片が接触したり、接続端 子 Tl, T2に接続された図略の携帯電話機等の負荷機器が故障したりすることによつ て、接続端子 Tl, T2が短絡、又は接続端子 Tl, T2間の抵抗値が低抵抗になると、 二次電池 6からバイメタルスィッチ SW1を介して過電流が流れる。バイメタルスィッチ SW1は過電流が流れると、接点抵抗によって加熱される。
[0209] そして、バイメタルスィッチ SW1は、温度が動作温度 Tswlに達すると、オフして二 次電池 6の放電電流を遮断し、保護回路 5hは過電流保護状態となり、二次電池 6は 過電流から保護される。過電流保護状態が継続すると、コンパレータ Al, A2の出力 は共にローレベルであり、ヒータ R21の加熱は停止されているため、バイメタルスイツ チ SW1は自然冷却される。そして、バイメタルスィッチ SW1は、動作温度 Tswl以下 となると、再びオンし、保護回路 5hは、過電流保護状態から通常状態に復帰する。
[0210] 以上説明したように実施の形態 8による保護回路 5hによれば、感熱スィッチである バイメタルスィッチ SW1を用いて二次電池 6を過充電及び過電流カゝら保護することが できるので、図 51に示す背景技術に係る保護回路 1002のように、放電電流を遮断 する FET1006と、充電電流を遮断する FET1007と、過電流を検出するための基準 電圧源 1009、コンパレータ 1011、及び抵抗 1112と、二つの FET1006, 1007の オンオフを制御するための論理回路 1013とを必要とせず、保護回路 5hの回路を簡 素化することができ、保護回路 5hを小型化することが容易となる。
[0211] また、コンパレータ A1によって過充電が検出され、ヒータ R21によりバイメタルスイツ チ SW1を加熱することによってバイメタルスィッチ SW1をオフさせるので、例えば図 5 2や図 53に示すように二次電池 1022と直列に接続されたバイメタルスィッチ 1023又 は PTC素子 1032のみによって過充電保護を行う場合よりも過充電を検出する精度 を向上させることができ、過充電保護動作が行われないまま二次電池 6が過充電され たり、二次電池 6の特性が劣化したり、二次電池 6の膨張や変形等を招いたりするお それを低減することができる。
[0212] 更に、チャタリング防止部 52を備えているため、過充電保護状態において充電装 置が接続され続け、接続端子 Tl, T2間の電圧 Vcが基準電圧 Vref2を超えて、電圧 Vbが基準電圧 Vrefl以下となっても、トランジスタ Q1が継続してオンされるため、ノ ィメタルスィッチ SW1の加熱が継続され、バイメタルスィッチ SW1はオフ状態を保つ 結果、ノ ィメタルスィッチ SW1のチャタリングを防止することができ、バイメタルスイツ チ SW1の劣化を防止することができる。
[0213] なお、実施の形態 8では、ヒータ R21を用いたがこれに限定されず、過充電保護部 51、チャタリング防止部 52、 ORゲート Gl、トランジスタ Q1を集積回路とし、主にトラ ンジスタ Q 1がオンしたときに起因して生じる集積回路の熱を利用してノ ィメタルスイツ チ SW1を加熱してもよい。この場合、ヒータ R21が不要となり部品点数の削減を図る ことができる。
[0214] (実施の形態 9)
次に、本発明の実施の形態 9に係る電池パックについて説明する。本発明の実施 の形態 9に係る電池パック liの外観は、図 1に示す電池パック 1と同様である。図 27 は、実施の形態 9に係る電池パック liの回路図を示している。実施の形態 9の保護回 路 5iは実施の形態 8の保護回路 5hにおいて、チャタリング防止部 52を省き、短絡保 護部 53及び抵抗 R22を備えることを特徴としている。なお、実施の形態 9において、 実施の形態 8と同一のものは同一の符号を付し、説明を省略する。
[0215] 短絡保護部 53は、コンパレータ A3及び基準電圧源 E23を備えている。コンパレー タ A3は、一端子が接続端子 T1に接続され、 +端子が基準電圧源 E23に接続され、 出力端子が ORゲート G1の入力端子に接続され、電源供給端子が接続端子 T3〖こ 接続され、グラウンド端子が接続端子 T2, T4に接続されている。
[0216] 基準電圧源 E23は、正極が接続端子 T3に接続され、負極がコンパレータ A3の + 端子に接続されて ヽる。抵抗 R22はバイメタルスィッチ SW1と並列に接続されて!、る [0217] コンパレータ A3は、二次電池 6の電圧 Vbが接続端子 Tl, T2間の電圧 Vcと基準 電圧 Vref3とを加算した電圧を超えるか否かを検出し、電圧 Vbが基準電圧 (過電流 保護電圧;! と電圧 じとを加算した電圧を超ぇる場合 !^ + じ)、過 電流保護状態において接続端子 Tl, T2に過電流を引き起こすような負荷が接続さ れている、又は短絡されていると判定し、ハイレベルの信号を出力する。なお、コンパ レータ A3は、コンパレータ Al, A2同様、入力電圧にヒステリシスを有するコンパレー タである。実施の形態 9では、基準電圧 Vref 3として IVが採用されている。すなわち 、電圧 Vbから電圧 Vaを差し引いた電圧が IVを超えている場合、過電流保護状態に おいて、接続端子 Tl, T2に過電流を引き起こすような負荷が接続されている又は短 絡されていると判定する。
[0218] 次に、保護回路 5iによる過電流保護状態における短絡保護動作について説明す る。過電流保護状態に至るまでの過程は実施の形態 1の保護回路 5と同一であるた め、説明を省略する。過電流保護状態において、短絡保護部 53がない場合を考え る。この場合、ノィメタルスィッチ SW1は、電流が流れておらず、ヒータ R22による加 熱も停止されているため、自然冷却され、やがて動作温度 Tswl以下になってオンす る。ここで、接続端子 Tl, T2の短絡が継続して行われると、バイメタルスィッチ SW1 には二次電池 6からの過電流が流れ、再びオフする。バイメタルスィッチ SW1は、ォ フすると自然冷却により再びオンする。
[0219] このように、過電流保護状態において、接続端子 Tl, T2が短絡され続けるとバイメ タルスィッチ SW1はオンオフを繰り返しチャタリングする。
[0220] し力しながら、本実施の形態の保護回路 5iは短絡保護部 53を備えて 、る。そのた め、過電流保護状態において、接続端子 Tl, T2間が短絡され続けると、過電流保 護状態では電圧 Vbは電圧 Vcと基準電圧 Vref3とを加算した電圧を超えるため、コン パレータ A3からはハイレベルの信号が出力され、トランジスタ Q1はオンされ、抵抗 R 1は継続して発熱し、バイメタルスィッチ SW1は継続して加熱され、オフ状態を継続 する。これにより、過電流保護状態において、接続端子 Tl, T2の短絡が継続される ことで生じるバイメタルスィッチ SW1のチャタリングを防止することができるとともに、チ ャタリングによってノィメタルスィッチ SW1がオンしたときに過電流が流れることを防 止することができる。
[0221] 接続端子 Tl, T2間の短絡が解除されると、二次電池 6から抵抗 R22を経由して、 接続端子 T1に微小電流が流れる。このとき、接続端子 Tl, T2間に負荷が接続され ていないため、電圧 Vcと電圧 Vbとはほぼ同じ値となり、電圧 Vbと電圧 Vcとの差が基 準電圧 Vref3以下になるため、コンパレータ A3はローレベルの信号を出力する。こ のとき、コンパレータ A1もローレベルの信号を出力しているため、トランジスタ Q1は オフされ、バイメタルスィッチ SW1は、加熱が停止され、自然冷却により動作温度 Ts wl以下になるとオンし、保護回路 5iは過電流保護状態力 通常状態に速やかに復 帰する。なお、過充電保護部 51による過充電保護は、実施の形態 8と同様であるた め、説明を省略する。
[0222] 以上説明したように実施の形態 9による保護回路 5iによれば、実施の形態 8の保護 回路 5hと同様、二次電池 6を過充電及び過電流カゝら保護することができることに加え 、短絡保護部 53を備えているため、過電流保護状態において生じるチャタリングを防 止することができる。そのため、バイメタルスィッチ SW1の劣化を防止することができ る。
[0223] なお、実施の形態 9では、ヒータ R1を用いたがこれに限定されず、過充電保護部 5 1、短絡保護部 53、 ORゲート Gl、トランジスタ Ql、及び抵抗 R22を集積回路とし、 主にトランジスタ Q1がオンに起因して生じる集積回路の熱を利用してバイメタルスィ ツチ SW1を加熱してもよい。この場合、ヒータ R21が不要となり部品点数の削減を図 ることがでさる。
[0224] (実施の形態 10)
次に、実施の形態 10に係る電池パックについて説明する。実施の形態 10に係る電 池パック ljの外観構成は、図 1に示す電池パック 1と同様である。図 28は実施の形態 10に係る電池パック ljの回路図を示している。実施の形態 10の保護回路 ¾は、実施 の形態 8の保護回路 5hに対して、更に短絡保護部 53を設ける、すなわち、チヤタリン グ防止部 52と短絡保護部 53とを共に備えたことを特徴としている。
[0225] ORゲート G1には、コンパレータ A1〜A3が接続されているため、コンパレータ A1 〜A3のうちいずれかのコンパレータからハイレベルの信号が出力されると、トランジ スタ Qlはオンし、ヒータ R21は発熱し、バイメタルスィッチ SW1はオフする。
[0226] このように実施の形態 10による保護回路 ¾によれば、過充電保護部 51、チヤタリン グ防止部 52を備えるため、実施の形態 8と同様の効果を奏することができることに加 え、短絡保護部 53を備えているため、実施の形態 9と同様の効果も奏することができ る。
[0227] なお、実施の形態 10では、ヒータ R21を用いたがこれに限定されず、過充電保護 部 51、チャタリング防止部 52、短絡保護部 53、 ORゲート Gl、トランジスタ Ql、及び 抵抗 R22を集積回路とし、主にトランジスタ Q1がオンすることに起因して生じる集積 回路の熱を利用してバイメタルスィッチ SW1を加熱してもよい。この場合、ヒータ R21 が不要となり部品点数の削減を図ることができる。
[0228] (実施の形態 11)
次に実施の形態 11に係る電池パックにっ 、て説明する。実施の形態 11に係る電 池パック lkの外観構成は図 1に示す電池パック 1と同様である。図 29は実施の形態 11に係る電池パック lkの回路図を示して 、る。実施の形態 11に係る電池パック lk は、実施の形態 10に係る電池パック ¾に対して、更に温度制御部 54及び ANDゲー ト G2を備えたことを特徴としている。温度制御部 54は、温度センサ Sl、コンパレータ A4、抵抗 R23、及び基準電圧源 E24を備えている。
[0229] コンパレータ A4は、一端子が温度センサ S1を介して接続端子 T3に接続され、 + 端子が基準電圧源 E24の正極に接続され、出力端子が ANDゲート G2の入力端子 に接続され、電源供給端子が接続端子 T3に接続され、グラウンド端子が接続端子 T 2, T4に接続されている。抵抗 R23は一端が接続端子 T2, T4に接続され、他端がコ ンパレータ A4の—端子に接続されている。基準電圧源 E24は負極が接続端子 T2, T4に接続されている。また、 ANDゲート G2には、 ORゲート G1の出力端子が接続さ れている。
[0230] 温度センサ S1は負特性のサーミスタが採用され、ヒータ R21の温度が上昇するに つれて抵抗が減少する。基準電圧源 E24は、ヒータ R21の所定の上限温度を検知 するための基準電圧 Vref4を出力する電圧発生回路である。この上限温度はバイメ タルスィッチ SW1の動作温度 Tswlより高い。ここで、基準電圧 Vref4は、ヒータ R21 の温度が前記上限温度を超えたとき、コンパレータ A4の +端子の電圧が一端子の 電圧以下となる値が設定されて!ヽる。
[0231] コンパレータ A4は、バイメタルスィッチ SW1が上限温度を超え、一端子の電圧が
+端子の電圧より高くなつた場合、ローレベルの信号を出力し、トランジスタ Q1をォ フさせる。なお、コンパレータ A4は、コンパレータ A1〜A3同様、ヒステリシスを有す るコンパレータが採用されている。
[0232] 次に保護回路 5kの温度保護動作について説明する。例えば図略の充電装置が故 障する等して電圧制御がきかなくなると、電圧 Vbが基準電圧 Vreflを超える。そうす ると、コンパレータ A1からハイレベルの信号が出力され、 ORゲート G1からハイレべ ルの信号が出力される。このとき、バイメタルスィッチ SW1の温度が上限温度に達し て!ヽな 、ため、コンパレータ A4力 ハイレベルの信号が出力されて!、る。
[0233] そのため、 ANDゲート G2からハイレベルの信号が出力され、トランジスタ Q1がオン され、接続端子 T3からヒータ R21に電流が流れ、バイメタルスィッチ SW1が加熱され る。そして、ノ ィメタルスィッチ SW1の温度が動作温度 Tswlに達すると、バイメタル スィッチ SW1がオフして充電電流が遮断され、過充電保護状態となる。
[0234] 過充電保護状態が継続すると、ヒータ R21は更に温度上昇し、これに伴って温度セ ンサ S1の抵抗は減少する。やがてヒータ R21が上限温度に達すると、コンパレータ A 4はローレベルの信号を出力し、トランジスタ Q1はオフし、ヒータ R21は発熱を停止 する。これによつて、バイメタルスィッチ SW1は、上限温度以上に加熱されることが防 止され、接点の溶着が防止される。
[0235] 以上説明したように実施の形態 11による保護回路 5kによれば、実施の形態 10によ る保護回路 ¾の効果を奏することに加え、バイメタルスィッチ SW1の接点の溶着を防 止することができる。
[0236] なお、実施の形態 11では、ヒータ R21を用いたがこれに限定されず、過充電保護 部 51、チャタリング防止部 52、短絡保護部 53、温度制御部 54、 ORゲート Gl、 AN Dゲート G2、トランジスタ Ql、抵抗 R22、及び温度センサ SIを集積回路とし、主にト ランジスタ Q 1がオンしたとときに起因して生じる集積回路の熱を利用してバイメタルス イッチ SW1を加熱してもよい。この場合、ヒータ R21が不要となり部品点数の削減を 図ることができる。
[0237] (実施の形態 12)
次に、本発明の実施の形態 12に係る電池パックについて説明する。本発明の実施 の形態 12に係る電池パック 11の外観は、図 1に示す電池パック 1と同様である。図 30 は、実施の形態 12に係る電池パック 11の回路図を示している。実施の形態 12に係る 電池パック 11は、実施の形態 8の保護回路 5hに対し、チャタリング防止部 52を省き、 ORゲート G1に代えて ANDゲート G2を採用し、温度ヒューズ Fl、温度制御部 54d、 及び上限温度変更部 55を備えて 、ることを特徴として 、る。
[0238] 温度制御部 54dは、実施の形態 11の温度制御部 54に対し、抵抗 R23に代えて直 列接続された 2つの抵抗 R24, R25を備え、ヒータ R21が上限温度に達すると、ヒー タ R21の通電を停止させる。上限温度変更部 55は、コンパレータ A5、基準電圧源 E 25、及びトランジスタ Q2を備え、ヒータ R21の上限温度を変更する。抵抗 R24と抵抗 R25とは、抵抗値の加算値が保護回路 5kの抵抗 R23の抵抗値と等しくなるように設 定されている。
[0239] コンパレータ A5は、 +端子及び電源供給端子が温度ヒューズ F1を介して接続端 子 T3に接続され、一端子が基準電圧源 E25の正極に接続され、出力端子がトラン ジスタ Q2のゲートに接続され、グラウンド端子が接続端子 T2, T4に接続されている 。基準電圧源 E25の負極は接続端子 T2, T4に接続されている。トランジスタ Q2は、 nチヤネノレ FETであり、抵抗 R25と並列接続されて!、る。
[0240] 基準電圧源 E25は、コンパレータ A5の一端子に基準電圧 (第 2の過充電保護電圧 )Vref5を印加する。実施の形態 12では、基準電圧 Vref5は基準電圧 Vreflよりも大 きな値が設定されている。コンパレータ A5は、コンパレータ A1〜A4同様、ヒステリシ スを有するコンパレータが採用されている。
[0241] 温度ヒューズ F1は、実施の形態 1の温度ヒューズ F1と同一構成であるため説明を 省く。
[0242] 次に、保護回路 51の動作について説明する。まず、保護回路 5kと同様にして保護 回路 51が過充電保護状態になっているとする。過充電保護状態が継続すると、ヒータ R21は更に温度上昇し、これに伴って温度センサ S1の抵抗は減少し、やがてバイメ タルスィッチ SW1の上限温度 Thに達する。そうすると、コンパレータ A4はローレべ ルの信号を出力し、トランジスタ Q1はオフし、ヒータ R21は発熱を停止する。これによ り上限温度 Th以上に加熱されることが防止され、接点の溶着が防止される。
[0243] 次にバイメタルスィッチ SW1の接点が溶着した場合の保護回路 51による温度保護 動作について説明する。過充電保護状態が継続され、ヒータ R21の上限温度 Thに 達しても、ノ ィメタルスィッチ SW1は接点が溶着しているため、オフされず、二次電池 6への充電が継続して行われる。そして、電圧 Vbが基準電圧 Vref5 ( >Vrefl)を超 えると、コンパレータ A5はハイレベルの信号を出力し、トランジスタ Q2はオンする。こ れにより抵抗 R25は短絡され、コンパレータ A4の—端子の電圧が基準電圧 Vref4以 下となり、コンパレータ A4はハイレベルの信号を出力する。このとき、電圧 Vbは基準 電圧 Vreflを超えているため、コンパレータ A1はハイレベルの信号を出力している。 その結果、トランジスタ Q1はオンし、ヒータ R21は発熱し、バイメタルスィッチ SW1を 再び加熱する。これにより、ヒータ R21の上限温度は温度ヒューズ F1の動作温度 Tfu selより高くなる。そして、温度ヒューズ F1の温度が上昇し、動作温度 Tfuselを超え ると、温度ヒューズ F1は溶断し、二次電池 6への充電を停止させる。
[0244] このように実施の形態 12による保護回路 51によれば、温度制御部 54dを備えている ため、ヒータ R21がバイメタルスィッチ SW1を加熱する温度範囲力 動作温度 Tswl より大きぐ動作温度 Tfusel以下の範囲となるため、バイメタルスィッチ SW1の接点 の溶着を防止することができる。また、上限温度変更部 55を備えているため、バイメ タルスィッチ SW1の接点が溶着され、二次電池 6の過充電が継続され、電圧 Vbが基 準電圧 Vref5を超えると、トランジスタ Q2はオンし、ヒータ R21の上限温度が動作温 度 Tfuselより高くなる。これにより、ヒータ R21の温度は更に上昇していき、動作温度 Tfuselに達して、温度ヒューズ F1を溶断させるため、バイメタルスィッチ SW1の接点 が溶着した場合であっても、二次電池 6を過充電カゝら保護することができる。
[0245] なお、実施の形態 12では、ヒータ R21を用いたがこれに限定されず、過充電保護 部 51、温度制御部 54d、上限温度変更部 55、 ANDゲート G2、トランジスタ Ql、及 び温度センサ S1を集積回路とし、主にトランジスタ Q1がオンに起因して生じる集積 回路の熱を利用してバイメタルスィッチ SW1を加熱してもよい。この場合、ヒータ R21 が不要となり部品点数の削減を図ることができる。更に、この場合、図 33〜36に示す ように電池パック 11を構成することが好ま U、。
[0246] 図 33〜36は、実施の形態 12の保護回路 51を集積回路とした場合における電池パ ック 11の分解構成図を示し、(a)は上面図を示し、(b)は側面図を示している。図 33 ( b)に示すように電池パック 11は、合成樹脂やセラミックスなどの絶縁材料により一体 形成されたフレーム体 110と、金属薄板などにより形成された第 1配線導体 120と、 金属薄板などに形成された第 2配線導体 130と、バイメタルスィッチ 140 (SW1)と、 バイメタルスィッチ 140を覆うカバー体 150と、配線基板 160とを備えている。
[0247] フレーム体 110は、第 1支持部材 111と、第 1支持部材 111に対して所定間隔をお いて対向配置された第 2支持部材 112と、第 1支持部材 111及び第 2支持部材 112 を連結する連結部材 113とを備えている。配線基板 160と連結部材 113との間には 空間が設けられ、この空間部に集積回路 ICが配設される。
[0248] 第 1配線導体 120は、第 1支持部材 111上に配設されている。第 2配線導体 130は 、第 2支持部材 112上に配設されている。なお、第 2配線導体 130は、連結部材 113 の表面まで延設されて 、る。
[0249] バイメタルスィッチ 140は、可動接点部材 141、バイメタル素子 142、及び突起 143 を備えている。可動接点部材 141は、第 1配線導体 120と第 2配線導体 130との間に 跨って配設された長尺形状を有し、左端には上側に突出した接点 141aが設けられ、 右端が第 2配線導体 130上に固定されている。バイメタル素子 142は、中央部が可 動接点部材 141側に湾曲された長尺形状を有し、加熱されたとき、可動接点部材 14 1側に湾曲される。突起 143は、バイメタル素子 142の外力による変形を阻止する。
[0250] 接点 141aは、可動接点部材 141がバイメタル素子 142から下向きの力を受けたと き、第 1配線導体 120から離れる。これによりバイメタルスィッチ 140はオフする。一方 、接点 141aは、可動接点部材 141がバイメタル素子 142からの下向きの力を受けな いとき、第 1配線導体 120と接触する。これにより、バイメタルスィッチ 140はオンする
[0251] 配線基板 160の上面には、接続端子 Tl, T2が配設されている。第 1配線導体 120 の左側には、温度ヒューズ F1が配設されている。温度ヒューズ F1と二次電池 6の正 極端子 6aとは接続配線 LIにより電気的に接続されている。また、配線基板 160の右 端には接続端子 T2を接地するための接続配線 L2が取り付けられている。
[0252] なお、実施の形態 12による電池パック 11は図 33に示す構成に代えて、図 34に示 す構成を採用してもよい。図 34に示す構成では、配線基板 160と二次電池 6との空 間を榭脂 170により埋めたことを特徴としている。また、図 34に示す構成に代えて、 図 35に示す構成を採用してもよい。図 35に示す構成では、図 34に示す構成におい て、二次電池 6と配線基板 160とを 2つのねじ 131, 132によりねじ止めしたことを特 徴としている。
[0253] 更に、図 35に示す構成に代えて、図 36に示す構成を採用してもよい。図 36に示す 構成では、バイメタルスィッチ 140等が取り付けられた表面を上側に向け、裏面を二 次電池 6側に向けて配線基板 160を配設すると共に、接続端子 Tl, T2としてコネク タ C1を採用したことを特徴としている。この場合、充電装置、又は負荷機器はコネク タ C1に対応するコネクタを備え、対応するコネクタをコネクタ C1にはめ込むことで、 二次電池 6と電気的に接続される。
[0254] (実施の形態 13)
次に、本発明の実施の形態 13に係る電池パックについて説明する。実施の形態 1 3に係る電池パック lmの外観は、図 1に示す電池パック 1と同様である。図 31は、実 施の形態 13に係る電池パック lmの回路図を示している。保護回路 5mは、集積回路 IC及びバイメタルスィッチ SW1を備えている。集積回路 ICは、トランジスタ (スィッチ ング部) Ql、トランジスタ(抵抗) Q2、 ANDゲート(スイッチング部) G2、 ORゲート (ス イッチング部) G2、減電圧制御部(電源制御部) 610、電源制御部 620、過充電制御 部 (第 1の過充電保護部及び第 2の過充電保護部) 630、短絡保護部 640、及び温 度制御部 650を備えている。トランジスタ Q1は nチャネル FETであり、ゲートが AND ゲート G2の出力端子に接続され、ドレインが接続端子 T3に接続され、ソースが接続 端子 T2, T4に接続されている。トランジスタ Q2は pチャネル FETであり、ゲートが減 電圧制御部 610及び電源制御部 620に接続され、ドレインが接続端子 T3に接続さ れ、ソースが接続端子 T1に接続されている。
[0255] 減電圧制御部 610は、電圧 Vbが所定の過放電防止電圧以下の場合、電源制御 部 620とトランジスタ Q2とをオフし、二次電池 6の過放電を防止する。
[0256] 電源制御部 620は、過充電制御部 630、短絡保護部 640、及び温度制御部 650 に電力を供給する。過充電制御部 630は、過充電保護状態においてバイメタルスィ ツチ SW1がオフしている場合に、接続端子 Tl, T2に充電装置が接続され、過充電 が継続されて 、るか否かを検知する。
[0257] 短絡保護部 640は、バイメタルスィッチ SW1がオフしている過電流保護状態にお いて、接続端子 Tl, T2に過電流を引き起こすような負荷が接続されている又は短絡 されて!/ヽるか否かを検知する。
[0258] 温度制御部 650は、ヒータ素子とスィッチ素子とを兼ねるトランジスタ Q1の発熱に 起因する集積回路 ICの温度を検知し、この温度が所定の設定温度を超えた場合、ト ランジスタ Q1をオフする。
[0259] 図 32は保護回路 5mの詳細な構成を示す回路図である。減電圧制御部 610は、コ ンパレータ A6、及び基準電圧源 E26を備えている。基準電圧源 E26は、電圧発生 回路力も構成され、過放電防止電圧 Vref 6をコンパレータ A6の +端子に印加する。 コンパレータ A6は、電圧 Vbが過放電防止電圧 Vref6を超えた場合、ローレベルの 信号を出力し、トランジスタ Q2及び電源制御部 620をオンする。ここで、過放電防止 電圧 Vref6は基準電圧 Vrefl, Vref3, Vref4よりも小さい。
[0260] 電源制御部 620は、コンパレータ Al, A2, A3, A4の電源供給端子と接続され、こ れらのコンパレータに電力を供給する。なお、図 9において、コンパレータ A2と電源 制御部 620との結線は省略して 、る。
[0261] 過充電制御部 630は、コンパレータ Al, A2、基準電圧源 E21を備えている。コン ノルータ A1及び基準電圧源 E21は、実施の形態 8による保護回路 5hに示す過充電 保護部 51に相当し、コンパレータ A2及び基準電圧源 E21は、保護回路 5hに示す チャタリング防止部 52に相当し、二次電池 6の過充電を検知して二次電池 6を過充 電から保護すると共に、過充電保護状態において、バイメタルスィッチ SW1に生じる チャタリングを防止する。
[0262] 短絡保護部 640は、コンパレータ A3及び基準電圧源 E23を備えている。コンパレ ータ A3は出力端子が ORゲート G1の入力端子に接続され、 +端子が基準電圧源 E 23の負極に接続され、一端子が接続端子 T1に接続され、電源供給端子が電源制 御部 620に接続され、グラウンド端子が接続端子 T2, T4に接続されている。
[0263] コンパレータ A3は、二次電池 6の電圧 Vbが基準電圧 Vref3と電圧 Vcとをカ卩算した 電圧を超える場合 (Vb >Vc+Ref3)、過電流保護状態において、接続端子 Tl, T2 に負荷の接続が継続されていると判定し、ハイレベルの信号を出力する。これにより 、過電流保護状態にぉ 、てバイメタルスィッチ SW1で生じるチャタリングを防止する ことができる。
[0264] 温度制御部 650は、コンパレータ A4、基準電圧源 E24、抵抗 R23、温度センサ SI 、基準電圧源 E27を備え、実施の形態 11による保護回路 5kに示す温度制御部 54 に相当する。
[0265] コンパレータ A4は出力端子が ANDゲート G2の入力端子に接続され、一端子が抵 抗 R23を介して接続端子 T2, T4に接続され、 +端子が基準電圧源 E24を介して接 続端子 T2, T4と接続され、グラウンド端子が接続端子 T2, T4に接続されている。基 準電圧源 E27は、負極が接続端子 T2, T4と接続され、正極が温度センサ S1を介し てコンパレータ A4の一端子に接続されて!、る。
[0266] 次に実施の形態 13による保護回路 5mの動作について説明する。まず、保護回路 5mによる過放電保護動作について説明する。二次電池 6の放電が進み、電圧 Vbが 過放電防止電圧 Vref6以下になると、コンパレータ A6はハイレベルの信号を出力し 、トランジスタ Q2及び電源制御部 620をオフさせる。従って、コンパレータ A1〜A4 に二次電池 6の電力が供給されることが防止され、接続端子 Tl, T2間に負荷が接 続されて 、な 、場合にぉ 、て生じる過放電から二次電池 6を保護することができる。
[0267] 次に保護回路 5mによる過電流保護状態における短絡保護動作について説明する 。過電流保護状態に至るまでの過程及び過電流保護状態にぉ ヽてバイメタルスイツ チ SW1のチャタリングを防止するまでの過程は、実施の形態 9の保護回路 5iと同一 であるため説明を省く。
[0268] 過電流保護状態において、接続端子 Tl, T2間の短絡が解除されると、二次電池 6 力もトランジスタ Q2を経由して、接続端子 T1に微小電流が流れる。このとき、接続端 子 Tl, T2間に負荷が接続されていないため、電圧 Vcと電圧 Vbとはほぼ同じ値とな り、電圧 Vbと電圧 Vcとの差が基準電圧 Vref3以下になる結果、コンパレータ A3は口 一レベルの信号を出力する。このとき、コンパレータ A1もローレベルの信号を出力し ているため、トランジスタ Q1はオフされ、バイメタルスィッチ SW1は、加熱が停止され 、自然冷却により動作温度 Tswl以下になると、オンし、保護回路 5は過電流保護状 態から通常状態に復帰する。
[0269] なお、過充電制御部 630による過充電保護動作及び過充電保護状態におけるチ ャタリング防止動作は、実施の形態 8による保護回路 5hと同一であり、また、温度制 御部 650による温度保護動作は、実施の形態 11の保護回路 5kと同一であるため説 明を省略する。
[0270] 以上説明したように実施の形態 13による電池パック lmによれば、実施の形態 8〜1 2の保護回路 51!〜 51と同一の作用効果を奏することができることに加え、減電圧制御 部 610及びトランジスタ Q2を備えているため、二次電池 6を過放電力も保護すること ができる。
[0271] (実施の形態 14)
次に、本発明の実施の形態 14に係る電池パックについて説明する。本発明の実施 の形態 14に係る電池パック Inの外観は、図 1に示す電池パック 1と同様である。図 3 7は、実施の形態 14に係る電池パック Inの回路図を示している。電池パック Inは、 保護回路 5nと二次電池 6とを備えている。二次電池 6は、例えばリチウムイオン二次 電池、リチウリチウムポリマー二次電池、ニッケル水素二次電池、あるいはニッケル力 ドミゥムニ次電池等の充電可能な二次電池である。保護回路 5nは、二次電池 6を過 充電や、過電流から保護する回路である。
[0272] 保護回路 5nは、接続端子 T1〜T4 (第 1〜第 4の接続端子)、バイメタルスィッチ S Wl、温度ヒューズ Fl、ヒータ R31, R32、過充電保護部 51、及び温度ヒューズ制御 部 56を備える。過充電保護部 51は、コンパレータ Al、基準電圧源 E31、及びトラン ジスタ Q1を備えている。温度ヒューズ制御部 56は、カウンタ Cl、トランジスタ Q2を備 えている。
[0273] 接続端子 T1及び接続端子 T2は、二次電池 6を充電する図略の充電装置及び Z 又は二次電池 6からの放電電流により駆動される負荷機器を接続するための接続端 子である。負荷機器は、例えば携帯電話機、デジタルカメラ、ビデオカメラ、携帯型パ 一ソナルコンピュータ、電動工具等、電池で駆動される種々の電気機器である。接続 端子 T3は二次電池 6の正極に接続され、接続端子 T4は二次電池 6の負極に接続さ れている。
[0274] ノ ィメタルスィッチ SW1は、予め設定された所定の動作温度 Tswlを超えた場合に オフする感熱スィッチであり、動作温度 Tswlは、例えば二次電池 6の特性を劣化さ せな 、温度範囲における最高温度が設定されて 、る。
[0275] また、バイメタルスィッチ SW1は、温度が上昇してオフした後、温度が低下すれば 再びオンする復帰形の感熱スィッチである。なお、感熱スィッチとしては、バイメタル スィッチに代えて、形状記憶合金を用いたスィッチ(例えば、実公平 7—4770、特開 平 11— 224579に記載のもの)や、形状記憶榭脂を用いたスィッチを、同様にして用 いることがでさる。
[0276] 形状記憶合金としては、ニッケル チタン合金系、銅—亜鉛 アルミニウム合金な どの熱弾性型マルテンサイト変態および逆変態に基づき、復元力を有する形状記憶 合金であれば良ぐこれらの合金がその変形された形状より復元された形状に変化 する形状変化温度範囲は、形状記憶合金の組成を適宜に選定したり、熱処理プロセ スを変更したりすることにより変更可能である。
[0277] 形状記憶榭脂としては、架橋または部分結晶化させた固定相と可逆相が混在して いるポリエステル、ポリウレタン、スチレン 'ブタジエン、トランスポリイソプレンなどの榭 脂を用いることができる。
[0278] 温度ヒューズ F1は、ヒータ R32によって加熱され、その熱によって溶断されると共に 、二次電池 6と近接して、あるいは絶縁物を挟んで密着されて配設され、二次電池 6 が過充電や過大な放電によって発熱した場合に、その熱で溶断されるヒューズである 。温度ヒューズ F1の溶断する動作温度 Tfuselは、バイメタルスィッチ SW1の動作温 度 Tswlよりも高い温度に設定されている。また、温度ヒューズ F1の動作速度は、ノ ィメタルスィッチ SW1よりも遅くなるように、溶断特性が設定されている。温度ヒューズ F1は、一度溶断したら、導通状態に復帰することのない非復帰形の感熱スィッチで ある。この場合、バイメタルスィッチ SW1の動作温度 Tswlと、ヒータ R31の最終到達 温度 Thlと、温度ヒューズ Flの動作温度 Tfuselとヒータ R2の最終到達温度 Th2と は、下記式(3)で示す関係となる。
[0279] Tswl < Th 1 < Tf use 1 < Th2 · · · (3)
[0280] また、バイメタルスィッチ SWl及び温度ヒューズ Flの動作温度、及び動作速度の 設定は、バイメタルスィッチ SW1及び温度ヒューズ F1自体の部品の特性を設定する ほか、バイメタルスィッチ SW1を温度ヒューズ F1よりも先に動作させるために、例えば バイメタルスィッチ SW1と二次電池 6との間の熱抵抗が温度ヒューズ F1と二次電池 6 との間の熱抵抗よりも小さくなるようにバイメタルスィッチ SW1と二次電池 6とを近接さ せたり密着させたりする構成によってもよぐ例えば、バイメタルスィッチ SW1の接点 抵抗や可動切片における抵抗を上昇させて自己発熱量を増大させたり、バイメタル スィッチ SW1が放熱する際の周囲に対する熱抵抗を増大させたり、バイメタルスイツ チ SW1を小型化して熱容量を低減させたりすることによってノ ィメタルスィッチ SW1 を自己発熱により温度上昇し易い構成としてもよい。
[0281] また、温度ヒューズ F1の動作をバイメタルスィッチ SW1より遅らせるために、例えば 温度ヒューズ F1が放熱する際の周囲に対する熱抵抗を減少させたり、例えば温度ヒ ユーズ F1に熱伝導性のょ 、材料を接触させる等の方法により温度ヒューズ F1を大型 化することなく温度ヒューズ F1のみかけの熱容量を増大させたりすることによって、温 度ヒューズ F1を温度上昇し難 、構成としてもよ!、。
[0282] ヒータ R31, R32は、例えば正の温度特性、すなわち温度の増減に応じて抵抗値 が増減する PTC (Positive Temperature Coefficient)サーミスタが用いられる。これに より、ヒータ R31に電圧を印加すると、ヒータ R31の自己発熱によってヒータ R31の抵 抗値が増大し、ヒータ R31, R32を流れる電流が減少する結果、ヒータ R31, R32の 温度は最終的に、最終到達温度 Thl, Th2で一定となる。最終到達温度 Thlは、バ ィメタルスィッチ SW1の動作温度 Tswlを超える温度であって、二次電池 6や保護回 路 5nを損傷しない程度の温度が設定されている。これにより、ヒータ R31の発熱によ つて二次電池 6や保護回路 5nを損傷したりすることを抑制することができる。また、最 終到達温度 Th2は、温度ヒューズ F1の動作温度 Tfuselを超える温度であって、二 次電池 6や保護回路 5nを損傷しな 、程度の温度が設定されて!、る。 [0283] ノ ィメタルスィッチ SW1は、接続端子 T1及び温度ヒューズ F1間に接続されて!ヽる o温度ヒューズ F1はバイメタルスィッチ SW1及び接続端子 T3間に接続されて!、る。
[0284] コンパレータ A1は、プラス端子及び電源供給端子が温度ヒューズ F1を介して接続 端子 T3に接続され、二次電池 6から供給される電力によって駆動される。また、コン ノルータ A1は、—端子が基準電圧源 E31の正極に接続され、出力端子がトランジス タ Q1のゲート及びカウンタ C1の入力端子に接続され、グラウンド端子が接続端子 T 2, T4に接続されている。基準電圧源 E31は、負極が接続端子 T2, T4に接続され、 所定の過充電保護電圧 Vreflをコンパレータ A1の一端子に印加する電圧発生回路 である。
[0285] トランジスタ Q 1は、 nチャネル電界効果型トランジスタ力 構成され、ドレイン力 Sヒー タ R31を介して、温度ヒューズ F1に接続され、ソースが接続端子 T2, T4に接続され ている。トランジスタ Q2は、 nチャネル電界効果型トランジスタカゝら構成され、ゲートが カウンタ C1の出力端子に接続され、ドレイン力ヒータ R32を介して温度ヒューズ F1に 接続され、ソースが接続端子 T2, T4に接続されている。
[0286] コンパレータ A1は、接続端子 T3及び T4間の電圧 Vbが所定の過充電保護電圧 V ref 1を超えた場合、ハイレベルの信号を出力してトランジスタ Q1をオンさせ、電圧 Vb が過充電保護電圧 Vrefl以下の場合、ローレベルの信号を出力してトランジスタ Q1 をオフさせる。実施の形態 14では、過充電保護電圧 Vreflとして、 Ref 1 =4. 3Vが 採用されている。
[0287] カウンタ C1は、公知のカウンタ力 構成され、コンパレータ A1から出力される信号 力 一レベル力もハイレベルに変化する毎にカウントアップし、カウント値が所定の規 定値を超えたとき、ハイレベルの信号を出力し、トランジスタ Q2をオンさせる。
[0288] 次に保護回路 5nの動作について説明する。まず、保護回路 5nによる過充電保護 動作について説明する。接続端子 Tl, T2に図略の充電装置が接続され、充電装置 カゝら電圧 Vcが接続端子 Tl, T2間に印加されると、電圧 Vbが過充電保護電圧 Vref 1以下の通常状態において、バイメタルスィッチ SW1はオンし、二次電池 6が充電さ れる。ここで、電圧 Vcは、正常時は例えば最大 4. 2Vである。
[0289] そして、例えば図略の充電装置が故障する等して電圧制御がきかなくなると、電圧 Vbが過充電保護電圧 Vreflを超える。そうすると、コンパレータ A1からハイレベルの 信号が出力され、トランジスタ Q1がオンされ、ヒータ R31に電流が流れ、ノ ィメタルス イッチ SW1が加熱される。そして、バイメタルスィッチ SW1の温度が動作温度 Tswl に達すると、バイメタルスィッチ SW1がオフして充電電流が遮断され、過充電保護状 態とされる。これにより、二次電池 6は過充電力 保護される。
[0290] 次に、保護回路 5nによる過電流保護について説明する。まず、バイメタルスィッチ S W1がオンしている状態で、例えば接続端子 Tl, T2に金属片が接触したり、接続端 子 Tl, T2に接続された図略の携帯電話機等の負荷機器が故障したりすることによつ て、接続端子 Tl, T2が短絡、又は接続端子 Tl, T2間の抵抗値が低抵抗になると、 二次電池 6から温度ヒューズ F1及びバイメタルスィッチ SW1を介して過電流が流れ る。バイメタルスィッチ SW1は過電流が流れると、接点抵抗によって加熱される。
[0291] そして、バイメタルスィッチ SW1は、温度が動作温度 Tswlに達すると、オフして 二次電池 6の放電電流を遮断し、保護回路 5nは過電流保護状態となり、二次電池 6 は過電流力も保護される。このとき、コンパレータ A1の出力はローレベルであり、ヒー タ R31の加熱は停止されているため、ノ ィメタルスィッチ SW1は自然冷却される。そ して、ノ ィメタルスィッチ SW1は、動作温度 Tswl以下となると、再びオンし、保護回 路 5nは、過電流保護状態から通常状態に復帰する。
[0292] 次に、保護回路 5nによるバイメタルスィッチ SW1の溶着回避動作について説明す る。コンパレータ A1は、電圧 Vbが過充電保護電圧 Vreflを超えたときに、トランジス タ Q1をオンさせ、ヒータ R31をカ卩熱させ、バイメタルスィッチ SW1をオフさせる。一方 、コンパレータ A1は、電圧 Vbが過充電保護電圧 Vrefl以下となったとき、トランジス タ Q1をオフさせ、ヒータ R31の加熱を停止し、バイメタルスィッチ SW1をオンさせる。
[0293] 従って、バイメタルスィッチ SW1は、コンパレータ A1から出力される信号がローレ ベルからハイレベルに変化するとき、バイメタルと接点とが接触状態カゝら非接触状態 となる接点動作が発生すると考えることができる。
[0294] そこで、カウンタ C1は、コンパレータ A1から出力される信号のレベルが切り替わる 毎にカウントアップする。そして、カウント値が所定の値を超えたとき、トランジスタ Q2 をオンさせ、ヒータ R32を加熱させ、温度ヒューズ F1を溶断する。これにより、バイメタ ルスイッチ SW1の動作回数が動作保証回数に到達する前に、二次電池の充放電を 停止させることが可能となり、ノ ィメタルスィッチ SW1が溶着して過充電保護機能及 び過電流保護機能が機能しなくなることを防止することができ、ユーザの安全を守る ことができる。
[0295] バイメタルスィッチ SW1は、過電流保護する際、ヒータ R31の加熱によらず、自己 発熱によってオフするため、カウンタ C1のカウント数は、バイメタルスィッチのオフす る回数の正確な値を示していない。し力しながら、カウンタ C1のカウント数が増大する につれてバイメタルスィッチのオフする回数も増大することは確かであるため、前記所 定の値をバイメタルスィッチ SW1が自己発熱によりオフする回数も加味して設定すれ ば、ノ ィメタルスィッチ SW1の溶着を確実に防止することができる。
[0296] 以上説明したように保護回路 5nによれば、バイメタルスィッチ SW1を用いて二次電 池 6を過充電及び過電流力 保護することができるので、図 51に示す背景技術に係 る保護回路 1002のように、放電電流を遮断する FET1006と、充電電流を遮断する FET1007と、過電流を検出するための基準電圧源 1009、コンパレータ 1111、及 び抵抗 1112と、二つの FET1006, 1007のオン'オフを制御するための論理回路 1 013とを必要とせず、保護回路 5nの回路を簡素化することができ、保護回路 5nを小 型化することが容易となる。
[0297] また、コンパレータ A1によって過充電が検出され、ヒータ R31によりバイメタルスイツ チ SW1を加熱することによってバイメタルスィッチ SW1をオフさせるので、例えば図 5 2や図 53に示すように二次電池 1022と直列に接続されたバイメタルスィッチ 1023又 は PTC素子 1032のみによって過充電保護を行う場合よりも過充電を検出する精度 を向上させることができ、過充電保護動作が行われないまま二次電池 6が過充電され たり、二次電池 6の特性が劣化したり、二次電池 6の膨張や変形等を招いたりするお それを低減することができる。
[0298] 更に、コンパレータ A1の信号がローレベルからハイレベルに変化する回数をカウン トし、カウント数が所定の値に達した場合に、ヒータ R32が加熱され、温度ヒューズ F1 を溶断させるため、バイメタルスィッチ SW1が溶着して保護回路 5nによる過充電保 護機能及び過電流保護機能が機能しなくなることを防止し、二次電池 6を保護するこ とができることに加え、ユーザに対する安全を確保することができる。
[0299] なお、実施の形態 14において、バイメタルスィッチ SW1をトランジスタ Q1のオン時 に生じる熱によって加熱すると共に、温度ヒューズ F1をトランジスタ Q2のオン時に生 じる熱によって加熱してもよい。この場合、ヒータ R31, R32が不要となり、回路の簡 略ィ匕及び低コストィ匕を図ることができる。更に、過充電保護部 51及び温度ヒューズ制 御部 56魏積回路 ICにより構成し、この集積回路 ICの熱が温度ヒューズ F1とバイメ タルスィッチ SW1に伝わるように温度ヒューズ F1とバイメタルスィッチ SW1とを配置し てもよい。この場合、回路の小型化を図ることができる。また、バイメタル SW1として自 己保持型バイメタルスィッチを用いると、過電流保護状態の継続が可能である。
[0300] (実施の形態 15)
次に実施の形態 15に係る電池パックにつ 、て説明する。実施の形態 15に係る電 池パックは、回路構成が複雑ィ匕することなどに起因し、配線基板に保護回路を構成 してなる保護回路基板の小型化にも限界が生じ、保護回路基板を用いて電池パック を構成する場合にあっては電池パックの小型化も阻害される場合が生じ得るという問 題を解決することを目的とするものである。
[0301] 図 38は、可動接点部材とバイメタル素子と力もなるバイメタルスィッチ 402を用いた 感熱保護スィッチ装置 400の構成を示す図で、実施の形態 15に係る電池パックが備 える感熱保護スィッチ装置と対比するためのものである。すなわち、可動接点部材と バイメタル素子とからなるバイメタルスィッチ 402を用いた感熱保護スィッチ装置 400 を二次電池の充放電回路に介挿し、二次電池に過剰な充電電流が流れた場合に過 充電検出回路から出力される検出信号に基づいてヒータ 406を発熱させてバイメタ ルスイッチ 402を作動させることで回路をオフにすると共に、二次電池に過大な放電 電流が流れた場合に可動接点部材の可動接点の接触抵抗により生成されるジユー ル熱によりバイメタルスィッチ 2を作動させることで回路をオフにし、これにより二次電 池に過剰な充電電流が流れたり、過大な放電電流が流れたりするのを阻止すること が可能である。
[0302] このような構成の保護回路によれば、過充電検出回路を備えるだけで二次電池に 流れる過剰な充電電流と過大な放電電流とを阻止することができ、従来の図 51に示 す構成に比べて保護回路の構成部品点数が削減されて回路構成が簡素化されるだ けでなく、回路構成が簡素化されることで配線基板上に各構成部品を配置してなる 保護回路基板も小型化されることになる。
[0303] ところが、バイメタルスィッチ 402とバイメタルスィッチ 402をカ卩熱するためのヒータ 4 06とを配線基板 408に一体的に組み込む必要があることから、保護回路基板の組 み立てが煩雑ィ匕するだけでなぐ配線基板 408の構造が複雑ィ匕することで保護回路 基板の小型化に限界が生じ、電池パックを構成する場合にあっては電池パックの小 型化も阻害される場合が生じ得る。このため、以下に、カゝかる不都合の生じない本発 明の感熱保護スィッチ装置を電池パックに適用した場合について説明する。
[0304] 図 39は本発明の実施の形態 15に係る電池パック loの概略構成を説明するための 外観分解斜視図である。この図において、電池パック loは、扁平状の電池収納部 12 と、電池収納部 12の開口端側に嵌合される回路収納部 14と、電池収納部 12と回路 収納部 14との間に介在される絶^ぺーサ 16とを備えている。
[0305] 電池収納部 12は、例えばニッケルメツキを表面に施した鋼板などにより構成された 上面開放状のケース 18に、リチウムイオン二次電池、リチウムポリマー二次電池、二 ッケル水素二次電池、ニッケルカドミウム二次電池などの二次電池 20を凸状の正極 端子 22が開口端力も突出するように収納され、ケース 18に二次電池 20を収納した 後にかしめ封口され、ケース 18の内部において二次電池 20の負極端子 23がケース 18に接続されている。
[0306] 回路収納部 14は、例えば合成樹脂材料などにより構成された下面開放状のケース 24に、後述する保護回路 40を構成した保護回路基板 26が収納されている。ケース 24の有底上面に形成された複数の窓部 28には、二次電池 20の正極端子 22及び 負極端子 23に対応する接続端子 T1 (第 1の接続端子)及び接続端子 T2 (第 2の接 続端子)が露出されて配設されている。ケース 24の開口面における対向端縁には、 下方に延びる金属板力もなる接続端子 30が設けられている。回路収納部 14は、保 護回路 40を構成した保護回路基板 26を内部に収納し、絶&^ぺーサ 16を介して電 池収納部 12の開口端側に組み合わされる。そして、接続端子 30がケース 18に電気 的に接続され、電池パック loが構成される。 [0307] 図 40は、図 39に示す電池パック loの回路図を示す。電池パック loは、二次電池 2 0に対し図略の充電装置あるいは携帯電話機などの負荷装置が接続される上述した 接続端子 T1及び接続端子 T2を備え、二次電池 20の正極端子 22及び負極端子 23 と接続端子 T1及び接続端子 T2との間に、二次電池 20に過剰な充電電流が流れる のを阻止すると共に、過大な放電電流が流れるのを阻止する保護回路 40が接続さ れている。
[0308] この保護回路 40は、二次電池 20の正極端子 22と接続端子 T1との間に介挿された 感熱保護スィッチ装置 42と、二次電池 20の正極端子 22と負極端子 23との間に接続 され、二次電池 20に過剰な充電電流が流れることで二次電池 20が過剰に充電され たことを検出する過充電検出回路 44と、過充電検出回路 44の検出信号によりオンオフ制御されるスィッチ素子である MOSFET46と、二次電池 20の正極端子 22と負 極端子 23との間に MOSFET46を介して接続された加熱体であるヒータ 48とを備え ている。
[0309] ここで、感熱保護スィッチ装置 42は、バイメタルスィッチを用いて構成され、このバ ィメタルスィッチがヒータ 48により加熱されていない場合には、二次電池 20の充放電 回路をオンにし、バイメタルスィッチがヒータ 48により加熱された場合には、二次電池 20の充放電回路をオフにする。この感熱保護スィッチ装置 42の具体的構成につい ては後述する。
[0310] また、過充電検出回路 44は、コンパレータ 50と基準電圧源 502とを備え、コンパレ ータ 50の +端子が二次電池 20の正極端子 22に接続されると共に、—端子が基準 電圧源 502に接続され、出力端子が MOSFET46のゲート Gに接続されている。ここ で、基準電圧源 502は、二次電池 20が満充電状態を超え、過剰な充電電流の流れ る過充電状態になったと判別し得る電圧値が設定されている。なお、 MOSFET46 のドレイン Dはヒータ 48に接続され、ソース Sは二次電池 20の負極端子 23に接続さ れている。
[0311] 図 41は、感熱保護スィッチ装置 42の具体的構成の一例を説明するための要部断 面図である。すなわち、感熱保護スィッチ装置 42は、配線基板に表面実装可能に構 成され、合成樹脂やセラミックスなどの絶縁材料により一体形成されたフレーム体 60 と、金属薄板などにより形成された第 1配線導体 602と、金属薄板などに形成された 第 2配線導体 604と、感熱スィッチ素子であるバイメタルスィッチ 66と、フレーム体 60 の表面側においてバイメタルスィッチ 66を覆うカバー体 68とを備えている。
[0312] ここで、フレーム体 60は、第 1支持部材 70と、第 1支持部材 70と所定間隔をおいて 対向配置された第 2支持部材 702と、第 1支持部材 70と第 2支持部材 702とを第 1面 (表面)と第 1面に対向する第 2面 (裏面)との間(図示の上下面間)の中間部におい て連結する連結部材 704とを備えている。このフレーム体 60は、連結部材 704を第 1 支持部材 70及び第 2支持部材 702の表裏面間の中間部に形成することで、連結部 材 704の裏面側であって、第 1支持部材 70及び第 2支持部材 702間に凹部 (空間部 ) 706を形成する。そして、この凹部 706を外部に通じる開放状とすることで、感熱保 護スィッチ装置 42を配線基板などに実装する際に、凹部 706にバイメタルスィッチ 6 6を加熱するためのヒータ 48 (図 40)を配設することができる。
[0313] 第 1配線導体 602は、第 1支持部材 70の上側に配設されて第 1接点 (第 1接続点) 78を構成する。また、第 1配線導体 602は、第 1接点 78から第 1支持部材 70の外側 面を介して延設され、第 1取付端子 80を構成する。この第 1取付端子 80は、第 1支持 部材 70の裏面と面一になるように第 1支持部材 70の裏面位置で外方に屈曲されて いる。
[0314] 第 2配線導体 604は、第 2支持部材 702の上側に配設されて第 2接点 (第 2接続点 ) 82を構成する。また、第 2配線導体 604は、第 2接点 82から第 2支持部材 702の外 側面を介して延設されることで第 2取付端子 84を構成する。この第 2取付端子 84は、 第 2支持部材 702の裏面と面一になるように第 2支持部材 702の裏面位置で外方に 屈曲されている。なお、第 2配線導体 604は、連結部材 74の表面にも延設されてい る。これにより、後述するバイメタル素子 88の取り付けが容易になる。
[0315] ノ ィメタルスィッチ 66は、第 1接点 78及び第 2接点 82間に跨って配設された長尺 状の可動接点部材 86と、連結部材 704の表面に配設されたバイメタル素子 88とを備 えている。
[0316] ここで、可動接点部材 86は、一端が固定接点 90とされ、他端が可動接点 92とされ ている。固定接点 90は、スポット溶接などにより第 2接点 82に取り付けられている。可 動接点 92は、バイメタルスィッチ 66がバイメタル素子 88の作用力を受けない場合、 第 1接点 78と常に接触して、第 1接点 78及び第 2接点 82間をオンする。可動接点 92 は、バイメタル素子 88の作用力を受けた場合、第 1接点 78から離反することで第 1接 点 78及び第 2接点 82間をオフにする。
[0317] また、バイメタル素子 88は、中央部が可動接点部材 86側に湾曲された長尺状のも ので、第 2支持部材 702側に位置する一端力 Sスポット溶接などにより第 2配線導体 60 4に取り付けられ、バイメタル素子 88が加熱された場合に可動接点部材 86側に湾曲 され、可動接点部材 86に接触するときの作用力により可動接点 92を第 1接点 78から 離反させる。なお、連結部材 704の表面側には、バイメタル素子 88の位置精度を向 上させるための突起 95が設けられて 、る。
[0318] カバー体 68は、バイメタルスィッチ 66を外圧や塵埃など力 保護するためのもので あり、長尺状の絶縁板材の長手方向両端を第 1取付端子 80及び第 2取付端子 84側 に屈曲させた構造を有している。カバー体 68は、端面が第 1取付端子 80及び第 2取 付端子 84に接着するなどして固定されている。
[0319] このように構成された感熱保護スィッチ装置 42は、ヒータ 48 (図 40)の取り付けられ た配線基板にヒータ 48がフレーム体 60の凹部 706に配設されるようにして第 1取付 端子 80及び第 2取付端子 84により表面実装される。そして、この感熱保護スィッチ装 置 42を用いた保護回路 40は次のように動作する。
[0320] すなわち、接続端子 T1及び接続端子 T2間に充電装置が接続されて二次電池 20 が充電される場合、二次電池 20が過剰な充電状態に達するまでは基準電圧源 502 の電圧は二次電池 20の電圧よりも高!、ことから、コンパレータ 50からはローレベルの 信号が出力されて MOSFET46がオフにされ、ヒータ 48は非通電状態となる。このた め、感熱保護スィッチ装置 42はオン状態が維持され、二次電池 20に対する充電が 継続される。なお、充電装置は、二次電池 20が満充電に達した場合に充電動作を 停止させる保護回路を備えているため、満充電状態に達した場合に充電動作が終 了される。
[0321] ところが、充電装置の故障などによる誤動作により二次電池 20に過剰な充電電流 が流れた場合、二次電池 20の電圧が基準電圧源 502の電圧よりも高くなることから、 コンパレータ 50からはハイレベルの信号が出力されて MOSFET46がオンにされ、ヒ ータ 48が通電されて発熱される。
[0322] これにより、バイメタルスィッチ 66を構成しているバイメタル素子 88が加熱されて可 動接点部材 86側に湾曲され、バイメタル素子 88の作用力で可動接点 92が第 1接点 78から離反されることで充電状態にある回路がオフにされ、充電装置から供給される 二次電池 20への充電電流の供給が停止される。これにより、二次電池 20が過剰に 充電されることが効果的に阻止される。
[0323] 一方、接続端子 T1及び接続端子 T2間に携帯電話機などの負荷装置が接続され 、負荷装置の故障などにより二次電池 20に過大な放電電流が流れた場合、可動接 点 92と第 1接点 78との間の接触抵抗により生成されるジュール熱により可動接点部 材 86が加熱され、この加熱された可動接点部材 86によりバイメタル素子 88が加熱さ れる。これにより、バイメタル素子 88の湾曲による作用力で可動接点部材 86の可動 接点 92が第 1接点 78から離反され、通電状態にあった回路がオフにされ、二次電池 20からの負荷装置への電力供給が停止される。これにより、二次電池 20に過大な放 電電流が流れるのが効果的に阻止される。
[0324] 図 42は、図 39に示す保護回路基板 26の側面図である。この保護回路基板 26は、 例えば、ヒータ 48を配線基板 96の表面の所定位置に耐熱性接着剤などで固定した のち、感熱保護スィッチ装置 42の凹部 706にヒータ 48が配設されるようにして、配線 基板 96に表面実装されている。具体的には、保護回路基板 26は、配線基板 96の図 略のランドに第 1取付端子 80及び第 2取付端子 84が導電性接着剤などにより、配線 基板 96に接続されて表面実装されている。また、配線基板 96には、過充電検出回 路 44及び MOSFET46を含む回路部分を混成集積回路化するなどした制御回路 部 98が図略のランドに接続して表面実装されて 、る。
[0325] ここで、保護回路基板 26を構成する配線基板 96は、その表面の両端部に二次電 池 20の正極端子 22及び負極端子 23に接続するための第 1取付電極 100と、第 2取 付電極 102とが配設されている。また、配線基板 96は、裏面に接続端子 T1及び接 続端子 T2が配設されている。更に、配線基板 96は、感熱保護スィッチ装置 42、ヒー タ 48、制御回路部 98、第 1取付電極 100、第 2取付電極 102、接続端子 T1及び接 続端子 T2を結線するための図略の配線パターンが配設されている。
[0326] このように構成された保護回路基板 26は、感熱保護スィッチ装置 42がヒータ 48と は独立して取り扱うことのできるユニットィ匕されたものであり、凹部 706が外部に通じる 開放状とされているため、ヒータ 48を配線基板 96に実装した後で、ヒータ 48の実装 とは独立して感熱保護スィッチ装置 42を配線基板 96に実装することができる。このた め、保護回路基板 26の組み立てが容易になると共に、配線基板 96の構造が複雑ィ匕 することもな ヽので保護回路基板 26の小型化を促進することができ、これにより電池 ノック loの小型化も促進することができる。
[0327] 図 43は、図 42に示す保護回路基板 26を用いて図 39に示す電池パック loを構成 する場合の二次電池 20に対する保護回路基板 26の配置構成と、二次電池 20と保 護回路基板 26との電気的接続関係を概念的に示す図である。なお、図 43において 、二次電池 20を収納するケース 18と保護回路基板 26を収納するケース 24とは取り 除かれている。
[0328] すなわち、二次電池 20を収納した図略のケース 18に、保護回路基板 26を収納し た図略のケース 24を嵌合することにより、保護回路基板 26が感熱保護スィッチ装置 42などを実装した側を二次電池 20に対向するように配置され、保護回路基板 26の 第 1取付電極 100と二次電池 20の負極端子 23とが接続端子 30 (図 39)により接続さ れると共に、第 2取付電極 102と二次電池 20の正極端子 22とが接続端子 104により 接続され、接続端子 T1及び接続端子 T2をケース 24の窓部 28 (図 39)に露出させる ことで電池パック loが構成される。なお、二次電池 20と保護回路基板 26との空隙部 などに絶縁榭脂をモールドすることも可能である。このように、絶縁榭脂をモールドす る場合には、感熱保護スィッチ装置 42のカバー体 68は密封構造とすることが好まし い。
[0329] 図 44は、上記のように構成された感熱保護スィッチ装置 42を用いると共に、保護回 路 40のうちの感熱保護スィッチ装置 42のみ除いた部分を半導体集積回路化した IC 素子 210を用い、これらを配線基板 212上に実装して構成した保護回路基板 26の 側面図である。この保護回路基板 26は、例えば、 IC素子 210をヒータ 48がバイメタ ル素子 88側に向くようにして配線基板 212の表面に耐熱性接着剤などで固定したの ち、感熱保護スィッチ装置 42をその凹部 706に IC素子 210が収納されるようにして 配線基板 212の図略のランドに第 1取付端子 80及び第 2取付端子 84を導電性接着 剤などにより接続して表面実装することで構成したものである。
[0330] ここで、保護回路基板 26を構成する配線基板 212は、その表面の両端部に二次電 池 20の正極端子 22及び負極端子 23に接続するための第 1取付電極 114及び第 2 取付電極 116が配設されると共に、裏面に接続端子 T1及び接続端子 T2が配設さ れ、感熱保護スィッチ装置 42、 IC素子 210、第 1取付電極 114、第 2取付電極 116、 接続端子 T1及び接続端子 T2を結線するための図略の配線パターンが配設された ものである。
[0331] このように構成された保護回路基板 26は、感熱保護スィッチ装置 42における第 1 支持部材 70及び第 2支持部材 702間の凹部 706が外部に通じる開放状とされてい るため、ヒータ 48を含む IC素子 210を配線基板 212に実装した後で、ヒータ 48を含 む IC素子 210の実装とは独立して感熱保護スィッチ装置 42を配線基板 212に実装 することができる。このため、組み立てが容易になると共に、配線基板 212の構造が 複雑ィ匕することもな 、ので保護回路基板 26の小型化を促進することができ、これによ り電池パック loの小型化も促進することができるという利点を有する。
[0332] また、この保護回路基板 26では、 IC素子 210が感熱保護スィッチ装置 42を除いた 部分を半導体集積回路化したものであるので、配線基板 212に実装する部品の配 置スペースを削減することができる結果、保護回路基板 26の小型化をより促進するこ とができ、これにより電池パック loの小型化をより促進することが可能となる。なお、こ の場合、ヒータ 48を含む IC素子 210がバイメタルスィッチ 66を加熱する加熱体を兼 ねることになる。すなわち、バイメタルスィッチ 66は、ヒータ 48からの発生熱とヒータ 4 8を除く IC素子 210からの発生熱とにより加熱されることになる。
[0333] 図 45は、図 44に示す保護回路基板 26を用いて図 39に示す電池パック loを構成 する場合の二次電池 20に対する保護回路基板 26の配置構成と、二次電池 20と保 護回路基板 26との電気的接続関係を概念的に示す図で、二次電池 20を収納する ケース 18と保護回路基板 26を収納するケース 24とを取り除いて示す図である。
[0334] すなわち、二次電池 20を収納した図略のケース 18に保護回路基板 26を収納した 図略のケース 24を嵌合することにより、保護回路基板 26が感熱保護スィッチ装置 42 などを実装した側を二次電池 20に対向するように配置され、保護回路基板 26の第 1 取付電極 114と二次電池 20の負極端子 23とが接続端子 30 (図 39)により接続され ると共に、第 2取付電極 116と二次電池 20の正極端子 22とが接続端子 118により接 続され、接続端子 T1及び接続端子 T2をケース 24の窓部 28 (図 39)に露出させるこ とで電池パック loが構成される。なお、二次電池 20と保護回路基板 26との空隙部な どに絶縁榭脂をモールドすることも可能である。このように、絶縁榭脂をモールドする 場合には、感熱保護スィッチ装置 42のカバー体 68は密封構造とすることが好ま Uヽ
[0335] 図 46は、図 39に示す電池パック loの電気的構成の他例を示す回路図である。こ の構成例は、二次電池 20の正極端子 22と感熱保護スィッチ装置 42との間に温度ヒ ユーズ 220を設けて保護回路 40を構成したものであり、その他の構成は図 40に示す ものと同一である。このため、共通する構成部材については同一の符号を付与するこ とで詳細な説明を省略する。すなわち、この構成例は、バイメタルスィッチ 66を構成 する可動接点部材 86の可動接点 92が第 1接点 78に焼き付くなどした場合に、ヒータ 48及び可動接点部材 86に生成される発生熱により温度ヒューズ 120を溶断させて 回路を遮断するようにしたものである。
[0336] 図 47は、感熱保護スィッチ装置 42が実装された図 46に示す回路構成になる保護 回路基板 26を用いて構成した図 39に示すものとは異なる構造の電池パック lpを示 す図である。この構成例では、電池パック lpは、図 2に示す二次電池 20の正極端子 22と感熱保護スィッチ装置 42との間に温度ヒューズ 220を介挿したものであり、絶縁 材料力もなる開口を有するケース 126に二次電池 20が正極端子 22を開口側に向く ようにして収納され、ケース 126の開口に保護回路基板 26の感熱保護スィッチ装置 42を嵌め込んだ状態で保護回路基板 26をケース 126に取り付けて構成されたもの である。
[0337] この実施形態における保護回路基板 26は、接続端子 T1及び接続端子 T2の取り 付け構成を除いては図 44に示すものと基本的に同様の構成になるものである。すな わち、この実施形態では、接続端子 T1が配線基板 212の側面に配設された金属ス ぺーサ 128を介して感熱保護スィッチ装置 42の第 2取付端子 84に接続された金属 板により構成されると共に、接続端子 T2が配線基板 212の表面端縁に取り付けられ 、配線基板 212の側面で屈曲されて配線基板 212の裏面にまで延設された金属板 により構成されたもので、温度ヒューズ 220が二次電池 20の正極端子 22と感熱保護 スィッチ装置 42の第 1配線導体 602との間に接続されると共に、二次電池 20の負極 端子 23と接続端子 T2とが金属導体 230により接続されたもので、これにより電池パッ ク lpが構成されたものである。
[0338] この構成になる電池パック lpにおいても、図 43及び図 45に示す電池パック loと同 様に、小型化が促進されて取り扱いの容易なものとなる。なお、これまでの構成例と 同様に、二次電池 20と保護回路基板 26との空隙部などに絶縁榭脂をモールドする ことも可能である。このように、絶縁榭脂をモールドする場合には、感熱保護スィッチ 装置 42のカバー体 68は密封構造とすることが好ましい。
[0339] 本発明に係る電池パック loは、上記実施形態のように、フレーム体 60における第 1 支持部材 70及び第 2支持部材 702間の凹部 706が外部に通じる開放状とされてい るため、ヒータ 48あるいは IC素子 210を配線基板 96、 212に実装した後で、加熱体 であるヒータ 48あるいは IC素子 210の実装とは独立して感熱保護スィッチ装置 42を 配線基板 96、 212に実装することができる。このため、保護回路基板 26の組み立て が容易になると共に、配線基板 96の構造が複雑ィ匕することもないので保護回路基板 26の小型化を促進することができ、これにより電池パック lo、 lpの小型化も促進する ことができる。
[0340] なお、本発明の実施の形態 15に係る電池パック loは、上記実施形態のものに限 定されるものではなぐ以下に述べるような種々の変形態様を必要に応じて採用する ことができる。
[0341] (1)上記電池パック loでは、感熱保護スィッチ装置 42は、カバー体 68を備えたも のであるが、これに限るものではない。例えば、バイメタルスィッチ 66を外圧や塵埃な ど力も保護する必要がな 、場合などでは、カバー体 68を除去した構成とすることもで きる。
[0342] (2)上記電池パック loでは、感熱保護スィッチ装置 42は、フレーム体 60における 連結部材 704の裏面側の第 1支持部材 70及び第 2支持部材 702間に凹部 706を形 成し、この凹部 706を外部に通じる開放状としたものである力 これに限るものではな い。例えば、図 48に示すように、連結部材 704の裏面と第 1支持部材 70及び第 2支 持部材 702の各裏面とが面一となるようにフレーム体 60を構成し、このフレーム体 60 の裏面側の少なくとも第 1支持部材 70及び第 2支持部材 702間に何らの構成物も存 在しな 、構成とすることもできる。
[0343] このように構成した場合では、図 49に示すように、感熱保護スィッチ装置 42を実装 する配線基板 240に陥没部 242を構成し、この陥没部 242にヒータ 48 (あるいは、 IC 素子 210)を配設した状態で感熱保護スィッチ装置 42を第 1支持部材 70及び第 2支 持部材 702間が陥没部 242に対向するように配置して配線基板 240に実装するよう にすればよい。要は、フレーム体 60の裏面側が第 1支持部材 70及び第 2支持部材 7 02間を介してバイメタルスィッチ 66などの感熱スィッチ素子を加熱するヒータ 48ある いは IC素子 210を配設可能にする開放状とされておればょ 、。
[0344] (3)上記電池パック loでは、感熱保護スィッチ装置 42は、回路に過大な放電電流 が流れた場合に可動接点部材 86の可動接点 92と第 1接点 78との間の接触抵抗に より生成されるジュール熱によりバイメタルスィッチ 66を作動させるものである力 これ に限るものではない。例えば、感熱保護スィッチ装置 42は、回路に過剰な充電電流 が流れる場合にだけ作動するようにしたものであってもよ 、。
[0345] (4)上記電池パック loでは、感熱保護スィッチ装置 42が可動接点部材 86及びバ ィメタル素子 88からなるバイメタルスィッチ 66を用いて構成されたものである力 これ に限るものではない。例えば、可動接点部材 86をバイメタルで構成することも可能で ある。こうした場合、バイメタル素子 88は不要となるため、連結部材 704は必ずしも必 要としない。
[0346] (5)上記電池パック loでは、感熱保護スィッチ装置 42がバイメタルスィッチ 66を用 いて構成されたものである力 これに限るものではない。例えば、感熱スィッチ素子で あるバイメタルスィッチ 66に代え、所定の温度に達したときに急激に抵抗値が増大す るポリマー系の PTCサーミスタ素子(正特性サーミスタ素子)などの他の感熱スィッチ 素子を用いることもできる。このように、バイメタルスィッチ 66に代えて PTCサーミスタ 素子を用いる場合で過大な放電電流が流れた場合には、 PTCサーミスタ素子の自 己加熱により PTCサーミスタ素子が高抵抗値となることで実質的に回路をオフにする ことができる。なお、 PTCサーミスタ素子を用いる場合には、その一対の端子を第 1 接点 (第 1接続点) 78及び第 2接点 (第 2接続点) 82に接続するだけで保持されるの で、このような場合には連結部材 704は必要としない。
[0347] (6)上記電池パック loでは、二次電池 20に流れる過剰な充電電流や過大な放電 電流が流れた場合に充放電回路をオフにする保護回路 40として図 40あるいは図 46 の構成のものを示している力 これに限るものではない。例えば、保護回路 40として、 バイメタルスィッチ 66のチャタリングを防止するための回路などを付加することもでき る。
[0348] (7)上記電池パック loでは、感熱保護スィッチ装置 42は、電池パック lo、 lpを構 成する保護回路 40に用いるものとして説明しているが、これに限るものではない。例 えば、電池パック lo、 lp以外の電気部品の保護回路を構成するものとして用いること もできることは 、うまでもな!/、。
[0349] (8)上記電池パック loでは、感熱保護スィッチ装置 42は、第 1取付端子 80及び第 2取付端子 84を外方に屈曲することで配線基板に表面実装可能としたものであるが 、これに限るものではない。例えば、第 1取付端子 80を第 1支持部材 70の裏面側に 屈曲させると共に、第 2取付端子 84を第 2支持部材 702の裏面側に屈曲させることで 配線基板に表面実装可能としてもょ ヽ。
[0350] (9)上記電池パック loでは、感熱保護スィッチ装置 42は、第 1取付端子 80及び第 2取付端子 84を表面実装可能な構成としたものである力 これに限るものではない。 例えば、第 1取付端子 80及び第 2取付端子 84をアキシャル状に構成し、配線基板の 取付孔に挿入して実装する構成とすることもできる。
[0351] (10)図 50に示すように、第 1支持部材 70の上面を第 1配線導体 602の下面に取り 付けると共に、第 2支持部材 702の上面を第 2配線導体 604の下面に取り付け、第 1 支持部材 70及び第 2支持部材 702の下面と配線基板 96との間に空間部を設ける。 そして、連結部材 704の右側半分を取り除き、第 2配線導体 604の連結部材 704側 の下面と空間部とを連通させ、第 2配線導体 604の下面の右端付近に、配線基板 96 上に配設されたヒータ 48を配線基板 96側へ付勢して、バイメタル素子 88とヒータ 48 とを電気的に接続する押さえ端子 705を取り付けてもよい。これにより、バイメタル素 子 88とヒータ 48とを電気的に確実に接続することができる。ここで、ヒータ 48としては 、 PTCを採用することができる。
[0352] (本発明の纏め)
(1)本発明による二次電池の保護回路は、二次電池を充電する充電装置及び Z 又は前記二次電池力 の放電電流により駆動される負荷機器を接続するための第 1 及び第 2の接続端子と、前記二次電池の両極に接続される第 3及び第 4の接続端子 と、前記第 1及び第 3の接続端子間に設けられ、予め設定された所定の温度を超え た場合にオフする感熱スィッチと、前記感熱スィッチを加熱するための第 1のヒータと 、前記二次電池の特性に関わる物理量が予め設定された物理量の値を超えた場合 、前記第 1のヒータを発熱させて前記感熱スィッチをオフさせる保護制御部とを備える ことを特徴とする。
[0353] この構成によれば、二次電池の特性に関わる物理量が予め設定された物理量の値 を超えた場合に、保護制御部によって第 1のヒータが発熱され、第 1のヒータにより感 熱スィッチが加熱されることによって感熱スィッチがオフして充放電電流を遮断する ので、二次電池の特性劣化を低減することができる。また、放電電流と充電電流とを 一つの感熱スィッチにより遮断することができるので、回路を簡素化することができる
[0354] (2)また、前記二次電池の特性に関わる物理量は前記第 3の接続端子の電圧であ り、前記保護制御部は、前記第 3の接続端子の電圧が、予め設定された基準電圧を 超えた場合に前記ヒータを発熱させて前記感熱スィッチをオフさせることが好ましい。
[0355] この構成によれば、第 3の接続端子に印加された電圧が予め設定された基準電圧 を超えた場合に、保護制御部によってヒータが発熱され、ヒータにより感熱スィッチが 加熱されることによって感熱スィッチがオフして充電電流を遮断するので、二次電池 を過剰な充電力 保護することができる。
[0356] (3)前記第 1のヒータは、温度の増減に応じて抵抗値が増減する PTCサーミスタで あることが好ましい。 [0357] この構成によれば、ヒータは、温度の増減に応じて抵抗値が増減する PTCサーミス タなので、ヒータを発熱させるとその自己発熱により抵抗値が増大してヒータを流れる 電流が減少する結果、ヒータが過度に発熱することを抑制することができる。
[0358] (4)前記感熱スィッチは、バイメタルスィッチ、形状記憶合金を用いたスィッチ、及 び形状記憶榭脂を用いたスィッチのうちから選ばれた 1種であることが好まし 、。
[0359] この構成によれば、感熱スィッチとしてバイメタルスィッチ、形状記憶合金を用いた スィッチ、及び形状記憶榭脂を用いたスィッチのうちから選ばれた 1種が用いられる ので、感熱スィッチを予め設定された所定の温度を超えた場合にオフすると共に二 次電池の充放電電流が予め設定された所定の電流値を超えた場合に自己発熱によ りオフさせることができる。
[0360] (5)前記感熱スィッチと直列に接続されたヒューズを更に備え、前記感熱スィッチは 、前記ヒューズよりも先にオフするべく動作条件が設定されていることが好ましい。
[0361] この構成によれば、感熱スィッチはヒューズよりも先にオフするので、感熱スィッチが 故障していなければヒューズが溶断することがなぐ二次電池の保護動作を繰り返し 行うことができる。また、感熱スィッチが故障していれば、ヒューズが溶断することによ り二次電池の保護動作を行うことができるので、保護動作の信頼性を向上させること ができる。
[0362] (6)前記第 1のヒータは、前記感熱スィッチに並列接続され、前記保護制御部は、 前記二次電池の特性に関わる物理量を検出する検出部を備えることが好ましい。
[0363] この構成によれば、感熱スィッチがオフすると、感熱スィッチと並列に接続された第 1のヒータに放電電流が流れて第 1のヒータが発熱し、感熱スィッチが加熱されること により感熱スィッチのオフ状態が維持される。この場合、例えば第 1のヒータが感熱ス イッチと並列に接続されていなければ、感熱スィッチが自己発熱によりオフした後、感 熱スィッチが自然冷却によりオンして二次電池の放電電流が流れ、再び感熱スィッチ が自己発熱によりオフして放電電流を遮断する、というように感熱スィッチがオンオフ を繰り返すチャタリングが発生するおそれがあるが、この発明によれば、感熱スィッチ と並列に接続された第 1のヒータによって、感熱スィッチが自己発熱によりオフした後 も感熱スィッチのオフ状態が維持されるので、チャタリングの発生を抑制することがで きる。
[0364] (7)前記二次電池の特性に関わる物理量は、前記第 3の接続端子の電圧であり、 前記検出部は、前記第 3の接続端子の電圧を検出するものであり、前記保護制御部 は、前記検出部により検出された電圧が、予め設定された基準電圧を超えた場合に 前記第 1のヒータを発熱させて前記感熱スィッチをオフさせることが好ましい。
[0365] この構成によれば、第 3及び第 4の接続端子に二次電池が接続されると、二次電池 の特性に関わる物理量である二次電池の電圧が第 3の接続端子に印加される。そし て、第 3の接続端子の電圧が予め設定された基準電圧を超えた場合に、保護制御部 によって第 1のヒータが発熱され、第 1のヒータにより感熱スィッチが加熱されることに よって感熱スィッチがオフして充電電流を遮断するので、二次電池を過剰な充電から 保護することができる。また、放電電流と充電電流とを一つの感熱スィッチにより遮断 することができるので、回路を簡素化することができる。
[0366] (8)前記二次電池の特性に関わる物理量は、前記二次電池の温度であり、前記保 護制御部は、前記検出部により検出された二次電池の温度が、予め設定された温度 を超えた場合に前記第 1のヒータを発熱させて前記感熱スィッチをオフさせることが 好ましい。
[0367] この構成によれば、二次電池の特性に関わる物理量である二次電池の温度が検出 部により検出される。そして、検出部により検出された温度が予め設定された温度を 超えた場合に、保護制御部によって第 1のヒータが発熱され、第 1のヒータにより感熱 スィッチが加熱されることによって感熱スィッチがオフして充放電電流を遮断するの で、二次電池を過剰な発熱力 保護することができる。また、放電電流と充電電流と を一つの感熱スィッチにより遮断することができるので、回路を簡素化することができ る。
[0368] (9)前記第 3の接続端子に接続された二次電池の放電電流を流す方向と順方向に 第 1の整流素子が、前記第 1のヒータと前記第 1の接続端子との間にさらに設けられ、 前記保護制御部は、前記第 1のヒータと前記第 1の整流素子との接続点と、前記第 2 の接続端子との間の接続を開閉するスィッチ部を備えると共に、前記検出部により検 出された物理量が、予め設定された物理量の値を超えた場合に前記スィッチ部をォ ンさせることが好ましい。
[0369] この構成によれば、第 3の接続端子から第 1の接続端子への放電電流を遮断する ベく感熱スィッチがオフすると、第 3の接続端子に接続された二次電池の放電電流を 流す方向に順方向にされた第 1の整流素子によって、感熱スィッチと並列に接続され た第 1のヒータに放電電流が流されるので、第 1のヒータが発熱し、感熱スィッチが加 熱されて感熱スィッチのオフ状態を維持することができる。そして、検出部により検出 された物理量が、予め設定された物理量の値を超えると、保護制御部によってスイツ チ部がオンされて、第 1の接続端子力ゝら感熱スィッチ、第 1のヒータ、及びスィッチ部 を介して第 2の接続端子に至る電流経路が形成され、第 1のヒータが発熱して感熱ス イッチが加熱されるので、感熱スィッチをオフすることができる。
[0370] (10)前記第 1のヒータは、第 2及び第 3のヒータの直列回路から構成され、前記保 護制御部は、前記第 2のヒータと前記第 3のヒータとの接続点と、前記第 4の接続端子 との間の接続を開閉するスィッチ部を備えると共に、前記検出部により検出された物 理量力 予め設定された物理量の値を超えた場合に前記スィッチ部をオンさせること が好ましい。
[0371] この構成によれば、第 3の接続端子から第 1の接続端子への放電電流を遮断する ベく感熱スィッチがオフすると、感熱スィッチと並列に接続された第 2及び第 3のヒー タの直列回路に放電電流が流されるので、第 2及び第 3のヒータが発熱し、感熱スィ ツチが加熱されて感熱スィッチのオフ状態を維持することができる。そして、検出部に より検出された物理量が、予め設定された物理量の値を超えると、保護制御部によつ てスィッチ部がオンされて、第 1の接続端子力ゝら第 3のヒータ、及びスィッチ部を介し て第 2の接続端子に至る電流経路が形成され、第 3のヒータが発熱して感熱スィッチ が加熱されるので、感熱スィッチをオフすることができる。
[0372] (11)前記第 1の接続端子に一端が接続されると共に前記感熱スィッチを加熱する ための第 4のヒータを更に備え、前記保護制御部は、前記第 4のヒータの他端と前記 第 2の接続端子との間の接続を開閉するスィッチ部を備えると共に、前記検出部によ り検出された物理量が、予め設定された物理量の値を超えた場合に前記スィッチ部 をオンさせることが好まし!/、。 [0373] この構成によれば、第 3の接続端子から第 1の接続端子への放電電流を遮断する ベく感熱スィッチがオフすると、感熱スィッチと並列に接続された第 1のヒータに放電 電流が流されるので、第 1のヒータが発熱し、感熱スィッチが加熱されて感熱スィッチ のオフ状態を維持することができる。そして、検出部により検出された物理量が、予め 設定された物理量の値を超えると、保護制御部によってスィッチ部がオンされて、第 1の接続端子力ゝら第 4のヒータ、及びスィッチ部を介して第 2の接続端子に至る電流 経路が形成され、第 4のヒータが発熱して感熱スィッチが加熱されるので、感熱スイツ チをオフすることができる。
[0374] (12)前記第 1及び第 4のヒータは、前記感熱スィッチがオフした場合における前記 第 3の接続端子に接続された前記二次電池力 の放電電流による前記第 1のヒータ の発熱量と、前記スィッチ部がオンした場合における前記第 1の接続端子に接続され た前記充電装置からの出力電流による前記第 4のヒータの発熱量とを等しくするべく 抵抗値が設定されて ヽることが好ま ヽ。
[0375] この構成によれば、第 1及び第 4のヒータは、感熱スィッチがオフした場合における 第 3の接続端子に接続された二次電池力 の放電電流による第 1のヒータの発熱量 と、スィッチ部がオンした場合における第 1の接続端子に接続された充電装置力ゝらの 出力電流による前記第 4のヒータの発熱量とを等しくするべく抵抗値が設定されてい るので、過大な放電電流力 二次電池を保護すべく感熱スィッチをオフさせる場合と 、過充電から二次電池を保護すべく感熱スィッチをオフさせる場合とで感熱スィッチ を加熱するための発熱量を等しくすることができる。
[0376] (13)前記第 3の接続端子に接続された二次電池の放電電流を流す方向と順方向 に第 2の整流素子が、前記第 3の接続端子と前記第 1のヒータとの間に更に設けられ ることが好ましい。
[0377] この構成によれば、第 3の接続端子から第 1の接続端子への放電電流を遮断する ベく感熱スィッチがオフすると、第 3の接続端子に接続された二次電池の放電電流を 流す方向と順方向にされた第 2の整流素子によって、感熱スィッチと並列に接続され た第 1のヒータに放電電流が流されるので、第 1のヒータが発熱し、感熱スィッチが加 熱されて感熱スィッチのオフ状態を維持することができる。そして、第 3の接続端子に 接続された二次電池への充電電流を遮断するべく感熱スィッチがオフすると、第 2の 整流素子によって、第 1のヒータを介して二次電池への充電電流が流れることが抑制 される。
[0378] (14)前記第 2及び第 3のヒータは、温度の増減に応じて抵抗値が増減する PTCサ 一ミスタであり、前記 PTCサーミスタは、略板状の形状にされると共に少なくとも一方 の面を複数の領域に分割する溝が形成されており、前記 PTCサーミスタの一方の面 における前記複数の領域のうち、一部の領域が第 1の電極として用いられると共に当 該第 1の電極を除く領域の少なくとも一部が第 2の電極として用いられ、前記 PTCサ 一ミスタの他方の面が第 3の電極として用いられ、前記第 1及び第 3の電極が前記第 2のヒータにおける両端の接続端子として用いられ、前記第 3及び第 2の電極が前記 第 3のヒータにおける両端の接続端子として用いられることが好ま 、。
[0379] この構成によれば、一つの PTCサーミスタを第 2及び第 3のヒータとして用いること ができるので、保護回路を小型化することが容易となる。
[0380] (15)前記第 1及び第 4のヒータは、温度の増減に応じて抵抗値が増減する PTCサ 一ミスタであり、前記 PTCサーミスタは、略板状の形状にされると共に少なくとも一方 の面を複数の領域に分割する溝が形成されており、前記 PTCサーミスタの一方の面 における前記複数の領域のうち、一部の領域が第 1の電極として用いられると共に当 該第 1の電極を除く領域の少なくとも一部が第 2の電極として用いられ、前記 PTCサ 一ミスタの他方の面が第 3の電極として用いられ、前記第 1及び第 3の電極が前記第 1のヒータにおける両端の接続端子として用いられ、前記第 3及び第 2の電極が前記 第 4のヒータにおける両端の接続端子として用いられることが好ま 、。
[0381] この構成によれば、一つの PTCサーミスタを第 1及び第 4のヒータとして用いること ができるので、保護回路を小型化することが容易となる。
[0382] (16)前記溝は、前記 PTCサーミスタにおける前記一方の面を二つの領域に分割 するものであり、前記溝により分割された一方の領域が第 1の電極として用いられると 共に他方の領域が第 2の電極として用いられることが好ま 、。
[0383] この構成によれば、 PTCサーミスタにおける一方の面が二つの領域に分割され、一 方の領域が第 1の電極として用いられ、他方の領域が第 2の電極として用いられるの で、一つの PTCサーミスタを二つのヒータとして用いることができる。
[0384] (17)前記溝は、前記 PTCサーミスタにおける前記一方の面を四つの領域に分割 する略十文字形の溝であり、前記四つの領域における互いに隣接する二つの領域 が前記第 1の電極として用いられ、前記四つの領域のうち前記第 1の電極として用い られる二つの領域を除く他の領域が第 2の電極として用いられることが好ま 、。
[0385] この構成によれば、略十文字形の溝によって PTCサーミスタにおける一方の面が 四つの領域に分割され、四つの領域における互いに隣接する二つの領域が第 1の 電極として用いられ、四つの領域のうち第 1の電極として用いられる二つの領域を除 く他の領域が第 2の電極として用いられるので、第 1及び第 2の電極と接続するべく設 けられた配線パターンに対して PTCサーミスタを 90° 回転させて接続することができ 、組み立て性を向上させることができる。また、両面を略十文字形の溝によって両方 を同じ形状とし、片面は前記のごとく第 1および第 2の電極として接続し、残る片面は 前面を第 3の電極として接続する構成とすることにより、裏表反転させても、 90° どの 方向に回転させても目的のヒータを構成する事ができ、組み立て性をさらに向上させ ることがでさる。
[0386] (18)前記 PTCサーミスタは、物理的に縦及び横の方向が決定できる形状であるこ とが好ましい。
[0387] この構成によれば、物理的に縦及び横の方向が決定できる形状であるので、第 1及 び第 2の電極と接続するべく設けられた配線パターンに対して PTCサーミスタを取り 付ける際に、 PTCサーミスタの向きを合わせることが容易となる。
[0388] (19)前記感熱スィッチは、流れる電流によって自己発熱して所定の動作温度を超 えた場合にオフする共に、外部加熱されることにより前記動作温度を超えた場合にォ フするものであり、前記保護制御部は、前記第 1のヒータの通電制御を行うスィッチン グ部と、前記第 3及び第 4の接続端子間の電圧が所定の過充電保護電圧を超える場 合に前記スイッチング部に前記第 1のヒータを通電させる第 1の過充電保護部と、前 記第 1及び第 2の接続端子間の電圧が前記過充電保護電圧を超える場合に前記ス イッチング部に前記第 1のヒータを通電させる第 2の過充電保護部とを備えることが好 ましい。 [0389] この構成によれば、第 1の過充電保護部は、第 3及び第 4の接続端子間の電圧(二 次電池の電圧)が予め設定された過充電保護電圧を超えると、スイッチング部にヒー タを通電させ、感熱スィッチはヒータにより加熱されてオフし、充電電流の通電を遮断 するため、二次電池を過充電力も保護することができる。
[0390] また、感熱スィッチは、二次電池からの放電電流が所定の電流値を超えた場合、自 己発熱によりオフして放電電流を遮断するので、二次電池を過電流カゝら保護すること ができる。そのため、図 51示すような過電流防止用の FET1006、基準電圧源 1009 、及び過電流を検出するためのコンパレータ 1111が不要となり、回路の簡素化を図 ることがでさる。
[0391] 更に、放電電流と充電電流とを感熱スィッチにより遮断することができるため、回路 を簡素化することができる。
[0392] ここで、第 2の過充電保護部が存在しない場合を考える。過充電保護状態において 、ヒータにより二次電池の電力が消耗されると、二次電池の電圧が低下し、スィッチン グ部により第 1のヒータの通電が停止され、感熱スィッチの加熱が停止される。そして 、感熱スィッチは自然冷却され、動作温度以下になると、再びオンし、充電装置から の充電電流を流し、二次電池を再び充電する。二次電池の充電が継続されると、二 次電池の電圧が過充電保護電圧を超え、再び、感熱スィッチはオフする。このよう〖こ 、過充電保護状態において、第 1及び第 2の接続端子間に充電装置が接続され続け ると、チャタリングが発生する。
[0393] し力しながら、本発明は第 2の過充電保護部を備えている。そのため、過充電保護 状態において、第 1及び第 2の接続端子間に充電装置が接続されて充電が継続され 、第 1及び第 2の接続端子間の電圧が過充電保護電圧を超えていれば、スィッチン グ部に第 1のヒータを通電させるため、二次電池の電圧が過充電保護電圧以下とな つても、感熱スィッチは継続してオンする結果、過充電保護状態において生じる感熱 スィッチのチャタリングを防止することができる。これにより、感熱スィッチの劣化を防 止することができる。
[0394] (20)前記第 1の過充電保護部は、前記第 3及び第 4の接続端子間の電圧が前記 過充電保護電圧を超えるか否かを検知する第 1のコンパレータを備え、前記第 2の過 充電保護部は、前記第 1及び第 2の接続端子間の電圧が前記過充電保護電圧を超 えた場合にハイレベルの信号を出力する第 2のコンパレータを備え、前記スィッチン グ部は、前記第 1及び第 2のコンパレータのうち少なくともいずれか一方のコンパレー タがハイレベルの信号を出力した場合、前記第 1のヒータを通電させることが好ましい
[0395] この構成によれば、第 3及び第 4の接続端子間の電圧(二次電池の電圧)と第 1及 び第 2の接続端子間の電圧とがコンパレータにより検知されているため、かかる検知 を高精度に行うことができる。
[0396] (21)前記スイッチング部は、入力端子に前記第 1及び第 2のコンパレータの出力端 子が接続された ORゲートと、ゲートが前記 ORゲートの出力端子に接続され、ドレイ ンが前記第 1のヒータに接続され、ソースが前記第 2及び第 4の接続端子に接続され た nチャネル電界効果型トランジスタとを備えることが好ましい。
[0397] この構成によれば、スイッチング部を ORゲートと nチャネル電界効果型トランジスタ とにより構成したため、第 3及び第 4の接続端子間の電圧(二次電池の電圧)が過充 電保護電圧を超えた場合、又は第 1及び第 2の接続端子間の電圧が過充電保護電 圧を超えた場合、第 1のヒータをより確実に加熱することができ、感熱スィッチをより確 実にオフすることができる。
[0398] (22)前記第 3及び第 4の接続端子間の電圧が前記第 1及び第 2の接続端子間の 電圧に所定の短絡保護電圧を加えた電圧を超える場合に、前記スイッチング部に前 記第 1のヒータを通電させる短絡保護部を更に備えることが好ましい。
[0399] この構成によれば、短絡保護部は、過電流保護状態にお!、て、二次電池の電圧か ら第 1及び第 2の接続端子間の電圧差し引いた電圧が短絡保護電圧を超えている場 合、第 1及び第 2の接続端子は短絡されている、又は過電流を引き起こすような低抵 抗が接続されていると判定して、第 1のヒータを加熱させ、感熱スィッチを継続してォ フさせるため、過電流保護状態における感熱スィッチのチャタリングを防止することが できる。その結果、過充電保護状態において、第 1及び第 2の接続端子に過電流を 生じさせる負荷が接続され続けて!/、る場合に、チャタリングのオン時に流れる過電流 を防止することができる。 [0400] (23)前記第 1の過充電保護部は、前記第 3及び第 4の接続端子間の電圧が前記 過充電保護電圧を超えるか否かを検知する第 1のコンパレータを備え、前記第 2の過 充電保護部は、前記第 1及び第 2の接続端子間の電圧が前記過充電保護電圧を超 えた場合にハイレベルの信号を出力する第 2のコンパレータを備え、前記短絡保護 部は、前記第 3及び第 4の接続端子間の電圧が前記第 1及び第 2の接続端子間の電 圧に前記短絡保護電圧を加えた電圧を超える場合に、ハイレベルの信号を出力する 第 3のコンパレータを備え、前記スイッチング部は、前記第 1〜第 3のコンパレータのう ち少なくともいずれか一つのコンパレータがノ、ィレベルの信号を出力した場合、前記 第 1のヒータを通電させることが好まし 、。
[0401] この構成によれば、第 3及び第 4の接続端子間の電圧(二次電池の電圧)が過充電 保護電圧を超えている力否かが第 1のコンパレータにより検知され、第 1及び第 2の 接続端子間の電圧が過充電保護電圧を超えているか否かが第 2のコンパレータによ り検知され、二次電池の電圧が第 1及び第 2の接続端子間の電圧に短絡保護電圧を 加えた電圧を超えているか否かが第 3のコンパレータにより検知されているため、これ らの検知を高精度に行うことができる。
[0402] (24)前記スイッチング部は、入力端子に前記第 1〜3のコンパレータの出力端子が 接続された ORゲートと、ゲートが前記 ORゲートの出力端子に接続され、ドレインが 前記第 1のヒータに接続され、ソースが前記第 2及び第 4の接続端子に接続された n チャネル電界効果型トランジスタとを備えることが好ましい。
[0403] この構成によれば、スイッチング部を ORゲートと nチャネル電界効果型トランジスタ とにより構成したため、第 3及び第 4の接続端子間の電圧(二次電池の電圧)が過充 電保護電圧を超えた場合、第 1及び第 2の接続端子間の電圧が過充電保護電圧を 超えた場合、又は二次電池の電圧力 第 1及び第 2の接続端子間の電圧を差し引い た電圧が短絡保護電圧を超えた場合、第 1のヒータをより確実に加熱することができ 、感熱スィッチをより確実にオフすることができる。
[0404] (25)前記第 1のヒータの温度が前記感熱スィッチの動作温度よりも高い所定の上 限温度になつた場合、前記スイッチング部に前記第 1のヒータへの通電を停止させる 温度制御部を更に備えることが好ましい。 [0405] この構成によれば、温度制御部は、第 1のヒータの温度が感熱スィッチの動作温度 よりも高い上限温度に達した場合、第 1のヒータの通電を停止させるため、過充電保 護を達成しつつ、感熱スィッチが上限温度以上に加熱されることを防止し、感熱スィ ツチの溶着を防止することができる。
[0406] (26)前記第 1の過充電保護部は、前記第 3及び第 4の接続端子間の電圧が前記 過充電保護電圧を超える場合にハイレベルの信号を出力する第 1のコンパレータを 備え、前記第 2の過充電保護部は、前記第 1及び第 2の接続端子間の電圧が前記過 充電保護電圧を超えた場合にハイレベルの信号を出力する第 2のコンパレータを備 え、前記短絡保護部は、前記第 3及び第 4の接続端子間の電圧が前記第 1及び第 2 の接続端子間の電圧に前記短絡保護電圧を加えた電圧を超える場合に、ハイレべ ルの信号を出力する第 3のコンパレータを備え、前記温度制御部は、前記第 1のヒー タの温度を検知する温度センサと、前記温度センサにより検知された温度が前記上 限温度となった場合、ローレベルの信号を出力する第 4のコンパレータを備え、前記 スイッチング部は、入力端子に前記第 1〜3のコンパレータの出力端子が接続された ORゲートと、入力端子に前記 ORゲートの出力端子と前記第 4のコンパレータの出力 端子とが接続された ANDゲートと、ゲートが前記 ANDゲートの出力端子に接続され 、ドレインが前記第 1のヒータに接続され、ソースが前記第 2及び第 4の接続端子に接 続された nチャネル電界効果型トランジスタとを備えることが好ましい。
[0407] この構成によれば、第 1の過充電保護部、第 2の過充電保護部、短絡保護部、及び 温度制御部を第 1〜第 4のコンパレータにより構成し、スイッチング部を ORゲートと、 ANDゲートと、 nチャネル電界効果型トランジスタにより構成したため、二次電池を過 充電及び過電流力もより確実に保護することができる。
[0408] (27)前記感熱スィッチは、流れる電流によって自己発熱して所定の動作温度を超 えた場合にオフする共に、外部加熱されることにより前記動作温度を超えた場合にォ フするものであり、前記保護制御部は、前記第 1のヒータの通電制御を行うスィッチン グ部と、前記第 3及び第 4の接続端子間の電圧が所定の過充電保護電圧を超える場 合に前記スイッチング部に前記第 1のヒータを通電させる第 1の過充電保護部と、前 記第 1のヒータの温度が前記感熱スィッチの動作温度よりも高い所定の上限温度に なった場合、前記スイッチング部に前記第 1のヒータへの通電を停止させる温度制御 部とを備えることが好ましい。
[0409] この構成によれば、二次電池を過充電から保護し、回路の簡素化を図ることができ ることに加え、温度制御部は、第 1のヒータの温度が感熱スィッチの動作温度よりも高 い上限温度に達した場合、第 1のヒータの通電を停止させるため、過充電保護を達 成しつつ、感熱スィッチが上限温度以上に加熱されることを防止し、感熱スィッチの 溶着を防止することができる。
[0410] (28)前記第 1の過充電保護部は、前記第 3及び第 4の接続端子間の電圧が前記 過充電保護電圧を超える場合にハイレベルの信号を出力する第 1のコンパレータを 備え、前記第 2の過充電保護部は、前記第 1及び第 2の接続端子間の電圧が前記過 充電保護電圧を超えた場合にハイレベルの信号を出力する第 2のコンパレータを備 え、前記短絡保護部は、前記第 3及び第 4の接続端子間の電圧が前記第 1及び第 2 の接続端子間の電圧に前記短絡保護電圧を加えた電圧を超える場合に、ハイレべ ルの信号を出力する第 3のコンパレータを備え、前記温度制御部は、前記第 1のヒー タの温度を検知する温度センサと、前記温度センサにより検知された温度が前記上 限温度となった場合、ローレベルの信号を出力する第 4のコンパレータを備え、前記 スイッチング部は、入力端子に前記第 1〜3のコンパレータの出力端子が接続された ORゲートと、入力端子に前記 ORゲートの出力端子と前記第 4のコンパレータの出力 端子とが接続された ANDゲートと、ゲートが前記 ANDゲートの出力端子に接続され 、ドレインが前記第 1のヒータに接続され、ソースが前記第 2及び第 4の接続端子に接 続された nチャネル電界効果型トランジスタとを備えることが好ましい。
[0411] この構成によれば、第 3及び第 4の接続端子間の電圧(二次電池の電圧)が過充電 保護電圧を超えている力否かが第 1のコンパレータにより検知され、第 1のヒータの温 度が温度センサにより検知され、第 1のヒータの温度が上限温度を超えている力否か が第 4のコンパレータにより検知されているため、これらの検知を高精度に行うことが できる。
[0412] (29)前記第 1の過充電保護部は、前記第 3及び第 4の接続端子間の電圧が前記 過充電保護電圧を超える場合、ハイレベルの信号を出力する第 1のコンパレータを 備え、前記温度制御部は、前記第 1のヒータの温度を検知する温度センサと、前記温 度センサにより検知された温度が前記上限温度となった場合、ローレベルの信号を 出力する第 4のコンパレータを備え、前記スイッチング部は、前記第 1及び第 4のコン パレータの両コンパレータがハイレベルの信号を出力した場合、前記第 1のヒータを 通電させ、両コンパレータのうち少なくともいずれか一方のコンパレータがローレベル の信号を出力した場合、前記第 1のヒータへの通電を停止させることが好ましい。
[0413] この構成によれば、スイッチング部を ANDゲートと nチャネル電界効果型トランジス タにより構成したため、第 3及び第 4の接続端子間の電圧(二次電池の電圧)が過充 電保護電圧を超えた場合、第 1のヒータを精度良くオンにし、第 1のヒータの温度が上 限温度を超えた場合、第 1のヒータの加熱を精度良く停止することができる。
[0414] (30)前記感熱スィッチと前記第 3の接続端子との間に接続された温度ヒューズを更 に備え、前記第 3及び第 4の接続端子間の電圧が前記過充電保護電圧よりも高 ヽ第 2の過充電保護電圧を超えた場合、前記上限温度を前記温度ヒューズの溶断温度よ りも高い温度に変更する上限温度変更部を更に備えることが好ましい。
[0415] この構成によれば、過充電保護状態において充電が継続されると、第 1のヒータの 温度は更に上昇していき、やがて上限温度に到達するが、感熱スィッチが溶着して いると、第 1のヒータの温度が上限温度に到達しても、充電は継続される。そして、充 電が継続され、第 3及び第 4の接続端子間の電圧(二次電池の電圧)が第 2の過充電 保護電圧を超えると、上限温度が温度ヒューズの溶断温度よりも高い温度に変更さ れる。そのため、温度ヒューズを確実に溶断することができ、感熱スィッチが溶着して いても、二次電池を過充電カゝら保護することができる。
[0416] (31)前記感熱スィッチは、前記第 1及び第 3の接続端子間に接続され、流れる電 流によって自己発熱して所定の動作温度を超えた場合にオフする共に、外部加熱さ れることにより前記動作温度を超えた場合にオフするものであり、前記保護制御部は 、前記第 1のヒータの通電制御を行うスイッチング部と、前記第 3及び第 4の接続端子 間の電圧が所定の過充電保護電圧を超える場合に、前記スイッチング部に前記第 1 のヒータを通電させる第 1の過充電保護部と、前記第 3及び第 4の接続端子間の電圧 力 前記第 1及び第 2の接続端子間の電圧に所定の短絡保護電圧を加えた電圧を 超える場合に、前記スイッチング部に前記第 1のヒータを通電させる短絡保護部とを 備えることが好ましい。
[0417] この構成によれば、二次電池を過充電力も保護することができ、回路の簡素化を図 ることができると共に、過電流保護状態における感熱スィッチのチャタリングを防止す ることがでさる。
[0418] (32)前記第 1の過充電保護部は、前記第 3及び第 4の接続端子間の電圧が前記 過充電保護電圧を超えるか否かを検知する第 1のコンパレータを備え、前記短絡保 護部は、前記第 3及び第 4の接続端子間の電圧が前記第 1及び第 2の接続端子間の 電圧に所定の短絡保護電圧を加えた電圧を超える場合に、ハイレベルの信号を出 力する第 3のコンパレータを備え、前記スイッチング部は、前記第 1及び第 3のコンパ レータのうち少なくともいずれか一方のコンパレータがハイレベルの信号を出力した 場合、前記第 1のヒータを通電させることが好ましい。
[0419] この構成によれば、第 3及び第 4の接続端子間の電圧(二次電池の電圧)と第 1及 び第 2の接続端子間の電圧とがコンパレータにより検知されているため、かかる検知 を高精度に行うことができる。
[0420] (33)前記スイッチング部は、入力端子に前記第 1及び第 3のコンパレータの出力端 子が接続された ORゲートと、ゲートが前記 ORゲートの出力端子に接続され、ドレイ ンが前記第 1のヒータに接続され、ソースが前記第 2及び第 4の接続端子に接続され た nチャネル電界効果型トランジスタとを備えることが好ましい。
[0421] この構成によれば、スイッチング部を ORゲートと nチャネル電界効果型トランジスタ とにより構成したため、第 3及び第 4の接続端子間の電圧(二次電池の電圧)が過充 電保護電圧を超えた場合、又は二次電池の電圧から第 1及び第 2の接続端子間の 電圧を差し引いた電圧が短絡保護電圧を超えた場合、第 1のヒータをより確実に加 熱することができ、感熱スィッチをより確実にオフすることができる。
[0422] (34)前記感熱スィッチに抵抗を並列接続したことが好ましい。
[0423] この構成によれば、過電流保護状態において、第 1及び第 2の接続端子から過電 流を引き起こす負荷が取り外されると、感熱スィッチに並列接続された抵抗に二次電 池からの電流が流れ、第 3及び第 4の接続端子間の電圧(二次電池の電圧)と第 1及 び第 2の接続端子間の電圧がほぼ等しくなり、二次電池の電圧が第 1及び第 2の接 続端子間の電圧に短絡保護電圧を加えた電圧以下となるため、第 1のヒータの加熱 が停止され、感熱スィッチがオンとなる。これにより、過電流保護状態において、負荷 が取り外され、短絡又は低抵抗状態が解除された場合、保護回路を過電流保護状 態力 通常状態に速やかに復帰させることができる。
[0424] (35)前記第 3及び第 4の接続端子間の電圧が所定の過放電電圧以下となった場 合、前記二次電池からの保護回路への電力供給を停止する電源制御部を更に備え ることが好ましい。
[0425] この構成によれば、第 3及び第 4の接続端子間の電圧(二次電池の電圧)が過放電 電圧以下となった場合、二次電池力 保護回路への電力供給が停止されるため、二 次電池の電力消費を防止することができ、第 1及び第 2の接続端子が開放されている 状態において、二次電池を過放電力も保護することができる。
[0426] (36)前記感熱スィッチはバイメタルスィッチであり、前記保護制御部は、前記第 3 及び第 4の接続端子間の電圧が所定の過充電保護電圧を超える場合、前記第 1のヒ ータを通電し、前記バイメタルスィッチをオフする過充電保護部と、前記過充電保護 部が前記バイメタルスィッチをオフする回数をカウントし、カウント値が前記バイメタル スィッチの動作保障回数を基に定められた所定の値を超えた場合、前記二次電池と の電気的な接続を遮断する遮断部とを備えることが好ましい。
[0427] この構成によれば、過充電保護部は、第 3及び第 4の接続端子間の電圧(二次電 池の電圧)が予め設定された過充電保護電圧を超えると、第 1のヒータが通電されて バイメタルスィッチがオフとされ、充電電流の通電が遮断されるため、二次電池を過 充電力 保護することができる。
[0428] また、バイメタルスィッチは、二次電池力 の放電電流が所定の電流値を超えた場 合、自己発熱によりオフして放電電流を遮断するので、二次電池を過電流から保護 することができる。そのため、図 51示すような過電流防止用の FET1006、基準電圧 源 1009、及び過電流を検出するためのコンパレータ 1111が不要となり、回路の簡 素化を図ることができる。
[0429] 更に、バイメタルスィッチがオフされる回数がカウントされ、カウント値力バイメタルス イッチの動作保障回数に基づいて定められた所定の値を超えた場合、二次電池との 電気的な接続が遮断されるため、バイメタルスィッチの動作回数が動作補償回数を 超える前に、二次電池の充放電を停止させることが可能となる結果、バイメタルスイツ チの溶着を防止することができ、二次電池を過充電や過電流から保護することができ ることに加え、ユーザに対する安全を確保することができる。
[0430] (37)前記遮断部は、前記バイメタルスィッチと前記第 3の接続端子との間に接続さ れた温度ヒューズと、前記温度ヒューズを加熱する第 2のヒータと、前記カウント値が 前記所定の値を超えた場合、前記第 2のヒータを通電し、前記温度ヒューズを溶断す る温度ヒューズ制御部とを備えることが好まし 、。
[0431] この構成によれば、カウント値が所定の値を超えた場合、第 2のヒータが通電され、 温度ヒューズが溶断されるため、二次電池との電気的な接続を確実に遮断させること ができ、ユーザの安全をより確実に確保することができる。
[0432] (38)前記過充電保護部は、コンパレータと第 1のトランジスタとを備え、前記温度ヒ ユーズ制御部は、カウンタと第 2のトランジスタとを備え、前記コンパレータは、前記第 3及び第 4の接続端子間の電圧が前記過充電保護電圧を超えた場合、前記第 1のト ランジスタを才ンして前記第 1のヒータを通電させると共に、前記カウンタをカウントァ ップさせ、前記カウンタはカウント値が前記所定の値を超えた場合、前記第 2のトラン ジスタをオンして前記第 2のヒータを通電することが好ましい。
[0433] この構成によれば、過充電保護部をコンパレータと第 1のトランジスタとで構成し、温 度ヒューズ制御部をカウンタと第 2のトランジスタとで構成したため、二次電池の電圧 が過充電保護電圧を超えた場合にバイメタルスィッチをより確実にオフすることがで きると共に、カウンタをより確実にカウントアップさせることができる。
[0434] (39)前記第 1のヒータは、前記第 1のトランジスタから構成され、前記第 2のヒータは 前記第 2のトランジスタ力も構成され、前記バイメタルスィッチは、前記第 1のトランジ スタのオン時に発生する熱により加熱し、前記温度ヒューズは、前記第 2のトランジス タのオン時に発生する熱により加熱することが好ましい。
[0435] この構成によれば、第 1のヒータ及び第 2のヒータを省くことができ、回路の簡素化 及び低コストィ匕を図ることができる。 [0436] (40)所定間隔をお!/、て配置された第 1支持部材及び第 2支持部材を有するフレー ム体と、前記フレーム体の第 1面側における第 1支持部材上に配設されて接点を構 成すると共に、当該接点から延設されることで取付端子を構成する第 1配線導体と、 前記フレーム体の第 1面側における第 2支持部材上に配設されて接点を構成すると 共に、当該接点から延設されることで取付端子を構成する第 2配線導体と、前記感熱 スィッチとを備える感熱保護スィッチ装置を含み、前記感熱スィッチは、前記第 1配線 導体及び前記第 2配線導体の各接点間に跨って配設され、前記第 1のヒータにより 加熱された場合に各接点間をオフするものであり、前記フレーム体は、前記第 1面と 対向する第 2面側が、各支持部材間を介して前記第 1のヒータを配設するための空 間部を備えることが好まし 、。
[0437] この構成によれば、フレーム体の第 2面側が第 1支持部材及び第 2支持部材間を介 して感熱スィッチ素子を加熱する第 1のヒータを配設可能にする開放状とされ、第 1の ヒータとは独立して取り扱うことのできるユニットィ匕されたものであるため、第 1のヒータ を配線基板に実装した後で、第 1のヒータの実装とは独立して感熱保護スィッチ装置 を配線基板に実装することができる。このため、保護回路基板の組み立てが容易に なると共に、配線基板の構造が複雑ィ匕することもな ヽので保護回路基板の小型化を 促進することができる。
[0438] (41)前記感熱スィッチは、前記各接点間に跨って配設された可動接点部材と、前 記第 1のヒータにより加熱された場合に前記可動接点部材に作用して前記各接点間 をオフにするバイメタル素子とを備え、前記フレーム体は、第 1支持部材及び第 2支 持部材間を連結すると共に、前記バイメタル素子を前記第 1面側に配設する連結部 材を備えたものであることが好ま 、。
[0439] この構成によれば、フレーム体に連結部材が設けられていることでバイメタル素子を 可動接点部材に対する正確な位置に固設することができる。このため、バイメタル素 子を可動接点部材に対し正確に作用させることができ、回路を確実にオフにすること ができる。
[0440] (42)前記フレーム体は、前記連結部材を第 1支持部材及び第 2支持部材の第 1面 及び第 2面間における中間部に形成することで当該連結部材の第 2面側に凹部が形 成され、この凹部を前記空間部とすることが好ましい。
[0441] この構成によれば、連結部材の第 2面側に形成される凹部が感熱スィッチ素子を加 熱するための第 1のヒータを配設可能にする開放状とされているので、感熱保護スィ ツチ装置を第 1のヒータが連結部材の第 2面側の凹部に配設されるようにして配線基 板に実装することができる。このため、感熱保護スィッチ装置の加熱体に対する位置 決めが容易となり、保護回路基板の組み立てが容易になる。
[0442] (43)前記フレーム体の第 1面側に前記感熱スィッチを覆うカバー体を備えたことが 好ましい。
[0443] この構成によれば、フレーム体の第 1面側に感熱スィッチ素子を覆うカバー体が設 けられているので、感熱スィッチ素子を外圧や塵埃など力も保護することができる。こ のため、動作信頼性の高い感熱保護スィッチ装置を実現することができる。
[0444] (44)前記フレーム体は、第 1支持部材と第 2支持部材とを配線基板で固定すること によって構成されて 、ることが好ま 、。
[0445] この構成によれば、フレーム体が第 1支持部材と第 2支持部材とを配線基板で固定 することによって構成されているので、フレーム体を堅牢なものとすることができる。こ のため、動作信頼性の高い感熱保護スィッチ装置を実現することができる。
[0446] (45)本発明による電池パックは、二次電池と、上記(1)記載の二次電池の保護回 路とを備えることを特徴とする。
[0447] この構成によれば、上記(1)と同様の効果を奏する電池パックを提供することができ る。
[0448] (46)前記二次電池を収容する有底の容器と、前記保護回路を構成する配線バタ ーンを備えた外部端子接続ユニットとを備え、前記保護回路は、前記外部端子接続 ユニットに形成されて 、ることが好まし 、。
[0449] この構成によれば、二次電池の保護回路が外部端子接続ユニットに形成され、当 該保護回路によって、有底の容器に収容された二次電池を過剰な充電や過大な放 電電流力 保護することができる。
[0450] (47)前記配線パターンは、前記外部端子接続ユニットにおける前記容器に収容さ れた二次電池と対向する側の表面に印刷形成されていることが好ましい。 [0451] この構成によれば、上述の保護回路を構成する配線パターンは、外部端子接続ュ ニットにおける容器に収容された二次電池と対向する側の表面に印刷形成されてい るので、保護回路を構成するために別途基板を必要とせず、保護回路を小型化する ことができる。
[0452] (48)前記感熱スィッチは、前記外部端子接続ユニットにおける前記容器に収容さ れた二次電池と対向する位置に配設されることが好ましい。
[0453] この構成によれば、感熱スィッチは、外部端子接続ユニットにおける容器に収容さ れた二次電池と対向する位置に配設されるので、充放電により二次電池が発熱する と感熱スィッチが加熱される。そして、感熱スィッチの温度が予め設定された所定の 温度を超えると、感熱スィッチがオフして二次電池の充放電電流が遮断されるので、 二次電池を過剰な充電や過大な放電電流力 保護することができる。
[0454] (49)前記保護制御部を覆うように設けられた導電性のカバーをさらに備え、前記力 バーは、前記保護制御部を跨いで前記保護制御部の両側に形成された配線パター ン間を接続するべく取り付けられて 、ることが好ま 、。
[0455] この構成によれば、導電性のカバーによって保護制御部が覆われており、このカバ 一によつて、保護制御部の両側に形成された配線パターン間が接続されるので、制 御部が取り付けられる平面上における配線パターンの占有面積が縮小され、保護回 路を小型化することができる。
[0456] (50)前記感熱スィッチと直列に接続されたヒューズをさらに備え、前記感熱スイツ チは、前記ヒューズよりも先にオフするべく動作条件が設定されており、前記ヒューズ は、前記カバーにおける前記容器に収容された二次電池と対向する位置に配設され ていることが好ましい。
[0457] この構成によれば、ヒューズは、カバーにおける容器に収容された二次電池と対向 する位置に配設されて!/、るので、二次電池の発熱によりヒューズを加熱することが容 易となる。
[0458] (51)前記感熱スィッチは、バイメタル、形状記憶合金、及び形状記憶榭脂のうちか ら選ばれた 1種の温度に応じた変形によって駆動される可動切片を備え、前記外部 端子接続ユニットにおける前記容器に収容された二次電池と対向する側の表面に、 前記可動切片を支持する支持部材が形成されて 、ることが好まし 、。
[0459] この構成によれば、感熱スィッチはバイメタルスィッチ、形状記憶合金を用いたスィ ツチ、及び形状記憶榭脂を用いたスィッチのうちから選ばれた 1種であり、これらの感 熱スィッチの可動切片は、外部端子接続ユニットにおける容器に収容された二次電 池と対向する側の表面に設けられた支持部材により支持されるので、これらの感熱ス イッチを個別部品として構成する必要がなぐこれらの感熱スィッチを小型化すること ができる。
[0460] (52)前記保護回路は、所定間隔をおいて配置された第 1支持部材及び第 2支持 部材を有するフレーム体と、前記フレーム体の第 1面側における第 1支持部材上に配 設されて接点を構成すると共に、当該接点から延設されることで取付端子を構成する 第 1配線導体と、前記フレーム体の第 1面側における第 2支持部材上に配設されて接 点を構成すると共に、当該接点から延設されることで取付端子を構成する第 2配線導 体と、前記感熱スィッチとを備える感熱保護スィッチ装置を含み、前記感熱スィッチ は、前記第 1配線導体及び前記第 2配線導体の各接点間に跨って配設され、前記フ レーム体は、前記第 1面と対向する第 2面側が、各支持部材間を介して前記第 1のヒ ータを配設するための空間部を備えることが好ましい。
[0461] この構成によれば、感熱保護スィッチ装置を用いて構成した保護回路を備えている ので、保護回路基板の小型化が促進される。このため、電池パックの小型化も促進さ れること〖こなる。
[0462] (53)前記感熱保護スィッチ装置は、前記二次電池の正極端子と前記第 1の接続 端子との間に配設され、前記保護制御部は、前記二次電池が過剰に充電されたこと を検出する過充電検出回路と、前記過充電検出回路の検出信号によりオンオフ制御 されるスィッチ素子とを備えることが好ま 、。
[0463] この構成によれば、二次電池が過剰に充電された場合に第 1のヒータに通電されて 感熱保護スィッチ装置を構成する感熱スィッチ素子が加熱されるので、充電回路が 確実に遮断される。このため、二次電池を確実に保護することができ、信頼性の高い 電池パックを実現することができる。
[0464] (54)前記過充電検出回路、前記スィッチ素子及び前記第 1のヒータを半導体集積 回路により構成したことが好ましい。
[0465] この構成によれば、保護回路を構成する過充電検出回路、スィッチ素子及び第 1の ヒータが半導体集積回路により構成されるので、保護回路が小型化されて保護回路 基板の小型化がより促進される。このため、電池パックの小型化もより促進されること になる。
[0466] (55)前記半導体集積回路は、前記空間部に配設され、前記感熱スィッチを加熱 することが好ましい。
[0467] この構成によれば、感熱保護スィッチ装置を構成する感熱スィッチ素子が半導体集 積回路により加熱されるので、第 1のヒータのみの場合よりも発熱量が増大されて感 熱スィッチ素子が確実に加熱される。このため、二次電池を確実に保護することがで き、信頼性の高 、電池パックを実現することができる。
[0468] (56)本発明による感熱保護スィッチ装置は、加熱体により加熱されることで回路を オフにする感熱保護スィッチ装置であって、所定間隔をおいて配置された第 1支持 部材及び第 2支持部材を有するフレーム体と、このフレーム体の第 1面側における第 1支持部材上に配設されて接点を構成すると共に、当該接点から延設されることで取 付端子を構成する第 1配線導体と、前記フレーム体の第 1面側における第 2支持部 材上に配設されて接点を構成すると共に、当該接点から延設されることで取付端子 を構成する第 2配線導体と、前記第 1配線導体及び前記第 2配線導体の各接点間に 跨って配設され、加熱体により加熱された場合に各接点間をオフにする感熱スィッチ とから構成され、前記フレーム体の第 1面と対向する第 2面側が各支持部材間を介し て前記感熱スィッチを加熱するための加熱体を配設可能にする開放状とされたことを 特徴とする。
[0469] この構成によれば、フレーム体の第 2面側が第 1支持部材及び第 2支持部材間を介 して感熱スィッチ素子を加熱する加熱体を配設可能にする開放状とされ、加熱体と は独立して取り扱うことのできるユニットィ匕されたものであるため、加熱体を配線基板 に実装した後で、加熱体の実装とは独立して感熱保護スィッチ装置を配線基板に実 装することができる。このため、保護回路基板の組み立てが容易になると共に、配線 基板の構造が複雑ィ匕することもないので保護回路基板の小型化を促進することがで きる。
[0470] (57)本発明による電池パックは、第 1の接続端子及び第 2の接続端子を有する電 池パックであって、負荷装置に対し電力を供給するための二次電池と、前記二次電 池を保護するためのもので、上記(56)記載の感熱保護スィッチ装置を用いて構成し た保護回路とを備えたことを特徴とする。
[0471] この構成によれば、感熱保護スィッチ装置を用いて構成した保護回路を備えている ので、保護回路基板の小型化が促進される。このため、電池パックの小型化も促進さ れること〖こなる。
産業上の利用可能性
[0472] 本発明は、簡素な回路で二次電池を過剰な充電や過大な放電電流から保護する ことができ、モパイル機器や駆動用電源として有用である。

Claims

請求の範囲
[1] 二次電池を充電する充電装置及び Z又は前記二次電池からの放電電流により駆 動される負荷機器を接続するための第 1及び第 2の接続端子と、
前記二次電池の両極に接続される第 3及び第 4の接続端子と、
前記第 1及び第 3の接続端子間に設けられ、予め設定された所定の温度を超えた 場合にオフする感熱スィッチと、
前記感熱スィッチを加熱するための第 1のヒータと、
前記二次電池の特性に関わる物理量が予め設定された物理量の値を超えた場合 、前記第 1のヒータを発熱させて前記感熱スィッチをオフさせる保護制御部とを備える ことを特徴とする二次電池の保護回路。
[2] 前記二次電池の特性に関わる物理量は前記第 3の接続端子の電圧であり、
前記保護制御部は、前記第 3の接続端子の電圧が、予め設定された基準電圧を超 えた場合に前記第 1のヒータを発熱させて前記感熱スィッチをオフさせることを特徴と する請求項 1記載の二次電池の保護回路。
[3] 前記第 1のヒータは、温度の増減に応じて抵抗値が増減する PTCサーミスタである ことを特徴とする請求項 2記載の二次電池の保護回路。
[4] 前記感熱スィッチは、バイメタルスィッチ、形状記憶合金を用いたスィッチ、及び形 状記憶榭脂を用いたスィッチのうちから選ばれた 1種であることを特徴とする請求項 2 記載の二次電池の保護回路。
[5] 前記感熱スィッチと直列に接続されたヒューズを更に備え、
前記感熱スィッチは、前記ヒューズよりも先にオフするべく動作条件が設定されてい ることを特徴とする請求項 2記載の二次電池の保護回路。
[6] 前記第 1のヒータは、前記感熱スィッチに並列接続され、
前記保護制御部は、前記二次電池の特性に関わる物理量を検出する検出部を備 えることを特徴とする請求項 1記載の二次電池の保護回路。
[7] 前記二次電池の特性に関わる物理量は、前記第 3の接続端子の電圧であり、 前記検出部は、前記第 3の接続端子の電圧を検出するものであり、
前記保護制御部は、前記検出部により検出された電圧が、予め設定された基準電 圧を超えた場合に前記第 1のヒータを発熱させて前記感熱スィッチをオフさせることを 特徴とする請求項 6記載の二次電池の保護回路。
[8] 前記二次電池の特性に関わる物理量は、前記二次電池の温度であり、
前記保護制御部は、前記検出部により検出された二次電池の温度が、予め設定さ れた温度を超えた場合に前記第 1のヒータを発熱させて前記感熱スィッチをオフさせ ることを特徴とする請求項 6記載の二次電池の保護回路。
[9] 前記第 3の接続端子に接続された二次電池の放電電流を流す方向と順方向に第 1 の整流素子が、前記第 1のヒータと前記第 1の接続端子との間にさらに設けられ、前 記保護制御部は、前記第 1のヒータと前記第 1の整流素子との接続点と、前記第 2の 接続端子との間の接続を開閉するスィッチ部を備えると共に、前記検出部により検出 された物理量が、予め設定された物理量の値を超えた場合に前記スィッチ部をオン させることを特徴とする請求項 6記載の二次電池の保護回路。
[10] 前記第 1のヒータは、第 2及び第 3のヒータの直列回路力 構成され、
前記保護制御部は、前記第 2のヒータと前記第 3のヒータとの接続点と、前記第 4の 接続端子との間の接続を開閉するスィッチ部を備えると共に、前記検出部により検出 された物理量が、予め設定された物理量の値を超えた場合に前記スィッチ部をオン させることを特徴とする請求項 6記載の二次電池の保護回路。
[11] 前記第 1の接続端子に一端が接続されると共に前記感熱スィッチを加熱するため の第 4のヒータを更に備え、
前記保護制御部は、前記第 4のヒータの他端と前記第 2の接続端子との間の接続 を開閉するスィッチ部を備えると共に、前記検出部により検出された物理量が、予め 設定された物理量の値を超えた場合に前記スィッチ部をオンさせることを特徴とする 請求項 6記載の二次電池の保護回路。
[12] 前記第 1及び第 4のヒータは、前記感熱スィッチがオフした場合における前記第 3の 接続端子に接続された前記二次電池からの放電電流による前記第 1のヒータの発熱 量と、前記スィッチ部がオンした場合における前記第 1の接続端子に接続された前記 充電装置からの出力電流による前記第 4のヒータの発熱量とを等しくするべく抵抗値 が設定されて 、ることを特徴とする請求項 11記載の二次電池の保護回路。
[13] 前記第 3の接続端子に接続された二次電池の放電電流を流す方向と順方向に第 2 の整流素子が、前記第 3の接続端子と前記第 1のヒータとの間に更に設けられること を特徴とする請求項 11記載の二次電池の保護回路。
[14] 前記第 2及び第 3のヒータは、温度の増減に応じて抵抗値が増減する PTCサーミス タであり、
前記 PTCサーミスタは、略板状の形状にされると共に少なくとも一方の面を複数の 領域に分割する溝が形成されており、
前記 PTCサーミスタの一方の面における前記複数の領域のうち、一部の領域が第 1の電極として用 、られると共に当該第 1の電極を除く領域の少なくとも一部が第 2の 電極として用いられ、
前記 PTCサーミスタの他方の面が第 3の電極として用いられ、
前記第 1及び第 3の電極が前記第 2のヒータにおける両端の接続端子として用いら れ、
前記第 3及び第 2の電極が前記第 3のヒータにおける両端の接続端子として用いら れることを特徴とする請求項 10記載の二次電池の保護回路。
[15] 前記第 1及び第 4のヒータは、温度の増減に応じて抵抗値が増減する PTCサーミス タであり、
前記 PTCサーミスタは、略板状の形状にされると共に少なくとも一方の面を複数の 領域に分割する溝が形成されており、
前記 PTCサーミスタの一方の面における前記複数の領域のうち、一部の領域が第 1の電極として用 、られると共に当該第 1の電極を除く領域の少なくとも一部が第 2の 電極として用いられ、
前記 PTCサーミスタの他方の面が第 3の電極として用いられ、
前記第 1及び第 3の電極が前記第 1のヒータにおける両端の接続端子として用いら れ、
前記第 3及び第 2の電極が前記第 4のヒータにおける両端の接続端子として用いら れることを特徴とする請求項 11記載の二次電池の保護回路。
[16] 前記溝は、前記 PTCサーミスタにおける前記一方の面を二つの領域に分割するも のであり、
前記溝により分割された一方の領域が第 1の電極として用いられると共に他方の領 域が第 2の電極として用いられることを特徴とする請求項 14記載の二次電池の保護 回路。
[17] 前記溝は、前記 PTCサーミスタにおける前記一方の面を四つの領域に分割する略 十文字形の溝であり、
前記四つの領域における互いに隣接する二つの領域が前記第 1の電極として用い られ、
前記四つの領域のうち前記第 1の電極として用 、られる二つの領域を除く他の領域 が第 2の電極として用いられることを特徴とする請求項 14記載の二次電池の保護回 路。
[18] 前記 PTCサーミスタは、物理的に縦及び横の方向が決定できる形状であることを特 徴とする請求項 12記載の二次電池の保護回路。
[19] 前記感熱スィッチは、流れる電流によって自己発熱して所定の動作温度を超えた 場合にオフする共に、外部加熱されることにより前記動作温度を超えた場合にオフす るものであり、
前記保護制御部は、
前記第 1のヒータの通電制御を行うスイッチング部と、
前記第 3及び第 4の接続端子間の電圧が所定の過充電保護電圧を超える場合に 前記スイッチング部に前記第 1のヒータを通電させる第 1の過充電保護部と、 前記第 1及び第 2の接続端子間の電圧が前記過充電保護電圧を超える場合に前 記スイッチング部に前記第 1のヒータを通電させる第 2の過充電保護部とを備えること を特徴とする請求項 1記載の二次電池の保護回路。
[20] 前記第 1の過充電保護部は、前記第 3及び第 4の接続端子間の電圧が前記過充電 保護電圧を超える力否かを検知する第 1のコンパレータを備え、
前記第 2の過充電保護部は、前記第 1及び第 2の接続端子間の電圧が前記過充電 保護電圧を超えた場合にハイレベルの信号を出力する第 2のコンパレータを備え、 前記スイッチング部は、前記第 1及び第 2のコンパレータのうち少なくともいずれか 一方のコンパレータがハイレベルの信号を出力した場合、前記第 1のヒータを通電さ せることを特徴とする請求項 19記載の二次電池の保護回路。
[21] 前記スイッチング部は、
入力端子に前記第 1及び第 2のコンパレータの出力端子が接続された ORゲートと ゲートが前記 ORゲートの出力端子に接続され、ドレインが前記第 1のヒータに接続 され、ソースが前記第 2及び第 4の接続端子に接続された nチャネル電界効果型トラ ンジスタとを備えることを特徴とする請求項 20記載の二次電池の保護回路。
[22] 前記第 3及び第 4の接続端子間の電圧が前記第 1及び第 2の接続端子間の電圧に 所定の短絡保護電圧を加えた電圧を超える場合に、前記スイッチング部に前記第 1 のヒータを通電させる短絡保護部を更に備えることを特徴とする請求項 1記載の二次 電池の保護回路。
[23] 前記第 1の過充電保護部は、前記第 3及び第 4の接続端子間の電圧が前記過充電 保護電圧を超える力否かを検知する第 1のコンパレータを備え、
前記第 2の過充電保護部は、前記第 1及び第 2の接続端子間の電圧が前記過充電 保護電圧を超えた場合にハイレベルの信号を出力する第 2のコンパレータを備え、 前記短絡保護部は、前記第 3及び第 4の接続端子間の電圧が前記第 1及び第 2の 接続端子間の電圧に前記短絡保護電圧を加えた電圧を超える場合に、ハイレベル の信号を出力する第 3のコンパレータを備え、
前記スイッチング部は、前記第 1〜第 3のコンパレータのうち少なくともいずれか一 つのコンパレータがハイレベルの信号を出力した場合、前記第 1のヒータを通電させ ることを特徴とする請求項 22記載の二次電池の保護回路。
[24] 前記スイッチング部は、
入力端子に前記第 1〜3のコンパレータの出力端子が接続された ORゲートと、 ゲートが前記 ORゲートの出力端子に接続され、ドレインが前記第 1のヒータに接続 され、ソースが前記第 2及び第 4の接続端子に接続された nチャネル電界効果型トラ ンジスタとを備えることを特徴とする請求項 23記載の二次電池の保護回路。
[25] 前記第 1のヒータの温度が前記感熱スィッチの動作温度よりも高い所定の上限温度 になった場合、前記スイッチング部に前記第 1のヒータへの通電を停止させる温度制 御部を更に備えることを特徴とする請求項 22記載の二次電池の保護回路。
[26] 前記第 1の過充電保護部は、前記第 3及び第 4の接続端子間の電圧が前記過充電 保護電圧を超える場合にハイレベルの信号を出力する第 1のコンパレータを備え、 前記第 2の過充電保護部は、前記第 1及び第 2の接続端子間の電圧が前記過充電 保護電圧を超えた場合にハイレベルの信号を出力する第 2のコンパレータを備え、 前記短絡保護部は、前記第 3及び第 4の接続端子間の電圧が前記第 1及び第 2の 接続端子間の電圧に前記短絡保護電圧を加えた電圧を超える場合に、ハイレベル の信号を出力する第 3のコンパレータを備え、
前記温度制御部は、
前記第 1のヒータの温度を検知する温度センサと、
前記温度センサにより検知された温度が前記上限温度となった場合、ローレベルの 信号を出力する第 4のコンパレータを備え、
前記スイッチング部は、
入力端子に前記第 1〜3のコンパレータの出力端子が接続された ORゲートと、 入力端子に前記 ORゲートの出力端子と前記第 4のコンパレータの出力端子とが接 続された ANDゲートと、
ゲートが前記 ANDゲートの出力端子に接続され、ドレインが前記第 1のヒータに接 続され、ソースが前記第 2及び第 4の接続端子に接続された nチャネル電界効果型ト ランジスタとを備えることを特徴とする請求項 25記載の二次電池の保護回路。
[27] 前記感熱スィッチは、流れる電流によって自己発熱して所定の動作温度を超えた 場合にオフする共に、外部加熱されることにより前記動作温度を超えた場合にオフす るものであり、
前記保護制御部は、
前記第 1のヒータの通電制御を行うスイッチング部と、
前記第 3及び第 4の接続端子間の電圧が所定の過充電保護電圧を超える場合に 前記スイッチング部に第 1のヒータを通電させる第 1の過充電保護部と、
前記第 1のヒータの温度が前記感熱スィッチの動作温度よりも高い所定の上限温度 になった場合、前記スイッチング部に前記第 1のヒータへの通電を停止させる温度制 御部とを備えることを特徴とする請求項 1記載の二次電池の保護回路。
[28] 前記第 1の過充電保護部は、前記第 3及び第 4の接続端子間の電圧が前記過充電 保護電圧を超える場合にハイレベルの信号を出力する第 1のコンパレータを備え、 前記第 2の過充電保護部は、前記第 1及び第 2の接続端子間の電圧が前記過充電 保護電圧を超えた場合にハイレベルの信号を出力する第 2のコンパレータを備え、 前記短絡保護部は、前記第 3及び第 4の接続端子間の電圧が前記第 1及び第 2の 接続端子間の電圧に前記短絡保護電圧を加えた電圧を超える場合に、ハイレベル の信号を出力する第 3のコンパレータを備え、
前記温度制御部は、
前記第 1のヒータの温度を検知する温度センサと、
前記温度センサにより検知された温度が前記上限温度となった場合、ローレベルの 信号を出力する第 4のコンパレータを備え、
前記スイッチング部は、
入力端子に前記第 1〜3のコンパレータの出力端子が接続された ORゲートと、 入力端子に前記 ORゲートの出力端子と前記第 4のコンパレータの出力端子とが接 続された ANDゲートと、
ゲートが前記 ANDゲートの出力端子に接続され、ドレインが前記第 1のヒータに接 続され、ソースが前記第 2及び第 4の接続端子に接続された nチャネル電界効果型ト ランジスタとを備えることを特徴とする請求項 27記載の二次電池の保護回路。
[29] 前記第 1の過充電保護部は、前記第 3及び第 4の接続端子間の電圧が前記過充電 保護電圧を超える場合、ハイレベルの信号を出力する第 1のコンパレータを備え、 前記温度制御部は、
前記第 1のヒータの温度を検知する温度センサと、
前記温度センサにより検知された温度が前記上限温度となった場合、ローレベルの 信号を出力する第 4のコンパレータを備え、
前記スイッチング部は、前記第 1及び第 4のコンパレータの両コンパレータがハイレ ベルの信号を出力した場合、前記第 1のヒータを通電させ、両コンパレータのうち少 なくともいずれか一方のコンパレータがローレベルの信号を出力した場合、前記第 1 のヒータへの通電を停止させることを特徴とする請求項 28記載の二次電池の保護回 路。
[30] 前記感熱スィッチと前記第 3の接続端子との間に接続された温度ヒューズを更に備 え、
前記第 3及び第 4の接続端子間の電圧が前記過充電保護電圧よりも高い第 2の過 充電保護電圧を超えた場合、前記上限温度を前記温度ヒューズの溶断温度よりも高 い温度に変更する上限温度変更部を更に備えることを特徴とする請求項 27記載の 二次電池の保護回路。
[31] 前記感熱スィッチは、前記第 1及び第 3の接続端子間に接続され、流れる電流によ つて自己発熱して所定の動作温度を超えた場合にオフする共に、外部加熱されるこ とにより前記動作温度を超えた場合にオフするものであり、
前記保護制御部は、
前記第 1のヒータの通電制御を行うスイッチング部と、
前記第 3及び第 4の接続端子間の電圧が所定の過充電保護電圧を超える場合に、 前記スイッチング部に前記第 1のヒータを通電させる第 1の過充電保護部と、 前記第 3及び第 4の接続端子間の電圧が、前記第 1及び第 2の接続端子間の電圧 に所定の短絡保護電圧を加えた電圧を超える場合に、前記スイッチング部に前記第 1のヒータを通電させる短絡保護部とを備えることを特徴とする請求項 1記載の二次 電池の保護回路。
[32] 前記第 1の過充電保護部は、前記第 3及び第 4の接続端子間の電圧が前記過充電 保護電圧を超える力否かを検知する第 1のコンパレータを備え、
前記短絡保護部は、前記第 3及び第 4の接続端子間の電圧が前記第 1及び第 2の 接続端子間の電圧に所定の短絡保護電圧を加えた電圧を超える場合に、ハイレべ ルの信号を出力する第 3のコンパレータを備え、
前記スイッチング部は、前記第 1及び第 3のコンパレータのうち少なくともいずれか 一方のコンパレータがハイレベルの信号を出力した場合、前記第 1のヒータを通電さ せることを特徴とする請求項 31記載の二次電池の保護回路。
[33] 前記スイッチング部は、
入力端子に前記第 1及び第 3のコンパレータの出力端子が接続された ORゲートと ゲートが前記 ORゲートの出力端子に接続され、ドレインが前記第 1のヒータに接続 され、ソースが前記第 2及び第 4の接続端子に接続された nチャネル電界効果型トラ ンジスタとを備えることを特徴とする請求項 32記載の二次電池の保護回路。
[34] 前記感熱スィッチに抵抗を並列接続したことを特徴とする請求項 22記載の二次電 池の保護回路。
[35] 前記第 3及び第 4の接続端子間の電圧が所定の過放電電圧以下となった場合、前 記二次電池からの保護回路への電力供給を停止する電源制御部を更に備えること を特徴とする請求項 19記載の二次電池の保護回路。
[36] 前記感熱スィッチはバイメタルスィッチであり、
前記保護制御部は、
前記第 3及び第 4の接続端子間の電圧が所定の過充電保護電圧を超える場合、前 記第 1のヒータを通電し、前記バイメタルスィッチをオフする過充電保護部と、 前記過充電保護部が前記バイメタルスィッチをオフする回数をカウントし、カウント 値が前記バイメタルスィッチの動作保障回数を基に定められた所定の値を超えた場 合、前記二次電池との電気的な接続を遮断する遮断部とを備えることを特徴とする請 求項 1記載の二次電池の保護回路。
[37] 前記遮断部は、
前記ノ ィメタルスィッチと前記第 3の接続端子との間に接続された温度ヒューズと、 前記温度ヒューズを加熱する第 2のヒータと、
前記カウント値が前記所定の値を超えた場合、前記第 2のヒータを通電し、前記温 度ヒューズを溶断する温度ヒューズ制御部とを備えることを特徴とする請求項 36記載 の二次電池の保護回路。
[38] 前記過充電保護部は、コンパレータと第 1のトランジスタとを備え、
前記温度ヒューズ制御部は、カウンタと第 2のトランジスタとを備え、
前記コンパレータは、前記第 3及び第 4の接続端子間の電圧が前記過充電保護電 圧を超えた場合、前記第 1のトランジスタをオンして前記第 1のヒータを通電させると 共に、前記カウンタをカウントアップさせ、
前記カウンタはカウント値が前記所定の値を超えた場合、前記第 2のトランジスタを オンして前記第 2のヒータを通電することを特徴とする請求項 37記載の二次電池の 保護回路。
[39] 前記第 1のヒータは、前記第 1のトランジスタから構成され、前記第 2のヒータは前記 第 2のトランジスタ力 構成され、前記バイメタルスィッチは、前記第 1のトランジスタの オン時に発生する熱により加熱し、前記温度ヒューズは、前記第 2のトランジスタのォ ン時に発生する熱により加熱することを特徴とする請求項 38記載の二次電池の保護 回路。
[40] 所定間隔をおいて配置された第 1支持部材及び第 2支持部材を有するフレーム体 と、前記フレーム体の第 1面側における第 1支持部材上に配設されて接点を構成す ると共に、当該接点から延設されることで取付端子を構成する第 1配線導体と、前記 フレーム体の第 1面側における第 2支持部材上に配設されて接点を構成すると共に、 当該接点から延設されることで取付端子を構成する第 2配線導体と、前記感熱スイツ チとを備える感熱保護スィッチ装置を含み、
前記感熱スィッチは、前記第 1配線導体及び前記第 2配線導体の各接点間に跨つ て配設され、
前記フレーム体は、前記第 1面と対向する第 2面側に、各支持部材間を介して前記 第 1のヒータを配設するための空間部を備えることを特徴とする請求項 1記載の二次 電池の保護回路。
[41] 前記感熱スィッチは、前記各接点間に跨って配設された可動接点部材と、前記第 1 のヒータにより加熱された場合に前記可動接点部材に作用して前記各接点間をオフ にするノ ィメタル素子とを備え、
前記フレーム体は、第 1支持部材及び第 2支持部材間を連結すると共に、前記バイ メタル素子を前記第 1面側に配設する連結部材を備えたものであることを特徴とする 請求項 40記載の二次電池の保護回路。
[42] 前記フレーム体は、前記連結部材を第 1支持部材及び第 2支持部材の第 1面及び 第 2面間における中間部に形成することで当該連結部材の第 2面側に凹部が形成さ れ、この凹部を前記空間部とすることを特徴とする請求項 41記載の二次電池の保護 回路。
[43] 前記フレーム体の第 1面側に前記感熱スィッチを覆うカバー体を備えたことを特徴 とする請求項 40記載の二次電池の保護回路。
[44] 前記フレーム体は、第 1支持部材と第 2支持部材とを配線基板で固定することによ つて構成されていることを特徴とする請求項 40記載の二次電池の保護回路。
[45] 二次電池と、
請求項 1記載の二次電池の保護回路とを備えることを特徴とする電池パック。
[46] 前記二次電池を収容する有底の容器と、
前記保護回路を構成する配線パターンを備えた外部端子接続ユニットとを備え、 前記保護回路は、前記外部端子接続ユニットに形成されていることを特徴とする請 求項 45記載の電池パック。
[47] 前記配線パターンは、前記外部端子接続ユニットにおける前記容器に収容された 二次電池と対向する側の表面に印刷形成されていることを特徴とする請求項 46記載 の電池パック。
[48] 前記感熱スィッチは、前記外部端子接続ユニットにおける前記容器に収容された 二次電池と対向する位置に配設されることを特徴とする請求項 46記載の電池パック
[49] 前記保護制御部を覆うように設けられた導電性のカバーをさらに備え、
前記カバーは、前記保護制御部を跨いで前記保護制御部の両側に形成された配 線パターン間を接続するべく取り付けられていることを特徴とする請求項 48記載の電 池パック。
[50] 前記感熱スィッチと直列に接続されたヒューズをさらに備え、
前記感熱スィッチは、前記ヒューズよりも先にオフするべく動作条件が設定されてお り、
前記ヒューズは、前記カバーにおける前記容器に収容された二次電池と対向する 位置に配設されていることを特徴とする請求項 49記載の電池パック。
[51] 前記感熱スィッチは、バイメタル、形状記憶合金、及び形状記憶樹脂のうちから選 ばれた 1種の温度に応じた変形によって駆動される可動切片を備え、
前記外部端子接続ユニットにおける前記容器に収容された二次電池と対向する側 の表面に、前記可動切片を支持する支持部材が形成されていることを特徴とする請 求項 48記載の電池パック。
[52] 前記保護回路は、所定間隔をお!、て配置された第 1支持部材及び第 2支持部材を 有するフレーム体と、前記フレーム体の第 1面側における第 1支持部材上に配設され て接点を構成すると共に、当該接点から延設されることで取付端子を構成する第 1配 線導体と、前記フレーム体の第 1面側における第 2支持部材上に配設されて接点を 構成すると共に、当該接点から延設されることで取付端子を構成する第 2配線導体と 、前記感熱スィッチとを備える感熱保護スィッチ装置を含み、
前記感熱スィッチは、前記第 1配線導体及び前記第 2配線導体の各接点間に跨つ て配設され、
前記フレーム体は、前記第 1面と対向する第 2面側が、各支持部材間を介して前記 第 1のヒータを配設するための空間部を備えることを特徴とする請求項 45記載の電 池パック。
[53] 前記感熱保護スィッチ装置は、前記二次電池の正極端子と前記第 1の接続端子と の間に配設され、
前記保護制御部は、
前記二次電池が過剰に充電されたことを検出する過充電検出回路と、 前記過充電検出回路の検出信号によりオンオフ制御されるスィッチ素子とを備える ことを特徴とする請求項 52記載の電池パック。
[54] 前記過充電検出回路、前記スィッチ素子及び前記第 1のヒータを半導体集積回路 により構成したことを特徴とする請求項 53記載の電池パック。
[55] 前記半導体集積回路は、前記空間部に配設され、前記感熱スィッチを加熱するこ とを特徴とする請求項 54記載の電池パック。
[56] 加熱体により加熱されることで回路をオフにする感熱保護スィッチ装置であって、 所定間隔をおいて配置された第 1支持部材及び第 2支持部材を有するフレーム体 と、
このフレーム体の第 1面側における第 1支持部材上に配設されて接点を構成すると 共に、当該接点から延設されることで取付端子を構成する第 1配線導体と、
前記フレーム体の第 1面側における第 2支持部材上に配設されて接点を構成する と共に、当該接点から延設されることで取付端子を構成する第 2配線導体と、 前記第 1配線導体及び前記第 2配線導体の各接点間に跨って配設され、加熱体に より加熱された場合に各接点間をオフにする感熱スィッチとから構成され、
前記フレーム体の第 1面と対向する第 2面側が各支持部材間を介して前記感熱ス イッチを加熱するための加熱体を配設可能にする開放状とされたことを特徴とする感 熱保護スィッチ装置。
第 1の接続端子及び第 2の接続端子を有する電池パックであって、
負荷装置に対し電力を供給するための二次電池と、
前記二次電池を保護するためのもので、請求項 56記載の感熱保護スィッチ装置を 用いて構成した保護回路とを備えたことを特徴とする電池パック。
PCT/JP2006/308306 2005-04-20 2006-04-20 二次電池の保護回路、電池パック、及び感熱保護スイッチ装置 WO2006112501A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800023793A CN101103509B (zh) 2005-04-20 2006-04-20 二次电池的保护电路以及电池组件

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2005-122765 2005-04-20
JP2005-122729 2005-04-20
JP2005122729A JP4884694B2 (ja) 2005-04-20 2005-04-20 二次電池の保護回路及び電池パック
JP2005122765A JP2006304487A (ja) 2005-04-20 2005-04-20 二次電池の保護回路及び電池パック
JP2005-159889 2005-05-31
JP2005159889A JP4815151B2 (ja) 2005-05-31 2005-05-31 感熱保護スイッチ装置及び電池パック
JP2005164485A JP4691399B2 (ja) 2005-06-03 2005-06-03 保護回路
JP2005-164485 2005-06-03
JP2005181125A JP2007006559A (ja) 2005-06-21 2005-06-21 保護回路
JP2005-181125 2005-06-21

Publications (1)

Publication Number Publication Date
WO2006112501A1 true WO2006112501A1 (ja) 2006-10-26

Family

ID=37115209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308306 WO2006112501A1 (ja) 2005-04-20 2006-04-20 二次電池の保護回路、電池パック、及び感熱保護スイッチ装置

Country Status (2)

Country Link
US (1) US7952330B2 (ja)
WO (1) WO2006112501A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162005A1 (ja) * 2010-06-24 2011-12-29 ボッシュ株式会社 プリント回路板
WO2020104891A1 (ja) * 2018-11-22 2020-05-28 株式会社半導体エネルギー研究所 半導体装置、蓄電装置、及び電子機器
CN111864136A (zh) * 2020-07-08 2020-10-30 中北大学 一种低温启动与温度调节的复合蓄电池组装置及使用方法
JP2022530977A (ja) * 2019-05-15 2022-07-05 エルジー エナジー ソリューション リミテッド 過電流印加防止装置および方法
EP4135101A4 (en) * 2020-07-17 2024-01-10 Lg Energy Solution Ltd BATTERY MANAGEMENT DEVICE

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090012359A (ko) * 2006-05-17 2009-02-03 타이코 일렉트로닉스 레이켐 케이. 케이. 보호 소자
US7675269B2 (en) * 2006-11-03 2010-03-09 Broadcom Corporation Circuit and method for battery charging and discharging protection
KR100922471B1 (ko) * 2007-09-27 2009-10-21 삼성에스디아이 주식회사 이차전지용 보호회로기판 및 이를 이용한 이차 전지
JP4932672B2 (ja) * 2007-10-26 2012-05-16 株式会社 シンワ 形状記憶合金部材の加熱装置
US20090159354A1 (en) * 2007-12-25 2009-06-25 Wenfeng Jiang Battery system having interconnected battery packs each having multiple electrochemical storage cells
JP5000540B2 (ja) * 2008-01-31 2012-08-15 新光電気工業株式会社 スイッチング機能付配線基板
DE102008010978A1 (de) * 2008-02-25 2009-08-27 Robert Bosch Gmbh Entladeschaltung für Hochspannungsnetze
JP5309641B2 (ja) * 2008-03-24 2013-10-09 ミツミ電機株式会社 充電制御用半導体集積回路
CN102007561B (zh) * 2008-04-18 2014-07-02 泰科电子日本合同会社 电路保护装置
EP2429024B1 (en) * 2009-05-06 2016-12-28 Lg Chem, Ltd. Voltage balancing device for battery cell
US20100291419A1 (en) * 2009-05-15 2010-11-18 Sinoelectric Powertrain Corporation Battery pack heat exchanger, systems, and methods
US20100291427A1 (en) * 2009-05-15 2010-11-18 Sinoelectric Powertrain Corporation Modular powertrain, systems, and methods
US20100291418A1 (en) * 2009-05-15 2010-11-18 Sinoelectric Powertrain Corporation Battery packs, systems, and methods
US20100291426A1 (en) * 2009-05-15 2010-11-18 Sinoelectric Powertrain Corporation Flexible fusible link, systems, and methods
JP5053337B2 (ja) * 2009-07-21 2012-10-17 レノボ・シンガポール・プライベート・リミテッド 蓄電池用保護素子および保護システム
CN102273044B (zh) * 2009-07-31 2015-04-22 松下电器产业株式会社 保护电路、电池组件以及充电系统
US8597807B2 (en) * 2009-08-11 2013-12-03 Samsung Sdi Co., Ltd. Secondary battery including a thermally insulating sheet having a recess for receiving a thermal fuse
JP4714292B2 (ja) * 2009-11-30 2011-06-29 宝商株式会社 感温ペレット式温度ヒューズ
KR101093888B1 (ko) * 2009-12-28 2011-12-13 삼성에스디아이 주식회사 배터리 팩 및 이의 단선 검출 방법
WO2011127319A1 (en) 2010-04-08 2011-10-13 Sinoelectric Powertrain Inc Apparatus for preheating a battery pack before charging
TWI413338B (zh) * 2010-05-21 2013-10-21 Beyond Innovation Tech Co Ltd 充電裝置
US9172120B2 (en) 2010-07-14 2015-10-27 Sinoelectric Powertrain Corporation Battery pack fault communication and handling
US8659261B2 (en) 2010-07-14 2014-02-25 Sinoelectric Powertrain Corporation Battery pack enumeration method
JP5706648B2 (ja) * 2010-09-08 2015-04-22 セイコーインスツル株式会社 充放電制御回路及びバッテリ装置
US8486283B2 (en) 2010-11-02 2013-07-16 Sinoelectric Powertrain Corporation Method of making fusible links
US8641273B2 (en) * 2010-11-02 2014-02-04 Sinoelectric Powertrain Corporation Thermal interlock for battery pack, device, system and method
US9960000B2 (en) 2010-12-16 2018-05-01 Littelfuse Japan G.K. Protective device
KR101217074B1 (ko) * 2011-02-21 2012-12-31 로베르트 보쉬 게엠베하 배터리 관리 시스템
US20120287546A1 (en) * 2011-05-10 2012-11-15 Kopelman Robert Z Sensor-activated circuit-interrupting apparatus and method of using same
US9159985B2 (en) * 2011-05-27 2015-10-13 Ostuka Techno Corporation Circuit breaker and battery pack including the same
KR20120136826A (ko) * 2011-06-10 2012-12-20 현대자동차주식회사 배터리 과충전 방지 장치
US20130049697A1 (en) * 2011-08-26 2013-02-28 Guoxing Li Battery protection integrated circuit architecture
CN103247828A (zh) * 2012-02-02 2013-08-14 凹凸电子(武汉)有限公司 电池异常处理装置和方法、电池系统以及用电设备
JP5880105B2 (ja) * 2012-02-14 2016-03-08 ミツミ電機株式会社 充電回路
JP5910172B2 (ja) * 2012-03-01 2016-04-27 株式会社Gsユアサ スイッチ故障診断装置、電池パックおよびスイッチ故障診断プログラム、スイッチ故障診断方法
CN103718345B (zh) * 2012-03-15 2016-10-26 株式会社东芝 锂离子二次电池
CN103703590B (zh) * 2012-03-15 2016-11-16 株式会社东芝 锂离子二次电池
US8995104B2 (en) 2012-03-20 2015-03-31 Apple Inc. Electrical over-current protection device
US9450401B2 (en) 2012-03-20 2016-09-20 Apple Inc. Controlling a thermally sensitive over-current protector
DE102012215846A1 (de) * 2012-09-06 2014-03-06 Continental Automotive Gmbh Batterieanordnung zum Betrieb elektrischer Verbraucher in einem Fahrzeug zur Gefahrgutbeförderung
JP6202632B2 (ja) * 2012-09-18 2017-09-27 Necエナジーデバイス株式会社 蓄電システムおよび電池保護方法
US20140078632A1 (en) * 2012-09-18 2014-03-20 Samsung Sdi Co., Ltd. Battery pack, controlling method of the same, and energy storage system including the battery pack
FR2996694B1 (fr) * 2012-10-04 2015-09-18 Commissariat Energie Atomique Circuit de gestion de la charge d'une batterie
US9105429B2 (en) 2012-12-27 2015-08-11 Cree, Inc. Thermal protection device
DE102013204523A1 (de) * 2013-03-15 2014-09-18 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erhöhung der Sicherung beim Gebrauch von Batteriemodulen
DE102013005440B4 (de) * 2013-03-30 2016-02-11 Leoni Bordnetz-Systeme Gmbh Vorrichtung zur Absicherung von elektrischen Strompfaden
KR101411584B1 (ko) * 2013-04-12 2014-06-24 김영대 배터리 보호 장치 제조 방법 및 배터리 보호 장치
KR101975393B1 (ko) * 2013-04-18 2019-05-07 삼성에스디아이 주식회사 외장 배터리
US9478829B2 (en) * 2013-05-16 2016-10-25 Ec Power, Llc Rechargeable battery with multiple resistance levels
JP5447723B1 (ja) * 2013-07-19 2014-03-19 パナソニック株式会社 充電器及び電子機器システム
TWI500229B (zh) * 2013-07-22 2015-09-11 Polytronics Technology Corp 過電流保護裝置
KR101706305B1 (ko) * 2013-09-25 2017-02-13 주식회사 엘지화학 온도 센서를 포함하는 전지모듈
JP5467553B1 (ja) 2013-10-24 2014-04-09 パナソニック株式会社 充電器および電子機器システム
JP6412152B2 (ja) * 2013-12-20 2018-10-24 中投仙能科技(▲蘇▼州)有限公司 リチウムイオン電池保護器
US9627723B2 (en) * 2014-07-30 2017-04-18 Ec Power, Llc Operation of electrochemical energy systems
JP2016067165A (ja) * 2014-09-25 2016-04-28 エスアイアイ・セミコンダクタ株式会社 充放電制御装置およびバッテリ装置
US10033213B2 (en) * 2014-09-30 2018-07-24 Johnson Controls Technology Company Short circuit wake-up system and method for automotive battery while in key-off position
DE102014219787A1 (de) * 2014-09-30 2016-03-31 Robert Bosch Gmbh Schaltnetzteil mit zumindest einem Leistungsteil und zumindest einem Hilfsnetzteil
US20170237275A1 (en) * 2015-01-26 2017-08-17 Panasonic Intellectual Property Management Co., Ltd. Electricity storage device
KR102072613B1 (ko) * 2015-03-24 2020-02-03 이승규 용융 스위치, 이를 포함하는 배터리 제어장치 및 제어방법
KR102442187B1 (ko) * 2015-04-10 2022-09-07 삼성에스디아이 주식회사 배터리 보호 회로
CN104901266B (zh) * 2015-05-06 2018-01-19 深圳市明微电子股份有限公司 保险丝修调电路
JP6144727B2 (ja) * 2015-07-02 2017-06-07 京セラ株式会社 充電装置、充電プログラム及び充電方法
US10680450B2 (en) * 2015-10-05 2020-06-09 Lenovo (Singapore) Pte. Ltd. Devices and methods to discharge battery
US10103556B2 (en) 2015-11-17 2018-10-16 Motorola Solutions, Inc. Load side method of blocking charger voltage from a battery load
US20170214238A1 (en) * 2015-11-25 2017-07-27 Oceaneering International, Inc. Programmable Fuse With Under-voltage/short-circuit Protection
KR20170116472A (ko) * 2016-04-11 2017-10-19 주식회사 엘지화학 검전기 및 시그널 퓨즈를 이용한 모스펫 릴레이 보호 장치 및 보호 방법
EP3577704A4 (en) 2017-02-01 2021-03-10 24m Technologies, Inc. SYSTEMS AND METHODS FOR IMPROVING SAFETY FEATURES IN ELECTROCHEMICAL CELLS
US11476551B2 (en) * 2017-07-31 2022-10-18 24M Technologies, Inc. Current interrupt devices using shape memory materials
CN207038570U (zh) * 2017-08-02 2018-02-23 宁德时代新能源科技股份有限公司 二次电池顶盖组件及二次电池
WO2019035523A1 (ko) * 2017-08-14 2019-02-21 삼성에스디아이 주식회사 배터리 보호 회로 및 이를 포함하는 배터리 팩
KR102519119B1 (ko) 2017-08-14 2023-04-06 삼성에스디아이 주식회사 배터리 보호 회로 및 이를 포함하는 배터리 팩
US10854869B2 (en) 2017-08-17 2020-12-01 24M Technologies, Inc. Short-circuit protection of battery cells using fuses
US10819122B2 (en) 2018-04-05 2020-10-27 Lenovo (Singapore) Pte. Ltd. Systems and methods to use cell balancing resistor(s) of battery pack to reduce charge level of battery cells
KR20190126528A (ko) * 2018-05-02 2019-11-12 현대자동차주식회사 차량용 에너지 저장장치 시스템
US11695283B2 (en) * 2018-05-11 2023-07-04 Texas Instruments Incorporated Shoot-through current limiting circuit
KR102614725B1 (ko) * 2018-06-08 2023-12-14 삼성에스디아이 주식회사 배터리 보호 회로 및 이를 포함하는 배터리 팩
US10978891B2 (en) * 2018-06-12 2021-04-13 Motorola Solutions, Inc. Methods and apparatus for extending discharge over-current trip time in a battery protection circuit
GB2565006B (en) * 2018-11-09 2021-09-08 O2Micro International Ltd Battery protection systems
JP6799269B2 (ja) 2018-12-05 2020-12-16 ミツミ電機株式会社 二次電池保護回路及び電池パック
JP7129355B2 (ja) * 2019-02-01 2022-09-01 デクセリアルズ株式会社 保護回路
TWI699026B (zh) * 2019-06-10 2020-07-11 聚鼎科技股份有限公司 二次電池及其保護元件
US11429167B2 (en) 2020-07-17 2022-08-30 Lenovo (Singapore) Pte. Ltd. Techniques to decommission battery based on user command
CN115603010B (zh) * 2022-11-28 2023-04-07 惠州市纬世新能源有限公司 一种内置短路保护结构的锂电池电芯

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204525A (ja) * 2000-12-28 2002-07-19 Sanyo Electric Co Ltd ブレーカとブレーカを内蔵するパック電池
JP2003111269A (ja) * 2001-10-02 2003-04-11 Sony Chem Corp 保護回路付き二次電池
JP2004206894A (ja) * 2002-12-24 2004-07-22 Nec Tokin Tochigi Ltd 保護回路内蔵バッテリーパック

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174145A (ja) 1987-01-14 1988-07-18 Hitachi Ltd デ−タ処理装置
JPH0834074B2 (ja) 1989-10-16 1996-03-29 山田電機製造株式会社 プロテクタ
JP2872365B2 (ja) 1990-07-18 1999-03-17 旭化成工業株式会社 充電式の電源装置
JPH05282977A (ja) 1992-03-30 1993-10-29 Texas Instr Japan Ltd 過電流保護装置
JPH11262270A (ja) 1998-03-13 1999-09-24 Toshiba Corp インテリジェントパワーモジュールおよびそれを用いた電力変換装置
DE60045183D1 (de) * 1999-05-17 2010-12-16 Panasonic Corp Schaltung und vorrichtung zum schutz einer sekundärbatterie
US6222346B1 (en) * 1999-08-18 2001-04-24 Matsushita Electric Industrial Co., Ltd. Battery protection device
JP3609741B2 (ja) * 2001-03-30 2005-01-12 三洋電機株式会社 パック電池
JP2003007286A (ja) 2001-04-18 2003-01-10 Shin Kobe Electric Mach Co Ltd 鉛蓄電池用補水栓
JP2003070153A (ja) 2001-08-29 2003-03-07 Uchihashi Estec Co Ltd 二次電池パックの過昇温防止方法
JP2003115246A (ja) 2001-10-04 2003-04-18 Furukawa Electric Co Ltd:The サーマルプロテクタ
JP2004220944A (ja) 2003-01-15 2004-08-05 Furukawa Electric Co Ltd:The サーマルプロテクタ
JP2006304487A (ja) 2005-04-20 2006-11-02 Matsushita Electric Ind Co Ltd 二次電池の保護回路及び電池パック

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204525A (ja) * 2000-12-28 2002-07-19 Sanyo Electric Co Ltd ブレーカとブレーカを内蔵するパック電池
JP2003111269A (ja) * 2001-10-02 2003-04-11 Sony Chem Corp 保護回路付き二次電池
JP2004206894A (ja) * 2002-12-24 2004-07-22 Nec Tokin Tochigi Ltd 保護回路内蔵バッテリーパック

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162005A1 (ja) * 2010-06-24 2011-12-29 ボッシュ株式会社 プリント回路板
WO2020104891A1 (ja) * 2018-11-22 2020-05-28 株式会社半導体エネルギー研究所 半導体装置、蓄電装置、及び電子機器
US11714138B2 (en) 2018-11-22 2023-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power storage device, and electronic device
JP7325439B2 (ja) 2018-11-22 2023-08-14 株式会社半導体エネルギー研究所 蓄電装置
JP2022530977A (ja) * 2019-05-15 2022-07-05 エルジー エナジー ソリューション リミテッド 過電流印加防止装置および方法
JP7408214B2 (ja) 2019-05-15 2024-01-05 エルジー エナジー ソリューション リミテッド 過電流印加防止装置および方法
CN111864136A (zh) * 2020-07-08 2020-10-30 中北大学 一种低温启动与温度调节的复合蓄电池组装置及使用方法
EP4135101A4 (en) * 2020-07-17 2024-01-10 Lg Energy Solution Ltd BATTERY MANAGEMENT DEVICE

Also Published As

Publication number Publication date
US7952330B2 (en) 2011-05-31
US20080116851A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
WO2006112501A1 (ja) 二次電池の保護回路、電池パック、及び感熱保護スイッチ装置
JP4884694B2 (ja) 二次電池の保護回路及び電池パック
US9438050B2 (en) Overcharge detecting circuit and integrated circuit
US8148946B2 (en) Battery pack having protection circuit for secondary battery
US8183835B2 (en) Battery pack
US7498774B2 (en) Battery pack for hand-held electric machine tools
JP3982078B2 (ja) 電池保護回路及び電子装置
US8193774B2 (en) Battery pack
US7816889B2 (en) Method of charging rechargeable battery and protection circuit for rechargeable battery
JP2006304487A (ja) 二次電池の保護回路及び電池パック
JP4936227B2 (ja) 電池パックおよび電池パックを用いた電動工具
CN101091297B (zh) 保护电路以及电池组件
WO2006121067A1 (ja) 保護回路、及び電池パック
JP4815151B2 (ja) 感熱保護スイッチ装置及び電池パック
KR101729730B1 (ko) 과전류로부터 배터리를 보호하는 장치
JP4886212B2 (ja) 保護回路
JP2007006559A (ja) 保護回路
US6580250B1 (en) Monolithic battery protection circuit
JP2006296180A (ja) 保護部品、保護装置、電池パック及び携帯用電子機器
JP2009239989A (ja) 充電器
JP2005312140A (ja) 充放電制御回路
JP2013105726A (ja) 電池パックおよび電池カバー
JP2002044871A (ja) 電池用保護回路
JP4691399B2 (ja) 保護回路
WO2020189225A1 (ja) バッテリパック、保護回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680002379.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11883081

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2992/KOLNP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06745487

Country of ref document: EP

Kind code of ref document: A1