WO2006108905A1 - Método in vitro para identificar compuestos para terapia del cáncer - Google Patents

Método in vitro para identificar compuestos para terapia del cáncer Download PDF

Info

Publication number
WO2006108905A1
WO2006108905A1 PCT/ES2006/070047 ES2006070047W WO2006108905A1 WO 2006108905 A1 WO2006108905 A1 WO 2006108905A1 ES 2006070047 W ES2006070047 W ES 2006070047W WO 2006108905 A1 WO2006108905 A1 WO 2006108905A1
Authority
WO
WIPO (PCT)
Prior art keywords
choline kinase
protein
cancer
alpha
expression
Prior art date
Application number
PCT/ES2006/070047
Other languages
English (en)
French (fr)
Inventor
Juan Carlos Lacal Sanjuan
Ana Ramirez De Molina
David Gallego Ortega
Mónica BAÑEZ CORONEL
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008505911A priority Critical patent/JP4759612B2/ja
Priority to KR1020127031248A priority patent/KR101322705B1/ko
Priority to DK06725852T priority patent/DK1889920T3/da
Priority to DE200660011607 priority patent/DE602006011607D1/de
Priority to US11/911,513 priority patent/US8481256B2/en
Priority to BRPI0607507-0A priority patent/BRPI0607507A2/pt
Priority to KR20077026322A priority patent/KR101352142B1/ko
Priority to KR1020137014648A priority patent/KR20130086060A/ko
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Priority to CA 2604803 priority patent/CA2604803A1/en
Priority to MX2007012668A priority patent/MX2007012668A/es
Priority to PL06725852T priority patent/PL1889920T3/pl
Priority to CN2006800180309A priority patent/CN101405403B/zh
Priority to AT06725852T priority patent/ATE454465T1/de
Priority to EP20060725852 priority patent/EP1889920B1/en
Publication of WO2006108905A1 publication Critical patent/WO2006108905A1/es
Priority to US13/099,195 priority patent/US8901096B2/en
Priority to US13/911,753 priority patent/US20140023657A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • C12Q1/485Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving kinase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5023Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on expression patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57496Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving intracellular compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds

Definitions

  • the present invention relates to a method for identifying and evaluating the efficacy of compounds for cancer therapy, especially for lung, breast or colorectal cancer, in order to develop new medications; as well as agents that inhibit the expression and / or the activity of the protein Choline Kinase Alpha, and / or the effects of this expression.
  • Choline Kinase (also known as CK, CHK and ChoK) is the first enzyme in the Kennedy route or phosphatidylcholine (PC) synthesis, and phosphorylates Ia hill to phosphorylcholine (PCho) in the presence of magnesium (Mg 2+ ), using adenosine ⁇ '-t ⁇ phosphate (ATP) as a donor of phosphate groups.
  • the transformation mediated by various oncogenes induces high levels of Quinaasa Hill activity, leading to an abnormal increase in the intracellular levels of its product, PCho, which indirectly supports the role of the Quinaasa Hill in the generation of human tumors.
  • PCho adenosine ⁇ '-t ⁇ phosphate
  • a very relevant characteristic of the different choline kinase isoenzymes is that they have different biochemical properties, with important variations in their affinity for the choline substrate or for the ATP phosphate donor, and even in their active form, which can be presented as dimers or tetramers . Therefore, it is necessary to define whether there is a direct relationship between any of the different Choline Kinase isoenzymes identified and the tumorigenic capacity attributed by their overexpression in human tumors.
  • choline kinase activity inhibitors such as hemicolinium-3 [Square A., Ram A., Dolfi F., Jiménez B. and Lacal JC Oncogene 8, 2959-2968 (1993); Jiménez B., of Peso L., Montaner S., Esteve P. and Lacai JCJ CeII Biochem. 57, 141-149 (1995); Hernández- Alcoceba, R., Saniger, L., Campos, J., N ⁇ ez, M. C 1 Khaless, F ,, Gallo, M.
  • the present invention has as its main object an In vitro method to search, identify and evaluate the efficacy of compounds for cancer therapy, especially for lung, breast or colorectal cancer.
  • a further object of the invention resides in the use of nucleotide or peptide sequences derived from the choline kinase alpha gene in methods of searching, identifying, developing and evaluating the efficacy of compounds for cancer therapy, preferably lung, breast or breast cancer. colorectal
  • Another object of the present invention is to provide agents characterized in that they inhibit the expression and / or the activity of the protein Choline Kinase Alpha, for the treatment of cancer, preferably of lung, breast or colorectal cancer.
  • the object of the invention is also a pharmaceutical composition comprising one or more therapeutic agents together with a pharmaceutically acceptable excipient, for the treatment of cancer, preferably of lung, breast or colorectal cancer.
  • the object of the present invention is also an in vitro method for monitoring the effect of a therapy administered to a cancer patient, characterized in that the evaluation of the level of expression of the choline kinase alpha protein in a tissue sample taken from the patient to whom It is providing an anti-tumor agent, preferably an agent according to claims 3-5, by determining in said sample of at least one parameter related to the choline kinase alpha protein that is selected from the level of its messenger RNA, the concentration of said protein or its enzymatic activity, and the comparison of the value obtained with the value corresponding to one or more samples of non-cancerous normal tissue.
  • Another object of the present invention consists of a diagnostic kit for carrying out the present invention.
  • Figure 1 A) Choline Kinase Activity (ChoK) in human Hek293T (Human embryonic kidney cells) cell extracts after overexpressing Choline Kinase Alpha and Beta (ex vivo choline kinase activity assay). B) Intracellular levels of phosphorylcholine in living cells (in vitro Choline Kinase activity test).
  • ChoK Choline Kinase Activity
  • Figure 2 A) ChoK activity in human Chok293T cells after overexpressing Choline Kinase Alpha and Beta. B) Specificity of monoclonal antibodies generated against Choline Kinase Alpha in the same extracts shown in A.
  • Figure 3 Overexpression of Choline Kinase Alpha determined by immunohistochemical techniques in NSCLC (Non-small cell lung cancer).
  • Figure 4 Overexpression of Choline Kinase Alpha determined by immunohistochemical techniques in breast cancer.
  • Figure 5 Overexpression of Choline Kinase Alpha determined by immunohistochemical techniques in colon cancer.
  • Figure 6 Independent growth of anchoring cells that overexpress human Choline Kinase Alpha. Both the number of colonies generated and their relative size are shown in the two cell lines analyzed, Hek293 and MDCK.
  • Figure 7 Oncogenic capacity in vivo in Nu / nu Colina mice
  • Figure 8 Expression and enzymatic activity of Choline Kinase Alpha in tumors induced in vivo.
  • Figure 9 Specificity of the MN58b inhibitor on Choline Kinase Alpha. Extracts of E.coli in which recombinant proteins Choline Kinase Alpha or Choline Kinase Beta were expressed were analyzed in the absence (0) or in the presence of increasing concentrations of MN58b.
  • Figure 10 Antitumor effect of the MN58b inhibitor in tumors induced by overexpression of Choline Kinase Alpha
  • Figure 11 Blocking the expression of Choline Kinase Alpha by the siRNA technique in human HeK293T cells.
  • Figure 12 Blocking of the expression of Choline Kinase Alpha by siRNA in tumor cells derived from a human breast carcinoma, determined both by Western Blotting A) and B) and by enzymatic activity C).
  • Figure 13 Death by apoptosis induced by the interfering RNA specific for Choline Kinase Alpha in human breast tumor cells MDA-MB-231. A) Analysis by flow cytometry with propidium iodide. B) PARP digestion associated with apoptosis death.
  • Figure 14 Choline Kinase Alpha-specific interfering RNA in primary human HMEC breast epithelial cells.
  • Figure 15 Overexpression of Choline Kinase Alpha in breast cancer tissue.
  • Figure 15a Aifa choline kinase messenger RNA in tissues of patients suffering from breast cancer detected by quantitative real-time PCR, represented as the base 10 logarithm of the relationship between the amount detected and present in a sample of normal tissue .
  • Figure 15b mean value of the expression of Choline Kinase Alpha, represented as the relative units of gene expression calculated from the level of mRNA with the method of 2 ⁇ ⁇ C ( ), in individuals without metastasis ⁇ first bar, marked as " NO ") or with metastasis (second bar, marked” S (").
  • Figure 15c evolution of the probability of survival without disease according to the number of months elapsed, among patients with lymph nodes (lower line, marked with gray strokes) , i) or without lymph nodes (upper line, marked with black strokes, • ! •
  • Figure 16 Expression of Choline Kinase Alpha in cell lines derived from lung cancer.
  • Figure 16a Choline Kinase Alpha messenger RNA in cell lines derived from cancer type NSCLC (H1299 and H460) or SCLC (H510 and H82), detected by quantitative real-time PCR, represented as the base 10 logarithm of the relationship between Ia amount detected and present in normal primary bronchial epithelial cells (BEC).
  • Figure 16b Choline Kinase Alpha protein detected by immunoassay with a monoclonal antibody in normal bronchial epithelial cells (BEC) and in cell lines derived from lung cancer H460, H1299, H510 and H82; immediately below the signal obtained for the tubulin in the same samples is represented.
  • Figure 16c Choline Kinase activity, represented by the radioactively labeled PCho signal, detected by microgram of protein, after 30 minutes, generated from marked hill in each of the cell lines indicated under the corresponding bars.
  • Figure 17 Expression of the choline kinase alpha messenger RNA, in tumor tissue extracted from patients suffering from early stage NSCLC lung cancer, detected by real-time quantitative PCR, represented as the logarithm in base 10 of the relationship between the amount detected and the present in a sample of normal tissue.
  • Figure 18 Evolution of the probability of survival of patients suffering from lung cancer over time, represented in months, in the case of detection or expression of Choline Kinase Alpha ⁇ dashed lines, - 1 -) or not detect (solid lines, -I-).
  • the overall survival of patients in stages I to IV is represented (graph located in the upper left), the disease-free survival of patients in stages I to IV (time that elapses from when patients are operated until they suffer a relapse) (graph located in the lower left), survival in the case of cancer of stages IA-IIIA (graph located in the upper right) and disease-free survival in the case of stages IA-IIIA (graphic located in the lower right).
  • Figure 19 Expression of Choline Kinase Alpha in cell lines derived from bladder cancer.
  • Figure 19a Choline Kinase Alpha messenger RNA in cell lines derived from bladder cancer detected by real-time quantitative PCR, represented as the base 10 logarithm of the relationship between the amount detected and that present in normal UrotSa immortalized bladder cells; the bars correspond, from left to right, to lines HT1376, J82, SW780, TCCSup and UMVC3.
  • Figure 19b Choline Kinase Alpha protein detected by immunoassay with a monoclonal antibody in normal immortalized bladder cells (UrotSa) and in cell lines derived from bladder cancer TCCsup, J82, UMVC3, SW789 and HT1376, as well as in a negative control ( Hek293T cells) and in a positive control (Hek-ChoK cells, transfected with a plasmid expressing Choline Kinase Alpha); immediately below the signal obtained for the tubulin in the same samples is represented.
  • Figure 16c Choline Kinase activity, represented by the radioactively labeled PCho signal, detected by microgram of protein, after 30 minutes, generated from marked hill in each of the cell lines indicated under the corresponding bars.
  • Figure 20 Expression of Choline Kinase Alpha in patients suffering from bladder cancer.
  • Figure 20a Average expression values obtained from Tumor tissues of 90 patients using Affymetrix U 133 Plus 2.0 microarray, obtained in the different groups classified according to the value of the induction factor: an induction of 1 to 3 times (first bar), an induction of 3 to 8 times or a induction 8 to 24 times (third bar).
  • Figure 20 b Choline Kinase Alpha messenger RNA in 20 patients suffering from bladder cancer, detected by real-time quantitative PCR, represented as the logarithm based on 10 of the relationship between the amount detected and the one present in normal immortalized bladder cells UrotSa; The horizontal line represents the level from which there is an association with a worse prognosis of patient evolution.
  • Figure 21 Relationship between the expression of Choline Kinase Alpha and the presence of nodules and / or metastasis.
  • Figure 21a Average expression levels of Choline Kinase Alpha in the negative and positive patients regarding the presence of lymph nodes (values marked with squares without fill, D) or metastasis (values marked with filled circles, •); the straight lines join the average values corresponding to the positive or negative individuals with respect to the characteristic considered to help appreciate the difference in level between one group and another).
  • Figure 21 b proportion of patients with metastases (bars with continuous dark filling,
  • Figure 22 Scheme of operation of the construction from which an interfering RNA can be synthesized. In the presence of repressor (left zone, “No Expression", it joins the construction and prevents RNA synthesis); in the presence of an inducer (doxocycline), it joins the repressor, preventing its binding to the interfering construction and allowing the synthesis of! Interfering RNA (right zone, “Expression”).
  • Figure 23 Proliferation of MDA-MB-231 cells (top row of plates) and
  • A Influence on the genetic inhibition of Choline Kinase Alpha according to the relationship between the levels of Choline Kinase Alpha and GAPDH
  • B Influence on cell proliferation, according to the relationship between the levels of pCNA and GAPDH
  • C Cell viability of the Ch-ind-1 cells in the absence (dotted line) or in the presence (continuous line) of the inductor, deduced from the absorbance values at 500 nm observed at different times
  • D Influence on the induction of apoptosis, according to the relationship between degraded PARP protein levels with respect to the total PARP protein (PARPdig / PARPtotal).
  • Figure 25 Specificity of the polyclonal antibody against Choline Kinase Beta.
  • A Immunoassay in which a polyclonal anti-Choline Kinase beta antiserum is interacted with samples of cells transfected with an empty vector (lane marked “Empty”), an expression vector of Choline Kinase alpha (lane marked “ChoKA”), an expression vector of Choline Kinase Beta (lane marked “ChoKB”) and an expression vector of a chimeric protein Choline Kinase Beta - Fluorescent Green Protein (lane marked "ChoKB ⁇ 'GFP").
  • the arrows indicate the banding height of the Beta Kinase Kinase and the chimeric protein.
  • Figure 26 Comparison of the tumorigenic capacity of the Alpha and Beta Hill Kinases. Evolution of the tumor volume, measured in square centimeters, according to the weeks indicated in abscissa, elapsed since the injection to mice of cells transfected with: an empty vector (data indicated with rhombuses, "4"), a Hill expression vector Alpha kinase (data indicated with squares, "m"), an expression vector of Choline Kinase Beta (data indicated with triangles, " ⁇ ”) and an expression vector of Choline Kinase Alpha + an expression vector of Choline Kinase Beta (indicated data with blades, "X”).
  • Figure 27 Colina Kinase Beta messenger RNA in tissue of patients suffering from lung cancer, detected by real-time quantitative PCR, represented as the logarithm based on 10 of the relationship between the amount detected and the present in normal tissue.
  • subject or “individual” refer to members of mammalian animal species, and include, but it is not limited to pets, primates and humans;
  • subject is preferably a human being, male or female, of any age or race.
  • cancer refers to the disease that is characterized by abnormal or uncontrolled growth of cells, capable of invading adjacent tissues and spreading to distant organs.
  • carcinoma refers to tissue that results from abnormal or uncontrolled cell growth.
  • breast cancer or “breast carcinoma” refers to any malignant proliferative disorder of breast cells.
  • colon cancer or "colon carcinoma” refers to any malignant proliferative disorder of colon cells.
  • rectal cancer or "rectal carcinoma” refers to any malignant proliferative disorder of rectal cells.
  • tumor refers to any abnormal tissue mass resulting from a neoplastic, benign (non-cancerous) or malignant (cancerous) process.
  • gene refers to a molecular chain of deoxyribonucleotides, which encodes a protein.
  • DNA refers to deoxyribonucleic acid.
  • a DNA sequence is a deoxyribonucleotide sequence.
  • cDNA refers to a nucleotide sequence, complementary to an mRNA sequence.
  • RNA refers to ribonucleic acid.
  • An RNA sequence is a ribonucleotide sequence.
  • mRNA refers to messenger ribonucleic acid, which is the fraction of the total RNA that is translated into proteins.
  • mRNA transcribed from refers to the transcription of the gene (DNA) into mRNA, as the first step for the gene to express itself and translate into protein.
  • nucleotide sequence refers interchangeably to a ribonucleotide (RNA) or deoxyribonucleotide (DNA) sequence.
  • protein refers to a molecular chain of amino acids, linked by covalent or non-covalent bonds.
  • the term includes all forms of post-translational modifications, for example glycosylation, phosphorylation or acetylation.
  • peptide and polypeptide refer to molecular chains of amino acids that represent a protein fragment.
  • protein and peptide are used interchangeably.
  • antibody refers to a glycoprotein that exhibits a specific binding activity by a target molecule, which is called "antigen.”
  • the term “antibody” comprises monoclonal antibodies, or intact polyclonal antibodies, or fragments thereof; and includes human, humanized and non-human origin antibodies.
  • Monoclonal antibodies are homogeneous populations of highly specific antibodies that are directed against a single site or “antigenic” determinant.
  • Polyclonal antibodies include heterogeneous populations of antibodies, which are directed against different antigenic determinants.
  • epipe refers to an antigenic determinant of a protein, which is the amino acid sequence of the protein that a specific antibody recognizes.
  • therapeutic target refers to nucleotide or peptide sequences, against which a therapeutic drug or compound can be designed and applied clinically.
  • antagonist refers to any molecule that inhibits the biological activity of the antagonized molecule.
  • antagonistic molecules include, among others, proteins, peptides, sequence variations of natural peptides and small organic molecules (of molecular weight less than 500 daltons).
  • normal reference values used in the present invention refers to the level of certain proteins, mRNA or other metabolites of the body has a healthy individual.
  • normal tissue used in the present invention refers to a non-cancerous tissue, including commercial cell cultures.
  • the present invention is based on the discovery that the expression of the Choline Kinase Alpha protein is increased in tumor processes, and especially in lung, breast and colorectal cancers.
  • the overexpression of said protein induces tumors in vivo and that consequently the inhibition of the expression and / or the activity of this enzyme is an excellent method for the treatment of cancer, especially for lung cancer, of breast and colorectalis.
  • Choline Kinase Alpha is therefore a good potential therapeutic target in human tumorigenesis.
  • the present invention provides, first, an in vitro method to detect the presence of cancer in an individual, preferably lung, breast or colorectal cancer, to determine the stage or severity of said cancer in the individual, or to monitor the effect of the therapy administered to an individual presenting said cancer, which comprises: a) the detection and / or quantification of the protein Choline Kinase Alpha, of the mRNA of!
  • choline kinase alpha gene or the corresponding cDNA in a sample of said individual and b) the comparison of the amount of Choline Kinase Alpha protein, the amount of mRNA of the choline kinase alpha gene or the amount of the corresponding cDNA detected in a sample of an individual; with the amount of protein Choline Kinase Alpha, with the amount of the mRNA of the choline kinase alpha gene or with the amount of the corresponding cDNA detected in the samples of control individuals or in previous samples of the same individual or with the normal reference values.
  • the method provided by the present invention is of high sensitivity and specificity, and is based on subjects or individuals diagnosed with cancers, preferably lung, breast and colorectal, have elevated levels of mRNA transcribed from the choline kinase alpha gene, or high concentrations of The protein encoded by the choline kinase alpha gene (Choline Protein
  • Alpha kinase compared to the corresponding levels in samples from subjects without a clinical history of these carcinomas.
  • human expression of the choline kinase beta gene does not correlate with any of the aforementioned types of cancer.
  • the present method comprises a step of obtaining the sample of the individual.
  • You can work with different fluid samples such as: urine, blood, plasma, serum, pleural fluid, ascites, synovial fluid, bile, gastric juice, cerebrospinal fluid, feces, saliva, bronchoscopies, etc.
  • the sample can be obtained by any conventional method, preferably surgical resection.
  • Samples can be obtained from previously diagnosed, or undiagnosed, subjects of a certain type of cancer; or also of a subject under treatment, or who has previously been treated against cancer, in particular against lung, breast or colorectal cancer.
  • the present method also comprises a step of extracting the sample, either to obtain the protein extract thereof, or to Get the total RNA extract.
  • One of these two extracts represents the work material for the next phase.
  • the total protein or total RNA extraction protocols are well known to the person skilled in the art (Chomczynski P. et al., Anal. Biochem., 1987, 162: 156; Chomczynski P., Biotechniques, 1993, 15: 532; Molina, MA 1 et al., Cancer Res., 1999, 59: 4356-4362).
  • Any conventional assay can be used within the framework of the invention to detect cancer, provided that it measures in vitro the levels of transcribed mRNA of the choline kinase alpha gene or its complementary cDNA, the concentration of Choline Kinase Alpha protein in samples collected from individuals to analyze and control individuals.
  • this invention provides a method to detect the presence of cancer, especially lung, breast or colorectal cancer, to determine the stage or severity of said cancer in the individual, or to monitor the effect of the therapy administered to an individual presenting said cancers, based either on the measure of the concentration of the Colina Kinase Alpha protein, or on the extent of the expression level of the choline kinase alpha gene.
  • the method of the invention comprises a first step of contacting the protein extract of the sample with a composition of one or more specific antibodies against one or more epitopes of the protein Choline Kinase Alpha, and a second stage of quantification of the complexes formed by antibodies and the protein Choline Kinase Alpha.
  • the Colina Kinase Alpha protein can be quantified with antibodies such as, for example: monoclonal, polyclonal, intact antibodies or recombinant fragments thereof, combibodies and Fab or scFv fragments of antibodies, specific against the Colina Kinase Alpha protein; these antibodies being human, humanized or of non-human origin.
  • the antibodies that are used in these tests they may be marked or not; unlabeled antibodies can be used in agglutination assays; labeled antibodies can be used in a wide variety of assays.
  • Marker molecules that can be used to label antibodies include radionuclides, enzymes, fluorophores, chemiluminescent reagents, enzyme substrates or cofactors, enzyme inhibitors, particles, dyes and derivatives.
  • the preferred immunoassay in the method of the invention is a double antibody sandwich ELISA assay (DAS-ELISA).
  • DAS-ELISA double antibody sandwich ELISA assay
  • any antibody or combination of antibodies, specific against one or more epitopes of the Alpha Choline Kinase Protein can be used.
  • an antibody, monoclonal or polyclonal, or a fragment of this antibody, or a combination of antibodies, which cover a solid phase contact the sample to be analyzed, and they are incubated for a time and under appropriate conditions to form the antigen-antibody complexes.
  • an indicator reagent comprising a monoclonal or polyclonal antibody, or a fragment of this antibody, or a fragment of this antibody, is incubated with the antigen-antibody complexes. combination of these antibodies, bound to a compound generating a signal.
  • the presence of the Colina Kinase Alpha protein in the sample to be analyzed is detected and quantified, if it exists, by measuring the generated signal.
  • the amount of Choline Kinase Alpha protein present in the sample analyzed is proportional to that signal.
  • the method of the invention for detecting carcinoma in vitro has different stages.
  • the detection of the mRNA or the corresponding cDNA of the choline kinase alpha gene comprises a first stage of amplification of the mRNA present in the total RNA extract, or of the corresponding cDNA synthesized by reverse transcription of the mRNA, and a second stage of quantification of the product of the amplification of the mRNA or the cDNA of the choline kinase alpha gene.
  • mRNA amplification consists in retrotranscribing the mRNA in cDNA (RT), followed by the Polymerase Chain Reaction (PCR) 1 ;
  • the PCR is a technique of amplification of a certain nucleotide sequence (target) contained in a mixture of nucleotide sequences.
  • target a nucleotide sequence contained in a mixture of nucleotide sequences.
  • an excess of a pair of oligonucleotide primers is used, which hybridize with the complementary strands of the target nucleotide sequence.
  • an enzyme with polymerase activity (DNA Taq Polymerase) extends each primer, using the target nucleotide sequence as a template.
  • the products of the extension are then converted into target sequences, after the dissociation of the original target strand.
  • New primer molecules hybridize and the polymerase extends them; The cycle is repeated to exponentially increase the number of target sequences.
  • This technique is described in US patents 4683195 and US 4683202. Many methods have been previously described to detect and quantify the products of PCR amplification, of which anyone can be used in this invention.
  • the amplified product is detected by agarose gel electrophoresis.
  • the detection of the mRNA is carried out by transferring the mRNA to a nylon membrane, by means of transfer techniques such as Northern-blot or Northern transfer, and detecting it with specific probes of the mRNA or the corresponding cDNA of the choline kinase alpha gene.
  • the amplification and quantification of the mRNA corresponding to the choline kinase alpha gene is performed at the same time by means of real-time quantitative RT-PCR (Q-PCR).
  • the final step of the method of the invention to detect in vitro the carcinomas in question, in a sample from an individual comprises comparing the amount of protein Choline Kinase Alpha, the amount of mRNA of the choline k ⁇ inase alpha gene or the amount of the corresponding cDNA of the sample from an individual, with the amount of Choline Kinase Alpha protein, the amount of mRNA of the choline kinase alpha gene or the amount of the corresponding cDNA detected in the samples of control subjects or in previous samples of the same individual, or with the normal reference values.
  • the invention also provides an in vitro method for identifying and evaluating the efficacy of compounds for cancer therapy; preferably for lung, breast or colorectal cancer, which comprises: a) contacting a tumor cell culture; preferably of lung, breast, colon or rectum, with the candidate compound, under the appropriate conditions and during the time to allow them to interact, b) detect and quantify the expression levels of the choline kinase alpha gene or the Choline Kinase Alpha protein, and c ) compare said expression levels with those of control cultures of untreated tumor cells with the candidate compound. Quantification of the expression levels of the choline kinase alpha or gene
  • the Colina Kinase Alpha protein is performed in a manner similar to that indicated in the method of the invention to detect in vitro the presence of lung, breast or colorectal cancer in an individual.
  • Another object of the invention relates to the use of nucleotide or peptide sequences derived from the choline kinase alpha gene, in methods of searching, identifying, developing and evaluating the efficacy of compounds for cancer therapy, especially for cancer. lung, breast or colorectal. Highlight the importance acquired lately by drug screening methods based on the binding, competitive or not, of the potential drug molecule to the therapeutic target.
  • Another additional object of the invention relates to the use of nucleotide or peptide sequences derived from the choline kinase alpha gene to detect the presence of cancer, especially lung, breast or colorectal cancer, to determine the stage or severity of said cancers in the individual, or to monitor the effect of the therapy administered to an individual presenting any of these cancers.
  • Another object of the invention is to provide agents characterized in that they inhibit the expression and / or the activity of the protein Choline Kinase Alpha.
  • agents which can be identified and evaluated according to the present invention, can be selected from the group consisting of: a) an antibody, or combination of antibodies, specific against one or more epitopes present in the protein Choline Kinase Alpha, preferably a monoclonal antibody human or humanized; it may also be a fragment of the antibody, a single chain antibody or an anti-idiotype antibody, b) cytotoxic agents, such as toxins, molecules with radioactive atoms, or chemo-therapeutic agents, including, without limitation, small organic and inorganic molecules, peptides, phosphopeptides, antisense molecules, ribozymes, siRNAs, triple helix molecules, etc., that inhibit the expression and / or the activity of the protein Choline Kinase Alpha, and c) antagonist compounds of the protein Choline Kinase Alpha , which inhibit one or more of the functions
  • composition comprising a therapeutically effective amount of one or more agents of those mentioned above together with one or more excipients and / or transport substances.
  • said composition may contain any other active ingredient that does not inhibit the function of the protein Choline Kinase Alpha.
  • compositions or formulations include those that are suitable for oral or parenteral administration (including subcutaneous, intradermal, intramuscular and intravenous), although the best route of administration depends on the patient's condition.
  • the formulations can be in the form of single doses.
  • the formulations are prepared according to methods known in the field of pharmacology.
  • the amounts of active substances to be administered may vary depending on the particularities of the therapy.
  • a further aspect of the present application consists of a diagnostic kit for carrying out the present invention.
  • the present invention includes a kit comprising an antibody that especially recognizes the protein Choline Kinase Alpha and a carher in a suitable container.
  • this kit is used to detect the presence of cancer in an individual, preferably lung, breast or colorectal cancer, to determine the stage or severity of said cancer in the individual, or to monitor the effect of the therapy administered. to an individual who has said cancer.
  • a final aspect of the present invention consists of an in vitro method for diagnosing the survival time of a patient suffering from breast, lung or bladder cancer comprising the evaluation of the level of expression of
  • the choline kinase alpha protein in a sample of the cancer tissue extracted from the patient by determining in said sample of at least one parameter related to the choline kinase alpha protein that is selected between the level of its messenger RNA, the concentration of said protein or the enzymatic activity of said protein, and the comparison of the value obtained with the value corresponding to one or more samples of normal tissue not cancerous
  • Antibody specificity Polyclonal and monoclonal antibodies have been developed that recognize the enzyme Colin Kinase Alpha, a protein that has been semi-purified and expressed as an antigen in the generation phase, and as a production control in the remaining phases of the process.
  • the two enzymes CKa and CK ⁇
  • the homology reaches up to 75%, it is necessary to check what isoenzymes are capable of recognizing the generated polyclonal and monoclonal antibodies.
  • Tumor specificity Alteration of Choline Kinase Alpha in different human tumors.
  • Figure 3 shows an example of the results obtained for large cell lung cancer (NSCLC), which currently accounts for 80% percent of lung cancer cases.
  • NSCLC large cell lung cancer
  • Choline Kinase Alpha has oncogenic activity. To carry out this study, we first study whether this gene confers the ability to growth in an independent means of anchorage, which is a measure of its transformative capacity. Human HEK293T cells were transfected with an empty vector as a control and with a Choline Kinase Alpha expression vector, and seeded in soft agar. As can be seen in Figure 6, the overexpression of this protein is sufficient to induce the oncogenic transformation of both human HEK293T cells and MDCK dog epithelial cells.
  • mice Since Alpha Chinase Kinase has transformative activity in human HEK293T cells, we have analyzed its oncogenic potential in vivo. For this, immunosuppressed mice (Nu / Nu) were injected with one million human HEK293T cells that over-expressed either the empty vector as a control, or the expression vector of the Choline Kinase Alpha alpha. Tumor growth was monitored at! less twice a week for 50 days after the injection. While control cells did not induce any tumor in any of the injected mice, cells that overexpressed Choline Kinase Alpha induced tumors in 8 of the 30 injected mice (26%), which reached an average of 0.6cm 3 after 45 days (Figure 7).
  • Control mice received equivalent doses of vehicle, following the same schedule, and the tumors were monitored at least twice a week.
  • the inhibition of Choline Kinase Alpha results in a strong inhibition of tumor growth, reaching a reduction of tumor growth of 80%.
  • Influence of choline kinase ⁇ in lung cancer Level of overexpression and incidence in survival
  • mRNA levels corresponding to said enzyme were detected in cell lines derived from lung cancer patients, again by automated real-time quantitative PCR reactions with specific Taqman probes. They were performed on cell lines corresponding to the most common lung cancer (75-85%), non-microcritical or NSCLC (non-small cell lung cancer), represented by lines H460 and H 1299, as well as on lines corresponding to the other type of cancer, the microcytic or SCLC (small cell lung cancer), represented by lines H510 and H82, representing the logarithmic scale data referring to primary normal human cells of bronchial epithelium, BEC. The results are shown in Figure 16a.
  • Table 1 Antiproliferative effect of ChoK inhibition against cell lines derived from human lung tumors.
  • Example 9 Influence of choline kinase ⁇ in bladder cancer: Level of overexpression and incidence in survival
  • Figure 21a shows the variation in the average levels of ChoK ⁇ expression between the negative and positive patients with respect to the presence of lymph nodes (values joined by the line that presents squares without padding at the ends) or the development of metastases (values joined by the line that has filled circles at its ends).
  • Figure 21 b shows a graph that represents the variation in the proportion of patients with metastases (bars filled with continuous dark filling,
  • a relationship between Ia is observed ChoK ⁇ expression and the development of metastases that do not reach the level of statistical significance.
  • Example 10 The results of Examples 7, 8 and 9 confirm that ChoK ⁇ is overexpressed with high incidence in human breast, lung and bladder tumors. Its overexpression is associated with clinical parameters indicating greater malignancy: presence of lymph nodes, metastasis and low patient survival.
  • Example 10 The results of Examples 7, 8 and 9 confirm that ChoK ⁇ is overexpressed with high incidence in human breast, lung and bladder tumors. Its overexpression is associated with clinical parameters indicating greater malignancy: presence of lymph nodes, metastasis and low patient survival.
  • the interfering sequence is expressed in a construction in which it is under a repressor that prevents its expression.
  • the co-transfection of the construction of inducible interest is carried out together with a repressor, which prevents its expression and, once a homogeneous population has been selected with this construction, the cells are treated with an inductor, which allows the expression of the interfering construction and, by therefore, the interference of the expression of the protein.
  • the interfering construct for ChoK ⁇ is expressed in the pSUPERIOR-pure vector (Oligoengine) and the repressor in the pcDNA6 / TR vector (Invitrogen).
  • the inducer used is the doxocycline which, by joining the repressor, prevents it from joining the corresponding sequence, so that the expression of the interfering sequence is no longer impeded.
  • a scheme of this system can be seen in Figure 22.
  • Figures 23 and 24 show the results obtained in Ch-ind-1 cells, a cell line derived from MDA-MB-231, capable of expressing the interfering construct after treatment with the doxocycline inducing agent.
  • Figure 23 demonstrates that this inducible line is still sensitive to the chemical inhibition of ChoK ⁇ in a manner similar to what happens in MDA-MB- 231 (The parental control line derived from breast adenocarcinoma from which Ch-ind-1 is generated), since the results obtained after treatment with choline kinase inhibitors MN58b or RSM936 are similar in both lines.
  • Figure 24 shows how the genetic inhibition of ChoK ⁇ occurs only in Ch-ind-1 when treating both cell lines with 10 ⁇ g / ml of doxocycline, since the induction of the interfering model with doxocycline can only occur in the line Ch-ind-1, as it has a construction from which the synthesis of interfering RNA can occur when the repressor binding is prevented).
  • the genetic inhibition of ChoK ⁇ is correlated with a decrease in cell proliferation (determined by pCNA) and an increase in cell death by apoptosis (determined by PARPdig, degraded PARP protein, which is an indicator of apoptosis). The effect begins to be seen at 10 days, although it is still very initial, and is much more pronounced at 20 days from the beginning of the experiment (where the population already has very little expression of ChoK ⁇ ).
  • ChoK ⁇ choline kinase beta
  • a polyclonal anti-ChoK ⁇ l antibody was generated. The specificity thereof was checked in three groups of transfected Hek293T cells, one with a construction from which the expression of ChoK ⁇ was produced, a second with a construction that allowed Ia expression therein of ChoK ⁇ and the third with a construction in which a ChoK ⁇ -GFP chimeric protein was expressed, as well as in a group of control cells, transfected with an empty vector.
  • Athymic mice (Nu / Nu) were re-used to inject one million transfected HEK293T human cells, either with an empty vector as a control, with a choline kinase alpha expression vector, with an expression vector of choline kinase beta and, in a last group, co-transfection of the vectors that expressed each of the isoenzymes, choline kinase alpha and beta, occurred. Tumor growth was monitored at least twice a week for 13 weeks after the injection.
  • Figure 27 shows the data obtained in lung samples of patients operated after isolating the messenger RNA from them and performing automated real-time quantitative PCR reactions with probes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Método in vitro para identificar compuestos para terapia del cáncer. La presente invención se refiere a un método in vitro para identificar y evaluar compuestos útiles en el tratamiento de distintos tipos de cáncer, en especial cáncer de pulmón, de mama, colorrectal y de vejiga, en un individuo, para determinar el estadio o severidad de dicho cáncer en el individuo, o para monitorizar el efecto de la terapia administrada a un individuo que presente dicho cáncer; a la búsqueda, identificación, desarrollo y evaluación de la eficacia de compuestos para terapia de dicho cáncer, con el fin de desarrollar nuevos medicamentos; así como a agentes que inhiben la expresión y/o la actividad de la proteína Colina Quinasa Alfa y/o los efectos de esta expresión.

Description

TÍTULO
MÉTODO IN VITRO PARA IDENTIFICAR COMPUESTOS PARA TERAPIA DEL
CÁNCER
CAMPO DE LA INVENCIÓN
La presente invención se refiere a un método para identificar y evaluar Ia eficacia de compuestos para ia terapia del cáncer, especialmente para el cáncer de pulmón, de mama o colorrectal, con el fin de desarrollar nuevos medicamentos; así como a agentes que inhiben Ia expresión y/o Ia actividad de Ia proteína Colina Quinasa Alfa, y/o los efectos de esta expresión.
ANTECEDENTES DE LA INVENCIÓN
La Colína Quinasa (conocida también como CK, CHK y ChoK) es Ia primera enzima de Ia ruta de Kennedy o de síntesis de fosfatidilcolina (PC), y fosforila Ia colina a fosforilcolina (PCho) en presencia de magnesio (Mg2+), utilizando adenosina δ'-tπfosfato (ATP) como dador de grupos fosfato. La transformación mediada por diversos oncogenes, induce niveles elevados de actividad Colina Quínasa, dando lugar a un incremento anormal en los niveles intracelulares de su producto, PCho, Io que apoya indirectamente el papel de Ia Colina Quínasa en Ia generación de tumores humanos. Sin embargo, existen mecanismos alternativos de generación de PCho que no implican Ia activación de Ia Colina Quinasa y que podrían explicar los niveles elevados de este metabolito en las células tumorales. Si bien existe evidencia del incremento de Ia actividad de Ia enzima Colina
Quinasa en tumores y células transformadas, su relación con el proceso carcinogénico no está suficientemente demostrada al no haberse establecido una clara relación causa-efecto entre el incremento de actividad y Ia transformación tumoral. Por otra parte, todavía no se ha identificado Ia molécula responsable de este efecto.
Se han identificado cerca de 200 secuencias génicas que codifican para polipéptidos con estructura primaria homologa a Ia Colina Quinasa designadas como Colina Quinasa alfa a, Colina Quínasa alfa b, Colina Quinasa alfa 3, Colina Quinasa beta 1 , Colina Quinasa beta 2, Colina Quinasa CKB-1
Colina/etanolamina quinasa Colina Quinasa-like Etanolamina quinasa, Cots,
Duff227, Cog3173, CPT1 B, SF1.SHOX2, FHOD2, FLJ12242, KRT5,FBL,
ARL6IP4, etc. (ver http://www.ncbi, nlm.nih.gov/ BLAST/Blast.cgi#219541) tanto en humanos como en otros mamíferos y roedores (rata, ratón, vaca, cobaya, conejo, mono). De hecho, desde 1982 existe evidencia bioquímica de que en diferentes tejidos aislados de rata, ratón y de humanos hay al menos tres isoenzimas con actividad Colina Quinasa que manifiestan propiedades físico-químicas diferentes.
Recientemente, se han identificado en el genoma humano al menos 3 genes que codifican para proteínas con actividad Colina Quinasa demostrada, designados como ck-alfa, ck-beta, y HCEKV (USA Patent US2003186241 ), y varios genes cuyas proteínas codificadas presentan homología de entre un 30- 65% con las codificadas por los genes ck, como por ejemplo los genes CA116602, CHKL, CAI16600, CAI16599, CAH56371 , CAI16603, BAA91793, CAI16598 descritos en (http://www.ncbi.nlm.nih.gov/ BLAST/ Blast.cgi), y los genes CPT1 B, EKI2, SF1 , SHOX2, FHOD2, FLJ12242, KRT5, FBL, ARI61p$, TOMM40, MLL, descritos en (http://www.ebi.ac.uk/cgi-bin/sumtab7tool =asdblast&jobid=blast- 20050412-18072127). Una característica muy relevante de las diferentes isoenzimas de Colina Quinasa es que presentan propiedades bioquímicas diferentes, con importantes variaciones en su afinidad por el substrato colina o por el donante de fosfatos ATP, e incluso en su forma activa, que puede presentarse como dímeros o tetrámeros. Por tanto, es preciso definir si existe una relación directa entre alguna de las diferentes isoenzimas de Colina Quinasa identificadas y Ia capacidad tumorogénica atribuida por su sobreexpresiόn en tumores humanos.
Por otra parte, Ia inhibición de Ia Colina Quinasa ha demostrado ser una nueva y eficaz estrategia antitumoral en células transformadas por oncogenes, Io que ha sido extrapolado a ratones desnudos in vivo. Recientemente, se ha publicado el aumento de actividad de Ia Colina Quinasa en diversos carcinomas de mama humanos, y se ha visto que Ia alteración de Ia Colina Quinasa es un acontecimiento frecuente en algunos tumores humanos tales como los de pulmón, colorrectales y próstata. A pesar de Ia correlación entre unos parámetros y otros, en Ia actualidad no existe evidencia que establezca de forma fehaciente que Ia sobreexpresión de Colina Quinasa tiene actividad oncogénica y tumoral en células humanas. Sí existen evidencias que indican que los inhibidores de Ia actividad colina quinasa, como el hemicolinio-3 [Cuadrado A., Carnero A., Dolfi F., Jiménez B. and Lacal J. C. Oncogene 8, 2959-2968 (1993); Jiménez B., del Peso L., Montaner S., Esteve P. and Lacai J. C. J. CeII Biochem. 57, 141-149 (1995); Hernández- Alcoceba, R., Saniger, L., Campos, J., Núñez, M. C1 Khaless, F,, Gallo, M. Á., Espinosa, A., Lacal, J. C. Oncogene, 15, 2289-2301 (1997)] o las metilenquinonas de toxicidad reducida descritas en Ia solicitud de patente ES200503263, presentan actividad antitumorogénica. Sin embargo, no existe en los mencionados documentos ni el resto de Ia técnica anterior evidencia concluyente de cuál de las diversas isoenzimas con actividad Colina Quinasa demostrada (ck-alfa , ck-beta, HCEKV, etc) e identificadas en tejidos humanos podría ser Ia responsable de Ia actividad enzimática detectada, ni de cuál de las isoenzimas es sensible a Ia inhibición por los inhibidores que han mostrado actividad antitumoral. Esta identificación es necesaria para poder establecer su potencial utilización como diana terapéutica en cáncer.
OBJETO DE LA INVENCIÓN
La presente invención tiene como objeto principal un método In vitro para buscar, identificar y evaluar Ia eficacia de compuestos para Ia terapia del cáncer, en especial para el cáncer de pulmón, mama o colorrectal.
Un objeto adicional de Ia invención reside en el uso de secuencias nucleotídicas o peptídicas derivadas del gen colina quinasa alfa en métodos de búsqueda, identificación, desarrollo y evaluación de Ia eficacia de compuestos para terapia del cáncer, preferiblemente del cáncer de pulmón, de mama o colorrectal.
Otro objeto de Ia presente invención consiste en proporcionar agentes caracterizados porque inhiben Ia expresión y/o Ia actividad de Ia proteína Colina Quinasa Alfa, para el tratamiento del cáncer, preferiblemente del cáncer de pulmón, de mama o colorrectal. Es también objeto de Ia invención una composición farmacéutica que comprenda uno o varios agentes terapéuticos junto con un excipiente farmacéuticamente aceptable, para el tratamiento del cáncer, preferiblemente del cáncer de pulmón, de mama o colorrectal.
Es también objeto de Ia presente invención un método in vitro de monitorización del efecto de una terapia administrada a un paciente de cáncer, caracterizado porque Ia evaluación del nivel de expresión de Ia proteína colina quinasa alfa en una muestra de tejido extraída del paciente al que se está suministrando un agente anti-tumoral, preferiblemente un agente según las reivindicaciones 3 - 5, mediante Ia determinación en dicha muestra de al menos un parámetro relacionado con ¡a proteína colina quinasa alfa que se selecciona entre el nivel de su RNA mensajero, Ia concentración de dicha proteína o su actividad enzimática, y Ia comparación del valor obtenido con el valor correspondiente a una o más muestras de tejido normal no canceroso.
Por último, otro objeto de Ia presente invención consiste en un kit de diagnóstico para llevar a cabo Ia presente invención.
DESCRIPCIÓN DE LAS FIGURAS
Figura 1 : A) Actividad Colina Quinasa (ChoK) en extractos de células humanas Hek293T (Human embryonic kidney cells) tras sobre-expresar Colina Quinasa Alfa y Beta (ensayo de actividad colina quinasa ex vivo). B) Niveles intracelulares de fosforilcolina en las células vivas (ensayo de actividad Colina Quinasa in vitro).
Figura 2: A) Actividad ChoK en células humanas Chok293T tras sobre- expresar Colina Quinasa Alfa y Beta. B) Especificidad de los anticuerpos monoclonales generados frente a Colina Quinasa Alfa en los mismos extractos que se muestrean en A. Figura 3: Sobreexpresión de Colina Quinasa Alfa determinada mediante técnicas inmunohistoquímicas en NSCLC (Non-small cell lung cáncer). Figura 4: Sobreexpresión de Colina Quinasa Alfa determinada mediante técnicas inmunohistoquímicas en cáncer de mama.
Figura 5: Sobreexpresión de Colina Quinasa Alfa determinada mediante técnicas inmunohistoquímicas en cáncer de colon. B) Pólipo en el que se observa Ia tinción progresiva desde las lesiones pre-neoplásticas al alud del tumor.
Figura 6: Crecimiento independiente de anclaje de células que sobre- expresan Colina Quinasa Alfa humana. Se muestran tanto el número de colonias generados como el tamaño relativo de las mismas en las dos líneas celulares analizadas, Hek293 y MDCK. Figura 7: Capacidad oncogénica in vivo en ratones nu/nu de Colina
Quinasa Alfa
Figura 8: Expresión y actividad enzimática de Colina Quinasa Alfa en los tumores inducidos in vivo.
Figura 9: Especificidad del inhibidor MN58b sobre Colina Quinasa Alfa. Extractos de E.coli en que se expresan las proteínas recombinantes Colina Quinasa Alfa o Colina Quinasa Beta humanas fueron analizados en ausencia (0) o en presencia de concentraciones crecientes de MN58b.
Figura 10: Efecto antitumoral del inhibidor MN58b en los tumores inducidos por sobreexpresión de Colina Quinasa Alfa Figura 11 : Bloqueo de Ia expresión de Colina Quinasa Alfa por !a técnica de siRNA en células humanas HeK293T.
Figura 12: Bloqueo de Ia expresión de Colina Quinasa Alfa mediante siRNA en células tumorales derivadas de un carcinoma de mama humano, determinada tanto por Western Blotting A) y B) como por actividad enzimática C). Figura 13: Muerte por apoptosis inducida por el RNA interferente específico de Colina Quinasa Alfa en células humanas tumorales de mama MDA- MB-231. A) Análisis por citometría de flujo con yoduro de propidio. B) Digestión de PARP asociada a Ia muerte por apoptosis.
Figura 14: RNA interferente específico de Colina Quinasa Alfa en células humanas primarias epiteliales de mama HMEC. A) Niveles básales de expresión de Colina Quinasa Alfa en células normales HMEC respecto a las células tumorales MDA-MB-231. B) Interferencia con Colina Quinasa Alfa en HMEC. C) La interferencia de Colina Quinasa Aifa no induce muerte celular en células primarias humanas de HMEC.
Figura 15: Sobreexpresión de Colina Quinasa Alfa en tejido de cáncer de mama. Figura 15a: RNA mensajero de Colina Quinasa Aifa en tejidos de pacientes aquejados de cáncer de mama detectado por PCR cuantitativa a tiempo real, representado como el logaritmo en base 10 de Ia relación entre ¡a cantidad detectada y Ia presente en una muestra de tejido normal. Figura 15b: valor medio de Ia expresión de Colina Quinasa Alfa, representado como las unidades relativas de expresión del gen calculadas a partir del nivel de mRNA con el método de 2~ΔΔC(), en individuos sin metástasis {primera barra, marcada como "NO") o con metástasis (segunda barra, marcada como "S("). Figura 15c: evolución de Ia probabilidad de supervivencia sin enfermedad según el número de meses transcurridos, entre los pacientes con nodulos linfáticos (línea inferior, marcada con trazos grises, i ) o sin nodulos linfáticos (línea superior, marcada con trazos negros, !)•
Figura 16: Expresión de Colina Quinasa Alfa en líneas celulares derivadas de cáncer de pulmón. Figura 16a: RNA mensajero de Colina Quinasa Alfa en líneas celulares derivadas de cáncer tipo NSCLC (H1299 y H460) o SCLC (H510 y H82), detectado por PCR cuantitativa a tiempo real, representado como el logaritmo en base 10 de Ia relación entre Ia cantidad detectada y Ia presente en células normales primarias de epitelio bronquial (BEC). Figura 16b: proteína Colina Quinasa Alfa detectada por inmunoensayo con un anticuerpo monoclonal en células normales de epitelio bronquial (BEC) y en líneas celulares derivadas de cáncer de pulmón H460, H1299, H510 y H82; inmediatamente debajo se representa Ia señal obtenida para Ia tubulina en las mismas muestras. Figura 16c: actividad Colina Quinasa, representada por Ia señal de PCho marcada radiactivamente, detectada por microgramo de proteína, al cabo de 30 minutos, generada a partir de colina marcada en cada una de las líneas celulares indicadas bajo las barras correspondientes. Figura 17: Expresión del RNA mensajero de Colína Quinasa Alfa, en tejido de tumores extraídos de pacientes aquejados de cáncer de pulmón NSCLC en estadios tempranos, detectado por PCR cuantitativa a tiempo real, representado como el logaritmo en base 10 de Ia relación entre Ia cantidad detectada y Ia presente en una muestra de tejido normal.
Figura 18: Evolución de Ia probabilidad de supervivencia de pacientes aquejados de cáncer de pulmón con el transcurso del tiempo, representado en meses, en el caso de que se detecte o expresión de Colina Quinasa Alfa {líneas discontinuas, - 1 -) o no se detecte (líneas continuas, -I-). Se representan Ia supervivencia global de pacientes en estadios I a IV (gráfico situado en Ia parte superior izquierda), Ia supervivencia libre de enfermedad de pacientes en estadios I a IV (tiempo que transcurre desde que los pacientes son operados hasta que sufren una recaída) (gráfico situado en Ia parte inferior izquierda), Ia supervivencia en el caso de cáncer de los estadios IA-IIIA (gráfico situado en Ia parte superior derecha) y Ia supervivencia libre de enfermedad en el caso de los estadios IA-IIIA (gráfico situado en Ia parte inferior derecha).
Figura 19: Expresión de Colina Quinasa Alfa en líneas celulares derivadas de cáncer de vejiga. Figura 19a: RNA mensajero de Colina Quinasa Alfa en líneas celulares derivadas de cáncer de vejiga detectado por PCR cuantitativa a tiempo real, representado como el logaritmo en base 10 de Ia relación entre Ia cantidad detectada y Ia presente en células normales de vejiga inmortalizadas UrotSa; las barras corresponden, de izquierda a derecha, a las líneas HT1376, J82, SW780, TCCSup y UMVC3. Figura 19b: proteína Colina Quinasa Alfa detectada por inmunoensayo con un anticuerpo monoclonal en células normales de vejiga inmortalizadas (UrotSa) y en las líneas celulares derivadas de cáncer de vejiga TCCsup, J82, UMVC3, SW789 y HT1376, así como en un control negativo (células Hek293T) y en un control positivo (células Hek-ChoK, transfectadas con un plásmido que expresa Colina Quinasa Alfa); inmediatamente debajo se representa Ia señal obtenida para Ia tubulina en las mismas muestras. Figura 16c: actividad Colina Quinasa, representada por Ia señal de PCho marcada radiactivamente, detectada por microgramo de proteína, al cabo de 30 minutos, generada a partir de colina marcada en cada una de las líneas celulares indicadas bajo las barras correspondientes.
Figura 20: Expresión de Colina Quinasa Alfa en pacientes aquejados de cáncer de vejiga. Figura 20a: Valores medios de expresión obtenidos a partir de tejidos tumorales de 90 pacientes mediante el microarray U 133 Plus 2.0 de Affymetrix, obtenidos en los distintos grupos clasificados según el valor del factor de inducción: una inducción de 1 a 3 veces (primera barra), una inducción de 3 a 8 veces o una inducción de 8 a 24 veces (tercera barra). Figura 20 b: RNA mensajero de Colina Quinasa Alfa en 20 pacientes aquejados de cáncer de vejiga, detectado por PCR cuantitativa a tiempo real, representado como el logaritmo en base 10 de Ia relación entre Ia cantidad detectada y Ia presente en células normales de vejiga inmortalizadas UrotSa; Ia línea horizontal representa el nivel a partir del cual hay una asociación con peor pronóstico de evolución del paciente.
Figura 21 : Relación entre Ia expresión de Colina Quinasa Alfa y Ia presencia de nodulos y/o metástasis. Figura 21a: Niveles medios de expresión de Colina Quinasa Alfa en los pacientes negativos y positivos respecto a Ia presencia de nodulos linfáticos (valores marcados con cuadrados sin relleno, D) o de metástasis (valores marcados con círculos rellenos, •); las líneas rectas unen los valores medios correspondientes a los individuos positivos o negativos respecto a Ia característica considerada para ayudar a apreciar Ia diferencia de nivel entre uno y otro grupo). Figura 21 b: proporción de pacientes con metástasis (barras con relleno oscuro continuo, |) y sin metástasis (barras rellenas con líneas inclinadas, //), en grupos de pacientes clasificados según el nivel de expresión de Colina Quinasa Alfa: baja (pareja de barras de Ia izquierda), intermedia (pareja de barras situadas en Ia parte intermedia de Ia gráfica) o alta (pareja de barras situadas en Ia parte derecha de Ia gráfica).
Figura 22: Esquema de funcionamiento de Ia construcción a partir de Ia cual puede sintetizarse un RNA interferente. En presencia de represor (zona izquierda, "No Expresión", se une a Ia construcción e impide Ia síntesis del RNA); en presencia de un inductor (doxociclina), el mismo se une al represor, impidiendo su unión a Ia construcción interferente y permitiendo Ia síntesis de! RNA interferente (zona derecha, "Expresión"). Figura 23: Proliferación de células MDA-MB-231 (fila superior de placas) y
Ch-ind-1 (fila inferior de placas) en condiciones permisivas de crecimiento (columna "Control") o en presencia de los inhibidores químicos de Colina Quinasa MN58b (columna intermedia) o RSM936 (columna de Ia derecha). Figura 24: Comportamiento de las células MDA-MB-231 (barras marcadas como "MDA") y Ch-¡nd-1 (barras marcadas como "Chindi") en ausencia ("-") o presencia "+" de 10 μg/ml de doxociclina, transcurridos 10 días ("1 Od") ó 20 días ("2Od"). A: Influencia en Ia inhibición genética de Colina Quinasa Alfa según Ia relación entre los niveles de Colina Quinasa Alfa y GAPDH; B: Influencia en Ia proliferación celular, según Ia relación entre los niveles de pCNA y GAPDH; C: Viabilidad celular de las células Ch-ind-1 en ausencia (línea punteada) o en presencia (línea de trazo continuo) de inductor, deducida de los valores de absorbancia a 500 nm observados a distintos tiempos; D: Influencia sobre Ia inducción de apoptosis, según Ia relación entre los niveles de proteína PARP degradada respecto al total de proteína PARP (PARPdig/PARPtotal).
Figura 25: Especificidad del anticuerpo policlonal contra Colina Quinasa Beta. A: Inmunoensayo en el que se hace interaccionar un antisuero policlonal anti-Colina Quinasa beta con muestras de células transfectadas con un vector vacío (calle marcada "Vacío"), un vector de expresión de Colina Quinasa Alfa (calle marcada "ChoKA"), un vector de expresión de Colina Quinasa Beta (calle marcada "ChoKB") y un vector de expresión de una proteína quimérica Colina Quinasa Beta - Proteína Verde Fluorescente (calle marcada "ChoKBδ'GFP"). Las flechas indican al altura de bandeo de Ia Colina Quinasa Beta y de Ia proteína quimérica. B: Inmunoensayo en el que se hace interaccionar un anticuerpo policfonal anti-Colina Quinasa Alfa con muestras de células transfectadas con un vector vacío (calle marcada "Vacío"), un vector de expresión de Colina Quinasa Alfa (calle marcada "ChoKA"), un vector de expresión de Colina Quinasa Beta (calle marcada "ChoKB") y un vector de expresión de una proteína quimérica Colina Quinasa Beta - Proteína Verde Fluorescente (calle marcada "ChoKBδ'GFP"). Las flechas indican al altura de bandeo de Ia Colina Quinasa Alfa.
Figura 26: Comparación de Ia capacidad tumorogénica de las Colina Quinasas Alfa y Beta. Evolución del volumen tumoral, medido en centímetros cuadrados, según las semanas que se indican en abscisas, transcurridas desde Ia inyección a ratones de células transfectadas con: un vector vacío (datos indicados con rombos, "4"), un vector de expresión de Colina Quinasa Alfa (datos indicados con cuadrados, "m"), un vector de expresión de Colina Quinasa Beta (datos indicados con triángulos, "Δ") y un vector de expresión de Colina Quinasa Alfa + un vector de expresión de Colina Quinasa Beta (datos indicados con aspas, "X"). Figura 27: RNA mensajero de Colina Quinasa Beta en tejido de pacientes aquejados de cáncer de pulmón, detectado por PCR cuantitativa a tiempo real, representado como el logaritmo en base 10 de Ia relación entre Ia cantidad detectada y Ia presente en tejido normal.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Para facilitar Ia comprensión de Ia presente solicitud de patente, exponemos a continuación el significado de algunos términos y expresiones en el contexto de Ia invención: Los términos "sujeto" o "individuo" se refieren a miembros de especies de animales mamíferos, e incluye, pero no se limita, a animales domésticos, primates y humanos; el sujeto es preferiblemente un ser humano, masculino o femenino, de cualquier edad o raza.
El término "cáncer" se refiere a Ia enfermedad que se caracteriza por un crecimiento anormal o descontrolado de las células, capaces de invadir tejidos adyacentes y diseminarse a órganos lejanos.
El término "carcinoma" se refiere al tejido que resulta del crecimiento celular anormal o descontrolado.
El término "cáncer de mama" o "carcinoma de mama" se refiere a cualquier desorden proliferativo maligno de células de Ia mama.
El término "cáncer de colon" o "carcinoma de colon" se refiere a cualquier desorden proliferativo maligno de células del colon.
El término "cáncer de recto" o "carcinoma de recto" se refiere a cualquier desorden proliferativo maligno de células del recto. El término "tumor" se refiere a cualquier masa anormal de tejido producto de un proceso neoplásico, benigno (no canceroso) o maligno (canceroso). El término "gen" se refiere a una cadena molecular de desoxirribonucleótidos, que codifica una proteína.
El término "DNA" se refiere al ácido desoxirribonucleico. Una secuencia de DNA es una secuencia de desoxirribonucleótidos. El término "cDNA" se refiere a una secuencia de nucleótidos, complementaria de una secuencia de mRNA.
El término "RNA" se refiere al ácido ribonucleico. Una secuencia de RNA es una secuencia de ribonucleótidos.
Ei término "mRNA" se refiere al ácido ribonucleico mensajero, que es Ia fracción del RNA total que se traduce a proteínas.
La frase "mRNA transcrito de" se refiere a Ia transcripción del gen (DNA) en mRNA, como primer paso para que el gen se exprese y traduzca a proteína.
El término "secuencia de nucleótidos" o "secuencia nucleotídica" se refiere indistintamente a una secuencia de ribonucleótidos (RNA) o de desoxirribonucleótidos (DNA).
El término "proteína" se refiere a una cadena molecular de aminoácidos, unidos por enlaces covalentes o no covalentes. El término incluye todas las formas de modificaciones post-traduccionales, por ejemplo glicosilación, fosforilación o acetilación. Los términos "péptido" y "polipéptido" se refieren a cadenas moleculares de aminoácidos que representan un fragmento proteico. Los términos "proteína" y "péptido", se usan indistintamente.
El término "anticuerpo" se refiere a una glucoproteína que exhibe una actividad de unión específica por una molécula diana, a Ia que se denomina "antígeno". El término "anticuerpo" comprende anticuerpos monoclonales, o anticuerpos policlonales, intactos, o fragmentos de ellos; e incluye anticuerpos humanos, humanizados y de origen no humano. Los "anticuerpos monoclonales" son poblaciones homogéneas de anticuerpos, altamente específicos, que están dirigidos contra un único sitio o "determinante" antigénico. Los "anticuerpos policlonales" incluyen poblaciones heterogéneas de anticuerpos, que están dirigidos contra diferentes determinantes antigénicos. El término "epítopo", tal como se utiliza en Ia presente invención, se refiere a un determinante antigénico de una proteína, que es Ia secuencia de aminoácidos de Ia proteína que un anticuerpo específico reconoce.
El término "diana terapéutica" se refiere a secuencias nucleotídicas o peptídicas, contra las que se puede diseñar y aplicar clínicamente un fármaco o compuesto terapéutico.
El término "antagonista" se refiere a cualquier molécula que inhiba Ia actividad biológica de Ia molécula antagonizada. Ejemplos de moléculas antagonistas incluyen, entre otros, proteínas, péptidos, variaciones de secuencia de péptidos naturales y pequeñas moléculas orgánicas (de peso molecular inferior a 500 daltons).
El término "valores normales de referencia", usado en Ia presente invención se refiere al nivel de ciertas proteínas, mRNA u otros metabolitos del cuerpo presenta un individuo sano. El término tejido normal usado en Ia presente invención se refiere a un tejido no canceroso, incluyendo cultivos celulares comerciales.
La presente invención se basa en el descubrimiento de que Ia expresión de Ia proteína Colina Quinasa Alfa se ve incrementada en los procesos tumorales, y especialmente en los cánceres de pulmón, mama y colorrectaí. Así como en el sorprendente descubrimiento de que Ia sobreexpresión de dicha proteína induce tumores in vivo y que consecuentemente Ia inhibición de Ia expresión y/o Ia actividad de esta enzima es un excelente método para el tratamiento del cáncer, especialmente para el cáncer de pulmón, de mama y colorrectaí. La Colina Quinasa Alfa es, por tanto, una buena diana terapéutica potencial en tumorogénesis humana.
En este sentido, Ia presente invención proporciona, en primer lugar, un método in vitro para detectar Ia presencia de cáncer en un individuo, preferiblemente cáncer de pulmón, mama o colorrectaí, para determinar el estadio o Ia severidad de dicho cáncer en el individuo, o para monitorizar el efecto de Ia terapia administrada a un individuo que presente dicho cáncer, que comprende: a) la detección y/o cuantificación de Ia proteína Colina Quinasa Alfa, del mRNA de! gen colina quinasa alfa o el correspondiente cDNA en una muestra de dicho individuo, y b) Ia comparación de !a cantidad de proteína Colina Quinasa Alfa, de Ia cantidad de mRNA del gen colina quinasa alfa o de Ia cantidad del correspondiente cDNA detectada en una muestra de un individuo; con Ia cantidad de proteína Colina Quinasa Alfa, con Ia cantidad del mRNA del gen colina quinasa alfa o con Ia cantidad del correspondiente cDNA detectada en las muestras de individuos control o en muestras anteriores del mismo individuo o con los valores normales de referencia.
El método proporcionado por Ia presente invención es de alta sensibilidad y especificidad, y se basa en que sujetos o individuos diagnosticados de cánceres, preferiblemente de pulmón, mama y colorrectal, presentan niveles elevados de mRNA transcrito del gen colina quinasa alfa, o concentraciones elevadas de Ia proteína codificada por el gen colina quinasa alfa (Proteína Colina
Quinasa Alfa), en comparación con los correspondientes niveles en muestras procedentes de sujetos sin historial clínico de estos carcinomas. Sin embargo, Ia expresión en humanos del gen colina quinasa beta no se correlaciona con ninguno de los tipo de cáncer anteriormente mencionados.
El presente método comprende una etapa de obtención de Ia muestra del individuo. Se puede trabajar con distintas muestras fluidas como, por ejemplo: orina, sangre, plasma, suero, líquido pleural, líquido ascítico, líquido sinovial, bilis, jugo gástrico, líquido cefalorraquídeo, heces, saliva, broncoscopias, etc. La muestra se puede obtener por cualquier método convencional, preferiblemente resección quirúrgica.
Las muestras pueden ser obtenidas de sujetos previamente diagnosticados, o no diagnosticados, de un determinado tipo de cáncer; o también de un sujeto en tratamiento, o que ha sido tratado previamente contra un cáncer, en particular contra cáncer de pulmón, mama o colorrectal.
El presente método comprende además una etapa de extracción de Ia muestra, ya sea para obtener el extracto de proteínas de ésta, o bien para obtener el extracto de RNA total. Uno de estos dos extractos representa el material de trabajo para Ia siguiente fase. Los protocolos de extracción de Ia proteína total o del RNA total son bien conocidos por el experto en Ia materia (Chomczynski P. et al., Anal. Biochem., 1987, 162: 156; Chomczynski P., Biotechniques, 1993, 15: 532; Molina, MA1 et al., Cáncer Res., 1999, 59: 4356- 4362).
Cualquier ensayo convencional se puede utilizar en el marco de Ia invención para detectar un cáncer, siempre que mida in vitro ios niveles de mRNA transcrito del gen colina quinasa alfa o su cDNA complementario, Ia concentración de Proteína Colina Quinasa Alfa en muestras recogidas de los individuos a analizar y de individuos control.
Así pues, esta invención proporciona un método para detectar Ia presencia de cáncer, en especial de cáncer de pulmón, mama o colorrectal, para determinar el estadio o Ia severidad de dicho cáncer en el individuo, o para monitorizar el efecto de Ia terapia administrada a un individuo que presenten dichos cánceres, basado bien en Ia medida de Ia concentración de Ia proteína Colina Quinasa Alfa, o bien en Ia medida del nivel de expresión del gen colina quinasa alfa.
En el caso de que Io que se pretenda detectar sea Ia proteína Colina Quinasa Alfa, el método de Ia invención comprende una primera etapa de puesta en contacto del extracto de proteínas de Ia muestra con una composición de uno o más anticuerpos específicos contra uno o más epítopos de Ia proteína Colina Quinasa Alfa, y una segunda etapa de cuantificación de los complejos formados por anticuerpos y Ia proteína Colina Quinasa Alfa.
Existe una amplia variedad de ensayos inmunológicos disponibles para detectar y cuantificar Ia formación de complejos específicos antígeno-anticuerpo; numerosos ensayos de unión de proteínas, competitivos y no competitivos, han sido previamente descritos, y un gran número de estos ensayos está disponible comercialmente.
Así, Ia proteína Colina Quinasa Alfa se puede cuantificar con anticuerpos como, por ejemplo: anticuerpos monoclonales, policlonales, intactos o fragmentos recombinantes de ellos, combibodies y fragmentos Fab o scFv de anticuerpos, específicos contra Ia proteína Colina Quinasa Alfa; siendo estos anticuerpos humanos, humanizados o de origen no humano. Los anticuerpos que se emplean en estos ensayos pueden estar marcados o no; los anticuerpos no marcados se pueden utilizar en ensayos de aglutinación; los anticuerpos marcados se pueden utilizar en una amplia variedad de ensayos. Las moléculas marcadoras que se pueden utilizar para marcar los anticuerpos incluyen radionucleótidos, enzimas, fluoróforos, reactivos quimioluminiscentes, sustratos enzimáticos o cofactores, inhibidores enzimáticos, partículas, colorantes y derivados.
Existe una amplia variedad de ensayos bien conocidos, que se pueden utilizar en Ia presente invención, que utilizan anticuerpos no marcados (anticuerpo primario) y anticuerpos marcados (anticuerpo secundario); entre estas técnicas se incluyen el Western-blot o transferencia Western, ELISA (Enzyme-Linked inmunosorbent assay o ensayo inmunoabsorvente ligado a enzima), RIA (Radioinmunoassay o Radioinmunoensayo), EIA competitivo (Competitive enzyme immunoassay o Inmunoensayo enzimático competitivo), DAS-ELISA (Double antibody sandwich-ELISA o ensayo ELISA sandwich con doble anticuerpo), técnicas inmunocitoquímicas e inmunohistoquímicas, técnicas basadas en el empleo de biochips o microarrays de proteínas que incluyan anticuerpos específicos o ensayos basados en precipitación coloidal en formatos tales como dipsticks. Otras maneras para detectar y cuantificar Ia Proteína EFNB2 o Ia proteína EDNRA1 incluyen técnicas de cromatografía de afinidad, ensayos de unión a ligando o ensayos de unión a lectina.
El inmunoensayo preferido en el método de Ia invención es un ensayo ELISA sandwich con doble anticuerpo (DAS-ELISA). En este inmunoensayo se puede utilizar cualquier anticuerpo o combinación de anticuerpos, específicos contra uno o más epítopos de Ia Proteína Colina Quinasa Alfa. Como ejemplo de uno de los muchos posibles formatos de este ensayo, un anticuerpo, monoclonal o policlonal, o un fragmento de este anticuerpo, o una combinación de anticuerpos, que recubren una fase sólida, se ponen en contacto con Ia muestra a analizar, y se incuban durante un tiempo y en condiciones apropiados para formar los complejos antígeno-anticuerpo. Después de un lavado en condiciones apropiadas para eliminar los complejos no específicos, se incuba con los complejos antígeno-anticuerpo, en condiciones y tiempo apropiados, un reactivo indicador, que comprende un anticuerpo monoclonal o policlonal, o un fragmento de este anticuerpo, o una combinación de estos anticuerpos, unidos a un compuesto generador de una señal. La presencia de Ia proteína Colina Quinasa Alfa en Ia muestra a analizar, se detecta y cuantifica, en caso de que exista, midiendo Ia señal generada. La cantidad de proteína Colina Quinasa Alfa presente en Ia muestra analizar es proporcional a esa señal. En el caso de que se pretenda detectar el mRNA o el cDNA correspondiente al gen colina quinasa alfa, y no las proteínas que codifican, el método de Ia invención para detectar in vitro el carcinoma posee etapas diferentes. Así, una vez obtenida Ia muestra y extraído el RNA total, el método de Ia invención, Ia detección del mRNA o del correspondiente cDNA del gen colina quinasa alfa, comprende una primera etapa de amplificación del mRNA presente en el extracto de RNA total, o del correspondiente cDNA sintetizado por transcripción inversa del mRNA, y una segunda etapa de cuantificación del producto de Ia amplificación del mRNA o del cDNA del gen colina quinasa alfa.
Un ejemplo de amplificación del mRNA, consiste en retrotranscribir el mRNA en cDNA (RT), seguido de Ia Reacción en Cadena de Ia polimerasa (PCR)1; Ia PCR es una técnica de amplificación de una determinada secuencia nucleotídica (diana) contenida en una mezcla de secuencias nucleotídicas. En Ia PCR, se utiliza un exceso de una pareja de oligonucleótidos cebadores, que hibridan con las hebras complementarias de Ia secuencia nucleotídica diana. A continuación, una enzima con actividad polimerasa (DNA Taq Polimerasa) extiende cada cebador, utilizando como molde Ia secuencia nucleotídica diana. Los productos de Ia extensión se convierten entonces en secuencias dianas, tras Ia disociación de Ia hebra diana original. Nuevas moléculas de cebador hibridan y Ia polimerasa las extiende; el ciclo se repite para aumentar exponencialmente el número de secuencias diana. Esta técnica está descrita en las patentes US 4683195 y US 4683202. Se han descrito previamente muchos métodos para detectar y cuantificar los productos de Ia amplificación por PCR, de los que cualquiera puede ser usado en esta invención. En un método preferido de Ia invención, el producto amplificado se detecta por electroforesis en gel de agarosa. En otro ejemplo Ia detección del mRNA se realiza transfiriendo el mRNA a una membrana de nailon, mediante técnicas de transferencia como por ejemplo Northern-blot o transferencia Northern, y detectándolo con sondas específicas del mRNA o del correspondiente cDNA del gen colina quinasa alfa. En una realización particular Ia amplificación y cuantificación del mRNA correspondiente al gen colina quinasa alfa, se realiza a Ia vez mediante RT-PCR cuantitativa a tiempo real (Q-PCR).
El paso final del método de Ia invención para detectar in vitro los carcinomas en cuestión, en una muestra procedente de un individuo, comprende comparar Ia cantidad de proteína Colina Quinasa Alfa, Ia cantidad de mRNA del gen colina qυinasa alfa o Ia cantidad del correspondiente cDNA de Ia muestra proveniente de un individuo, con Ia cantidad de proteína Colina Quinasa Alfa, Ia cantidad de mRNA del gen colina quinasa alfa o Ia cantidad del correspondiente cDNA detectada en las muestras de sujetos control o en muestras anteriores del mismo individuo, o con los valores normales de referencia.
En su segundo objeto, Ia invención también proporciona un método in vitro para identificar y evaluar Ia eficacia de compuestos para terapia del cáncer; preferiblemente para el cáncer de pulmón, de mama o colorrectal, que comprende: a) poner en contacto un cultivo de células tumorales; preferiblemente de pulmón, mama, colon o recto, con el compuesto candidato, en las condiciones y durante el tiempo apropiados para permitir que interaccionen, b) detectar y cuantificar los niveles de expresión del gen colina quinasa alfa o Ia proteína Colina Quinasa Alfa, y c) comparar dichos niveles de expresión con los de cultivos control de células tumorales sin tratar con el compuesto candidato. La cuantificación de los niveles de expresión del gen colina quinasa alfa o
Ia proteína Colina Quinasa Alfa se realizan de modo semejante a como se indica en el método de Ia invención para detectar in vitro Ia presencia de cáncer de pulmón, mama o colorrectal en un individuo.
Cuando un agente disminuye los niveles de expresión del gen colina quinasa alfa o revierte los efectos de Ia expresión elevada de dicho gen, preferiblemente disminuyendo los niveles de proliferación celular, este agente se convierte en candidato para Ia terapia del cáncer. Por tanto, otro objeto de Ia invención se refiere al uso de secuencias nucleotídicas o peptídicas derivadas del gen colina quinasa alfa, en métodos de búsqueda, identificación, desarrollo y evaluación de Ia eficacia de compuestos para terapia del cáncer, en especial para el cáncer de pulmón, de mama o colorectal. Resaltar Ia importancia adquirida últimamente por los métodos de screening de fármacos basados en el binding, competitivo o no, de Ia molécula potencial fármaco a Ia diana terapéutica.
Otro objeto adicional de Ia invención se refiere al uso de secuencias nucleotídicas o peptídicas derivadas del gen colina quinasa alfa para detectar Ia presencia de cáncer, en especial de cáncer de pulmón, de mama o colorrectal, para determinar el estadio o Ia severidad de dichos cánceres en el individuo, o para monitorizar el efecto de Ia terapia administrada a un individuo que presente alguno de estos cánceres.
Otro objeto de Ia invención consiste en proporcionar agentes caracterizados porque inhiben Ia expresión y/o Ia actividad de Ia proteína Colina Quinasa Alfa. Estos agentes, que se pueden identificar y evaluar según Ia presente invención, pueden ser seleccionados del grupo formado por: a) un anticuerpo, o combinación de anticuerpos, específicos contra uno o más epítopos presentes en Ia proteína Colina Quinasa Alfa, preferiblemente un anticuerpo monoclonal humano o humanizado; pudiendo ser también un fragmento del anticuerpo, un anticuerpo de cadena sencilla o un anticuerpo anti- idiotipo, b) agentes citotóxicos, tales como toxinas, moléculas con átomos radiactivos, o agentes quimio-terapéuticos, entre los que se incluyen, sin limitación, pequeñas moléculas orgánicas e inorgánicas, péptidos, fosfopéptidos, moléculas antisentido, ribozimas, siRNAs, moléculas de triple hélice, etc., que inhiben Ia expresión y/o Ia actividad de Ia proteína Colina Quinasa Alfa, y c) compuestos antagonistas de Ia proteína Colina Quinasa Alfa, que inhiben una o más de las funciones de Ia proteína Colina Quinasa Alfa. Constituye también un objeto de Ia presente invención una composición farmacéutica que comprende una cantidad terapéuticamente eficaz de uno o varios agentes de los mencionados anteriormente junto con uno o más excipientes y/o sustancias transportadoras. Además dicha composición puede contener cualquier otro ingrediente activo que no inhiba Ia función de Ia proteína Colina Quinasa Alfa.
Los excipientes, sustancias transportadoras y sustancias auxiliares tienen que ser farmacéuticamente y farmacológicamente tolerables, de modo que puedan ser combinados con otros componentes de Ia formulación o preparación y no ejerzan efectos adversos en el organismo tratado. Las composiciones farmacéuticas o formulaciones incluyen aquellas que son adecuadas para Ia administración oral o parenteral (incluyendo subcutánea, intradérmica, intramuscular e intravenosa), aunque Ia mejor vía de administración depende del estado del paciente. Las formulaciones pueden ser en forma de dosis sencillas. Las formulaciones se preparan de acuerdo con métodos conocidos en el campo de Ia farmacología. Las cantidades de sustancias activas para administrarse pueden variar en función de las particularidades de Ia terapia.
Un aspecto más de Ia presente solicitud consiste en un kit de diagnóstico para llevar a cabo Ia presente invención. Así, en una realización particular Ia presente invención incluye un kit que comprende un anticuerpo que reconoce especialmente Ia proteína Colina Quinasa Alfa y un carher en un envase adecuado. En otra realización particular este kit se emplea para detectar Ia presencia de cáncer en un individuo, preferiblemente cáncer de pulmón, mama o colorrectal, para determinar el estadio o Ia severidad de dicho cáncer en el individuo, o para monitorizar el efecto de Ia terapia administrada a un individuo que presente dicho cáncer.
Un aspecto final de Ia presente invención consiste en un método in vitro para diagnosticar el tiempo de supervivencia de un paciente aquejado de cáncer de mama, pulmón o vejiga que comprende Ia evaluación del nivel de expresión de
Ia proteína colina quinasa alfa en una muestra del de tejido cancerígeno extraída del paciente, mediante Ia determinación en dicha muestra de al menos un parámetro relacionado con Ia proteína colina quinasa alfa que se selecciona entre el nivel de su RNA mensajero, Ia concentración de dicha proteína o Ia actividad enzímática de dicha proteína, y Ia comparación del valor obtenido con el valor correspondiente a una o más muestras de tejido normal no canceroso.
Los siguientes ejemplos ilustran Ia invención.
Ejemplo 1
Actividad Colina Quinasa de las isoformas Como se demuestra en Ia Figura 1 , ambos enzimas CKα2 (52 kDa, 457 aminoácidos) y CKβ1 (45 kDa, 395 aminoácidos) presentan una potente actividad Colina Quinasa, determinada por su capacidad de producir fosforilcolina a partir de colína en presencia de ATP y magnesio (Figura 1A). Esta actividad se manifiesta tanto en su forma recombinante, expresada en E.coli, como tras Ia transfección en células humanas HEK293. Sin embargo, y a pesar de que ambos enzimas tienen actividad Colína quinasa, los niveles intracelulares de fosforilcolina en células vivas no se ven igualmente alterados, siendo prácticamente indetectables en las células que sobre-expresan Colina Quinasa Beta (Figura 1 B). Estos resultados sugieren que tanto Ia regulación fisiológica, como Ia función biológica de estas dos proteínas, y por tanto, su comportamiento en tumorogénesis, puede ser diferencial.
Ejemplo 2
Especificidad del anticuerpo Se han desarrollado anticuerpos policlonales y monoclonales que reconocen el enzima Colína Quinasa Alfa, proteína que ha sido semi-purificada y expresada como antígeno en Ia fase de generación, y como control de producción en las fases restantes del proceso. A pesar de haber sido desarrollados frente a Colína Quinasa Alfa, debido a que las dos enzimas (CKa y CKβ) presentan un 65% de homología global a Io largo de su secuencia, y en algunas regiones conservadas como los dominios de unión a colina y de actividad catalítica Ia homología alcanza hasta un 75%, es necesario comprobar qué isoenzimas son capaces de reconocer los anticuerpos policlonales y monoclonales generados. Hemos verificado que tanto los anticuerpos policlonal como monoclonales utilizados son específicos de Ia Colina Quinasa Alfa, y que no reconocen Colina quinasa Beta. Para ello, hemos sobre-expresado ambas proteínas Colina quinasa Alfa y Beta en células humanas Hek293T, y tras comprobar que las dos proteínas están presentes y son activas (Figura 2A) se ha realizado su análisis por técnicas de inmunodetección ("Western blot") tanto con el anticuerpo policlonal con el que se realizaron estudios previos [Ramírez de Molina, A., Gutiérrez, R., Ramos, M. A., Silva, J. M., Silva, J., Sánchez, J. J., Bonilla, F., Laca!, J. C. Oncogene 21 , 4317-4322 (2002); Ramírez de Molina, A., Rodríguez-González, A., Gutiérrez, R., Martínez-Pinero, L., Sánchez, J. J., Bonilla, F., Rosell, R., Lacal, J. C. Biochem. Biophys. Res. Commun. 296, 580-583 (2002)], como con los nuevos anticuerpos monoclonales generados frente a Colina Quinasa Alfa. Como se muestra en Ia Figura 2B, en Ia que se presenta un ejemplo con dos de estos anticuerpos, incluso sobre-expresando Coüna Quinasa Beta en condiciones en que Ia actividad está incrementada 80 veces, ninguno de los anticuerpos reconoce esta isoforma, siendo Colina quinasa Alfa fuertemente reconocida tanto en las mismas condiciones, como los niveles endógenos del control, en todos casos. Estos resultados indican que los estudios previos de nuestro grupo en el que se utilizó el anticuerpo policlonal definen a Ia Colina Quinasa Alfa como el isoenzima sobreexpresada en líneas celulares derivadas de tumores humanos y en los propios tumores analizados
Estos resultados no eran esperables, dado que los anticuerpos policlonales reconocen por definición diferentes epítopos en Ia molécula y las secuencias de las Colina Quinasas Alfa y Beta son un 65% homologas, llegando en algunas regiones hasta un 75%, especialmente en las regiones de dominios consenso donde residen Ia región catalítica y Ia de unión al sustrato y ATP. Ejemplo 3
Especificidad de tumores: Alteración de Colina Quinasa Alfa en distintos tumores humanos.
La disponibilidad de anticuerpos de probada especificidad frente a Colina Quinasa Alfa ha permitido estudiar Ia posible alteración en Ia expresión de Colina Quinasa Alfa en algunos de los tumores más importantes en Ia actualidad en países desarrollados, como son el cáncer de mama, colon, y pulmón. Para llevar a cabo este estudio, se han realizado cortes de parafina de muestras de entre 38 y 50 pacientes distintos con cada uno de estos tipos de cáncer, y se ha analizado Ia expresión de Colina Quinasa Alfa mediante ¡nmunohistoquímica (IHQ), técnica que permite Ia detección e identificación "in situ" de componentes biomoleculares que son parte integral de células y tejidos, y que se puede realizar de forma automatizada en los Servicios de Anatomía Patológica de cualquier hospital. En las muestras de estos pacientes, tanto de mama, colon o pulmón, hemos encontrado que:
- En todos los casos Ia tinción del tumor con el anticuerpo que reconoce Colina Quinasa Alfa es altamente especifica, permitiendo Ia distinción clara entre el tejido tumoral y el tejido normal adyacente.
- No hay ningún caso en el que se produzca tinción del tejido normal. - El enzima Colina Quinasa Alfa se encuentra sobre-expresada con una incidencia que oscila entre el 62% y el 100% en este tipo de tumores, demostrando Ia alta implicación de esta isoforma, Colina Quinasa Alfa , en tumorogénesis humana.
En Ia Figura 3 se puede observar un ejemplo de los resultados obtenidos para cáncer de pulmón de células grandes (NSCLC), que en Ia actualidad supone el 80% por ciento de los casos de cáncer de pulmón. Como se puede observar, se produce una tinción citoplasmática de Colina Quinasa Alfa, específica de los nudos tumorales y que como se indica anteriormente tiñe de forma específica un 62% de las muestras.
Siguiendo esta línea, se ha realizado un estudio similar en 38 pacientes con cáncer de mama, observándose de nuevo Ia sobreexpresión de Colina Quinasa Alfa de forma específica en el tejido tumoral en un 97% de los casos (Figura 4).
Por último, se ha realizado también el estudio de expresión de Colina Quinasa Alfa en cáncer de colon, para Io cual se han realizado cortes de parafina de 40 muestras de pacientes distintos con cáncer de colon con más de 4 años de seguimiento. El análisis se inició con carcinomas in situ en estadios I, II, III y IV. De manera similar al caso anterior, como tejido normal se ha utilizado el tejido normal de cada preparación adyacente al tejido tumoral. En ningún caso se obtuvo una tinción positiva en los tejidos normales de ninguna de las 40 muestras, confirmando Ia alta especificidad de Ia tinción de Colina Quinasa Alfa en el tejido tumoral, en el que de nuevo se observó sobreexpresión del enzima en todos los casos (Figura 5A). Estos resultados avalan Ia alta implicación de esta isoforma de este enzima en cáncer de colon. Mas aún, este resultado nos llevó al análisis de lesiones pre-neoplásicas, ACFs y pólipos con distintos grados de displasia, donde los resultados muestran claramente que Ia sobreexpresión de Colina Quinasa Alfa es un evento temprano en el proceso de tumoración del tejido de colon que se produce ya desde Ia displasia, sugiriendo su potencial comportamiento como gen "gate-keeper" en estos tumores y por tanto su relevancia como potencial nueva diana terapéutica. En Ia Figura 5B se muestra un pólipo donde se puede observar cómo Ia tinción en ei tejido normal es prácticamente indetectable, y a medida que comienza a aparecer Ia displasia (células binucleares) Ia tinción aumenta, haciéndose muy intensa en el alud del tumor.
Ejemplo 4
Especificidad de tumores: Comportamiento oncogénico del enzima Colina
Quinasa Alfa.
Dada Ia altísima incidencia de desregutación de Colina Quinasa Alfa en algunos de los tumores humanos más importantes en Ia actualidad, hemos estudiado si esta proteína por sí misma tiene capacidad oncogénica, es decir, si
Colina Quinasa Alfa presenta actividad oncogénica. Para llevar a cabo este estudio, en primer lugar estudiamos si este gen confiere Ia capacidad de crecimiento en medio independiente de anclaje, Io que supone una medida de su capacidad transformante. Se transfectaron células humanas HEK293T con un vector vacío como control y con un vector de expresión de Colina Quinasa Alfa, y se sembraron en agar blando. Como se puede observar en Ia Figura 6, Ia sobreexpresión de esta proteína es suficiente para inducir la transformación oncogénica tanto de células humanas HEK293T, como de células epiteliales de perro MDCK.
Dado que Ia Colina Quinasa Alfa tiene actividad transformante en células humanas HEK293T, hemos analizado su potencial oncogénico in vivo. Para ello, ratones inmunodeprimidos (Nu/Nu) fueron inyectados con un millón de células humanas HEK293T que sobre-expresaban bien el vector vacío como control, o bien el vector de expresión de Ia Colina Quinasa Alfa. El crecimiento tumoral se monitorizó a! menos dos veces por semana durante 50 días después de Ia inyección. Mientras que las células control no indujeron ningún tumor en ninguno de los ratones inyectados, las células que sobre-expresaban Colina Quinasa Alfa indujeron tumores en 8 de los 30 ratones inyectados (26%), que alcanzaron una media de 0.6cm3 después de 45 días (Figura 7). Estos resultados demuestran que Ia sobreexpresión de Colina Quinasa Alfa es suficiente para inducir tumores in vivo, y es, por tanto, una buena diana terapéutica potencial en tumorogénesis humana. Para verificar si los tumores generados por Colina Quinasa Alfa mantenían incrementada su expresión y actividad, se extrajeron quirúrgicamente los tumores, se usaron, y se determinaron los niveles de expresión y actividad de este enzima con respecto a los de sus células parentales HEK293T como control. Como se puede observar en Ia Figura 8, todos los tumores analizados mantienen elevados los niveles de expresión y actividad enzimática de manera similar a Ia que se obtuvo antes de Ia inoculación, demostrando que es Ia sobreexpresión de Colina Quinasa Alfa Ia que induce Ia tumorogénesis in vivo.
Ejemplo 5 Especificidad farmacológica
Una vez comprobada la actividad oncogénica de Ia isoforma Alfa de Ia Colina Quinasa, así como su alta incidencia de sobreexpresión en tumores humanos, hemos estudiado si el efecto antitumoral del inhibidor MN58b [Hernández-Alcoceba, R., Saniger, L., Campos, J., Núñez, M. C, Khaless, F., Gallo, M. Á., Espinosa, A., Lacal, J. C. Oncogene, 15, 2289-2301 (1997); Hernández-Alcoceba, R., Fernández, F., Lacal, J. C. Cáncer Res. 59, 3112-3118 (1999); Ramírez de Molina A., Báñez-Coronel M., Gutiérrez R., Rodríguez- González A., Olmeda D., Megías D., Lacal J, C. Cáncer Res. 64:6732-6739 (2004)] es específico de Ia isoforma Colina Quinasa Alfa o si por el contrario también podría atribuirse a su posible interacción con Ia isoforma Colina Quinasa Beta. Esta comprobación es necesaria, puesto que las dos isoformas Colina Quinasa Alfa y Colina Quinasa Beta comparten hasta un 75% de homología en los dominios de unión al sustrato y en Ia región catalítica. Para ello, se han expresado las dos isoformas de Colina Quinasa (CKa y CKβ) en Ia cepa de bacterias E. Coíi, que carecen de actividad Colina Quinasa, y por tanto, toda Ia actividad enzimática observada es debida exclusivamente a Ia isoforma de Colina Quinasa expresada de forma recombinante. Como se puede observar en Ia Figura 9, Ia actividad enzimática de Colina Quinasa Alfa se ve afectada por el tratamiento con MN58b, con un efecto más acusado que el ejercido por el mismo inhibidor sobre Ia isoforma β. De hecho MN58b es 20 veces más activo frente a colina quinasa alfa que frente a colina quinasa beta.
Dado que se han generado tumores in vivo sobre-expresando Colina Quinasa Alfa y que MN58b es específico de esta isoforma, se ha verificado si el crecimiento de los tumores inducidos por ChoKα es susceptible a Ia inhibición por MN58b. Para ello, un millón de células humanas HEK293T transfectadas con el gen cka y que mostraron una alta sobreexpresión del enzima Colina Quinasa Alfa fueron inyectadas subcutáneamente en ratones inmunodeprimidos nu/nu. Cuando los tumores alcanzaron un volumen tumora! de 0,1 cm3 , se inició el tratamiento con el inhibidor específico de Colina Quinasa Alfa, MN58b, que se administró intraperitonealmente en suero fisiológico estéril durante 5 días consecutivos y 9 de descanso, a una dosis de 5 mg/Kg. Los ratones control recibieron dosis equivalentes de vehículo, siguiendo el mismo calendario, y los tumores fueron monitorizados un mínimo de dos veces por semana. Como se muestra en Ia Figura 10, Ia inhibición de Colina Quinasa Alfa resulta en una fuerte inhibición del crecimiento tumoral, alcanzando una reducción del crecimiento tumoral de un 80%. Estos resultados demuestran no solo que Ia sobreexpresión de Colina Quinasa Alfa es suficiente para Ia inducción de tumores in vivo, sino que Ia proliferación de las células tumorales es dependiente de Ia actividad de Colina Quinasa Alfa.
Ejemplo 6 Especificidad genética
Todos estos resultados avalan el potencial de Colina Quinasa Alfa como nueva diana terapéutica para el diseño de una nueva estrategia antitumoral. Sin embargo, ios inhibidores químicos pueden ejecutar su acción antiproliferativa mediante efectos ocultos al investigador, incluso aunque estén diseñados de forma específica contra un enzima determinado, como es el caso del inhibidor MN58b. Existen numerosos casos en Ia literatura en el que se demuestra que inhibidores diseñados frente a una quinasa de forma específica, también afectan a otras quinasas que incluso no está estrechamente relacionadas entre sí. Existe una aproximación de reciente desarrollo en los últimos años que permite establecer de forma más precisa los efectos de interferencia con una enzima en particular, mediante el uso de siRNA (small interference RNA) que son capaces de eliminar de forma precisa y selectiva el mRNA para una determinada proteina sin afectar al resto de proteínas celulares. En nuestro caso, hemos verificado que Ia interferencia farmacológica mediante el uso del inhibidor MN58b, específico frente a Colina Quinasa Alfa, tiene una confirmación a nivel genético mediante Ia inhibición específica de Colina Quinasa Alfa por Ia técnica de siRNA. Esta técnica permitiría validar definitivamente a ChoKα como nueva diana terapéutica en cáncer. Con este fin, hemos generado un oligonucleótido capaz de hibridar con el RNA mensajero de Colina Quinasa Alfa (al que henos denominado siCHKA) y por tanto de bloquear de forma específica Ia expresión de esta proteína. En primer lugar hemos comprobado que nuestro siRNA bloquea de forma eficiente Ia expresión de Colina Quinasa Alfa en células humanas HEK293T, tanto Ia proteína endógena, como una ChoKα fusionada a GST y transfectada en las mismas células (Figura 11). Una vez verificado que nuestro RNA interferente específico de Colina Quinasa Alfa es verdaderamente capaz de bloquear de forma eficiente Ia expresión de esta proteína, se ha pasado a verificar su efecto en las células tumorales derivadas de un carcinoma de mama humano, MDA-MB-231 , en las que previamente se había descrito que Ia inhibición farmacológica de Colina Quinasa con MN58b inducía un fuerte efecto antitumoral por inducción de apoptosis. Como se muestra en Ia Figura 12, a pesar de Ia menor eficiencia de transfección que se obtiene en estas células, observamos que Ia transfección de siCHKA en MDA-MB-231 , lleva consigo una inhibición tanto de Ia expresión de Colina Quinasa Alfa como de su actividad enzimática. Para verificar que el efecto de Ia inhibición genética de Colina Quinasa Alfa mediante siRNA es similar al que obtenemos mediante Ia inhibición farmacológica con MN58b, demostrando así de manera inequívoca Ia especificidad del efecto sobre Colina Quinasa Alfa, se ha determinado Ia viabilidad celular tras Ia transfección con el interferente siCHKA. Al igual que ocurre tras el tratamiento de las células tumorales con MN58b, se observa una disminución en Ia viabilidad celular, asociada a una muerte por apoptosis que es específica de las células transfectadas con el interferente de Colina Quinasa Alfa (Figura 13).
Por último, al igual que ocurre con MN58b, se ha verificado que Ia expresión del interferente siCHKA, específico de Colina Quinasa Alfa, no tiene ningún efecto sobre Ia viabilidad de células normales primarias humanas de mama HMEC (human mammary epíthelial cells). En estas células Ia expresión basal de esta proteína es muy baja, ya que, como hemos descrito anteriormente, las células tumorales sobre-expresan de manera constitutiva Colina Quinasa Alfa. Sin embargo, a pesar de esta baja expresión basal de Colina Quinasa Alfa en las células primarias HMEC, se consigue una clara interferencia de Ia expresión del enzima Colina Quinasa Alfa, y se observa cómo estas células, al contrario de Io que ocurren las células tumorales, no mueren por apoptosis, sino que son arrestadas en ciclo (Figura 14), un resultado idéntico al observado el las mismas células tratadas con el inhibidor MN58b [Rodríguez-González A., Ramírez de Molina A, Fernández F., Ramos MA, Nuñez, M. del C1 Campos, J. M, Lacal J.C. Oncogene 22:8803-8812 (2003); Rodríguez-González A1 Ramírez de Molina A, Fernández F., Lacal JC. Oncogene 23:8247-8259 (2004); Rodríguez-González A., Ramírez de Molina A., Bañez-Corone! M., Megias D., Núñez M. C and Lacal J.C Int. J. Oncol 26:999-1008 (2005)].
Ejemplo 7
Influencia de Ia colina quinasa α en el cáncer de mama: Incidencia en la supervivencia
Para disponer de datos cuantitativos que confirmaran Ia implicación de Ia colina quinasa α en Ia generación y en Ia evolución de tumores, se procedió a realizar ensayos adicionales de cuantificación de su expresión en pacientes aquejados por los tipos de cáncer con los que Ia colina quinasa α parece estar específicamente relacionada (mama, pulmón y vejiga) y de su posible relación con el pronóstico de Ia evolución de dicho paciente.
Por un lado, se procedió a realizar el análisis cuantitativo de Ia expresión de Ia colina quinasa α aislando el RNA mensajero de muestras de pacientes. Para ello, se llevaron a cabo reacciones automatizadas de PCR cuantitativa a tiempo real con sondas Taqman específicas que sólo reconocen el RNA mensajero objeto del estudio, el correspondiente a ChoKα. Los datos obtenidos se representan en escala logarítimica en base 10 respecto a una muestra control de tejido normal.
En el caso de los datos obtenidos referentes al cáncer de mama, los resultados obtenidos se muestran en Ia Figura 15a. Se observa que las muestras con niveles por encima de Ia mediana de activación de ChoKα corresponden a aquellos pacientes con peor pronóstico (presencia de nodulos linfáticos, desarrollo de metástasis, menor supervivencia). Estos datos se confirman con los que aparecen en las Figuras 15b y 15c. En Ia Figura 15b, elaborada a partir de los datos obtenidos de 63 pacientes con cáncer de mama, se observa como el valor medio de Ia expresión de ChoKα (calculado como unidades relativas de expresión del gen, calculadas a partir del nivel de mRNA con el método de 2"MCt (Livak, KJ. y Schmitttgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(- Delta Delta C(T)) Method. Methods 25, 402-408)) es muy superior en los pacientes que presentan metástasis en comparación con los que no Ia presentan. Si se representa Ia probabilidad de supervivencia de estos pacientes en función de Ia presencia de nodulos linfáticos, Ia cual está asociada significativamente a un aumento de expresión de ChoKα respecto a los controles (p< 0,001), se observa en una curva clásica de Kaplan Meier (Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc, 53:457-481 (1958)) como Ia probabilidad de supervivencia disminuye significativamente a medida que aumenta Ia presencia de nodulos linfáticos positivos (p=0,046) (Figura 15c), observándose Ia misma tendencia cuando se representa Ia supervivencia de los pacientes en función de Ia expresión de ChoKα (p=0,059).
Ejemplo 8
Influencia de Ia colina quinasa α en el cáncer de pulmón: Nivel de sobreexpresión e incidencia en Ia supervivencia
Para complementar el estudio sobre Ia importancia de Ia sobreexpresión de Ia colina quinasa α en el cáncer de pulmón, se realizaron varias pruebas.
En primer lugar, se detectaron los niveles de mRNA correspondientes a dicha enzima en líneas celulares derivadas de pacientes con cáncer de pulmón, de nuevo mediante reacciones automatizadas de PCR cuantitativa a tiempo real con sondas Taqman especificas. Se realizaron tanto sobre líneas celulares correspondientes al cáncer del pulmón más corriente (75-85%), el no microcrítico o NSCLC (non small cell lung cáncer), representado por las líneas H460 y H 1299, así como sobre líneas correspondiente al otro tipo de cáncer, el microcítico o SCLC (small cell lung cáncer), representado por las líneas H510 y H82, representándose los datos en escala logarítmica referidos a células normales humanas primarias de epitelio bronquial, BEC. Los resultados se muestran en Ia Figura 16a. Estos datos se complementaron con ios de Ia detección de los niveles de proteína en cada una de estas líneas celulares mediante inmunoensayo con un anticuerpo monoclonal (Figura 16b) y los de Ia actividad enzimática detectable en las mismas líneas midiendo el producto (PCho) marcada radiactivamente generado al cabo de 30 minutos a partir de sustrato (Cho) marcado (Figura 16c). Se observa en todos los casos un incremento respecto a los controles, particularmente acusado en el caso de las líneas SCLC, especialmente H510.
Adicionalmente, se comprobó el efecto antiproliferativo de Ia inhibición de ChoK en dichas líneas celulares provocado por Ia adición de MN58b, obteniéndose los resultados que se muestran en Ia Tabla siguiente, en Ia que los números entre paréntesis indican Ia sensibilidad de cada célula comparada con células primarias. En todos los períodos de tiempo analizados, las diferencias entre las células primarias y las cuatro líneas celulares derivadas de tumores resultaron ser significativas (p <0,001).
Tabla 1.- Efecto antiproliferativo de Ia inhibición de ChoK frente a líneas celulares derivadas de tumores de pulmón humanos
Figure imgf000031_0001
Estos resultados se complementaron con estudios de sobreexpresión de
ChoKα en muestras de tumores humanos de pacientes con cáncer de pulmón, concretamente en tejido de pacientes con NSCLC a los que se les ha extraído el tumor en estadio temprano. La Figura 17 muestra los resultados obtenidos en el análisis de PCR cuantitativa a tiempo real del RNA mensajero correspondiente a ChoKα en dichos pacientes operados en estadios tempranos, resultados en los que se aprecia que ya en un estado tan temprano de Ia enfermedad ChoKα está sobre-expresada respecto al tejido normal en un 53% de los casos. De nuevo, al analizar Ia relación entre Ia expresión de Chokα con Ia gravedad del cáncer (estadio y presencia o ausencia de metástasis), se observó que Ia expresión de ChoKα elevada está asociada a una mayor malignidad del tumor, como se muestran en Ia Tabla 2: Tabla 2.- Sobreexpresión de ChoKα según Ia gravedad del cáncer de pulmón
Figure imgf000032_0001
a Estadios en los que el tumor es pequeño, hay poca o ninguna afectación de nodulos y no hay presencia de metástasis b Estadios con tumores de mayor tamaño, con afectación de los nodulos y presencia de metástasis
Como en el caso del cáncer de mama, en estadios iniciales de NSCLC Ia sobreexpresión de ChoKα en cáncer de pulmón está asociada a peor pronóstico, tal como puede observarse en las gráficas que se presentan en Ia Fig 18 En ellas puede observarse como, en los pacientes en los que no se detecta expresión de ChoKα, Ia probabilidad de supervivencia se mantiene en el valor de 1 a Io largo del tiempo, mientras que en los pacientes en los que se detecta sobreexpresión de ChoKα Ia probabilidad va disminuyendo, presentando un valor mediano de 9 meses cuando Io que se evalúa es Ia supervivencia libre de enfermedad, es decir, el tiempo que transcurre desde que los pacientes son operados hasta que sufren una recaída.
Ejemplo 9 Influencia de Ia colina quinasa α en el cáncer de vejiga: Nivel de sobreexpresión e incidencia en Ia supervivencia
También se realizaron estudios análogos en pacientes aquejados de cáncer de vejiga. En primer lugar, se detectaron los niveles de mRNA correspondientes a dicha enzima en líneas celulares derivadas de pacientes con cáncer de vejiga, de nuevo mediante reacciones automatizadas de PCR cuantitativa a tiempo real con sondas Taqman específicas, de manera similar a como se describió en el Ejemplo 8 para el caso del cáncer de pulmón Se utilizaron las líneas HT1376, J82, SW780, TCCSup y UMVC3, representándose ios datos en escala logarítmica referidos a células normales de vejiga inmortalizadas, UrotSa. Los resultados se muestran en Ia Figura 19a, Estos datos se complementaron con los de Ia detección de los niveles de proteína en cada una de estas líneas celulares mediante inmunoensayo con un anticuerpo monoclona! (Figura 19b) y Ia valoración de Ia actividad enzimática detectable en las mismas (Figura 19c). Puede observarse que las diferentes líneas celulares muestran niveles incrementados de ChoKα respecto a las células normales inmortalizadas UrotSa, así como que el incremento de Ia expresión de Ia proteína en las líneas celulares derivadas de cáncer de vejiga viene también acompañado por un incremento similar en Ia actividad de Ia enzima colina quinasa.
Adicionalmente, se comprobó el efecto antiproliferativo de Ia inhibición de ChoK en estas líneas celulares provocado por Ia adición de MN58b, obteniéndose los resultados que se muestran en Ia Tabla siguiente, en Ia que los números entre paréntesis indican el factor de inducción con respecto a la línea celular con niveles menores de ChoK, TCCSup, pues los datos obtenidos para UrotSA no se consideraron suficientemente fiables para realizar !a comparación con respecto a ellos.
Tabla 3.- Efecto antiproliferativo de Ia inhibición de ChoK frente a líneas celulares derivadas de cáncer de vejiga humano
Figure imgf000033_0001
Adicionalmente, para establecer paralelismos con los efectos observados in vivo, se procedió a analizar Ia expresión de ChoKα en tejidos tumorales de 90 pacientes con cáncer de vejiga, utilizando Ia tecnología de los microarrays, concretamente el chip U 133 Plus 2.0 de Affymetrix. Los resultados obtenidos se muestran en Ia Figura 20a. En ella puede observarse como algo más de Ia mitad, 49 pacientes, mostraban un factor de inducción de Ia expresión de entre 1 y 3 veces; 25 pacientes mostraban un factor de inducción de Ia expresión de entre 3 y 8 mientras que en 12 de ellos el factor de inducción de Ia expresión fue de 8 a 24 veces.
Los datos obtenidos con el microarray se validaron mediante un ensayo de PCR cuantitativa a tiempo real (ensayo con sondas Taqman), del cual se muestran los resultados en Ia Figura 20b. En dicho ensayo, se utilizó como referencia RNA comercial de tejido normal de vejiga humana, utilizándose como control endógeno GAPDH. En 18 de las 20 muestras analizadas (de las que 10 de ellas correspondían a los 10 pacientes con menor expresión de ChoKα y las otras 10 a los 10 pacientes con expresión más elevada) hubo una coincidencia de resultados en Ia expresión de ChoK entre el microarray de Affymetrix y el análisis son sondas Taqman. La incidencia de sobreexpresión de ChoKα en tumores fue del 55%. Los pacientes con sobreexpresión resultaron ser los más metastásicos. La relación entre Ia sobreexpresión de ChoKα y Ia progresión de metástasis se confirmó con los datos de expresión de ChoKα de todos los pacientes obtenidos de los arrays, cuyos resultados se muestran en las Figuras 21a y 21b. La Figura 21a muestra Ia variación en los niveles medios de expresión de ChoKα entre ios pacientes negativos y los positivos respecto a Ia presencia de nodulos linfáticos (valores unidos por Ia recta que presenta cuadrados sin relleno en los extremos) o el desarrollo de metástasis (valores unidos por Ia recta que presenta círculos rellenos en sus extremos). La Figura 21 b, por su parte, muestra una gráfica que representa Ia variación en Ia proporción de pacientes con metástasis (barras rellenas con relleno oscuro continuo, |) y sin metástasis (barras rellenas con líneas inclinadas, //) en los grupos de pacientes con expresión de ChoKα baja (pareja de barras de Ia izquierda), intermedia (pareja de barras situada en el medio de Ia gráfica) o alta (pareja de barras situada en Ia parte derecha de Ia gráfica), en Ia que se ve como, en el grupo de baja expresión, el porcentaje de pacientes con metástasis (53%) no es muy superior a Ia de pacientes sin metástasis (47%), mientras que en el grupo de alta expresión de ChoKα Ia mayoría, el 72%, tiene metástasis y el 28% restante no Ia presenta. Se observa una relación entre Ia expresión de ChoKα y el desarrollo de metástasis que no alcanza el nivel de significación estadística.
Para demostrar in vivo Ia relevancia de Ia sobreexpresión de ChoKα en cáncer de vejiga, se utilizó también un modelo ortotópico de cáncer de vejiga, que fisiológicamente es muy semejante a Io que ocurre cuando se genera un tumor en Ia vejiga, utilizando células tumorales MBT-2 (mouse bladder tumour). En estas células, que ya tienen sobreexpresada ChoKα con respecto a las células normales de ratón, se sobre-expresa aún más esta proteína con el fin de evaluar si una mayor expresión de ChoKα potencia Ia agresividad o Ia invasividad de estos tumores. Para ello, se inocularon directamente en Ia vejiga de los ratones mediante un catéter células MBT-2 que contenían un vector vacío, carente de secuencias que permitieran expresar el gen de Ia ChoKα (grupo de ratones control, compuesto por tres ratones) o células MBT-2 que sobre-expresan ChoKα por habérseles transfectado un vector con Ia secuencia codificante de dicha enzima (grupo de ratones ChoKα, compuesto por tres ratones). En ambos grupos, se monitorizó ía generación de tumores mediante resonancia magnético nuclear con contraste de gadolinio, así como Ia evolución de Ia enfermedad en los ratones (estado físico, supervivencia, estudio histológico de los tumores, análisis de Ia posible invasión de riñon y otros órganos...). 19 días después de Ia inoculación de ¡as células, los ratones ChoKα se encontraban en mal estado, 2 de ellos con un tumor muy grande, mientras que los ratones que recibieron el vector vacío (grupo control) empezaron a estar en mal estado 50 días después de Ia inoculación de las células.
Los resultados de los Ejemplos 7, 8 y 9 confirman que ChoKα está sobre-expresada con alta incidencia en tumores humanos de mama, pulmón y vejiga. Su sobreexpresión se asocia con parámetros clínicos indicadores de mayor malignidad: presencia de nodulos linfáticos, metástasis y baja supervivencia de los pacientes. Ejemplo 10
Especificidad genética: Modelo de interferencia inducible
Dado que Ia interferencia de Chokα en células tumorales es letal, al inducir Ia muerte celular por apoptosis, tal como se demostró en los ensayos descritos en el Ejemplo 6, realizados en transient, no se puede disponer en ese tipo de estudios de una población estable de células que exprese Ia construcción interferente. En los ensayos en transient, resulta afectado un porcentaje de Ia población celular variable, no afectando nunca a ¡a población total, Io que enmascara los resultados. Sería mejor estudiar el efecto de Ia construcción en una población que Ia expresara de forma homogénea, para Io que sería necesario poder disponer de un modelo estable constitutivo. Ello hace necesario disponer de un modelo de interferencia inducible que permita obtener una población homogéneamente interferida en Ia expresión de ChoKα.
Para lograr esto, se expresa Ia secuencia interferente en una construcción en Ia cual se encuentra bajo un represor que evita su expresión. Se efectúa Ia cotransfección de Ia construcción de interés inducible junto con un represor, que evita su expresión y, una vez seleccionada una población homogénea con esta construcción, las células son tratadas con un inductor, que permite Ia expresión de Ia construcción interferente y, por tanto, Ia interferencia de Ia expresión de Ia proteína.
En el modelo inducible diseñado para este ensayo, Ia construcción interferente para ChoKα se expresa en el vector pSUPERIOR-puro (Oligoengine) y el represor en el vector pcDNA6/TR (Invitrogen). El inductor utilizado es Ia doxociclina que, al unirse al represor, impide que este se una a Ia secuencia correspondiente, con Io que Ia expresión de Ia secuencia interferente deja de estar impedida. Un esquema de este sistema puede observarse en Ia Figura 22.
En las Figuras 23 y 24 se muestran los resultados obtenidos en células Ch-ind-1 , una línea celular derivada de MDA-MB-231 , capaz de expresar Ia construcción interferente tras el tratamiento con el agente inductor doxociclina. La Figura 23 demuestra que esta línea inducible sigue siendo sensible a Ia inhibición química de ChoKα de manera similar a Io que sucede en MDA-MB- 231 (Ia línea parental control derivada de adenocarcinoma de mama a partir de Ia cual se genera Ch-ind-1), pues los resultados obtenidos tras el tratamiento con los inhibidores de colina quinasa MN58b o RSM936 son análogos en ambas líneas. La Figura 24, en cambio, muestra como Ia inhibición genética de ChoKα se produce sólo en Ch-ind-1 al tratar ambas líneas celulares con 10 μg/ml de doxociclina, pues Ia inducción del modelo interferente con doxociclina sólo puede producirse en Ia línea Ch-ind-1 , por ser Ia que posee una construcción a partir de Ia cual puede producirse Ia síntesis del RNA interferente cuando se impide Ia unión del represor). La inhibición genética de ChoKα se correlaciona con una disminución de Ia proliferación celular (determinada por pCNA) y un aumento de Ia muerte celular por apoptosis (determinada por PARPdig, proteína PARP degradada, que es un indicador de apoptosis). El efecto empieza ya a verse a los 10 días, aunque es aún muy inicial, y es mucho más acusado a los 20 días del inicio del experimento (donde Ia población tiene ya muy poca expresión de ChoKα).
Los resultados obtenidos con el modelo inducible corroboran los datos obtenidos previamente en transient, demostrando que los efectos observados son debidos a Ia inhibición específica sobre ChoKα.
Ejemplo 12
Evaluación de Ia posible influencia de Ia sobreexpresión de Chokβ en carcínogénesis
Para evaluar ia posible influencia en Ia carcinogénesis que pudiera tener una sobreexpresión de colina quinasa beta (ChoKβ) y confirmar si el aumento de actividad colina quinasa observada en distintos tejidos cancerosos y líneas celulares derivadas de tejidos cancerosos era atribuible exclusivamente a Ia colina quinasa alfa o existía también una participación de Ia colina quinasa beta, se llevaron a cabo varios ensayos.
En primer lugar, se generó un anticuerpo policlonal anti-ChoKβl La especificidad del mismo se comprobó en tres grupos de células Hek293T transfectadas, uno con una construcción a partir de Ia cual se producía Ia expresión de ChoKα, un segundo con una construcción que permitía Ia expresión en las mismas de ChoKβ y el tercera con una construcción en Ia que se expresaba una proteína quimérica ChoKα-GFP, así como en un grupo de células control, transfectadas con un vector vacío. Tal como se muestra en Ia parte A de Ia Figura 25, los ensayos de inmunodetección demostraron Ia especificidad de dicho anticuerpo, que dieron lugar a señal tanto en las células que expresaban ChoKβ como en las que expresaban Ia proteína quimérica ChoKβ-GFP, sin que aparecieran señal en Ia calle correspondiente a las células transfectadas con Ia construcción para Ia expresión de ChoKα; en estas últimas células, sin embargo, un anticuerpo monoclonal dirigido contra ChoKα dio lugar a señal en una banda que aparecía a Ia altura correspondiente a ChoKα.
Para comprobar el posible efecto de ChoKβ en carcinogénesis, se ensayó su posible actividad transformante in vivo. Para ello, se utilizaron de nuevo ratones atímicos (Nu/Nu) a los que se inyectaron un millón de células humanas HEK293T transfectadas, bien con un vector vacío como control, con un vector de expresión de colina quinasa alfa, con un vector de expresión de colina quinasa beta y, en un último grupo, se produjo Ia cotransfección de los vectores que expresaban cada una de las isoenzimas, colina quinasa alfa y beta. El crecimiento tumoral se monitorizó al menos dos veces por semana durante 13 semanas después de Ia inyección. Como puede observarse en Ia Figura 26, se observó una clara inducción de tumores en los animales que habían recibido las células transfectadas con el vector de expresión de ChoKα, no observándose inducción de tumores en los ratones que recibieron las células transfectadas con el vector de expresión de ChoKβ. Es llamativo observar que en los ratones que recibieron células transfectadas con ambos vectores, los de expresión de ChoKα y ChoKβ, se observó una ligera inducción de tumores, de magnitud muy inferior a Ia observada con Ia expresión de ChoKα sólo y observable transcurridas más de 11 semanas desde Ia inyección de las células transfectadas, Io que podría indicar que ChoKβ podría estar regulando ChoKα de manera directa o indirecta, de forma que inhiba su actividad oncogénica. Estos datos se complementaron viendo si existía una sobreexpresión de
Ia enzima colina quinasa beta en tejidos extraídos de pacientes aquejados de cáncer. La Figura 27 muestra los datos obtenidos en muestras de pulmón de pacientes operados tras aislar el RNA mensajero de las mismas y llevar a cabo reacciones automatizadas de PCR cuantitativa a tiempo real con sondas
Taqman específicas, representando los datos obtenidos en escala logarítmica en base 10 respecto a una muestra control de tejido normal. En dicha Figura puede observarse como, al contrario de Io que sucede con Ia ChoKα, Ia expresión de ChoKβ disminuye con respecto a Ia obtenida en tejido normal en Ia mayor parte de las muestras analizadas.
Estos datos no sugieren que exista una correlación entre ia sobreexpresión de colina quinasa beta y Ia generación y desarrollo de tumores.
Todos los resultados indicados en los ejemplos avalan específicamente a Ia Colina Quinasa Alfa como una nueva diana terapéutica en el tratamiento de las enfermedades neoplásicas.

Claims

REIVINDICACIONES
1. Método in vitro para identificar y evaluar Ia eficacia de compuestos para terapia del cáncer; preferiblemente para el cáncer de pulmón, de mama o colorrectal, que comprende: a) poner en contacto un cultivo de células tumorales; preferiblemente de pulmón, mama, colon, recto o vejiga, con el compuesto candidato, en las condiciones y durante el tiempo apropiados para permitir que interaccionen, b) detectar y cuantificar los niveles de expresión del gen colina quinasa- alfa o Ia proteína Colina Quinasa Alfa, y c) comparar dichos niveles de expresión con los de cultivos control de células tumorales sin tratar con el compuesto candidato.
2. Uso de secuencias nucleotídicas o peptídicas derivadas del gen colina quinasa-alfa, en métodos de búsqueda, identificación, desarrollo y evaluación de Ia eficacia de compuestos para terapia del cáncer, preferiblemente del cáncer de pulmón, mama o colorrectal.
3. Agentes caracterizados porque inhiben Ia expresión y/o Ia actividad de Ia proteína Colina Quinasa Alfa, o porque inhiben los efectos carcinogénicos de Ia sobreexpresión de Ia proteína Colina Quinasa Alfa.
4. Agentes según Ia reivindicación 3 seleccionados del grupo formado por: a) un anticuerpo o combinación de anticuerpos, específicos contra uno o más epítopos presentes en Ia proteína Colina Quinasa Alfa, preferiblemente un anticuerpo monoclonal humano o humanizado; un fragmento de un anticuerpo o una cadena de anticuerpo, b) agentes citotóxicos, tales como toxinas, moléculas con átomos radiactivos, o agentes quimio-terapéuticos, entre los que se incluyen, sin limitación, pequeñas moléculas orgánicas e inorgánicas, péptidos, fosfopéptidos, moléculas antisentido, ribozimas, moléculas de triple hélice, RNA de doble hebra, siRNA, etc., que inhiben los efectos carcinogénicos de Ia sobreexpresión y/o de Ia actividad de Ia proteína Colina Quinasa Alfa, y c) compuestos antagonistas de Ia proteína Colina Quinasa Alfa, que inhiben los efectos carcinogénicos de Ia expresión y/o de Ia actividad de Ia proteína Colina Quinasa Alfa.
5. Agentes según las reivindicaciones 3 - 4 para el tratamiento del cáncer; preferiblemente para el cáncer de pulmón, mama o colorrectal.
6. Uso de los agentes según las reivindicaciones 3 - 4 en Ia elaboración de un medicamento para el tratamiento de cáncer; preferiblemente para el cáncer de pulmón, mama, colorrectal o de vejiga.
7. Composición farmacéutica que comprende una cantidad terapéuticamente eficaz de uno o varios agentes según las reivindicaciones 3 - 5 junto con al menos un excipiente farmacéuticamente aceptable.
8. Composición farmacéutica según Ia reivindicación 7 caracterizada porque contiene otro ingrediente activo, preferiblemente uno que no inhiba Ia función de Ia proteína Colina Quinasa Alfa.
9. Agentes según las reivindicaciones 3 - 4 para el tratamiento preferiblemente del cáncer de vejiga.
10. Composición farmacéutica que comprende una cantidad terapéuticamente eficaz de uno o varios agentes según las reivindicaciones 3, 4 y 9, junto con al menos un excipiente farmacéuticamente aceptable.
11. Composición farmacéutica según Ia reivindicación 10 caracterizada porque contiene otro ingrediente activo, preferiblemente uno que no inhiba Ia función de Ia proteína Colina Quinasa Alfa.
12. Método in vitro para diagnosticar et tiempo de supervivencia de un paciente aquejado de cáncer de mama, pulmón o vejiga que comprende Ia evaluación del nivel de expresión de Ia proteína colina quinasa alfa en una muestra de tejido cancerígeno extraída del paciente, mediante Ia determinación en dicha muestra de al menos un parámetro relacionado con la proteína colina quinasa alfa que se selecciona entre el nivel de su RNA mensajero, Ia concentración de dicha proteína o su actividad enzimática, y Ia comparación del valor obtenido con el valor correspondiente a una o más muestras de tejido normal no canceroso.
13. Método in vitro de monitorización del efecto de una terapia administrada a un paciente de cáncer, caracterizado porque Ia evaluación del nivel de expresión de Ia proteína colina quinasa alfa en una muestra de tejido extraída del paciente al que se está suministrando un agente anti-tumoral, preferiblemente un agente según las reivindicaciones 3 - 5 y 9, o una composición farmacéutica que los contenga, según las reivindicaciones 7 - 8 y 10 - 11 , mediante Ia determinación en dicha muestra de al menos un parámetro relacionado con Ia proteína colina quinasa alfa que se selecciona entre el nivel de su RNA mensajero, Ia concentración de dicha proteína o su actividad enzimática, y Ia comparación del valor obtenido con el valor correspondiente a una o más muestras de tejido normal no canceroso.
14. Método in vitro según Ia reivindicación 1 para identificar y evaluar Ia eficacia de compuestos para terapia preferiblemente del cáncer de vejiga.
15. Uso según Ia reivindicación 2, de secuencias nucleotídicas o peptídicas derivadas del gen colina quinasa-alfa, en métodos de búsqueda, identificación, desarrollo y evaluación de Ia eficacia de compuestos para terapia preferiblemente del cáncer de vejiga.
16. Uso de los agentes según las reivindicaciones 3 - 4 en Ia elaboración de un medicamento para el tratamiento preferiblemente del cáncer de vejiga.
PCT/ES2006/070047 2005-04-13 2006-04-12 Método in vitro para identificar compuestos para terapia del cáncer WO2006108905A1 (es)

Priority Applications (16)

Application Number Priority Date Filing Date Title
CA 2604803 CA2604803A1 (en) 2005-04-13 2006-04-12 In vitro method for identifying compounds for cancer therapy
KR1020127031248A KR101322705B1 (ko) 2005-04-13 2006-04-12 콜린 키나아제 베타를 유도하는 의약 조성물
MX2007012668A MX2007012668A (es) 2005-04-13 2006-04-12 Metodo in vitro para identificar compuestos para terapia del cancer.
US11/911,513 US8481256B2 (en) 2005-04-13 2006-04-12 In vitro method for identifying compounds for cancer therapy
BRPI0607507-0A BRPI0607507A2 (pt) 2005-04-13 2006-04-12 método in vitro para a identificação de compostos para tratamento do cáncer
KR20077026322A KR101352142B1 (ko) 2005-04-13 2006-04-12 암 치료용 조성물의 유효성 확인을 위한 체외 시험방법
KR1020137014648A KR20130086060A (ko) 2005-04-13 2006-04-12 암 치료용 조성물의 유효성 확인을 위한 체외 시험방법
JP2008505911A JP4759612B2 (ja) 2005-04-13 2006-04-12 癌治療化合物のin vitroにおける同定方法
DK06725852T DK1889920T3 (da) 2005-04-13 2006-04-12 In vitro fremgangsmåde atil identifikation af forbindelse atil cancerterapi
DE200660011607 DE602006011607D1 (de) 2005-04-13 2006-04-12 In-vitro-verfahren zur identifizierung von verbindungen zur krebstherapie
PL06725852T PL1889920T3 (pl) 2005-04-13 2006-04-12 Sposób identyfikacji związków do terapii antynowotworowej in vitro
CN2006800180309A CN101405403B (zh) 2005-04-13 2006-04-12 鉴定用于癌症治疗的化合物的体外方法
AT06725852T ATE454465T1 (de) 2005-04-13 2006-04-12 In-vitro-verfahren zur identifizierung von verbindungen zur krebstherapie
EP20060725852 EP1889920B1 (en) 2005-04-13 2006-04-12 In vitro cancer therapy compound identification method
US13/099,195 US8901096B2 (en) 2005-04-13 2011-05-02 Method for identifying compounds for cancer therapy
US13/911,753 US20140023657A1 (en) 2005-04-13 2013-06-06 In vitro method for identifying compounds for cancer therapy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200500875 2005-04-13
ES200500875 2005-04-13

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US11/911,513 A-371-Of-International US8481256B2 (en) 2005-04-13 2006-04-12 In vitro method for identifying compounds for cancer therapy
EP10150087.4A Previously-Filed-Application EP2246441B1 (en) 2005-04-13 2006-04-12 In vitro cancer therapy compound identification method
US13/099,195 Division US8901096B2 (en) 2005-04-13 2011-05-02 Method for identifying compounds for cancer therapy
US13/911,753 Division US20140023657A1 (en) 2005-04-13 2013-06-06 In vitro method for identifying compounds for cancer therapy

Publications (1)

Publication Number Publication Date
WO2006108905A1 true WO2006108905A1 (es) 2006-10-19

Family

ID=37087793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/070047 WO2006108905A1 (es) 2005-04-13 2006-04-12 Método in vitro para identificar compuestos para terapia del cáncer

Country Status (16)

Country Link
US (3) US8481256B2 (es)
EP (2) EP1889920B1 (es)
JP (1) JP4759612B2 (es)
KR (3) KR101322705B1 (es)
CN (3) CN102228689A (es)
AT (1) ATE454465T1 (es)
BR (1) BRPI0607507A2 (es)
CA (1) CA2604803A1 (es)
DE (1) DE602006011607D1 (es)
DK (1) DK1889920T3 (es)
ES (1) ES2341729T3 (es)
MX (1) MX2007012668A (es)
PL (1) PL1889920T3 (es)
PT (1) PT1889920E (es)
RU (1) RU2434946C2 (es)
WO (1) WO2006108905A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138143A2 (es) 2006-05-29 2007-12-06 Consejo Superior De Investigaciones Cientificas Anticuerpos monoclonales anti-colina quinasa alfa y su uso en técnicas analíticas, de diagnóstico del cáncer y en la preparación de medicamentos
RU2509809C2 (ru) * 2008-07-04 2014-03-20 Транслэшионал Кэнсэр Драгз Фарма, С.Л. Способы лечения и диагностики рака
US10668028B2 (en) 2008-04-11 2020-06-02 Berg Llc Methods and use of inducing apoptosis in cancer cells
US11161915B2 (en) 2015-10-08 2021-11-02 Zymeworks Inc. Antigen-binding polypeptide constructs comprising kappa and lambda light chains and uses thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100068302A1 (en) * 2008-09-17 2010-03-18 Traslational Cancer Drugs Pharma, S.L. Methods and compositions for the treatment of cancer
EP2721174A1 (en) * 2011-06-20 2014-04-23 Traslational Cancer Drugs Pharma, S.L. Method for predicting the clinical response to chemotherapy in a subject with cancer
JP2013230145A (ja) * 2012-04-30 2013-11-14 Masahiko Sato 細胞集団の状態を評価するための方法、候補化合物の発癌性を評価するための方法、潜在的な抗癌化合物の抗癌活性を評価するための方法及び治療用細胞集団の品質を評価するための方法
CN104470949A (zh) 2012-05-15 2015-03-25 百时美施贵宝公司 通过破坏pd-1/pd-l1信号传输的免疫治疗
WO2015028662A1 (en) 2013-08-30 2015-03-05 Consejo Superior De Investigaciones Cientificas (Csic) Compositions and methods for characterization and amelioration of rheumatoid arthritis
RU2552305C1 (ru) * 2014-04-04 2015-06-10 Федеральное государственное бюджетное учреждение науки Институт физиологии природных адаптаций Уральского отделения Российской академии наук Способ прогнозирования риска развития злокачественных новообразований
RU2657417C1 (ru) * 2017-05-29 2018-06-13 Государственное бюджетное учреждение здравоохранения Московской области "Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского" (ГБУЗ МО МОНИКИ им. М.Ф. Владимирского) Способ прогнозирования риска озлокачествления узловых образований у больных с эндокринологическими заболеваниями
RU2713795C1 (ru) * 2019-06-13 2020-02-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ прогнозирования возможности озлокачествления опухоли яичника у женщин репродуктивного возраста
CN113391069B (zh) * 2021-05-31 2023-10-27 浙江大学 基于CHKα的非代谢功能作为癌症治疗、诊断和预后预测之靶标的应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
JPH05243020A (ja) * 1992-03-02 1993-09-21 Rohm Co Ltd チップネットワーク型抵抗器
JP3399948B2 (ja) * 1992-06-26 2003-04-28 ザ トラスティーズ オブ プリンストン ユニバーシティ P90抗体またはプローブを用いた前癌細胞または癌細胞の検出方法
JPH11510393A (ja) * 1995-08-09 1999-09-14 インスティチュート ナショナル ドゥ ラ セント エト ドゥ ラ リサーチェ メディカル 白血病マーカーとしておよび乳癌の予後において有用な単離された核酸分子
JP3756612B2 (ja) * 1997-03-18 2006-03-15 ローム株式会社 チップ型抵抗器の構造及びその製造方法
CN1160742C (zh) * 1997-07-03 2004-08-04 松下电器产业株式会社 电阻器及其制造方法
US20030077568A1 (en) * 2000-09-15 2003-04-24 Gish Kurt C. Methods of diagnosis of colorectal cancer, compositions and methods of screening for colorectal cancer modulators
JP4078042B2 (ja) * 2001-06-12 2008-04-23 ローム株式会社 複数の素子を有するチップ型電子部品の製造方法
JP3846312B2 (ja) * 2002-01-15 2006-11-15 松下電器産業株式会社 多連チップ抵抗器の製造方法
US20030186241A1 (en) 2002-03-20 2003-10-02 Ken-Shwo Dai Human choline/ethanolamine kinase (HCEK)-related gene variant associated with lung cancers
US20040115656A1 (en) * 2002-12-16 2004-06-17 Tai-Jay Chang Treating breast cancer
CA2530672A1 (en) * 2003-06-27 2005-01-06 Seikagaku Corporation Method of detecting cancer
JP2005073548A (ja) * 2003-08-29 2005-03-24 National Cancer Center-Japan 卵巣明細胞腺癌の検査、治療、および治療薬のスクリーニングのための、HNF−1βの利用
ES2277568B1 (es) 2005-12-30 2008-04-01 Consejo Superior De Investigaciones Cientificas Derivados de triterpenoquinona y triterpenofenoles y su aplicacion para el tratamiento de tumores y enfermedades parasitarias.

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
AOYAMA C. ET AL.: "Structure and function of choline kinase isoforms in mammalian cells", PROGRESS IN LIPID RESEARCH, vol. 43, no. 3, May 2004 (2004-05-01), pages 266 - 281, XP003020094 *
CHORNCZYNSKI P. ET AL., ANAL. BIOCHEM., vol. 162, 1987, pages 156
CHORNCZYNSKI P., BIOTECHNIQUES, vol. 15, 1993, pages 532
HERNANDEZ-ALCOBEA R. ET AL.: "C. In vivo antitumor activity of choline kinase inhibitors: a novel target for anticancer drug discovery", CANCER RESEARCH, vol. 59, no. 13, July 1999 (1999-07-01), pages 3112 - 3118, XP002357883 *
MOLINA, M.A. ET AL., CANCER RES., vol. 59, 1999, pages 4356 - 4362
NAKAGAMI K. ET AL.: "Increased choline kinase activity and elevated phosphocholine levels in human colon cancer", JAPANESE JOURNAL OF CANCER RESEARCH, vol. 90, no. 4, April 1999 (1999-04-01), pages 419 - 424, XP009089882 *
NAKAGAMI K. ET AL.: "Increased choline kinase activity in 1.2-dimethylhydrazine-induced rat colon cancer", JAPANESE JOURNAL OF CANCER RESEARCH, vol. 90, no. 11, November 1999 (1999-11-01), pages 1212 - 1217, XP009089881 *
RAMIREZ DE MOLINA A. ET AL.: "Choline kinase activation is a critical requirement for the proliferation of primary human mammary epithelial cells and breast tumor progression", CANCER RESEARCH, vol. 64, no. 18, September 2004 (2004-09-01), pages 6732 - 6739, XP003020096 *
RAMIREZ DE MOLINA A. ET AL.: "Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 296, no. 3, August 2002 (2002-08-01), pages 580 - 583, XP003020095 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138143A2 (es) 2006-05-29 2007-12-06 Consejo Superior De Investigaciones Cientificas Anticuerpos monoclonales anti-colina quinasa alfa y su uso en técnicas analíticas, de diagnóstico del cáncer y en la preparación de medicamentos
WO2007138143A3 (es) * 2006-05-29 2008-02-21 Consejo Superior Investigacion Anticuerpos monoclonales anti-colina quinasa alfa y su uso en técnicas analíticas, de diagnóstico del cáncer y en la preparación de medicamentos
US10668028B2 (en) 2008-04-11 2020-06-02 Berg Llc Methods and use of inducing apoptosis in cancer cells
RU2509809C2 (ru) * 2008-07-04 2014-03-20 Транслэшионал Кэнсэр Драгз Фарма, С.Л. Способы лечения и диагностики рака
US11161915B2 (en) 2015-10-08 2021-11-02 Zymeworks Inc. Antigen-binding polypeptide constructs comprising kappa and lambda light chains and uses thereof

Also Published As

Publication number Publication date
BRPI0607507A2 (pt) 2009-09-08
EP2246441A1 (en) 2010-11-03
ATE454465T1 (de) 2010-01-15
EP2246441B1 (en) 2015-12-16
KR20130006703A (ko) 2013-01-17
US20140023657A1 (en) 2014-01-23
CN101405403B (zh) 2013-07-10
CN101405403A (zh) 2009-04-08
US8481256B2 (en) 2013-07-09
CN102228689A (zh) 2011-11-02
CN103215351A (zh) 2013-07-24
US20110269948A1 (en) 2011-11-03
JP2008535511A (ja) 2008-09-04
DE602006011607D1 (de) 2010-02-25
PL1889920T3 (pl) 2010-06-30
US20090304575A1 (en) 2009-12-10
RU2434946C2 (ru) 2011-11-27
EP1889920A1 (en) 2008-02-20
EP1889920B1 (en) 2010-01-06
KR101322705B1 (ko) 2013-10-29
US8901096B2 (en) 2014-12-02
KR20130086060A (ko) 2013-07-30
CA2604803A1 (en) 2006-10-19
DK1889920T3 (da) 2010-05-10
JP4759612B2 (ja) 2011-08-31
MX2007012668A (es) 2008-03-11
ES2341729T3 (es) 2010-06-25
KR101352142B1 (ko) 2014-02-17
KR20080080430A (ko) 2008-09-04
RU2007141930A (ru) 2009-05-20
PT1889920E (pt) 2010-04-14

Similar Documents

Publication Publication Date Title
ES2341729T3 (es) Metodo in vitro para identificar compuestos para terapia del cancer.
US8753892B2 (en) Phosphodiesterase 4D7 as prostate cancer marker
ES2720763T3 (es) Uso de marcadores en el diagnóstico y tratamiento de cáncer de próstata
CN106662543A (zh) 肺癌患者中的非侵入性基因突变检测
CN116113712A (zh) 用于癌症的预后生物标志物
ES2937269T3 (es) Letalidad sintética y el tratamiento del cáncer
AU2011292809B2 (en) BARD1 isoforms in lung and colorectal cancer and use thereof
JP2008535491A5 (es)
Sun et al. Cadmium promotes colorectal cancer metastasis through EGFR/Akt/mTOR signaling cascade and dynamics
ES2476375T3 (es) Procedimientos in vitro para detectar cáncer renal
KR102110338B1 (ko) 대장암 진단 마커로서의 신규 folr2 융합유전자 및 이의 용도
KR101927577B1 (ko) 간암 바이오 마커로서 h2a.z.1의 용도
Lacal et al. In vitro cancer therapy compound identification method.
CN118286437A (en) Application of SLC7A11 as drug-resistant non-small cell lung cancer biomarker and therapeutic target of Lagrantinib
ES2970019A1 (es) Compuestos para el tratamiento del adenocarcinoma ductal de páncreas
WO2015144968A1 (es) Método de predicción de respuesta al tratamiento de la leucemia linfoblástica aguda

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680018030.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/012668

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2008505911

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2604803

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077026322

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006725852

Country of ref document: EP

Ref document number: 2007141930

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006725852

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11911513

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0607507

Country of ref document: BR

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020127031248

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020137014648

Country of ref document: KR