WO2006106717A1 - バリスタおよびそれを用いた電子部品モジュール - Google Patents

バリスタおよびそれを用いた電子部品モジュール Download PDF

Info

Publication number
WO2006106717A1
WO2006106717A1 PCT/JP2006/306440 JP2006306440W WO2006106717A1 WO 2006106717 A1 WO2006106717 A1 WO 2006106717A1 JP 2006306440 W JP2006306440 W JP 2006306440W WO 2006106717 A1 WO2006106717 A1 WO 2006106717A1
Authority
WO
WIPO (PCT)
Prior art keywords
varistor
layer
electrode
glass ceramic
ceramic layer
Prior art date
Application number
PCT/JP2006/306440
Other languages
English (en)
French (fr)
Inventor
Hidenori Katsumura
Tatsuya Inoue
Keiji Kobayashi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN200680010997.2A priority Critical patent/CN101156221B/zh
Priority to EP06730388.3A priority patent/EP1858033A4/en
Priority to JP2007512781A priority patent/JP4720825B2/ja
Priority to US11/817,710 priority patent/US7940155B2/en
Publication of WO2006106717A1 publication Critical patent/WO2006106717A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/102Varistor boundary, e.g. surface layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/148Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals embracing or surrounding the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/18Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material comprising a plurality of layers stacked between terminals

Definitions

  • the present invention relates to a varistor used for various electronic devices to prevent a defect due to static electricity or a surge voltage, and an electronic component module having the same and the electronic component.
  • a light emitting diode which is a kind of electronic component and a semiconductor device, is expected to be widely used, for example, as a display light for a display device or a flash of a small camera.
  • This light-emitting diode has low withstand voltage against electrostatic pulses.
  • a varistor is connected between the line where the electrostatic pulse enters and the ground to bypass the electrostatic pulse to the ground and suppress the high voltage applied to the light emitting diode.
  • FIG. 24 is a cross-sectional view of a conventional laminated chip varistor 105 disclosed in Japanese Patent Application Laid-Open No. 8-31616.
  • Multilayer chip varistors are suitable for miniaturization and are often used in small electronic devices.
  • the multilayer chip varistor 105 includes a Norrista layer 102 having an internal electrode 100, and a terminal 103 connected to the internal electrode 100 at the end face of the Norristor layer 102.
  • Protective layers 104 are provided on the upper and lower surfaces of the silicon layer 102.
  • the NORISTA layer 102 needs to have a certain thickness in order to ensure physical strength capable of preventing cracking and chipping, which makes it difficult to reduce the thickness.
  • a laminated chip no-lister with a length of 1.25 mm and a width of about 2. O mm is required to have a thickness of 0.5 mm or more, and it is difficult to reduce the thickness.
  • the thinner the component contained in the varistor layer 102 One of them, i.e., bismuth bismuth, evaporates during the firing, which may cause degradation of Norlister characteristics and reliability.
  • a norlister comprises a ceramic substrate having an insulating property, a varistor layer mainly composed of zinc oxide and provided on the ceramic substrate, a glass ceramic layer provided on the nolister layer, and a norristor layer.
  • the first and second inner electrodes provided in the layer and facing each other are provided.
  • This varistor is small and thin, and has excellent varistor characteristics against surge voltage.
  • the varistor also provides a compact electronic component module that is resistant to static electricity and surge voltage.
  • FIG. 1 is a perspective view of a varistor according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the varistor shown in FIG. 1 taken along line 2-2.
  • FIG. 3A is a cross-sectional view of a varistor in accordance with Embodiment 1.
  • FIG. 3B shows the distribution of constituent elements of the varistor according to Embodiment 1.
  • FIG. 3C shows the distribution of constituent elements of Norista according to Embodiment 1.
  • FIG. 3D shows the distribution of constituent elements of Norista according to Embodiment 1.
  • FIG. 3E shows the distribution of constituent elements of the varistor according to Embodiment 1.
  • FIG. 4A shows the results of measuring the varistor characteristics of the sample according to the embodiment.
  • FIG. 4B shows the results of measuring the varistor characteristics of the sample according to the embodiment.
  • FIG. 5 is a perspective view of a varistor in accordance with Embodiment 2 of the present invention.
  • FIG. 6 is a cross-sectional view of line 6-6 of the Norlister shown in FIG.
  • FIG. 7A is a perspective view of another varistor in accordance with Embodiment 2.
  • FIG. 7B is a perspective view of still another Norlister according to Embodiment 2.
  • FIG. 7C is a perspective view of still another Norlister according to Embodiment 2.
  • FIG. 8 is an enlarged sectional view of a varistor in accordance with a third preferred embodiment of the present invention.
  • FIG. 9 is a perspective view of another varistor in Embodiment 3.
  • FIG. 10 is a perspective view of an electronic component module according to a fourth embodiment of the present invention.
  • FIG. 11A is a perspective view of another electronic component module according to Embodiment 4.
  • FIG. 11B is a perspective view of still another electronic component module according to Embodiment 4.
  • FIG. 11C is a perspective view of still another electronic component module according to Embodiment 4.
  • FIG. 11D is a perspective view of still another electronic component module according to Embodiment 4.
  • FIG. 12A is a perspective view of a norlister according to a fifth embodiment of the present invention.
  • FIG. 12B is a cross-sectional view of the Norlister shown in FIG. 12A, taken along line 12B-12B.
  • FIG. 12C is a top perspective view of the norlister in the fifth embodiment.
  • FIG. 13 is a top view of the varistor in the fifth embodiment.
  • FIG. 14 is a cross-sectional view of the electronic component module in the fifth embodiment.
  • FIG. 15 is a cross-sectional view of another varistor in Embodiment 5.
  • FIG. 16 is a cross-sectional view of the varistor in the fifth embodiment.
  • FIG. 17 is a cross-sectional view of the varistor in the fifth embodiment.
  • FIG. 18 is a cross-sectional view of the varistor in the fifth embodiment.
  • FIG. 19 is a cross-sectional view of a varistor in a sixth embodiment of the present invention.
  • FIG. 20 is a cross-sectional view of a varistor according to a seventh embodiment of the present invention.
  • FIG. 21A is a top view of another Norlister according to a seventh embodiment.
  • FIG. 21B is a cross-sectional view taken along line 21B-21B of the Norlister shown in FIG. 21A.
  • FIG. 22A is a top view of another Norlister according to a seventh embodiment.
  • FIG. 22B is a cross-sectional view of line 22B-22B of the Norlister shown in FIG. 22A.
  • FIG. 23 is a cross-sectional view of another Norlister according to a seventh embodiment of the present invention.
  • FIG. 24 is a cross-sectional view of a conventional varistor.
  • a via hole electrode (first via hole electrode)
  • a terminal (first terminal) of the first terminal A terminal (first terminal)
  • a via hole electrode (first via hole electrode)
  • FIG. 1 is a perspective view of a varistor 201 according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the varistor 201 shown in FIG. 1 taken along line 2-2.
  • Norlister 201 includes ceramic substrate 13, Norlister layer 12 provided on surface 13 A of ceramic substrate 13, and glass ceramic layer 14 provided on surface 12 A of Norlister layer 12. The opposite surface 5012 B of the face 12 A of the Norristo layer 12 is in contact with the surface 13 A of the ceramic substrate 13.
  • the ceramic substrate 13 is made of a material having heat resistance and insulation, such as an alumina substrate.
  • Internal electrodes 11A and 1 IB facing each other are provided in the Norristo layer 12. That is, the Norristo layer 12 is sandwiched between the glass ceramic layer 14 and the ceramic substrate 13.
  • the respective end portions 111A, 11 IB of the internal electrodes 11A, 1 IB are exposed at the end faces 12C, 12D of the Nor lister layer 12.
  • External electrodes 15A and 15B exposed to the outside of the NORISTA 201 are connected to exposed end portions 11 1A and 11 IB of the internal electrodes 11A and 1 IB, respectively, to constitute a surface mount type varistor 201.
  • varistor material Roh lister layer 12, 80 and weight 0/0 or more zinc oxide as the main component, a total of 0 forces also 20 weight 0/0 bismuth oxide, antimony oxide, manganese oxide, hydrogenated such cobalt oxide
  • the composition contains an additive and the varistor layer has excellent varistor characteristics. Further, by adding glass or the like, a varistor material which can be fired at around 900 ° C. can be obtained.
  • the additives may be other than the above-mentioned substances as long as they have excellent varistor characteristics.
  • the varistor layer 12 is stacked on the ceramic substrate 13 having high mechanical strength, thinning of the varistor 201 can be realized even if the mechanical strength of the varistor layer 12 is small.
  • the varistor layer 12 is thin and has excellent varistor characteristics and also has high reliability. As a result, it is possible to obtain the NORISTA 201 which has excellent varistor characteristics with respect to a small surge voltage, is excellent in reliability, and can be miniaturized and thinned.
  • the ceramic substrate 13 can provide a varistor array having a plurality of Norristors.
  • the powder of the above-described varistor material, and a binder resin, a plasticizer and a solvent were blended.
  • a ceramic green sheet with a thickness of about 50 ⁇ m is produced by the doctor blade method.
  • a conductive paste containing silver as a main component is screen printed on the ceramic green sheet to form internal electrodes 11A and 1 IB.
  • the ceramic green sheets are arranged and stacked so as to face each other via the internal electrode 11A and the portion 12E of the 1 IB force varistor layer 12.
  • the area of the internal electrodes 11A and 1 IB is 0.3 to 0.5 mm 2
  • the distance T1 between the internal electrodes 11A and 11B is preferably 5 to 50 ⁇ m.
  • a ceramic green sheet to be a glass ceramic layer 14 of a glass ceramic material sintered at a firing temperature similar to that of the varistor material is laminated to form a laminate.
  • This glass ceramic material is, for example, a mixture of alumina ceramic powder and calcium borosilicate ⁇ aluminum ⁇ glass powder in a weight ratio of 50: 50, and so on.
  • the glass ceramic layer 14, the varistor layer 12 and the ceramic substrate 13 which also serves as an alumina substrate are integrally laminated.
  • the norlister material contains a bismuth compound such as oxide bismuth
  • the glass ceramic layer 14, the varistor layer 12 and the ceramic substrate 13 are more integrated due to the diffusion of bismuth oxide.
  • a ceramic substrate 13 having an excellent mechanical strength may be used, which contains any one of calcium oxide and magnesium oxide as a main component.
  • the fired laminate is usually formed of a plurality of lattices arranged in order to improve productivity. Includes Norrista.
  • the fired laminate is cut by a cutting machine such as a die sinker machine and divided into separated varistors.
  • the end portions 1118 and 111B of the internal electrodes 11A and 11 are exposed at the end faces 12C and 12D of the varistor layer 12 of the varistor 201 which is a divided piece.
  • a conductive paste such as silver paste is applied to the end faces 12C and 12D where the end portions 111A and 111B are exposed, and firing is performed at a predetermined temperature to form external electrodes 15A and 15B, whereby a varistor 201 is obtained.
  • FIG. 3A is a cross-sectional view showing a microstructure near the interface 12H of the varistor layer 12 and the glass ceramic layer 14 of the varistor 201.
  • FIG. Figures 3B-3E show the interface between the varistor layer 12 and the glass ceramic layer 14 measured using an energy dispersive X-ray fluorescence apparatus: zinc (Zn), bismuth (Bi), conort (Co) and antimony (Sb) near 12H. Each shows the distribution of.
  • zinc (Zn) which is the main component of the varistor material, is present only in the varistor layer 12 and hardly present in the glass ceramic layer 14.
  • the additives bismuth (Bi), comonomer (Co) and antimony (Sb) diffuse to the glass ceramic layer 14 and are also present inside the glass ceramic layer 14.
  • a sample in which the glass ceramic layer 14 was not laminated on the varistor layer 12, that is, the sample in which the varistor layer 12 was exposed was manufactured by the same manufacturing method.
  • the distance T1 of the sample of the comparative example was about 38 ⁇ m.
  • FIG. 4A shows the voltage between the external electrodes 15A and 15B when a current of 1mA, 0.1mA, 0.101mA and 0. 001mA is applied to the sample.
  • the sample of the comparative example has a higher voltage than the sample of the example.
  • the sample of the example has better non-linearity than the sample of the comparative example.
  • the varistor voltage of the sample of the example hardly changes before and after leaving, but the varistor voltage of the sample of the comparative example decreases significantly, and the nonlinearity is also greatly degraded. There is.
  • the voltage is high because the varistor material is not sufficiently sintered, and when it is left in the high temperature and high humidity tank, the moisture is absorbed to reduce the varistor voltage and the nonlinearity is deteriorated. It is causing.
  • additives such as bismuth oxide, cobalt oxide, antimony oxide and the like are scattered to the air at the time of firing.
  • bismuth oxide is an important oxide that develops the varistor characteristics of a varistor layer mainly composed of zinc oxide. Acidic bismuth is easy to scatter due to its low boiling point.
  • the additive such as bismuth oxide diffuses slightly to the inside of the glass ceramic layer 14 by firing.
  • the concentration of bismuth oxide in the glass ceramic layer 14 exceeds a certain value, the amount of bismuth oxide in the glass ceramic layer 14 saturates, and the varistor layer 12 to the glass ceramic layer 14 is oxidized after that point of saturation. ⁇ Bismuth can not spread. Therefore, by ensuring that the required amount of bismuth bismuth remains in the varistor layer 12, the varistor layer 12 is sufficiently sintered to obtain the desired electrical characteristics.
  • the diffusion amount of oxide bismuth to the glass ceramic layer 14 becomes too large.
  • the Norristo layer 12 may not be sufficiently sintered, which may cause deterioration of the varistor characteristics or deterioration of the characteristics due to being left at high temperature and high humidity.
  • the thickness after firing of the glass ceramic layer 14 is smaller than 5 / zm, the electrical resistance value of the glass ceramic layer 14 is greatly reduced by the diffusion of an additive such as acid bismuth to the glass ceramic layer 14.
  • a plating film of nickel, tin, gold or the like may be formed on the surface of the external electrodes 15A, 15B.
  • the thickness of the glass ceramic layer 14 is preferably in the range of 5 to 50 ⁇ m.
  • composition in the vicinity of the interface 12H between the glass ceramic layer 14 and the varistor layer 12 has a somewhat nonuniform concentration of additives as shown in FIGS. 3B to 3E, and is slightly unstable as the Norlister layer 12 It is in a good condition. And, this state is more unstable than the interface between the varistor layer 12 and the ceramic substrate 13.
  • Internal electrodes 11 A and 1 IB are not suitable for the interface 12 H of varistor layer 12 and glass ceramic layer 14 and varistor layer 12 and ceramic substrate 13. It is preferable not to form in the vicinity of the interface of From the results of FIGS. 3B to 3F, it is preferable to provide the internal electrodes 11A and 1 IB in the Norristo layer 12 at a distance of 10 m or more from the surfaces 5012B and 12A of the varistor layer 12. That is, the distances Dl and D2 of the respective surfaces 12A of the varistor layer 12 to the internal electrodes 11A and 1 IB are preferably 10 m or more. Further, it is preferable that the distances D3 and D4 from the surface 5012B of the Norristor layer 12 to the internal electrodes 11A and 1 IB be 10 ⁇ m or more.
  • the diffusion prevention layer is provided on the interface 12 H between the Norristo layer 12 and the glass ceramic layer 14 or at the interface between the Norristo layer 12 and the ceramic substrate 13 to prevent the diffusion of oxide bismuth. Bond strength at the interface of the It is preferred that the diffusion prevention layer contains bismuth oxide.
  • FIG. 5 is a perspective view of a varistor 301 according to a second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of the varistor 301 shown in FIG. 5 along the line 6-6.
  • the same reference numerals as in the varistor 201 in the first embodiment shown in FIGS. 1 and 2 denote the same parts, and a detailed description thereof will be omitted.
  • Nolister 301 according to the second embodiment includes internal electrodes 311A and 311B instead of internal electrodes 11A and 11B.
  • the internal electrodes 311 A, 31 IB are not exposed at the end faces 12 C, 12 D of the varistor layer 12.
  • the glass ceramic layer 14 has a surface 14 B located on the surface 12 A of the varistor layer 12 and a surface 14 A opposite to the surface 14.
  • the NORISTOR 301 includes terminal electrodes 16A and 16B which are external electrodes provided on the surface 14A of the glass ceramic layer 14 and exposed to the outside of the NORISTOR 301.
  • the terminal electrodes 16A, 16B are connected to the internal electrodes 311A, 31 IB through the via hole electrodes 17A, 17B, respectively.
  • terminal electrodes 16A and 16B provided on the surface 14A of the glass ceramic layer 14, other components can be mounted on the surface 14A.
  • the face 14A can be opposed to the circuit board, and the parister 301 can be mounted on the circuit board, and the terminal electrodes 16A and 16B can be directly connected to the circuit pattern on the circuit board.
  • the components can be mounted on the circuit board at high density, and the reliability of connection between the circuit board and the varistor 301 against sag, distortion, and drop can be improved.
  • the terminal electrodes 16A and 16B are formed by applying a conductive paste on the surface 14A of the glass ceramic layer 14, and the via hole electrodes 17A and 17B are formed by filling the via holes 12F and 12G of the ceramic layer 12 with the conductive paste. Be done. At this time, if a normal conductive paste is used, a defect such as a large hole formed around the via hole electrodes 17A, 17B or a crack generated around the terminal electrodes 16A, 16B may occur.
  • NORISTA 301 NORISTA layer 12 and glass ceramic layer 14 are attached to ceramic substrate 13 and fired.
  • the ceramic substrate 13 hardly shrinks, so the ceramic substrate 13 restricts the shrinkage of the direction 301A parallel to the surface 13A by the ceramic substrate 13 so that the ceramic substrate 13 has a rectangular shape with the surface 12A.
  • the conductive paste to be the terminal electrodes 16A and 16B and the via hole electrodes 17A and 17B shrinks in the directions 301A and 301B by firing, so that the above-described defect occurs. Also, this conductive paste starts shrinking at a low temperature in comparison with the glass ceramic layer 14 and the varistor layer 12 during firing.
  • the conductive paste which has begun to shrink, starts to shrink and applies a force to the varistor layer 12 and the glass ceramic layer 14 in the direction of 301A. This force causes defects in the varistor layer 12 and the glass ceramic layer 14 which have not yet been sintered and do not have mechanical strength.
  • the temperature at which the conductive paste to be the terminal electrodes 16A and 16B and the via hole electrodes 17A and 17B starts to shrink during firing is increased, and the terminal electrodes 16A and 16B and the via hole electrodes 17A and 17B force varistor layer 12 and the glass ceramic layer
  • Molybdenum trioxide is added to the conductive paste.
  • the conductive paste contains metal powder such as silver, but molybdenum trioxide is added in an amount of not less than 0.5% by weight based on the metal powder.
  • the melting point of molybdenum trioxide is about 800 ° C. Accordingly, sintering of the silicon nitride layer 12 and the glass ceramic layer 14 is started, and at a temperature of 600 ° C.
  • the molybdenum trioxide is dispersed and present as a solid among the particles of the metal powder, and shrinkage of the conductive paste is Suppress. Then, when the temperature exceeded 650 ° C., part of molybdenum trioxide began to melt and diffuse, and from the inside of the conductive paste the varistor layer 12 was moved to the vicinity of the interface of the glass ceramic layer 14 and exposed to the outside. A portion of tribasic molybdenum is sublimed.
  • molybdenum trioxide reacts with the glass ceramic layer 14 and the varistor layer 12 to couple the terminal electrodes 16A, 16B to the glass ceramic layer 14 and the via hole electrodes 17A, 17B with the varistor layer 12 It acts as a bond to bond to the glass ceramic layer 14.
  • the strength of these layers increases as the layers 12 and 14 begin to shrink on firing.
  • the terminal electrodes 16A, 16B and the via hole electrodes 17A, 17B are also fired and begin to shrink.
  • the amount of molybdenum trioxide added can control the temperature at which the conductive paste begins to shrink so as to start firing shrinkage at about the same temperature as layers 12 and 14.
  • the terminal electrodes 16A and 16B, the via hole electrodes 17A and 17B, the nolister layer 12 and the glass ceramic layer 14 can be fired and shrunk in the thickness direction 301B at substantially the same temperature.
  • the conductive paste can be fired and shrunk without generating defects such as holes and cracks around the via hole electrodes 17A and 17B and the terminal electrodes 16A and 16B.
  • the temperature reaches 800 ° C.
  • molybdenum trioxide melts and sublimes, but depending on the amount of addition, a part of molybdenum trioxide molybdenum remains in the conductive paste. A part of the remaining molybdenum trioxide molybdenum is bonded at the interface between the terminal electrodes 16A and 16B and the glass ceramic layer 14 and at the interface between the via hole electrodes 17A and 17B and the glass ceramic layer 14 and the varistor layer 12. Increase.
  • the aforementioned defects due to firing shrinkage can be prevented by adding a small amount of molybdenum trioxide to the internal electrodes 311 A and 31 IB.
  • the terminal electrodes 16 A, 16 B are oxides or glass ceramics which are the additives of the varistor layer 12.
  • the diffusive migration of the glass component of the Mick layer 14 can occur. Therefore, almost no oxide or glass component exists on the surfaces 116A and 116B of the terminal electrodes 16A and 16B.
  • the plated films 1116A, 1116B are formed on the surfaces 116A, 116B of the terminal electrodes 16A, 16B by plating with a metal such as nickel, tin or gold. There is almost no oxide or glass component on the surfaces 116A, 116B of the terminal electrodes 16A, 16B. It is possible to form the plating films 1116A and 1116B easily and uniformly.
  • the amount of molybdenum trioxide molybdenum added to the metal powder of the conductive paste to be the terminal electrodes 16A and 16B and the via hole electrodes 17A and 17B is 0.5% by weight or more, the effect of preventing the defects is enhanced.
  • the addition amount exceeds 5% by weight, excess molybdenum trioxide remains in the terminal electrodes 16A and 16B and the via hole electrodes 17A and 17B. Thereby, the electric resistance of the terminal electrodes 16A and 16B via hole electrodes 17A and 17B is increased, and molybdenum trioxide is deposited on the surfaces 116A and 116B of the terminal electrodes 16A and 16B to disturb formation of the plating films 1116A and 1116B. It is not preferable from that.
  • FIG. 7A is a perspective view of another Norlister 302 according to Embodiment 2.
  • the external electrodes 15A and 15B of the norlister 201 shown in FIGS. 1 and 2 are provided in the norlister 301 shown in FIGS.
  • Norlister 302 is provided with internal electrodes 11A and 1 IB of Norlister 201 shown in FIG. 2 instead of internal electrodes 311A and 31 IB of Norlister 301. That is, in the NORISTOR 302, the terminal electrodes 16A and 16B are connected to the internal electrodes 11A and 1 IB, respectively, and the external electrodes 15A and 15B are connected to the internal electrodes 11A and 1 IB, respectively. Therefore, in the no-lister 302, the terminal electrodes 16A and 16B are electrically connected to the external electrodes 15A and 15B through the internal electrodes 11A and 1 IB, respectively.
  • FIG. 7B is a perspective view of further Norlister 303 according to the second embodiment.
  • Norlister 303 is provided on surface 13B opposite to surface 13A of ceramic substrate 13 instead of terminal electrodes 16A and 16B of varistor 301 shown in FIGS. 5 and 6, and is exposed to the outside of Norlister 303.
  • Terminal electrodes 56A and 56B which are electrodes are provided.
  • the NORISTOR 303 includes a varistor layer 12 and via hole electrodes 117A and 117B embedded in the ceramic substrate 13 instead of the via hole electrodes 17A and 17B.
  • the via hole electrodes 117A, 117B are internal electrodes 311A, 3 in the NORISTOR layer 12
  • the terminal electrodes 56A and 56B which are respectively connected to 1 IB and which also expose the surface 13B force of the ceramic substrate 13 are connected to the portions where the surface 13B force of the via hole electrodes 117A and 117B is exposed.
  • FIG. 7C is a perspective view of another Norristor 304 according to the second embodiment.
  • Norristor 304 external electrodes 15A and 15B of Norristor 201 shown in FIGS. 1 and 2 are provided in Norrister 303 shown in FIG. 7B.
  • Norlister 304 includes internal electrodes 11A and 1 IB of varistor 201 shown in FIG. 2 instead of internal electrodes 311A and 311B of Norlister 303. That is, in the NORISTOR 304, the terminal electrodes 56A, 56B are respectively connected to the internal electrodes 11A, 1 IB, and the external electrodes 15A, 15B are respectively connected to the internal electrodes 11A, 1 IB. Therefore, in the no-lister 304, the terminal electrodes 56A, 56B are electrically connected to the external electrodes 15A, 15B via the internal electrodes 11A, 1 IB, respectively.
  • FIG. 8 is an enlarged sectional view of a varistor 401 according to the third embodiment of the present invention.
  • the same reference numerals as in the varistor 301 of the second embodiment shown in FIGS. 6 and 5 denote the same parts, and a detailed description thereof will be omitted.
  • the portable electronic device must be able to withstand a severe use environment such as falling. Therefore, a component such as a varistor used for such an electronic device needs to have a large strength against an impact such as deflection, twist or drop of the circuit board on which it is mounted.
  • a terminal electrode 66B which is an external electrode exposed to the outside of the Norristor 401 is provided.
  • the terminal electrode 66B is also embedded in the glass ceramic layer 14 and has a surface 166B exposed from the glass ceramic layer 14.
  • a terminal electrode of the same shape is provided in the Nolister 401. The periphery of the end 1116 B of the surface 166 B of the terminal electrode 66 B is covered with the glass ceramic layer 14 C, and with this structure, the terminal electrode 66 B has high strength.
  • the terminal electrode 66B has practically sufficient strength against impact.
  • Width T 2 is preferably 100 ⁇ m or less in consideration of the size of parts used in the electronic device and the size and shape of the terminal electrode 66B.
  • the thickness T3 of the glass ceramic layer 14C is 3 ⁇ m or more, the strength of the terminal electrode 66B can be increased sufficiently for practical use. If the thickness T3 exceeds m, the irregularities on the surfaces of the glass ceramic layer 14C and the terminal electrode 66B become large, which makes it difficult to mount the NORISTA 401, which is not preferable.
  • the terminal electrode 66B of the NORISTOR 401 and the glass ceramic layer 14C can be formed by several methods.
  • a terminal electrode 66B may be formed on the surface 14A of the glass ceramic layer 14, and then a glass ceramic paste of a glass ceramic material may be printed to form a glass ceramic layer 14C.
  • the terminal electrode 66B is formed on the surface 14A of the glass ceramic layer 14, and a glass ceramic green sheet having a hole slightly smaller than the surface 166B of the terminal electrode 66B is laminated on the surface 14A of the ceramic glass layer 14 to form a glass ceramic.
  • the layer 14C may be formed.
  • the material of the glass ceramic layer 14 C is preferably the same as the glass ceramic layer 14, but the material is not particularly limited as long as it does not react violently with the glass ceramic layer 14.
  • a width T2 of 25 ⁇ m is coated around end portion 1166B of terminal electrode 66B with a glass ceramic layer 14C having a thickness T3 of 5 ⁇ m.
  • the surface 166B of the terminal electrode 66B is a square of 2 mm 2 in area, and as a result of a test in which the lead wire is joined to the terminal electrode 66B and the lead wire is pulled in the direction perpendicular to the surface 166B, the average tensile strength is 14 kg.
  • the average tensile strength of the Norista of the Comparative Example without the glass ceramic layer 14C is 6 kg, and the varistor 401 according to Embodiment 3 has twice the strength of the varistor of the Comparative Example.
  • the terminal electrode is formed by printing or the like, the area around the end of the terminal electrode becomes thin, and the bonding strength with the glass ceramic layer becomes small.
  • the adhesive strength around the end 1166B of the terminal electrode 66B is large.
  • the average tensile strength was 13 kg.
  • the tensile strength was 3 kg.
  • the plating solution and the cleaning solution such as acid or alkaline solution infiltrate from the thin portion around the end of the terminal electrode, and the bonding interface between the glass ceramic layer and the terminal electrode is eluted. Lowers the adhesive strength.
  • the varistor 401 has glass The ceramic layer 14C covers the periphery of the end 1166B of the terminal electrode 66B to prevent elution of the bonding interface.
  • the glass ceramic layer 14 C preferably covers all sides around the end 1166 B of the terminal electrode 66 B.
  • the tensile strength of the terminal electrode 66B can be improved even if the force is not partially covered around the end 1166B of the terminal electrode 66B.
  • FIG. 9 is a perspective view of another Norlister 402 according to the third embodiment.
  • Norrister 402 Norrister 401 shown in FIG. 8 is provided with external electrodes 15A and 15B of Norrister 201 shown in FIG. 1 and FIG. That is, in the no-lister 402, the terminal electrodes 66A, 66B are connected to the internal electrodes 11A, 11B, respectively, and the external electrodes 15A, 15B are connected to the internal electrodes 11A, 1 IB, respectively. Therefore, in the no-lister 402, the terminal electrodes 66A and 66B conduct to the external electrodes 15A and 15B via the internal electrodes 11A and 1 IB, respectively.
  • FIG. 10 is a perspective view of a light emitting diode module 501 which is an electronic component module according to the fourth embodiment of the present invention.
  • the light emitting diode module 501 includes the nolister 201 according to the first embodiment, and a white or blue light emitting diode 18 which is an electronic component mounted on the surface 14A of the glass ceramic layer 14 of the nolister 201.
  • the white or blue light emitting diode needs to dissipate heat generated by the light emitting diode that generates a large amount of heat, so the ceramic substrate 13 has a purity of 90% or more from the viewpoint of strength, thermal conductivity and productivity. It is preferable to use an alumina substrate.
  • the light emitting diode 18 has terminals 18A and 18B, and the terminals 18A and 18B are connected to the external electrodes 15A and 15B of the NORISTOR 201 respectively by wires 19A and 19B by wire bonding or other wire connecting method.
  • the light emitting diode 18 is connected in parallel with the Norristo device formed by the internal electrodes 11A, 1 IB embedded in the Norista layer 12.
  • FIG. 11A is a perspective view of a light emitting diode module 502 which is another electronic component module according to the fourth embodiment.
  • the light emitting diode module 502 includes the norlister 301 according to the second embodiment in place of the nolister 201 of the light emitting diode module 501 shown in FIG.
  • the light emitting diode 18 is mounted on the glass ceramic layer 14 and the terminals 18A, 18B are They are mounted on the terminal electrodes 16A and 16B by a mounting method such as solder mounting or bump mounting.
  • FIG. 11B is a perspective view of a light emitting diode module 503 which is still another electronic component module according to the fourth embodiment.
  • the light emitting diode module 503 includes a norlister 302 shown in FIG. 7A instead of the nolister 301 of the light emitting diode module 502 shown in FIG. 11A.
  • the light emitting diode 18 is mounted on the glass ceramic layer 14, and the terminals 18A and 18B are mounted on the terminal electrodes 16A and 16B by a mounting method such as solder mounting or bump mounting, respectively.
  • the light emitting diode module 503 can be mounted on the circuit board by the external electrodes 15A and 15B.
  • FIG. 11C is a perspective view of a light emitting diode module 504 which is still another electronic component module according to the fourth embodiment.
  • the light emitting diode module 504 includes a varistor 303 shown in FIG. 7B in place of the nolister 301 of the light emitting diode module 502 shown in FIG. 11A.
  • the light emitting diode 18 is mounted on the surface 13B of the ceramic substrate 13, and the terminals 18A and 18B are mounted on the terminal electrodes 56A and 56B by a mounting method such as solder mounting or bump mounting, respectively.
  • FIG. 11D is a perspective view of a light emitting diode module 505 which is another electronic component module according to the fourth embodiment.
  • the light emitting diode module 505 includes a norlister 304 shown in FIG. 7C instead of the nolister 303 of the light emitting diode module 504 shown in FIG. 11C.
  • the light emitting diode 18 is mounted on the glass ceramic layer 14, and the terminals 18A and 18B are mounted on the terminal electrodes 56A and 56B by a mounting method such as solder mounting or bump mounting, respectively.
  • the light emitting diode module 503 can be mounted on the circuit board by the external electrodes 15A and 15B.
  • light emitting diode 18 normally emits light by applying a voltage between terminals 18A and 18B.
  • a voltage higher than a normal voltage such as an electrostatic surge voltage is applied to the terminals 18A and 18B of the light emitting diode 18, a large current generated by the voltage causes the internal electrodes 11A and 1 IB to be opposed inside the varistor layer 12 Or bypass to internal electrodes 311A, 31 IB.
  • small light emitting diode modules 501 to 505 can be obtained in which the resistor layer 12 can protect the light emitting diode 18.
  • the height reduction of the light emitting diode modules 501 to 505 can be realized by the ceramic substrate 13 having a large mechanical strength. Further, since the light emitting diode 18 and the varistor can be connected at a short distance, the light emitting diode module according to the fourth embodiment can protect the light emitting diode 18 more strongly against electrostatic pulses of high voltage.
  • the light emitting diode modules 501 to 505 may be formed with an electronic circuit including a resistor, a coil and a capacitor as well as a resistor.
  • a light emitting diode module in which various electronic components are mounted on the surface 13 B of the ceramic substrate 13 can be obtained. With this configuration, a higher density light emitting diode module can be obtained.
  • the electronic component module according to the fourth embodiment includes the light emitting diode 18 as an electronic component
  • the electronic component is not limited to the light emitting diode, and may be another electronic component such as a semiconductor element.
  • the varistor protects the electronic component from static electricity and surge voltage, and provides a small electronic component module that is resistant to static electricity and surge voltage.
  • FIG. 12A is a perspective view of a varistor 601 according to a fifth embodiment of the present invention.
  • FIG. 12B is a cross-sectional view of Norrister 601 at line 12B-12B shown in FIG. 12A.
  • FIG. 12C is a top perspective view of Norista 601.
  • FIG. 13 is a top view of the Nolister 601.
  • the same reference numerals as in the varistor 201 according to Embodiment 1 shown in FIGS. 1 and 2 denote the same parts, and a description thereof will be omitted.
  • the nolister 601 according to the fifth embodiment differs from the varistor layer 12 and the glass ceramic layer 14 so that the portion 13C of the surface 13A of the ceramic substrate 13 is exposed at the bottom.
  • a hole 21 passing through is formed.
  • the hole 21 has an opening 5021 B opening in the surface 14 A of the glass ceramic layer 14.
  • Terminal electrodes 20A and 20B for mounting an electronic component are provided on a portion 13C of the surface 13A.
  • the terminal electrodes 20A and 20B are external electrodes exposed to the outside of the NORISTOR 601.
  • Internal electrodes 611A and 611B are provided in the varistor layer 12, and an end 1511A located on the portion 13C on the interface between the nolister layer 12 and the ceramic substrate 13, ie, the surface 13A of the ceramic substrate 13, Internal electrodes 511A and 511B each having a 151 IB are provided.
  • the internal electrodes 611A and 611B are connected to the internal electrodes 511A and 51 IB via the via hole electrodes 22A and 5022B provided in the NORISTOR layer 12, respectively. It is done.
  • Terminal electrodes 20A and 20B are provided on the ends 1511A and 1511B of the internal electrodes 511A and 511B exposed from the holes 21, respectively, and connected to the ends 1511A and 151 IB.
  • the internal electrodes 611A and 611B are opposed to each other with the portion 35 of the Norlister layer 12 interposed therebetween, and the Nolister 601 obtains characteristics as a varistor in the portion 35.
  • FIG. 14 is a cross-sectional view of a light emitting diode module 701 which is an electronic component module according to the fifth embodiment.
  • the light emitting diode module 701 includes the varistor 601 shown in FIG. 12A to FIG. 12C and FIG. 13 and a white or blue light emitting diode 38 which is an electronic component.
  • the white or blue light emitting diode needs to dissipate the heat generated by the light emitting diode which generates a large amount of heat, so the ceramic substrate 13 is an alumina having a purity of 90% or more from the viewpoint of strength, thermal conductivity and productivity. It is preferred to use a substrate.
  • a light emitting diode 38 is provided in the hole 21 and has terminals 38A, 38B connected to the terminal electrodes 20A, 20B respectively. By housing the light emitting diode 38 in the hole 21, the light emitting diode module 701 can be thinned.
  • the shape of the hole 21 is preferably substantially circular when viewed from above, that is, the shape of the opening 21 opened in the glass ceramic layer 14 of the hole 21 is substantially circular.
  • the substantially circular shape makes it possible to suppress a defect which is likely to occur at the interface between the hole 21 and the surface 13A of the ceramic substrate 13.
  • the light emitted from the light emitting diode 38 mounted in the hole 21 can be efficiently reflected by the wall 21A of the substantially circular hole 21, and brighter light can be obtained.
  • the light emitting diode 38 normally emits light by applying a voltage between the terminals 38A and 38B. Higher than normal voltage such as electrostatic surge voltage!
  • a voltage is applied to the terminals 38A and 38B of the light emitting diode 38, a large current generated by the voltage is diverted to the opposing internal electrodes 511A, 511B, 611A and 611B inside the varistor layer 12.
  • a small light emitting diode module 701 capable of protecting the light emitting diode 38 by the resistor layer 12 is obtained.
  • the height of the light emitting diode module 701 can be reduced by the ceramic substrate 13 having a large mechanical strength.
  • the light emitting diode 38 and the varistor can be connected at a short distance, the light emitting diode module 701 has a high light emitting die for electrostatic pulses of voltage. Ord 38 can be further protected.
  • the light emitting diode module 701 may be provided with an electronic circuit other than a resistor, such as a resistor, a coil or a capacitor.
  • a light emitting diode module is obtained in which various electronic components are mounted on the surface 13 B of the ceramic substrate 13. With this configuration, a higher density light emitting diode module can be obtained.
  • the electronic component module 701 includes a light emitting diode 38 as an electronic component.
  • the electronic component is not limited to a light emitting diode, and may be another electronic component such as a semiconductor element.
  • the varistor protects the electronic components from static electricity and surge voltage, and provides a compact electronic component module that is resistant to static electricity and surge voltage.
  • FIG. 15 is a cross-sectional view of another Norlister 602 according to the fifth embodiment.
  • Norlister 602 has the same structure as Norlister 601 shown in FIGS. 12A to 12C except that it does not have via hole electrodes 22A and 5022B.
  • the terminal electrodes 20A, 20B and the internal electrodes 611A, 61 IB are electrically connected in parallel. Thereby, even when a high voltage such as an electrostatic surge voltage is applied to the light emitting diode 18, a large current generated by the high voltage is connected in parallel with the terminal electrodes 20A and 20B to the internal electrodes 611A and 61. It can be diverted to IB to protect the light emitting diode 18.
  • FIG. 16 is a cross-sectional view of still another varistor 603 according to the fifth embodiment. 12A to 12C, and the hole 21 of the Norlister 601 shown in FIG. 13 has a cylindrical shape.
  • the Norristor 603 has a tapered shape expanding from the varistor layer 12 toward the glass ceramic layer 14 instead of the hole 21. Hole 24 is formed and punched.
  • the inclined wall surface 24A of the hole 24 condenses the light from the light emitting diode in one direction, and as a result, brighter light can be obtained.
  • FIG. 17 is a cross-sectional view of further norlister 604 according to the fifth embodiment.
  • Norlister 604 further includes light reflecting layer 25 provided on wall 24A of hole 24 of Norlister 603 shown in FIG.
  • the light reflecting layer 25 is made of a material that reflects light, such as metal.
  • Hole 24 for the light emitting diode When mounted inside, the light reflecting layer 25 on the inclined wall 24A of the hole 24 condenses the light from the light emitting diode in one direction, and as a result, brighter light can be obtained.
  • FIG. 18 is a cross-sectional view of still another Norista 605 according to the fifth embodiment.
  • Norlister 605 further includes a glass ceramic layer 27 provided on surface 14 A of glass ceramic layer 14 of Norlister 603 shown in FIG. Instead of the hole 24 of the varistor 603 shown in FIG. 16, a hole 124 having an opening 124 B opened in the glass ceramic layer 27 is formed.
  • the opposite surface 14 B of the surface 14 A of the glass ceramic layer 14 is located on the surface 12 A of the Nor lister layer 12.
  • the glass ceramic layer 27 is formed of glass having a softening point temperature 100 ° C. or more lower than the softening point temperature of the glass constituting the glass ceramic layer 14 and has a thickness of 50 / ⁇ to 500 / ⁇ Have.
  • the glass ceramic layer 27 can suppress evaporation of the additive of the varistor layer 12 at the time of firing, maintain the characteristics as a varistor in the nolister layer 12, and ensure reliability. it can.
  • the hole 124 can be deeper than the hole 24 shown in FIG. 17 and has a wall 124A wider than the wall 24 '. Therefore, when the light emitting diode is mounted in the hole 124, the light of the light emitting diode can be reflected by the wall surface 124A to be more strongly condensed in one direction, and brighter light can be obtained.
  • FIG. 19 is a cross-sectional view of Norista 801 in the sixth embodiment of the present invention.
  • Norristor 801 is the Norrister 601 shown in FIG. 12A to FIG. 12C, and FIG. 13 with insulating layer 30 made of an insulating material formed on wall 21A of hole 21 provided in Norlister layer 12 and glass ceramic layer 14. Further prepare.
  • the insulating layer 30 prevents the internal electrodes 611 A, 61 IB from being exposed from the wall 21 A of the hole 21.
  • the plating solution can be selected from more types of chemicals, and the flexibility of the terminal manufacturing method can be improved.
  • FIG. 20 is a cross-sectional view of Norista 802 in the seventh embodiment of the present invention.
  • Norriser 802 further includes a heat transfer layer 32 provided on the opposite surface 13B of the surface 13A of the ceramic substrate 13 with the varistor 601 shown in FIGS. 12A to 12C and 13.
  • the heat transfer layer 32 is formed of a material having high heat conductivity such as metal and promotes the heat radiation from the ceramic substrate 13.
  • the heat transfer layer 32 preferably contains 90% by weight or more of silver from the viewpoint of heat dissipation.
  • the heat transfer layer 32 may be formed only on the opposite side of the terminal electrodes 20A and 20B, but by forming the heat transfer layer 32 in a wider range, larger heat dissipation characteristics can be obtained.
  • the external electrode and the heat transfer layer 32 do not short. As such, the range in which the heat transfer layer 32 is formed is determined.
  • FIG. 21A is a top transparent view of another varistor 803 according to Embodiment 7.
  • FIG. FIG. 21B is a cross-sectional view of Norista 803 taken along line 21B-21B shown in FIG. 21A.
  • the Nolister 803 is provided with an inner electrode 711A, 711B instead of the inner electrode 511A, 51 IB of the Nolister 602 shown in FIG. 15 [This is further provided with an external electrode 15A, 15B.
  • terminal electrodes 20A and 20B for mounting an electronic component are provided on a portion 13C of the surface 13A.
  • the internal electrodes 711A and 71 IB are provided on the interface between the Norristor layer 12 and the ceramic substrate 13, ie, on the surface 13A of the ceramic substrate 13, and have end portions 1711A and 171 IB located on the portion 13C.
  • Terminal electrodes 2018 and 20B are respectively provided on the ends 1711A and 17118 of the inner flange electrodes 711A and 711B exposed to the holes 21 and connected to the end portions 1711A and 171 IB, respectively.
  • the end portions 2611A and 2711A of the internal electrodes 611A and 711A are exposed to the end face 12C force of the Norristo layer 12, and the end portions 2611B and 271 IB of the internal electrodes 611B and 71 IB are also exposed to the end face 12D of the Norlister layer 12 I see!
  • the external electrode 15A is provided on the end face 12C of the varistor layer 12 and is connected to the end portions 2611A and 2711A of the internal electrodes 611A and 711A.
  • the external electrode 15B is provided on the end face 12D of the Nor lister layer 12, and is connected to the end portions 26 11B and 271 IB of the internal electrodes 611B and 711B.
  • FIG. 22A is a top transparent view of still another varistor 804 according to Embodiment 7.
  • FIG. FIG. 22B is a cross-sectional view of Norrister 804 at line 22B-22B shown in FIG. 22A.
  • Norlister 804 includes internal electrodes 811A and 81 IB instead of internal electrodes 611A and 61 IB of Norlister 803 shown in FIGS. 21A and 21B, and further includes via hole electrodes 217A and 217B and terminal electrodes 16A and 16B. .
  • the internal electrodes 811A and 81 IB are not exposed from the NORISTA layer 12.
  • the via hole electrode 217A is connected to the internal electrodes 71 1A and 811A and has a portion 1217A exposed to the surface 14A of the glass ceramic layer 14.
  • the terminal electrode 16A is provided on the surface 14A of the glass ceramic layer 14 and is connected to the portion 1217A of the via hole electrode 217A.
  • the via hole electrode 217B is connected to the internal electrodes 711B and 81 IB and has a portion 1217B exposed to the surface 14A of the glass ceramic layer 14.
  • the terminal electrode 16B is provided on the surface 14A of the glass ceramic layer 14 and is connected to the ridge 1217B of the via hole electrode 217B.
  • Noristor 804 may be provided with external electrodes 15A, 15B shown in FIG. 21A and FIG. 21B.
  • the internal electrodes 811 A and 811 B are opposed to each other with the portion 135 of the Norristo layer 12 interposed therebetween, and the Norristor 804 obtains the characteristics as a Norristor at the portion 135
  • FIG. 23 is a cross-sectional view of still another varistor 805 in the seventh embodiment.
  • the varistor portion is formed by the internal electrode 711A and the internal electrode 711B!
  • the varistor 805 comprises internal electrodes 911A, 91 IB instead of the internal electrodes 611A, 61 IB of the Norris 803 shown in FIGS. 21A and 21B, and further comprises via hole electrodes 317A, 317B and terminal electrodes 16A, 16B.
  • the internal electrodes 711A and 71 IB are provided on the surface 13A of the ceramic substrate 13 and have portions 2711A and 271 IB exposed on the end faces 12C and 12D of the varistor layer 12 respectively.
  • the external electrodes 15A and 15B are provided on the end faces 12C and 12D, respectively, and are connected to the end portions 2711A and 271 IB of the internal electrodes 711A and 71 IB, respectively.
  • the Norlister internal electrodes 711A and 711B are opposed to each other with the portion 12E of the Nolister layer 12 interposed therebetween, and the portion 12E serves as a varistor. Characteristics are obtained.
  • the internal electrodes 911A and 91 IB have end portions 2911A and 291IB exposed from the end faces 12C and 12D of the varistor layer 12 and connected to the external electrodes 15A and 15B, respectively.
  • the via hole electrodes 317A and 317B are connected to the internal electrodes 911A and 91 IB, respectively, and have portions 1317A and 1317B exposed from the surface 14A of the glass ceramic layer 14.
  • the terminal electrodes 16A and 16B are provided on the surface 14A, and are connected to the portions 1317A and 1317B of the via hole electrodes 317A and 317B, respectively.
  • internal electrode 711A is electrically connected to terminal electrode 16A through external electrode 15A, internal electrode 911A and via hole electrode 317A
  • internal electrode 711B is electrically connected to terminal electrode 16B through external electrode 15B and internal electrode 911B and via hole electrode 317B. I'm passing.
  • the varistor according to the present invention is small and thin, and has excellent varistor characteristics against surge voltage. Therefore, it is useful for an electronic component module that is compact and resistant to static electricity and surge voltage.

Abstract

 バリスタは、絶縁性を有するセラミック基板と、セラミック基板上に設けられた酸化亜鉛を主成分とするバリスタ層と、バリスタ層上に設けられたガラスセラミック層と、バリスタ層内に設けられて互いに対向する第1と第2の内部電極とを備える。このバリスタは小型で薄くでき、サージ電圧に対する優れたバリスタ特性を有する。またこのバリスタにより、小型で静電気やサージ電圧に対して耐性を有する電子部品モジュールが得られる。

Description

明 細 書
ノ スタおよびそれを用いた電子部品モジュール
技術分野
[0001] 本発明は、各種電子機器に用いる静電気やサージ電圧による不具合を防止する バリスタ、およびそのノ リスタと電子部品とを有する電子部品モジュールに関する。 背景技術
[0002] 近年、携帯電話等の電子機器の小型化、低消費電力化は急速に進み、それに伴 い電子機器の回路を構成する各種電子部品の耐電圧は低下してきている。そのた め、人体と電子機器の導通部が接触したときに発生する静電気パルスなどによる各 種電子部品、特に半導体デバイスの破壊による電子機器の故障トラブルが増えてき ている。
[0003] 電子部品で半導体デバイスの一種である発光ダイオードは、ディスプレイデバイス のノ ックライトや小型カメラのフラッシュ等に用いられるなど、幅広い普及が見込まれ て 、る。この発光ダイオードは静電気パルスに対する耐電圧が低 、。
[0004] このような発光ダイオードの静電気パルスへの対策としては、静電気パルスが入る ラインとグランド間にバリスタを接続して静電気ノ ルスをグランドにバイパスさせ、発光 ダイオードに印加される高電圧を抑制する。
[0005] 図 24は特開平 8— 31616号公報に開示されている従来の積層チップバリスタ 105 の断面図である。積層チップバリスタは小型化に適しており、小型の電子機器によく 用いられている。積層チップバリスタ 105は、内部電極 100を有するノ リスタ層 102と 、 ノ リスタ層 102の端面で内部電極 100と接続された端子 103とを備えている。ノ リス タ層 102の上下面には保護層 104が設けられて 、る。
[0006] 従来のノ リスタ 105では、ノ リスタ層 102は、割れや欠けを防止できる物理的な強 度を確保するために、ある程度の厚みを有する必要があり、これにより薄型化が困難 である。例えば、長さ 1. 25mm,幅 2. Omm程度の積層チップノ リスタは 0. 5mm以 上の厚みを有することが必要であり、これより薄型化を図ることは困難である。たとえ 機械的強度が保たれたとしても、薄くすればするほどバリスタ層 102に含まれる成分 の一つである酸ィ匕ビスマスが焼成中に蒸発し、ノ リスタ特性と信頼性の劣化を引き起 こす場合がある。
発明の開示
[0007] ノ リスタは、絶縁性を有するセラミック基板と、セラミック基板上に設けられた酸ィ匕亜 鉛を主成分とするバリスタ層と、ノリスタ層上に設けられたガラスセラミック層と、ノリス タ層内に設けられて互いに対向する第 1と第 2の内部電極とを備える。
[0008] このバリスタは小型で薄くでき、サージ電圧に対する優れたバリスタ特性を有する。
またこのバリスタにより、小型で静電気やサージ電圧に対して耐性を有する電子部品 モジュールが得られる。
図面の簡単な説明
[0009] [図 1]図 1は本発明の実施の形態 1におけるバリスタの斜視図である。
[図 2]図 2は図 1に示すバリスタの線 2— 2における断面図である。
[図 3A]図 3Aは実施の形態 1におけるバリスタの断面図である。
[図 3B]図 3Bは実施の形態 1におけるバリスタの構成元素の分布を示す。
[図 3C]図 3Cは実施の形態 1におけるノ リスタの構成元素の分布を示す。
[図 3D]図 3Dは実施の形態 1におけるノ リスタの構成元素の分布を示す。
[図 3E]図 3Eは実施の形態 1におけるバリスタの構成元素の分布を示す。
[図 4A]図 4Aは実施の形態による試料のバリスタ特性を測定した結果を示す。
[図 4B]図 4Bは実施の形態による試料のバリスタ特性を測定した結果を示す。
[図 5]図 5は本発明の実施の形態 2におけるバリスタの斜視図である。
[図 6]図 6は図 5に示すノ リスタの線 6— 6における断面図である。
[図 7A]図 7Aは実施の形態 2における他のバリスタの斜視図である。
[図 7B]図 7Bは実施の形態 2におけるさらに他のノ リスタの斜視図である。
[図 7C]図 7Cは実施の形態 2におけるさらに他のノ リスタの斜視図である。
[図 8]図 8は本発明の実施の形態 3におけるバリスタの拡大断面図である。
[図 9]図 9は実施の形態 3における他のバリスタの斜視図である。
[図 10]図 10は本発明の実施の形態 4における電子部品モジュールの斜視図である。
[図 11A]図 11Aは実施の形態 4における他の電子部品モジュールの斜視図である。 [図 11B]図 11Bは実施の形態 4におけるさらに他の電子部品モジュールの斜視図で ある。
[図 11C]図 11Cは実施の形態 4におけるさらに他の電子部品モジュールの斜視図で ある。
[図 11D]図 11Dは実施の形態 4におけるさらに他の電子部品モジュールの斜視図で ある。
[図 12A]図 12Aは本発明の実施の形態 5におけるノ リスタの斜視図である。
[図 12B]図 12Bは図 12Aに示すノ リスタの線 12B—12Bにおける断面図である。
[図 12C]図 12Cは実施の形態 5におけるノ リスタの上面透視図である。
[図 13]図 13は実施の形態 5におけるバリスタの上面図である。
[図 14]図 14は実施の形態 5における電子部品モジュールの断面図である。
[図 15]図 15は実施の形態 5における他のバリスタの断面図である。
[図 16]図 16は実施の形態 5におけるバリスタの断面図である。
[図 17]図 17は実施の形態 5におけるバリスタの断面図である。
[図 18]図 18は実施の形態 5におけるバリスタの断面図である。
[図 19]図 19は本発明の実施の形態 6におけるバリスタの断面図である。
[図 20]図 20は本発明の実施の形態 7におけるバリスタの断面図である。
[図 21A]図 21Aは、実施の形態 7における他のノ リスタの上面図である。
[図 21B]図 21Bは、図 21Aに示すノ リスタの線 21B— 21Bにおける断面図である。
[図 22A]図 22Aは、実施の形態 7における他のノ リスタの上面図である。
[図 22B]図 22Bは、図 22Aに示すノ リスタの線 22B— 22Bにおける断面図である。
[図 23]図 23は本発明の実施の形態 7における他のノ リスタの断面図である。
[図 24]図 24は従来のバリスタの断面図である。
符号の説明
11A 内部電極 (第 1の内部電極)
11B 内部電極 (第 2の内部電極)
12 バリスタ層
12A バリスタ層の面(バリスタ層の第 2面) セラミック基板
A セラミック基板の面 (セラミック基板の第 2面)
B セラミック基板の面 (セラミック基板の第 1面)
ガラスセラミック層(第 1のガラスセラミック層)
A ガラスセラミック層の面 (第 1のガラスセラミック層の第 2面)B ガラスセラミック層の面 (第 1のガラスセラミック層の第 1面)A 外部電極 (第 1の外部電極)
B 外部電極 (第 2の外部電極)
A 端子電極 (第 1の外部電極)
B 端子電極 (第 2の外部電極)
A ビアホール電極(第 1のビアホール電極)
B ビアホール電極(第 2のビアホール電極)
発光ダイオード (電子部品)
A 端子 (第 1の端子)
B 端子 (第 2の端子)
A 端子電極 (第 1の外部電極)
B 端子電極 (第 2の外部電極)
A 壁面
A ビアホール電極(第 1のビアホール電極)
A 壁面
B 開口部
光反射層
ガラスセラミック層(第 2のガラスセラミック層)
絶縁層
伝熱層
発光ダイオード (電子部品) 38A 端子 (第 1の端子)
38B 端子 (第 2の端子)
56A 端子電極 (第 1の外部電極)
56B 端子電極 (第 2の外部電極)
66A 端子電極 (第 1の外部電極)
66B 端子電極 (第 2の外部電極)
117A ビアホーノレ電極(第 1のビアホー -ル電極)
117B ビアホーノレ電極(第 2のビアホー -ル電極)
217A ビアホーノレ電極(第 1のビアホー -ル電極)
217B ビアホーノレ電極(第 2のビアホー -ル電極)
124 穴
124A 壁面
124B 開口部
317A ビアホーノレ電極(第 1のビアホー -ル電極)
317B ビアホーノレ電極(第 2のビアホー -ル電極)
511A 内部電極 (第 1の内部電極)
511B 内部電極 (第 2の内部電極)
611A 内部電極 (第 1の内部電極)
611B 内部電極 (第 2の内部電極)
711A 内部電極 (第 1の内部電極)
711B 内部電極 (第 2の内部電極)
811A 内部電極 (第 1の内部電極)
811B 内部電極 (第 2の内部電極)
911A 内部電極 (第 1の内部電極)
911B 内部電極 (第 2の内部電極)
5012B バリスタ層の面(バリスタ層の第 1面)
5021B 開口部
5022B ビアホーノレ電極(第 2のビアホ —ル電極) 発明を実施するための最良の形態
[0011] (実施の形態 1)
図 1は本発明の実施の形態 1におけるバリスタ 201の斜視図である。図 2は図 1に示 すバリスタ 201の線 2— 2における断面図である。ノ リスタ 201は、セラミック基板 13と 、セラミック基板 13の面 13A上に設けられたノ リスタ層 12と、ノ リスタ層 12の面 12A 上に設けられたガラスセラミック層 14とを備える。ノ リスタ層 12の面 12Aの反対の面 5 012Bはセラミック基板 13の面 13 Aに当接して 、る。セラミック基板 13はアルミナ基 板などの耐熱性と絶縁性を有する材料よりなる。ノ リスタ層 12内には互いに対向する 内部電極 11A、 1 IBが設けられている。すなわち、ノ リスタ層 12はガラスセラミック層 14とセラミック基板 13によって挟まれている。内部電極 11 A、 1 IBのそれぞれの端 部 111A、 11 IBはノ リスタ層 12の端面 12C、 12Dに露出している。ノ リスタ 201の 外部に露出する外部電極 15A、 15Bが内部電極 11A、 1 IBの露出している端部 11 1A、 11 IBにそれぞれ接続され、表面実装型のバリスタ 201を構成している。
[0012] ノ リスタ層 12のバリスタ材料は、主成分である 80重量0 /0以上の酸化亜鉛と、合計 0 力も 20重量0 /0の酸化ビスマス、酸化アンチモン、酸化マンガン、酸化コバルト等の添 加物とを含有し、この組成によりバリスタ層は優れたバリスタ特性を有する。さらにガラ ス等を添加することにより 900°C前後で焼成できるバリスタ材料が得られる。なお、優 れたバリスタ特性を有するかぎり、添加物は上記の物質以外のものでもよい。
[0013] 機械的強度の大きいセラミック基板 13上にバリスタ層 12が積層されているので、バ リスタ層 12の機械的強度が小さくてもバリスタ 201の薄型化を実現することができる。
[0014] ノ リスタ層 12の面 12A上にガラスセラミック層 14を積層することにより、バリスタ材料 を焼成する時にビスマスなど添加物の蒸発を抑制できる。したがって、バリスタ層 12 は薄くなつても優れたバリスタ特性を有し、高い信頼性も有する。その結果、微小サ ージ電圧に対する優れたバリスタ特性を有し、信頼性に優れ、かつ小型薄型化が可 能なノ リスタ 201が得られる。
[0015] また、セラミック基板 13により、複数のノ リスタを有するバリスタアレイが得られる。
[0016] 次に、バリスタ 201の製造方法を説明する。
[0017] まず、前述のバリスタ材料の粉末と、バインダ榭脂、可塑剤および溶剤とを配合した 後混合 '分散してセラミックスラリを作製する。その後ドクターブレード法によって厚み 約 50 μ mのセラミックグリーンシートを作製する。セラミックグリーンシートの上に銀を 主成分とする導電ペーストをスクリーン印刷して内部電極 11A、 1 IBを形成する。図 2に示すように内部電極 11A、 1 IB力バリスタ層 12の一部 12Eを介して対向するよう に、セラミックグリーンシートを配置して積層する。
[0018] 例えば長さ L1が 1. Omm、幅 W1が 0. 5mmの小型の表面実装型のノ リスタ 201を 得るために、内部電極 11A、 1 IBの面積を 0. 3〜0. 5mm2とし、内部電極 11A、 11 B間の距離 T1は 5〜50 μ mとすることが好ましい。
[0019] バリスタ層 12の面 12A上に、バリスタ材料と同程度の焼成温度で焼結するガラスセ ラミック材料のガラスセラミック層 14となるセラミックグリーンシートを積層して積層体を 形成する。このガラスセラミック材料として、例えばアルミナセラミック粉末とホウケィ酸 カルシウム ·アルミニウム ·ガラス粉末とを 50: 50の重量比で混合したものなどがある 力 ノ リスタ材料の焼成温度で焼結する材料であれば特に上記に限定しな!、。
[0020] ノ リスタ層 12のガラスセラミック層 14を積層して!/、な!/、面 5012B上にトルエンで溶 解させたアクリル榭脂等の接着剤を塗布し、厚み 0. 33mmで純度 96%のアルミナ 基板力 なるセラミック基板 13の面 13Aを重ね合せながら、温度 100°C、圧力 100k gZcm2を 1分間加えることによって積層体とセラミック基板 13を完全に密着させる。こ の積層体を焼成炉に入れて、約 550°Cの温度で榭脂成分を焼却した後、約 900°C で 2時間焼成する。この焼成によって、ガラスセラミック層 14とバリスタ層 12およびァ ルミナ基板力もなるセラミック基板 13は一体ィ匕される。特に、ノ リスタ材に酸ィ匕ビスマ ス等のビスマス化合物が含まれているときには、酸化ビスマスの拡散によって、ガラス セラミック層 14とバリスタ層 12およびセラミック基板 13はより一体ィ匕する。
[0021] セラミック基板 13に純度 96%のアルミナ基板を用いた力 バリスタ材と過剰に反応 せず、ノ リスタ層 12とガラスセラミック層 14の焼成温度に耐えられる耐熱性を有する 酸化アルミニウム、酸化ジルコニウム、酸化ケィ素および酸化マグネシウムのいずれ か一つを主成分として含有する機械的強度に優れたセラミック基板 13を用いてもよ い。
[0022] 焼成された積層体は、通常、生産性を高めるために、格子状に配列された複数の ノ リスタを含む。焼成された積層体をダイシンダマシンなどの切断機によって切断し て個片化されたバリスタに分割する。分割された個片であるバリスタ 201のバリスタ層 12の端面 12C、 12Dには内部電極 11A、 11 の端部111八、 111Bがそれぞれ露 出している。端部 111A、 111Bが露出した端面 12C、 12Dに銀ペースト等の導電べ 一ストを塗布して所定の温度で焼成することによって外部電極 15A、 15Bを形成し、 これによりバリスタ 201が得られる。
[0023] 上記の方法によりバリスタ 201の試料を作製した。実施の形態 1による実施例の試 料の内部電極 11A、 1 IB間の距離 T1は約 25 mであった。この試料を切断してそ の切断面を研磨した後、走査型電子顕微鏡にてバリスタ層 12とガラスセラミック層 14 を観察した。図 3Aはバリスタ 201のバリスタ層 12とガラスセラミック層 14の界面 12H 付近の微細構造を示す断面図である。図 3B〜図 3Eは、エネルギー分散型蛍光 X線 装置を用いて測定したバリスタ層 12とガラスセラミック層 14の界面 12H付近の亜鉛 ( Zn)、ビスマス(Bi)、 コノルト(Co)およびアンチモン(Sb)の分布をそれぞれ示す。
[0024] 図 3B〜図 3Eに示すように、バリスタ材料の主成分である亜鉛 (Zn)はバリスタ層 12 のみに存在し、ガラスセラミック層 14にはほとんど存在していない。添加物であるビス マス(Bi)、 コノ レト(Co)、アンチモン(Sb)はガラスセラミック層 14へ拡散し、ガラスセ ラミック層 14の内部にも存在して 、る。
[0025] 比較例の試料としてバリスタ層 12の上にガラスセラミック層 14を積層しない、すなわ ちバリスタ層 12が露出している試料を同様の製造方法で作製した。比較例の試料の 距離 T1は約 38 μ mであった。
[0026] ノ リスタ 201の実施例の試料と比較例の試料のノ リスタ特性を測定した結果を図 4 Aに示す。図 4Aは試料に lmA、 0. 1mA, 0. 01mA, 0. 001mAの電流を流したと きの外部電極 15A、 15B間の電圧を示している。
[0027] 図 4Aに示すように、比較例の試料は実施例の試料より電圧が高い。 1mAの電流 を流したときの電圧 V( 1mA)の 0. 1mAの電流を流したときの電圧 V(0. 1mA)に対 する比が小さいほど非直線性に優れて、ノ リスタ特性が優れている。実施例の試料 は比較例の試料より非直線性に優れて 、る。
[0028] 次に、これらの試料を 85°C、 85%の高温高湿槽に 24時間放置した後に測定した 電気特性を図 4Bに示す。
[0029] 図 4Bに示すように、放置の前後で実施例の試料はバリスタ電圧にほとんど変化が みられないが、比較例の試料はバリスタ電圧が大きく低下し、非直線性も大きく劣化 している。
[0030] 比較例の試料では、バリスタ材料が十分に焼結していないことから電圧が高くなり、 高温高湿槽に放置すると水分を吸収してバリスタ電圧が降下し、非直線性の劣化を 引き起こしている。この理由として、比較例の試料では酸ィ匕ビスマス、酸ィ匕コバルト、 酸ィ匕アンチモンなどの添加物が焼成において大気中へ飛散していることが考えられ る。特に、酸化ビスマスは酸化亜鉛を主成分とするバリスタ層のバリスタ特性を発現さ せる重要な酸ィ匕物である。酸ィ匕ビスマスは沸点が低いために飛散しやすい。比較例 の試料ではこの酸ィ匕ビスマスの多くが焼成中に大気中に飛散し、焼成後のバリスタ 層 12の内部には所定の必要量の酸化ビスマスが含まれて!/ヽな 、か、またはその含 有率にばらつきがあるものと考えられる。従って、比較例の試料では焼結が不十分で あり、所望の特性が得られないと考えられる。
[0031] 実施例の試料では酸ィ匕ビスマスなどの添加物は焼成によってガラスセラミック層 14 の内部へ若干拡散する。しかし、ガラスセラミック層 14の酸ィ匕ビスマスの濃度がある 値を超えるとガラスセラミック層 14内の酸化ビスマスの量が飽和し、その飽和の時点 以降にバリスタ層 12からガラスセラミック層 14へ酸ィ匕ビスマスが拡散できなくなる。そ のためにバリスタ層 12に所定の必要量の酸ィ匕ビスマスが確実に残ることによってバリ スタ層 12が十分焼結し、所望の電気特性が得られる。
[0032] なお、ガラスセラミック層 14の焼成後の厚みが 50 μ mを超えると、酸ィ匕ビスマスのガ ラスセラミック層 14への拡散量が多くなりすぎる。この場合、ノ リスタ層 12は十分に焼 結しなくなり、バリスタ特性の劣化や高温高湿放置による特性劣化を引き起こすこと がある。また、ガラスセラミック層 14の焼成後の厚みが 5 /z mよりも薄くなると、ガラスセ ラミック層 14への酸ィ匕ビスマスなどの添加物の拡散によってガラスセラミック層 14の 電気抵抗値を大きく低下させる。外部電極 15A、 15Bの信頼性を向上させるために ニッケル、すず、金などのめつき膜を外部電極 15A、 15Bの表面に形成する場合が ある。ガラスセラミック層 14の電気抵抗値が低下するとガラスセラミック層 14にもめつ き膜が形成されてしまうので好ましくない。したがって、ガラスセラミック層 14の厚みは 5〜50 μ mの範囲が好ましい。このような範囲の厚みを有するガラスセラミック層 14を ノ リスタ層 12上に積層することによって、バリスタ特性と信頼性に優れる小型低背型 のノ リスタ 201が得られる。
[0033] ガラスセラミック層 14とバリスタ層 12との界面 12H付近の組成は、図 3B〜図 3Eに 示すように、添加物の濃度が若干不均一であり、ノ リスタ層 12としては少し不安定な 状態となっている。そして、この状態はバリスタ層 12とセラミック基板 13との界面よりも 不安定である。
[0034] したがって、これらの界面の近傍においてバリスタ特性を発現させることは好ましく なぐ内部電極 11A、 1 IBは、バリスタ層 12とガラスセラミック層 14の界面 12Hおよ びバリスタ層 12とセラミック基板 13との界面付近に形成しないことが好ましい。図 3B 〜図 3Fの結果から、バリスタ層 12の面 5012B、 12Aから 10 m以上離してノ リスタ 層 12内に内部電極 11A、 1 IBを設けることが好ましい。すなわちバリスタ層 12の面 1 2Aから内部電極 11A、 1 IBまでのそれぞれの距離 Dl、 D2は 10 m以上が好まし い。また、ノ リスタ層 12の面 5012Bから内部電極 11A、 1 IBまでのそれぞれの距離 D3、 D4は 10 μ m以上が好ましい。
[0035] なお、このノ リスタ層 12とガラスセラミック層 14との界面 12Hあるいはノ リスタ層 12 とセラミック基板 13との界面に拡散防止層を設けることによって酸ィ匕ビスマスの拡散 を防止し、それぞれの界面での接合強度を高めることができる。この拡散防止層には 酸ィ匕ビスマスを含んで 、ることが好まし 、。
[0036] (実施の形態 2)
図 5は本発明の実施の形態 2におけるバリスタ 301の斜視図である。図 6は図 5に示 すバリスタ 301の線 6— 6における断面図である。図 1と図 2に示す実施の形態 1にお けるバリスタ 201と同じ部分には同じ参照符号を付し、その詳細は説明を省略する。 実施の形態 1によるノ リスタ 201と異なり、実施の形態 2によるノ リスタ 301では、内部 電極 11A、 11Bの代わりに内部電極 311A、 311Bを備えている。内部電極 311A、 31 IBはバリスタ層 12の端面 12C、 12Dに露出していない。ガラスセラミック層 14は、 バリスタ層 12の面 12A上に位置する面 14Bと、面 14の反対側の面 14Aとを有する。 ノ リスタ 301は、ガラスセラミック層 14の面 14A上に設けられてノ リスタ 301の外部に 露出する外部電極である端子電極 16A、 16Bを備える。端子電極 16A、 16Bはビア ホール電極 17A、 17Bを介して内部電極 311A、 31 IBにそれぞれ接続されている。
[0037] ガラスセラミック層 14の面 14A上に設けられた端子電極 16A、 16Bにより、面 14A 上に他の部品を実装することができる。また、面 14Aを回路基板に対向させてパリス タ 301をその回路基板上に実装し、端子電極 16A、 16Bをその回路基板上の回路 ノ ターンに直接接続することができる。これにより、高密度に回路基板上に部品を実 装でき、かったわみやひねり、落下に対する回路基板とバリスタ 301との接続の信頼 性を向上させることができる。
[0038] 端子電極 16A、 16Bはガラスセラミック層 14の面 14A上に導電ペーストを塗布して 形成され、ビアホール電極 17A、 17Bはセラミック層 12のビアホール 12F、 12Gに導 電ペーストを充填して形成される。この際に、通常の導電ペーストを用いるとビアホー ル電極 17A、 17Bの周辺にあく大きな穴や、端子電極 16A、 16Bの周辺に生じる亀 裂等の欠陥が発生する場合がある。
[0039] このような欠陥は下記の理由により発生する。ノ リスタ 301ではノ リスタ層 12とガラ スセラミック層 14がセラミック基板 13に貼り付けられて焼成される。この焼成の際に、 セラミック基板 13は殆ど収縮しないので、ノ リスタ層 12とガラスセラミック層 14はセラ ミック基板 13によって、面 13Aに平行な方向 301Aの収縮が拘束され、面 12Aと直 角の厚み方向 301Bのみに収縮する。端子電極 16A、 16Bおよびビアホール電極 1 7A、 17Bとなる導電ペーストは焼成により方向 301A、 301Bともに収縮するので、前 述の欠陥が発生する。また、この導電ペーストは焼成の際にガラスセラミック層 14お よびバリスタ層 12と比較して低 、温度で収縮し始める。収縮し始めた導電ペーストは 、収縮し始めて 、な 、バリスタ層 12およびガラスセラミック層 14に方向 301 Aへ収縮 させようとする力を与える。この力が、まだ焼結せずに機械的強度を有していないバリ スタ層 12とガラスセラミック層 14に欠陥を発生させる。
[0040] 端子電極 16A、 16Bおよびビアホール電極 17A、 17Bとなる導電ペーストが焼成 の際に収縮し始める温度を高め、さらに端子電極 16A、 16Bおよびビアホール電極 17A、 17B力バリスタ層 12やガラスセラミック層 14と接合する強度を高めるために、 三酸化モリブデンを導電ペーストに添加する。導電ペーストは銀等の金属粉を含有 するが、三酸化モリブデンをその金属粉に対して 0. 5重量%以上添加する。三酸ィ匕 モリブデンの融点は約 800°C程度である。したがって、ノ リスタ層 12およびガラスセラ ミック層 14の焼結が始まらな 、600°C以下の温度では三酸化モリブデンは金属粉の 粒子間に固体として分散して存在しており、導電ペーストの収縮を抑制する。そして 温度が 650°Cを超えると三酸ィ匕モリブデンの一部は溶融'拡散し始め、導電ペースト の内部よりバリスタ層 12ある 、はガラスセラミック層 14の界面付近に移動し、外部に 露出した三酸ィ匕モリブデンの一部は昇華する。さらに、三酸ィ匕モリブデンの別の一部 はガラスセラミック層 14およびバリスタ層 12と反応して端子電極 16A、 16Bをガラス セラミック層 14に結合させ、かつビアホール電極 17A、 17Bをバリスタ層 12とガラス セラミック層 14に結合させる結合材として機能する。この反応起こる温度では、パリス タ層 12とガラスセラミック層 14が焼成で収縮し始めるので、これらの層の強度が増す 。そして、導電ペーストの内部より三酸ィ匕モリブデンが移動し始めると端子電極 16A、 16Bおよびビアホール電極 17A、 17Bも焼成し収縮し始める。
[0041] 添加する三酸ィ匕モリブデンの量によって、層 12、 14とほぼ同じ温度で焼成収縮し 始めるように導電ペーストが収縮し始める温度を制御できる。これにより、端子電極 1 6A、 16B、ビアホール電極 17A、 17B、 ノ リスタ層 12およびガラスセラミック層 14が ほぼ同じ温度で厚み方向 301Bに焼成収縮させることができる。その結果、ビアホー ル電極 17A、 17B、端子電極 16A、 16Bの周辺に穴や亀裂などの欠陥を発生させ ることなく導電ペーストを焼成収縮させることが可能となる。温度が 800°C以上になる と三酸ィ匕モリブデンは溶融して昇華するが、その添加量によっては三酸ィ匕モリブデン の一部が導電ペーストに残留する。残留した三酸ィ匕モリブデンの一部は、端子電極 1 6A、 16Bとガラスセラミック層 14との界面と、ビアホール電極 17A、 17Bとガラスセラ ミック層 14およびバリスタ層 12との界面とで接合強度を高める。
[0042] なお、内部電極 311 A、 31 IBにも少量の三酸化モリブデンを添加することによって 、焼成収縮による前述の欠陥を防止できる。
[0043] また、端子電極 16A、 16Bとなる導電ペーストに三酸ィ匕モリブデンを添加することに より端子電極 16A、 16Bにはバリスタ層 12の添加物である酸化物あるいはガラスセラ ミック層 14のガラス成分の拡散移動は起こりに《することができる。したがって、端子 電極 16A、 16Bの表面 116A、 116Bには酸化物やガラス成分がほとんど存在しな い。端子電極 16A、 16Bの信頼性を向上させるために端子電極 16A、 16Bの表面 1 16A、 116Bにニッケル、すず、金などの金属によるめつきによりめつき膜 1116A、 1 116Bを形成する。端子電極 16A、 16Bの表面 116A、 116Bには酸化物やガラス成 分がほとんど存在しないので。めっき膜 1116A、 1116Bを容易に均質に形成するこ とがでさる。
[0044] 端子電極 16A、 16Bとビアホール電極 17A, 17Bとなる導電ペーストの金属粉に 対する三酸ィヒモリブデンの添加量は 0. 5重量%以上であれば欠陥を防止する効果 は高くなる。その添加量が 5重量%を超えると端子電極 16A、 16Bやビアホール電極 17A、 17B中に過剰の三酸化モリブデンが残存する。これにより、端子電極 16A、 1 6Bビアホール電極 17A、 17Bの電気抵抗を増加させ、また端子電極 16A、 16Bの 表面 116A、 116Bに三酸化モリブデンが析出してめっき膜 1116A、 1116Bの形成 を層害することから好ましくない。
[0045] 図 7Aは実施の形態 2による他のノ リスタ 302の斜視図である。ノ リスタ 302では、 図 6と図 5に示すノ リスタ 301に図 1と図 2に示すノ リスタ 201の外部電極 15A、 15B が設けられている。ノ リスタ 302はノ リスタ 301の内部電極 311A、 31 IBの代わりに 図 2に示すノ リスタ 201の内部電極 11A、 1 IBを備える。すなわち、ノ リスタ 302では 、端子電極 16A、 16Bは内部電極 11A、 1 IBにそれぞれ接続され、外部電極 15A、 15Bは内部電極 11A、 1 IBにそれぞれ接続されている。したがって、ノ リスタ 302で は、端子電極 16A、 16Bは内部電極 11A、 1 IBを介して外部電極 15 A、 15Bにそ れぞれ導通している。
[0046] 図 7Bは実施の形態 2によるさらに他のノ リスタ 303の斜視図である。ノ リスタ 303は 、図 5と図 6に示すバリスタ 301の端子電極 16A、 16Bの代わりに、セラミック基板 13 の面 13Aの反対側の面 13B上に設けられてノ リスタ 303の外部に露出する外部電 極である端子電極 56A、 56Bを備える。ノ リスタ 303は、ビアホール電極 17A、 17B の代わりにバリスタ層 12とセラミック基板 13に埋設されたビアホール電極 117A、 11 7Bを備える。ビアホール電極 117A、 117Bはノ リスタ層 12内の内部電極 311A、 3 1 IBにそれぞれ接続され、セラミック基板 13の面 13B力も露出する端子電極 56A、 5 6Bはビアホール電極 117A、 117Bの面 13B力 露出する部分にそれぞれ接続され ている。
[0047] 図 7Cは実施の形態 2による他のノ リスタ 304の斜視図である。ノ リスタ 304では、 図 7Bに示すノ リスタ 303に図 1と図 2に示すノ リスタ 201の外部電極 15A、 15Bが設 けられている。ノ リスタ 304はノ リスタ 303の内部電極 311A、 311Bの代わりに図 2 に示すバリスタ 201の内部電極 11A、 1 IBを備える。すなわち、ノ リスタ 304では、端 子電極 56A、 56Bは内部電極 11A、 1 IBにそれぞれ接続され、外部電極 15A、 15 Bは内部電極 11A、 1 IBにそれぞれ接続されている。したがって、ノ リスタ 304では、 端子電極 56A、 56Bは外部電極 15A、 15Bに内部電極 11A、 1 IBを介してそれぞ れ導通している。
[0048] (実施の形態 3)
図 8は本発明の実施の形態 3におけるバリスタ 401の拡大断面図である。図 6と図 5 に示す実施の形態 2におけるバリスタ 301と同じ部分には同じ参照符号を付し、その 詳細は説明を省略する。
[0049] 携帯型の電子機器は落下などの強度的に過酷な使用環境に耐えられなければな らない。したがって、このような電子機器に用いられるバリスタ等の部品は、それが搭 載される回路基板のたわみ、ひねり、落下等の衝撃に対して大きな強度を有する必 要がある。
[0050] バリスタ 401では、図 6と図 5に示す実施の形態 2によるバリスタ 301の端子電極 16 Bの代わりに、ノ リスタ 401の外部に露出する外部電極である端子電極 66Bを備える 。また端子電極 66Bはガラスセラミック層 14内に埋設されて、ガラスセラミック層 14か ら露出する表面 166Bを有する。また、ノリスタ 401では、実施の形態 2によるバリスタ 301の端子電極 16Aの代わりに、同様の形状の端子電極を備える。端子電極 66B の表面 166Bの端部 1116Bの周囲がガラスセラミック層 14Cで覆われており、この構 造により端子電極 66Bは大きな強度を有する。
[0051] ガラスセラミック層 14Cが端子電極 66Bの端部 1166Bの周囲を覆う幅 T2は 20 μ m 以上であれば、端子電極 66Bは実用上衝撃に対して十分大きな強度を有する。幅 T 2は電子機器に用いられる部品のサイズと端子電極 66Bの寸法と形状を考慮すると 1 00 μ m以下であることが好ましい。また、ガラスセラミック層 14Cの厚み T3は 3 μ m以 上であると端子電極 66Bの強度を実用上十分おおきくできる。厚み T3が mを 超えるとガラスセラミック層 14Cと端子電極 66Bの表面の凹凸が大きくなり、ノ リスタ 4 01が実装しにくくなり好ましくない。
[0052] ノ リスタ 401の端子電極 66B、ガラスセラミック層 14Cは!、くつかの方法で形成でき る。端子電極 66Bをガラスセラミック層 14の面 14A上に形成し、その後ガラスセラミツ ク材によるガラスセラミックペーストを印刷してガラスセラミック層 14Cを形成してもよ ヽ 。あるいは端子電極 66Bをガラスセラミック層 14の面 14A上に形成し、端子電極 66B の面 166Bよりも少し小さい穴を有するガラスセラミックグリーンシートをセラミックガラ ス層 14の面 14A上に積層してガラスセラミック層 14Cを形成してもよ ヽ。ガラスセラミ ック層 14Cの材料はガラスセラミック層 14と同じであることが好まし 、が、ガラスセラミ ック層 14と激しく反応しなければその材料は特に限定しな 、。
[0053] ノ リスタ 401では、厚み T3が 5 μ mのガラスセラミック層 14Cで端子電極 66Bの端 部 1166Bの周囲を 25 μ mの幅 Τ2が被覆されている。端子電極 66Bの面 166Bは面 積 2mm2の正方形であり、端子電極 66Bにリード線を接合して面 166Bと垂直方向に リード線を引張る試験の結果、平均の引張り強度は 14kgであった。これに対して、ガ ラスセラミック層 14Cを有しな 、比較例のノ リスタの平均の引っ張り強度は 6kgであり 、実施の形態 3によるバリスタ 401は比較例のバリスタの 2倍の強度を有する。一般的 に印刷法などで端子電極を形成すると、端子電極の端部周辺は薄くなり、ガラスセラ ミック層との接着強度は小さくなる。
[0054] これに対して、バリスタ 401では、端子電極 66Bの端部 1166Bの周囲の接着強度 が大きい。特に、端子電極 66Bの面 166Bにニッケル、すず、金などの金属のめっき 膜 2166Bを形成した場合の平均の引張り強度は 13kgであった力 同様のめっき膜 を有する比較例のバリスタはでは平均の引張り強度は 3kgであった。比較例のパリス タでは、端子電極の端部周辺の薄い部分からめっき液や酸あるいはアルカリ液など の洗浄液が浸入し、ガラスセラミック層と端子電極を接合して ヽる接合界面を溶出さ せることによって接着強度を低下させている。これに対してバリスタ 401では、ガラス セラミック層 14Cが端子電極 66Bの端部 1166Bの周囲を被覆することによって、接 合界面の溶出を防止して 、る。
[0055] なお、ガラスセラミック層 14Cは端子電極 66Bの端部 1166B周囲の全辺を覆うこと が好ましい。し力し、端子電極 66Bの配置によっては端子電極 66Bの端部 1166Bの 周囲の一部し力覆っていなくても端子電極 66Bの引張り強度を向上させることができ る。
[0056] 図 9は実施の形態 3による他のノ リスタ 402の斜視図である。ノ リスタ 402では、図 8 に示すノ リスタ 401に図 1と図 2に示すノ リスタ 201の外部電極 15A、 15Bが設けら れている。すなわち、ノ リスタ 402では、端子電極 66A、 66Bは内部電極 11A、 11B にそれぞれ接続され、外部電極 15A、 15Bは内部電極 11A、 1 IBにそれぞれ接続 されている。したがって、ノ リスタ 402では、端子電極 66A、 66Bは外部電極 15A、 1 5Bに内部電極 11A、 1 IBを介してそれぞれ導通して!/、る。
[0057] (実施の形態 4)
図 10は本発明の実施の形態 4における電子部品モジュールである発光ダイオード モジュール 501の斜視図である。発光ダイオードモジュール 501は、実施の形態 1に よるノリスタ 201と、ノリスタ 201のガラスセラミック層 14の面 14A上に実装された電 子部品である白色または青色の発光ダイオード 18とを備える。特に、白色または青 色の発光ダイオードは発熱量が大きぐ発光ダイオードが発する熱を放熱させる必要 があるので、セラミック基板 13には強度と熱伝導率と生産性の観点から純度 90%以 上のアルミナ基板を用いるのが好ましい。発光ダイオード 18は端子 18A、 18Bを有し 、端子 18A、 18Bはノ リスタ 201の外部電極 15A、 15Bにワイヤボンディング等のヮ ィャ接続方法によってワイヤ 19A、 19Bにそれぞれ接続されている。発光ダイオード 18は、ノ リスタ層 12に埋設された内部電極 11A、 1 IBによって形成されたノ リスタ素 子と並列に接続される。
[0058] 図 11Aは実施の形態 4による他の電子部品モジュールである発光ダイオードモジュ ール 502の斜視図である。発光ダイオードモジュール 502は、図 10に示す発光ダイ オードモジュール 501のノ リスタ 201の代わりに、実施の形態 2によるノ リスタ 301を 備える。発光ダイオード 18はガラスセラミック層 14上に実装され、端子 18A、 18Bは 端子電極 16A、 16B上にそれぞれはんだ実装あるいはバンプ実装などの実装方法 で実装されている。
[0059] 図 11Bは実施の形態 4によるさらに他の電子部品モジュールである発光ダイオード モジュール 503の斜視図である。発光ダイオードモジュール 503は、図 11Aに示す 発光ダイオードモジュール 502のノ リスタ 301の代わりに、図 7Aに示すノ リスタ 302 を備える。発光ダイオード 18はガラスセラミック層 14上に実装され、端子 18A、 18B は端子電極 16A、 16B上にそれぞれはんだ実装あるいはバンプ実装などの実装方 法で実装されている。外部電極 15A、 15Bにより、発光ダイオードモジュール 503を 回路基板に実装することができる。
[0060] 図 11Cは実施の形態 4によるさらに他の電子部品モジュールである発光ダイオード モジュール 504の斜視図である。発光ダイオードモジュール 504は、図 11Aに示す 発光ダイオードモジュール 502のノ リスタ 301の代わりに、図 7Bに示すバリスタ 303 を備える。発光ダイオード 18はセラミック基板 13の面 13B上に実装され、端子 18A、 18Bは端子電極 56A、 56B上にそれぞれはんだ実装あるいはバンプ実装などの実 装方法で実装されている。
[0061] 図 11Dは実施の形態 4によるさらに他の電子部品モジュールである発光ダイオード モジュール 505の斜視図である。発光ダイオードモジュール 505は、図 11Cに示す 発光ダイオードモジュール 504のノ リスタ 303の代わりに、図 7Cに示すノ リスタ 304 を備える。発光ダイオード 18はガラスセラミック層 14上に実装され、端子 18A、 18B は端子電極 56A、 56B上にそれぞれはんだ実装あるいはバンプ実装などの実装方 法で実装されている。外部電極 15A、 15Bにより、発光ダイオードモジュール 503を 回路基板に実装することができる。
[0062] 実施の形態 4による発光ダイオードモジュール 501〜505では、通常、発光ダイォ ード 18は端子 18A、 18B間に電圧を印加することで発光する。静電サージ電圧等の 通常の電圧より高い電圧が発光ダイオード 18の端子 18A、 18Bに印加されると、そ の電圧により発生した大電流はバリスタ層 12の内部で対向する内部電極 11A、 1 IB または内部電極 311A、 31 IBへ迂回する。これにより、ノ リスタ層 12が発光ダイォー ド 18を保護できる小型の発光ダイオードモジュール 501〜505が得られる。 [0063] また、機械強度の大きなセラミック基板 13により、発光ダイオードモジュール 501〜 505の低背化を実現できる。さらに、発光ダイオード 18とバリスタを短い距離で接続 できるので、実施の形態 4による発光ダイオードモジュールでは高 ヽ電圧の静電気パ ルスに対して発光ダイオード 18をさらに強く保護できる。
[0064] なお、発光ダイオードモジュール 501〜505にはノ リスタの他に抵抗やコイルゃコ ンデンサ等カもなる電子回路を形成してもよい。例えば、セラミック基板 13の面 13B 上に各種電子部品を実装した発光ダイオードモジュールが得られる。この構成によつ て、より高密度な発光ダイオードモジュールが得られる。
[0065] なお、実施の形態 4による電子部品モジュールは電子部品として発光ダイオード 18 を備えるが、その電子部品は発光ダイオードに限らず半導体素子等の他の電子部品 でもよい。バリスタによりその電子部品が静電気やサージ電圧から保護され、静電気 やサージ電圧に強く小型の電子部品モジュールが得られる。
[0066] (実施の形態 5)
図 12Aは本発明の実施の形態 5におけるバリスタ 601の斜視図である。図 12Bは 図 12Aに示すノ リスタ 601の線 12B—12Bにおける断面図である。図 12Cはノ リス タ 601の上面透視図である。図 13はノリスタ 601の上面図である。図 1と図 2に示す 実施の形態 1によるバリスタ 201と同じ部分には同じ参照符号を付し、その説明を省 略する。
[0067] 実施の形態 5によるノ リスタ 601で、実施の形態 1によるノ リスタ 201と異なり、セラミ ック基板 13の面 13Aの部分 13Cが底に露出するようにバリスタ層 12とガラスセラミツ ク層 14とを貫通する穴 21が形成されて 、る。穴 21はガラスセラミック層 14の面 14A に開口する開口部 5021Bを有する。面 13Aの部分 13C上に電子部品を実装するた めの端子電極 20A、 20Bが設けられている。端子電極 20A、 20Bはノ リスタ 601の 外部に露出する外部電極である。バリスタ層 12内には内部電極 611A、 611Bが設 けられ、ノ リスタ層 12とセラミック基板 13との界面、すなわちセラミック基板 13の面 13 A上には、部分 13C上に位置する端部 1511A、 151 IBをそれぞれ有する内部電極 511A、 511Bが設けられている。内部電極 611A、 611Bはノ リスタ層 12内に設けら れたビアホール電極 22A、 5022Bを介して内部電極 511A、 51 IBにそれぞれ接続 されている。穴 21から露出する内部電極 511A、 511Bの端部 1511A、 1511B上に は端子電極 20A、 20Bがそれぞれ設けられて端部 1511A、 151 IBにそれぞれ接続 されている。
[0068] 図 12Cに示すように、内部電極 611A、 611Bはノ リスタ層 12の部分 35を間に挟ん で互いに対向しており、ノリスタ 601は部分 35でバリスタとしての特性を得ている。
[0069] 図 14は実施の形態 5における電子部品モジュールである発光ダイオードモジユー ル 701の断面図である。発光ダイオードモジュール 701は図 12A〜図 12C,図 13に 示すバリスタ 601と、電子部品である白色または青色の発光ダイオード 38とを備える 。特に、白色または青色の発光ダイオードは発熱量が大きぐ発光ダイオードが発す る熱を放熱させる必要があるので、セラミック基板 13には強度と熱伝導率と生産性の 観点から純度 90%以上のアルミナ基板を用いるのが好ましい。発光ダイオード 38は 穴 21内に設けられており、端子電極 20A、 20Bにそれぞれ接続された端子 38A、 3 8Bを有する。発光ダイオード 38を穴 21内に収容することにより、発光ダイオードモジ ユール 701を薄型化できる。
[0070] 図 13と図 14に示すように、穴 21の形状は、上方から見て略円形、すなわち穴 21の ガラスセラミック層 14に開口する開口部 21の形状は略円形であることが望ましい。略 円形の形状により、穴 21とセラミック基板 13の面 13Aとの界面に発生しやすい欠陥 を抑制できる。穴 21内に実装された発光ダイオード 38から放射された光は略円形の 穴 21の壁面 21Aで効率よく反射させることができ、より明るい光を得ることができる。
[0071] 発光ダイオードモジュール 701では、通常、発光ダイオード 38は端子 38A、 38B間 に電圧を印加することで発光する。静電サージ電圧等の通常の電圧より高!ヽ電圧が 発光ダイオード 38の端子 38A、 38Bに印加されると、その電圧により発生した大電 流はバリスタ層 12の内部で対向する内部電極 511A、 511B、 611A、 611Bへ迂回 する。これにより、ノ リスタ層 12で発光ダイオード 38を保護できる小型の発光ダイォ ードモジュール 701が得られる。
[0072] また、機械強度の大きなセラミック基板 13により、発光ダイオードモジュール 701の 低背化を実現できる。さらに、発光ダイオード 38とバリスタを短い距離で接続できるの で、発光ダイオードモジュール 701では高!、電圧の静電気パルスに対して発光ダイ オード 38をさらに強く保護できる。
[0073] なお、発光ダイオードモジュール 701にはノ リスタの他に抵抗やコイルゃコンデン サ等カもなる電子回路を形成してもよい。例えば、セラミック基板 13の面 13B上に各 種電子部品を実装した発光ダイオードモジュールが得られる。この構成によって、より 高密度な発光ダイオードモジュールが得られる。
[0074] なお、電子部品モジュール 701は電子部品として発光ダイオード 38を備える力 そ の電子部品は発光ダイオードに限らず半導体素子等の他の電子部品でもよい。バリ スタによりその電子部品が静電気やサージ電圧から保護され、静電気やサージ電圧 に強く小型の電子部品モジュールが得られる。
[0075] 図 15は実施の形態 5による他のノ リスタ 602の断面図である。ノ リスタ 602は、ビア ホール電極 22A、 5022Bを有していないことの他は図 12A〜図 12Cに示すノ リスタ 601と同様の構造を有する。端子電極 20A、 20Bと内部電極 611A、 61 IBは電気 的に並列に接続されている。これにより静電サージ電圧などの高電圧が発光ダイォ ード 18に印加された場合でも、その高電圧により発生した大電流が端子電極 20A、 20Bと並列に接続されている内部電極 611 A、 61 IBへ迂回し、発光ダイオード 18を 保護できる。
[0076] 図 16は実施の形態 5によるさらに他のバリスタ 603の断面図である。図 12A〜図 12 C、図 13に示すノ リスタ 601の穴 21は円柱形状を有する力 ノ リスタ 603は穴 21の 代わりに、バリスタ層 12からガラスセラミック層 14に向けて広がるテーパー形状を有 する穴 24が形成されて ヽる。
[0077] 穴 24の底部すなわちセラミック基板 13の面 13Aの露出する部分 13Cの直径 D5と 、ガラスセラミック層 14に開口する穴 24の開口部 24Bの直径 D6が D5< D6なる関 係を満たす。発光ダイオードを穴 24内に実装した場合、穴 24の傾斜した壁面 24A が発光ダイオードからの光を一方向へ集光させ、その結果、より明るい光を得ること ができる。
[0078] 図 17は実施の形態 5によるさらに他のノ リスタ 604の断面図である。ノ リスタ 604は 、図 16に示すノ リスタ 603の穴 24の壁面 24A上に設けられた光反射層 25をさらに 備える。光反射層 25は金属等の光を反射する材料よりなる。発光ダイオードを穴 24 内に実装した場合、穴 24の傾斜した壁面 24A上の光反射層 25が発光ダイオードか らの光を一方向へ集光させ、その結果、より明るい光を得ることができる。
[0079] 図 18は実施の形態 5によるさらに他のノ リスタ 605の断面図である。ノ リスタ 605は 、図 16に示すノ リスタ 603のガラスセラミック層 14の面 14A上に設けられたガラスセ ラミック層 27をさらに備える。図 16に示すバリスタ 603の穴 24の代りに、ガラスセラミツ ク層 27に開口する開口部 124Bを有する穴 124が形成されている。ガラスセラミック 層 14の面 14Aの反対の面 14Bはノ リスタ層 12の面 12A上に位置する。ガラスセラミ ック層 27は、ガラスセラミック層 14を構成するガラスの軟ィ匕点温度よりも 100°C以上 低い軟化点温度を有するガラスで形成され、 50 /ζ πι〜500 /ζ πιの厚みを有する。ガ ラスセラミック層 27は、バリスタ層 12の添加物であるビスマスの焼成時の蒸発を抑制 し、ノ リスタ層 12でのバリスタとしての特性を維持することができるとともに信頼性も確 保することができる。穴 124は、図 17に示す穴 24より深くすることができ、壁面 24Αよ り面積の広い壁面 124Aを有する。したがって、穴 124内に発光ダイオードを実装し た場合、発光ダイオードの光が壁面 124Aで反射され一方向へさらに強く集光させる ことができ、より明るい光を得られる。
[0080] 上述した構成は、それぞれ単独で用いることもできる力 組み合わせて用いることも 可能である。
[0081] (実施の形態 6)
図 19は本発明の実施の形態 6におけるノ リスタ 801の断面図である。ノ リスタ 801 は、図 12A〜図 12C、図 13に示すノ リスタ 601に、ノ リスタ層 12とガラスセラミック層 14に設けられた穴 21の壁面 21A上に形成された絶縁材料による絶縁層 30をさらに 備える。絶縁層 30は、内部電極 611A、 61 IBを穴 21の壁面 21Aから露出させない ようにしている。
[0082] 内部電極 611A、 61 IBが露出していないことにより、例えば、ノ リスタ 801にめつき で端子を形成する場合に、めっき液で内部電極 611A、 61 IBが侵されることを防止 でき、めっき液をより多くの種類の薬品から選択でき、端子の製造方法の自由度を向 上させることができる。
[0083] (実施の形態 7) 図 20は本発明の実施の形態 7におけるノ リスタ 802の断面図である。ノ リスタ 802 は、図 12A〜図 12C、図 13〖こ示すバリスタ 601〖こ、セラミック基板 13の面 13Aの反 対側の面 13B上に設けられた伝熱層 32をさらに備える。伝熱層 32は金属等の高い 伝熱性を有する材料で形成され、セラミック基板 13からの放熱を促進する。伝熱層 3 2は、放熱性の観点から、銀を 90重量%以上含むことが望ましい。伝熱層 32は、端 子電極 20A、 20Bの反対側にのみ形成してもよいが、さらに広い範囲に形成すること でより大きな放熱特性が得られる。
[0084] また、伝熱層 32に金属等の導電性の材料を用いる場合で、かつノ リスタ 802に図 1 に示す外部電極を形成する場合は、外部電極と伝熱層 32とがショートしないように、 伝熱層 32の形成する範囲を決定する。
[0085] 図 21Aは、実施の形態 7における他のバリスタ 803の上面透過図である。図 21Bは 、図 21Aに示すノリスタ 803の線 21B— 21B線での断面図である。ノリスタ 803は、 図 15【こ示すノリスタ 602の内咅電極 511A、 51 IBの代わり【こ内咅電極 711A、 711 Bを備え、外部電極 15A、 15Bをさらに備える。
[0086] ノ リスタ 803では、セラミック基板 13の面 13Aの部分 13Cが露出するようにバリスタ 層 12とガラスセラミック層 14に穴 21が形成されている。面 13Aの部分 13C上に電子 部品を実装するための端子電極 20A、 20Bが設けられている。内部電極 711A、 71 IBはノ リスタ層 12とセラミック基板 13との界面、すなわちセラミック基板 13の面 13A 上に設けられ、部分 13C上に位置する端部 1711A、 171 IBをそれぞれ有する。穴 2 1力ら露出する内咅電極 711A、 711Bの端咅 1711A、 17118上に端子電極20八、 20Bがそれぞれ設けられて端部 1711 A、 171 IBにそれぞれ接続されている。内部 電極 611A、 711Aのそれぞれの端部 2611A、 2711Aはノ リスタ層 12の端面 12C 力 露出し、内部電極 611B、 71 IBのそれぞれの端部 2611B、 271 IBはノ リスタ層 12の端面 12D力も露出して!/、る。外部電極 15Aはバリスタ層 12の端面 12C上に設 けられ、内部電極 611A、 711Aの端部 2611A、 2711Aに接続されている。外部電 極 15Bはノ リスタ層 12の端面 12D上に設けられ、内部電極 611B、 711Bの端部 26 11B、 271 IBに接続されている。
[0087] 図 21Aに示すように、内部電極 611A、 611Bはノ リスタ層 12の部分 35を間に挟ん で互いに対向しており、ノリスタ 803は部分 35でバリスタとしての特性を得ている。
[0088] 図 22Aは、実施の形態 7におけるさらに他のバリスタ 804の上面透過図である。図 2 2Bは、図 22Aに示すノ リスタ 804の線 22B— 22Bでの断面図である。ノ リスタ 804 は、図 21Aと図 21Bに示すノ リスタ 803の内部電極 611A、 61 IBの代わりに内部電 極 811A、 81 IBを備え、ビアホール電極 217A、 217Bと端子電極 16A、 16Bをさら に備える。
[0089] ノ リスタ 804では、内部電極 811A、 81 IBは、図 21Bに示す内部電極 611A、 611 Bと異なり、ノ リスタ層 12から露出していない。ビアホール電極 217Aは内部電極 71 1A、 811Aに接続され、ガラスセラミック層 14の面 14Aに露出する部分 1217Aを有 する。端子電極 16Aはガラスセラミック層 14の面 14A上に設けられ、ビアホール電極 217Aの部分 1217Aに接続されている。同様に、ビアホール電極 217Bは内部電極 711B、 81 IBに接続され、ガラスセラミック層 14の面 14Aに露出する部分 1217Bを 有する。端子電極 16Bはガラスセラミック層 14の面 14A上に設けられ、ビアホール電 極 217Bの咅盼 1217Bに接続されている。
[0090] ノ リスタ 804に、図 21Aと図 21Bに示す外部電極 15A、 15Bを設けてもよい。
[0091] 図 22Aに示すように、内部電極 811A、 811Bはノ リスタ層 12の部分 135を間に挟 んで互いに対向しており、ノ リスタ 804は部分 135でノ リスタとしての特性を得ている
[0092] 図 23は、実施の形態 7におけるさらに他のバリスタ 805の断面図である。この構成 にお 、て内部電極 711Aと内部電極 711Bでバリスタ部を形成して!/、る。バリスタ 805 は、図 21Aと図 21Bに示すノ リスタ 803の内部電極 611A、 61 IBの代わりに内部電 極 911A、 91 IBを備え、ビアホール電極 317A、 317Bと端子電極 16A、 16Bをさら に備える。
[0093] 内部電極 711A、 71 IBはセラミック基板 13の面 13A上に設けられ、バリスタ層 12 の端面 12C、 12Dにそれぞれ露出する部分 2711A、 271 IBをそれぞれ有する。外 部電極 15A、 15Bは端面 12C、 12Dにそれぞれ設けられ、内部電極 711A、 71 IB の端部 2711A、 271 IBにそれぞれ接続されている。ノ リスタ内部電極 711A、 711 Bはノリスタ層 12の部分 12Eを間に挟んで対向し、部分 12Eによりバリスタとしての 特性が得られる。
[0094] 内部電極 911A、 91 IBはバリスタ層 12の端面 12C、 12Dから露出して外部電極 1 5A、 15Bに接続されている端部 2911A、 291 IBをそれぞれ有する。ビアホール電 極 317A, 317Bは内部電極 911A、 91 IBにそれぞれ接続され、ガラスセラミック層 1 4の面 14Aから露出する部分 1317A、 1317Bをそれぞれ有する。端子電極 16A、 1 6Bは面 14A上に設けられ、ビアホール電極 317A、 317Bの部分 1317A、 1317B にそれぞれ接続されている。すなわち、内部電極 711Aは外部電極 15Aと内部電極 911Aとビアホール電極 317Aを介して端子電極 16Aに導通し、内部電極 711Bは 外部電極 15Bと内部電極 911Bとビアホール電極 317Bを介して端子電極 16Bに導 通している。
産業上の利用可能性
[0095] 本発明によるバリスタは小型で薄くでき、サージ電圧に対する優れたバリスタ特性を 有する。したがって、小型で静電気やサージ電圧に対して耐性を有する電子部品モ ジュールに有用である。

Claims

請求の範囲
[1] 絶縁性を有するセラミック基板と、
前記セラミック基板上に位置する第 1面と、前記第 1面の反対側の第 2面とを有する 酸化亜鉛を主成分とするバリスタ層と、
前記バリスタ層の前記第 2面上に設けられたガラスを含有する第 1のガラスセラミック 層と、
前記バリスタ層内に設けられた第 1の内部電極と、
前記バリスタ層内に設けられた、前記バリスタ層内で前記第 1の内部電極に対向する 第 2の内部電極と、
を備えたバリスタ。
[2] 前記第 1のガラスセラミック層の厚みは 5 πι〜50 /ζ mである、請求項 1に記載のバリ スタ。
[3] 前記第 1の内部電極と前記第 2の内部電極は前記バリスタ層の前記第 1面から 10 m以上離れている、請求項 1に記載のノ リスタ。
[4] 前記第 1の内部電極と前記第 2の内部電極は前記バリスタ層の前記第 2面から 10 m以上離れている、請求項 1に記載のノ リスタ。
[5] 前記セラミック基板は酸ィ匕アルミニウム、酸ィ匕ジルコニウム、酸化ケィ素、酸ィ匕マグネ 、ずれか一つを主成分として含有する、請求項 1に記載のバリスタ。
[6] 前記バリスタの外部に露出して、前記第 1の内部電極に導通する第 1の外部電極と、 前記バリスタの外部に露出して、前記第 2の内部電極に導通する第 2の外部電極と、 をさらに備えた、請求項 1に記載のバリスタ。
[7] 前記バリスタ層は端面をさらに有し、
前記第 1の内部電極と前記第 2の内部電極は前記バリスタ層の前記端面から露出す る第 1の端部と第 2の端部をそれぞれ有し、
前記第 1の外部電極と前記第 2の外部電極は前記バリスタ層の前記端面上に設けら れて、前記第 1の端部と前記第 2の端部にそれぞれ接続された、請求項 6に記載の バリスタ。
[8] 前記バリスタ層の前記端面は第 1の端面と第 2の端面とを含み、 前記第 1の内部電極は前記バリスタ層の前記第 1の端面力 露出する第 1の端部を 有し、
前記第 2の内部電極は前記バリスタ層の前記第 2の端面力 露出する第 2の端部を 有し、
前記第 1の外部電極と前記第 2の外部電極は前記バリスタ層の前記第 1の端面と前 記第 2の端面上にそれぞれ設けられた、請求項 6に記載のバリスタ。
[9] 前記第 1のガラスセラミック層は、前記バリスタ層の前記第 2面上に位置する第 1面と
、前記第 1のガラスセラミック層の前記第 1面の反対側の第 2面とを有し、
前記第 1の外部電極と前記第 2の外部電極は前記第 1のガラスセラミック層の前記第
2面から露出する、請求項 6に記載のバリスタ。
[10] 前記第 1の外部電極と前記第 2の外部電極は、金属粉と、前記金属粉に対して 0. 5 重量%〜5. 0重量%の三酸ィ匕モリブデンとを含有する、請求項 9に記載のバリスタ。
[11] 前記第 1のガラスセラミック層と前記バリスタ層内に埋設され、前記第 1の内部電極と 前記第 1の外部電極とに接続された第 1のビアホール電極と、
前記第 1のガラスセラミック層と前記バリスタ層内に埋設され、前記第 2の内部電極と 前記第 2の外部電極とに接続された第 2のビアホール電極と、
をさらに備えた、請求項 9に記載のバリスタ。
[12] 前記第 1のビアホール電極と前記第 2のビアホール電極は、金属粉と、前記金属粉 に対して 0. 5重量%〜5. 0重量%の三酸ィ匕モリブデンとを含有する、請求項 11に記 載のバリスタ。
[13] 前記第 1の外部電極は前記第 1のガラスセラミック層の前記第 2面上に設けられた、 請求項 9に記載のバリスタ。
[14] 前記第 1の外部電極は、前記第 1のガラスセラミック層で部分的に覆われてかつ前記 第 1のガラスセラミック層の前記第 2面力も露出する面を有する、請求項 9に記載のバ リスタ。
[15] 前記第 1の外部電極の前記面は前記第 1のガラスセラミック層の部分で覆われた端 部を有し、
前記第 1のガラスセラミック層の前記部分の厚みが 3 m〜10 m、幅が 20 m〜l 00 μ mである、請求項 14に記載のバリスタ。
[16] 前記セラミック基板は前記バリスタ層の前記第 1面上に位置する面を有し、
前記バリスタ層と前記第 1のガラスセラミック層には、前記バリスタ層と前記第 1のガラ スセラミック層とを貫通して前記第 1のガラスセラミック層に開口する開口部を有してか つ前記セラミック基板の前記面の部分を底に露出させる穴が形成され、
前記第 1の外部電極と前記第 2の外部電極は前記穴内に設けられた、
請求項 6に記載のバリスタ。
[17] 前記第 1の外部電極と前記第 2の外部電極は、前記第 1の内部電極と前記第 2の内 部電極と電気的に並列に接続されて!ヽる、請求項 16に記載のバリスタ。
[18] 前記穴の前記開口部は略円形である、請求項 16に記載のバリスタ。
[19] 前記穴は前記バリスタ層力も前記第 1のガラスセラミック層に向力つて広がっている、 請求項 16記載のバリスタ。
[20] 前記穴は壁面をさらに有し、
前記穴の前記壁面上に設けられた光反射層をさらに備えた、請求項 19に記載のバ リスタ。
[21] 前記第 1のガラスセラミック層は、前記バリスタ層の前記第 2面上に位置する第 1面と 、前記第 1のガラスセラミック層の前記第 1面の反対側の第 2面とを有し、
前記第 1のガラスセラミック層の前記第 2面上に設けられ、前記第 1のガラスセラミック 層の前記ガラスの軟ィ匕点温度よりも 100°C以上低 ヽ軟化点温度を有するガラスで構 成された第 2のガラスセラミック層をさらに備え、
前記穴の前記開口部は前記第 2のガラスセラミック層に開口する、請求項 16に記載 のバリスタ。
[22] 前記第 2のガラスセラミック層は 50 πι〜500 /ζ mの厚みを有する、請求項 21に記 載のバリスタ。
[23] 前記穴は壁面をさらに有し、
前記穴の前記壁面上に設けられた絶縁層をさらに備えた、請求項 16に記載のパリス タ。
[24] 前記セラミック基板は、第 1面と前記第 1面の反対側の第 2面とを有し、 前記セラミック基板の前記第 2面は前記バリスタ層の前記第 1面上に位置し、 前記セラミック基板の前記第 1面上に設けられた伝熱層をさらに備えた、請求項 1に 記載のバリスタ。
[25] 前記伝熱層は 90重量%以上の銀を含有する、請求項 24記載のバリスタ。
[26] 請求項 1から 25のいずれか 1項に記載のバリスタと、
前記バリスタの前記第 1の外部電極と前記第 2の外部電極にそれぞれ接続された第
1の端子と第 2の端子とを有する電子部品と、
を備えた電子部品モジュール。
[27] 前記電子部品は発光ダイオードである、請求項 26に記載の電子部品モジュール。
PCT/JP2006/306440 2005-04-01 2006-03-29 バリスタおよびそれを用いた電子部品モジュール WO2006106717A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200680010997.2A CN101156221B (zh) 2005-04-01 2006-03-29 变阻器和使用该变阻器的电子部件模块
EP06730388.3A EP1858033A4 (en) 2005-04-01 2006-03-29 VARISTOR AND ELECTRONIC COMPONENT MODULE USING THE SAME
JP2007512781A JP4720825B2 (ja) 2005-04-01 2006-03-29 バリスタ
US11/817,710 US7940155B2 (en) 2005-04-01 2006-03-29 Varistor and electronic component module using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-105874 2005-04-01
JP2005105874 2005-04-01
JP2006-040578 2006-02-17
JP2006040578 2006-02-17

Publications (1)

Publication Number Publication Date
WO2006106717A1 true WO2006106717A1 (ja) 2006-10-12

Family

ID=37073281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306440 WO2006106717A1 (ja) 2005-04-01 2006-03-29 バリスタおよびそれを用いた電子部品モジュール

Country Status (5)

Country Link
US (1) US7940155B2 (ja)
EP (1) EP1858033A4 (ja)
JP (1) JP4720825B2 (ja)
CN (1) CN101156221B (ja)
WO (1) WO2006106717A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160046A (ja) * 2006-12-21 2008-07-10 Lg Electronics Inc 発光素子パッケージ及びその製造方法
WO2011108227A1 (ja) * 2010-03-01 2011-09-09 パナソニック株式会社 発光素子用基板及びその製造方法ならびに発光装置
JP2012169624A (ja) * 2011-02-10 2012-09-06 Samsung Electronics Co Ltd 発光ダイオードパッケージ及びこれを具備するバックライトユニット
JPWO2011092945A1 (ja) * 2010-01-28 2013-05-30 旭硝子株式会社 発光素子搭載用基板、その製造方法および発光装置
WO2013121787A1 (ja) * 2012-02-15 2013-08-22 パナソニック株式会社 発光装置およびその製造方法
WO2013168311A1 (ja) * 2012-05-11 2013-11-14 株式会社村田製作所 チップバリスタ素子およびその製造方法
WO2013175795A1 (ja) * 2012-05-25 2013-11-28 パナソニック株式会社 バリスタおよびその製造方法
JP2015517740A (ja) * 2012-05-24 2015-06-22 エプコス アクチエンゲゼルシャフトEpcos Ag 発光ダイオード装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4372669B2 (ja) * 2004-11-25 2009-11-25 株式会社トクヤマ 素子搭載用基板の製造方法
CN101536275B (zh) * 2006-10-31 2012-05-30 松下电器产业株式会社 防静电部件及其制造方法
US20080225449A1 (en) * 2007-03-13 2008-09-18 Tatsuya Inoue Electrostatic discharge protection component, and electronic component module using the same
DE102008024481B4 (de) * 2008-05-21 2021-04-15 Tdk Electronics Ag Elektrische Bauelementanordnung
DE102008024480A1 (de) * 2008-05-21 2009-12-03 Epcos Ag Elektrische Bauelementanordnung
DE102010001791A1 (de) 2009-02-16 2010-09-30 Ledon Lighting Jennersdorf Gmbh LED-Baueinheit
JP5246338B2 (ja) * 2009-08-27 2013-07-24 株式会社村田製作所 Esd保護デバイスおよびその製造方法
KR101676669B1 (ko) * 2010-05-20 2016-11-16 엘지이노텍 주식회사 발광 소자
US8659866B2 (en) * 2010-08-27 2014-02-25 Cooper Technologies Company Compact transient voltage surge suppression device
US8508325B2 (en) * 2010-12-06 2013-08-13 Tdk Corporation Chip varistor and chip varistor manufacturing method
JPWO2012147299A1 (ja) * 2011-04-26 2014-07-28 パナソニック株式会社 静電気対策部品およびその製造方法
JP5696623B2 (ja) 2011-08-29 2015-04-08 Tdk株式会社 チップバリスタ
JP5799672B2 (ja) 2011-08-29 2015-10-28 Tdk株式会社 チップバリスタ
US20130196539A1 (en) * 2012-01-12 2013-08-01 John Mezzalingua Associates, Inc. Electronics Packaging Assembly with Dielectric Cover
DE102014100469A1 (de) 2013-11-29 2015-06-03 Epcos Ag Elektronisches Bauelement und Verwendung desselben
WO2015083822A1 (ja) * 2013-12-06 2015-06-11 日立金属株式会社 バリスタ用焼結体およびこれを用いた多層基板、ならびにそれらの製造方法
CN112420297B (zh) * 2020-10-16 2022-04-15 深圳顺络电子股份有限公司 压敏电阻
CN114284115A (zh) * 2021-12-08 2022-04-05 深圳顺络电子股份有限公司 复合保护器件及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214501A (ja) * 1988-07-01 1990-01-18 Matsushita Electric Ind Co Ltd 電圧非直線抵抗器
JPH02135702A (ja) * 1988-11-16 1990-05-24 Murata Mfg Co Ltd 積層型バリスタ
JPH02220407A (ja) * 1989-02-21 1990-09-03 Murata Mfg Co Ltd 積層型バリスタ
JPH056809A (ja) * 1991-06-27 1993-01-14 Murata Mfg Co Ltd 抵抗付チツプバリスタ
JPH059024U (ja) * 1991-07-08 1993-02-05 株式会社村田製作所 バリスタ機能付ノイズフイルタ
JPH07235445A (ja) * 1993-10-06 1995-09-05 Philips Electron Nv 多重層フィルム
JPH11233309A (ja) * 1998-02-10 1999-08-27 Murata Mfg Co Ltd 積層バリスタ
JP2005191205A (ja) * 2003-12-25 2005-07-14 Matsushita Electric Ind Co Ltd 静電気対策部品の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3930000A1 (de) 1988-09-08 1990-03-15 Murata Manufacturing Co Varistor in schichtbauweise
JP2556151B2 (ja) * 1989-11-21 1996-11-20 株式会社村田製作所 積層型バリスタ
US5973588A (en) * 1990-06-26 1999-10-26 Ecco Limited Multilayer varistor with pin receiving apertures
JPH059024A (ja) 1991-06-28 1993-01-19 Toyo Ink Mfg Co Ltd ペロブスカイト型複合酸化物薄膜の製造方法
JP3453857B2 (ja) 1994-07-20 2003-10-06 松下電器産業株式会社 積層型バリスタの製造方法
US5614074A (en) * 1994-12-09 1997-03-25 Harris Corporation Zinc phosphate coating for varistor and method
JP3631341B2 (ja) * 1996-10-18 2005-03-23 Tdk株式会社 積層型複合機能素子およびその製造方法
TW394961B (en) * 1997-03-20 2000-06-21 Ceratech Corp Low capacitance chip varistor and fabrication method thereof
JP3399349B2 (ja) * 1998-03-17 2003-04-21 株式会社村田製作所 積層バリスタおよびその製造方法
KR100476158B1 (ko) * 2000-12-11 2005-03-15 주식회사 아모텍 글래스 코팅막을 갖는 세라믹 칩 소자 및 그의 제조방법
US7279724B2 (en) * 2004-02-25 2007-10-09 Philips Lumileds Lighting Company, Llc Ceramic substrate for a light emitting diode where the substrate incorporates ESD protection
US20050190541A1 (en) * 2004-03-01 2005-09-01 Hsiang-Hsi Yang Heat dissipation method for electronic apparatus
JP4432586B2 (ja) * 2004-04-02 2010-03-17 パナソニック株式会社 静電気対策部品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214501A (ja) * 1988-07-01 1990-01-18 Matsushita Electric Ind Co Ltd 電圧非直線抵抗器
JPH02135702A (ja) * 1988-11-16 1990-05-24 Murata Mfg Co Ltd 積層型バリスタ
JPH02220407A (ja) * 1989-02-21 1990-09-03 Murata Mfg Co Ltd 積層型バリスタ
JPH056809A (ja) * 1991-06-27 1993-01-14 Murata Mfg Co Ltd 抵抗付チツプバリスタ
JPH059024U (ja) * 1991-07-08 1993-02-05 株式会社村田製作所 バリスタ機能付ノイズフイルタ
JPH07235445A (ja) * 1993-10-06 1995-09-05 Philips Electron Nv 多重層フィルム
JPH11233309A (ja) * 1998-02-10 1999-08-27 Murata Mfg Co Ltd 積層バリスタ
JP2005191205A (ja) * 2003-12-25 2005-07-14 Matsushita Electric Ind Co Ltd 静電気対策部品の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1858033A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160046A (ja) * 2006-12-21 2008-07-10 Lg Electronics Inc 発光素子パッケージ及びその製造方法
JPWO2011092945A1 (ja) * 2010-01-28 2013-05-30 旭硝子株式会社 発光素子搭載用基板、その製造方法および発光装置
US9076714B2 (en) 2010-03-01 2015-07-07 Panasonic Intellectual Property Management Co., Ltd. Substrate for mounting light-emitting element and light-emitting device
JPWO2011108227A1 (ja) * 2010-03-01 2013-06-20 パナソニック株式会社 発光素子用基板及びその製造方法ならびに発光装置
WO2011108227A1 (ja) * 2010-03-01 2011-09-09 パナソニック株式会社 発光素子用基板及びその製造方法ならびに発光装置
JP5834174B2 (ja) * 2010-03-01 2015-12-16 パナソニックIpマネジメント株式会社 発光素子用基板及びその製造方法ならびに発光装置
JP2012169624A (ja) * 2011-02-10 2012-09-06 Samsung Electronics Co Ltd 発光ダイオードパッケージ及びこれを具備するバックライトユニット
KR101783955B1 (ko) * 2011-02-10 2017-10-11 삼성디스플레이 주식회사 발광 다이오드 패키지 및 이를 구비한 백라이트 유닛
WO2013121787A1 (ja) * 2012-02-15 2013-08-22 パナソニック株式会社 発光装置およびその製造方法
WO2013168311A1 (ja) * 2012-05-11 2013-11-14 株式会社村田製作所 チップバリスタ素子およびその製造方法
JP2015517740A (ja) * 2012-05-24 2015-06-22 エプコス アクチエンゲゼルシャフトEpcos Ag 発光ダイオード装置
US9449958B2 (en) 2012-05-24 2016-09-20 Epcos Ag Light-emitting diode device
WO2013175795A1 (ja) * 2012-05-25 2013-11-28 パナソニック株式会社 バリスタおよびその製造方法

Also Published As

Publication number Publication date
EP1858033A4 (en) 2013-10-09
US7940155B2 (en) 2011-05-10
CN101156221B (zh) 2012-02-08
JP4720825B2 (ja) 2011-07-13
US20090027157A1 (en) 2009-01-29
CN101156221A (zh) 2008-04-02
JPWO2006106717A1 (ja) 2008-09-11
EP1858033A1 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JP4720825B2 (ja) バリスタ
US9185785B2 (en) Electrostatic protection component
US8378379B2 (en) Substrate for mounting light-emitting element and light-emitting device
EP2381496A1 (en) Substrate for mounting light-emitting element and light-emitting device employing the substrate
US9054287B2 (en) Substrate for mounting light-emitting element, production process thereof and light-emitting device
EP2369903A1 (en) Substrate for light-emitting element and light-emitting device
US7864025B2 (en) Component with countermeasure to static electricity
WO2010150830A1 (ja) 発光装置
KR100709914B1 (ko) 적층형 칩 배리스터
US20080308312A1 (en) Ceramic electronic component
US9865381B2 (en) Chip with protection function and method for producing same
TW511442B (en) Multilayered board and method for fabricating the same
JP4540223B2 (ja) 電子部品搭載基板
JP3199596B2 (ja) 多層配線基板及び半導体素子収納用パッケージ
JP4276231B2 (ja) バリスタ素子
JP4957155B2 (ja) バリスタ
JPH08153606A (ja) 積層バリスタ
JP2008270391A (ja) 積層型チップバリスタおよびその製造方法
JP4952175B2 (ja) バリスタ
JP5348117B2 (ja) 静電気保護素子の実装構造
JPH07106654A (ja) 積層型変位素子
US20070146954A1 (en) Varistor element
KR20160050629A (ko) 적층형 압전소자의 내부전극용 페이스트 조성물 및 그로 제조된 적층형 압전소자
JPH04306803A (ja) 積層型バリスタ
JP2007273761A (ja) バリスタ素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010997.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512781

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006730388

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11817710

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730388

Country of ref document: EP