JPWO2012147299A1 - 静電気対策部品およびその製造方法 - Google Patents

静電気対策部品およびその製造方法 Download PDF

Info

Publication number
JPWO2012147299A1
JPWO2012147299A1 JP2013511909A JP2013511909A JPWO2012147299A1 JP WO2012147299 A1 JPWO2012147299 A1 JP WO2012147299A1 JP 2013511909 A JP2013511909 A JP 2013511909A JP 2013511909 A JP2013511909 A JP 2013511909A JP WO2012147299 A1 JPWO2012147299 A1 JP WO2012147299A1
Authority
JP
Japan
Prior art keywords
high thermal
substrate
thermal conductivity
layer
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013511909A
Other languages
English (en)
Inventor
阿部 雄一
雄一 阿部
岡 謙次
謙次 岡
冬希 阿部
冬希 阿部
和裕 三浦
和裕 三浦
幹典 網沢
幹典 網沢
淳美 宮川
淳美 宮川
考弘 千秋
考弘 千秋
裕司 山岸
裕司 山岸
淳 大槻
淳 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2012147299A1 publication Critical patent/JPWO2012147299A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/01Mounting; Supporting
    • H01C1/014Mounting; Supporting the resistor being suspended between and being supported by two supporting sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/30Apparatus or processes specially adapted for manufacturing resistors adapted for baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/102Varistor boundary, e.g. surface layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/1006Thick film varistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermistors And Varistors (AREA)

Abstract

静電気対策部品は、第1高熱伝導基板と、第2高熱伝導基板と、バリスタ層と、複数のビア電極とを有する。第1高熱伝導基板には複数個の第1貫通孔が設けられている。第2高熱伝導基板には複数個の第2貫通孔が設けられている。酸化亜鉛を主成分とするバリスタ層は第1高熱伝導基板と第2高熱伝導基板との間に設けられている。バリスタ層は内部電極を有する。各ビア電極はバリスタ層を貫通し、第1貫通孔の1つと、第2貫通孔の1つとを埋めてつないでいる。

Description

本発明は、各種電子機器に用いられる静電気対策部品およびその製造方法に関する。
近年電子機器の小型化が急速に進み、それに伴い電子機器の回路を構成する各種電子部品の耐電圧は低下してきている。そのため、人体と電子機器の導通部とが接触したときに発生する静電気パルスなどによる各種電子部品、特に半導体デバイスの破壊による電子機器の故障トラブルが増えている。
また、半導体デバイスの一種である発光ダイオードは、静電気パルスに対する耐電圧性が低く、高輝度化が求められているため、発熱に対する対策も求められている。
これらの要望に対して、図6の断面図に示す静電気対策部品が提案されている。この静電気対策部品は、アルミナからなるセラミック基板1と、その上に設けられたバリスタ層2と、さらにその上に設けられたガラスセラミック層3と、さらにその上に設けられた外部電極4とを有する。ガラスセラミック層3は、外部電極4上にメッキ層を形成する際や環境に対してバリスタ層2を保護する目的で設けられている(例えば、特許文献1)。
特開2008−270325号公報
本発明は基板の反りが小さく、熱伝導に優れた静電気対策部品とその製造方法を提供する。本発明の静電気対策部品は、第1高熱伝導基板と、第2高熱伝導基板と、バリスタ層と、一対のビア電極とを有する。第1高熱伝導基板には2個の第1貫通孔が設けられている。第2高熱伝導基板には2個の第2貫通孔が設けられている。酸化亜鉛を主成分とするバリスタ層は第1高熱伝導基板と第2高熱伝導基板との間に設けられている。バリスタ層は互いに絶縁された一対の内部電極を内部に有する。各ビア電極はバリスタ層を貫通し、第1貫通孔の1つと、第2貫通孔の1つとを埋めてつないでいる。各ビア電極は内部電極のそれぞれに接続されている。この構成により、バリスタ層を焼成する際の反り発生を防ぐとともに、高い熱伝導性を確保することができる。
図1は本発明の実施の形態における静電気対策部品の断面図である。 図2Aは本発明の実施の形態における静電気対策部品の内部電極の形状とビア電極の配置を示す概念平面図である。 図2Bは本発明の実施の形態における静電気対策部品の内部電極の形状とビア電極の配置を示す概念平面図である。 図2Cは本発明の実施の形態における静電気対策部品の内部電極の形状とビア電極の配置を示す概念平面図である。 図2Dは本発明の実施の形態における静電気対策部品の内部電極の形状とビア電極の配置を示す概念平面図である。 図3Aは本発明の実施の形態における静電気対策部品の製造手順を説明する図である。 図3Bは図3Aに続く静電気対策部品の製造手順を説明する図である。 図3Cは図3Bに続く静電気対策部品の製造手順を説明する図である。 図3Dは図3Cに続く静電気対策部品の製造手順を説明する図である。 図3Eは図3Dに続く静電気対策部品の製造手順を説明する図である。 図3Fは図3Eに続く静電気対策部品の製造手順を説明する図である。 図3Gは図3Fに続く静電気対策部品の製造手順を説明する図である。 図3Hは図3Gに続く静電気対策部品の製造手順を説明する図である。 図4Aは本発明の実施の形態における静電気対策部品の別の製造手順を説明する図である。 図4Bは図4Aに続く静電気対策部品の製造手順を説明する図である。 図4Cは図4Bに続く静電気対策部品の製造手順を説明する図である。 図4Dは図4Cに続く静電気対策部品の製造手順を説明する図である。 図4Eは図4Dに続く静電気対策部品の製造手順を説明する図である。 図4Fは図4Eに続く静電気対策部品の製造手順を説明する図である。 図4Gは図4Fに続く静電気対策部品の製造手順を説明する図である。 図4Hは図4Gに続く静電気対策部品の製造手順を説明する図である。 図5Aは本発明の実施の形態における静電気対策部品のさらに別の製造方法を説明する図である。 図5Bは図5Aに続く静電気対策部品の製造手順を説明する図である。 図5Cは図5Bに続く静電気対策部品の製造手順を説明する図である。 図5Dは図5Cに続く静電気対策部品の製造手順を説明する図である。 図5Eは図5Dに続く静電気対策部品の製造手順を説明する図である。 図5Fは図5Eに続く静電気対策部品の製造手順を説明する図である。 図5Gは図5Fに続く静電気対策部品の製造手順を説明する図である。 図5Hは図5Gに続く静電気対策部品の製造手順を説明する図である。 図6は従来の静電気対策部品の断面図である。
図6に示す静電気対策部品では、ガラスセラミック層を焼成するときに基板が反りやすい。発光ダイオード素子を回路基板に実装した後、ワイヤボンドで静電気対策部品を発光ダイオード素子と電気的に接続する場合は、基板の反りは大きな問題とならない。しかしながらが、小型化のために発光ダイオード素子を静電気対策部品上にフリップチップ実装すると基板の反りが問題となる。またガラスセラミック層は、一般的にアルミナ等のセラミック基板よりも熱伝導率が低い。そのため、発光ダイオード素子から発生した熱を効率よく逃がすことが難しい。
以下の説明では上記課題を解決する静電気対策部品とその製造方法について説明する。
図1は本発明の実施の形態における静電気対策部品の断面図である。静電気対策部品30は、第1高熱伝導基板(以下、基板)11と、第2高熱伝導基板(以下、基板)13と、バリスタ層12と、複数のビア電極15とを有する。基板11には2個の第1貫通孔(以下、孔)14Aが設けられている。基板13には2個の第2貫通孔(以下、孔)14Bが設けられている。酸化亜鉛を主成分とするバリスタ層12は基板11と基板13との間に設けられている。バリスタ層12は互いに絶縁された一対の内部電極16を内部に有する。各ビア電極15はバリスタ層12を貫通し、孔14Aの1つと、孔14Bの1つとを埋めてつないでいる。また各ビア電極15は内部電極16と接続されている。すなわち、ビア電極15は第1ビア電極と第2ビア電極とを含み、内部電極16は第1内部電極と第2内部電極とを含んでいる。第1ビア電極は第1内部電極と接続され、第2ビア電極は第2内部電極と接続されている。
基板11、13は、例えば純度96%以上のアルミナ焼結板である。例えば、基板11の平面形状は約3mm×3mm、厚さは約0.12mmである。例えば、基板13の平面形状は約3mm×3mm、厚さは約0.16mmである。バリスタ層12の厚さは、例えば、約0.2mmである。
なお高熱伝導基板とは、熱伝導率が18W/m・K以上の絶縁基板である。基板11、13としてアルミナ以外に窒化アルミ、窒化ケイ素、炭化ケイ素などの焼結板を用いることができる。
基板11、13にはそれぞれ2個の直径約0.2mmの孔14A、14Bが同じ位置に設けられており、バリスタ層12にも同様に貫通孔が開けられている。これらの貫通孔がつながって基板11の下面から基板13の上面につながる貫通孔が形成されている。その貫通孔の中に銀パラジウムペーストを詰めることにより基板11の下面から基板13の上面につながるビア電極15が形成されている。
バリスタ層12は、酸化亜鉛を主成分とする層と一対の内部電極16となる印刷形成された銀パラジウムペースト層とを積層して構成されている。ここで、「主成分」とはバリスタ特性を発現するために必要な含有量であることを意味し、具体的には、例えば70重量%以上である。
内部電極16は互いに絶縁され、それぞれビア電極15の1つに電気的に接続されている。さらに基板11、13の外面には、ビア電極15に接続された外部電極17が設けられている。基板13に設けられた外部電極17が、発光ダイオード等の半導体素子18の実装用電極となる。一方、基板11に設けられた外部電極17はプリント基板への実装用電極となる。なお、外部電極17は銀パラジウムペーストを焼き付けたあと、その上にニッケル、銅、金等をメッキして構成されている。
以上のように、焼結済みの基板11、13の間にバリスタ層12が形成されている。そのため静電気対策部品30全体としての反りを抑えられている。また、アルミナも酸化亜鉛も、その熱伝導率が約20W/m・K以上であるため、半導体素子18から発生した熱を効率よく伝達させることができる。さらにバリスタ層12の上下面が焼結済みの基板11、13で囲まれているため、バリスタ層12の焼成時にバリスタ層12を構成するビスマス等の微量成分が蒸発して失われることを防ぐことができる。そのため、安定したバリスタ電圧を有する静電気対策部品30を作製することができる。
厚さ約0.26mmのセラミック基板1と、厚さ約0.2mmのバリスタ層2と、厚さ約0.02mmのガラスセラミック層3とで、平面形状が約3mm×3mmの静電気対策部品を構成する。この従来の構成では、バリスタ層2の焼成に伴い、反りが約0.2mm発生する。一方、静電気対策部品30では反りが約0.03mmであり、大幅に改善されている。この場合の反りは基板11、13自体に由来している。すなわち、バリスタ層12の焼成によって実質的にはほとんど反りは発生していない。また、静電気対策部品30の熱伝導率は、上記従来構成の静電気対策部品の熱伝導率の約2倍となる。
さらに半導体素子18として発光ダイオードを実装する場合、発光ダイオードの実装面の反射率を向上することが求められる。アルミナ基板を薄くしていくと光の透過率が上がっていき、その下のバリスタ層が見えるようになり、結果として反射率が下がってくる。これに対し静電気対策部品30では、半導体素子18を実装する側の基板13の厚さを、基板11の厚さよりも厚くすることが好ましい。このような基板11、13を用いることにより、半導体素子18の実装面の反射率を上げることができる。その結果、特に発光ダイオードを実装する用途としてはより望ましい。
次に、内部電極16の形状とビア電極15の配置の好ましい状態について図2A〜図2Dを参照しながら説明する。図2A〜図2Dは内部電極16の形状とビア電極15の配置を示す概念平面図である。
図2Aに示すように、一般的には平面形状が正方形の基板11、13に対し、対辺近くにビア電極15を形成し、長方形の内部電極16を形成する。このように、品質面から、静電気対策部品30の外周と内部電極16とビア電極15との間に、ある一定の距離を確保して内部構造が決められる。しかしながら、小型化した場合には内部電極16の重なり部分16Cが大きく減少する。最大面積設計での重なり部分16Cの面積を比較した場合、例えば3mm×3mmの平面形状から2mm×2mmの平面形状へ小型化すると、内部電極16の重なり面積は約1/5になる。さらに、1.5mm×1.5mmの平面形状へ小型化すると重なり部分16Cの面積は約1/20以下になる。このため同等のバリスタ特性を得るには多層化する必要を生じる。しかしながらこのような多層化は生産低低下やコストアップに繋がる。あるいは、製品厚み寸法規格によっては製品設計が成立しなくなる。
これに対し、図2Bに示すように、ビア電極15を対角位置に配置することにより、重なり部分16Cの面積は約2倍になる。このように、ビア電極15を基板11の面方向において、最も離れた位置に配置することが好ましい。図2Bの例では基板11の平面形状が正方形の場合を説明したが、それ以外の形状の場合でもビア電極15を基板11の面方向において、最も離れた位置に配置すればよい。
また図2Cや図2Dに示すように、内部電極16のそれぞれがビア電極15のうち、接続されていない方を囲む形状にしてもよい。図2Cや図2Dに示す構成では、図2Aに示す構成と比べて重なり部分16Cの面積は約4倍になる。
以上のような内部電極16の形状やビア電極15の配置を採用することにより、バリスタ特性を維持しながら静電気対策部品30を小型化することができる。
次に本発明の実施の形態における静電気対策部品の製造方法について説明する。以下の説明では、平面寸法が基板11のn倍の第1高熱伝導大基板(以下、基板)11Aと、平面寸法が基板13のn倍の第2高熱伝導大基板(以下、基板)13Aを用いる。そして、n個の静電気対策部品30を構成した後、個片に分ける方法を説明する。図3A〜図3Hは本発明の実施の形態における静電気対策部品の製造方法を説明する図である。
まず図3Aに示すように、厚さ約0.14mmのアルミナ板である基板11Aの所定の位置にレーザ等を用いて複数個の孔14Aを形成する。孔14Aの大きさは直径約0.2mmである。同様に厚さ約0.14mmのアルミナ板である基板13Aにも孔14Bを形成する。基板11Aと基板13Aとはまったく同じものを用いる必要はないが、反りを少なくするためには線膨張率の差が小さいもの、さらには同一の材料を用いることが望ましい。なお基板11Aと基板13Bには、孔14A、14Bの位置は同じところに設ける必要がある。そのため、まったく同一の構成とすることにより基板11Aと基板13Bとを別々に管理する必要がなくなり、量産性を向上させることができる。
次に図3Bに示すように、基板11Aの上に図3Eに示すバリスタ層12Aを形成するための未焼成層19を形成する。未焼成層19は酸化亜鉛を主成分とする層と銀パラジウムペーストを印刷した内部電極16用の層を積層して構成されている。未焼成層19は基板11上に印刷して形成したものであっても、別途積層したものを、基板11の上に重ねたものであっても良い。また、内部電極16用のパターンは、積層方向から見たときに接続されるビア電極15用に設けられた孔14Aを覆うように形成されていることが望ましい。このようにすることにより内部電極16とビア電極15との接続性を向上させることができる。
次に図3Cに示すように、未焼成層19の上に基板13Aを重ねてプレスすることにより、基板11A、未焼成層19、基板13Aを一体化する。このとき、孔14Aと孔14Bとが同じ位置にくるように基板13Aを重ねる。
次に図3Dに示すように、孔14A、14Bを通してレーザ光を照射することにより、孔14Aと孔14Bとの間に位置する未焼成層19の一部を除去する。このようにして、基板11Aに形成された孔14Aから基板13Aに形成された孔14Bにつながるビア穴20を形成する。そのあとこの積層体を炉に入れて未焼成層19を熱処理する。このとき未焼成層19には可塑剤等が含まれているため、まず105〜175℃に昇温して温度を保つことにより、可塑剤等を除去する。その後、約925℃に昇温し、バリスタ層12Aを形成する。
通常、平板である基板11A、13Aの間に未焼成層19を挟んで焼成しようとしても可塑剤等の成分が十分に除去できずに残るため、バリスタ層12Aをうまく焼成できない。これに対して本実施の形態では、基板11A、13Aに多数の孔14A、14Bを設けているため、可塑剤等の成分は孔14A、14Bを通して排出することができ、十分にバリスタ層12Aを形成することができる。
また、基板11Aと基板13Aに同じアルミナ基板を用いることにより、焼成による反りの発生を防ぐことができる。可塑剤等の成分を効率よく排出させるためには、基板11A、13Aの面積に対する孔14A、14Bの面積を大きくすることが好ましく、その割合を0.06%以上にすることにより、十分に排出することができる。ただしこの割合を大きくしすぎると静電気対策部品30の機械的強度が弱くなるため、12%以下にすることが望ましい。
このあと、焼成した積層体を水酸化ナトリウム水溶液等のアルカリ性溶液に浸漬し、ビア穴20の周辺の酸化亜鉛の一部をエッチングしても良い。内部電極16を構成する銀パラジウム層は、アルカリ性溶液にエッチングされない。そのため、このようにすると、ビア穴20周辺のバリスタ層12Aの壁面から内部電極を突出させることができる。その結果、ビア穴20にビア電極15を形成したときに、内部電極16とビア電極15との接続性をさらに向上させることができる。
次に図3Eに示すように、ビア穴20に銀パラジウムペーストを充填し、焼成することにより、基板11の下面から基板13の上面につながるビア電極15を形成する。
次に図3Fに示すように、基板11Aおよび基板13Bの表面に、ビア電極15に接続された外部電極17を形成する。外部電極17は銅メッキによりパターン形成したあと、ニッケル、金の層をメッキにより形成している。このとき基板11A、13Bの外周部分以外には酸化亜鉛の層が露出していないため、メッキ液によりバリスタ層12Aが腐食等の影響を受けることがない。
次に図3Gに示すように、基板13Aの表面に設けられた外部電極17に半導体素子18を実装する。半導体素子18の端子間にはバリスタ層12Aが接続されている。そのため、静電気等による半導体素子18の破壊を防ぐことができる。
最後に、このように複数個(n個)のデバイスが構成された前駆体をダイシングにより個片化することにより、図3Hに示すように半導体素子18を実装した静電気対策部品30を作製することができる。
なお図3Dでは孔14Aと孔14Bとの間に位置する未焼成層19の一部をレーザ光により除去しているが、これ以外の方法で除去してもよい。例えば、ブラスト加工(マイクロブラスト)を適用してもよい。
次に本発明の実施の形態における静電気対策部品の別の製造方法について説明する。図4A〜図4Hは本発明の実施の形態における静電気対策部品の別の製造方法を説明する図である。
まず図4Aに示すように、基板11Aに複数個の孔14Aを形成するとともに、基板13に孔14Bを形成する。次に図4Bに示すように、基板11の上にバリスタ層12Aを形成するための未焼成層19を形成する。次に図4Cに示すように、未焼成層19の上に基板13を重ねてプレスすることにより、基板11、未焼成層19、基板13を一体化する。以上の手順は、図3A〜図3Cを参照して説明した手順と同じなので詳細な説明を省略する。
このあと一体化した積層体を炉に入れて未焼成層19を熱処理してバリスタ層12Aを形成する。この場合も、未焼成層19に含まれる可塑剤等の成分は孔14A、14Bを通して排出することができる。
次に図4Dに示すように、焼成した積層体を水酸化ナトリウム水溶液等のアルカリ性溶液に浸漬し、孔14Aと孔14Bとの間に位置するバリスタ層12Aの酸化亜鉛をエッチングする。この操作により、孔14Aから孔14Bにつながるビア穴20を形成する。この場合、内部電極16用のパターンは、積層方向から見たときに接続されるビア電極に設けられた孔14A、14Bに対して重なる面積を、孔14A、14Bの面積の1/3以下にすることが望ましい。このようにすることによりバリスタ層12Aの中の酸化亜鉛をスムースにエッチングすることができるとともに、酸化亜鉛の層から内部電極16が突出しているような形になる。そのため、ビア電極15と内部電極16との接続性を向上させることができる。
なおビア穴20を形成するために、図3Dを参照して説明したように、孔14A、14Bを通してレーザ光を照射してもよい。このような方法でも、孔14Aと孔14Bとの間のバリスタ層12Aを除去し、ビア穴20を形成することができる。この場合、図3Dを参照して説明したように、内部電極16用のパターンは、積層方向から見たときに接続されるビア電極15用に設けられた孔14A、14Bを覆うように形成されていることが望ましい。このようにすることにより内部電極16とビア電極15との接続性を向上させることができる。
次に図4Eに示すように、ビア穴20に銀パラジウムペーストを充填し、焼成することにより、ビア電極15を形成する。そして図4Fに示すように、基板11Aおよび基板13Aの表面にビア電極15に接続された外部電極17を形成する。さらに図4Gに示すように、基板13Aの表面に設けられた外部電極17に半導体素子18を実装する。最後にダイシングにより個片化することにより、図4Hに示す、半導体素子18を実装した静電気対策部品30を作製することができる。図4E〜図4Hに至る手順は図3E〜図3Hに至る手順と同様なので詳細な説明を省略する。
次に本発明の実施の形態における静電気対策部品のさらに別の製造方法について説明する。図5A〜図5Hは本発明の実施の形態における静電気対策部品のさらに別の製造方法を説明する図である。
まず図5Aに示すように、厚さ約0.14mmのアルミナ板である基板11Aを準備する。基板11Aには貫通孔は設けられていない。
次に図5Bに示すように、基板11Aの上に未焼成層19を形成する。未焼成層19の詳細は前述のとおりである。
次に図5Cに示すように、未焼成層19の上に基板13Aを重ねてプレスすることにより、基板11A、未焼成層19、基板13Aを一体化した積層体を形成する。なお基板13Aは基板11Aと同様であり、貫通孔は設けられていない。このように基板11A、13Aには貫通孔が設けられていないため、貫通孔の位置あわせを行う必要がない。そのため、位置ずれが生じることもなく、工程も簡略化することができる。
次に図5Dに示すように、レーザ光を照射することにより、基板11A、未焼成層19、基板13Aを貫通するビア穴20を形成する。
そのあと積層体を炉に入れて未焼成層19を熱処理し、バリスタ層12Aを形成する。そして図5Eに示すように、ビア穴20に銀パラジウムペーストを充填し、焼成することにより、基板11Aの表面から基板13Aにつながるビア電極15を形成する。
次に図5Fに示すように、基板11および基板13の表面にビア電極15に接続された外部電極17を形成する。さらに図5Gに示すように、基板13の表面に設けた外部電極17に半導体素子18を実装する。最後にダイシングにより個片化することにより、図5Hに示す、半導体素子18を実装した静電気対策部品30を作製することができる。図5E〜図5Hに至る手順は図3E〜図3Hに至る手順と同様なので詳細な説明を省略する。
以上の製造方法では、基板11Aの厚さと基板13Aの厚さが同じとしたが、図1を参照して説明したように、発光ダイオードを実装する側の基板11A(基板11)の厚さを、基板13A(基板13)より厚くしても良い。このようにすることにより、発光ダイオードを実装する面の反射率を向上させることができる。
また、以上の説明では平面寸法が基板11のn倍の基板11Aと、平面寸法が基板13のn倍の基板13Aを用いて、n個の静電気対策部品30を構成した後、個片に分けている。この方法は生産性に優れている。しかしながら、基板11、13を用いて同様に単独の静電気対策部品30を作製してもよい。
本発明によれば、反りが少なく、熱伝導性に優れた静電気対策部品を作製することができ、産業上有用である。
11 第1高熱伝導基板
11A 第1高熱伝導大基板
12,12A バリスタ層
13 第2高熱伝導基板
13A 第2高熱伝導大基板
14A,14B 貫通孔
15 ビア電極
16 内部電極
17 外部電極
18 半導体素子
19 未焼成層
20 ビア穴
30 静電気対策部品
まず図3Aに示すように、厚さ約0.14mmのアルミナ板である基板11Aの所定の位置にレーザ等を用いて複数個の孔14Aを形成する。孔14Aの大きさは直径約0.2mmである。同様に厚さ約0.14mmのアルミナ板である基板13Aにも孔14Bを形成する。基板11Aと基板13Aとはまったく同じものを用いる必要はないが、反りを少なくするためには線膨張率の差が小さいもの、さらには同一の材料を用いることが望ましい。なお基板11Aと基板13Aには、孔14A、14Bの位置は同じところに設ける必要がある。そのため、まったく同一の構成とすることにより基板11Aと基板13Aとを別々に管理する必要がなくなり、量産性を向上させることができる。
次に図3Bに示すように、基板11Aの上に図3Eに示すバリスタ層12Aを形成するための未焼成層19を形成する。未焼成層19は酸化亜鉛を主成分とする層と銀パラジウムペーストを印刷した内部電極16用の層を積層して構成されている。未焼成層19は基板11A上に印刷して形成したものであっても、別途積層したものを、基板11Aの上に重ねたものであっても良い。また、内部電極16用のパターンは、積層方向から見たときに接続されるビア電極15用に設けられた孔14Aを覆うように形成されていることが望ましい。このようにすることにより内部電極16とビア電極15との接続性を向上させることができる。
次に図3Eに示すように、ビア穴20に銀パラジウムペーストを充填し、焼成することにより、基板11Aの下面から基板13Aの上面につながるビア電極15を形成する。
次に図3Fに示すように、基板11Aおよび基板13Aの表面に、ビア電極15に接続された外部電極17を形成する。外部電極17は銅メッキによりパターン形成したあと、ニッケル、金の層をメッキにより形成している。このとき基板11A、13Aの外周部分以外には酸化亜鉛の層が露出していないため、メッキ液によりバリスタ層12Aが腐食等の影響を受けることがない。
まず図4Aに示すように、基板11Aに複数個の孔14Aを形成するとともに、基板13Aに孔14Bを形成する。次に図4Bに示すように、基板11Aの上にバリスタ層12Aを形成するための未焼成層19を形成する。次に図4Cに示すように、未焼成層19の上に基板13Aを重ねてプレスすることにより、基板11A、未焼成層19、基板13Aを一体化する。以上の手順は、図3A〜図3Cを参照して説明した手順と同じなので詳細な説明を省略する。
次に図5Fに示すように、基板11Aおよび基板13Aの表面にビア電極15に接続された外部電極17を形成する。さらに図5Gに示すように、基板13Aの表面に設けた外部電極17に半導体素子18を実装する。最後にダイシングにより個片化することにより、図5Hに示す、半導体素子18を実装した静電気対策部品30を作製することができる。図5E〜図5Hに至る手順は図3E〜図3Hに至る手順と同様なので詳細な説明を省略する。

Claims (7)

  1. 2個の第1貫通孔が設けられた第1高熱伝導基板と、
    2個の第2貫通孔が設けられた第2高熱伝導基板と、
    前記第1高熱伝導基板と前記第2高熱伝導基板との間に設けられ、互いに絶縁された一対の内部電極を内部に有し、酸化亜鉛を主成分とするバリスタ層と、
    前記バリスタ層を貫通し、前記第1貫通孔の一方と、前記第2貫通孔の一方とを埋めてつなぐとともに、前記内部電極の一方と接続された第1ビア電極と、前記バリスタ層を貫通し、前記第1貫通孔の他方と、前記第2貫通孔の他方とを埋めてつなぐとともに、前記内部電極の他方と接続された第2ビア電極と、を備えた、
    静電気対策部品。
  2. 前記第1、第2ビア電極は、前記第1高熱伝導基板の面方向において、最も離れた位置に配置された、
    請求項1記載の静電気対策部品。
  3. 前記第1、第2高熱伝導基板の平面形状は、四角形であり、前記第1、第2ビア電極は、前記第1高熱伝導基板の対角位置に配置された、
    請求項1記載の静電気対策部品。
  4. 前記一対の内部電極のそれぞれは前記第1、第2ビア電極のうち、接続されていない方を囲む形状である、
    請求項1記載の静電気対策部品。
  5. 複数個の第1貫通孔が設けられた第1高熱伝導基板上に、互いに絶縁された一対の内部電極を内部に有し酸化亜鉛を主成分とするバリスタ層を形成するための未焼成層を形成するステップと、
    前記未焼成層の前記第1高熱伝導基板と反対側に、複数個の第2貫通孔を設けられた第2高熱伝導基板を貼り合わせるステップと、
    前記第1貫通孔と第2貫通孔との間に位置する前記未焼成層の一部を除去することで前記第1高熱伝導基板、前記未焼成層、前記第2高熱伝導基板を貫通するビア穴を形成するステップと、
    前記ビア穴を形成した後、前記未焼成層を焼成することにより前記第1の高熱伝導基板と前記第2の高熱伝導基板とに挟まれたバリスタ層と、前記バリスタ層の内部に互いに絶縁された一対の内部電極とを形成するステップと、
    前記ビア穴に金属を充填することで前記一対の内部電極にそれぞれ接続された第1、第2ビア電極を形成するステップと、
    前記第1高熱伝導基板上および前記第2高熱伝導基板上に、前記第1、第2ビア電極に接続する外部電極をそれぞれ形成するステップと、を備えた、
    静電気対策部品の製造方法。
  6. 複数個の第1貫通孔が設けられた第1高熱伝導基板上に、互いに絶縁された一対の内部電極を内部に有し酸化亜鉛を主成分とするバリスタ層を形成するための未焼成層を形成するステップと、
    前記未焼成層の前記第1高熱伝導基板と反対側に、複数個の第2貫通孔を設けられた第2高熱伝導基板を貼り合わせるステップと、
    前記未焼成層を焼成することにより前記第1高熱伝導基板と前記第2高熱伝導基板とに挟まれたバリスタ層と、前記バリスタ層の内部に互いに絶縁された一対の内部電極とを形成するステップと、
    前記第1貫通孔と前記第2貫通孔との間に位置するバリスタ層の一部を除去することで、前記第1高熱伝導基板、前記バリスタ層、前記第2高熱伝導基板を貫通するビア穴を形成するステップと、
    前記ビア穴に金属を充填することで前記一対の内部電極にそれぞれ接続された第1、第2ビア電極を形成するステップと、
    前記第1高熱伝導基板上および前記第2高熱伝導基板上に、前記第1、第2ビア電極に接続する外部電極をそれぞれ形成するステップと、を備えた、
    静電気対策部品の製造方法。
  7. 第1高熱伝導基板と、互いに絶縁された一対の内部電極を内部に有し酸化亜鉛を主成分とするバリスタ層を形成するための未焼成層と、第2高熱伝導基板とを、この順に貼り合わせて積層体を作製するステップと、
    前記積層体にレーザを照射して、前記第1高熱伝導基板、前記未焼成層、前記第2高熱伝導基板を貫通する複数個のビア穴を形成するステップと、
    前記未焼成層を焼成することにより前記第1高熱伝導基板と前記第2高熱伝導基板とに挟まれたバリスタ層と、前記バリスタ層の内部に互いに絶縁された一対の内部電極とを形成するステップと、
    前記ビア穴に金属を充填することで前記一対の内部電極にそれぞれ接続された第1、第2ビア電極を形成するステップと、
    前記第1高熱伝導基板上および前記第2高熱伝導基板上に、前記第1、第2ビア電極に接続する外部電極をそれぞれ形成するステップと、を備えた、
    静電気対策部品の製造方法。
JP2013511909A 2011-04-26 2012-04-16 静電気対策部品およびその製造方法 Pending JPWO2012147299A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011097799 2011-04-26
JP2011097799 2011-04-26
PCT/JP2012/002616 WO2012147299A1 (ja) 2011-04-26 2012-04-16 静電気対策部品およびその製造方法

Publications (1)

Publication Number Publication Date
JPWO2012147299A1 true JPWO2012147299A1 (ja) 2014-07-28

Family

ID=47071832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013511909A Pending JPWO2012147299A1 (ja) 2011-04-26 2012-04-16 静電気対策部品およびその製造方法

Country Status (4)

Country Link
US (1) US20130335189A1 (ja)
JP (1) JPWO2012147299A1 (ja)
CN (1) CN103477402A (ja)
WO (1) WO2012147299A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101483259B1 (ko) * 2012-08-28 2015-01-14 주식회사 아모센스 무수축 바리스타 기판 및 그 제조 방법
KR101673488B1 (ko) * 2014-09-24 2016-11-07 주식회사 아모센스 무수축 바리스터 기판, 무수축 바리스터 기판 어레이 및 이의 제조 방법
DE102016100352A1 (de) * 2016-01-11 2017-07-13 Epcos Ag Bauelementträger mit ESD Schutzfunktion und Verfahren zur Herstellung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084053B2 (ja) * 1987-04-04 1996-01-17 三菱マテリアル株式会社 積層セラミックコンデンサ
JP3399349B2 (ja) * 1998-03-17 2003-04-21 株式会社村田製作所 積層バリスタおよびその製造方法
JP2005035864A (ja) * 2002-10-15 2005-02-10 Kenichiro Miyahara 発光素子搭載用基板
WO2006106717A1 (ja) * 2005-04-01 2006-10-12 Matsushita Electric Industrial Co., Ltd. バリスタおよびそれを用いた電子部品モジュール
DE102005050638B4 (de) * 2005-10-20 2020-07-16 Tdk Electronics Ag Elektrisches Bauelement
JP5188861B2 (ja) * 2008-04-04 2013-04-24 パナソニック株式会社 静電気対策部品およびこの静電気対策部品を備えた発光ダイオードモジュール
JP2010045212A (ja) * 2008-08-13 2010-02-25 Tdk Corp 積層セラミック電子部品及びその製造方法
JP2010123613A (ja) * 2008-11-17 2010-06-03 Murata Mfg Co Ltd セラミック電子部品及びセラミック電子部品の実装構造
DE102009010212B4 (de) * 2009-02-23 2017-12-07 Epcos Ag Elektrisches Vielschichtbauelement
US9450556B2 (en) * 2009-10-16 2016-09-20 Avx Corporation Thin film surface mount components

Also Published As

Publication number Publication date
WO2012147299A1 (ja) 2012-11-01
US20130335189A1 (en) 2013-12-19
CN103477402A (zh) 2013-12-25

Similar Documents

Publication Publication Date Title
US9129733B2 (en) Laminated inductor element and manufacturing method thereof
JP5093840B2 (ja) 発光素子実装用多層配線基板とその製造方法
JP5930893B2 (ja) 半導体発光装置の製造方法
WO2011108227A1 (ja) 発光素子用基板及びその製造方法ならびに発光装置
JP2013065793A (ja) 配線基板
US9704791B2 (en) Wiring board and electronic device
JP4926789B2 (ja) 発光素子実装用多層配線基板とその製造方法
US9848491B2 (en) Wiring board, electronic device, and electronic module
JP6133901B2 (ja) 配線基板、電子装置および発光装置
JP2008227139A (ja) 静電気対策部品およびこれを用いた発光ダイオードモジュール
JP2014127678A (ja) 配線基板および電子装置
WO2012147299A1 (ja) 静電気対策部品およびその製造方法
JP2008270327A (ja) 静電気対策部品およびこれを用いた発光ダイオードモジュール
JP6626735B2 (ja) 電子部品搭載用基板、電子装置および電子モジュール
JP2008227137A (ja) 静電気対策部品およびこれを用いた発光ダイオードモジュール
JP6336858B2 (ja) 配線基板、電子装置および積層型電子装置
JP6166194B2 (ja) 配線基板、電子装置および電子モジュール
JP5855822B2 (ja) 多数個取り配線基板
JP4646779B2 (ja) 積層コンデンサ、積層コンデンサの実装構造および積層コンデンサの製造方法
JP4566046B2 (ja) 多数個取り配線基板
CN107431047B (zh) 布线基板、电子装置以及电子模块
JP2015146383A (ja) 配線基板、電子装置および電子モジュール
JP2015069981A (ja) 配線基板および電子装置
JPWO2018155434A1 (ja) 配線基板、電子装置および電子モジュール
JP2008227138A (ja) 静電気対策部品およびこれを用いた発光ダイオードモジュール

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141006