WO2015083822A1 - バリスタ用焼結体およびこれを用いた多層基板、ならびにそれらの製造方法 - Google Patents
バリスタ用焼結体およびこれを用いた多層基板、ならびにそれらの製造方法 Download PDFInfo
- Publication number
- WO2015083822A1 WO2015083822A1 PCT/JP2014/082250 JP2014082250W WO2015083822A1 WO 2015083822 A1 WO2015083822 A1 WO 2015083822A1 JP 2014082250 W JP2014082250 W JP 2014082250W WO 2015083822 A1 WO2015083822 A1 WO 2015083822A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- oxide
- mol
- varistor
- terms
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/10—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
- H01C7/105—Varistor cores
- H01C7/108—Metal oxide
- H01C7/112—ZnO type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B18/00—Layered products essentially comprising ceramics, e.g. refractory products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C1/00—Details
- H01C1/14—Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/06—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
- H01C17/065—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
- H01C17/06506—Precursor compositions therefor, e.g. pastes, inks, glass frits
- H01C17/06513—Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
- H01C17/06533—Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
- H01C17/06546—Oxides of zinc or cadmium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/30—Apparatus or processes specially adapted for manufacturing resistors adapted for baking
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0254—High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/206—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3241—Chromium oxides, chromates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
- C04B2235/3263—Mn3O4
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
- C04B2235/3277—Co3O4
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3298—Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3409—Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/62—Forming laminates or joined articles comprising holes, channels or other types of openings
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/07—Electric details
- H05K2201/073—High voltage adaptations
- H05K2201/0738—Use of voltage responsive materials, e.g. voltage switchable dielectric or varistor materials
Definitions
- the present invention uses a sintered body for a zinc oxide varistor, a multilayer substrate using the sintered body for a zinc oxide varistor, a method for producing a sintered body for a zinc oxide varistor, and a sintered body for a zinc oxide varistor.
- the present invention relates to a method for manufacturing a multilayer substrate.
- varistor elements are incorporated in order to protect electronic circuits and elements contained therein from abnormally high voltages caused by static electricity and noise.
- the varistor element exhibits a large electric resistance value when the applied voltage is low, and only a small amount of current flows. However, when the applied voltage increases, the electric resistance decreases remarkably and non-linearity where a large amount of current flows.
- a varistor (varistor material) showing resistance is used.
- zinc oxide varistors zinc oxide varistors (zinc oxide varistor materials) containing zinc oxide as a main component and adding oxides other than zinc oxide are often used. Yes.
- a varistor element using a zinc oxide varistor material, especially a sintered body for a zinc oxide varistor obtained by sintering the same material, into the electronic circuit, high voltage due to static electricity or noise may be generated in a part of the electronic circuit. Even if the resulting current flows, it is possible to suppress such a large current from flowing in a desired part and a desired element of the electronic circuit.
- Patent Document 1 discloses that an ESD (electrostatic discharge) protection device such as a varistor element is integrally formed with an electrode in a multilayer substrate as LTCC (low temperature co-fired ceramics). .
- ESD electrostatic discharge
- varistor sintered bodies use non-linear resistance by using, for example, antimony (Sb) and rare earth elements such as yttrium (Y) or praseodymium (Pr) as additives.
- Sb antimony
- rare earth elements such as yttrium (Y) or praseodymium (Pr)
- the predetermined varistor characteristics are obtained.
- antimony (Sb) is a toxic element.
- the rare earth elements are limited in their production areas, and there are concerns about stable supply over a long period of time, and the price is high and the fluctuation is large. Therefore, there is a demand for a sintered body for zinc oxide varistor having sufficient characteristics without using antimony (Sb) and rare earth elements, and a multilayer substrate using the same.
- sintered body for varistor (hereinafter sometimes simply referred to as “sintered body”) by firing at a firing temperature of about 850 ° C. to 950 ° C. and lower than 1000 ° C. It was known. However, in these conventional methods, before firing in a temperature range of about 850 ° C. to 950 ° C., the mutual components of the raw materials are diffused in advance so that the composition in the sintered body after firing is uniform. Therefore, it was necessary to perform a heat treatment. In this heat treatment, for example, two or more kinds of raw materials such as oxides used for forming a varistor sintered body having a desired composition are mixed and heated to 300 ° C.
- the sintered body is obtained by performing firing in a temperature range of about 850 ° C. to 950 ° C. using the mixed and heat-treated raw material and another type of raw material added as necessary.
- the inclusion of the two heating steps of heat treatment and firing not only complicates the steps, but also leads to an increase in energy consumption, and there has been a demand for omitting the heat treatment step.
- An object of the present invention is to provide a sintered body for a zinc oxide varistor having sufficient characteristics without using antimony (Sb) and a rare earth element, and a multilayer substrate using the same.
- the present invention mainly uses components that facilitate diffusion during firing without using antimony (Sb) or rare earth elements, so that firing can be performed at a temperature lower than 1000 ° C. without performing heat treatment in advance.
- An object of the present invention is to provide a method for producing a zinc oxide varistor and a method for producing a multilayer substrate including an oxide varistor, which can have sufficient characteristics.
- Aspect 1 of the present invention is mainly composed of zinc oxide, bismuth oxide is 0.6 to 3.0 mol% in terms of bismuth (Bi), cobalt oxide is 0.2 to 1.4 mol% in terms of cobalt (Co), It contains 0.1 to 1.5 mol% chromium oxide in terms of chromium (Cr) and 0.1 to 1.5 mol% manganese oxide in terms of manganese (Mn), and contains antimony (Sb), rare earth elements and tin (Sn).
- the sintered body for varistors characterized in that the content is not more than the impurity level.
- Aspect 2 of the present invention is that bismuth oxide is 0.6 to 3.0 mol% in terms of bismuth (Bi), cobalt oxide is 0.2 to 1.4 mol% in terms of cobalt (Co), and chromium oxide is chromium (Cr).
- the aspect 1 is characterized in that it contains 0.1 to 1.5 mol% in terms of conversion and 0.1 to 1.5 mol% in terms of manganese (Mn) in terms of manganese, and the balance is zinc oxide and inevitable impurities. This is a sintered body for a varistor.
- scandium oxide is 0.1 to 2.0 mol% in terms of scandium (Sc)
- barium oxide is 0.1 to 2.0 mol% in terms of barium (Ba)
- boron oxide is boron (B).
- the varistor sintered body according to aspect 1 or 2 further comprising at least one selected from the group consisting of 0.1 to 4.0 mol% in terms of conversion.
- Aspect 4 of the present invention is such that scandium oxide is 0.1 to 2.0 mol% in terms of scandium (Sc), barium oxide is 0.1 to 2.0 mol% in terms of barium (Ba), and boron oxide is boron (B). 4.
- Aspect 5 of the present invention is that bismuth oxide is 0.6 to 2.0 mol% in terms of bismuth (Bi), cobalt oxide is 0.2 to 1.0 mol% in terms of cobalt (Co), and chromium oxide is chromium (Cr).
- the sintered body for a varistor according to any one of aspects 1 to 4, comprising 0.1 to 1.0 mol% in terms of conversion and 0.1 to 1.0 mol% in terms of manganese oxide (Mn). is there.
- Aspect 6 of the present invention comprises, in order, a first insulating layer, a varistor layer that is a sintered body for a varistor according to any one of aspects 1 to 5, and a second insulating layer, A first internal electrode disposed on one main surface of the layer, a second internal electrode disposed on the other main surface of the varistor layer, and a first through electrode penetrating the first insulating layer And a second through electrode penetrating the second insulating layer, wherein the first through electrode is electrically connected to the first internal electrode, and the second through electrode is the second through electrode.
- the multilayer substrate is electrically connected to the internal electrode.
- Aspect 7 of the present invention includes a first insulating layer, a second insulating layer, and a third insulating layer, which are sequentially stacked, and the second insulating layer is formed in the first aspect.
- a varistor layer which is a sintered body for a varistor according to any one of 1 to 5, comprising: a first internal electrode disposed on one main surface of the varistor layer; and the other main surface of the varistor layer.
- a first internal electrode; a first through electrode penetrating the first insulating layer; and a second through electrode penetrating the second insulating layer; the first through electrode Is a multilayer substrate characterized in that it is electrically connected to the first internal electrode, and the second through electrode is electrically connected to the second internal electrode.
- Aspect 8 of the present invention comprises, in order, a first insulating layer, a varistor layer that is a sintered body for a varistor according to any one of aspects 1 to 5, and a second insulating layer, A first internal electrode disposed on one main surface of the layer, a second internal electrode disposed on the other main surface of the varistor layer, the first insulating layer, the varistor layer, and the second First and second through electrodes penetrating through the insulating layer, wherein the first through electrode is electrically connected to the first internal electrode, and the second through electrode is connected to the second through electrode.
- the multilayer substrate is electrically connected to an internal electrode.
- Aspect 9 of the present invention is as follows: 1) At least zinc oxide, bismuth oxide, cobalt oxide, chromium oxide, and manganese oxide are mixed without heat treatment, zinc oxide is the main component, and bismuth oxide is added. Bismuth (Bi) conversion 0.6 to 3.0 mol%, cobalt oxide conversion to cobalt (Co) conversion 0.2 to 1.4 mol%, chromium oxide conversion to chromium (Cr) conversion 0.1 to 1.5 mol% And a step of obtaining a mixed raw material containing 0.1 to 1.5 mol% of manganese oxide in terms of manganese (Mn) and containing antimony (Sb), rare earth element and tin (Sn) at an impurity level or less, 2) And a step of firing the mixed raw material at 850 ° C. to 950 ° C.
- the mixed raw material contains 0.1 to 2.0 mol% of scandium oxide in terms of scandium (Sc), 0.1 to 2.0 mol% of barium oxide in terms of barium (Ba), and boron oxide.
- Sc scandium
- Ba barium oxide
- B barium
- B boron oxide.
- Aspect 11 of the present invention is as follows: 1) At least zinc oxide, bismuth oxide, cobalt oxide, chromium oxide, and manganese oxide are mixed without heat treatment, zinc oxide is the main component, and bismuth oxide is added. Bismuth (Bi) conversion 0.6 to 3.0 mol%, cobalt oxide conversion to cobalt (Co) conversion 0.2 to 1.4 mol%, chromium oxide conversion to chromium (Cr) conversion 0.1 to 1.5 mol% And a step of obtaining a mixed raw material containing 0.1 to 1.5 mol% of manganese oxide in terms of manganese (Mn) and containing antimony (Sb), rare earth element and tin (Sn) at an impurity level or less, 2) A step of disposing a first electrode material on a first insulating sheet made of an insulating material; 3) a step of forming a mixed raw material sheet containing the mixed raw material on the first electrode material; 4) Mixed A step of disposing a second electrode material on the
- the zinc oxide varistor sintered body according to the present invention and the multilayer substrate using the same can have sufficiently excellent varistor characteristics without using antimony (Sb) and rare earth elements.
- a multilayer substrate including a sintered body can be manufactured.
- FIG. 1 is a schematic perspective view illustrating a method of obtaining a sintered body for varistors using a slurry-like mixed raw material.
- 2A is a perspective view showing the multilayer substrate 100
- FIG. 2B is a cross-sectional view showing the XIVb-XIVb cross section of FIG. 2A.
- FIGS. 3A to 3D are perspective views showing a method for manufacturing the laminate 150.
- FIG. 4 is a perspective view showing the laminate 160.
- FIG. 5 is a diagram showing a method for manufacturing the multilayer substrate 100.
- 6A is a perspective view showing the multilayer substrate 200
- FIG. 6B is a cross-sectional view showing the XVIIIb-XVIIIb cross section of FIG. 6A.
- FIG. 7 is a cross-sectional view showing the multilayer substrate 300.
- FIG. 8 is a diagram showing a method for manufacturing a multilayer substrate.
- FIG. 9 is a diagram showing a method for manufacturing a multilayer substrate.
- FIG. 10 is a diagram showing a method for manufacturing a multilayer substrate.
- FIG. 11 is a diagram showing another method for manufacturing a multilayer substrate.
- FIG. 12 is a diagram showing another method for manufacturing a multilayer substrate.
- FIG. 13 is a diagram showing another method for manufacturing a multilayer substrate.
- FIG. 14 is a graph showing the particle size measurement results.
- FIG. 15 is a graph showing the results of measuring the current flowing between the electrodes while sweeping the voltage.
- FIG. 16A to FIG. 16D are perspective views showing a method for manufacturing the multilayer substrate 500.
- FIG. 17A is a cross-sectional view of the sample 9 according to the fifth embodiment
- FIG. 17B is a cross-sectional view of the sample 10 according to the
- the inventors of the present invention do not use antimony (Sb) and rare earth elements, and varistor characteristics (varistor voltage, insulation resistance, and resistance) equal to or higher than those of conventional sintered bodies for varistors using antimony (Sb) and / or rare earth elements.
- Sb antimony
- Sb antimony
- / or rare earth elements In order to obtain a sintered body for a varistor having (or non-linear resistance), intensive studies were conducted.
- zinc oxide varistors in which zinc oxide is a main component (that is, zinc oxide is contained at 80 mol% or more in terms of zinc (Zn)
- bismuth oxide, cobalt oxide, chromium oxide and manganese oxide are referred to.
- composition of the conventionally known component is within the limited range found by the present inventors, and tin (Sn) is not contained (the content is made lower than the impurity level), so that antimony (Sb) and rare earth elements, and have led to the present invention.
- the sintered body for a varistor according to the present invention that can be used as a varistor has zinc oxide as a main component, bismuth oxide in terms of bismuth (Bi), 0.6 to 3.0 mol%, and cobalt oxide. 0.2 to 1.4 mol% in terms of cobalt (Co), 0.1 to 1.5 mol% in terms of chromium oxide in terms of chromium (Cr), and 0.1 to 1.5 mol% in terms of manganese oxide in terms of manganese (Mn) Contains. Furthermore, in the sintered body for varistors according to the present invention, the contents of antimony (Sb), rare earth elements and tin (Sn) are not more than the impurity level. About antimony (Sb), rare earth elements, and tin (Sn), for example, their contents are as small as zero or 0.01 mol% or less.
- the sintered body (varistor material) obtained after firing is mainly composed of zinc oxide, and bismuth oxide in terms of bismuth (Bi) is 0.6 to 3.0 mol. %, Cobalt oxide in terms of cobalt (Co) 0.2 to 1.4 mol%, chromium oxide in terms of chromium (Cr) 0.1 to 1.5 mol%, and manganese oxide in terms of manganese (Mn) 0.1
- the mixed raw material is fired at 850 ° C. to 950 ° C.
- At least zinc oxide, bismuth oxide, cobalt oxide, chromium oxide, and manganese oxide are mixed without being subjected to heat treatment.
- the mixed raw material is fired at 850 ° C. to 950 ° C.
- two or more of a plurality of types of oxides (raw material powder) to be used are mixed in advance, and are substantially the same as the sintered body for a varistor to be obtained without performing a heat treatment (for example, a heat treatment called “calcination”) that is heated to 300 ° C. or higher.
- a mixed raw material having a composition is obtained.
- the mixed raw material according to this preferred embodiment is fired at 850 ° C. to 950 ° C.
- the sintered body for varistor (sintered body) according to the present invention is mainly composed of zinc oxide, and bismuth oxide is 0.6 to 3.0 mol% in terms of bismuth (Bi).
- Cobalt oxide is 0.2 to 1.4 mol% in terms of cobalt (Co)
- chromium oxide is 0.1 to 1.5 mol% in terms of chromium (Cr)
- manganese oxide is 0.1 to 0.1 mol in terms of manganese (Mn).
- the content of antimony (Sb), rare earth elements, and tin (Sn) is less than the impurity level.
- the obtained sintered body for varistors exhibits sufficient varistor characteristics such as having a high nonlinear constant. And it can be fired at a temperature of less than 1000 ° C. in this way, in a state where silver (Ag) serving as an electrode is disposed on a mixed raw material sheet layer (green sheet layer) containing the mixed raw material powder. This means that the raw material sheet can be fired. For this reason, a multilayer substrate in which a silver electrode and a sintered body for varistor (varistor layer obtained by firing mixed powder) are integrally formed can be obtained.
- composition The reason why such a narrow composition range should be set for each element is shown below. However, these reasons indicate the reason why the inventor considered reasonable based on the knowledge obtained at the present time, and the technical scope of the present invention such as the composition defined by the claims is described. It should be noted that no further limitation is intended. Note that the molar ratio of the oxide content in this specification does not take into account the oxygen atoms contained in the oxide, but considers only the atoms (metal element atoms) that are linked to oxygen. It is what I asked for.
- the metal element includes a semimetal such as boron or silicon.
- Zinc oxide Zinc oxide is a material that is a base of the sintered body for varistor (varistor layer) of the present invention, and is a main component. That is, the sintered body for varistors of the present invention contains 80 mol% or more of zinc oxide in terms of zinc (Zn). Preferably, the sintered body for varistors of the present invention contains 90 mol% or more of zinc oxide in terms of zinc (Zn).
- bismuth oxide in terms of bismuth (Bi) is 0.6 to 3.0 mol%, preferably 0.6 to 2.0 mol%, most preferably 0.7. Contains ⁇ 1.5 mol%.
- Bismuth oxide (bismuth) promotes densification of the sintered body even at a relatively low firing temperature of 850 ° C. to 950 ° C. Further, as a result of observing the microstructure of the material of the present invention by EDX (energy dispersive X-ray spectroscopy), bismuth oxide (bismuth) is segregated at the grain boundary of zinc oxide, and thereby a high resistance semiconductor grain boundary.
- cobalt oxide is converted to cobalt (Co) in an amount of 0.2 to 1.4 mol%, preferably 0.2 to 1.0 mol%, most preferably 0.3. Containing ⁇ 0.8 mol%.
- cobalt oxide exists uniformly both at the grain boundary and within the grain. As a result, the nonlinear constant of the varistor sintered body is increased. If the content of cobalt oxide is less than 0.2 mol% in terms of cobalt, this effect cannot be obtained sufficiently.
- cobalt oxide cobalt
- the electrical characteristics of zinc oxide may be changed and the crystal grains may be easily grown. There is. If the range is 0.2 to 1.0 mol%, which is the preferred range, this effect can be obtained with certainty. If the most preferred range is 0.3 to 0.8 mol%, this effect is more sufficiently achieved. Can get to.
- Chromium oxide In the sintered body for varistors of the present invention, chromium oxide is converted to chromium (Cr) in an amount of 0.1 to 1.5 mol%, preferably 0.1 to 1.0 mol%, most preferably 0.2. Containing ⁇ 0.8 mol%.
- Cr chromium
- EDX energy dispersive X-ray spectroscopy
- the chromium oxide content exceeds 1.5 mol%, the segregation of chromium oxide increases and the crystal grain size becomes uneven. There is a problem. If the preferred range is 0.1 to 1.0 mol%, this effect can be reliably obtained, and if the most preferred range is 0.2 to 0.8 mol%, this effect is more sufficiently achieved. Can get to.
- manganese oxide in terms of manganese (Mn) is 0.1 to 1.5 mol%, preferably 0.1 to 1.0 mol%, most preferably 0.3. Containing ⁇ 0.8 mol%.
- manganese oxide (manganese) is segregated at the grain boundaries of zinc oxide. Grain growth can be suppressed and fine crystal grains can be obtained uniformly throughout the sintered body for varistors.
- Antimony (Sb) In many conventional sintered bodies for zinc oxide varistors, antimony (Sb) has been positively added to obtain good varistor characteristics. This is because by using antimony (Sb), the effect of adding other additives can be controlled well. However, antimony (Sb) has a problem that it has toxicity as described above. In the sintered body for varistors according to the present invention, the content of antimony (Sb) is below the impurity level (that is, it is contained only below the impurity level). In this specification, “below the impurity level” means containing only an amount recognized as zero or an impurity level or lower.
- the general content of antimony (Sb) as an impurity is, for example, 0.01 mol% or less (100 ppm or less in terms of molar ratio) in terms of metal, and preferably 0.005 mol% or less.
- Sb antimony
- the general content of antimony (Sb) as an impurity is, for example, 0.01 mol% or less (100 ppm or less in terms of molar ratio) in terms of metal, and preferably 0.005 mol% or less.
- ICP inductively coupled plasma
- rare earth elements are intentionally added to improve varistor characteristics.
- the rare earth element content is below the impurity level.
- the general content (impurity level) of rare earth elements as impurities is, for example, about 0.01 mol% or less for each rare earth element and about 0.05 mol% or less in total for the rare earth elements in terms of metal. Preferably, it is 0.005 mol% or less for each of the rare earth elements, and the total rare earth elements is 0.025 mol% or less.
- the detection limit 100 ppm by mass ratio
- ICP inductively coupled plasma
- the “rare earth element” is yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium ( Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu). That is, “rare earth element” in this specification does not include scandium (Sc).
- the production area is limited, there is a concern about stable supply over a long period of time, and there is no need to use rare earth elements that are expensive and have a large fluctuation.
- rare earth elements praseodymium (Pr) and yttrium (Y) have a problem of preventing densification of the sintered body during firing.
- the present invention does not cause such a problem.
- Tin (Sn) In many conventional sintered bodies for zinc oxide-based varistors, tin (Sn) is intentionally added, for example, in the form of tin oxide and has been actively used. This is presumably because, by using tin (Sn), a liquid phase can be formed during firing, and the resulting sintered body can be densified.
- tin (Sn) a liquid phase can be formed during firing, and the resulting sintered body can be densified.
- the present inventors have made zinc oxide as a main component, bismuth oxide is 0.6 to 3.0 mol% in terms of bismuth (Bi), and cobalt oxide is 0.2 in terms of cobalt (Co).
- the content of tin (Sn) is below the impurity level.
- the general content (impurity level) of tin (Sn) as an impurity is, for example, 0.01 mol% or less, preferably 0.005 mol% or less, in terms of metal.
- the condition of 0.01 mol% or less is satisfied.
- the sintered body for varistors of the present invention comprises 0.6 to 3.0 mol% of bismuth oxide in terms of bismuth (Bi), and cobalt (Co). 0.2-1.4 mol% of cobalt oxide in terms of conversion, 0.1-1.5 mol% of chromium oxide in terms of chromium (Cr), and 0.1-1.5 mol% of oxidation in terms of manganese (Mn) It consists of manganese and the balance zinc oxide and inevitable impurities.
- An example of the level of such inevitable impurities is 0.03 mol% or less per one kind of element, and 0.1 mol% or less of the inevitable impurities as a whole.
- “Inevitable impurities” usually means impurities that are unintentionally contained during the manufacturing process and handling. However, even if it is intentionally added, if the content is not more than the above-mentioned “impurity level”, the technical effect due to the addition cannot be sufficiently obtained. That is, in this specification, “inevitable impurities” means that the content is below the above “impurity level” regardless of whether it is intentionally added or unintentionally contained. To do. Therefore, in the present invention, as described above, since the contents of antimony (Sb), rare earth element, and tin (Sn) are not more than the impurity level, antimony (Sb), rare earth element, and tin (Sn) are inevitable. It is included in "impurity”.
- one or more arbitrary elements other than antimony (Sb), rare earth elements and tin (Sn) may be contained in order to obtain desired varistor characteristics.
- Such elements may be contained in a total of, for example, 10 mol% or less, preferably 5 mol% or less. If it is about this level, it is possible to ensure sufficient varistor characteristics.
- Varistor sintered body of boron oxide present invention may contain boron oxide such as B 2 O 5.
- boron oxide is contained in an amount of 0.1 to 4.0 mol%, preferably 0.1 to 2.0 mol% in terms of boron (B).
- Boron oxide (boron) has the effect of improving sinterability. If the content of boron oxide is less than 0.1 mol% in terms of boron, this effect cannot be obtained sufficiently, and if it exceeds 4.0 mol%, there is a problem in that it segregates by forming a glass component together with other additives. In addition, if the preferable range is 0.1 to 2.0 mol%, this effect can be obtained more sufficiently.
- Varistor sintered body of scandium oxide present invention may contain scandium oxide such as Sc 2 O 3.
- scandium oxide is contained in an amount of 0.1 to 2.0 mol%, preferably 0.4 to 0.7 mol% in terms of scandium (Sc).
- Scandium oxide (scandium) has an effect of improving sinterability. If the content of scandium oxide is less than 0.1 mol% in terms of scandium, this effect cannot be sufficiently obtained, and if it exceeds 2.0 mol%, there is a problem that densification becomes difficult and segregation increases. Further, if the preferred range is 0.4 to 0.7 mol%, this effect can be obtained more sufficiently.
- Varistor sintered body of barium oxide present invention may contain barium oxide such as Ba 2 O.
- barium oxide is contained in an amount of 0.1 to 2.0 mol%, preferably 0.2 to 1.5 mol% in terms of barium (Ba).
- Barium oxide (barium) contributes to forming a suitable grain boundary by segregating at the grain boundary. If the content of barium oxide is less than 0.1 mol% in terms of barium, this effect cannot be sufficiently obtained, and if it exceeds 2.0 mol%, there is a problem that sintering is inhibited and barium oxide is segregated. In addition, if the preferable range is 0.2 to 1.5 mol%, this effect can be more sufficiently obtained.
- the sintered body for varistors of this invention may further contain one or more selected from the group which consists of a zirconium oxide, a silicon oxide, and a tungsten oxide as needed. These oxides have the effect of improving the nonlinear constant.
- zirconium oxide the above-mentioned effects can be obtained by containing zirconium oxide in an amount of 0.1 to 2.0 mol% (preferably 0.2 to 1.5 mol%) in terms of zirconium (Zr).
- silicon oxide is contained, the above-described effects can be obtained by containing silicon oxide in an amount of 0.1 to 2.0 mol% (preferably 0.2 to 1.5 mol%) in terms of silicon (Si).
- tungsten oxide is contained, the above-described effects can be obtained by containing tungsten oxide in an amount of 0.1 to 2.0 mol% (preferably 0.2 to 1.5 mol%) in terms of tungsten (W).
- a varistor sintered varistor
- the voltage between varistor terminals (applied voltage) when a current of 1 mA flows through the sintered body for varistor is called varistor voltage. Since the varistor voltage depends on the particle size of the varistor (varistor material) and the distance between the electrodes, it can be controlled within a certain range by controlling them. Further, in order to obtain a certain varistor voltage, it is necessary that the nonlinear constant described later is high.
- the varistor voltage is 90 to 550 V with respect to a distance between electrodes of 200 ⁇ m. It can be controlled over a wide range.
- the insulation resistance value means the resistance value at 1/10 of the varistor voltage.
- the insulation resistance value is low, a large amount of current flows and leak current is generated. For this reason, it is considered that the element has an insulation resistance of 10 M ⁇ or more. And in order to achieve this 10 M ⁇ reliably, when it has a higher resistance value, the freedom degree of design is high and preferable.
- a high insulation resistance value of 10 G ⁇ can be obtained.
- Nonlinear constant log 10 (I1 / I2) / log 10 (V1 / V2) (1)
- I1 is 1 mA
- I2 is 0.01 mA
- the grain size of the crystal grains can be set to 1 ⁇ m to 30 ⁇ m, for example.
- the particle size can be determined by the intercept method. More specifically, the polished surface of the sintered body for varistors is thermally etched at a temperature lower than the sintering temperature to clarify the grain boundaries, and then, for example, a microphotograph having a magnification of 1000 times is obtained.
- a straight line having a length of 100 ⁇ m is drawn on the micrograph, the number of grain boundaries intersecting with the straight line is counted, and the grain size value is obtained by dividing the straight line length (100 ⁇ m) by the number of grain boundaries intersecting. This operation is performed a plurality of times, and the average value is calculated as the particle size.
- the composition of the mixed raw material is used to make the mixed raw material into a desired shape such as a sheet, and most of it evaporates in the firing process, organic solvent, plasticizer, binder And no vehicles obtained from these.
- the mixed raw material is, for example, a varistor for obtaining a raw material (including the above-mentioned additives to be added if necessary) such as an oxide such as zinc oxide, bismuth oxide, cobalt oxide, chromium oxide and manganese oxide. After weighing so as to be substantially the same as the composition of the sintered body for use, it can be obtained by mixing these raw materials.
- a raw material including the above-mentioned additives to be added if necessary
- an oxide such as zinc oxide, bismuth oxide, cobalt oxide, chromium oxide and manganese oxide.
- An example of the mixing method is to use a ball mill.
- a dispersion medium such as ethanol and a raw material weighed together with balls such as zirconia balls may be put into a ball mill container and ball mill mixing may be performed to obtain a mixed raw material.
- Patent Document 3 when obtaining a mixed raw material, bismuth oxide, antimony oxide, and copper oxide, which are part of a plurality of types of raw materials used, are mixed in advance and calcined at a temperature of 350 to 750 ° C. The mixed raw material is obtained and fired.
- Patent Documents 4 to 6 disclose that a part (two or more) of plural types of raw materials to be used are mixed in advance and heat-treated at a temperature of 300 ° C. or more.
- the mixed raw material is preferably obtained without performing such heat treatment.
- a manufacturing process becomes simple and it becomes possible to manufacture the sintered compact for varistors at lower cost.
- the present inventor obtains a mixed raw material without performing heat treatment in this way, and uses this mixed raw material for firing at 850 ° C. to 950 ° C. It was found that the varistor characteristics, in particular the nonlinear constant, of the obtained sintered body for varistors can be improved by 20% or more, compared with the case where firing was carried out.
- the contents of antimony (Sb), rare earth elements and tin (Sn) are below the impurity level, that is, the essential components are the main components of zinc oxide, bismuth oxide, cobalt oxide, and oxidation.
- Chromium and manganese oxide are mainly components that are relatively easy to diffuse during firing, so there is no need to perform heat treatment before firing, but rather better heat treatment is obtained. It is thought that it led to the result which overturned conventional common sense.
- heat treatment refers to mixing two or more types of raw materials that are part of a plurality of types of raw materials (powder materials) used to obtain a desired composition, for example, Heating to 300 ° C. or higher, which is a single oxide or the like, heat treatment performed for the purpose of obtaining each raw material, or for the purpose of dehydrating the obtained single raw material Does not include the heat treatment to be performed.
- the obtained mixed raw material is molded using any known means, whether dry or wet, and fired under predetermined conditions.
- a sintered body may be obtained.
- the mixed raw material may be used in a dry state to obtain a molded body (a green compact), and the molded body may be fired to obtain a sintered body.
- a slurry (a slurry-like mixed raw material or paste) obtained by dispersing the mixed raw material in an organic dispersion medium or an inorganic dispersion medium such as ethanol may be obtained and fired to obtain a sintered body.
- the mixture is heated to about 100 ° C. or less while performing vacuum defoaming, etc.
- a mixed raw material molded body having an arbitrary shape may be obtained, and these may be laminated as necessary, and fired to obtain a sintered body.
- FIG. 1 is a schematic perspective view illustrating a method for obtaining a sintered body using a slurry-like mixed raw material.
- 1A shows a method for obtaining a mixed raw material sheet from a slurry
- FIG. 1B shows a state in which the mixed raw material sheet is punched into a desired shape
- FIG. 1C shows a punched mixed raw material sheet. Is shown, and the electrode material is disposed.
- 1A to 1C when there are a plurality of figures having the same figure but different signs (parts such as “(a)”) after the numerals, these are collectively referred to as “FIG. And may be called by the numbers in the figure.
- the method illustrated in FIG. 1 will be described below. After adding a dispersion medium and, if necessary, PVB and / or a plasticizer to the mixed raw material to obtain a slurry (mixed raw material slurry), as shown in FIG.
- the mixed raw material sheet 2 can be obtained on the resin film 8 by applying to the resin film 8 and drying. By punching this along the line A in FIG. 1A, as shown in FIG. 1B, the mixed raw material sheet 2 on the resin sheet 8 has a predetermined shape (disk shape in FIG. 1B). Can be.
- the mixed raw material sheet 2 is peeled from the resin film 8 and, as shown in FIG. 1 (c), a plurality (three in FIG. 1 (c)) of mixed raw material sheets 2 are laminated, and the mixed raw material sheet laminate 22 is formed.
- the first electrode sheet 6A for example, a silver (Ag) electrode sheet
- the second electrode sheet 6B silver (Ag)
- the first electrode sheet 6A (electrode sheet 6) and the second electrode sheet 6B (electrode sheet 6) are pressed so as not to be short-circuited, and between the mixed raw material sheets 2 and the mixed raw material sheet 2 and the first. Between the electrode sheet 6A and the mixed raw material sheet 2 and the second electrode sheet 6B.
- the pressing is preferably performed by heating to 100 ° C. or lower.
- the mixed material sheet laminate 22 in which the first electrode sheet 6A is disposed on the lower surface and the second electrode sheet 6B is disposed on the upper surface is fired. Firing is performed at a firing temperature of 850 ° C. to 950 ° C. Firing may be performed in air, or may be performed in an oxygen atmosphere as necessary.
- the varistor laminated body 22 (sintered body) having the first electrode 6A (for example, silver electrode) on the lower surface and the second electrode 6B (for example, silver electrode) on the upper surface. ) Can be obtained.
- a plurality of mixed raw material sheets 2 are laminated, but instead, the first electrode sheet 6 ⁇ / b> A on the lower surface of one mixed raw material sheet 2 and the second electrode sheet 6 ⁇ / b> B on the upper surface. May be formed and fired to obtain a sintered body.
- Multilayer substrate and manufacturing method thereof (1) Multilayer substrate (basic structure of varistor-embedded multilayer substrate) and manufacturing method thereof Multilayer substrate (basic structure of varistor-embedded multilayer substrate) as an example of the use of the above-described varistor sintered body Will be described.
- 2A is a perspective view showing a multilayer substrate 100 as a basic structure of the multilayer substrate of the present invention
- FIG. 2B is a sectional view showing a XIVb-XIVb cross section of FIG. 2A. .
- the multilayer substrate 100 includes a first insulating layer 10A (insulating layer 10), a second insulating layer 10B (insulating layer 10), a third insulating layer 10A in order (in order from the top in the embodiment shown in FIG. 2A).
- the insulating layer 10C (insulating layer) is laminated.
- the varistor layer 2 is disposed inside the second insulating layer 10B. In the embodiment shown in FIG. 2B, the varistor layer 2 is disposed inside the through hole that penetrates the second insulator layer 10B.
- Internal electrodes 6 ⁇ / b> C are disposed on the upper and lower surfaces of the varistor layer 2.
- the internal electrode 6C disposed on the upper surface of the varistor layer 2 is connected to the through electrode 6D penetrating the first insulating layer 10A to form the electrode 6.
- the upper surface of the first insulating layer 10A (the portion exposed from the upper surface of the first insulating layer 10A of the through electrode 6D) and the varistor layer 2 can be electrically connected.
- the internal electrode 6C disposed on the lower surface of the varistor layer 2 is connected to the through electrode 6D penetrating the third insulating layer 10C to form the electrode 6.
- the lower surface of the third insulating layer 10C (the portion exposed from the lower surface of the third insulating layer 10C of the through electrode 6D) and the varistor layer 2 can be electrically connected.
- the two internal electrodes 6C are opposed to each other, and the varistor layer 2 is disposed therebetween.
- a current flows through the varistor layer 2.
- the electrical wiring formed by the electrodes is arranged almost in the insulating layer. Therefore, it is possible to realize a multi-layer substrate utilizing the excellent transmission characteristics of the insulating layer.
- FIGS. 3A to 3D are perspective views showing a method for manufacturing the laminate 150.
- the laminated body 150 is produced.
- an insulating sheet 10 to be an insulating layer is prepared by firing, and then a through hole 14 is formed in the insulating sheet 10 as shown in FIG.
- the insulating sheet 10 is, for example, a slurry obtained by mixing a mixed raw material for an insulating sheet with a binder, applied onto a resin sheet by a doctor blade method using a sheet molding machine and dried, and then peeled off the resin sheet. Or the like.
- an electrode paste layer 6D that becomes the through electrode 6D after firing is formed.
- the electrode paste is applied to the upper surface of the insulating sheet 10 by a method such as applying a silver electrode paste to the surface of the insulating sheet 10 using a screen printing method and then drying it.
- An electrode paste layer 6C is formed so as to be in contact with the layer 6D. Thereby, the laminated body 150 can be obtained. Two stacked bodies 150 are produced.
- FIG. 4 is a perspective view showing the laminate 160.
- the laminate 160 is obtained by covering the surface (at least the main surface) of the electrode paste layer 6 ⁇ / b> C of the laminate 150 with the varistor slurry layer 2.
- the stacked body 160 can be formed by the following method.
- the raw materials are mixed with a ball mill or the like, then dried and crushed to obtain a mixed raw material (mixed dry powder) having the above-mentioned predetermined components.
- a mixed raw material slurry in which the mixed raw material is dispersed in an organic dispersion medium (vehicle) such as ethanol or an inorganic dispersion medium is obtained.
- an organic dispersion medium such as ethanol or an inorganic dispersion medium
- a laminate 160 having 6D, the electrode paste layer 6C, and the varistor slurry layer 2 can be obtained.
- FIG. 5 is a diagram illustrating a method for manufacturing the multilayer substrate 100.
- the press process for obtaining a composite laminated body is demonstrated using FIG.
- the laminate 160 electrode paste layer 6C is not shown
- the varistor slurry layer 2 of the laminate 160 and the electrode paste layer 6C of the laminate 150 are accommodated.
- the insulating sheet 10 having the possible through holes 14A and the laminated body 150 arranged so that the electrode paste layer 6C is on the upper surface side are combined with the varistor slurry layer 2, the through holes 14A, and the electrode paste layer 6C.
- the obtained composite laminate is fired at a temperature between 850 ° C. and 950 ° C. Thereby, the multilayer substrate 100 can be obtained.
- FIG. 6A is a perspective view showing a multilayer substrate 200 according to the modified example, and FIG. It is sectional drawing which shows the XVIIIb-XVIIIb cross section of 6 (a).
- the multilayer substrate 200 has a configuration similar to that of the multilayer substrate 100. That is, the multilayer substrate 200 includes a first insulating layer 10A (insulating layer 10), a second insulating layer 10B (insulating layer 10), and a first layer in order (in the embodiment shown in FIG. 3 insulating layers 10C (insulating layer 10).
- the varistor layer 2 is disposed inside the second insulating layer 10B. In the embodiment shown in FIG. 6B, the varistor layer 2 is disposed inside the through hole that penetrates the second insulator layer 10B.
- the varistor layer 2 is formed by firing the varistor slurry layer 2.
- the varistor layer 2 is formed using the mixed raw material sheet 2 shown in FIG. Since the mixed raw material sheet 2 is usually more rigid than the varistor slurry layer 2, there is little deformation in the pressing process. For this reason, the variation in the thickness in the obtained varistor layer 2 is small, and in particular, there is an advantage that the difference in thickness between the central portion and the end portion is small.
- the method of manufacturing the multilayer substrate 200 replaces the surface (at least the main surface) of the electrode paste layer 6D with the varistor slurry layer 2 when forming the laminated body 160, and replaces the surface (at least the surface of the electrode paste layer 6D).
- the same manufacturing method as that of the laminate 100 may be used except that the mixed raw material sheet 2 is disposed so as to cover the main surface).
- Multilayer substrate (application example as interposer)
- a multilayer substrate (application example as an interposer), which is an example of the use of the above-described sintered body for varistors, will be described.
- This multilayer substrate is merely an example of the use of the sintered body for varistors according to the present invention, and the sintered body for varistors according to the present invention includes, for example, a magnetic sensor substrate, a current sensor substrate, an LED support, It can be used in many applications such as a substrate for a high-frequency communication circuit.
- FIG. 7 is a cross-sectional view of a multilayer substrate (interposer) 300 according to one embodiment of the present invention.
- the multilayer substrate 300 includes the first insulating layer 10A (insulating layer 10), the varistor layer 2 which is disposed on the first insulating layer 10A and is made of the above-described varistor sintered body (sintered body), and the varistor.
- the insulating layers 10A and 10B may be formed of any insulating material, and may be, for example, a glass ceramic layer.
- a plurality of first surface electrodes 6A are provided on the main surface (the lower surface in FIG. 7) opposite to the varistor layer 2 of the main surface of the first insulating layer 10A.
- a plurality of second surface electrodes 6B are provided on the main surface (the upper surface in FIG. 7) opposite to the varistor layer 2 of the main surface of the second insulating layer 10B.
- a plurality of first internal electrodes 36A are provided on the main surface (the lower surface in FIG. 7) on the first insulating layer 10A side.
- a plurality of second internal electrodes 36B are provided on the main surface (upper surface in FIG. 7) on the second insulating layer 10B side. Further, a plurality of through electrodes 26 are provided to penetrate the first insulating layer 10A, the varistor layer 2, and the second insulating layer 10B.
- One first surface electrode 6A, one through electrode 26, at least one of one first internal electrode 36A and one second internal electrode 36B, and one second surface electrode 6B Are electrically connected to each other (one electrically connected first surface electrode 6A, one through electrode 26, one first internal electrode 36A and one second internal electrode). At least one of 36B (both one first internal electrode 36A and one second internal electrode 36B in the embodiment of FIG. 7) and one second surface electrode 6B are collectively referred to as a “group electrode”. Called).
- the two surface electrodes 6B are electrically connected to each other, but the present invention is not limited to this.
- the through electrode 26 includes one first surface electrode 6A, one first inner electrode 36A, and one first electrode. At least one of the two internal electrodes 36B and one second surface electrode 6B are electrically connected. That is, the through electrode 26 is connected to one first surface electrode 6A, one first internal electrode 36A and one second internal electrode 36B, and one second surface electrode 6B. It only has to be done.
- the end surface of the through electrode 26 exposed from the first insulating layer 10A may be used as the first surface electrode 6A, and the end surface of the through electrode 26 exposed from the second insulating layer 10B is used as the second surface electrode. It may be used as the electrode 6B.
- the electrical connection in the group electrode is preferably such that the through electrode 26 has one first surface electrode 6A, one first internal electrode 36A, and one second internal electrode 36B. This is performed by being directly connected to at least one of the first surface electrode 6B and one second surface electrode 6B.
- the first surface electrode 6A, the through electrode 26, the first internal electrode 36A, the second internal electrode 36B, and the second surface electrode 6B are preferably made of silver or a silver alloy having excellent conductivity.
- a semiconductor chip (element) 12 can be placed on such a multilayer substrate 300.
- the electrode 16 of the semiconductor chip 12 and the second surface electrode 6B are electrically connected.
- the electrode 16 of the semiconductor chip 12 and the second surface electrode 6 ⁇ / b> B are electrically connected via the wire 18, but the present invention is not limited to this.
- the electrical connection may be made by any known method such as using.
- FIG. 8 to 10 are views showing a method for manufacturing the multilayer substrate 300.
- FIG. 9 (f) ii) is a cross-sectional view showing a cross section taken along line BB in FIG. 9 (f) i)
- FIG. 10 (h) ii) is a portion surrounded by a dotted line C in FIG. 10 (h) i).
- FIG. 8 and 9 (e) and (f) i) are perspective views
- FIG. 9 (f) ii) and FIG. 10 are cross-sectional views.
- a first insulating sheet (sheet that is baked to become an insulating layer) 10A is formed on a resin sheet 8, for example, a mixed raw material for insulating sheet is mixed with a binder to form a slurry.
- the applied product is applied onto the resin sheet 8 by a doctor blade method using a sheet molding machine, and then arranged by a method such as drying.
- a first internal electrode 36A is formed on the upper surface (for example, a part of the upper surface) of the first insulating sheet 10A by screen printing or the like.
- the mixed raw material sheet so as to cover the upper surface (the portion where the first internal electrode 36A is not formed) of the first insulating sheet 10A and the first internal electrode 36A. 2 is formed.
- the mixed raw material sheet 2 may be formed by applying a slurry obtained by mixing the above-described mixed raw material with a binder and then drying.
- the raw materials weighed with a predetermined composition are mixed with a ball mill or the like, then dried and crushed to obtain a mixed raw material that has been sized through a 100 to 500 ⁇ m sieve.
- a mixed raw material sized granulated powder
- a propeller stirrer or the like When the mixture becomes uniform, the temperature is raised while vacuum defoaming to adjust the viscosity to prepare a mixed raw material slurry.
- the mixed raw material slurry 2 can be obtained by applying the mixed raw material slurry by screen printing or the like so as to cover the upper surface of the first insulating sheet 10A and the first internal electrode 36A, and then drying.
- the second internal electrode 36B is formed on the mixed raw material sheet 2 by screen printing or the like.
- the second raw material sheet 2 portion where the second internal electrode 36B is not formed
- the second internal electrode 36B are covered by screen printing or the like so as to cover the second internal electrode 36B.
- An insulating sheet (sheet that is fired to become an insulating layer) 10B is formed.
- two types of through holes 14 are formed by using known penetrating means such as laser processing.
- One is a through hole 14 that passes through the first insulating sheet 10A, the first internal electrode 36A, the mixed raw material sheet 2, and the second insulating sheet 10B, and the other is the first hole.
- the insulating sheet 10A, the mixed raw material sheet 2, the second internal electrode 36B, and the through hole 14 penetrating the second insulating sheet 10B.
- the through electrode 26 is formed in the through hole 14.
- the through electrode 26 can be formed, for example, by supplying silver (silver particles) into the through hole by screen printing.
- baking is performed. You may press-contact using a press apparatus etc. before baking.
- the pressure welding is preferably performed at a press pressure of 50 kgf / cm 2 or more by heating to 75 ° C. to 85 ° C.
- Firing is performed at a temperature between 850 ° C. and 950 ° C. Thereby, it is possible to prevent the through electrode 26, the first internal electrode 36A, and the second internal electrode 36B made of, for example, silver from being damaged.
- the first surface electrode 6A is formed on the lower surface of the first insulating layer 10A, and the second surface electrode 6B is formed on the upper surface of the second insulating layer 10B.
- the first surface electrode 6A and the second surface electrode 6B may be, for example, plating electrode pads.
- the multilayer substrate 300 can be obtained.
- the insulating sheet slurry and the mixed raw material slurry were sequentially applied and dried.
- each sheet was separated.
- a method of sequentially stacking the layers may be used.
- FIG. 10 (h) ii) is an enlarged view of a portion surrounded by a dotted line C in FIG. 10 (h) i).
- FIG. 10 (h) ii) also shows the semiconductor chip 12 arranged on the multilayer substrate 300 for the sake of explanation.
- FIG. 10 (h) ii) shows two group electrodes. One is a group electrode which is located on the left side of the figure and includes a first surface electrode 6A, a through electrode 26, a first internal electrode 36A, and a second surface electrode 6B (for convenience, Called “left group electrode”).
- the other is a group electrode that is located on the right side of the figure and includes a first surface electrode 6A, a through electrode 26, a second internal electrode 36B, and a second surface electrode 6B (this is called a group electrode). For convenience, it is called “right group electrode”).
- the second surface electrode 6B of the right group electrode is electrically connected to the electrode 16 of the semiconductor chip 12.
- the surface electrode 6B of the left group electrode is electrically connected to another electrode 16 of the semiconductor chip 12.
- the second surface electrode 6B and the left group electrode through electrode (first through electrode) 26 pass through the left group electrode first surface electrode 6A.
- a current is supplied to the semiconductor chip 12.
- an abnormally high voltage high current
- this high voltage is applied and the electric resistance of the varistor layer 2 rapidly decreases, so that the first surface electrode 6A of the right group electrode is entered.
- High current travels along arrow E. That is, the current passing through the right group electrode passes through the first surface electrode 6A of the right group electrode and the through electrode (second through electrode) 26 of the right group electrode, and then the second internal electrode of the right group electrode.
- the first through electrode (the through electrode of the left group electrode) 26 is electrically connected to the first internal electrode 36A.
- the second internal electrode 36B is not electrically connected.
- the second through electrode (through electrode of the right group electrode) 26 is electrically connected to the second internal electrode 36B, but not electrically connected to the first internal electrode 26B.
- a high voltage is applied, the first internal electrode 36A electrically connected to the first through electrode 26 via the varistor layer 2 and the first internal electrode 36A electrically connected to the second through electrode 26 are connected.
- Other configurations may be adopted as long as current flows between the two internal electrodes 36B. For example, as shown in the embodiment of FIG.
- the first through electrode 26 (second through electrode 26 from the left in FIG. 7) is electrically connected to the first internal electrode 36A and the second internal electrode 36B.
- the second through electrode 26 (third through electrode from the left in FIG. 7) may be electrically connected to another first internal electrode 36A and second internal electrode 36B.
- FIG. 11 to 13 are diagrams showing another method for manufacturing the multilayer substrate 400.
- 12 (e) ii) is a cross-sectional view taken along the line FF in FIG. 12 (e) i)
- FIG. 13 (g) ii) is a portion surrounded by a dotted line G in FIG. 13 (g) i).
- FIG. 11 and 12 (e) i) are perspective views
- FIG. 12 (f) and FIG. 13 are cross-sectional views.
- the first insulating sheet 10A on the resin sheet 8 is made into a slurry by mixing a mixed raw material for insulating sheet with a binder, for example, using a sheet molding machine. After applying on the resin sheet 8 by the doctor blade method, it is arranged by a method such as drying.
- a first internal electrode 36A is formed on the upper surface (for example, a part of the upper surface) of the first insulating sheet 10A by screen printing or the like.
- the first inner electrode 36A has substantially the same area as the upper surface and is slightly shifted from the first inner electrode 36A (mostly the first inner electrode 36A and the first inner electrode 36A).
- the mixed raw material sheet 2 is formed so as to be overlapped but shifted in a certain direction (rightward in FIG. 11 (c)) so as not to partially overlap the first internal electrode 36A.
- the mixed raw material sheet 2 may be formed, for example, by screen-printing the mixed raw material in a slurry form.
- the second internal electrode 36B is formed on the mixed raw material sheet 2 by screen printing or the like.
- the first insulating sheet 10A is opposed (the first insulating sheet 10A and the second insulating sheet 10B have the same area.
- a second insulating sheet (sheet that is baked to become an insulating layer) 10B is formed by a method such as screen printing so as to cover the second internal electrode 36B.
- two types of through-holes 14 are formed by using known penetrating means such as laser processing.
- One is the first insulating layer 1 sheet 10A, the first internal electrode 36A, the mixed raw material sheet 2, and the through hole 14 penetrating the second insulating sheet 10B, and the other is the first Insulating sheet 10A, mixed raw material sheet 2, second internal electrode 36B, and through hole 14 penetrating second insulating sheet 10B.
- the through electrode 26 is formed in the through hole 14.
- the through electrode 26 can be formed, for example, by supplying silver (silver particles) into the through hole by screen printing.
- baking is performed. You may press-contact using a press apparatus etc. before baking.
- the pressure welding is preferably performed at a press pressure of 50 kgf / cm 2 or more by heating to 75 ° C. to 85 ° C.
- At the time of the pressure contact at least a part of the space 4 may be crushed (the mixed raw material sheet 2 may be present in the crushed part).
- Firing is performed at a temperature between 850 ° C. and 950 ° C. Thereby, it is possible to prevent the through electrode 26, the first internal electrode 36A, and the second internal electrode 36B made of, for example, silver from being damaged.
- the first surface electrode 6A is formed on the lower surface of the first insulating layer 10A, and the second surface electrode 6B is formed on the upper surface of the second insulating layer 10B.
- the first surface electrode 6A and the second surface electrode 6B may be, for example, plating electrode pads.
- the multilayer substrate 400 can be obtained.
- the above manufacturing method may also be a method in which each sheet is separately formed and then sequentially laminated as described above in the section of the multilayer substrate (modified example of the basic structure of the multilayer substrate with a built-in varistor). Good.
- FIG. 8 (g) ii) which is an enlarged view of a portion surrounded by a dotted line G in FIG. 8 (g) i)
- two group electrodes (left group electrode) are formed as in FIG. 10 (h) ii) described above.
- right group electrodes are formed as in FIG. 10 (h) ii) described above.
- the current that has entered from the first surface electrode 6A of the right group electrode is the second current of the right group electrode.
- Example 1 The raw materials shown in Table 1 were weighed so as to have the composition shown in the same table, put into a ball mill container together with ethanol and zirconia balls, and ball mill mixed at 100 rpm for 20 hours.
- the composition in this example (the same applies to Examples 2 to 6 below) is expressed in mol% in terms of metal element. That is, the molar ratio was calculated and determined in consideration of only the metal atom bonded to oxygen without considering the oxygen atom contained in each oxide.
- Zn, Bi, Co The mol% of each metal element of Mn and Cr is shown. Further, all samples (mixed raw materials after drying) shown in Table 1 were subjected to ICP (inductively coupled plasma) wet analysis.
- ICP inductively coupled plasma
- antimony (Sb), rare earth elements and tin (Sn) were all below the detection limit (detection limit: 100 ppm by mass ratio). This means that the respective contents of antimony (Sb), rare earth element and tin (Sn) obtained by converting from mass ratio to molar ratio are less than 0.01 mol%.
- the obtained mixed raw material was taken out and dried, and then mixed with ethanol, PVB and a plasticizer to prepare a slurry mixed raw material.
- the content of PVB in the slurry was 10% by volume.
- a varistor laminate was obtained by the method shown in FIG. Specifically, the slurry-like mixed raw material was applied on the PET film 8 with a thickness of 0.07 mm, and then dried to obtain the mixed raw material sheet 2.
- silver (Ag) powder is mixed with ethanol, PVB (polyvinyl butyral) and a plasticizer to prepare a slurry. The slurry is applied to a thickness of 0.08 mm on a PET film, and then dried to obtain a silver electrode sheet. 6 was obtained.
- the PET film 8 coated with the slurry was punched out, the PET film 8 was peeled off to obtain a disk-shaped mixed raw material sheet 2 (diameter 14 mm ⁇ thickness 0.07 mm). Three mixed raw material sheets 2 were laminated to obtain a mixed raw material sheet laminate 22. A silver electrode sheet 6 (diameter 6 mm ⁇ thickness 0.05 mm) was laminated on both surfaces of the mixed raw material sheet laminate to form an electrode, which was pressed and pressed at 85 ° C. so as not to short-circuit the electrode.
- the mixed raw material sheet laminate 22 provided with the silver electrodes 6 on both sides was heated at a rate of temperature increase of 200 ° C./hour and baked at 900 ° C. for 2 hours to obtain a varistor laminate 22.
- a granulated powder obtained by adding and mixing 1% by mass of PVA and granulated was press-molded at 1 Ton / cm 2 , and the temperature was raised at a heating rate of 200 ° C./hour, 900 Baked at 2 ° C. for 2 hours.
- electrodes having a diameter of 6 mm were baked on both sides.
- the press-molded body was mirror-polished and observed with a microscope, it was densified.
- the result of having measured each crystal grain size (grain size) is shown in FIG. The particle size was measured by the intercept method.
- the grain boundary was clarified by thermally etching the polished surface of the sintered body at 840 ° C., which is lower than the sintering temperature, and then a microphotograph having a magnification of 1000 times was obtained. Three straight lines having a length of 100 ⁇ m were drawn on this photograph. For each straight line, the number of intersecting grain boundaries was counted, and the particle size value obtained by dividing the straight line length (100 ⁇ m) by the number of intersecting grain boundaries was determined. The average value of the particle diameter values of these three straight lines was taken as the particle diameter. In FIG.
- the mark ⁇ indicates the particle size (average of the above three particle size values), the upper end of the vertical bar in contact with the mark ⁇ indicates the maximum value of the three particle size values, and the lower end indicates three particles. Indicates the minimum diameter value. That is, the length of the vertical bar indicates the size of the particle size variation. ) FIG. 14 shows that Sample 1 according to the example has the smallest particle size and is uniform.
- FIG. 15 shows the results of measuring the current flowing between the electrodes for Samples 1 to 5 of the varistor laminate 22 using an insulation resistance meter R8340 manufactured by Advantest Corporation while sweeping the voltage.
- varistor characteristics (insulation resistance value, nonlinear constant, varistor voltage) were obtained from the measurement results.
- Sample 1 of the press-molded body showed almost the same varistor characteristics as Sample 1 of the varistor laminate 22.
- the insulation resistance value is a resistance value at 1/10 of the varistor voltage.
- the nonlinear constant was obtained by the above equation (1). The results are shown in Table 2.
- Example 2 The raw materials shown in Table 3 were weighed so as to have the composition shown in the same table, put into a ball mill container together with ethanol and zirconia balls, and ball mill mixed at 100 rpm for 20 hours. In addition, all samples (mixed raw materials after drying) shown in Table 3 were subjected to ICP (inductively coupled plasma) wet analysis. As a result, antimony (Sb), rare earth elements and tin (Sn) were all below the detection limit (detection limit: 100 ppm by mass ratio). This means that the respective contents of antimony (Sb), rare earth element and tin (Sn) obtained by converting from mass ratio to molar ratio are less than 0.01 mol%.
- ICP inductively coupled plasma
- the mixed raw material was taken out and dried, and the dried mixed raw material (mixed dry powder) and a vehicle made of an organic solvent such as ethyl cellulose and aromatic hydrocarbon were mixed by a three-roll mill to obtain a slurry for screen printing. .
- the mixture was weighed so that the mixing ratio of the mixed raw material and the vehicle after drying was 63% by mass of the mixed raw material and 37% by mass of the vehicle.
- As the vehicle TMC-108-K manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. was used. It contains 5 to 15% by mass of ethyl cellulose and 95 to 85% by mass of an organic solvent such as aromatic hydrocarbon.
- Each raw material shown in Table 3 was weighed so as to have the composition in the same table, and a mixed raw material sheet having a thickness of 0.08 mm was obtained by the same production method as the mixed raw material sheet 2 shown in Example 1.
- This mixed material sheet was cut into a size of about 20 mm ⁇ 40 mm to obtain a mixed material sheet 2A shown in FIG.
- the first electrode paste layer 6E of 18 mm ⁇ 30 mm is formed on the mixed raw material sheet 2A by screen printing the silver electrode paste so as not to protrude from the main surface of the mixed raw material sheet 2A. Formed.
- FIG. 16B the first electrode paste layer 6E of 18 mm ⁇ 30 mm is formed on the mixed raw material sheet 2A by screen printing the silver electrode paste so as not to protrude from the main surface of the mixed raw material sheet 2A. Formed.
- the above-described screen printing slurry (corresponding to the same composition as the raw material used to form the mixed raw material sheet 2A) is first screen-printed by screen printing. It is applied to an area of 13 mm ⁇ 25 mm above the electrode paste layer 6E. And the varistor slurry layer 2B was obtained by drying the apply
- the thickness of the first electrode paste layer 6E and the second electrode paste layer 6F was such that the thickness of the first electrode layer 6E and the second electrode layer 6F after sintering was 10 ⁇ m.
- the thickness of the varistor slurry layer 2B was adjusted by recoating so that the thickness of the varistor layer 2B was 200 ⁇ m after sintering.
- the varistor slurry layer 2B, the first electrode paste layer 6E, and the second electrode paste layer 6F were dried at a temperature of 60 ° C. or higher.
- the obtained laminated body was heated at a temperature rising rate of 200 ° C./hour and fired at 900 ° C. for 2 hours to obtain the first varistor layer 2A, the first electrode layer 6E, the second varistor layer 2B, and the second electrode.
- a multilayer substrate 500 having the layer 6F was obtained.
- the mixed raw material sheet 2A is a dummy sheet used for maintaining the shapes of the first electrode layer 6E, the second varistor layer, and the second electrode layer 6F.
- the varistor characteristics of the varistor layer 2B were measured for the obtained samples 2-1 to 2-60 of the multilayer substrate 500 by the same method as in Example 1. However, a value normalized by dividing the voltage (varistor voltage) applied during measurement of the varistor characteristics by the thickness of the second varistor layer 2B was defined as the varistor voltage. As the current, a value obtained by dividing the measured current value (A) by the electrode area (cm 2 ) was used. The electrodes for measuring the varistor characteristics were measured as the electrode layer 6C and the electrode layer 6D counter electrode. Table 4 shows the measurement results. From Table 4, it can be seen that even when the raw materials having the compositions shown in Table 3 are used, the samples of the examples of the present invention are excellent in all of the insulation resistance value, the nonlinear constant, and the varistor voltage.
- Example 3 The raw materials shown in Table 5 were weighed so as to have the composition in the same table, and varistor laminates 22 (samples 6 to 8) having electrodes 6 at both ends were obtained by the same method as in Example 1. All samples (mixed raw materials after drying) shown in Table 5 were subjected to ICP (inductively coupled plasma) wet analysis in the same manner as in Example 1. As a result, antimony (Sb), rare earth elements and tin (Sn) were all below the detection limit (detection limit: 100 ppm by mass ratio). This means that the respective contents of antimony (Sb), rare earth element and tin (Sn) obtained by converting from mass ratio to molar ratio are less than 0.01 mol%.
- ICP inductively coupled plasma
- samples 6 to 8 show that the varistor voltage can be controlled in a wide range by changing each additive, and all the samples have excellent insulation resistance values and nonlinear constants. It can be seen that characteristics are obtained.
- Example 4 The raw materials shown in Table 7 were weighed so as to have the composition in the same table, and a multilayer substrate 500 was obtained by the same method as in Example 2. All samples (mixed raw materials after drying) shown in Table 7 were subjected to ICP (inductively coupled plasma) wet analysis. As a result, antimony (Sb), rare earth elements and tin (Sn) were all below the detection limit (detection limit: 100 ppm by mass ratio). This means that the respective contents of antimony (Sb), rare earth element and tin (Sn) obtained by converting from mass ratio to molar ratio are less than 0.01 mol%.
- ICP inductively coupled plasma
- the varistor characteristics of the varistor layer 2B were measured for the obtained samples 4-1 to 4-14 of the multilayer substrate 500 by the same method as in Example 1. However, the value normalized by dividing the voltage (varistor voltage) applied during the measurement of the varistor characteristics by the thickness of the varistor laminate was defined as the varistor voltage. As the current, a value obtained by dividing the measured current value (A) by the electrode area (cm 2 ) was used. The electrodes for measuring the varistor characteristics were measured as the electrode layer 6C and the electrode layer 6D counter electrode. Table 8 shows the measurement results. From Table 8, it can be seen that the samples of the examples of the present invention are excellent in all of the insulation resistance value, the nonlinear constant, and the varistor voltage even when the raw materials having the compositions shown in Table 7 are used.
- FIG. 17A is a cross-sectional view of the sample 9 according to the fifth embodiment
- FIG. 17B is a cross-sectional view of the sample 10 according to the fifth embodiment.
- the sample 9 is an example sample (multilayer substrate) having the parister layer 2 integrally formed with the electrode 6 in the multilayer substrate (more specifically, between the two insulating layers 10).
- the sample 10 is an example sample prepared for comparing characteristics with the sample 9 and does not have the insulating layer 10.
- Example 2 Using the same method and the same raw materials as described in Example 1, the same mixed raw material as Sample 1 shown in Table 1 was obtained. The mixed raw material (after drying) was subjected to ICP (inductively coupled plasma) wet analysis. As a result, antimony (Sb), rare earth elements and tin (Sn) were all below the detection limit (detection limit: 100 ppm by mass ratio). This means that the respective contents of antimony (Sb), rare earth element and tin (Sn) obtained by converting from mass ratio to molar ratio are less than 0.01 mol%. Using the obtained mixed raw material, a disk-shaped mixed raw material sheet 2 having a diameter of 14 mm and a thickness of 0.2 mm was obtained in the same manner as in Example 1.
- ICP inductively coupled plasma
- LTCC material DN1B manufactured by Hitachi Metals Co., Ltd., which mainly contains alkaline earth oxides, SiO 2 and Al 2 O 3 (“Electronic ceramics manufacturing process and applied technology ⁇ large All works>"Technical Information Association 2007 published p633) was used.
- This insulating material was mixed with ethanol, PVB and a plasticizer to produce a slurry-like mixed raw material for the insulating layer.
- the content of PVB in the slurry was 10% by volume.
- This slurry-like mixed raw material for insulating layer was applied onto a PET film and then dried to obtain an insulating sheet 10 having a diameter of 14 mm and a thickness of 0.05 mm.
- a silver electrode sheet 6 having a size of 5 mm ⁇ 5 mm ⁇ thickness 0.02 mm was obtained in the same manner as in Example 1.
- the obtained mixed raw material sheet 2, insulating sheet 10, and silver electrode sheet 6 were laminated as shown in FIG. That is, a laminate in which a silver electrode sheet 6 covering a part of the mixed raw material sheet 2 and an insulating sheet 10 covering the silver electrode sheet 6 and the mixed raw material sheet 2 are arranged on each of the two main surfaces of the mixed raw material sheet 2. Obtained.
- the pressure-bonded laminated body is heated at a rate of temperature increase of 200 ° C./hour and baked at 900 ° C. for 2 hours.
- Sample 9 which is a varistor laminate was obtained.
- the sample 9 can measure the varistor characteristics, and the two insulating layers 10 of the sample 9 are respectively disposed in the through hole and the through electrode that is electrically connected to the electrode 6 (FIG. 17 ( a) has (not shown).
- the mixed raw material sheet 2 and the silver electrode sheet 6 were laminated as shown in FIG. That is, the laminated body by which the silver electrode sheet 6 which covers a part of mixed raw material sheet 2 is arrange
- both Sample 9 and Sample 10 have sufficient varistor characteristics. That is, not only the sample 10 that does not have the insulating layer 10 on both sides of the varistor layer 2 but also the sample 9 that is a multilayer substrate (variable layered body with LTCC) having the insulating layer 10 on both sides of the varistor layer 2 has excellent varistor characteristics. I confirmed that I have it.
- Example 6 (1) Multilayer substrate 100
- the raw materials shown in Table 10 were weighed so as to have the composition shown in the same table, put into a ball mill container together with ethanol and zirconia balls, and ball mill mixed at 100 rpm for 20 hours.
- all samples (mixed raw materials after drying) shown in Table 10 were subjected to ICP (inductively coupled plasma) wet analysis.
- ICP inductively coupled plasma
- antimony (Sb), rare earth elements and tin (Sn) were all below the detection limit (detection limit: 100 ppm by mass ratio). This means that the respective contents of antimony (Sb), rare earth element and tin (Sn) obtained by converting from mass ratio to molar ratio are less than 0.01 mol%.
- the mixed raw material was taken out and dried, and the mixed raw material (mixed dry powder) after drying and a vehicle made of an organic solvent such as ethyl cellulose and aromatic hydrocarbon were mixed with a three-roll mill to obtain a slurry.
- the mixture was weighed so that the mixing ratio of the mixed raw material and the vehicle after drying was 63% by mass of the dry mixed raw material and 37% by mass of the vehicle.
- As the vehicle TMC-108-K manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. was used. It contains 5 to 15% by mass of ethyl cellulose and 95 to 85% by mass of an organic solvent such as aromatic hydrocarbon.
- An insulating sheet 10 having a thickness of 0.08 mm produced by the same method as shown in Example 5 was cut into a size of about 20 mm ⁇ 40 mm.
- a metal rod having a diameter of 0.5 mm was pressed against the cut insulating sheet 10 to form a through hole 14.
- an electrode paste layer 6F to be the through electrode 6F after firing was formed.
- a silver electrode paste is applied to the surface of the insulating sheet 10 by screen printing and dried at a temperature of 60 ° C. or higher, whereby an electrode paste layer 6F is formed on the upper surface of the insulating sheet 10.
- An electrode paste layer 6E having a diameter of 6 mm was formed so as to be in contact with each other, and a laminate 450 was obtained. Two laminates 450 were prepared for each sample. The thickness of the electrode paste layer 6E was adjusted so that the thickness of the sintered electrode layer 6E was 10 ⁇ m.
- the main surface of the electrode paste layer 6E was completely covered with the above-described slurry using a screen printing method. Then, it was made to dry at the temperature of 60 degreeC or more, and the laminated body 460 was obtained. In the laminate 460, the diameter of the varistor slurry layer 2 was 14 mm. As for the thickness of the varistor slurry layer 2, the slurry was applied (multiple coating) by screen printing so that the thickness of the varistor layer 2 after sintering was 0.05 mm.
- Another insulating sheet 10 was provided with a through hole 14A having a diameter of 14 mm.
- the laminated body 160, the insulating sheet 10 provided with the through holes 14A, and the laminated body 150 were arranged.
- the electrode paste layer 6E of the laminate 160 and the circle center of the electrode paste layer 6E of the laminate 160 have a positional accuracy of 0.5 mm, the electrode paste layer 6E and the varistor slurry layer 2 of the laminate 160, and the laminate
- the stacked bodies 150 and 160 and the respective insulating layers 10 were brought into contact (laminated) with the insulating layer 10 having the through holes 14A so that 150 electrode paste layers 6E were stacked in the through holes 14A. And it pressed at 85 degreeC and obtained the composite laminated body.
- the obtained composite laminate was heated at a heating rate of 200 ° C./hour and baked at 900 ° C. for 2 hours to obtain a multilayer substrate 100.
- the varistor characteristics of the varistor layer 2 were measured for the obtained samples 6-1 to 6-7 of the multilayer substrate 100 by the same method as in Example 1. However, a value normalized by dividing the voltage applied when measuring the varistor characteristics (varistor voltage) by the thickness of the sintered varistor layer was defined as the varistor voltage.
- As the current a value obtained by dividing the measured current value (A) by the electrode area (cm 2 ) was used.
- the electrodes for measuring the varistor characteristics are obtained by applying a conductive paste to the part exposed from the upper surface of the insulating layer 10A of the through electrode 6F and the part exposed from the lower surface of the insulating layer 10C of the through electrode 6F.
- a measurement terminal was used.
- Table 11 shows the measurement results. From Table 11, it can be seen that the samples of the examples of the present invention are excellent in all of the insulation resistance value, the nonlinear constant, and the varistor voltage even when the raw materials having the compositions shown in Table 10 are used.
- Multilayer substrate 200 The raw materials shown in Table 12 were weighed so as to have the composition shown in the same table, put into a ball mill container together with ethanol and zirconia balls, and ball mill mixed at 100 rpm for 20 hours. Further, all samples (mixed raw materials after drying) shown in Table 12 were subjected to ICP (inductively coupled plasma) wet analysis. As a result, antimony (Sb), rare earth elements and tin (Sn) were all below the detection limit (detection limit: 100 ppm by mass ratio). This means that the respective contents of antimony (Sb), rare earth element and tin (Sn) obtained by converting from mass ratio to molar ratio are less than 0.01 mol%.
- ICP inductively coupled plasma
- the mixed raw material sheet 2 was produced by the same method as in Example 1.
- An insulating sheet 10 having a thickness of 0.08 mm produced by the same method as shown in Example 5 was cut into a size of about 20 mm ⁇ 40 mm.
- a metal rod having a diameter of 0.5 mm was pressed against the cut insulating sheet 10 to form a through hole 14.
- an electrode paste layer 6F to be the through electrode 6F after firing was formed.
- a silver electrode paste is applied to the surface of the insulating sheet 10 by screen printing and dried at a temperature of 60 ° C. or higher, whereby an electrode paste layer 6F is formed on the upper surface of the insulating sheet 10.
- An electrode paste layer 6E having a diameter of 6 mm was formed so as to be in contact with each other, and a laminate 150 was obtained. Two laminates 150 were prepared for each sample. The thickness of the electrode paste layer 6E was adjusted so that the thickness of the sintered electrode layer 6E was 10 ⁇ m.
- GREEN TAPE 951PT of DuPont Co., Ltd. containing lead, aluminum, boron, and a ceramic material sintered and densified at 900 ° C. was used as the insulating sheet in place of the insulating sheet 10.
- the main surface of the electrode paste layer 6E was completely covered with the mixed raw material sheet 2 punched out to a diameter of 14 mm. Then, it was made to dry at the temperature of 60 degreeC or more, and the laminated body 160 was obtained.
- Another insulating sheet 10 (GREEN TAPE 951PT manufactured by DuPont Co., Ltd. for sample 6-7) was provided with a through hole 14A having a diameter of 14 mm.
- a laminated body 160 (arranged so that the side on which the mixed raw material sheet 2 is arranged is the lower surface of the two main surfaces of the insulating sheet 10), the insulating sheet 10 provided with the through holes 14A, and the laminated body 150 was placed.
- the electrode paste layer 6E of the laminate 160, the circle center of the electrode paste layer 6E of the laminate 160, and the circle center of the electrode paste layer 6E of the laminate 160 have a positional accuracy of 0.5 mm.
- the stacked bodies 150 and 160 and the respective insulating layers 10 were brought into contact (laminated) with the insulating layer 10 having the through holes 14A so that 150 electrode paste layers 6E were stacked in the through holes 14A. And it pressed at 85 degreeC and obtained the composite laminated body.
- the obtained composite laminate was heated at a temperature rising rate of 200 ° C./hour and baked at 900 ° C. for 2 hours to obtain a multilayer substrate 200.
- the varistor characteristics of the varistor layer were measured for the obtained samples 6-8 to 6-14 of the multilayer substrate 200 by the same method as in Example 1. However, a value normalized by dividing the voltage applied when measuring the varistor characteristics (varistor voltage) by the thickness of the sintered varistor layer was defined as the varistor voltage.
- As the current a value obtained by dividing the measured current value (A) by the electrode area (cm 2 ) was used.
- a conductive paste is applied to each of a portion exposed from the upper surface of the insulating layer 10A of the through electrode 6F and a portion exposed from the lower surface of the insulating layer 10C of the through electrode 6F. Measurement terminals. Table 11 shows the measurement results. From Table 13, it can be seen that the samples of the examples of the present invention are excellent in all of the insulation resistance value, the nonlinear constant, and the varistor voltage even when the raw materials having the compositions shown in Table 12 are used.
- the present application includes a Japanese patent application, Japanese Patent Application No. 2013-253230, whose application date is December 6, 2013, and a Japanese patent application, Japanese Patent Application No. No. 2013-253230, whose application date is April 11, 2017. Accompanied by priority claim with 2014-082000 as the basic application.
- Japanese Patent Application No. 2013-253230 and Japanese Patent Application No. 2014-082000 are incorporated herein by reference.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Thermistors And Varistors (AREA)
Abstract
Description
バリスタ素子は、印加される電圧が低い場合は大きな電気抵抗値を示し、僅かな電流しか流れないが、印加される電圧が大きくなると顕著に電気抵抗が低下し、多くの電流が流れる非直線性抵抗を示すバリスタ(バリスタ材料)を用いている。このようなバリスタの中でも容易に所望の特性を得られることから、酸化亜鉛を主成分として、酸化亜鉛以外の酸化物等を添加した酸化亜鉛系バリスタ(酸化亜鉛系バリスタ材料)が多く用いられている。
酸化亜鉛系バリスタ材料、特に同材料を焼結して得た酸化亜鉛系バリスタ用焼結体を用いたバリスタ素子を電子回路に組み込むことにより、電子回路の一部分に静電気またはノイズ等による高電圧に起因した電流が流れても、電子回路の所望の部分および所望の素子に、このような大きな電流が流れるのを抑制することができる。
この問題を解決するため、バリスタ素子等のESD(静電気放電)保護デバイスをLTCC(低温同時焼成セラミックス)として多層基板内に電極と一体的に形成することが、例えば特許文献1に開示されている。
このため、表面に銀より成る電極材料を形成した、バリスタ材料の混合原料シート(グリーンシート)等を含む積層体を850℃~950℃程度の範囲の温度で焼成してバリスタ素子(ESD保護デバイス)を含む多層基板を形成する方法が特許文献2~6に開示されている。
上述のように、焼成温度を850℃~950℃程度と1000℃よりも低い焼成温度で焼成してバリスタ用焼結体(以下、単に「焼結体」と言う場合がある)を得ることは知られていた。しかし、これらの従来の方法は、850℃~950℃程度の温度範囲で焼成を行う前に、焼成後の焼結体内での組成を均一にするべく予め原料の相互の成分を拡散させておくための熱処理を行う必要があった。この熱処理は、例えば、所望の組成を有するバリスタ用焼結体を形成するために用いる酸化物等の原料のうちの2種類以上を混合した上で300℃以上に加熱するものである。
そして、この混合および熱処理を行った原料と、必要に応じて加える別の種類の原料とを用いて850℃~950℃程度の温度範囲で焼成を行って焼結体を得ている。
熱処理と焼成の2回の加熱工程を含むことは、工程が複雑になるだけでなく、消費するエネルギーの増大にも繋がるため、熱処理工程省略の要求があった。
また、本発明は、アンチモン(Sb)や希土類元素を用いずに、焼成時の拡散が容易となる成分を主体とすることにより、事前に熱処理を行うことなく、1000℃より低い温度で焼成を行うことで十分な特性を有することができる、酸化亜鉛系バリスタの製造方法および酸化物系バリスタを含む多層基板の製造方法を提供することを目的とする。
また、本発明に係る製造方法では、事前に熱処理を行うことなく、1000℃より低い温度で焼成を行うことで十分なバリスタ特性を有する、酸化亜鉛系バリスタ用焼結体および酸化亜鉛系バリスタ用焼結体を含む多層基板を製造することができる。
さらに、本発明に係るバリスタ用焼結体は、アンチモン(Sb)と希土類元素と錫(Sn)の含有量が不純物レベル以下である。アンチモン(Sb)と希土類元素と錫(Sn)については、例えばその含有量がゼロまたは0.01mol%以下といった少ない量である。
1.バリスタ用焼結体
上述のように、本発明に係るバリスタ用焼結体(焼結体)は、酸化亜鉛を主成分とし、酸化ビスマスをビスマス(Bi)換算で0.6~3.0mol%、酸化コバルトをコバルト(Co)換算で0.2~1.4mol%、酸化クロムをクロム(Cr)換算で0.1~1.5mol%および酸化マンガンをマンガン(Mn)換算で0.1~1.5mol%含み、アンチモン(Sb)と希土類元素と錫(Sn)の含有量が不純物レベル以下である。
このように組成を狭い範囲に限定することにより、混合原料を850℃~950℃で焼成しても、得られたバリスタ用焼結体は高い非線形定数を有する等、十分なバリスタ特性を示す。
そして、このように、1000℃未満の温度で焼成できることは、混合原料粉末を含んで成る混合原料シート層(グリーンシート層)の上に、電極となる銀(Ag)を配置した状態で、混合原料シートを焼成できることを意味している。このため、銀電極とバリスタ用焼結体(混合粉末を焼成して得たバリスタ層)を一体的に形成した多層基板を得ることができる。
各元素について、このような狭い組成範囲とすべき理由を以下に示す。ただし、これらの理由は、現時点で得られている知見から発明者が合理的であると考えた理由を示すものであって、請求項により規定される、組成等の本発明の技術的範囲をさらに限定することを意図とするものではないことに留意されたい。
なお、本明細書における酸化物の含有量のモル比率は当該酸化物が含有する酸素原子を考慮せず、酸素と結びついている原子(金属元素の原子)のみを考慮して、モル比率を算出し求めたものである。また、前記金属元素は、ボロン、ケイ素などの半金属を含む。
酸化亜鉛は、本発明のバリスタ用焼結体(バリスタ層)のベースとなる材料であり、主成分である。すなわち、本発明のバリスタ用焼結体は、酸化亜鉛を亜鉛(Zn)換算で80mol%以上含む。
また、好ましくは、本発明のバリスタ用焼結体は、酸化亜鉛を亜鉛(Zn)換算で90mol%以上含んでいる。
本発明のバリスタ用焼結体は、酸化ビスマスをビスマス(Bi)換算で0.6~3.0mol%、好ましくは0.6~2.0mol%、最も好ましくは0.7~1.5mol%含有している。
酸化ビスマス(ビスマス)は、焼成温度が、850℃~950℃と比較的低温でも焼結体の緻密化を促進する。また、本発明の材料の微細構造をEDX(エネルギー分散型X線分光法)で観察した結果、酸化ビスマス(ビスマス)は酸化亜鉛の粒界に偏析しており、これにより高抵抗な半導体粒界を形成し、これが2重ショットキー障壁としてバリスタ特性を発現すると考える。酸化ビスマスの含有量がビスマス換算で0.6mol%より少ないと、この効果が充分得られず、3.0mol%を超えると、結晶粒成長しやすくなる
、または酸化ビスマスを主組成とする厚い絶縁層を形成してしまうという問題がある。好ましい範囲の0.6~2.0mol%の範囲であれば、確実にこの効果を得ることができ、また、最も好ましい範囲の0.7~1.5mol%であれば、この効果をより充分に得ることができる。
本発明のバリスタ用焼結体は、酸化コバルトをコバルト(Co)換算で0.2~1.4mol%、好ましくは0.2~1.0mol%、最も好ましくは0.3~0.8mol%含有している。
本発明のバリスタ用焼結体の微細構造をEDX(エネルギー分散型X線分光法)で観察した結果、酸化コバルト(コバルト)は粒界、粒内ともに均一に存在しており、粒界では電子を捕獲する機能を有し、この結果、バリスタ用焼結体の非線形定数を高くする効果をもたらす。酸化コバルトの含有量がコバルト換算で0.2mol%より少ないとこの効果が充分得られない。また、酸化コバルト(コバルト)は酸化亜鉛の結晶粒内にも均一に分散するため、1.4mol%を超えると、酸化亜鉛の電気特性を変えてしまうことと、結晶粒成長しやすくなるという問題がある。好ましい範囲の0.2~1.0mol%の範囲であれば、確実にこの効果を得ることができ、また、最も好ましい範囲の0.3~0.8mol%であれば、この効果をより充分に得ることができる。
本発明のバリスタ用焼結体は、酸化クロムをクロム(Cr)換算で0.1~1.5mol%、好ましくは0.1~1.0mol%、最も好ましくは0.2~0.8mol%含有している。
本発明の材料の微細構造をEDX(エネルギー分散型X線分光法)で観察した結果、酸化クロム(クロム)は酸化亜鉛の粒界に偏析しており、これにより、焼結体の結晶粒成長を抑制するため、細かい結晶粒を焼結体全体に亘り均一に得ることができる。酸化クロムの含有量がクロム換算で0.1mol%より少ないとこの効果が充分得られず、1.5mol%を超えると酸化クロムの偏析が多くなって、結晶粒の大きさが不均一となるという問題がある。好ましい範囲の0.1~1.0mol%の範囲であれば、確実にこの効果を得ることができ、また、最も好ましい範囲の0.2~0.8mol%であれば、この効果をより充分に得ることができる。
本発明のバリスタ用焼結体は、酸化マンガンをマンガン(Mn)換算で0.1~1.5mol%、好ましくは0.1~1.0mol%、最も好ましくは0.3~0.8mol%含有している。
本発明の材料の微細構造をEDX(エネルギー分散型X線分光法)で観察した結果、酸化マンガン(マンガン)は酸化亜鉛の粒界に偏析しており、これにより、バリスタ用焼結体の結晶粒成長を抑制し、細かい結晶粒をバリスタ用焼結体全体に亘り均一に得ることができる。また、粒界で電子を捕獲する機能を有し、この結果バリスタ用焼結体の非線形定数を高くする効果をもたらす。酸化マンガンの含有量がマンガン換算で0.1mol%より少ないとこの効果が充分得られず、1.5mol%を超えると酸化マンガンの偏析が多くなって、結晶粒の大きさが不均一となるという問題がある。好ましい範囲の0.1~1.0mol%の範囲であれば、確実にこの効果を得ることができ、また、最も好ましい範囲の0.3~0.8mol%であれば、この効果をより充分に得ることができる。
多くの従来の酸化亜鉛系バリスタ用焼結体において、アンチモン(Sb)は良好なバリスタ特性を得るために積極的に添加されていた。これは、アンチモン(Sb)を用いることにより、他の添加剤の添加効果を良好に制御できるからである。しかしながら、アンチモン(Sb)は上述のように毒性を有するという問題を有している。
本発明にかかるバリスタ用焼結体はアンチモン(Sb)の含有量が不純物レベル以下である(すなわち、不純物レベル以下でしか含有していない)。本明細書において「不純物レベル以下」とは、ゼロまたは不純物レベルとして認識されている量あるいはそれよりも低い量しか含有していないことを意味する。不純物としてのアンチモン(Sb)の一般的な含有量は、例えば、金属換算で0.01mol%以下(モル比で100ppm以下)であり、好ましくは0.005mol%以下である。実用測定上は、例えばICP(誘導結合型プラズマ)湿式分析装置の検出限界(質量比で100ppm)以下であれば、0.01mol%以下の条件を満足する。
多くの従来の酸化亜鉛系バリスタ用焼結体において、希土類元素はバリスタ特性向上のために意図的に添加されていた。
しかし、本発明に係るバリスタ用焼結体では、希土類元素の含有量が不純物レベル以下である。
不純物としての希土類元素の一般的な含有量(不純物レベル)は、例えば、金属換算で、希土類元素の各々について0.01mol%以下程度であり、希土類元素合計で0.05mol%以下程度である。好ましくは、希土類元素の各々について0.005mol%以下であり、希土類元素合計で0.025mol%以下である。実用測定上は、例えばICP(誘導結合型プラズマ)湿式分析装置の検出限界(質量比で100ppm)以下であれば、0.01mol%以下の条件を満足する。
しかし、本発明においては、「希土類元素」は、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)およびルテチウム(Lu)を意味する。
すなわち、本明細書における「希土類元素」にスカンジウム(Sc)は含まれない。
また、希土類元素の中でもプラセオジム(Pr)およびイットリウム(Y)は、焼成時に焼結体の緻密化を妨げるという問題がある。しかし、本発明では、このような問題を生じない。
多くの従来の酸化亜鉛系バリスタ用焼結体において、錫(Sn)は例えば酸化錫の状態で意図的に添加され、積極的に用いられていた。これは、錫(Sn)を用いることにより、焼成時に液相を形成でき、得られる焼結体の緻密化が図れるからと考えられる。
しかし、本発明者らは、鋭意検討した結果、酸化亜鉛を主成分とし、酸化ビスマスをビスマス(Bi)換算で0.6~3.0mol%、酸化コバルトをコバルト(Co)換算で0.2~1.4mol%、酸化クロムをクロム(Cr)換算で0.1~1.5mol%および酸化マンガンをマンガン(Mn)換算で0.1~1.5mol%含む成分系においては、錫(Sn)を添加しなくても、850~950℃内で充分に焼成でき、高いバリスタ特性が得られることを見出した。それどころか、この組成に錫が0.5mol%添加されていると、絶縁性は高いものの、非線形定数が2以下のバリスタ特性とは言えない特性まで悪化すること見出したものである。
本発明の好ましい実施形態の1つでは、本発明のバリスタ用焼結体は、ビスマス(Bi)換算で0.6~3.0mol%の酸化ビスマスと、コバルト(Co)換算で0.2~1.4mol%の酸化コバルトと、クロム(Cr)換算で0.1~1.5mol%の酸化クロムと、マンガン(Mn)換算で0.1~1.5mol%の酸化マンガンと、残部である酸化亜鉛および不可避的不純物とから成る。
このような、不可避的不純物のレベルとして、1種類の元素あたり0.03mol%以下であり、不可避的不純物全体で0.1mol%以下であることを例示できる。
なお、「不可避不純物」は、通常、製造工程およびハンドリング時等において意図せずに含有された不純物を意味する。しかし、たとえ、意図的に添加を行った場合であっても上述した「不純物レベル」以下の含有量であれば、添加による技術的効果を充分に得ることができるものではない。すなわち、本明細書においては、「不可避的不純物」とは、意図して添加したか、意図せずに含有するものかを問わず、含有量が上述の「不純物レベル」以下であることを意味する。従って、本発明では、上述のように、アンチモン(Sb)と希土類元素と錫(Sn)の含有量が不純物レベル以下であることからアンチモン(Sb)、希土類元素および錫(Sn)は、「不可避的不純物」に含まれる。
このような元素は、合計で例えば10mol%以下、好ましくは5mol%以下含まれてよい。この程度であれば、十分なバリスタ特性を確保することが可能である。
・酸化ボロン
本発明のバリスタ用焼結体は、例えば、B2O5のような酸化ボロンを含有してよい。この場合、酸化ボロンをボロン(B)換算で0.1~4.0mol%、好ましくは0.1~2.0mol%含有している。
酸化ボロン(ボロン)は、焼結性を向上させる効果を有する。酸化ボロンの含有量がボロン換算で0.1mol%より少ないとこの効果が充分得られず、4.0mol%を超えると他の添加剤とともにガラス成分を形成して偏析するという問題がある。また、好ましい範囲の0.1~2.0mol%であれば、この効果をより充分に得ることができる。
本発明のバリスタ用焼結体は、例えば、Sc2O3のような酸化スカンジウムを含有してよい。この場合、酸化スカンジウムをスカンジウム(Sc)換算で0.1~2.0mol%、好ましくは0.4~0.7mol%含有している。
酸化スカンジウム(スカンジウム)は、焼結性を向上させる効果を有する。酸化スカンジウムの含有量がスカンジウム換算で0.1mol%より少ないとこの効果が充分得られず、2.0mol%を超えると緻密化しにくくなり偏析が多くなるという問題がある。また、好ましい範囲の0.4~0.7mol%であれば、この効果をより充分に得ることができる。
本発明のバリスタ用焼結体は、例えば、Ba2Oのような酸化バリウムを含有してよい。この場合、酸化バリウムをバリウム(Ba)換算で0.1~2.0mol%、好ましくは0.2~1.5mol%含有している。
酸化バリウム(バリウム)は、粒界に偏析することで好適な粒界を形成するのに寄与する。酸化バリウムの含有量がバリウム換算で0.1mol%より少ないとこの効果が充分得られず、2.0mol%を超えると焼結を阻害し酸化バリウムが偏析するという問題がある。また、好ましい範囲の0.2~1.5mol%であれば、この効果をより充分に得ることができる。
本発明のバリスタ用焼結体は、必要に応じて、更に、酸化ジルコニウム、酸化ケイ素および酸化タングステンから成る群から選択される1つ以上を含んでよい。
これらの酸化物は、非線形定数を向上させるという効果がある。
酸化ジルコニウムを含有する場合、酸化ジルコニウムをジルコニウム(Zr)換算で0.1~2.0mol%(好ましくは、0.2~1.5mol%)含有することにより上述の効果を得ることができる。
酸化ケイ素を含有する場合、酸化ケイ素をケイ素(Si)換算で0.1~2.0mol%(好ましくは、0.2~1.5mol%)含有することにより上述の効果を得ることができる。
酸化タングステンを含有する場合、酸化タングステンをタングステン(W)換算で0.1~2.0mol%(好ましくは、0.2~1.5mol%)含有することにより上述の効果を得ることができる。
このような組成を有し、850℃~950℃で焼成されて得た、本発明のバリスタ用焼結体が有する特性を例示する。
本発明のバリスタ用焼結体は、上述したように優れたバリスタ特性を有する。そこで、以下にバリスタ特性について詳述する。
主なバリスタ特性として、バリスタ電圧、絶縁抵抗および非線形抵抗が知られている。これらについて説明する。
バリスタ(バリスタ用焼結体)は印加する電圧に応じて、抵抗値が急変する特性を有する。すなわち、印加電圧が所定の大きさ以上になると、電気抵抗が急激に低下し、それまでほとんど流れなかった電流が急に流れ出すという性質を持っている。
バリスタ用焼結体に1mAの電流が流れたときのバリスタ端子間電圧(印加電圧)をバリスタ電圧という。バリスタ電圧はバリスタ(バリスタ材料)の粒径と電極間距離に依存するため、これらを制御することである程度の範囲で制御できる。また、ある程度のバリスタ電圧を得るためには後述する非線形定数が高いことが必要となる。
本発明に係るバリスタ用焼結体では、上述した組成範囲内(添加剤を用いる場合を含む)で適正な組成を選択することにより、200μmの電極間距離に対してバリスタ電圧を90~550Vと幅広い範囲で制御できる。
絶縁抵抗値は、バリスタ電圧の10分の1電圧での抵抗値を意味する。
絶縁抵抗値が低いと多くの電流が流れ、リーク電流を生ずることとなる。このため、素子では、10MΩ以上の絶縁抵抗を有することが目安とされている。そして、この10MΩを確実に達成できるように、より高い抵抗値を有している場合、設計の自由度が高く好ましい。本発明に係るバリスタ用焼結体では、例えば10GΩと高い絶縁抵抗値を得ることができる。
非線形定数は、下記の(1)式により求めることができる。
非線形定数=log10(I1/I2)/log10(V1/V2) (1)
ここで、I1は1mAとし、V1はI1=1mAの電流が流れるときのバリスタ端子間電圧であり、I2は0.01mAとし、V2はI2=0.01mAの電流が流れるときのバリスタ端子間電圧である。
このため、結晶粒の粒径を例えば、1μm~30μmとすることができる。
なお、粒径は切片法により求めることができる。より具体的には、バリスタ用焼結体の研磨面を焼結温度よりも低い温度でサーマルエッチングすることにより、粒界を明瞭にした後、例えば倍率1000倍の顕微鏡写真を得る。次に、この顕微鏡写真上に長さ100μmの直線を引き、この直線と交差する粒界数を数え、直線長さ(100μm)を交差する粒界数で除して粒径値を求める。この作業を複数回行って平均値を計算し粒径とする。
次に上述したバリスタ用焼結体の製造方法を説明する。
(1)混合原料(混合粉末)の作製
まず、得ようとするバリスタ用焼結体と実質的に同じ組成を有する混合原料(混合粉末)を準備する。ここで「実質的に同じ組成」とは、焼成工程等において成分の一部が蒸発等により変化することを考慮し、得られたバリスタ用焼結体との間に若干の組成の違いがあることを許容するという意味である。
なお、混合原料(混合粉末)の組成という場合、混合を促進するため、または混合した混合粉末をスラリー状に保持するために用い、そのほとんどが焼成工程において蒸発してしまう、例えばエタノールおよびPVB(ポリビニルブチラール)等の分散媒ならびに、シート成型時の形状の維持のために用いる、例えばフタル酸ジオクチルのような可塑剤を含まない。
同様の趣旨から、混合原料(混合粉末)の組成という場合、混合原料をシート状等の所望の形状にするために用い、そのほとんどが焼成工程において蒸発してしまう、有機溶剤、可塑剤、バインダ、およびこれらより得たビヒクルを含まない。
混合の方法として、ボールミルを用いることを例示できる。例えば、ボールミル容器中にエタノールのような分散媒と、ジルコニアボールのようなボールとともに秤量した素原料とを投入してボールミル混合を行って混合原料を得てよい。
例えば、特許文献3には、混合原料を得る際に、用いる複数種類の素原料の一部である酸化ビスマスと酸化アンチモンと酸化銅を予め混合して350~750℃の温度で仮焼した後、混合原料を得て焼成を行っている。特許文献4~6も同様に、用いる複数種類の素原料の一部(2種類以上)を予め混合し、300℃以上の温度で熱処理することを開示している。
しかし、本発明では、好ましくはこのような熱処理を行うことなく、混合原料を得る。これにより、製造工程がシンプルになり、より低いコストでバリスタ用焼結体を製造することが可能となる。
さらに、本発明者は、このように熱処理を行わずに混合原料を得て、この混合原料を用いて、850℃~950℃で焼成を行うことで、熱処理を経た混合原料を用いて同じ条件で焼成を行った場合と比べて、得られたバリスタ用焼結体のバリスタ特性、とりわけ非線形定数を20%以上向上できることを見出した。
なお、本明細書でいう「熱処理」とは、所望の組成を得るために用いる、複数種類の素原料(粉末原料)のうちの一部である2種類以上の素原料を混合して、例えば300℃以上に加熱することをいい、単一の酸化物等である、各々の素原料を得ることを目的に行う加熱処理、または得られた単一の素原料に対して脱水などの目的で行う加熱処理を含まない。
得られた混合原料を用いて、乾式、湿式を問わず既知の任意の手段を用いて成型し、所定の条件で焼成をして焼結体を得てよい。
例えば、混合原料を乾燥した状態で使用し、成形体(圧粉体)を得て、この成形体を焼成することにより、焼結体を得てよい。
また、混合原料を、エタノール等の有機分散媒または無機分散媒に分散させたスラリー(スラリー状の混合原料、ペースト)得て、これを焼成して焼結体を得てもよい。
また、有機溶剤、可塑剤およびバインダを混合して得たビヒクル内に混合原料を攪拌混合した後、真空脱泡等を行いながら100℃以下程度に加熱し粘度調整を行って、シート形状等の任意の形状の混合原料成形体を得、これらを必要に応じて積層し、焼成して焼結体を得てもよい。
混合原料に、分散媒と、必要に応じてPVBおよび/または可塑剤とを加えて、スラリー(混合原料スラリー)を得た後、図1(a)に示すように、このスラリーをPET等の樹脂フィルム8に塗布し、乾燥させることで、樹脂フィルム8上に混合原料シート2を得ることができる。
これを図1(a)の線Aに沿って打ち抜くことで、図1(b)に示すように、樹脂シート8上の混合原料シート2を所定の形状(図1(b)ではディスク形状)にすることができる。
その後、第1の電極シート6A(電極シート6)と第2の電極シート6B(電極シート6)とが短絡しないように、プレスし、混合原料シート2同士の間、混合原料シート2と第1の電極シート6Aとの間、および混合原料シート2と第2の電極シート6Bの間を圧接(圧着)する。プレスは好ましくは100℃以下に加熱して行う。
焼成は焼成温度850℃~950℃で行う。
焼成は空気中で行ってもよく、必要に応じて酸素雰囲気下で行ってもよい。
なお、図1に示す実施形態では、混合原料シート2を複数枚積層したが、これに代えて1枚の混合原料シート2の下面に第1の電極シート6Aを上面に第2の電極シート6Bを形成し、焼成を行って焼結体を得てもよい。
(1)多層基板(バリスタ内蔵多層基板の基本構造)およびその製造方法
次に、上述したバリスタ焼結体の用途の一例である多層基板(バリスタ内蔵多層基板の基本構造)について説明する。
図2(a)は、本発明の多層基板の基本構造である多層基板100を示す斜視図であり、図2(b)は、図2(a)のXIVb-XIVb断面を示す断面図である。
多層基板100は、順に(図2(a)に示す実施形態では上から順に)第1の絶縁層10A(絶縁層10)と、第2の絶縁層10B(絶縁層10)と、第3の絶縁層10C(絶縁層)とが積層している。第2の絶縁層10Bの内部にバリスタ層2が配置されている。図2(b)に示す実施形態では、第2の絶縁体層10Bを貫通する貫通孔内部にバリスタ層2が配置されている。
バリスタ層2の上面に配置された内部電極6Cは、第1の絶縁層10Aを貫通する貫通電極6Dと接続され、電極6を形成している。この電極6により第1絶縁層10Aの上面(貫通電極6Dの第1絶縁層10Aの上面から露出した部分)とバリスタ層2とが電気的に接続できる。
同様に、バリスタ層2の下面に配置された内部電極6Cは、第3の絶縁層10Cを貫通する貫通電極6Dと接続され、電極6を形成している。この電極6により第3絶縁層10Cの下面(貫通電極6Dの第3絶縁層10Cの下面から露出した部分)とバリスタ層2とが電気的に接続できる。
2つの内部電極6Cは、互いに対向した対向電極となっており、その間にバリスタ層2が配置されている。この部分の構成により、ノイズ等により異常高電圧(高電流)が2つの内部電極6Cの間に発生するとバリスタ層2に電流が流れる。この基本構造を利用して後に説明する多層基板(インターポーザとしての応用例)などの構造を形成することにより、異常高電圧が発生した場合に半導体チップ等の保護対象のデバイスにはほとんど電流が流れず、これらデバイスを保護することができる。また高速通信モジュールやインターポーザ等に対して多層基板100のような部分的にバリスタ層を絶縁層中に内装した基本構造を適用することにより、電極で形成される電気配線がほぼ絶縁層中に配置されるため、絶縁層の優れた伝送特性を活かした多層基板の実現が可能となる。
図3(a)~図3(d)は、積層体150の製造方法を示す斜視図である。まず、積層体150を作製する。
図3(a)に示すように、焼成により絶縁層となる絶縁シート10を準備し、次に図3(b)に示すように、絶縁シート10に貫通孔14を形成する。絶縁シート10は、例えば絶縁シート用混合原料をバインダと混合してスラリー状にしたものを、シート成型機を用いてドクターブレード法により樹脂シート上に塗布し乾燥させた後、樹脂シートを剥がす、等の方法で作製すればよい。
絶縁シート10の貫通孔14に銀電極ペーストを充填し乾燥させることにより、焼成後に貫通電極6Dとなる電極ペースト層6Dを形成する。
次に図3(d)に示すように、絶縁シート10の表面に、スクリーン印刷法を用いて、銀電極ペーストを塗布した後、乾燥させる等の方法により、絶縁シート10の上面に、電極ペースト層6Dと接触するように、電極ペースト層6Cを形成する。
これにより積層体150を得ることができる。積層体150は2つ作製する。
2つの積層体150のうちの1つを用いて、以下に示す方法により積層体160を形成できる。
素原料をボールミル等で混合後、乾燥、解砕し、上述した所定の成分を有する混合原料(混合乾燥粉)を得る。混合原料を、エタノール等の有機分散媒(ビヒクル)または無機分散媒に分散させた混合原料スラリーを得る。
積層体150の電極ペースト層6Cの露出した表面のうち、少なくとも主面を例えばスクリーン印刷等の方法を用いて、得られた混合原料スラリーにより覆った後、乾燥させることにより絶縁シート2、貫通電極6D、電極ペースト層6C、およびバリスタスラリー層2を有する積層体160を得ることができる。
図5を用いて複合積層体を得るためのプレス工程を説明する。
上から順に、バリスタスラリー層2が下面側となるように配置した積層体160(電極ペースト層6Cは不図示)と、積層体160のバリスタスラリー層2および積層体150の電極ペースト層6Cが収容可能な貫通孔14Aを有する絶縁シート10と、電極ペースト層6Cが上面側になるように配置した積層体150とを、図5に示すようにバリスタスラリー層2と貫通孔14Aと電極ペースト層6Cとを整列させて配置する
そして、積層体150および160それぞれの絶縁シート10を、貫通孔14Aを有する絶縁シート10と接触させることにより、積層体160の電極ペースト層6Cおよびバリスタスラリー層2と、積層体150の電極ペースト層6Cとが貫通孔14A内で積層される。
この状態でプレスすることで,複合積層体を得ることができる。
図6(a)は、変形例に係る多層基板200を示す斜視図であり、図6(b)は、図6(a)のXVIIIb-XVIIIb断面を示す断面図である。
多層基板200は、多層基板100と同様の構成を有している。すなわち、多層基板200は、順に(図6(a)に示す実施形態では上から順に)第1の絶縁層10A(絶縁層10)と、第2の絶縁層10B(絶縁層10)と、第3の絶縁層10C(絶縁層10)を有する。第2の絶縁層10Bの内部にバリスタ層2が配置されている。図6(b)に示す実施形態では、第2の絶縁体層10Bを貫通する貫通孔内部にバリスタ層2が配置されている。
次に、上述したバリスタ用焼結体の用途の一例である多層基板(インターポーザとしての応用例)について説明する。この多層基板は、本発明に係るバリスタ用焼結体の用途の一例に過ぎず、本発明に係るバリスタ用焼結体は、これ以外にも例えば磁気センサー基板、電流センサー基板、LED支持体、高周波通信回路用基板のような多くの用途で用いることができる。
多層基板300は、第1の絶縁層10A(絶縁層10)と、第1の絶縁層10Aの上に配置され、上述したバリスタ用焼結体(焼結体)より成るバリスタ層2と、バリスタ層2の上に配置された第2の絶縁層10B(絶縁層10)とを有している。すなわち、バリスタ層2は、第1の絶縁層10Aと第2の絶縁層10Bとにより挟持されている。絶縁層10A、10Bは任意の絶縁材料から形成されてよく、例えばガラスセラミック層であってよい。
バリスタ層2の主面のうち、第1の絶縁層10A側の主面(図7では下面)に複数の第1の内部電極36A(内部電極36)が設けられている。一方、バリスタ層2の主面のうち、第2の絶縁層10B側の主面(図7では上面)に複数の第2の内部電極36B(内部電極36)が設けられている。
さらに、第1の絶縁層10A、バリスタ層2および第2の絶縁層10Bを貫く、複数の貫通電極26が設けられている。
例えば、詳細を後述する図5(h)i)およびii)に示される実施形態では、貫通電極26は、1つの第1の表面電極6Aと、1つの第1の内部電極36Aおよび1つの第2の内部電極36Bの少なくとも一方と、1つの第2の表面電極6Bと電気的に接続されている。
すなわち、貫通電極26は、1つの第1の表面電極6Aと、1つの第1の内部電極36Aおよび1つの第2の内部電極36Bの少なくとも一方と、1つの第2の表面電極6Bとに接続されていればよい。
また、第1の絶縁層10Aから露出した貫通電極26の端面を第1の表面電極6Aとして用いてもよく、また、第2の絶縁層10Bから露出した貫通電極26の端面を第2の表面電極6Bとして用いてもよい。
第1の表面電極6A、貫通電極26、第1の内部電極36A、第2の内部電極36Bおよび第2の表面電極6Bは、好ましくは導電性に優れる銀または銀合金により形成されている。
以下に多層基板300の製造方法を示す。
図8~図10は、多層基板300の製造方法を示す図である。図9(f)ii)は図9(f)i)のB-B線断面を示す断面図であり、図10(h)ii)は図10(h)i)の点線Cで囲んだ部分の拡大図である。図8および図9(e)、(f)i)は斜視図であり、図9(f)ii)および図10は断面図である。
次に、図8(b)に示すように、第1の絶縁シート10Aの上面(例えば、上面の一部)にスクリーン印刷等により第1の内部電極36Aを形成する。
混合原料シート2は、上述した混合原料をバインダと混合してスラリー状にしたものを塗布した後、乾燥して形成してよい。
所定組成で秤量した素原料をボールミル等で混合後、乾燥、解砕し、100~500μmのふるいを通し整粒した混合原料を得る。
エタノール等の有機溶剤と、可塑剤と、有機バインダとを混合して作成したビヒクルに、混合原料(整粒粉)を所定比率で投入し、プロペラ攪拌機などで混合する。均一になったところで真空脱泡しながら温度を上げて粘度調整して混合原料スラリーを作製する。
この混合原料スラリーを、スクリーン印刷等により、第1の絶縁シート10Aの上面および第1の内部電極36Aを覆うように塗布し、その後乾燥させることにより混合原料シート2を得ることができる。
次に、図9(e)に示すように、混合原料シート2(第2の内部電極36Bが形成されていない部分)および第2の内部電極36Bを覆うように、スクリーン印刷等により第2の絶縁シート(焼成されて絶縁層となるシート)10Bを形成する。
貫通電極26は、例えば、スクリーン印刷により、貫通孔内に銀(銀粒子)を供給することにより形成できる。
次に、樹脂シート8を剥離した後、焼成を行う。焼成の前にプレス装置等を用いて、圧接を行ってもよい。圧接は、75℃~85℃に加熱してプレス圧50kgf/cm2以上で実施することが好ましい。焼成は、850℃~950℃の間の温度で行う。これにより、例えば銀等から成る、貫通電極26、第1の内部電極36Aおよび第2の内部電極36Bが損傷を受けるのを防止できる。
これにより、多層基板300を得ることができる。
なお、以上の製造方法は絶縁シート用スラリーや混合原料スラリーを順次塗布し乾燥する方法を用いたが、前述の多層基板(基本構造の変形例)の項で説明したように各々のシートを別々に形成した後、順次積層していく方法を用いてもよい。
図10(h)ii)には、2つのグループ電極が示されている。1つは、同図の左側に位置し、第1の表面電極6Aと、貫通電極26と、第1の内部電極36Aと、第2の表面電極6Bとから成るグループ電極である(これを便宜上「左グループ電極」と呼ぶ)。もう1つは、同図の右側に位置し、第1の表面電極6Aと、貫通電極26と、第2の内部電極36Bと、第2の表面電極6Bとから成るグループ電極である(これを便宜上「右グループ電極」と呼ぶ)。
これにより、通常の使用時、すなわちノイズ等による高電圧が生じていない状態では、点線D示すように、右グループ電極の第1の表面電極6Aから入った電流は、右グループの貫通電極(第2の貫通電極)26、右グループ電極の第2の表面電極6Bおよび半導体チップの電極16を介して、半導体チップ12の内部を通り、半導体チップ12の別の電極12から、左グループ電極の第2の表面電極6Bおよび左グループ電極の貫通電極(第1の貫通電極)26を通り、左グループ電極の第1の表面電極6Aから出て行く。これにより、半導体チップ12に電流が供給される。
しかし、ノイズ等により異常高電圧(高電流)が発生すると、この高電圧が印加されてバリスタ層2の電気抵抗が急激に低下することから、右グループ電極の第1の表面電極6Aに入った高電流は、矢印Eに沿って進む。すなわち、右グループ電極内を通る電流は、右グループ電極の第1の表面電極6Aおよび右グループ電極の貫通電極(第2の貫通電極)26を通った後、右グループ電極の第2の内部電極36Bから、バリスタ層2に入り、さらに左グループ電極の第1の内部電極36Aから左グループ電極内に入り、左グループ電極の貫通電極(第1の貫通電極)26を通った後、左グループ電極の第1の表面電極6Aから出て行く。
この結果、半導体チップ10にはほとんど電流が流れず、異常高電圧から半導体チップ12を保護することができる。
しかし、この実施形態に限定されるものではない。高電圧が印加された際にバリスタ層2を介して、第1の貫通電極26に電気的に接続された第1の内部電極36Aと、第2の貫通電極26に電気的に接続された第2の内部電極36Bとの間に電流が流れる限り他の構成を取り得る。
例えば、図7の実施形態に示すように、第1の貫通電極26(図7の左から2番目の貫通電極26)が第1の内部電極36Aおよび第2の内部電極36Bに電気的に接続され、第2の貫通電極26(図7の左から3番目の貫通電極)が、別の第1の内部電極36Aおよび第2の内部電極36Bに電気的に接続されていてもよい。
図11~図13は、多層基板400の別の製造方法を示す図である。図12(e)ii)は図12(e)i)のF-F線断面を示す断面図であり、図13(g)ii)は図13(g)i)の点線Gで囲んだ部分の拡大図である。図11および図12(e)i)は斜視図であり、図12(e)ii)、図12(f)および図13は断面図である。
次に、図11(b)に示すように、第1の絶縁シート10Aの上面(例えば、上面の一部)にスクリーン印刷等により第1の内部電極36Aを形成する。
混合原料シート2は、例えば、スラリー状にした混合原料をスクリーン印刷することにより形成してよい。
次に、図12(e)i)、ii)に示すように、第1の絶縁シート10Aと対向し(第1の絶縁シート10Aと第2の絶縁シート10Bの互いに対向する面が同じ面積を有するように)、かつ第2の内部電極36Bを覆うように、第2の絶縁シート(焼成されて絶縁層となるシート)10Bを、スクリーン印刷等の方法で形成する。
なお、図12および図13に示すように、第1の絶縁シート10Aと第2の絶縁シート10Bとが対向する部分のうち、第1の内部電極36A、混合原料シート2および第2の内部電極36Bが形成されている部分以外については、空間4が形成されていてもよい。
貫通電極26は、例えば、スクリーン印刷により、貫通孔内に銀(銀粒子)を供給することにより形成できる。
次に、樹脂シート8を剥離した後、焼成を行う。焼成の前にプレス装置等を用いて、圧接を行ってもよい。圧接は、75℃~85℃に加熱してプレス圧50kgf/cm2以上で実施することが好ましい。圧接の際に空間4の少なくとも一部が潰されてもよい(潰された部分には混合原料シート2が存在してよい)。
焼成は、850℃~950℃の間の温度で行う。これにより、例えば銀等から成る、貫通電極26、第1の内部電極36Aおよび第2の内部電極36Bが損傷を受けるのを防止できる。
これにより、多層基板400を得ることができる。
なお、以上の製造方法も前述の多層基板(バリスタ内蔵多層基板の基本構造の変形例)の項で説明したように各々のシートを別々に形成した後、順次積層していく方法を用いてもよい。
しかし、ノイズ等により異常高電圧(高電流)が発生すると、右グループ電極の第1の表面電極6Aに入った高電流は、矢印Iに沿って進む。すなわち、右グループ電極内を通る電流は、右グループ電極の第2の内部電極36Bから、バリスタ層2に入り、さらに左グループ電極の第1の内部電極36Aから左グループ電極内に入り、左グループ電極の第1の表面電極6Aから出て行く。
この結果、半導体チップ10にはほとんど電流が流れず、異常高電圧から半導体チップ12を保護することができる。
表1に示す素原料を同表の組成と成るように秤量し、ボールミル容器中にエタノール、ジルコニアボールとともに投入して、100rpmで20時間ボールミル混合した。なお本実施例(以下に示す実施例2~6も同じ)における組成は金属元素換算のmol%で示している。すなわち、それぞれの酸化物が含有する酸素原子を考慮せず、酸素と結びついている金属原子のみを考慮して、モル比率を算出し求めたものであり、表1では、Zn、Bi、Co、Mn、Crのそれぞれの金属元素のmol%を示している。
また、表1に示す全てのサンプル(乾燥後の混合原料)について、ICP(誘導結合型プラズマ)湿式分析を行った。その結果、アンチモン(Sb)、希土類元素および錫(Sn)は何れも検出限界以下(検出限界:質量比で100ppm)であった。このことは、質量比からモル比に換算することで得られるアンチモン(Sb)、希土類元素および錫(Sn)のそれぞれの含有量が0.01mol%未満であることを意味する。
このスラリー状の混合原料を用い、図1に示す方法でバリスタ積層体を得た、
具体的には、このスラリー状の混合原料をPETフィルム8上に厚さ0.07mmで塗布した後、乾燥させて混合原料シート2を得た。
同様に銀(Ag)粉末をエタノール、PVB(ポリビニルブチラール)および可塑剤と混合してスラリーを作製し、このスラリーをPETフィルム上に厚さ0.08mm厚みに塗布後、乾燥させて銀電極シート6を得た。
混合原料シート積層体の両面それぞれに、銀電極シート6(直径6mm×厚さ0.05mm)を積層して電極とし、電極が短絡しないように注意して85℃でプレスして圧接した。
上記プレス成型体を鏡面研磨し、顕微鏡観察を行ったところ、緻密化していた。またそれぞれの結晶粒径(粒径)を測定した結果を図14に示す。
粒径の測定は、切片法により求めた。より具体的には、焼結体の研磨面を焼結温度よりも低い840℃でサーマルエッチングすることにより、粒界を明瞭にした後、倍率1000倍の顕微鏡写真を得た。この写真上に長さ100μmの直線を3本引いた。それぞれの直線について、交差する粒界数を数え、直線長さ(100μm)を交差する粒界数で除した粒径値を求めた。そして、これら3つの直線の粒径値の平均値を粒径とした。図14において、●印は粒径(上述の3つの粒径値の平均)示し、●印と接触している縦棒の上端は3つの粒径値の最大値を示し、下端は3つの粒径値の最小値を示す。すなわち、縦棒の長さにより、粒径のバラツキの大きさを示している。)
図14より、実施例に係るサンプル1が最も粒径が小さく且つ均一であることが判る。
絶縁抵抗値は、バリスタ電圧の10分の1での抵抗値である。非線形定数は上述の(1)式により求めた。
結果を表2に示す。
表3に示す素原料を同表の組成と成るように秤量し、ボールミル容器中にエタノール、ジルコニアボールとともに投入して、100rpmで20時間ボールミル混合した。
また、表3に示す全てのサンプル(乾燥後の混合原料)について、ICP(誘導結合型プラズマ)湿式分析を行った。その結果、アンチモン(Sb)、希土類元素および錫(Sn)は何れも検出限界以下(検出限界:質量比で100ppm)であった。このことは、質量比からモル比に換算することで得られるアンチモン(Sb)、希土類元素および錫(Sn)のそれぞれの含有量が0.01mol%未満であることを意味する。
図16(b)に示すように、銀電極ペーストをスクリーン印刷することにより、混合原料シート2Aの主面からはみ出ないように混合原料シート2Aの上に18mm×30mm第1の電極ペースト層6Eを形成した。
次に、図16(c)に示すように、スクリーン印刷により、上述のスクリーン印刷用スラリー(それぞれ混合原料シート2Aを形成するのに用いた素原料と同組成の対応したもの)を第1の電極ペースト層6Eの上の13mm×25mmの領域に塗布する。そして、塗布したスラリーを乾燥することでバリスタスラリー層2Bを得た。
次に、バリスタスラリー層2Bの主面上からはみ出ないように銀電極ペーストをスクリーン印刷することにより、バリスタスラリー層2Bの上に塗布し、直径6mm第2の電極ペースト層6Fを設けた。
なお、この混合原料シート2Aは、第1の電極層6E、第2のバリスタ層および第2の電極層6Fの形状を保持するために用いるダミーシートである。ダミーシートとして、バリスタ層を用いることで、焼成時の拡散によって第2バリスタ層2Bの組成が変化し、所望の特性が得られなくなるのをより確実に防止できるため、より正確に第2バリスタ層の特性を測定できる。
得られた多層基板500のサンプル2-1~2-60に対して実施例1と同じ方法によりバリスタ層2Bのバリスタ特性を測定した。ただしバリスタ特性の測定時に印加した電圧(バリスタ電圧)を第2のバリスタ層2Bの厚さで割ることにより規格化した値をバリスタ電圧とした。電流は測定電流値(A)を電極面積(cm2)で割った値を用いた。
バリスタ特性を測定する場合の電極は電極層6Cと電極層6D対向電極として測定した。測定結果を表4に示す。
表4より、表3の組成の原料を用いた場合にも本発明の実施例のサンプルは絶縁抵抗値、非線形定数、およびバリスタ電圧のすべてに優れていることが判る。
表5に示す素原料を同表の組成と成るように秤量し、実施例1と同じ方法により、両端に電極6を有するバリスタ積層体22(サンプル6~8)を得た。
なお、表5に示す全てのサンプル(乾燥後の混合原料)について、実施例1と同様にICP(誘導結合型プラズマ)湿式分析を行った。その結果、アンチモン(Sb)、希土類元素および錫(Sn)は何れも検出限界以下(検出限界:質量比で100ppm)であった。このことは、質量比からモル比に換算することで得られるアンチモン(Sb)、希土類元素および錫(Sn)のそれぞれの含有量が0.01mol%未満であることを意味する。
表7に示す素原料を同表の組成と成るように秤量し、実施例2と同じ方法で、多層基板500を得た。
表7に示す全てのサンプル(乾燥後の混合原料)について、ICP(誘導結合型プラズマ)湿式分析を行った。その結果、アンチモン(Sb)、希土類元素および錫(Sn)は何れも検出限界以下(検出限界:質量比で100ppm)であった。このことは、質量比からモル比に換算することで得られるアンチモン(Sb)、希土類元素および錫(Sn)のそれぞれの含有量が0.01mol%未満であることを意味する。
バリスタ特性を測定する場合の電極は電極層6Cと電極層6D対向電極として測定した。測定結果を表8に示す。
表8より、表7の組成の原料を用いた場合にも本発明の実施例のサンプルは絶縁抵抗値、非線形定数、およびバリスタ電圧のすべてに優れていることが判る。
図17(a)は、実施例5に係るサンプル9の断面図であり、図17(b)は実施例5に係るサンプル10の断面図である。
サンプル9は、多層基板内(より詳細には、2つの絶縁層10の間)に電極6と一体的に形成されたパリスタ層2を有する実施例サンプル(多層基板)である。一方、サンプル10は、サンプル9と特性を比較するために作製した、実施例サンプルであり、絶縁層10を有しない。
この混合原料(乾燥後)について、ICP(誘導結合型プラズマ)湿式分析を行った。その結果、アンチモン(Sb)、希土類元素および錫(Sn)は何れも検出限界以下(検出限界:質量比で100ppm)であった。このことは、質量比からモル比に換算することで得られるアンチモン(Sb)、希土類元素および錫(Sn)のそれぞれの含有量が0.01mol%未満であることを意味する。
得られた混合原料を用いて、実施例1と同じ方法で、直径14mm×厚さ0.2mmのディスク状の混合原料シート2を得た。
この絶縁材料をエタノール、PVBおよび可塑剤と混合してスラリー状の絶縁層用混合原料を作製した。このとき、スラリーに占めるPVBの含有率は10体積%とした。
このスラリー状の絶縁層用混合原料をPETフィルム上に塗布した後、乾燥させて、直径14mm×厚さ0.05mmの絶縁シート10を得た。
得られた、混合原料シート2と絶縁シート10と銀電極シート6を図17(a)に示すよう積層した。すなわち、混合原料シート2の2つの主面それぞれに、混合原料シート2の一部分を覆う銀電極シート6と、銀電極シート6および混合原料シート2を覆う絶縁シート10とが配置された積層体を得た。
そして、この積層体を85℃でプレスし、各層を圧接した後、この圧接した積層体を昇温速度200℃/時間で昇温し、900℃で2時間焼成して、多層基板(LTCC内蔵バリスタ積層体)であるサンプル9を得た。
なお、サンプル9はバリスタ特性を測定できるように、サンプル9の2つの絶縁層10はそれぞれ、貫通孔および該貫通孔に配置され、電極6と電気的に接続している貫通電極(図17(a)には図示していない)を有している。
ただし、サンプル9とサンプル10では、実際に得られたバリスタ層2の厚さに多少の違いを生じる可能性が考えられたため、バリスタ特性測定後にサンプル9とサンプル10の断面を観察し、それぞれのバリスタ層2の厚さ(2つの電極6間の距離と同じ)を測定した。
そして、バリスタ特性の測定時に印加した電圧(バリスタ電圧)をバリスタ層2の厚さで割ることにより規格化した値をバリスタ電圧とした。測定結果を表9に示す。
すなわち、バリスタ層2の両面に絶縁層10を有しないサンプル10のみならず、バリスタ層2の両面に絶縁層10を有する多層基板(LTCC内蔵バリスタ積層体)であるサンプル9も優れたバリスタ特性を有すること確認した。
(1)多層基板100
表10に示す素原料を同表の組成と成るように秤量し、ボールミル容器中にエタノール、ジルコニアボールとともに投入して、100rpmで20時間ボールミル混合した。
また、表10に示す全てのサンプル(乾燥後の混合原料)について、ICP(誘導結合型プラズマ)湿式分析を行った。その結果、アンチモン(Sb)、希土類元素および錫(Sn)は何れも検出限界以下(検出限界:質量比で100ppm)であった。このことは、質量比からモル比に換算することで得られるアンチモン(Sb)、希土類元素および錫(Sn)のそれぞれの含有量が0.01mol%未満であることを意味する。
絶縁シート10の貫通孔14に銀電極ペーストを充填し乾燥させることにより 、焼成後に貫通電極6Fとなる電極ペースト層6Fを形成した。
図5に示すように積層体160、貫通孔14Aを設けた絶縁シート10および積層体150を配置した。積層体150の電極ペースト層6Eの円中心と積層体160の電極ペースト層6Eの円中心とが、位置精度0.5mmで、積層体160の電極ペースト層6Eおよびバリスタスラリー層2と、積層体150の電極ペースト層6Eとが貫通孔14A内で積層するように、積層体150および160、それぞれの絶縁層10を、貫通孔14Aを有する絶縁層10と接触(積層)させた。そして85℃でプレスして複合積層体を得た。
得られた多層基板100のサンプル6-1~6-7に対して実施例1と同じ方法によりバリスタ層2のバリスタ特性を測定した。ただし、バリスタ特性の測定時に印加した電圧(バリスタ電圧)を焼結後のバリスタ層の厚さで割ることにより規格化した値をバリスタ電圧とした。電流は測定電流値(A)を電極面積(cm2)で割った値を用いた。
バリスタ特性を測定する場合の電極は、貫通電極6Fの絶縁層10Aの上面から露出している部分および貫通電極6Fの絶縁層10Cの下面から露出している部分それぞれに導電性ペーストを塗布して測定端子とした。測定結果を表11に示す。
表11より、表10の組成の原料を用いた場合にも本発明の実施例のサンプルは絶縁抵抗値、非線形定数およびバリスタ電圧のすべてに優れていることが判る。
表12に示す素原料を同表の組成と成るように秤量し、ボールミル容器中にエタノール、ジルコニアボールとともに投入して、100rpmで20時間ボールミル混合した。
また、表12に示す全てのサンプル(乾燥後の混合原料)について、ICP(誘導結合型プラズマ)湿式分析を行った。その結果、アンチモン(Sb)、希土類元素および錫(Sn)は何れも検出限界以下(検出限界:質量比で100ppm)であった。このことは、質量比からモル比に換算することで得られるアンチモン(Sb)、希土類元素および錫(Sn)のそれぞれの含有量が0.01mol%未満であることを意味する。
貫通孔14に、絶縁シート10の貫通孔14に銀電極ペーストを充填し乾燥させることにより、焼成後に貫通電極6Fとなる電極ペースト層6Fを形成した。
図5に示すように積層体160(絶縁シート10の2つの主面のうち、混合原料シート2が配置された側が下面となるように配置)、貫通孔14Aを設けた絶縁シート10および積層体150を配置した。積層体150の電極ペースト層6Eの円中心と積層体160の電極ペースト層6Eの円中心とが、位置精度0.5mmで、積層体160の電極ペースト層6Eおよび混合原料シート2と、積層体150の電極ペースト層6Eとが貫通孔14A内で積層するように、積層体150および160、それぞれの絶縁層10を、貫通孔14Aを有する絶縁層10と接触(積層)させた。そして85℃でプレスして複合積層体を得た。
得られた多層基板200のサンプル6-8~6-14に対して実施例1と同じ方法によりバリスタ層のバリスタ特性を測定した。ただし、バリスタ特性の測定時に印加した電圧(バリスタ電圧)を焼結後のバリスタ層の厚さで割ることにより規格化した値をバリスタ電圧とした。電流は測定電流値(A)を電極面積(cm2)で割った値を用いた。
バリスタ特性を測定する場合の電極は、貫通電極6Fの絶縁層10Aの上面から露出している部分と、貫通電極6Fの絶縁層10Cの下面から露出している部分それぞれに導電性ペーストを塗布して測定端子とした。測定結果を表11に示す。
表13より、表12の組成の原料を用いた場合にも本発明の実施例のサンプルは絶縁抵抗値、非線形定数およびバリスタ電圧のすべてに優れていることが判る。
2A:第1のバリスタ層(焼成前は混合原料シートまたはスラリー層)
2B:第2のバリスタ層(焼成前は混合原料シートまたはスラリー層)
6:電極
6A:第1の表面電極
6B:第2の表面電極
6C:第1の電極層
6D:第2の電極層
6E:表面電極
6F:貫通電極
8:樹脂シート
10:絶縁層
10A:第1の絶縁層
10B:第2の絶縁層
10C:第3の絶縁層
12:半導体チップ
14:貫通孔
16:電極
18:ワイヤ
22:バリスタシート積層体(焼成前は混合原料シート積層体)
26:貫通電極
36A:第1の内部電極
36B:第2の内部電極
100、300、400、500:多層基板
450、460:積層体
Claims (11)
- 酸化亜鉛を主成分とし、
酸化ビスマスをビスマス(Bi)換算で0.6~3.0mol%、酸化コバルトをコバルト(Co)換算で0.2~1.4mol%、酸化クロムをクロム(Cr)換算で0.1~1.5mol%および酸化マンガンをマンガン(Mn)換算で0.1~1.5mol%含み、
アンチモン(Sb)と希土類元素と錫(Sn)の含有量が不純物レベル以下であることを特徴とするバリスタ用焼結体。 - 酸化ビスマスをビスマス(Bi)換算で0.6~3.0mol%、酸化コバルトをコバルト(Co)換算で0.2~1.4mol%、酸化クロムをクロム(Cr)換算で0.1~1.5mol%および酸化マンガンをマンガン(Mn)換算で0.1~1.5mol%含み、残部が酸化亜鉛と不可避的不純物であることを特徴とする請求項1に記載のバリスタ用焼結体。
- 酸化スカンジウムをスカンジウム(Sc)換算で0.1~2.0mol%、酸化バリウムをバリウム(Ba)換算で0.1~2.0mol%および酸化ボロンをボロン(B)換算で0.1~4.0mol%から成る群から選択される少なくとも1つを更に含むことを特徴とする請求項1または2に記載のバリスタ用焼結体。
- 酸化スカンジウムをスカンジウム(Sc)換算で0.1~2.0mol%、酸化バリウムをバリウム(Ba)換算で0.1~2.0mol%および酸化ボロンをボロン(B)換算で0.1~2.0mol%から成る群から選択される少なくとも1つを更に含むことを特徴とする請求項3に記載のバリスタ用焼結体。
- 酸化ビスマスをビスマス(Bi)換算で0.6~2.0mol%、酸化コバルトをコバルト(Co)換算で0.2~1.0mol%、酸化クロムをクロム(Cr)換算で0.1~1.0mol%および酸化マンガンをマンガン(Mn)換算で0.1~1.0mol%含むことを特徴とする請求項1~4のいずれか1項に記載のバリスタ用焼結体。
- 順に、第1の絶縁層と、請求項1~5のいずれか1項に記載のバリスタ用焼結体であるバリスタ層と、第2の絶縁層とを備え、
前記バリスタ層の一方の主面に配置された第1の内部電極と、前記バリスタ層の他方の主面に配置された第2の内部電極と、前記第1の絶縁層を貫通する第1の貫通電極および前記第2の絶縁層を貫通する第2の貫通電極とを有し、
前記第1の貫通電極は前記第1の内部電極と電気的に接続され、前記第2の貫通電極は前記第2の内部電極と電気的に接続されていることを特徴とする多層基板。 - 順に積層されている、第1の絶縁層と、第2の絶縁層と、第3の絶縁層とを有し、
前記第2の絶縁層が、その内部に請求項1~5のいずれか1項に記載のバリスタ用焼結体であるバリスタ層を備え、
前記バリスタ層の一方の主面に配置された第1の内部電極と、前記バリスタ層の他方の主面に配置された第2の内部電極と、前記第1の絶縁層を貫通する第1の貫通電極および前記第2の絶縁層を貫通する第2の貫通電極とを有し、
前記第1の貫通電極は前記第1の内部電極と電気的に接続され、前記第2の貫通電極は前記第2の内部電極と電気的に接続されていることを特徴とする多層基板。 - 順に、第1の絶縁層と、請求項1~3のいずれか1項に記載のバリスタ用焼結体であるバリスタ層と、第2の絶縁層とを備え、
前記バリスタ層の一方の主面に配置された第1の内部電極と、前記バリスタ層の他方の主面に配置された第2の内部電極と、前記第1の絶縁層、前記バリスタ層および前記第2の絶縁層を貫通する第1および第2の貫通電極とを有し、
前記第1の貫通電極は前記第1の内部電極と電気的に接続され、前記第2の貫通電極は前記第2の内部電極と電気的に接続されていることを特徴とする多層基板。 - 1)少なくとも、酸化亜鉛と、酸化ビスマスと、酸化コバルトと、酸化クロムと、酸化マンガンとを熱処理を施すことなく混合して、酸化亜鉛を主成分とし、酸化ビスマスをビスマス(Bi)換算で0.6~3.0mol%、酸化コバルトをコバルト(Co)換算で0.2~1.4mol%、酸化クロムをクロム(Cr)換算で0.1~1.5mol%および酸化マンガンをマンガン(Mn)換算で0.1~1.5mol%含み、アンチモン(Sb)と希土類元素と錫(Sn)の含有量が不純物レベル以下である混合原料を得る工程と、
2)前記混合原料を850℃~950℃で焼成する工程と、
を含むことを特徴とする、バリスタ用焼結体の製造方法。 - 前記混合原料が、酸化スカンジウムをスカンジウム(Sc)換算で0.1~2.0mol%、酸化バリウムをバリウム(Ba)換算で0.1~2.0mol%および酸化ボロンをボロン(B)で0.1~4.0mol%から成る群から選択される少なくとも1つを更に含むことを特徴とする請求項9に記載のバリスタ用焼結体の製造方法。
- 1)少なくとも、酸化亜鉛と、酸化ビスマスと、酸化コバルトと、酸化クロムと、酸化マンガンとを熱処理を施すことなく混合して、酸化亜鉛を主成分とし、酸化ビスマスをビスマス(Bi)換算で0.6~3.0mol%、酸化コバルトをコバルト(Co)換算で0.2~1.4mol%、酸化クロムをクロム(Cr)換算で0.1~1.5mol%および酸化マンガンをマンガン(Mn)換算で0.1~1.5mol%含み、アンチモン(Sb)と希土類元素と錫(Sn)の含有量が不純物レベル以下である混合原料を得る工程と、
2)絶縁材料から成る第1の絶縁シートの上に、第1の電極材を配置する工程と、
3)前記第1の電極材の上に、前記混合原料を含む混合原料シートを形成する工程と、
4)前記混合原料シートの上に、第2の電極材を配置する工程と、
5)前記第2の電極材の上に、絶縁材料から成る第2の絶縁シートを形成する工程と、
6)前記第1の絶縁シートと、前記混合原料シートと、前記第2の絶縁シートとを貫通し、前記第1の電極材と電気的に接続された第1の貫通電極を形成する工程と、
7)前記第1の絶縁シートと、前記混合原料シートと、前記第2の絶縁シートとを貫通し、前記第2の電極材と電気的に接続された第2の貫通電極を形成する工程と、
8)前記第1の絶縁シートと、前記混合原料シートと、前記第2の絶縁シートとを850℃~950℃で焼成する工程と、
を含むことを特徴とする多層基板の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015551577A JP6387969B2 (ja) | 2013-12-06 | 2014-12-05 | バリスタ用焼結体およびこれを用いた多層基板、ならびにそれらの製造方法 |
CN201480060848.1A CN105706188B (zh) | 2013-12-06 | 2014-12-05 | 变阻器用烧结体和使用其的多层基板、以及它们的制造方法 |
US15/101,650 US9741477B2 (en) | 2013-12-06 | 2014-12-05 | Sintered body for varistor, multilayer substrate using same, and production method for these |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013253230 | 2013-12-06 | ||
JP2013-253230 | 2013-12-06 | ||
JP2014082000 | 2014-04-11 | ||
JP2014-082000 | 2014-04-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015083822A1 true WO2015083822A1 (ja) | 2015-06-11 |
Family
ID=53273568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/082250 WO2015083822A1 (ja) | 2013-12-06 | 2014-12-05 | バリスタ用焼結体およびこれを用いた多層基板、ならびにそれらの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9741477B2 (ja) |
JP (1) | JP6387969B2 (ja) |
CN (1) | CN105706188B (ja) |
WO (1) | WO2015083822A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017157937A1 (en) * | 2016-03-17 | 2017-09-21 | Epcos Ag | Ceramic material, varistor and methods of preparing the ceramic material and the varistor |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019204430A1 (en) | 2018-04-17 | 2019-10-24 | Avx Corporation | Varistor for high temperature applications |
DE102018116222A1 (de) * | 2018-07-04 | 2020-01-09 | Tdk Electronics Ag | Keramikmaterial, Varistor und Verfahren zur Herstellung des Keramikmaterials und des Varistors |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07211518A (ja) * | 1994-01-19 | 1995-08-11 | Matsushita Electric Ind Co Ltd | 電圧非直線性抵抗器の製造方法 |
JPH1032104A (ja) * | 1996-07-12 | 1998-02-03 | Ooizumi Seisakusho:Kk | 電圧非直線抵抗体 |
JPH1197217A (ja) * | 1997-09-17 | 1999-04-09 | Matsushita Electric Ind Co Ltd | 低電圧用電圧非直線性抵抗器の製造方法 |
JP2000243608A (ja) * | 1999-02-18 | 2000-09-08 | Atsushi Iga | 酸化亜鉛バリスタとその製造方法 |
JP2001093705A (ja) * | 1999-09-21 | 2001-04-06 | Toshiba Corp | 非直線抵抗体およびその製造方法 |
JP2003109806A (ja) * | 2001-09-28 | 2003-04-11 | Toshiba Corp | 非直線抵抗体及びその製造方法 |
JP2003335578A (ja) * | 2002-05-16 | 2003-11-25 | Tdk Corp | 電圧依存性非直線抵抗体 |
JP2008100856A (ja) * | 2006-10-17 | 2008-05-01 | Koa Corp | 酸化亜鉛積層チップバリスタの製造方法 |
JP2009239231A (ja) * | 2008-03-28 | 2009-10-15 | Tdk Corp | バリスタ |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5338334A (en) * | 1992-01-16 | 1994-08-16 | Institute Of Gas Technology | Process for preparing submicron/nanosize ceramic powders from precursors incorporated within a polymeric foam |
JPH09312203A (ja) | 1996-05-23 | 1997-12-02 | Matsushita Electric Ind Co Ltd | 酸化亜鉛系磁器組成物とその製造方法及び酸化亜鉛系バリスタ |
JP2005097070A (ja) | 2003-09-24 | 2005-04-14 | Atsushi Iga | 酸化亜鉛系焼結体と酸化亜鉛バリスタ |
US7940155B2 (en) * | 2005-04-01 | 2011-05-10 | Panasonic Corporation | Varistor and electronic component module using same |
JP4690123B2 (ja) | 2005-06-22 | 2011-06-01 | コーア株式会社 | 酸化亜鉛積層型バリスタの製造方法 |
JP5163097B2 (ja) * | 2007-12-20 | 2013-03-13 | Tdk株式会社 | バリスタ |
JP5093345B2 (ja) | 2008-05-08 | 2012-12-12 | 株式会社村田製作所 | Esd保護機能内蔵基板 |
DE602008005570D1 (de) * | 2008-07-09 | 2011-04-28 | Toshiba Kk | Nicht linearer Strom-/Spannungswiderstand |
JP2010238882A (ja) | 2009-03-31 | 2010-10-21 | Tdk Corp | バリスタ材料、バリスタ素体及び複合積層型電子部品 |
TW201221501A (en) | 2010-11-26 | 2012-06-01 | Sfi Electronics Technology Inc | Process for producing ZnO varistor particularly having internal electrode composed of pure silver and sintered at a lower sintering temperature |
CN102584206A (zh) * | 2012-01-19 | 2012-07-18 | 深圳顺络电子股份有限公司 | 一种氧化锌压敏电阻生料 |
-
2014
- 2014-12-05 US US15/101,650 patent/US9741477B2/en active Active
- 2014-12-05 CN CN201480060848.1A patent/CN105706188B/zh not_active Expired - Fee Related
- 2014-12-05 WO PCT/JP2014/082250 patent/WO2015083822A1/ja active Application Filing
- 2014-12-05 JP JP2015551577A patent/JP6387969B2/ja not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07211518A (ja) * | 1994-01-19 | 1995-08-11 | Matsushita Electric Ind Co Ltd | 電圧非直線性抵抗器の製造方法 |
JPH1032104A (ja) * | 1996-07-12 | 1998-02-03 | Ooizumi Seisakusho:Kk | 電圧非直線抵抗体 |
JPH1197217A (ja) * | 1997-09-17 | 1999-04-09 | Matsushita Electric Ind Co Ltd | 低電圧用電圧非直線性抵抗器の製造方法 |
JP2000243608A (ja) * | 1999-02-18 | 2000-09-08 | Atsushi Iga | 酸化亜鉛バリスタとその製造方法 |
JP2001093705A (ja) * | 1999-09-21 | 2001-04-06 | Toshiba Corp | 非直線抵抗体およびその製造方法 |
JP2003109806A (ja) * | 2001-09-28 | 2003-04-11 | Toshiba Corp | 非直線抵抗体及びその製造方法 |
JP2003335578A (ja) * | 2002-05-16 | 2003-11-25 | Tdk Corp | 電圧依存性非直線抵抗体 |
JP2008100856A (ja) * | 2006-10-17 | 2008-05-01 | Koa Corp | 酸化亜鉛積層チップバリスタの製造方法 |
JP2009239231A (ja) * | 2008-03-28 | 2009-10-15 | Tdk Corp | バリスタ |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017157937A1 (en) * | 2016-03-17 | 2017-09-21 | Epcos Ag | Ceramic material, varistor and methods of preparing the ceramic material and the varistor |
US11031159B2 (en) | 2016-03-17 | 2021-06-08 | Tdk Electronics Ag | Ceramic material, varistor and methods of preparing the ceramic material and the varistor |
Also Published As
Publication number | Publication date |
---|---|
US20160379738A1 (en) | 2016-12-29 |
US9741477B2 (en) | 2017-08-22 |
CN105706188B (zh) | 2018-11-09 |
JPWO2015083822A1 (ja) | 2017-03-16 |
JP6387969B2 (ja) | 2018-09-12 |
CN105706188A (zh) | 2016-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101350241B (zh) | 可变电阻 | |
CN103370754B (zh) | 带变阻器功能的层叠型半导体陶瓷电容器及其制造方法 | |
US10262796B2 (en) | Dielectric composition and electronic component | |
KR100960522B1 (ko) | 전압 비직선성 저항체 자기 조성물, 전자 부품 및 적층 칩배리스터 | |
CN105719834B (zh) | 多层陶瓷电子组件及其制造方法 | |
JP6387969B2 (ja) | バリスタ用焼結体およびこれを用いた多層基板、ならびにそれらの製造方法 | |
CN112687467B (zh) | 陶瓷电子器件及其制造方法 | |
JP5830715B2 (ja) | 積層バリスタ及びその製造方法 | |
JP2013197447A (ja) | 積層バリスタの製造方法 | |
JP2016225404A (ja) | 酸化亜鉛系バリスタ用焼結体およびこれを用いた多層基板、ならびにそれらの製造方法 | |
JP4184172B2 (ja) | 電圧非直線性抵抗体磁器組成物、電子部品及び積層チップバリスタ | |
CN112759384B (zh) | 陶瓷组成物用于热敏电阻器的用途、陶瓷烧结体用于热敏电阻器的用途及热敏电阻器 | |
JP6777070B2 (ja) | バリスタ内蔵多層基板およびその製造方法 | |
JP2016225406A (ja) | 酸化亜鉛系バリスタ用焼結体およびこれを用いた多層基板、ならびにそれらの製造方法 | |
JP6786936B2 (ja) | 誘電体組成物及び電子部品 | |
KR100670690B1 (ko) | 전압 비선형성 저항체 자기 조성물, 전자 부품 및 적층 칩배리스터 | |
WO2012093575A1 (ja) | 積層型半導体セラミックコンデンサの製造方法、及び積層型半導体セラミックコンデンサ | |
CN112408975B (zh) | 陶瓷组成物、陶瓷烧结体、叠层型陶瓷电子元件及其制法 | |
JP2016225405A (ja) | 酸化亜鉛系バリスタ用焼結体およびこれを用いた多層基板、ならびにそれらの製造方法 | |
JP2016146380A (ja) | 電圧非直線性抵抗体組成物とこれを用いたバリスタおよび積層バリスタ | |
CN113443908A (zh) | 陶瓷组成物、陶瓷烧结体及叠层型陶瓷电子元件 | |
CN115527774A (zh) | 电介质体、层叠陶瓷电容器、电介质体制造方法和层叠陶瓷电容器制造方法 | |
JP2016146379A (ja) | 電圧非直線性抵抗体組成物とこれを用いたバリスタおよび積層バリスタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14867287 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015551577 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15101650 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14867287 Country of ref document: EP Kind code of ref document: A1 |