WO2006093156A1 - コーティング材組成物及び塗装品 - Google Patents

コーティング材組成物及び塗装品 Download PDF

Info

Publication number
WO2006093156A1
WO2006093156A1 PCT/JP2006/303767 JP2006303767W WO2006093156A1 WO 2006093156 A1 WO2006093156 A1 WO 2006093156A1 JP 2006303767 W JP2006303767 W JP 2006303767W WO 2006093156 A1 WO2006093156 A1 WO 2006093156A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
coating
material composition
coating material
sio
Prior art date
Application number
PCT/JP2006/303767
Other languages
English (en)
French (fr)
Inventor
Akira Tsujimoto
Ryozo Fukuzaki
Takeyuki Yamaki
Hiroshi Yokogawa
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Priority to JP2007505961A priority Critical patent/JPWO2006093156A1/ja
Priority to EP06714896A priority patent/EP1854854A4/en
Priority to US11/816,832 priority patent/US8273811B2/en
Publication of WO2006093156A1 publication Critical patent/WO2006093156A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1675Polyorganosiloxane-containing compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films

Definitions

  • the present invention relates to a coating material composition having a low refractive index and capable of realizing high scratch resistance, antifouling properties, chemical resistance, and crack resistance, and a coated product formed with a cured film thereof.
  • hydrolyzable silane compounds having a perfluoroalkyl group have been developed, and various coating agents such as water repellency, oil repellency, antifouling property, and antireflection property have been developed by making use of the characteristics.
  • various coating agents such as water repellency, oil repellency, antifouling property, and antireflection property have been developed by making use of the characteristics.
  • the perfluoroalkyl groups that provide these properties are bulky and inert, which reduces the crosslink density of the cured film, and as a result, is considerably harder than fluorinated resin, but it is scratch resistant. Sex is still inadequate.
  • composition disclosed in Japanese Patent Application Laid-Open No. 2004-315712 contains a disilane compound having a specific structure or a (partial) hydrolyzate thereof, thereby providing a higher level than before. Has achieved chemical resistance.
  • a disilane compound having a specific structure or a (partial) hydrolyzate thereof thereby providing a higher level than before. Has achieved chemical resistance.
  • the present invention has been made in view of the above points. Even when a film is formed on a plastic base material such as a plastic substrate, the present invention is performed at a high temperature during the film formation or after the film formation.
  • a coating material composition that can maintain high scratch resistance, antifouling properties, chemical resistance, and crack resistance when exposed to light, and a film formed from the coating material composition The purpose is to provide a painted product.
  • the coating material composition according to the present invention comprises a silanic compound represented by the following general formula (A) and an epoxy group-containing organic compound containing one or more epoxy groups in the molecule,
  • the content of the silane compound is 60 to 97% by weight with respect to the total amount of the resin component, and the content of the epoxy group-containing organic compound is 3 to 10% by weight with respect to the total amount of the resin component. It is a feature.
  • R 1 is a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • Y is a divalent organic group containing one or more fluorine atoms.
  • X is a hydrolyzable group.
  • m is an integer of 1 to 3.
  • a film formed of such a coating material composition can maintain high crack resistance even when exposed to high temperatures.
  • the epoxy group-containing organic compound contains at least one compound selected from a compound represented by the following general formula (B) and a compound represented by the following general formula (C). Is preferred. [0014] R 2 R 3 SiZ (B)
  • R 2 and R 3 are organic groups having 1 to 16 carbon atoms, and at least one of them contains an epoxy group.
  • Z is a hydrolyzable group.
  • n and p are integers between 0 and 2, l ⁇ n + p ⁇ 3.
  • R 4 to R 15 are organic groups, and at least one of them contains an epoxy group.
  • q, r, s, and t are integers from 0 to 12.
  • the epoxy group-containing organic compound preferably contains two or more epoxy groups in the molecule! /.
  • the coating material composition preferably contains a fluorinated alkyl group-containing alkoxysilane represented by the following general formula (D).
  • R is a monovalent organic group containing one or more fluorine atoms.
  • X is a hydrolyzable group.
  • the said coating material composition contains a filler.
  • the content of the epoxy group-containing organic compound is preferably 3 to 10% by weight based on the silane compound represented by the general formula (A).
  • the coated product according to the present invention is characterized in that a cured film of the coating material composition as described above is formed on the surface of a substrate.
  • a coating material composition according to the present invention comprises a silanic compound represented by the following general formula (A):
  • an organic compound containing an epoxy group containing at least one epoxy group in the molecule as an essential component.
  • R 1 is a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • Y is divalent and contains one or more fluorine atoms Mechanism.
  • X is a hydrolyzable group.
  • m is an integer of 1 to 3.
  • Y in the formula (A) is a divalent organic group having one or more fluorine atoms, and the number of fluorine atoms is preferably 4 to 50, particularly preferably 8 to 24.
  • the perfluoroalkylene group is rigid, it is preferable that it contains as many fluorine atoms as possible for the purpose of obtaining a film having high hardness and high scratch resistance. If it contains a large amount of fluorine atoms, chemical resistance will be improved. Therefore, Y preferably has the following structure.
  • N in the above structure is a force that needs to satisfy a value of 2 to 20, more preferably 4 to 12, and particularly preferably 4 to 10. If it is less than this, it may not be possible to sufficiently obtain various functions such as antireflection properties, antifouling properties and water repellency, and chemical resistance. Is not possible!
  • R 1 represents a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • alkyl such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a cyclohexyl group Examples thereof include a group and a phenol group.
  • a methyl group is preferred for obtaining good scratch resistance.
  • X represents a hydrolyzable group. Specific examples include halogen atoms such as C1, OR (R is
  • Monooxy hydrocarbon groups having 1 to 6 carbon atoms especially alkoxy groups such as methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, alkenoxy groups such as isopropenoxy group, and acetooxy group.
  • alkoxy groups such as methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, alkenoxy groups such as isopropenoxy group, and acetooxy group.
  • alkoxy groups such as methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, alkenoxy groups such as isopropenoxy group, and acetooxy group.
  • alkoxy groups such as methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, alkenoxy groups such as isopropenoxy group, and acetooxy group.
  • alkoxy groups such as methoxy group, ethoxy group, propoxy group, isopropoxy group, but
  • the silanic compound represented by the general formula (A) in the coating material composition is in the range of 60 to 97% by weight, preferably 65 to 85% by weight, based on the total amount of the resin components. It is included in the range. Therefore, it is possible to improve the chemical resistance of the coating by the silane compound represented by the general formula (A), and to improve the alkali resistance, which has been a problem of the conventional polysiloxane coating. It can be done.
  • an epoxy group-containing organic compound containing one or more epoxy groups in the molecule an appropriate one can be used, particularly one containing two or more epoxy groups in the molecule.
  • the chemical resistance of the coating can be further improved.
  • Such an epoxy group-containing organic compound containing two or more epoxy groups in the molecule is contained in a range of 3 to 10% by weight based on the total amount of the resin component. If it is less than 3% by weight, the crack resistance of the film cannot be sufficiently improved, and if it is more than 10% by weight, the chemical resistance of the film cannot be sufficiently improved, and the wear resistance of the film is not improved. May decrease.
  • the epoxy group-containing organic compound one selected from a compound represented by the following general formula (B) and a compound represented by the following general formula (C) is preferably used.
  • One or more kinds of such compound powers can be used.
  • the crack resistance can be further improved without reducing the chemical resistance and wear resistance of the coating.
  • the total content of this epoxy group-containing organic compound is 3 to 10 wt. If the content is too small, the crack resistance may not be sufficiently improved, and if the content is excessive, chemical resistance and resistance Abrasion may be reduced.
  • R 2 and R 3 are organic groups having 1 to 16 carbon atoms, and at least one of them contains an epoxy group.
  • is a hydrolyzable group.
  • ⁇ and ⁇ are integers from 0 to 2, and 1 ⁇ + ⁇ 3.
  • R 4 to R 15 are organic groups, and at least one of them contains an epoxy group.
  • q, r, s, and t are integers from 0 to 12.
  • the compound represented by the general formula (B) is appropriately selected depending on the purpose such as adhesion to the substrate, hardness and low reflectivity of the resulting coating film, and the life of the composition. .
  • R 4 to R 15 in the formula may include an organic group such as an appropriate hydrocarbon group such as a methyl group. Further, at least one of R 4 to R 15 contains an epoxy group, and examples thereof include those having the following structure.
  • [POA is a polyether group, preferably one C 3 H 6 0 (C 2 H 4 0) a (C 3 H 6 0) b R ′ &, 1) is an integer of 0 to 12.
  • R ′ is a hydrocarbon group] H 2
  • epoxy group-containing organic compound in addition to those represented by the general formulas (B) and (C), an appropriate epoxy compound can be used. Examples of such epoxy compounds include those shown below.
  • the content of the epoxy group-containing organic compound is appropriately adjusted, but preferably 3 to 10% by weight with respect to the silane compound represented by the general formula (A). By doing so, the crack resistance without lowering the chemical resistance and wear resistance of the coating can be further improved. If this content is less than the above range, it is difficult to sufficiently improve the crack resistance, and if it exceeds this range, the chemical resistance and the wear resistance may be lowered.
  • the coating material composition may contain a fluoroalkyl group-containing alkoxysilane represented by the following general formula (D).
  • [R contains one or more fluorine atoms
  • X is a hydrolyzable group. When such a material is contained, the refractive index of the formed film can be further reduced.
  • the number of fluorine atoms in Rf is preferably 3 to 25, particularly 3 to 17.
  • X as the hydrolyzable group may be the same as that in the general formula (A).
  • Examples of the fluorinated alkyl group-containing alkoxysilane represented by the general formula (D) include the following.
  • the content of the fluorinated alkyl group-containing alkoxysilane represented by the general formula (D) and its hydrolyzate (partially hydrolyzate) are adjusted as appropriate, but the scratch resistance of the coating decreases as the amount added increases. Therefore, the range of 1 to 30% by weight with respect to the total amount of the fat component in the composition It is preferable that 1 to 10% by weight is particularly preferable.
  • the coating agent composition includes silica, acid aluminum, titanium oxide, zinc oxide, acid as a filler for the purpose of adjusting physical properties such as film hardness, scratch resistance, and conductivity.
  • Inorganic fine particles such as zirconium, cerium oxide, tin oxide, indium oxide, or composite oxides thereof, or a hollow sol thereof may be blended.
  • colloidal silica and hollow silica sol are preferably used in order to maintain the coating film at a low refractive index.
  • the preferred inorganic fine particles preferably have an average primary particle diameter of 0.001-0. 1 m, more preferably 0.001-0.05 / z m.
  • the transparency of the cured film formed by the prepared composition tends to decrease.
  • these inorganic oxide fine particles those whose surface is treated with an organometallic compound such as a silanic, titanium, aluminum or zirconium coupling agent may be used.
  • hollow fine particles whose outer shell is formed of a metal oxide can also be blended.
  • hollow silica fine particles can be used.
  • the hollow silica fine particles are those in which cavities are formed inside the outer shell, and are not particularly limited as long as they are such, but specifically, the following can be used.
  • Silica-based inorganic oxides are: (A) a single layer of silica, (B) a single layer of a composite oxide consisting of silica and an inorganic oxide other than silica, and (C) the above (A) This includes a double layer of the layer and the (B) layer.
  • the outer shell may be porous having pores, or may be one in which the pores are closed by an operation described later and the cavity is sealed.
  • the outer shell is preferably a plurality of silica-based coating layers composed of an inner first silica coating layer and an outer second silica coating layer. By providing the second silica coating layer on the outside, the fine pores of the outer shell are closed to make the outer shell dense, and furthermore, hollow silica fine particles in which the inner cavity is sealed with the outer shell can be obtained. It is.
  • the thickness of the first silica coating layer is preferably in the range of 1 to 50 nm, particularly 5 to 20 nm. If the thickness of the first silica coating layer is less than 1 nm, it may be difficult to maintain the particle shape, and hollow silica fine particles may not be obtained. When forming, the partial hydrolyzate of the organosilicon compound may enter the pores of the core particles, which may make it difficult to remove the core particle constituents. On the contrary, if the thickness of the first silica coating layer exceeds 50 nm, the ratio of the cavities in the hollow silica fine particles may be reduced, and the refractive index may not be sufficiently lowered.
  • the thickness of the outer shell is preferably in the range of 1Z50 to LZ5 of the average particle diameter.
  • the thickness of the second silica coating layer should be such that the total thickness with the first silica coating layer is in the range of 1 to 50 nm, particularly in the case of densifying the outer shell, the range of 20 to 49 nm. Is preferred.
  • a precursor material for forming the cavity may remain in the cavity.
  • the precursor material may remain slightly attached to the outer shell or may occupy most of the cavity.
  • the precursor substance is a porous substance that remains after the nuclear particle force for forming the first silica coating layer also removes some of its constituent components.
  • porous composite oxide particles composed of silica and inorganic oxides other than silica are used. Inorganic oxides include Al O, B 2 O, TiO
  • Two or more inorganic oxides such as TiO-AlO, TiO-ZrO, etc.
  • the solvent or gas is also present in the pores of the porous material.
  • the transparent film obtained by blending the hollow silica fine particles reflects with a low refractive index. Excellent prevention performance.
  • the coating material composition according to the present invention can be prepared by blending the matrix-forming material and hollow fine particles.
  • silica particles can be added to the coating material composition in which the inside of the outer shell is not hollow.
  • the form of the silica particles is not particularly limited, and may be, for example, a powder form or a sol form.
  • a sol form that is, as colloidal silica
  • water-dispersible colloidal silica or alcohol-dispersible colloidal in a hydrophilic organic solvent should be used.
  • colloidal silica contains 20 to 50% by mass of silica as a solid content, and this value can also determine the amount of silica.
  • the addition amount of the silica particles is preferably 0.1 to 30% by mass with respect to the total solid content in the coating material composition. If the amount is less than 0.1% by mass, the effect of adding silica particles may not be obtained. Conversely, if the amount exceeds 30% by mass, the refractive index of the cured film may be adversely affected.
  • the filler When the filler is contained as described above, it is possible to further improve the wear resistance of the coating film, and in particular, low refractive index filling such as magnesium fluoride or hollow particles having a low refractive index. If the material is added, the refractive index can be expected to be further reduced.
  • organosilicon compounds that can be used in combination include dialkylsiloxy hydrolyzable organosilanes represented by the following general formula.
  • R 1 , R 2 , R is an alkyl group, m is an integer of 1 to 3, and n is an integer of 2 to 200]
  • organosilicon compounds include silicates such as tetraethoxysilane, alkylsilanes such as methyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, and the like.
  • silicates such as tetraethoxysilane, alkylsilanes such as methyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, and the like.
  • Rushiran acids, ⁇ - - Hue such Le trimethoxysilane ⁇ amino propyl triethoxy silane, .gamma.-methacryloxypropyl trimethoxysilane, .gamma.-mercaptopropyl various I ⁇ of silane coupling agents such as trimethoxysilane Can be mentioned.
  • organosilicon compounds are preferably 30% by weight or less based on the total amount of the resin component. If the content is excessive, the crack resistance of the film may be lowered, or the hydrophilicity may be increased and the chemical resistance may be lowered.
  • the compounds represented by the above formulas (A), ( ⁇ ), (D), or other organosilicon compounds that can be used in combination may be used as they are, or (partially) hydrolyzed forms, Alternatively, it may be used in a hydrolyzed form in the following solvent. In particular, from the viewpoint of increasing the curing rate after coating, it is preferable to use the (partially) hydrolyzed form.
  • the molar ratio of water involved in the hydrolysis to the hydrolyzable group is in the range of 0.1 to LO.
  • hydrolysis a conventionally known method can be applied.
  • acids such as hydrochloric acid, acetic acid and maleic acid, sodium hydroxide
  • Amine compounds such as NaOH, ammonia, triethylamine, dibutylamine, hexylamine, octylamine, dibutylamine, etc., and salts of amine compounds, quaternary ammonia such as benzyl triethylamine, tetramethylammonium hydroxide, etc.
  • -Bases such as humic salts, fluorides such as potassium fluoride and sodium fluoride, solid acidic catalysts or solid basic catalysts (eg, ion exchange resin catalysts), iron-2-ethylhexoate , Titanium naphthate, dumbbell stearate, dibutinoletin diacetate and other organic metal salts of norevonic acid, tetrabutoxy titanium, tetra-i-propoxy titanium, dibutoxy (bis-2,4-pentanedionate) titanium, di i-propoxy (bis-1,4 pentanedionate) organic titanium esthetics such as titanium Organic zirconium esters such as zirconium, tetrabutoxyzirconium, tetrai-propoxyzinolecium, dibutoxy (bis 2,4 pentanedionate) zirconium and di i-propoxy (bis 2,4 pentanedionate) zirconium , Organometallic compounds such as
  • the addition amount of the catalyst is 0.01 to 10 parts by weight, preferably 0.1 to 1 part by weight, based on 100 parts by weight of the (partially) hydrolyzed compound. If this amount is less than 0.01 parts by weight, it may take too much time to complete the reaction or the reaction may not proceed. On the other hand, if it exceeds 10 parts by weight, it is disadvantageous in terms of cost, and the resulting composition or cured product may be colored or side reactions may increase.
  • the present composition can be used after diluted with a solvent.
  • the solvent include alcohols such as methanol, ethanol, propyl alcohol, isopropyl alcohol, ⁇ -butinoreanolol monole, isobutinoleanoreconole, sec butinorenoreconole, tert butinorenoreconole, diacetone alcohol, and the like.
  • Glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl enoate ether, propylene glycol monomethino ethenore, propylene glycol monoethyl ether, acetone, methyl ether
  • ketones such as ruketone, methyl isobutyl ketone and acetylacetone
  • esters such as ethyl acetate, butyl acetate and cetyl acetate, xylene and toluene.
  • the amount of solvent added is arbitrary. Considering the ease of painting, the ease of controlling the coating thickness, and the stability of the coating composition, the solvent content in the composition is 50-99. It is particularly preferred that the content is 70% by weight.
  • the coating material composition prepared as described above is applied to the surface of the base material to form a film, and this film is dried and cured to obtain a cured film having a low refractive index on the surface.
  • a formed coated product can be obtained.
  • the substrate on which the coating material composition is coated is not particularly limited, but examples thereof include inorganic substrates typified by glass, metal substrates, acrylic resin, polycarbonate, polyethylene terephthalate.
  • the organic base material represented by G. can be mentioned, and the shape of the base material can be a plate shape or a film shape. Furthermore, one or more layers may be formed on the surface of the substrate.
  • the method is not particularly limited.
  • Various ordinary coating methods such as curtain coating, knife coating, spin coating, table coating, sheet coating, single wafer coating, die coating, and bar coating can be selected.
  • the thickness of the cured film formed on the surface of the substrate can be appropriately selected according to the intended use and purpose, and is not particularly limited, but is preferably in the range of 50 to 150 nm.
  • the product of the refractive index and the film thickness of the cured film is the optical film thickness, and the optical film thickness of the cured film needs to be set to 1Z4 in order for the light of wavelength ⁇ to have the lowest reflectance. .
  • the thickness of the cured coating is preferably in the range of 50 to 150 nm.
  • the refractive index of the base material is 1.60 or less
  • a cured film having a refractive index of 1.60 or more is formed on the surface of this base material, and this is used as an intermediate layer. It is effective to form a cured film with the coating material composition according to the present invention.
  • the cured film for forming the intermediate layer can be formed using a known high refractive index material, and if the refractive index of the intermediate layer is 1.60 or more, the coating material composition according to the present invention Thus, the difference in refractive index from the cured film due to is increased, and an antireflection substrate excellent in antireflection performance can be obtained.
  • the intermediate layer may be formed of a plurality of layers having different refractive indexes.
  • anti-reflection applications include anti-reflection films, outermost surfaces of displays, automobile side mirrors, windshields, side glasses, rear glass inner surfaces, other vehicle glass, and building glass. .
  • the film formed from the coating material composition according to the present invention has high scratch resistance, antifouling property, chemical resistance, and crack resistance.
  • the performance can be maintained particularly well when the film is exposed to high temperatures during film formation or after film formation. For this reason, the film is coated on a plastic substrate such as a plastic substrate. Even in the case of forming a film, it is possible to form a film in which cracks are unlikely to occur during heating.
  • the silane compound represented by the following formula (1) is 47.8 parts (0.08 mole) of methanol and 32.4 parts of methanol, and 4.7 parts of ⁇ -glycidoxypropyltrimethoxysilane as an epoxy group-containing organic compound ( 0.02 mol) and Sarako 0.1 kg (0.1 mol ZL) of hydrochloric acid 36 parts were added to obtain a mixed solution.
  • This mixed solution was stirred in a thermostatic bath at 25 ° C. for 2 hours to obtain a silicone resin having a solid content of 10%.
  • propylene glycol monomethyl ether 93 5 parts was added and diluted to obtain a coating material composition having a solid content of 3%.
  • the silane compound represented by the above formula (1) 47.8 parts (0.08 mole) of methanol 317.1 parts is further added, and the epoxy group-containing organic compound is a siloxane oligomer represented by the following formula (2) 3.6 5 parts (0.01 mol) and 36 parts of 0.1N (0.1 mol ZL) aqueous hydrochloric acid were added to obtain a mixed solution.
  • This mixed solution was stirred for 2 hours in a thermostatic bath at 25 ° C. to obtain a silicone resin having a solid content of 10%.
  • 1028 parts of propylene glycol monomethyl ether was added and diluted to obtain a coating material composition having a solid content of 3%.
  • Hollow silica IPA (isopropanol) dispersion sol (solid content 20%, average primary particle size 60 nm, outer shell thickness about 10 nm, manufactured by Catalyst Kasei Co., Ltd.) is used as the hollow silica fine particles, and this is diluted with methanol to a solid content of 10% Thus, a dispersion sol was obtained. 10 parts of this dispersion sol and 90 parts of the silicone resin obtained in Example 2 are mixed, and 233.3 parts of propylene glycol monomethyl ether is mixed and diluted to obtain a coating material composition having a solid content of 3%. Obtained.
  • a coating material composition of 3% was obtained.
  • the surface was previously cleaned with a UV-ozone cleaner (excimer lamp “Model H0011” manufactured by Usio Electric Co., Ltd.).
  • a UV-ozone cleaner excimer lamp “Model H0011” manufactured by Usio Electric Co., Ltd.
  • coated with a wire bar coater to a film thickness of about lOOnm, and at 100 ° C
  • a cured coating was obtained by treatment for 30 minutes.
  • This cured film was subjected to the following evaluation tests for minimum reflectance, abrasion resistance, fingerprint removability, alkali resistance, and crack resistance.
  • the surface of the cured film is rubbed with an abrasion tester ("SHIDON Science Co., Ltd.” HEIDON-14DRJ, steel wool # 0000, load 9.8kPa (100gZcm 2 ) ").
  • the mechanical strength was determined according to the following evaluation criteria by observing the bell.
  • a fingerprint was attached to the surface of the cured coating, and the appearance after the fingerprint trace was wiped off with OA Tresy (manufactured by Toray Industries, Inc.) was observed, and the fingerprint removability was judged according to the following evaluation criteria.
  • the coated acrylic board is placed at 110 ° C for 30 minutes, then at 120 ° C for 30 minutes, then another 13
  • Firing was performed at 0 ° C for 30 minutes, and the crack resistance was evaluated at the firing temperature at which cracks occurred in the coating.
  • the present invention has a low refractive index and a high refractive index when the coating is formed or when exposed to a high temperature after the coating is formed.
  • the present invention can be applied to a coating material composition capable of maintaining scratch resistance, antifouling property, chemical resistance, and crack resistance, and a coated product in which a film is formed with this coating material composition.
  • a film having high antireflection properties, scratch resistance, antifouling properties, chemical resistance, and crack resistance can be formed, and these properties, particularly high crack resistance, can be formed. Can be maintained even when exposed to high temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

 プラスチック基材等の可塑性の基材に被膜を形成した場合であっても、被膜形成時や、被膜形成後に高温下に曝された際に、低屈折率で、高い耐擦傷性、防汚性、耐薬品性、耐クラック性を維持することができるコーティング材組成物を提供する。  下記一般式(A)で示されるシラン化合物と、分子中に1個以上のエポキシ基を含有するエポキシ基含有有機化合物を含有し、前記シラン化合物の含有量が樹脂成分全量に対して60~97重量%であり、前記エポキシ基含有有機化合物の含有量が、樹脂成分全量に対して3~10重量%である。  XmR1 3-mSi-Y-SiR1 3-mXm   (A)  〔R1は炭素数1~6の一価炭化水素基。Yはフッ素原子を1個以上含有する二価有機基。Xは加水分解性基。mは1~3の整数である。〕このようなコーティング材組成物にて形成される被膜は、高い耐クラック性を、高温下に曝された際にも維持することができる。

Description

明 細 書
コーティング材組成物及び塗装品
技術分野
[0001] 本発明は、低屈折率で、高 ヽ耐擦傷性、防汚性、耐薬品性、耐クラック性を実現で きるコーティング材組成物及びその硬化被膜を形成した塗装品に関するものである。 背景技術
[0002] 従来、コーティング材組成物として、耐薬品性が求められる用途には、化学的に強 いフッ素榭脂が主として用いられてきた。また、フッ素榭脂が本質的に有している屈 折率の低さを利用して、ディスプレイ等の反射防止用途にも適用されている。なお、 フッ素榭脂は、ゴム或いはコーティング剤として応用されている力 その分子構造から 耐擦傷性に優れる硬質な保護コーティング剤とすることは難しかった。
[0003] また、近年、パーフルォロアルキル基を有する加水分解性シラン化合物が開発され 、その特性を活力して、撥水性、撥油性、防汚性、反射防止性等の各種コーティング 剤が開発されている。しかしながら、その特性をもたらすパーフルォロアルキル基が 嵩高ぐ不活性であるため、硬化被膜の架橋密度が低くなり、その結果、フッ素榭脂 と比較するとかなり硬質となって 、るが、耐擦傷性はまだ不十分である。
[0004] また、耐擦傷性を高める目的で、以下のものが開発されて!、る。
[0005] まず、(1)日本国特開 2002— 53805号公報に開示されているように、パーフルォ 口アルキル基含有シランとテトラアルコキシシラン等の各種シランィ匕合物とを共加水 分解する方式である。
[0006] また、(2)日本国特公平 6— 29332号公報に開示されているように、パーフルォロ アルキル基含有シランに、パーフルォロアルキレンをスぺーサ一として含有するジシ ラン化合物と、テトラアルコキシシランとを併用する系である。
[0007] さらに、(3)特許第 2629813号公報に開示されているように、パーフルォロアルキ レンをスぺーサ一として含有するジシラン化合物と、エポキシ官能性シランとを併用 する系が提案されている。
[0008] これらの技術によって、 目的とする防汚性、耐擦傷性、密着性及び反射防止性は 比較的良好なレベルを確保できた。しかし、フッ素含有率が低下するため本質的に 良好であった家庭用洗剤等の薬剤に対する耐薬品性、特にポリシロキサン系の弱点 である耐アルカリ性が不足しており、実用上問題があった。
[0009] また、特開 2004— 315712号公報に開示されている組成物では、特定の構造を 有するジシランィ匕合物又はその(部分)加水分解物を含有することにより、以前よりも 高いレベルの耐薬品性を達成している。しかし、成膜やその他の工程において高い 熱が加わる際や、被膜形成後において高い熱が加わったりした際にはクラックが発生 しゃすいという問題があり、特にプラスチック等の可塑性の基材に被膜を形成した際 には前記のようなクラックの発生が著し ヽと 、う問題があった。
発明の開示
[0010] 本発明は上記の点に鑑みて為されたものであり、プラスチック基材等の可塑性の基 材に被膜を形成した場合であっても、被膜形成時や、被膜形成後に高温下に曝され た際に、低屈折率で、高い耐擦傷性、防汚性、耐薬品性、耐クラック性を維持するこ とができるコーティング材組成物及びこのコーティング材組成物にて被膜を形成した 塗装品を提供することを目的とするものである。
[0011] 本発明に係るコーティング材組成物は、下記一般式 (A)で示されるシランィ匕合物と 、分子中に 1個以上のエポキシ基を含有するエポキシ基含有有機化合物を含有し、 前記シランィ匕合物の含有量が榭脂成分全量に対して 60〜97重量%であり、前記ェ ポキシ基含有有機化合物の含有量が榭脂成分全量に対して 3〜10重量%であるこ とを特徴とするものである。
[0012] X R1 Si-Y-SiR1 X (A)
m 3— m 3— m m
[R1は炭素数 1〜6の一価炭化水素基。 Yはフッ素原子を 1個以上含有する二価有 機基。 Xは加水分解性基。 mは 1〜3の整数である。〕
このようなコーティング材組成物にて形成される被膜は、高い耐クラック性を、高温 下に曝された際にも維持することができる。
[0013] 上記エポキシ基含有有機化合物は、下記一般式 (B)で表される化合物と、下記一 般式 (C)で示される化合物とから選ばれる少なくとも一種の化合物を含有するもので あることが好ましい。 [0014] R2 R3 SiZ (B)
n p 4- [n+p]
[R2, R3は炭素数 1〜16の有機基であり、少なくとも一方はエポキシ基を含む。 Zは 加水分解性基。 n, pは 0〜2の整数であって l≤n+p≤3である。〕
[化 1]
R5 R7 R9 R11 R13
R4-SiO (SiO)q (SiO) r (SiO) s (SiO2)t Si -Ris (C)
R6 R8 R10 R12 R14
[R4〜R15は有機基であり、 且つこのうち少なくとも一つはエポキシ基を含む。 q、 r、 s、 tは 0〜12の整数である。 ]
[0015] また、上記エポキシ基含有有機化合物は、分子中にエポキシ基を二個以上含有す るものであることが好まし!/、。
[0016] また、上記コーティング材組成物は、下記一般式 (D)で示されるフッ化アルキル基 含有アルコキシシランを含有することが好まし 、。
[0017] R -SiX (D)
f 3
〔Rはフッ素原子を一個以上含有する一価有機基。 Xは加水分解性基。〕
f
また、上記コーティング材組成物は、充填材を含有することも好ましい。
[0018] また、上記エポキシ基含有有機化合物の含有量は、上記一般式 (A)で示されるシ ラン化合物に対して 3〜 10重量%であることが好まし 、。
[0019] また、本発明に係る塗装品は、基材の表面に上記のようなコーティング材組成物の 硬化被膜を形成して成ることを特徴とするものである。
発明を実施するための最良の形態
[0020] 以下、本発明を実施するための最良の形態について説明する。
[0021] 本発明に係るコーティング材組成物は、下記一般式 (A)で示されるシランィ匕合物と
、分子中に 1個以上のエポキシ基を含有するエポキシ基含有有機化合物とを必須成 分として含有する。
[0022] X R1 Si-Y-SiR1 X (A)
m 3— m 3— m m
[R1は炭素数 1〜6の一価炭化水素基。 Yはフッ素原子を 1個以上含有する二価有 機基。 Xは加水分解性基。 mは 1〜3の整数である。〕
式 (A)中の Yは、フッ素原子を 1個以上有する二価有機基であるが、フッ素原子の 個数は好ましくは 4〜50個、特に好ましくは 8〜24個とする。特に、反射防止性、防 汚性、撥水性等の諸機能を良好な基準で発現させるためには、フッ素原子を多量に 含有していることが好ましい。また、パーフルォロアルキレン基は剛直なため、高硬度 で耐擦傷性に富む被膜を得る目的のためは、フッ素原子をできるだけ多量に含有し ていることが好ましい。フッ素原子を多量に含有していれば、耐薬品性もよくなる。従 つて、 Yとしては下記の構造のものが好ましい。
[0023] -CH CH (CF ) CH CH—
2 2 2 n 2 2
-C H -CF (CF ) - (CF ) -CF (CF ) C H—
2 4 3 2 n 3 2 4
〔nは 2〜20の整数〕
上記構造中の nとしては 2〜20の値を満たす必要がある力 より好ましくは 4〜12、 特に好ましくは 4〜10の範囲を満たすのがよい。これより少ないと、反射防止性、防 汚性、撥水性等の諸機能、及び耐薬品性を十分に得ることができない場合があり、 多すぎると、架橋密度が低下するため十分な耐擦傷性が得られな!/ヽ場合が生ずる。
[0024] R1は、炭素数 1〜6の一価炭化水素基を表すが、具体的には、メチル基、ェチル基 、プロピル基、ブチル基、へキシル基、シクロへキシル基等のアルキル基、フエ-ル基 等を例示することができる。良好な耐擦傷性を得るには、メチル基が好ましい。
[0025] mは 1〜3の整数である力 好ましくは 2又は 3とするものであり、特に高硬度な被膜 にするには m= 3とするのが好まし!/、。
[0026] Xは、加水分解性基を表す。具体例としては、 C1などのハロゲン原子、 OR (Rは
X X
炭素数 1〜6の一価炭化水素基)で示されるオルガノォキシ基、特にメトキシ基、エト キシ基、プロポキシ基、イソプロポキシ基、ブトキシ基などのアルコキシ基、イソプロべ ノキシ基などのアルケノキシ基、ァセトキシ基等のァシルォキシ基、メチルェチルケト キシム基等のケトォキシム基、メトキシエトキシ基等のアルコキシアルコキシ基などを 挙げることができる。これらの中でアルコキシ基が好ましぐ特にメトキシ基、エトキシ 基のシランィ匕合物が取り扱い易ぐ加水分解時の反応の制御もし易いため、好ましい [0027] このような一般式 (A)で示されるシランィ匕合物の具体例としては、例えば下記のも のが挙げられる。
[化 2]
(CH3O)3 Si— C2H4—C4F8—C2H4— Si(OCH3)3
(CH3O)3 Si— C2H4— C6F12— C2H4— Si(OCH3)3
(CH3O)3 Si—C2H4—C8F16—C2H4—Si(OCH3)3
(C2H5O)3 Si— C2H4— C4F8— C2H4— Si(OC2H5)3
(C2H5O)3 Si— C2H4— C6F12— C2H4—Si(OC2H5)3
CH3 CH3
(CH3O)2 Si—C2H4—C6F12—C2H4—Si(OCH3)2
[0028] 上記一般式 (A)で示されるシランィ匕合物は、コーティング材組成物中にお 、て、榭 脂成分全量に対して 60〜97重量%の範囲、好ましくは 65〜85重量%の範囲で含 有されるものである。このため、一般式 (A)で示されるシランィ匕合物による被膜の耐 薬品性の向上を図ることができ、従来のポリシロキサン系の被膜の問題点であった耐 アルカリ性の向上を図ることができるものである。
[0029] また、分子中に 1個以上のエポキシ基を含有するエポキシ基含有有機化合物として は、適宜のものを用いることができる力 特に分子中にエポキシ基を二個以上含有す るものを用いることが好ましぐこの場合被膜の耐薬品性を更に向上することができる ものである。このような分子中にエポキシ基を二個以上含有するエポキシ基含有有機 化合物は、榭脂成分全量に対して 3〜10重量%の範囲で含有させる。 3重量%より も少ないと被膜の耐クラック性を十分に向上することができず、また 10重量%より多 いと被膜の耐薬品性を十分に向上することができなくなり、また被膜の耐摩耗性が低 下するおそれがある。
[0030] このエポキシ基含有有機化合物としては、好ましくは下記一般式 (B)で表されるィ匕 合物と、下記一般式 (C)で示される化合物とから選ばれるものを用いるものであり、こ のような化合物力も一種又は複数種を用いることができる。この場合、被膜の耐薬品 性及び耐摩耗性を低下させることなぐ耐クラック性を更に向上することができる。この エポキシ基含有有機化合物の合計の含有量は、榭脂成分全量に対して 3〜10重量 %の範囲であることが好ましぐこの含有量が過小であると耐クラック性の向上を十分 になすことができな 、おそれがあり、またこの含有量が過剰であると耐薬品性及び耐 摩耗性を低下させるおそれがある。
[0031] R2 R3 SiZ (B)
n p 4- [η+ρ]
[R2, R3は炭素数 1〜16の有機基であり、少なくとも一方はエポキシ基を含む。 Ζは 加水分解性基。 η, ρは 0〜2の整数であって 1≤η+ρ≤3である。〕
[化 3]
R5 R7 R9 R11 R13
R4— SiO (SiO) q (SiO) r (SiO) s (SiO2) t Si -R15 (C)
R6 R8 RIO R12 R14
[R4〜R15は有機基であり、 且つこのうち少なくとも一つはエポキシ基を含む。 q、 r、 s、 tは 0〜12の整数である。 ]
[0032] 上記一般式 (B)で表される化合物としては、基材への付着性、得られる塗膜の硬 度および低反射性、組成物の寿命等の目的に応じて適宜選択される。例えば、ダリ シドキシメチノレトリメトキシシラン、グリシドキシメチノレトリエトキシシラン、 0Lーグリシドキ シェチルトリメトキシシラン、 a—グリシドキシェチルトリエトキシシラン、 13—グリシドキ シェチルトリエトキシシラン、 /3—グリシドキシプロピルトリメトキシシラン、 a—グリシド キシプロピルトリメトキシシラン、 a—グリシドキシプロピルトリエトキシシラン、 13—ダリ シドキシプロピルトリエトキシシラン、 γ—グリシドキシプロピルトリメトキシシラン、 (3,4 エポキシシクロへキシノレ)メチノレトリメトキシシラン、 Ίーグリシドキシプロピノレビ二ノレ ジエトキシシラン、 Ύーグリシドキシプロピルフエ-ルジェトキシシラン、 δ—(3,4—ェ ポキシシクロへキシル)ブチルトリエトキシシラン等が挙げられる。
[0033] また、上記一般式 (C)で示される化合物では、式中の R4〜R15はメチル基等の適宜 の炭化水素基などの有機基を挙げることができる。また、この R4〜R15のうち少なくと も一つはエポキシ基を含むものであり、例えば下記構造を有するものを挙げることが できる。
[化 4] -ROCH2CH-CH2
\ /
O
Figure imgf000008_0001
このような上記一般式 (c)で示される化合物の具体例としては、例えば下記に示す ものを挙げることができる。
[化 5]
CH3 CH3
(CH3)3 SiO (SiO)q (SiO) r Si (CH3) 3
CH3 ROCH2CH-CH2
\ /
O CH3 CH3
(CH3)3 SiO ( H3) 3
Figure imgf000008_0002
CH3 CH3 CH3 CH3
R'— SiO (SiO) q (SiO) r (SiO2) t 一 Si— R'
CH3 CH3 ROCH2CH-CH2 CH3
\ /
O
[R,: CH3又は一ROCH2CH— CH2]
\〇,
[化 6] CH3 CH3 CH3
(CH3) 3 SiO (SiO) q (SiO) r (SiO) s Si (CH3) 3
CH3 R POA
0 O
1 / \
CH2CH-CH2
[POAはポリエーテル基、 好ましくは一 C3H60 (C2H40) a (C3H60) b R' &,1)は0〜12の整数。 R'は炭化水素基] H2
Figure imgf000009_0001
CH2-CHCH2O (CH2) 3 SiO (SiO) q Si (CH2) 3 OCH2CH—CH2 \ / I I I \ノ
O CH3 CH3 CH3 υ また、エポキシ基含有有機化合物としては、上記一般式 (B) (C)に示すもののほか 、適宜のエポキシィ匕合物を用いることもできる。このようなエポキシィ匕合物としては、例 えば下記に示すものを挙げることができる。
[化 7]
2 o〇 CH— ,
222 CCC"20HHH CCHCCC〇CCCHHHHH———I————
Figure imgf000010_0001
I
:::〇C::〇C:::HHHHHHHH
R R R一22〇CC: RHHH— I
C:H:H:H〇:H:H〇CH:H:H 〇 I \ I 222222 CCC〇C〇〇CCCHHHHHHHH [0036] エポキシ基含有有機化合物の含有量は適宜調整されるものであるが、好ましくは上 記一般式 (A)で示されるシランィ匕合物に対して 3〜 10重量%の範囲となるようにする ことで、被膜の耐薬品性及び耐摩耗性を低下させることなぐ耐クラック性を更に向上 することができる。この含有量が前記範囲より過少であると耐クラック性を十分に向上 することが困難となり、この範囲よりも過剰となると耐薬品性ゃ耐摩耗性が低下するお それがある。
[0037] また、コーティング材組成物中には、下記一般式 (D)で示されるフッ化アルキル基 含有アルコキシシランを含有させることもできる。
[0038] R— SiX (D)
f 3
〔Rはフッ素原子を一個以上含有する
f 一価有機基。 Xは加水分解性基。〕 このようなものを含有させると、形成される被膜の屈折率を更に低減させることがで きる。
[0039] 上記一般式(D)において、 Rfにおけるフッ素原子の数は 3〜25個、特に 3〜17個 であることが好ましい。中でも、
CF C H -
3 2 4
CF (CF ) C H -
3 2 3 2 4
CF (CF ) C H -
3 2 7 2 4
が極性部分を含んで ヽな 、ため好ま U、。
[0040] また、加水分解性基である Xは、上記一般式 (A)におけるものと同様とすることがで きる。
[0041] このような一般式 (D)に示すフッ化アルキル基含有アルコキシシランとしては、例え ば下記に示すものが挙げられる。
[0042] CF C H Si(OCH )
3 2 4 3 3
CF (CF ) C H Si (OCH )
3 2 3 2 4 3 3
CF (CF ) C H Si (OCH )
3 2 7 2 4 3 3
この一般式 (D)で示されるフッ化アルキル基含有アルコキシシランとその加水分解 物 (部分加水分解物)の含有量は適宜調整されるが、添加量が多くなると被膜の耐 擦傷性が低下することから、組成物中の榭脂成分全量に対して 1〜30重量%の範囲 とすることが好ましく、特に 1〜 10重量%が好まし 、。
[0043] また、コーティング剤組成物には、被膜の硬度、耐擦傷性、導電性等の物性を調整 することを目的として、充填材としてシリカ、酸ィ匕アルミニウム、酸化チタン、酸化亜鉛 、酸ィ匕ジルコニウム、酸化セリウム、酸化スズ、酸化インジウム、或いはこれらの複合 酸化物等の無機酸化物微粒子、またこれらの中空状ゾルを配合してもよい。この中 で、被膜を低屈折率に維持したい場合には、コロイダルシリカ、中空状シリカゾルを 使用するのが好ましい。好適な無機微粒子は、その平均一次粒子径が 0. 001-0. 1 mであることが好ましぐ更に好ましくは 0. 001-0. 05 /z mとされる。平均一次 粒子径が 0. 1 μ mを超える場合には、調製される組成物によって形成される硬化被 膜の透明性が低下する傾向がある。これらの無機酸ィ匕物微粒子は、その表面をシラ ン系、チタン系、アルミニウム系、或いはジルコニウム系カップリング剤等の有機金属 化合物で処理したものを使用してもよい。
[0044] また、充填材としては、外殻が金属酸化物で形成された中空微粒子を配合すること もできる。このような中空微粒子としては中空シリカ微粒子を用いることができる。中空 シリカ微粒子は外殻の内部に空洞が形成されたものであり、このようなものであれば 特に限定されるものではないが、具体的には次のようなものを用いることができる。例 えば、シリカ系無機酸ィ匕物力もなる外殻 (シェル)の内部に空洞を有した中空シリカ微 粒子を用いることができる。シリカ系無機酸ィ匕物とは、(A)シリカ単一層、(B)シリカと シリカ以外の無機酸ィ匕物とからなる複合酸ィ匕物の単一層、及び (C)上記 (A)層と (B )層との二重層を包含するものをいう。外殻は細孔を有する多孔質なものであってもよ いし、細孔が後述する操作により閉塞されて空洞を密封したものであってもよい。外 殻は、内側の第 1シリカ被覆層及び外側の第 2シリカ被覆層からなる複数のシリカ系 被覆層であることが好ましい。外側に第 2シリカ被覆層を設けることにより、外殻の微 細孔を閉塞させて外殻を緻密化したり、さらには、外殻で内部の空洞を密封した中空 シリカ微粒子を得ることができるものである。
[0045] 第 1シリカ被覆層の厚みは l〜50nm、特に 5〜20nmの範囲とすることが好ましい 。第 1シリカ被覆層の厚みが lnm未満であると、粒子形状を保持することが困難とな つて、中空シリカ微粒子を得ることができないおそれがあり、また第 2シリカ被覆層を 形成する際に、有機珪素化合物の部分加水分解物等が上記核粒子の細孔に入り、 核粒子構成成分の除去が困難となるおそれがある。逆に、第 1シリカ被覆層の厚み が 50nmを超えると、中空シリカ微粒子中の空洞の割合が減少して屈折率の低下が 不十分となるおそれがある。さらに、外殻の厚みは、平均粒子径の 1Z50〜: LZ5の 範囲にあることが好ましい。第 2シリカ被覆層の厚みは、第 1シリカ被覆層との合計厚 みが上記 l〜50nmの範囲となるようにすればよぐ特に外殻を緻密化する上では、 2 0〜49nmの範囲が好適である。
[0046] 空洞には中空シリカ微粒子を調製するときに使用した溶媒、及び、乾燥時に浸入 する気体のうち、少なくともいずれかが存在している。また、空洞には空洞を形成する ための前駆体物質が残存していてもよい。前駆体物質は、外殻に付着してわずかに 残存していることもあるし、空洞内の大部分を占めることもある。ここで、前駆体物質と は、第 1シリカ被覆層を形成するための核粒子力もその構成成分の一部を除去した 後に残存する多孔質物質である。核粒子には、シリカとシリカ以外の無機酸ィ匕物とか らなる多孔質の複合酸ィ匕物粒子を用いる。無機酸ィ匕物としては、 Al O、 B O、 TiO
2 3 2 3
、 ZrO、 SnO、 Ce O、 P O、 Sb O、 MoO、 ZnO、 WO等の 1種又は 2種以上
2 2 2 2 3 2 5 2 3 3 2 3
を挙げることができる。 2種以上の無機酸ィ匕物として、 TiO— Al O、 TiO -ZrO等
2 2 3 2 2 を例示することができる。なお、この多孔質物質の細孔内にも上記溶媒あるいは気体 が存在している。このときの構成成分の除去量が多くなると空洞の容積が増大し、屈 折率の低 、中空シリカ微粒子が得られ、この中空シリカ微粒子を配合して得られる透 明被膜は低屈折率で反射防止性能に優れる。
[0047] 本発明に係るコーティング材組成物は、上記のマトリクス形成材料と中空微粒子を 配合することによって調製することができるものである。コーティング材組成物におい て、中空微粒子とその他の成分との重量割合は、特に限定されるものではないが、中 空微粒子 Zその他の成分(固形分) = 80Z20〜: L0Z90の範囲になるように設定す るのが好ましぐより好ましくは 50/50〜15/85である。中空微粒子が 80より多いと 、コーティング材組成物によって得られる硬化被膜の機械的強度が低下するおそれ があり、逆に中空微粒子が 10より少ないと、硬化被膜の低屈折率を発現させる効果 力 S小さくなるおそれがある。 [0048] また、コーティング材組成物には、外殻の内部が空洞ではな 、シリカ粒子を添加す ることができる。このシリカ粒子を配合することによって、コーティング材組成物によつ て形成される硬化被膜の機械的強度を向上させることができるものであり、さらには 表面平滑性と耐クラック性をも改善することができるものである。このシリカ粒子の形 態としては、特に限定されるものではなぐ例えば、粉体状の形態でもゾル状の形態 でもよい。シリカ粒子をゾル状の形態、すなわちコロイダルシリカとして使用する場合 、特に限定されるものではないが、例えば、水分散性コロイダルシリカあるいはアルコ ール等の親水性の有機溶媒分散性コロイダルを使用することができる。一般にこのよ うなコロイダルシリカは、固形分としてのシリカを 20〜50質量%含有しており、この値 力もシリカ配合量を決定することができる。このシリカ粒子の添加量は、コーティング 材組成物中における固形分全量に対して、 0. 1〜30質量%であることが好ましい。 0 . 1質量%未満ではこのシリカ粒子の添カ卩による効果が得られないおそれがあり、逆 に 30質量%を超えると硬化被膜の屈折率を高くするように悪影響を及ぼすおそれが ある。
[0049] 上記のように充填材を含有させると、塗膜の耐摩耗性の向上がさらに期待でき、ま た特に低屈折率であるフッ化マグネシウムや中空状の粒子などの低屈折率の充填材 を添加すると、さらに屈折率を低下させることが期待できるものである。
[0050] また、上記成分のほかに併用することが可能な他の有機珪素化合物としては、下記 一般式に示すジアルキルシロキシ系の加水分解性オルガノシランを挙げることができ る。
[化 8]
(OR)m R1 (OR)m
R3-m— SiO— (-SiO-)n -Si-R3-m
R2
[R1 , R2、 Rはアルキル基、 mは 1〜3の整数、 nは 2〜200の整数]
に示す構造のものを挙げることができる。 [化 9]
CH3
(H3CO)3 Si— O— (SiO)n— Si(OCH3)3
CH3
(H3CO)3 Si— O CH3
(H3CO)3 Si— O— Si— O— (SiO)n— Si(OCH3)3
CH3 CH3
(H3CO)3 Si— O CH3 O— Si(OCH3)3
(H3CO)3 Si-O-Si-O-(SiO)„-O-Si-O-Si(OCH3)3
CH3 CH3 CH3
[0052] また、他の有機珪素化合物としては、上記のもののほか、テトラエトキシシラン等の シリケート類、メチルトリメトキシシラン、へキシルトリメトキシシラン、デシルトリメトキシシ ラン等のアルキルシラン類、フエ-ルトリメトキシシラン等のフエ-ルシラン類、 Ύ—ァ ミノプロピルトリエトキシシラン、 γ—メタクリロキシプロピルトリメトキシシラン、 γ—メル カプトプロピルトリメトキシシラン等のシランカップリング剤類等の各種ィ匕合物を挙げる ことができる。
[0053] これらの有機珪素化合物は、榭脂成分全量に対して 30重量%以下とすることが好 ましい。この含有量が過剰であると被膜の耐クラック性が低下したり親水性が高くなり 耐薬品性が低下したりするおそれがある。
[0054] 上述した式 (A)、 (Β)、 (D)に示す化合物、或いは上記併用可能な他の有機珪素 化合物は、このままで使用してもよいし、(部分)加水分解した形、或いは下記溶剤中 で加水分解した形で使用してもよ ヽ。特にコーティング後の硬化速度を高める観点か らは、(部分)加水分解した形で使用する方が好ましい。加水分解を行う場合には、 加水分解性基に対する、加水分解に関与する水のモル比が 0. 1〜: LOの範囲となる ようにして行うことが好ま 、、
加水分解は、従来公知の方法を適用することができ、この加水分解用触媒或いは 加水分解,縮合硬化用触媒として、塩酸、酢酸、マレイン酸等の酸類、水酸化ナトリウ ム(NaOH)、アンモニア、トリエチルァミン、ジブチルァミン、へキシルァミン、ォクチ ルァミン、ジブチルァミン等のアミン化合物、及びアミン化合物の塩類、塩化べンジル トリェチルアンモ-ゥム、テトラメチルアンモ-ゥムヒドロキシドなどの第四級アンモ-ゥ ム塩等の塩基類、フッ化カリウム、フッ化ナトリウムのようなフッ化塩、固体酸性触媒或 いは固体塩基性触媒 (例えばイオン交換榭脂触媒など)、鉄ー2—ェチルへキソエー ト、チタンナフテート、亜鈴ステアレート、ジブチノレ錫ジアセテートなどの有機力ノレボン 酸の金属塩、テトラブトキシチタン、テトラー i—プロポキシチタン、ジブトキシー(ビス - 2, 4 ペンタンジォネート)チタン、ジ一 i—プロポキシ(ビス一 2, 4 ペンタンジォ ネート)チタンなどの有機チタンエステル、テトラブトキシジルコニウム、テトラー iープ ロポキシジノレコ-ゥム、ジブトキシー(ビス 2, 4 ペンタンジォネート)ジルコニウム 、ジ i—プロポキシ(ビス 2, 4 ペンタンジォネート)ジルコニウムなどの有機ジル コ -ゥムエステル、アルミニウムトリイソプロポキシド等のアルコキシアルミニウム化合 物、アルミニウムァセチルァセトナート錯体等のアルミニウムキレートイ匕合物等の有機 金属化合物、 Ί—ァミノプロピルトリメトキシシラン、 Ί—ァミノプロピルトリエトキシシラ ン、 N ( 一アミノエチル) - Ύ—ァミノプロピルトリメトキシシラン、 Ν - ( β—ァミノ ェチル) - γ—ァミノプロピルトリエトキシシランなどのアミノアルキル置換アルコキシ シランが例示され、これらを単独で又は混合して使用してもよ 、。
[0055] この触媒の添加量は、(部分)加水分解されるべき化合物 100重量部に対し、 0. 0 1〜10重量部、好ましくは 0. 1〜1重量部である。この量が 0. 01重量部よりも少ない と、反応完結までに時間が力かりすぎたり、反応が進行しない場合がある。また、 10 重量部を超えると、コスト的に不利であり、得られる組成物或いは硬化物が着色して しまったり、副反応が多くなる場合がある。
[0056] また、本組成物は溶剤により希釈して使用することができる。この溶剤としては、メタ ノーノレ、エタノール、プロピルアルコール、イソプロピルアルコール、 η—ブチノレアノレコ 一ノレ、イソブチノレアノレコーノレ、 sec ブチノレアノレコーノレ、 tert ブチノレアノレコーノレ、ジ アセトンアルコール等のアルコール類、エチレングリコールモノメチルエーテル、ェチ レングリコーノレモノェチノレエーテノレ、プロピレングリコーノレモノメチノレエーテノレ、プロピ レングリコールモノェチルエーテル等のグリコールエーテル類、アセトン、メチルェチ ルケトン、メチルイソブチルケトン、ァセチルアセトン等のケトン類、酢酸ェチル、酢酸 ブチル、ァセト酢酸ェチル等のエステル類、キシレン、トルエン等が挙げられる。溶剤 の添加量は任意だ力 塗装のし易さ、コーティング膜厚の制御のし易さ、及びコーテ イング剤組成物の安定性を考慮すれば、組成物中の溶剤の含有量は 50〜99重量 %であるのが好ましぐ特に好ましくは 70〜98重量%である。
[0057] そして、上記のようにして調製したコーティング材組成物を基材の表面に塗装して 被膜を形成すると共にこの被膜を乾燥硬化させることによって、表面に低屈折率を有 する硬化被膜が形成された塗装品を得ることができる。なお、コーティング材組成物 が塗装される基材としては、特に限定されるものではないが、例えば、ガラスに代表さ れる無機系基材、金属基材、アクリル榭脂、ポリカーボネート、ポリエチレンテレフタレ ートに代表される有機系基材を挙げることができ、また基材の形状としては、板状や フィルム状等を挙げることができる。さらに、基材の表面に 1層以上の層が形成されて いても構わない。
[0058] コーティング材組成物を基材の表面に塗装するにあたって、その方法は特に限定 されるものではないが、例えば、刷毛塗り、スプレーコート、浸漬 (デイツビング、デイツ プコート)、ローノレコート、フローコート、カーテンコート、ナイフコート、スピンコート、テ 一ブルコート、シートコート、枚葉コート、ダイコート、バーコート等の通常の各種塗装 方法を選択することができる。
[0059] 基材の表面に形成する硬化被膜の膜厚は、使用用途や目的に応じて適宜選択す ることができ、特に限定されるものではないが、 50〜150nmの範囲が好ましい。ここ で、硬化被膜の屈折率と膜厚の積が光学膜厚であり、波長 λの光が最低反射率に なるためには、硬化被膜の光学膜厚が 1Z4えに設定される必要がある。そして反射 防止の対象となる波長え = 540nmの光が最低反射率になるためには、硬化被膜の 屈折率が 1. 35の場合には、硬化被膜の膜厚は lOOnmであることが必要である(光 学膜厚 = 1. 35 X 100= 135 ΐΖ4 λ )。また硬化被膜の屈折率が 1. 42の場合に は、硬化被膜の膜厚は 95nmであることが必要である(光学膜厚 = 1. 42 X 95 = 13 4. 9 = 1/4 λ ) 0このように反射防止被膜として光学設計する場合、硬化被膜の膜 厚は 50〜150nmの範囲が好ましいものである。 [0060] しかして、本発明に係るコーティング材組成物を用いれば、低屈折率の硬化被膜を 容易に形成することができ、反射防止用途に好適である。例えば、基材の屈折率が 1 . 60以下の場合には、この基材の表面に屈折率が 1. 60以上の硬化被膜を形成し てこれを中間層とし、さらにこの中間層の表面に、本発明に係るコーティング材組成 物による硬化被膜を形成するのが有効である。中間層を形成するための硬化被膜は 、公知の高屈折率材料を用いて形成することができ、またこの中間層の屈折率は 1. 60以上であれば、本発明に係るコーティング材組成物による硬化被膜との屈折率の 差が大きくなり、反射防止性能に優れた反射防止基材を得ることができるものである 。また反射防止基材の硬化被膜の着色を緩和するために、中間層を屈折率の異なる 複数の層で形成してもよい。反射防止の用途としては、例えば、反射防止用のフィル ムゃ、ディスプレイの最表面、 自動車のサイドミラー、フロントガラス、サイドガラス、リ ァガラスの内面、その他車両用ガラス、建材ガラス等を挙げることができる。
[0061] また、本発明に係るコーティング材組成物にて形成される被膜は、高い耐擦傷性、 防汚性、耐薬品性、耐クラック性をも有しているものであり、またこれらの性能は、特に 高い耐クラック性を、被膜形成時や被膜形成後に高温下に曝された場合にも良好に 維持することができるものであり、このためプラスチック基材等の可塑性の基材に被膜 を形成する場合であっても加熱時にクラックが発生しにくい被膜を形成することがで きるものである。
実施例
[0062] 以下、本発明を実施例によって具体的に説明する。なお、特に断らない限り、「部」 はすべて「質量部 (重量部)」を、「%」は、後述する反射率を除き、すべて「質量%( 重量%)」を表す。また、「固形分」については、すべて酸化物換算した値を示す。
[0063] (実施例 1)
下記式(1)に示すシラン化合物 47. 8部(0. 08モル)にメタノール 312. 4部をカロえ 、更にエポキシ基含有有機化合物として γ—グリシドキシプロピルトリメトキシシラン 4 . 7部(0. 02モル)、更〖こ 0. 1Ν (0. 1モル ZL)の塩酸水溶液 36部を加え、これをよ く混合した混合液を得た。この混合液を 25°Cの恒温槽で 2時間攪拌して固形分 10 %のシリコーンレジンを得た。この溶液にプロピレングリコールモノメチルエーテル 93 5部を加えて希釈し、固形分が 3%であるコーティング材組成物を得た。
[0064] (CH O) Si— C H— C F — C H— Si(OCH ) (1)
3 3 2 4 6 12 2 4 3 3
(実施例 2)
上記式(1)に示すシラン化合物 47. 8部(0. 08モル)にメタノール 317. 1部をカロえ 、更にエポキシ基含有有機化合物として下記式(2)に示すシロキサンオリゴマー 3. 6 5部(0. 01モル)、更に 0. 1N (0. 1モル ZL)の塩酸水溶液 36部を加え、これをよく 混合した混合液を得た。この混合液を 25°Cの恒温槽で2時間攪拌して固形分 10% のシリコーンレジンを得た。この溶液にプロピレングリコールモノメチルエーテル 1028 部を加えて希釈し、固形分が 3%であるコーティング材組成物を得た。
[化 10]
CH3 CH3
CH2— CHCH2O (CH2)3 S i O S i (CH2) 3 OCH2CH-CH2 (2) \ / I I \ /
O CH3 CH3 O
[0065] (実施例 3)
上記式(1)に示すシラン化合物 47. 8部(0. 08モル)にメタノール 315. 3部をカロえ 、更にエポキシ基含有有機化合物として下記式(3)に示すエポキシィ匕合物 3. 5部(0 . 02モル)、更〖こ 0. 1N (0. 1モル ZL)の塩酸水溶液 36部を加え、これをよく混合し た混合液を得た。この混合液を 25°Cの恒温槽で 2時間攪拌して固形分 10%のシリコ ーンレジンを得た。この溶液にプロピレングリコールモノメチルエーテル 939. 3部を 加えて希釈し、固形物が 3%であるコーティング材組成物を得た。
[化 11]
CH2—CHCH2OCH2CHつ OCH2CH— CH2 (3)
\ / \ /
O O
(実施例 4)
フッ化アルキル基含有アルコキシシランとして下記式 (4)に示すものを 21. 8部(0. 10モル)にメタノール 109. 2部を加え、更に 0. 1N (0. 1モル ZL)の塩酸水溶液 18 部を加え、これをよく混合した混合液を得た。この混合液を 25°Cの恒温槽で 24時間 攪拌して固形分 10%のシリコーンレジンを得た。このシリコーンレジン 10部と、実施 例 2で得られたシリコーンレジン 90部とを混合し、プロピレングリコールモノメチルエー テル 233. 3部をカロえて希釈し、固形分が 3%であるコーティング材組成物を得た。
[0067] CF C H -Si(OCH ) (4)
3 2 4 3 3
(実施例 5)
テトラエトキシシランを 20. 8部(0. 10モル)にメタノール 37. 3部を加え、さらに 0. 1N (0. 1モル ZL)の塩酸水溶液 1. 8部をカ卩え、これをよく混合した混合液を得た。 この混合液を 25°Cの恒温槽で 2時間攪拌して固形分 10%のシリコーンレジンを得た 。このシリコーンレジン 10部と、実施例 2で得られたシリコーンレジン 90部を混合しプ ロピレンダリコールモノメチルエーテル 233. 3部を加えて希釈し、固形分が 3%であ るコーティング材組成物を得た。
[0068] (実施例 6)
中空シリカ微粒子として中空シリカ IPA (イソプロパノール)分散ゾル(固形分 20%、 平均一次粒子径 60nm、外殻厚み約 10nm、触媒化成株式会社製)を用い、これを メタノールにて固形分 10%に希釈し、分散ゾルを得た。この分散ゾル 10部と、実施 例 2で得られたシリコーンレジン 90部とを混合し、プロピレングリコールモノメチルエー テル 233. 3部をカロえて希釈し、固形分が 3%であるコーティング材組成物を得た。
[0069] (比較例 1)
上記式(1)に示すシラン化合物 598部(0. 10モル)にメタノール 364. 1部を加え、 更に 0. 1N (0. 1モル ZL)の塩酸水溶液 36部を加え、これをよく混合した混合液を 得た。この混合液を 25°Cの恒温槽で 2時間攪拌して固形分 10%のシリコーンレジン を得た。この溶液にプロピレングリコールモノメチルエーテル 1073. 1部をカ卩えて希 釈し、固形分が 3%であるコーティング材組成物を得た。
[0070] (比較例 2)
上記式(1)に示すシラン化合物 23. 9部(0. 04モル)にメタノール 320. 1部をカロえ 、更に上記式(2)に示すシロキサンオリゴマー 21. 8部(0. 06モル)、更に 0. 1N (0 . 1モル, L)の塩酸水溶液 36部を加え、これをよく混合した混合液を得た。この混合 液を 25°Cの恒温槽で 2時間攪拌して固形分 10%のシリコーンレジンを得た。この溶 液にプロピレングリコールモノメチルエーテル 937. 5部をカ卩えて希釈し、固形分が 3
%であるコ一ティング材組成物を得た。
[0071] (比較例 3)
実施例 4にて得られたシリコーンレジン 50部と、実施例 2で得られたシリコーンレジ ン 50部とを混合して、プロピレングリコールモノメチルエーテル 233. 3部をカ卩えて希 釈し、固形分が 3%であるコーティング材組成物を得た。
[0072] (比較例 4)
実施例 5にて得られたシリコーンレジン 50部と、実施例 2で得られたシリコーンレジ ン 50部とを混合して、プロピレングリコールモノメチルエーテル 233. 3部をカ卩えて希 釈し、固形分が 3%であるコーティング材組成物を得た。
[0073] (比較例 5)
上記(1)に示すシラン化合物 41. 8部(0. 07モル)にメタノール 341. 7部をカロえ、 更に上記式(2)に示すシロキサンオリゴマー 10. 9部(0. 03モル)、更に 0. 1N (0.
1モル, L)の塩酸水溶液 36部をカロえ、これをよく混合した混合液を得た。この混合 液を 25°Cの恒温槽で 2時間撹拌して固形分 10%のシリコーンレジンを得た。この溶 液にプロピレングリコールモノメチルエーテル 1004. 4部をカ卩えて希釈し、固形分が
3%であるコーティング材組成物を得た。
[0074] (組成)
以上の各実施例及び比較例のコーティング材組成物における配合比率 (質量%) を下記表 1に示す。
[表 1] 表 1
Figure imgf000022_0001
a:式 (A)で示されるシラン化合物の含有量
b:エポキシ基含有有機化合物の含有量
[0075] (被膜形成)
各実施例及び比較例で得られたコーティング材組成物を 1時間放置した後に、予 め UV—オゾン洗浄機(ゥシォ電機社製エキシマランプ「型式 H0011」)で表面洗浄 した、アクリル板 (旭化成社製「デラグラス TMHA」、両面ハードコート処理、ハードコ ート屈折率 1. 52)のハードコート面に、ワイヤーバーコ一ターによって塗装して膜厚 が約 lOOnmになるように形成し、 100°Cで 30分間処理することによって、硬化被膜 を得た。
[0076] この硬化被膜に対して、下記のように最小反射率、耐摩耗性、指紋除去性、耐アル カリ性、耐クラック性につ!、ての評価試験を行った。
[0077] (最小反射率)
分光光度計(日立製作所製「U— 4100」)を使用して、 5° 相対最小反射率を測定 した。
[0078] (耐摩耗性)
摩耗試験機(新束科学社製「HEIDON - 14DRJ、スチールウール # 0000、荷重 9. 8kPa (100gZcm2) )で硬化被膜の表面を擦り、硬化被膜に発生する傷の発生レ ベルを観察して下記評価基準にて機械的強度を判定した。
[0079] A:傷が発生しない。
B :傷が僅かに発生する。
C :傷が発生する。
D:傷が多数発生する (又は剥離する)。
[0080] (指紋除去性)
硬化被膜表面に対して指紋を付着させ、その指紋跡を OAトレシー (東レ株式会社 製)で拭き取った後の様子を観察して、下記評価基準にて指紋除去性を判定した。
[0081] A:数回で除去できる。
B:十数回程度で除去できる。
C:かなり拭くと何とか除去できる。
D:除去できな 、 (跡がのこる)。
[0082] (耐アルカリ性)
25°Cの 0. 1N (0. 1モル ZL)水酸ィ匕ナトリウム水溶液中に、硬化被膜を 1時間浸 漬した後の被膜の様子を観察し、下記評価基準にて耐アルカリ性を評価した。
[0083] A:被膜に変化無し。
B :被膜に浸漬した跡が見えるが、布で擦っても剥離以上無し。
C:浸漬だけでは剥離はみられな 、が、布で擦ると剥離する。
D :浸漬により剥離する。
[0084] (耐クラック'性)
被膜を形成したアクリル板を、 110°Cで 30分間、次いで 120°Cで 30分間、更に 13
0°Cで 30分間焼成し、被膜にクラックが発生する焼成温度にて耐クラック性を評価し た。
[0085] A: 130°Cでもクラック未発生。
B : 130°Cでクラック発生。
C : 120°Cでクラック発生。
D : 110°Cでクラック発生。
[0086] 以上の結果を下記表 2に示す。 [表 2] 表 2
Figure imgf000024_0001
[0087] この結果のように、実施例 1〜6では評価が全て Aか、或いは一部の評価が Bにな つているものであるのに対して、比較例 1〜5では全ての評価が B以上となっているも のはなぐこれにより、本発明のコーティング材組成物では低反射で高い耐摩耗性、 指紋拭き取り性、耐アルカリ性、耐クラック性を実現することができるものであることが 明らかとなった。
産業上の利用の可能性
[0088] 本発明は、プラスチック基材等の可塑性の基材に被膜を形成した場合であっても、 被膜形成時や、被膜形成後に高温下に曝された際に、低屈折率で、高い耐擦傷性 、防汚性、耐薬品性、耐クラック性を維持することができるコーティング材組成物及び このコーティング材組成物にて被膜を形成した塗装品に適用することができる。
[0089] 本発明によれば、高 ヽ反射防止性、耐擦傷性、防汚性、耐薬品性、耐クラック性を 有する被膜を形成することができ、かつこれらの性能、特に高い耐クラック性を、高温 下に曝された際にも維持することができるものである。

Claims

請求の範囲
[1] 下記一般式 (A)で示されるシラン化合物と、分子中に 1個以上のエポキシ基を含有 するエポキシ基含有有機化合物とを含有し、前記シラン化合物の含有量が榭脂成分 全量に対して 60〜97重量%であり、前記エポキシ基含有有機化合物の含有量が、 榭脂成分全量に対して 3〜10重量%であることを特徴とするコーティング材組成物。 X R1 Si-Y-SiR1 X (A)
m 3— m 3— m m
〔R1は炭素数 1〜6の一価炭化水素基。 Yはフッ素原子を 1個以上含有する二価有 機基。 Xは加水分解性基。 mは 1〜3の整数である。〕
[2] 上記エポキシ基含有有機化合物が、下記一般式 (B)で表される化合物と、下記一 般式 (C)で示される化合物とから選ばれる少なくとも一種の化合物を含有することを 特徴とする請求項 1に記載のコーティング材組成物。
R2 R3 SiZ (B)
n p 4- [η+ρ]
[R2, R3は炭素数 1〜16の有機基であり、少なくとも一方はエポキシ基を含む。 Ζは 加水分解性基。 η, ρは 0〜2の整数であって 1≤η+ρ≤3である。〕
[化 1]
R5 R7 R9 R11 R13
R4- SiO (SiO) q (SiO) r (SiO) s (SiO2) t Si -Ri5 (C)
Figure imgf000025_0001
[R4~R15は有機基であり、 且つこのうち少なくとも一つはエポキシ基を含む。 q、 r、 s、 tは 0〜12の整数である。 ]
[3] 上記エポキシ基含有有機化合物が、分子中にエポキシ基を二個以上含有するもの であることを特徴とする請求項 1又は 2に記載のコーティング材組成物。
[4] 下記一般式 (D)で示されるフッ化アルキル基含有アルコキシシランを含有すること を特徴とする請求項 1乃至 3のいずれか〖こ記載のコーティング材組成物。
R -SiX (D)
f 3
〔Rはフッ素原子を一個以上含有する一価有機基。 Xは加水分解性基。〕
f
[5] 充填材を含有することを特徴とする請求項 1乃至 4のいずれかに記載のコーティン グ材組成物。
[6] 上記エポキシ基含有有機化合物の含有量が、上記一般式 (A)で示されるシランィ匕 合物に対して 3〜: L0重量%であることを特徴とする請求項 1乃至 5のいずれかに記載 のコーティング材組成物。
[7] 基材の表面に請求項 1乃至 6の 、ずれかに記載のコーティング材組成物の硬化被 膜を形成して成ることを特徴とする塗装品。
PCT/JP2006/303767 2005-03-02 2006-02-28 コーティング材組成物及び塗装品 WO2006093156A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007505961A JPWO2006093156A1 (ja) 2005-03-02 2006-02-28 コーティング材組成物及び塗装品
EP06714896A EP1854854A4 (en) 2005-03-02 2006-02-28 COATING COMPOSITION AND COATED ARTICLE
US11/816,832 US8273811B2 (en) 2005-03-02 2006-02-28 Coating material composite and coated article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-058184 2005-03-02
JP2005058184 2005-03-02

Publications (1)

Publication Number Publication Date
WO2006093156A1 true WO2006093156A1 (ja) 2006-09-08

Family

ID=36941185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303767 WO2006093156A1 (ja) 2005-03-02 2006-02-28 コーティング材組成物及び塗装品

Country Status (5)

Country Link
US (1) US8273811B2 (ja)
EP (1) EP1854854A4 (ja)
JP (1) JPWO2006093156A1 (ja)
KR (1) KR100901544B1 (ja)
WO (1) WO2006093156A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115357A (ja) * 2006-11-06 2008-05-22 Far Eastern Textile Ltd 低反射フィルム生産用成膜溶液をゾル−ゲル法によって製造する方法及び該成膜溶液を用いた低反射フィルムの製造方法
JP2010180375A (ja) * 2009-02-09 2010-08-19 Shin-Etsu Chemical Co Ltd 光硬化型コーティング剤組成物、被膜形成方法及び被覆物品

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9353268B2 (en) * 2009-04-30 2016-05-31 Enki Technology, Inc. Anti-reflective and anti-soiling coatings for self-cleaning properties
US9376593B2 (en) 2009-04-30 2016-06-28 Enki Technology, Inc. Multi-layer coatings
KR101800743B1 (ko) * 2011-01-10 2017-11-24 삼성전자주식회사 지문 돋보임 방지 피막용 조성물, 상기 조성물을 이용한 지문 돋보임 방지 피막, 및 상기 피막을 포함하는 물품
US9109140B2 (en) 2013-01-22 2015-08-18 Xerox Corporation Mixed organosiloxane networks for tunable surface properties for blanket substrates for indirect printing methods
US9493676B2 (en) * 2013-03-19 2016-11-15 Xerox Corporation Formulation composition for fluorinated organosiloxane network
US9376589B2 (en) 2014-07-14 2016-06-28 Enki Technology, Inc. High gain durable anti-reflective coating with oblate voids
US9598586B2 (en) 2014-07-14 2017-03-21 Enki Technology, Inc. Coating materials and methods for enhanced reliability
US9382449B2 (en) 2014-09-19 2016-07-05 Enki Technology, Inc. Optical enhancing durable anti-reflective coating
PL3203273T3 (pl) * 2014-09-30 2022-03-14 Nippon Sheet Glass Company, Limited Płyta szklana powleczona nisko-odblaskowo, podłoże szklane oraz urządzenie do konwersji fotoelektrycznej
KR20220132328A (ko) * 2021-03-23 2022-09-30 삼성에스디아이 주식회사 경화형 수지 조성물, 이로부터 제조되는 박막, 및 상기 박막을 포함하는 색 변환 패널 및 표시 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625599A (ja) * 1992-07-10 1994-02-01 Asahi Optical Co Ltd スピンコート可能な反射防止組成物
JPH06347605A (ja) * 1993-06-04 1994-12-22 Asahi Optical Co Ltd コーティング組成物の製造方法
WO2005059051A1 (ja) * 2003-12-19 2005-06-30 Nissan Chemical Industries, Ltd. 低屈折率及び大きい水接触角を有する被膜

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58222160A (ja) * 1982-06-16 1983-12-23 Tokuyama Soda Co Ltd コ−テイング用組成物
JPS5943070A (ja) 1982-09-02 1984-03-09 Seiko Epson Corp 硬化膜を有する複合体
JPS59115840A (ja) 1982-12-24 1984-07-04 旭硝子株式会社 低反射率塗膜
JPS60262833A (ja) 1984-06-11 1985-12-26 Tokuyama Soda Co Ltd 被覆合成樹脂材
JPS6110043A (ja) * 1984-06-26 1986-01-17 Asahi Glass Co Ltd 防汚性を有する低反射率ガラス
EP0186186B1 (en) 1984-12-27 1991-07-24 Asahi Glass Company Ltd. Curable resin composition
JPS61276832A (ja) 1985-05-31 1986-12-06 Nippon Sheet Glass Co Ltd 耐摩耗性のすぐれた被覆プラスチツク成形体の製造方法
JPH0778186B2 (ja) 1986-05-23 1995-08-23 旭硝子株式会社 硬化性組成物
JPS6424422A (en) 1987-07-20 1989-01-26 Sanyo Electric Co Formation of fine pattern
JP2629813B2 (ja) 1988-04-28 1997-07-16 旭硝子株式会社 低反射透明成形体
JP3155025B2 (ja) 1991-05-17 2001-04-09 旭硝子株式会社 表面処理された建築・建装用物品および該物品の製造方法
JPH04343366A (ja) 1991-05-20 1992-11-30 Asahi Glass Co Ltd 電子写真用キャリアの表面処理剤、およびそれで処理されたキャリア
JP2819371B2 (ja) 1992-03-27 1998-10-30 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及びその硬化物
JPH0629332A (ja) 1992-07-13 1994-02-04 Nec Corp 半導体素子吸着治具
JPH08311408A (ja) * 1995-03-15 1996-11-26 Seiko Epson Corp コーティング用組成物およびその製造方法および積層体
US6001163A (en) * 1997-04-17 1999-12-14 Sdc Coatings, Inc. Composition for providing an abrasion resistant coating on a substrate
US6348269B1 (en) * 1998-10-23 2002-02-19 Sdc Coatings, Inc. Composition for providing an abrasion resistant coating on a substrate having improved adhesion and improved resistance to crack formation
DE60035776T2 (de) 1999-04-23 2008-04-30 Sdc Coatings Inc., Anaheim Zusammensetzung für abriebfeste beschichtung
JP3657869B2 (ja) * 1999-10-29 2005-06-08 株式会社巴川製紙所 低反射部材
CN100478292C (zh) 2000-06-20 2009-04-15 日挥触媒化成株式会社 无机化合物颗粒及其制备方法
JP4126521B2 (ja) 2000-08-04 2008-07-30 信越化学工業株式会社 被膜形成用組成物用フロロオルガノポリシロキサン樹脂の製造方法
CN1283372C (zh) * 2001-04-02 2006-11-08 松下电器产业株式会社 疏水膜及其制造方法、使用该膜的喷墨头和喷墨式记录装置
JP4126545B2 (ja) * 2003-04-18 2008-07-30 信越化学工業株式会社 被覆物品並びに多層積層体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625599A (ja) * 1992-07-10 1994-02-01 Asahi Optical Co Ltd スピンコート可能な反射防止組成物
JPH06347605A (ja) * 1993-06-04 1994-12-22 Asahi Optical Co Ltd コーティング組成物の製造方法
WO2005059051A1 (ja) * 2003-12-19 2005-06-30 Nissan Chemical Industries, Ltd. 低屈折率及び大きい水接触角を有する被膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1854854A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115357A (ja) * 2006-11-06 2008-05-22 Far Eastern Textile Ltd 低反射フィルム生産用成膜溶液をゾル−ゲル法によって製造する方法及び該成膜溶液を用いた低反射フィルムの製造方法
JP2010180375A (ja) * 2009-02-09 2010-08-19 Shin-Etsu Chemical Co Ltd 光硬化型コーティング剤組成物、被膜形成方法及び被覆物品
US8221878B2 (en) 2009-02-09 2012-07-17 Shin-Etsu Chemical Co., Ltd. Photocurable coating composition, film forming method, and coated article

Also Published As

Publication number Publication date
US8273811B2 (en) 2012-09-25
JPWO2006093156A1 (ja) 2008-08-07
EP1854854A4 (en) 2010-08-04
KR100901544B1 (ko) 2009-06-08
EP1854854A1 (en) 2007-11-14
US20090043025A1 (en) 2009-02-12
KR20070118597A (ko) 2007-12-17

Similar Documents

Publication Publication Date Title
WO2006093156A1 (ja) コーティング材組成物及び塗装品
KR101126374B1 (ko) 방오성 코팅제 및 피복 물품
US6228921B1 (en) Process for the production of compounds based on silanes containing epoxy groups
KR101062564B1 (ko) 반사 방지막, 반사 방지막 형성용 코팅제 조성물 및 반사방지막을 구비한 물품
JP4041966B2 (ja) ハードコート剤及びハードコート膜が形成された物品
JP4905656B2 (ja) 複合樹脂、それを含むコーティング剤組成物、及び被覆物品、並びに複合樹脂の製造方法
US20130109261A1 (en) Coating systems capable of forming ambiently cured highly durable hydrophobic coatings on substrates
JP2016537484A (ja) ポリフッ素含有シロキサン被覆
WO2005059050A1 (ja) 低屈折率及び撥水性を有する被膜
JP2010180375A (ja) 光硬化型コーティング剤組成物、被膜形成方法及び被覆物品
WO2005059051A1 (ja) 低屈折率及び大きい水接触角を有する被膜
JP4502112B2 (ja) 防汚性コーティング剤及び被覆物品
JP5357502B2 (ja) 低屈折率コーティング材組成物及び塗装品
JP2010100819A (ja) 指紋汚れの防止方法、並びに耐指紋性コーティング材組成物及びその塗装品
KR20140134867A (ko) 저반사특성을 갖는 내오염성 코팅용액 조성물 및 그 제조방법
WO2013042278A1 (ja) コーティング組成物及び塗装品
JP4502111B2 (ja) 防汚性コーティング剤及び被覆物品
JP5924275B2 (ja) 硬化性樹脂組成物及び被覆物品
KR20030040064A (ko) 가수분해성 유기규소 화합물을 함유하는 조성물 및이로부터 수득된 코팅재
JP3929321B2 (ja) 高滑水性被膜及びその製造方法
JP2007099828A (ja) コーティング材組成物及び塗装品
JP3929328B2 (ja) 高滑水性被膜及びその被覆法
JP6060698B2 (ja) 硬化性樹脂組成物及び被覆物品
JP2004035313A (ja) 高耐久性滑水被膜及びその製造方法
JP4725073B2 (ja) コーティング材組成物及び塗装品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007505961

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006714896

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11816832

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077019839

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006714896

Country of ref document: EP