WO2006082684A1 - ハニカム構造体 - Google Patents

ハニカム構造体 Download PDF

Info

Publication number
WO2006082684A1
WO2006082684A1 PCT/JP2005/022589 JP2005022589W WO2006082684A1 WO 2006082684 A1 WO2006082684 A1 WO 2006082684A1 JP 2005022589 W JP2005022589 W JP 2005022589W WO 2006082684 A1 WO2006082684 A1 WO 2006082684A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
adhesive layer
surface area
specific surface
unit
Prior art date
Application number
PCT/JP2005/022589
Other languages
English (en)
French (fr)
Inventor
Masafumi Kunieda
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to JP2007501512A priority Critical patent/JP5237630B2/ja
Priority to EP06001438A priority patent/EP1685899A1/en
Priority to US11/342,636 priority patent/US7651754B2/en
Publication of WO2006082684A1 publication Critical patent/WO2006082684A1/ja

Links

Classifications

    • B01J35/60
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2466Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the adhesive layers, i.e. joints between segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • Y10T428/24157Filled honeycomb cells [e.g., solid substance in cavities, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24174Structurally defined web or sheet [e.g., overall dimension, etc.] including sheet or component perpendicular to plane of web or sheet

Definitions

  • the present invention relates to a her cam structure.
  • a catalyst for purifying exhaust gas having power from an internal combustion engine has a high specific surface area material such as activated alumina and platinum as a component on the surface of a catalyst carrier having a cordierite-like no-cam unit. It is manufactured by supporting a catalytic metal containing metal.
  • Patent Document 1 discloses a honeycomb-shaped carrier substrate, a catalyst carrier layer formed on the cell wall surface of the carrier substrate, a catalyst noble metal and a NOx occlusion material supported on the catalyst carrier layer, A catalyst for exhaust gas purification, which has high power, the catalyst support layer is characterized in that the surface force of the catalyst support layer occupies 80% or more of the total volume of the catalyst support layer. Is disclosed.
  • Patent Document 2 a composition containing a ceramic powder, an inorganic substance capable of binding to inorganic fibers, and an organic binder having plasticity as necessary is extruded into a honeycomb shape.
  • a method for producing a Hercam-like fiber reinforced ceramic body characterized in that the extruded product is dried and then fired at a temperature below the melting point or acid point of the inorganic fiber.
  • Patent Document 3 is a catalyst carrier for treating a low-concentration CO-containing exhaust gas, in which a catalyst component containing a noble metal is supported on a porous honeycomb carrier obtained by extruding and firing a material.
  • An exhaust gas treatment catalytic force having a inner wall thickness of 0.1 to 0.5 mm and a length in the gas flow direction of 50 to 200 mm is disclosed.
  • the contact probability between the exhaust gas and the catalyst metal and the NOx storage material is increased.
  • the specific surface area per unit volume of the catalyst support is increased [] in order to increase the contact probability between the exhaust gas and the catalyst metal and the NOx storage material, the contact probability can be increased by reducing pressure loss, etc.
  • the Hercam-like fiber reinforced ceramic body disclosed in Patent Document 2 is obtained by extruding a composition containing ceramic powder and an inorganic substance having a binding property with inorganic fibers into a honeycomb shape, The specific surface area of the her cam fiber reinforced ceramic body can be increased.
  • the contact probability between the exhaust gas and the catalyst may not be improved only by increasing the specific surface area of the Hercam fiber reinforced ceramic body, and the exhaust gas cannot be purified efficiently.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-263416
  • Patent Document 2 Japanese Patent Laid-Open No. 5-213681
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-245547
  • One of the objects of the present invention is to provide a hard cam structure capable of purifying gas more efficiently.
  • One aspect of the present invention is a nose-cam structure in which a plurality of two-cam units in which a plurality of cells are arranged in parallel in the longitudinal direction across a cell wall are bonded via an adhesive layer.
  • the ratio of the specific surface area of the her cam unit to the adhesive layer is 1.0 or more.
  • FIG. 1 is a diagram for explaining an example of a her cam structure according to the present invention.
  • FIG. 2 is a diagram for explaining an example of a her cam unit of a her cam structure according to the present invention.
  • FIG. 3 is a diagram illustrating an example of a gas purification apparatus according to the present invention.
  • FIG. 4 is a diagram for explaining an apparatus for measuring the light-off temperature of a honeycomb structure.
  • FIG. 5 is a diagram showing a measurement result of a light-off temperature of a her cam structure.
  • FIG. 6 is a diagram showing the results of a durability test of a two-cam structure provided with a coating layer. Explanation of symbols
  • a first embodiment of the present invention is a her cam structure including at least one of a plurality of her cam units and an adhesive layer and a coating layer in which the plurality of her cam units are arranged,
  • the ratio of the specific surface area of the Hercom unit to the specific surface area of at least one of the material layer and the coating layer is 1.0 or more.
  • the shape of the Hercom structure in the first embodiment of the present invention is not particularly limited, and may be, for example, a cylinder, a prism, or an elliptic cylinder.
  • each of the her cam units constituting the her cam structure is not particularly limited, but is preferably a shape that allows a plurality of her cam units to be easily arranged with respect to each other.
  • the cross-sectional shape of the her cam unit perpendicular to the longitudinal direction of the her cam unit is desirably a square, a rectangle, or a hexagon, and may be a fan shape.
  • the her cam unit includes a plurality of cells constituting the her cam unit, and the cells of the power unit are areas separated by the cell walls of the her cam unit.
  • the cell wall of the her cam unit may be capable of allowing gas to pass therethrough.
  • the cell of the Hercom unit has openings at both ends in the longitudinal direction, and one of the openings may be sealed as necessary.
  • the cross-sectional area of the her cam unit orthogonal to the longitudinal direction of the her cam unit is preferably 5 cm 2 or more and 50 cm 2 or less, more preferably 6 cm 2 or more and 40 cm 2 or less. Most preferably, it is 8 cm 2 or more and 30 cm 2 or less. If the cross-sectional area force of the her cam unit that is perpendicular to the longitudinal direction of the her cam unit is less than 5 cm 2 , the pressure in the her cam structure when passing gas through the her cam structure Loss increases.
  • the cross-sectional area of the her cam unit which is perpendicular to the longitudinal direction of the her cam unit, exceeds 50 cm 2 , when the temperature of the her cam structure is raised, The generated thermal stress cannot be sufficiently dispersed, and cracks are likely to occur in the honeycomb structure when the thermal stress is generated.
  • Her cam perpendicular to the longitudinal direction of the Her cam unit When the cross-sectional area of the unit is preferably 5 cm 2 or more and 50 cm 2 or less, pressure loss in the two-cam structure can be suppressed and crack generation in the hard cam structure can be reduced. You can do it.
  • the her cam structure includes an adhesive layer that bonds a plurality of herm units.
  • the adhesive layer is provided between a plurality of her cam units in order to arrange a plurality of her cam units. Glue.
  • the adhesive layer can improve the spalling resistance of the her cam structure by bonding a plurality of her cam units.
  • the thickness of the adhesive layer is preferably 0.5 mm or more and 2 mm or less. If the thickness of the adhesive layer is less than 0.5 mm, it is difficult to uniformly provide the adhesive layer on the her cam unit, and local variations in the adhesive strength of the adhesive layer are likely to occur. Become. Further, when the thickness of the adhesive layer exceeds 2 mm, cracks are likely to occur in the adhesive layer due to the thermal stress generated in the adhesive layer.
  • the her cam structure includes a coating layer that covers at least one outer peripheral portion of at least one of the plurality of hammer units.
  • the coating layer covers the outer peripheral portions of a plurality of hercom units located in the vicinity of the outer peripheral portion of the honeycomb structure.
  • the coating layer covers at least one outer peripheral portion of at least one of the plurality of hammer units, thereby maintaining the shape of the heart cam structure and reinforcing the strength of the heart cam structure. be able to.
  • the thickness of the coating layer is preferably 0.1 mm or more and 2 mm or less.
  • the thickness force of the coating layer is less than 0.1 mm, it may be difficult to protect the plurality of her cam units and improve the strength of the her cam structure.
  • the thickness of the coating layer exceeds 2 mm, cracking force is likely to occur in the coating layer due to the thermal stress generated in the coating layer.
  • the her cam structure may include both an adhesive layer and a coating layer!
  • the material of the adhesive layer and the material of the coating layer may be the same or different. May be.
  • the specific surface area of the her cam unit is the sum of the surface areas of the her cam units per unit mass or unit weight of the hard cam unit.
  • the specific surface area of the adhesive layer is the sum of the surface areas of the adhesive layer per unit mass or unit weight of the adhesive layer, and the specific surface area of the coating layer is the coating layer per unit mass or unit weight of the coating layer. Is the total surface area.
  • the ratio of the specific surface area of the her cam unit to the specific surface area of at least one of the adhesive layer and the coating layer is 1.0 or more.
  • the specific force of the specific surface area of the hard coat with respect to the specific surface area of at least one of the adhesive layer and the coating layer is 1.0 or more, which is a ratio of at least one of the adhesive layer and the coating layer.
  • the specific force of the specific surface area of the Hercam unit relative to the surface area It is 1.0 or more in two significant figures.
  • the ratio of the specific surface area of the her cam unit to the specific surface area of the adhesive layer is 1.0 or more, whereas the hard cam structure strength coating layer
  • the ratio of the specific surface area of the her cam unit to the specific surface area of the coating layer is 1.0 or more.
  • the ratio of the specific surface area of the her cam unit to the specific surface area of at least one of the adhesive layer and the coating layer is 1.0 or more. is there.
  • it is preferable that the ratio of the specific surface area of the hard cam unit to the specific surface area of the adhesive layer is 1.0 or more and the specific surface area of the hard cam unit to the specific surface area of the coating layer. The ratio is 1.0 or more.
  • the ratio of the specific surface area of the Hercom unit to the specific surface area of at least one of the adhesive layer and the coating layer is 1.0 or more.
  • the material can be selectively passed through the hard unit in preference to at least one of the material layer and the coating layer.
  • the light-off temperature which is one index representing the performance of purifying gas, can be lowered.
  • the rate of decrease in the concentration of specific components (generally, HC (hydrocarbon), CO) contained in the gas is purified by the reaction of purifying the gas in the Hercam structure.
  • the light-off temperature is The reaction temperature 50%.
  • the gas can be purified with a small amount of energy, so the performance of the gas of the her cam structure is high.
  • the light-off temperature force 160 ° C of the her cam structure is 170 ° C or less, the her cam structure has good performance for purifying gas.
  • the ratio of the specific surface area of the her cam unit to the specific surface area of at least one of the adhesive layer and the coating layer is 1.0 or more. It is also possible to provide a no-cam structure with a light-off temperature.
  • the ratio of the specific surface area of the Hercam unit to the specific surface area of both the adhesive layer and the coating layer is less than 1.0, the gas is more adhesive than the Hercam unit. It may be easy to pass through both of the layers, and the reaction to purify the gas in the Hercom unit may not proceed sufficiently. Therefore, the performance of purifying the gas of the her cam structure may be deteriorated.
  • the ratio of the specific surface area of the her cam unit to the specific surface area of the adhesive layer is preferably 1 1 or more and 10 or less.
  • the ratio of the specific surface area of the hard cam unit to the specific surface area of the adhesive layer is 1.1 or more and 10 or less, it is possible to provide a no-cam structure having a light-off temperature of 130 ° C. or less. it can. That is, it is possible to provide a hard cam structure capable of purifying gas more efficiently.
  • the ratio of the specific surface area of the her cam unit to the specific surface area of the coating layer is preferably 1.3 or more and 20 or less. More preferably, it is 3 or more and 7 or less.
  • Specific force of the specific surface area of the Hercam unit with respect to the specific surface area of the coating layer is the amount of the coating layer damaged by erosion or corrosion caused by gas passing through the honeycomb structure.
  • Specific force of the specific surface area of the Hercam unit relative to the specific surface area of the coating layer is less than 1.3
  • the specific surface area force of the coating layer is relatively high, that is, the porosity of the coating layer is relatively high, the gas easily enters the inside of the coating layer. Therefore, the coating layer is likely to be deteriorated by the gas that has entered the coating layer, and the durability of the coating layer may be reduced.
  • the specific force of the specific surface area of the hard cam unit exceeds the specific surface area of the coating layer, cracks may occur in the hard cam structure when purifying the gas using the hard cam structure. May occur.
  • the coating layer may peel off from the hard cam unit. And, the force that causes cracks in the hard cam structure, or the two cam unit force When the coating layer peels, the reaction between the coating layer and the gas passing through the hard cam structure is promoted, and the coating layer Tends to deteriorate.
  • the ratio of the specific surface area of the her cam unit to the specific surface area of the coating layer is 1.3 or more and 20 or less, gas intrusion into the coating layer is suppressed and the coating layer Generation of cracks and peeling of the coating layer are suppressed, and the honeycomb structure exhibits good durability for a long time.
  • the specific surface area of at least one of the adhesive layer and the coating layer is 10 m 2 Zg or more and 100 m 2 Zg or less.
  • the specific surface area of at least one of the adhesive layer and the coating layer is 10 m 2 / g or more and 100 m 2 / g or less.
  • the adhesive layer with respect to the specific surface area or porosity of at least one of the adhesive layer and the coating layer And the amount of gas passing through at least one of the coating layers is suppressed. Therefore, the gas can be selectively passed through the her cam unit rather than at least one of the adhesive layer and the coating layer. As a result, it is possible to provide a her cam structure capable of purifying gas more efficiently.
  • the specific surface area of the adhesive layer is preferably 10 m 2 / g or more and 100 m 2 / g or less.
  • the gas passing through the adhesive layer relative to the specific surface area or porosity of the adhesive layer Power is suppressed. Therefore, the gas can be selectively passed through the hard cam unit rather than the adhesive layer. As a result, it is possible to provide a her cam structure capable of purifying gas more efficiently.
  • the specific surface area of the adhesive layer is not less than 10 m 2 Zg and not more than 100 m 2 Zg, the adhesion of the plurality of hard cam units can be improved, and a plurality of the adhesive layers having good adhesion can be improved.
  • a her cam structure having the her cam unit can be provided.
  • the specific surface area of the adhesive layer is less than 10 m 2 Zg, the honeycomb structure is not sufficiently relaxed against the thermal stress generated in the honeycomb structure when the temperature of the her cam structure is increased. • Separation may occur at the interface between the hard cam unit and the adhesive layer.
  • the specific surface area of the adhesive layer exceeds 100 m 2 / g or less, the area of the interface (contact region) between the her cam unit and the adhesive layer is bonded by a small amount of the adhesive layer. In some cases, the adhesion of multiple hard units may be insufficient.
  • At least one of the adhesive layer and the coating layer includes at least one of inorganic particles and inorganic fibers.
  • the specific surface area of at least one of the adhesive layer and the coating layer can be adjusted more easily. it can.
  • the specific surface area of at least one of the adhesive layer and the coating layer depends on at least one kind of inorganic particles and inorganic fibers contained in at least one of the adhesive layer and the coating layer.
  • At least one of the adhesive layer and the coating layer may include an inorganic noinder for fixing at least one of the inorganic particles and the inorganic fiber to at least one of the adhesive layer and the coating layer.
  • at least one of the adhesive layer and the coating layer may include an organic binder for fixing at least one of the inorganic particles and the inorganic fibers to at least one of the adhesive layer and the coating layer.
  • the inorganic particles are not particularly limited, and examples thereof include oxides, carbides, nitrides, and the like, specifically, inorganic powders made of silicon carbide, silicon nitride, boron nitride, etc. Can be mentioned. These may be used alone or in combination of two or more. Among the inorganic particles, silicon carbide having excellent thermal conductivity is desirable.
  • the inorganic fiber is not particularly limited. For example, ceramic fibers such as alumina, silica, silica alumina, glass, potassium titanate, aluminum borate, etc., for example, alumina, silica, zircoia, titer, etc. And whiskers made of ceria, mullite, silicon carbide, and the like. Among the inorganic fibers, alumina fibers are desirable.
  • the inorganic binder is not particularly limited, and examples thereof include inorganic binders selected from the group consisting of silica sol, alumina sol, and mixtures thereof. Among these inorganic binders, silica sol is desirable.
  • the organic binder is not particularly limited, but examples thereof include organic binders selected from the group consisting of polybutyl alcohol, methylcellulose, ethylcellulose, carboxymethylcellulose, and combinations thereof. It is done.
  • the hard cam unit contains a ceramic.
  • the her cam unit contains ceramic, a her cam unit having relatively high heat resistance, and thus a no-cam structure having relatively high heat resistance can be provided.
  • the material of the two-cam unit is not particularly limited, but is preferably ceramics, for example, nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride, and silicon carbide. , Carbide ceramics such as zirconium carbide, titanium carbide, tantalum carbide, and tandastene carbide, and acid ceramics such as alumina, zirconium, cordierite, and mullite. In addition, a ceramic containing a silicon-containing ceramic in which metallic silicon is mixed with the above-described ceramic, or a ceramic bonded with at least one of silicon and a silicate compound can also be used.
  • nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride
  • Carbide ceramics such as zirconium carbide, titanium carbide, tantalum carbide, and tandastene carb
  • Silicon carbide based ceramic power with good heat resistance, good mechanical properties, and relatively high thermal conductivity is desirable.
  • Silicon carbide-based ceramics are not only ceramics composed only of silicon carbide but also silicon carbide as a main component and silicon carbide is a metal, a crystalline compound, and an amorphous compound. Also includes a ceramic bonded with at least one.
  • the ceramic includes alumina.
  • the alumina has a relatively high resistance. Since it has thermal properties, a no-cam unit having higher heat resistance can be obtained. Therefore, in this case, a nose-cam structure having higher heat resistance can be provided.
  • the ceramic includes silicon carbide.
  • the ceramic of the honeycomb unit contains silicon carbide
  • the silicon carbide has good heat resistance, good mechanical properties, and relatively high thermal conductivity.
  • a two-cam unit having mechanical properties and relatively high thermal conductivity can be obtained. Therefore, in this case, a two-cam structure having good heat resistance, good mechanical properties, and relatively high thermal conductivity can be provided.
  • a catalyst such as a catalyst for purifying exhaust gas generated by the internal combustion engine power of a vehicle is supported.
  • a diesel 'particulate' filter DPF
  • PM particulate matter
  • the Herkam structure further includes a reaction catalyst for purifying a gas. If the hard cam structure further includes a catalyst for purifying the gas, the catalyst can promote the reaction for purifying the gas, so that the gas can be purified more efficiently.
  • Possible honeycomb structure can be provided
  • the catalyst contained in or supported on the Hercom structure is not particularly limited, and examples thereof include noble metals, alkali metal compounds, alkaline earth metal compounds, and oxides.
  • the noble metal include a metal selected from the group consisting of platinum, palladium, rhodium, and combinations thereof.
  • the alkali metal compound include a compound selected from the group consisting of gallium, sodium, and combinations thereof.
  • the alkaline earth metal compound include a norium compound, and examples of the acid oxide include a perovskite type compound (for example, La K MnO) and the like.
  • the honeycomb structure can be used as a catalyst carrier that supports a catalyst for the reaction for purifying the gas, and the honeycomb structure including the catalyst for the reaction for purifying the gas, Exhaust gas for purifying exhaust gas exhausted from internal combustion engine power of vehicles such as automobiles It can be used as a catalyst for purifying gases, such as a purification catalyst (three-way catalyst, NOx storage catalyst).
  • a purification catalyst three-way catalyst, NOx storage catalyst
  • a second embodiment according to the present invention is a gas purifying device for purifying gas, and includes a her cam structure which is the first embodiment of the present invention.
  • the hard cam structure according to the first embodiment of the present invention since the hard cam structure according to the first embodiment of the present invention is included, the hard cam structure capable of purifying gas more efficiently. It is possible to provide a gas purification device including
  • Examples of the gas purification device that purifies the gas include an exhaust gas purification device for a vehicle that purifies the exhaust gas discharged from the internal combustion engine of a vehicle such as an automobile. .
  • FIG. 1 is a diagram for explaining an example of a her cam structure according to the present invention.
  • a heart cam structure 2 according to the present invention shown in FIG. 1 is used as an exhaust gas purifying catalyst for purifying exhaust gas generated by the power of an internal combustion engine of an automobile.
  • the adhesive layer 4 for bonding the her cam unit 10 and the coating layer 6 for covering the outer peripheral portion 8 of the her cam structure 2 are included. More specifically, in the her cam structure 2, a plurality of her cam units 10 are bonded via the adhesive layer 4. More specifically, the coating layer 6 can cover at least one outer peripheral portion of at least one of the plurality of her cam units 10 to reinforce the her cam structure 2.
  • the ratio of the specific surface area of the hard cam unit 10 to the specific surface area of the adhesive layer 4 is 1.0 or more, and the hard cam unit to the specific surface area of the coating layer 6
  • the ratio of the specific surface area of 10 is 1.0 or more.
  • the specific surface area of the adhesive layer 4 is 10 m 2 Zg or more and 100 m 2 Zg or less, so that the adhesion of the plurality of hard units 10 can be improved. Furthermore, the adhesive layer 4 includes at least one of inorganic particles and inorganic fibers, and the specific surface area of the adhesive layer 4 can be adjusted more easily.
  • FIG. 2 is a diagram for explaining an example of a her cam unit of a her cam structure according to the present invention.
  • the Her cam unit 10 shown in FIG. 2 has a plurality of cells 12 that are separated by the cell walls 14 and extend in the longitudinal direction of the Her cam structure 2.
  • Her-Cam unit 10 The plurality of cells 12 are arranged in parallel in the longitudinal direction across the cell wall 14. That is, cell walls 14 are provided between the plurality of cells 12 extending in the longitudinal direction of the two-cam structure 2, and the plurality of cells 12 are arranged in a direction perpendicular to the extending direction of the cells.
  • the An adhesive layer 4 as shown in FIG. 1 is provided on the outer peripheral portion 16 of the honeycomb unit 10. The exhaust gas passes through the plurality of cells 12 and is purified by the plurality of cells 12.
  • the hard cam unit 10 contains a ceramic such as alumina and silicon carbide. Therefore, the honeycomb structure 2 has a relatively high heat resistance.
  • FIG. 3 is a diagram for explaining an example of the gas purification apparatus according to the present invention.
  • the gas purification device shown in FIG. 3 is an exhaust gas purification device 32 for purifying exhaust gas from an internal combustion engine such as an automobile engine.
  • the exhaust gas purification device 32 includes an exhaust gas purification catalyst 34 including a hard cam structure 2 as shown in FIGS. 1 and 2, a casing 38 that covers the outside of the exhaust gas purification catalyst 34, and an exhaust gas purification device.
  • An airtight holding material 36 provided between the soot catalyst 34 and the casing 38 is included.
  • An inlet pipe 42 connected to an internal combustion engine such as an automobile engine is connected to the end of the casing 38 on the exhaust gas introduction side, and an exhaust pipe connected to the outside is connected to the opposite end of the casing 38. 44 is connected. Note that the arrows in FIG. 3 indicate the flow of exhaust gas in the exhaust gas purification device 32.
  • the exhaust gas discharged from an internal combustion engine such as an automobile engine passes through the introduction pipe 42 and is introduced into the casing 38 to be discharged. It passes through the purification catalyst 34 and is discharged to the outside through the discharge pipe 44.
  • the exhaust gas flows into the cell of the exhaust unit from the introduction side force of the exhaust gas, passes through the cell of the exhaust unit, and is exhausted from the exhaust side of the exhaust gas. It is. Then, when the exhaust gas passes through the cell of the her cam unit, the particles contained in the exhaust gas are collected on the cell wall of the her cam unit, and the exhaust gas is purified.
  • the exhaust gas purification device 32 a large amount of particles accumulates on the cell walls of the hard cam structure included in the exhaust gas purification catalyst 34, and the pressure loss of the exhaust gas purification catalyst 34 is reduced.
  • the exhaust gas purification catalyst 34 is regenerated.
  • the heated gas is caused to flow into the cells of the hard cam structure included in the exhaust gas purifying catalyst 34. In this way, the exhaust gas purification catalyst 34 is heated. Then, the particles deposited on the cell walls of the her cam structure are burned and removed.
  • the Hercam unit can be manufactured through the respective steps of mixing and kneading the raw materials made of the above-described materials, molding, and firing using conventional techniques.
  • the specific surface area of the her cam unit is, for example, a layer that supports the catalyst (for example, an alumina layer) formed on the cell wall of the herm cout by changing the average particle diameter of the particulate raw material. By changing the thickness of the film, ff3 ⁇ 4 can be controlled.
  • the paste for the adhesive material layer containing the raw material having the material strength described above was applied to the outer peripheral portion of the obtained nose-cam unit, and a plurality of hard cam units (38 in FIG. 1) were applied. Individual two-cam units). Next, the plurality of temporarily bonded hard cam units are dried to bond the plurality of hard cam units.
  • the ratio of the specific surface area of the hammer unit to the specific surface area of the adhesive layer is set to 1.0 or more.
  • it is included in the paste for the adhesive layer.
  • the specific surface area of the adhesive layer is adjusted by controlling the particle size of the raw material and the blending ratio of the raw materials, or by controlling the temperature and time for drying the paste for the adhesive layer.
  • the temperature and time for drying the adhesive layer paste vary depending on the design value of the specific surface area of the adhesive layer, but usually the adhesive layer paste is dried for about 1 to 2 hours, about 400 hours. Performed at a temperature in the range of ° C to 800 ° C.
  • the pastes 2 to 6 shown in Table 1 of Examples described later are used. After adjusting the pastes 2 to 6 using the raw materials at the raw material mixing ratio shown in Table 1, the above-described adhesion treatment is performed.
  • a plurality of bonded her-cam units may be cut or polished as necessary.
  • a plurality of bonded her cam units are cut into a cylindrical shape with a diamond cutter.
  • the coating layer paste is applied to the outer peripheral portions of the plurality of bonded her cam units, and the coating layer paste is dried, and is then applied to the outer peripheral portions of the bonded nozzle-cam units. Forming a ting layer.
  • the ratio of the specific surface area of the her cam unit to the specific surface area of the coating layer is set to 1.0 or more, for example, the same as the method of forming the adhesive layer.
  • the specific surface area of the coating layer is adjusted.
  • the temperature and time for drying the coating layer paste vary depending on the design value of the specific surface area of the coating layer. Usually, the coating layer paste is dried for about 1 to 2 hours at about 400 ° C. Performed at temperatures in the range of ⁇ 800 ° C.
  • Silicon carbide powder as the first inorganic particles (average particle size 0.6 m), ⁇ -alumina particles (average particle size 0.5 m) as the second inorganic particles, inorganic fibers at the mixing ratio shown in Table 1
  • Seven types of adhesive layer pastes were prepared which consisted of silica alumina fiber (average fiber diameter 10 ⁇ m), silica sol as an inorganic binder, carboxymethyl cellulose, and water.
  • the specific surface area of the adhesive layer formed from the adhesive layer paste was measured as follows. Each of the adhesive layer pastes was dried at 150 ° C. for 2 hours and then heat-treated at 500 ° C. to solidify the adhesive layer paste. The solidified adhesive layer paste was cut into a 15 mm side cube and used as a sample of the adhesive layer. The conditions for producing the adhesive layer sample are equal to the conditions for adhesion between the kno-cam unit and the adhesive layer shown below. Next, the specific surface area of the adhesive layer sample was measured according to JIS-R-1626 (1 996) defined by Japanese Industrial Standards using a BET measuring device (Micromeritics Flow Soap ⁇ -2300 manufactured by Shimadzu Corporation). Measured by the single point method. Table 1 shows the measurement results for the specific surface area of the adhesive layer sample.
  • a silicon carbide hard cam structure and an alumina hard cam structure were manufactured.
  • y-alumina, water, and nitric acid were mixed, and y-almina contained in the obtained nitric acid solution was further pulverized using a ball mill to produce an alumina slurry having an average particle diameter of 2 m.
  • the Hercam unit was immersed in the resulting alumina slurry, and the Hercam unit with the alumina slurry was dried at 200 ° C. This dipping and drying process is carried out from 3 g / L to 140 g / L of the mass force of the alumina layer adhering to the unit volume Hercom unit.
  • the nozzle-cam unit provided with the alumina layer was repeatedly fired at 600 ° C. In this manner, alumina cams were supported on the surface of the cell wall of the her cam unit, and a no-cam unit having different specific surface areas was manufactured.
  • the obtained her cam unit was cut into cylindrical small pieces (15 mm ⁇ X 15 mm) to obtain a sample of a her cam unit.
  • the specific surface area of the resulting her cam unit was measured using the method described above.
  • a dinitrodiammine platinum acetate solution having a platinum concentration of 4.53% by weight was diluted with distilled water.
  • the diluted solution was impregnated into an alumina layer carried on a sample of a Hercom unit.
  • a sample of a Nozzle-Cam Unit with this solution applied to an alumina layer is held at 110 ° C for 2 hours and further heated at 500 ° C for 1 hour in a nitrogen atmosphere to carry the platinum catalyst.
  • a sample of a her-cam unit was obtained.
  • the above-mentioned paste for the adhesive layer was applied to the adhesion surface of the resulting her cam unit having the platinum catalyst.
  • Samples of multiple Hercam units coated with adhesive layer paste were dried at 150 ° C for 2 hours and baked at 500 ° C to attach multiple Hercam units.
  • the glued cam-cam unit was cut using a diamond cutter to form a cylindrical hard cam structure. The thickness of the adhesive layer was 2 mm.
  • the same adhesive layer paste was also applied to the outer periphery of the samples of a plurality of Hercom units to which the layer paste was applied. Then, samples of a plurality of hercom units having the adhesive layer paste applied to the outer periphery were dried at 150 ° C. for 2 hours and baked at 500 ° C. That is, the adhesive layer was formed on the samples of the plurality of her cam units, and at the same time, the coating layer was formed on the outer periphery of the samples of the plurality of her cam units. The thickness of the coating layer was 2 mm.
  • the obtained molded body was dried, held at 400 ° C for 2 hours, and degreased. Thereafter, the degreased compact was fired at 800 ° C. for 2 hours to obtain a prismatic (34.3 mm ⁇ 34.3 mm ⁇ 150 mm) alumina-based nonicum unit having different specific surface areas.
  • the obtained her cam unit was cut into cylindrical small pieces (15 mm ⁇ X 15 mm) to obtain a sample of a her cam unit.
  • the specific surface area of the resulting her cam unit was measured using the method described above.
  • the above-mentioned paste for the adhesive layer was applied to the adhesion surface of the resulting her cam unit having the platinum catalyst.
  • Samples of multiple Hercam units coated with adhesive layer paste were dried at 150 ° C for 2 hours and baked at 500 ° C to attach multiple Hercam units.
  • the glued cam-cam unit was cut using a diamond cutter to form a cylindrical hard cam structure. The thickness of the adhesive layer was 2 mm.
  • the same adhesive layer paste was also applied to the outer periphery of the samples of a plurality of Hercom units to which the layer paste was applied. Then, samples of a plurality of hercom units having the adhesive layer paste applied to the outer periphery were dried at 150 ° C. for 2 hours and baked at 500 ° C. In other words, the adhesive layer is formed on the samples of the plurality of hard cam units, and at the same time, the coating is applied to the outer periphery of the samples of the plurality of hard cam units. An inging layer was formed. The thickness of the coating layer was 2 mm.
  • the light-off temperature of the hard cam structure manufactured as described above was measured.
  • FIG. 4 is a diagram for explaining an apparatus for measuring the light-off temperature of the her cam structure.
  • the light-off temperature of the honeycomb structure is measured using, for example, a light-off temperature measuring apparatus 100 shown in FIG.
  • the light-off temperature measuring apparatus 100 includes a dilution gas supply unit 102 that supplies a dilution gas obtained by diluting nitrogen with air, a flow path 104 that distributes the dilution gas to the her cam structure, and a humidifier 106 that humidifies the dilution gas.
  • a heater 108 for heating the dilution gas a gas mixer 110 for preparing a reaction gas by mixing exhaust gas components with the heated dilution gas, a sample holder 112 for holding the two-cam structure in an airtight state, Inlet gas sampler 114 that samples the reaction gas before contacting the cam structure, outlet gas sampler 116 that samples the reaction gas after contacting the cam structure, and specific gas components contained in the reaction gas It has a gas analyzer 118 for analyzing the concentration.
  • the nozzle-cam structure obtained above was set in the sample holder 112, and dilution gas containing air and nitrogen was circulated from the dilution gas supply unit 102 to the distribution path 104 at a predetermined flow rate.
  • the diluted gas was humidified using the calo humidifier 106, and the temperature of the diluted gas was adjusted to a predetermined temperature using the heater 108.
  • an exhaust gas component from the upstream force of the gas mixer 110 is injected into the circulating dilution gas, and the gas mixer 110 is used to mix the dilution gas and the exhaust gas component to react with a predetermined concentration.
  • a gas was prepared. Then, the prepared reaction gas was passed through the no-cam structure to purify the reaction gas.
  • the temperature of the heater 108 was changed as appropriate, and the temperature of the reaction gas inside the hard cam structure at each temperature of the heater 108 was measured with a thermocouple (not shown). Further, the concentration of the exhaust gas component in the sampled reaction gas was measured by the gas analyzer 118 using the inlet gas sampler 114 and the outlet gas sampler 116.
  • the flow rate of the reaction gas was 131 (LZ min).
  • the exhaust gas components consisted of oxygen, carbon monoxide, sulfur dioxide, hydrocarbons, nitrogen monoxide, water vapor, and nitrogen.
  • the concentration of oxygen in the reaction gas is 13%
  • the concentration of carbon monoxide is 300 ppm
  • the concentration of sulfur oxide was 8 ppm
  • the concentration of hydrocarbon based on the amount of carbon was 200 ppm-C
  • the concentration of nitric oxide was 160 ppm
  • the amount of humidification was a little.
  • the temperature of the reaction gas was 50 ° C to 400 ° C by changing the temperature of the heater 108 in increments of 10 ° C.
  • the concentration of carbon monoxide and hydrocarbons among the exhaust gas components contained in the reaction gas was measured using a gas analyzer 218.
  • the purification rate of the reaction gas is such that the concentration of the exhaust gas component before the reaction gas contacts the Herc structure is CO, and the concentration of the reaction gas component after the reaction gas contacts the honeycomb structure is Ci.
  • FIG. 5 is a graph showing the measurement result of the light-off temperature of the honeycomb structure.
  • the horizontal axis in FIG. 5 represents the ratio of the specific surface area of the honeycomb unit to the specific surface area of the adhesive layer, and the vertical axis in FIG. 5 represents the light-off temperature of the honeycomb structure.
  • the light-off temperature of the exhaust gas purifying catalyst is 160 ° C. to 170 ° C. or less, the performance of the exhaust gas purifying catalyst is said to be good. As shown in Fig.
  • the light-off temperature of the her cam structure is 160 ° C or less.
  • the Hercam structure has been shown to exhibit good purification performance.
  • the light-off temperature of the her cam structure is 130 ° C or less. -The cam structure was particularly effective in showing good purification performance.
  • Nono with a specific surface area of the adhesive layer of 5m 2 Zg ⁇ 150m 2 Zg - were adhesion test for cam structure.
  • the no-cam structure that had been previously held at 900 ° C. for 20 hours was cooled to room temperature, and then the her-cam structure was fixed to a hollow cylindrical jig.
  • one of the her cam units near the center of the her cam structure was selected, and the selected cam cam unit was pushed out with a stainless steel cylindrical jig.
  • the load value (kg) required to push out the her cam unit with a stainless steel cylindrical jig was measured. This load value is referred to as the adhesion strength of the adhesive layer.
  • Her camouflage with respect to the specific surface area of the adhesive layer The ratio of the specific surface area of the bed was in the range of 1.1 to 3. Table 2 shows the results of adhesion strength of the obtained adhesive layer.
  • the adhesive strength of the adhesive layer is that of the adhesive strength when the specific surface area is 50 m 2 Zg. It decreased to about 60%.
  • the diesel engine was operated at 3000 rpm with a torque of 50 Nm, exhaust gas was supplied to the no-cam structure, and the soot generated in the her-cam structure was regenerated every 6 hours.
  • the soot regeneration process was a heat treatment in which a hard cam structure was installed in a furnace set at 720 ° C, and the soot generated in the double cam structure was burned for a total of 600 hours.
  • the difference between the weight of the honeycomb structure before the start of the durability test and the weight of the hard cam structure after the regeneration of all the soot is expressed as the maximum wind erosion amount (g) of the hard cam structure. did.
  • FIG. 6 is a diagram showing the results of a durability test of a her cam structure provided with a coating layer.
  • the horizontal axis in Fig. 6 represents the ratio of the specific surface area of the Hercom unit to the specific surface area of the coating layer
  • the vertical axis in Fig. 6 represents the relative value of the maximum wind erosion generated in the coating layer after the durability test.
  • the criterion for the maximum wind erosion rate is '1', which is the honeycomb structure with the smallest maximum wind erosion rate (the ratio of the specific surface area of the Hercam unit to the specific surface area of the coating layer is 3.4, This is the maximum amount of wind erosion of an alumina-based hardcomb structure with a specific surface area of 50 m 2 Zg.

Description

明 細 書
ノヽニカム構造体
技術分野
[0001] 本発明は、ハ-カム構造体に関する。
背景技術
[0002] 従来、内燃機関力もの排ガスを浄ィ匕するための触媒は、コージエライト質ノヽ-カム ユニットを有する触媒担体の表面に、活性アルミナのような高比表面積材料及び成 分として白金などの金属が含まれる触媒金属を担持させることによって、製造されて いる。
[0003] 例えば、特許文献 1には、ハニカム形状の担体基材と、担体基材のセル壁表面に 形成された触媒担持層と、触媒担持層に担持された触媒貴金属及び NOx吸蔵材と 、力もなる排ガス浄ィ匕用触媒において、触媒担持層は、その表面力も深さ 100 m 以内に存在する部分が触媒担持層の体積全体の 80%以上を占めることを特徴とす る排ガス浄化用触媒が開示されている。
[0004] また、特許文献 2には、セラミック粉末と無機繊維と結合性を持つ無機物と必要に応 じて可塑性を有する有機結合剤とを含有する組成物をハニカム状に押出成形し、こ の押出成形物を乾燥した後、無機繊維の融点もしくは酸ィヒ点以下の温度で焼成する ことを特徴とするハ-カム状繊維強化セラミック体の製造方法が開示されている。
[0005] さらに、特許文献 3には、低濃度 CO含有排ガスを処理する触媒担体であって、材 料を押出成形し焼成してなる多孔質ハニカム担体に、貴金属を含む触媒成分が担 持されてなるハ-カム触媒であり、ハ-カム触媒の内壁厚み 0. 1 -0. 5mm、ガス流 れ方向の長さ 50— 200mmである排ガス処理触媒力 開示されて 、る。
[0006] ここで、特許文献 1に開示される排ガス浄ィ匕用触媒の浄ィ匕性能を向上させるために は、排ガスと触媒金属及び NOx吸蔵材との接触確率を高くする必要がある。しかしな がら、排ガスと触媒金属及び NOx吸蔵材との接触確率を高くするために、触媒担体 の単位体積あたりの比表面積を増力 []させても、接触確率の増加には、圧力損失等の 問題により、限界がある。 [0007] また、特許文献 2に開示されるハ-カム状繊維強化セラミック体は、セラミック粉末と 無機繊維と結合性を持つ無機物とを含有する組成物をハニカム状に押出成形するこ とによって、ハ-カム状繊維強化セラミック体の比表面積を増加させることができる。 しかしながら、ハ-カム状繊維強化セラミック体の比表面積を増加させるだけでは、 排ガスと触媒との接触確率を向上させることができないことがあり、排ガスを効率的に 浄ィ匕することができな 、ことがある。
[0008] さらに、特許文献 3に開示される排ガス処理触媒において、ハ-カム触媒の内壁厚 み及びガス流れ方向の長さを調整するだけでは、排ガスを効率的に浄ィ匕することが できないことがある。
[0009] 力!]えて、これらの排ガス浄化用触媒を高温で使用することは、考慮されておらず、 例えば、耐熱性の問題により、それら触媒の使用には、限界がある。
特許文献 1 :特開平 10— 263416号公報
特許文献 2:特開平 5— 213681号公報
特許文献 3:特開 2003 - 245547号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明の目的の一つは、気体をより効率的に浄ィ匕することが可能なハ-カム構造 体を提供することである。
課題を解決するための手段
[0011] 本発明の一つの態様は、複数のセルがセル壁を隔てて長手方向に並設されたノヽ 二カムユニットが、接着材層を介して複数個接着されたノヽ-カム構造体であって、前 記接着材層に対する前記ハ-カムユニットの比表面積の比は、 1. 0以上であることを 特徴とするハ-カム構造体である。
発明の効果
[0012] 本発明の一つの態様によれば、気体をより効率的に浄ィ匕することが可能なハ-カム 構造体を提供することができる。
図面の簡単な説明 [図 1]本発明によるハ-カム構造体の例を説明する図である。
[図 2]本発明によるハ-カム構造体のハ-カムユニットの例を説明する図である。
[図 3]本発明による気体浄ィ匕装置の例を説明する図である。
[図 4]ハニカム構造体のライトオフ温度を測定する装置を説明する図である。
[図 5]ハ-カム構造体のライトオフ温度の測定結果を示す図である。
[図 6]コーティング層を備えたノ、二カム構造体の耐久性試験の結果を示す図である。 符号の説明
2 ハニカム構造体
4 接着材層
6 コーティング層
8 ハ-カム構造体の外周部
10 ノヽニカムユニット
12 セル
14 セル壁
16 ハ-カムユニットの外周部
32 排ガス浄化装置
34 排ガス浄化用触媒
36 気密保持材
38 ケーシング
42 導入管
44 排出管
100 ライトオフ温度測定装置
102 希釈ガス供給部
104 流通経路
106 加湿器
108 ヒータ
110 ガス混合器
112 サンプノレホノレダー 114 入口ガスサンプラー
116 出口ガスサンプラー
118 ガス分析計
発明を実施するための最良の形態
[0015] 本発明の第一の実施形態は、複数のハ-カムユニット及び複数のハ-カムユニット を配列させる接着材層及びコーティング層の少なくとも一方を含むハ-カム構造体で あって、接着材層及びコーティング層の少なくとも一方の比表面積に対するハ-カム ユニットの比表面積の比は、 1. 0以上である。
[0016] 本発明の第一の実施形態におけるハ-カム構造体の形状は、特に限定されず、例 えば、円柱、角柱、又は楕円柱であってもよい。
[0017] ハ-カム構造体を構成する各々のハ-カムユニットの形状は、特に限定されないが 、好ましくは、複数のハ-カムユニットを互いに容易に配列させることができるような形 状である。例えば、ハ-カムユニットの長手方向に対して直交するハ-カムユニットの 断面の形状は、望ましくは、正方形、長方形、又は六角形であり、扇状であってもよい 。なお、ハ-カムユニットは、ハ-カムユニットを構成する複数のセルを含み、 /ヽニ力 ムユニットのセルは、ハ-カムユニットのセル壁で分離された領域である。ハ-カムュ ニットのセル壁は、気体を通過させることができるものであってもよい。また、ハ-カム ユニットのセルは、その長手方向の両端部に開口を有し、その開口の一方は、必要 に応じて、 目封じされてもよい。
[0018] ハ-カムユニットの長手方向に対して直交するハ-カムユニットの断面積は、好まし くは、 5cm2以上 50cm2以下であり、より好ましくは、 6cm2以上 40cm2以下であり、最 も好ましくは、 8cm2以上 30cm2以下である。ハ-カムユニットの長手方向に対して直 交するハ-カムユニットの断面積力 5cm2未満である場合には、ハ-カム構造体に 気体を通過させる際に、ハ-カム構造体における圧力損失が、大きくなる。一方、ハ 二カムユニットの長手方向に対して直交するハ-カムユニットの断面積が、 50cm2を 超える場合には、ハ-カム構造体の温度を上昇させる際に、ハ-カム構造体に発生 する熱応力を十分に分散させることができず、熱応力の発生時に、ハニカム構造体 にクラックが生じやすくなる。ハ-カムユニットの長手方向に対して直交するハ-カム ユニットの断面積は、好ましくは、 5cm2以上 50cm2以下である場合には、ノ、二カム構 造体における圧力損失を抑制することができると共にハ-カム構造体におけるクラッ クの発生ち低減することがでさる。
[0019] 本発明の第一の実施形態において、好ましくは、ハ-カム構造体は、複数のハ-カ ムユニットを接着する接着材層を含む。通常、接着材層は、複数のハ-カムユニット を配列させるために、複数のハ-カムユニットの間に設けられ、互いに隣り合うハ-カ ムュニットに接触し、互いに隣り合うハ-カムユニットを接着する。接着材層は、複数 のハ-カムユニットを接着することによって、ハ-カム構造体の耐スポーリング性を向 上させることができる。
[0020] なお、接着材層の厚さは、好ましくは、 0. 5mm以上 2mm以下である。接着材層の 厚さが、 0. 5mm未満である場合には、ハ-カムユニットに接着材層を均一に設ける ことが困難であり、接着材層の接着強度の局部的ばらつきが、生じやすくなる。また、 接着材層の厚さが、 2mmを超える場合には、接着材層に生じた熱応力によって、接 着材層にクラックが、生じやすくなる。
[0021] 本発明の第一の実施形態において、好ましくは、ハ-カム構造体は、複数のハ-カ ムユニットの少なくとも一つにおける少なくとも一つの外周部分を被覆するコーティン グ層を含む。通常、コーティング層は、ハニカム構造体の外周部分の付近に位置す る複数のハ-カムユニットの外周部分を被覆する。コーティング層は、複数のハ-カ ムユニットの少なくとも一つにおける少なくとも一つの外周部分を被覆することによつ て、ハ-カム構造体の形態を保持すると共にハ-カム構造体の強度を補強すること ができる。
[0022] なお、コーティング層の厚さは、好ましくは、 0. 1mm以上 2mm以下である。コーテ イング層の厚さ力 0. 1mm未満である場合には、複数のハ-カムユニットを保護して 、ハ-カム構造体の強度を向上させることが困難であることがある。また、コーティング 層の厚さが、 2mmを超える場合には、コーティング層に生じた熱応力によって、コー ティング層にクラック力 生じやすくなる。
[0023] また、ハ-カム構造体は、接着材層及びコーティング層の両方を含んでもよ!、。接 着材層の材料及びコーティング層の材料は、同じものであってもよぐ異なるものであ つてもよい。
[0024] 本発明の第一の実施形態において、ハ-カムユニットの比表面積は、ハ-カムュ- ットの単位質量又は単位重量当たりのハ-カムユニットの表面積の総和である。また 、接着材層の比表面積は、接着材層の単位質量又は単位重量当たりの接着材層の 表面積の総和であり、コーティング層の比表面積は、コーティング層の単位質量又は 単位重量当たりのコーティング層の表面積の総和である。
[0025] 本発明の第一の実施形態においては、接着材層及びコーティング層の少なくとも 一方の比表面積に対するハ-カムユニットの比表面積の比は、 1. 0以上である。ここ で、接着材層及びコーティング層の少なくとも一方の比表面積に対するハ-カムュ- ットの比表面積の比力 1. 0以上であることは、接着材層及びコーティング層の少な くとも一方の比表面積に対するハ-カムユニットの比表面積の比力 有効数字二桁 で、 1. 0以上であることを意味する。
[0026] ハ-カム構造体力 接着材層を含むときには、接着材層の比表面積に対するハ- カムユニットの比表面積の比は、 1. 0以上であり、一方、ハ-カム構造体力 コーティ ング層を含むときには、コーティング層の比表面積に対するハ-カムユニットの比表 面積の比は、 1. 0以上である。また、ハ-カム構造体力 接着材層及びコーティング 層の両方を含むときには、接着材層及びコ一ティング層の少なくとも一方の比表面積 に対するハ-カムユニットの比表面積の比は、 1. 0以上である。し力しながら、好まし くは、接着材層の比表面積に対するハ-カムユニットの比表面積の比は、 1. 0以上 であり、且つ、コーティング層の比表面積に対するハ-カムユニットの比表面積の比 は、 1. 0以上である。
[0027] 本発明の第一の実施形態においては、接着材層及びコーティング層の少なくとも 一方の比表面積に対するハ-カムユニットの比表面積の比は、 1. 0以上であるので 、気体を、接着材層及びコーティング層の少なくとも一方よりも優先的に、ハ-カムュ ニットに選択的に通過させることができる。これにより、気体を浄化する性能を表す一 つの指標であるライトオフ温度を低下することができる。ここで、ハ-カム構造体にお ける気体を浄ィ匕する反応によって、気体に含まれる特定の成分 (一般には、 HC (炭 化水素)、 CO)の濃度の減少の割合を浄ィ匕率として定義すると、ライトオフ温度は、 浄ィ匕率が 50%である反応温度である。ハ-カム構造体のライトオフ温度が低いとき、 少な 、エネルギーで気体を浄ィ匕することができるため、ハ-カム構造体の気体を浄 化する性能は、高いことになる。一般に、ハ-カム構造体のライトオフ温度力 160°C 力も 170°C以下であるとき、ハ-カム構造体の気体を浄ィ匕する性能は、良好である。 本発明の第一の実施形態においては、接着材層及びコーティング層の少なくとも一 方の比表面積に対するハ-カムユニットの比表面積の比は、 1. 0以上であるので、 1 60°C以下のライトオフ温度を備えたノヽ-カム構造体を提供することも可能である。
[0028] 従って、本発明の第一の実施形態によれば、気体をより効率的に浄化することが可 能なハ-カム構造体を提供することができる。
[0029] 一方、接着材層及びコーティング層の両方の比表面積に対するハ-カムユニットの 比表面積の比が、 1. 0未満であるときには、気体が、ハ-カムユニットよりも接着材層 及びコーティング層の両方に通過しやすくなり、ハ-カムユニットにおいて気体を浄 化させる反応を十分に進行させることができないことがある。よって、ハ-カム構造体 の気体を浄ィ匕する性能が低下することがある。
[0030] 本発明の第一の実施形態において、ハ-カム構造体が、接着材層を含むとき、接 着材層の比表面積に対するハ-カムユニットの比表面積の比は、好ましくは、 1. 1以 上 10以下である。接着材層の比表面積に対するハ-カムユニットの比表面積の比が 、 1. 1以上 10以下であるときには、 130°C以下のライトオフ温度を備えたノヽ-カム構 造体を提供することができる。すなわち、気体をさらに効率的に浄化することが可能 なハ-カム構造体を提供することができる。
[0031] 本発明の第一の実施形態において、ハ-カム構造体力 コーティング層を含むとき 、コーティング層の比表面積に対するハ-カムユニットの比表面積の比は、好ましく は、 1. 3以上 20以下であり、より好ましくは、 3以上 7以下である。コーティング層の比 表面積に対するハ-カムユニットの比表面積の比力 1. 3以上 20以下である場合に は、コーティング層の風食量力 少なくなる。ここで、コーティング層の風食量は、ハニ カム構造体を通過する気体による侵食 (エロージョン)又は腐食 (コロージヨン)などに よって、損傷したコーティング層の量である。
[0032] コーティング層の比表面積に対するハ-カムユニットの比表面積の比力 1. 3未満 である場合には、コーティング層の比表面積力 相対的に高い、すなわち、コーティ ング層の多孔性は、相対的に高くなるため、気体が、コーティング層の内部に侵入し やすくなる。よって、コーティング層は、コーティング層の内部に侵入した気体による 劣化を受け易くなり、コーティング層の耐久性力 低下することがある。
[0033] 一方、コーティング層の比表面積に対するハ-カムユニットの比表面積の比力 20 を超える場合には、ハ-カム構造体を用いて気体を浄化する際に、ハ-カム構造体 にクラックが生じることがある。また、ハ-カムユニットからコーティング層が剥離するこ ともある。そして、ー且、ハ-カム構造体にクラックが生じる力 又は、ノ、二カムユニット 力 コーティング層が剥離すると、コーティング層とハ-カム構造体を通過する気体と の反応が促進され、コーティング層は、劣化しやすくなる。
[0034] これに対して、コーティング層の比表面積に対するハ-カムユニットの比表面積の 比が、 1. 3以上 20以下である場合には、コーティング層に対する気体の侵入が抑制 されると共にコーティング層におけるクラックの生成及びコーティング層の剥離が抑制 され、ハニカム構造体は、長時間、良好な耐久性を示す。
[0035] よって、コーティング層の比表面積に対するハ-カムユニットの比表面積の比が、 1 . 3以上 20以下である場合には、ハ-カム構造体を通過する気体に対してより高い 耐久性を備えたノヽ-カム構造体を提供することができる。
[0036] 本発明の第一の実施形態において、好ましくは、接着材層及びコーティング層の 少なくとも一方の比表面積は、 10m2Zg以上 100m2Zg以下である。接着材層及び コーティング層の少なくとも一方の比表面積は、 10m2/g以上 100m2/g以下である 場合には、接着材層及びコーティング層の少なくとも一方の比表面積又は空隙率に 対する接着材層及びコーティング層の少なくとも一方を通過する気体の量力 抑制さ れる。よって、気体を、接着材層及びコーティング層の少なくとも一方よりもハ-カム ユニットに選択的に通過させることができる。その結果、気体をさらに効率的に浄ィ匕 することが可能なハ-カム構造体を提供することができる。
[0037] 力!]えて、本発明の第一の実施形態において、ハ-カム構造体が、接着材層を含む とき、接着材層の比表面積は、好ましくは、 10m2/g以上 100m2/g以下である。こ の場合には、接着材層の比表面積又は空隙率に対する接着材層を通過する気体の 量力 抑制される。よって、気体を、接着材層よりもハ-カムユニットに選択的に通過 させることができる。その結果、気体をさらに効率的に浄ィ匕することが可能なハ-カム 構造体を提供することができる。
[0038] さらに、接着材層の比表面積が、 10m2Zg以上 100m2Zg以下であるときには、複 数のハ-カムユニットの密着性を向上させることができ、良好な密着性を備えた複数 のハ-カムユニットを有するハ-カム構造体を提供することができる。接着材層の比 表面積が、 10m2Zg未満である場合には、ハ-カム構造体の温度を上昇させた際に ハニカム構造体に生じる熱応力に対するハニカム構造体の緩和が、不十分であり、 ハ-カムユニットと接着材層との間の界面で剥離が生じることがある。一方、接着材 層の比表面積が、 100m2/g以下を超える場合には、ハ-カムユニットと接着材層と の間の界面 (接触領域)の面積が、少なぐ接着材層によって接着される複数のハ- カムユニットの密着性が、不十分であることがある。
[0039] 本発明の第一の実施形態において、好ましくは、接着材層及びコーティング層の 少なくとも一方は、無機粒子及び無機繊維の少なくとも一方を含む。
[0040] 接着材層及びコーティング層の少なくとも一方が、無機粒子及び無機繊維の少なく とも一方を含む場合には、接着材層及びコーティング層の少なくとも一方の比表面積 を、より容易に調整することができる。接着材層及びコーティング層の少なくとも一方 の比表面積は、接着材層及びコーティング層の少なくとも一方に含まれる無機粒子 及び無機繊維の少なくとも一方の種類に依存する。接着材層及びコーティング層の 少なくとも一方は、無機粒子及び無機繊維の少なくとも一方を、接着材層及びコーテ イング層の少なくとも一方に固定するための無機ノインダーを含んでもよい。さらに、 接着材層及びコーティング層の少なくとも一方は、無機粒子及び無機繊維の少なくと も一方を、接着材層及びコーティング層の少なくとも一方に固定するための有機バイ ンダーを含んでもよい。
[0041] 無機粒子としては、特に限定されないが、例えば、酸化物、炭化物、窒化物等を挙 げることができ、具体的には、炭化珪素、窒化珪素、窒化硼素等からなる無機粉末等 を挙げることができる。これらは、単独で用いてもよぐ二種類以上を併用してもよい。 上記無機粒子の中では、熱伝導性に優れる炭化珪素が、望ましい。 [0042] 無機繊維としては、特に限定されないが、例えば、アルミナ、シリカ、シリカ アルミ ナ、ガラス、チタン酸カリウム、ホウ酸アルミニウム等力 なるセラミックファイバーや、 例えば、アルミナ、シリカ、ジルコユア、チタ-ァ、セリア、ムライト、炭化珪素等からな るゥイスカーを挙げることができる。上記無機繊維の中では、アルミナファイバーが、 望ましい。
[0043] 無機ノ インダ一は、特に限定されな!ヽが、例えば、シリカゾル、アルミナゾル、及び それらの混合物からなる群より選択される無機ノインダ一が、挙げられる。これらの無 機バインダーの中では、シリカゾルが、望ましい。
[0044] 有機バインダーは、特に限定されな!、が、例えば、ポリビュルアルコール、メチルセ ルロース、ェチルセルロース、カルボキシメチルセルロース、及びそれらの組み合わ せ力もなる群より選択される有機ノ インダ一が、挙げられる。
[0045] 本発明の第一の実施形態において、好ましくは、ハ-カムユニットは、セラミックを 含有する。ハ-カムユニットは、セラミックを含有する場合には、比較的高い耐熱性を 備えたハ-カムユニット、よって、比較的高い耐熱性を備えたノヽ-カム構造体を提供 することができる。
[0046] ノ、二カムユニットの材料は、特に限定されないが、好ましくは、セラミックスであり、例 えば、窒化アルミニウム、窒化ケィ素、窒化ホウ素、及び窒化チタンのような窒化物セ ラミック、炭化珪素、炭化ジルコニウム、炭化チタン、炭化タンタル、及び炭化タンダス テンのような炭化物セラミック、アルミナ、ジルコ-ァ、コージエライト、及びムライトのよ うな酸ィ匕物セラミック力 挙げられる。また、上述したセラミックに金属珪素が配合され た珪素含有セラミック、珪素及び珪酸塩ィ匕合物の少なくとも一方で接着されたセラミツ クも、用いることができる。これらのセラミックの中では、良好な耐熱性、良好な機械的 特性、及び比較的高い熱伝導率を備えた、炭化珪素系のセラミック力 望ましい。な お、炭化珪素系のセラミックは、炭化珪素のみで構成されるセラミックのみならず、炭 化珪素を主成分とすると共に炭化珪素が金属、結晶質の化合物、及び非晶質の化 合物の少なくとも一つで接着されたセラミックも含む。
[0047] 本発明の第一の実施形態において、好ましくは、セラミックは、アルミナを含む。ノヽ 二カムユニットのセラミックが、アルミナを含む場合には、アルミナが、比較的高い耐 熱性を有するため、より高い耐熱性を備えたノヽ-カムユニットを得ることができる。よつ て、この場合には、より高い耐熱性を備えたノヽ-カム構造体を提供することができる。
[0048] 本発明の第一の実施形態において、好ましくは、セラミックは、炭化珪素を含む。ハ 二カムユニットのセラミックが、炭化珪素を含む場合には、炭化珪素が、良好な耐熱 性、良好な機械的特性、及び比較的高い熱伝導率を有するため、良好な耐熱性、良 好な機械的特性、及び比較的高 、熱伝導率を備えたノ、二カムユニットを得ることが できる。よって、この場合には、良好な耐熱性、良好な機械的特性、及び比較的高い 熱伝導率を備えたノ、二カム構造体を提供することができる。
[0049] 本発明の第一の実施形態におけるハ-カム構造体の用途は、特に限定されないが 、例えば、車両の内燃機関力 の排ガスを浄ィ匕するための触媒のような触媒を担持 する担体、車両の内燃機関からの排ガスに含まれる粒子状物質 (PM)をろ過すると 共に燃焼する、ディーゼル 'パティキュレート'フィルタ (DPF)が挙げられる。
[0050] 本発明の第一の実施形態において、好ましくは、ハ-カム構造体は、気体を浄ィ匕 する反応の触媒をさらに含む。ハ-カム構造体が、気体を浄化する反応の触媒をさら に含む場合には、触媒によって、気体を浄化する反応を促進することができるため、 気体をさらに効率的に浄ィ匕することが可能なハニカム構造体を提供することができる
[0051] ハ-カム構造体に含まれる又は担持される触媒は、特に限定されないが、例えば、 貴金属、アルカリ金属の化合物、アルカリ土類金属の化合物、酸化物が挙げられる。 貴金属としては、例えば、白金、パラジウム、ロジウム、及びそれらの組み合わせから なる群より選択される金属が挙げられる。アルカリ金属の化合物としては、例えば、力 リウム、ナトリウム、及びそれらの組み合わせからなる群より選択される化合物が挙げ られる。アルカリ土類金属の化合物としては、例えば、ノリウムの化合物が挙げられ、 酸ィ匕物としては、例えば、ぺロブスカイト型の化合物(例えば、 La K MnO )及
0. 75 0. 25 3 び CeOが挙げられる。
2
[0052] また、この場合には、ハニカム構造体を、気体を浄化する反応の触媒を担持する触 媒担体として利用することができ、気体を浄化する反応の触媒を備えたハニカム構造 体を、自動車のような車両の内燃機関力も排出される排ガスを浄ィ匕するための排ガス 浄化用触媒 (三元触媒、 NOx吸蔵触媒)のような、気体を浄化する触媒として利用す ることがでさる。
[0053] 本発明による第二の実施形態は、気体を浄化する気体浄化装置であって、本発明 の第一の実施形態であるハ-カム構造体を含む。
[0054] 本発明の第二の態様によれば、本発明の第一の実施形態であるハ-カム構造体を 含むので、気体をより効率的に浄化することが可能なハ-カム構造体を含む気体浄 化装置を提供することができる。
[0055] 気体を浄ィ匕する気体浄ィ匕装置としては、例えば、自動車のような車両の内燃機関 カゝら排出される排ガスを浄ィ匕する車両用の排ガス浄ィ匕装置が挙げられる。
[0056] 図 1は、本発明によるハ-カム構造体の例を説明する図である。
[0057] 図 1に示す本発明によるハ-カム構造体 2は、自動車の内燃機関力もの排ガスを浄 化するための排ガス浄ィ匕用触媒として用いられ、複数のハ-カムユニット 10、複数の ハ-カムユニット 10を接着する接着材層 4、及び、ハ-カム構造体 2の外周部 8を被 覆するコーティング層 6を含む。より具体的には、ハ-カム構造体 2においては、複数 個のハ-カムユニット 10が、接着材層 4を介して接着される。コーティング層 6は、より 詳しくは、複数のハ-カムユニット 10の少なくとも一つにおける少なくとも一つの外周 部分を被覆し、ハ-カム構造体 2を補強することができる。
[0058] ハ-カム構造体 2においては、接着材層 4の比表面積に対するハ-カムユニット 10 の比表面積の比は、 1. 0以上であり、コーティング層 6の比表面積に対するハ-カム ユニット 10の比表面積の比は、 1. 0以上である。これにより、ハ-カム構造体 2は、自 動車の内燃機関力もの排ガスをより効率的に浄ィ匕することができる。
[0059] また、接着材層 4の比表面積は、 10m2Zg以上 100m2Zg以下であり、複数のハ- カムユニット 10の密着性を向上させることができる。さらに、接着材層 4は、無機粒子 及び無機繊維の少なくとも一方を含み、接着材層 4の比表面積を、より容易に調整す ることがでさる。
[0060] 図 2は、本発明によるハ-カム構造体のハ-カムユニットの例を説明する図である。
[0061] 図 2に示すハ-カムユニット 10は、セル壁 14で分離されると共にハ-カム構造体 2 の長手方向に延在する複数のセル 12を有する。言い換えれば、ハ-カムユニット 10 において、複数のセル 12がセル壁 14を隔てて長手方向に並設される。すなわち、ハ 二カム構造体 2の長手方向に延在する複数のセル 12の間にセル壁 14が設けられ、 複数のセル 12は、それらセルの延在する方向と垂直な方向に、配置される。ハニカ ムユニット 10の外周部 16には、図 1に示すような接着材層 4が設けられる。排ガスは 、複数のセル 12を通過し、それら複数のセル 12によって浄化される。
[0062] ハ-カムユニット 10は、アルミナ及び炭化珪素のようなセラミックを含有する。よって 、ハニカム構造体 2は、比較的高い耐熱性を有する。
[0063] 図 3は、本発明による気体浄ィ匕装置の例を説明する図である。
[0064] 図 3に示す気体浄化装置は、自動車のエンジンのような内燃機関からの排ガスを浄 化するための排ガス浄ィ匕装置 32である。排ガス浄ィ匕装置 32は、図 1及び図 2に示す ようなハ-カム構造体 2を含む排ガス浄ィ匕用触媒 34、排ガス浄化用触媒 34の外方を 覆うケーシング 38、及び排ガス浄ィ匕用触媒 34とケーシング 38との間に設けられた気 密保持材 36を含む。ケーシング 38の排ガス導入側の端部には、自動車のエンジン のような内燃機関に連結された導入管 42が接続されており、ケーシング 38の反対の 端部には、外部に連結された排出管 44が接続されている。なお、図 3の矢印は、排 ガス浄ィ匕装置 32における排ガスの流れを示す。
[0065] このような構成を備えた排ガス浄ィ匕装置 32では、自動車のエンジンのような内燃機 関から排出された排ガスは、導入管 42を通過し、ケーシング 38内に導入され、排ガ ス浄ィ匕用触媒 34内を通過し、排出管 44を通じて外部へ排出される。排ガス浄化用 触媒 34に含まれるハ-カム構造体において、排ガスは、排ガスの導入側力ゝらハユカ ムユニットのセルに流入し、ハ-カムユニットのセルを通過し、排ガスの排出側から排 出される。そして、排ガスが、ハ-カムユニットのセルを通過するとき、排ガス中に含ま れる粒子は、ハ-カムユニットのセル壁に捕集され、排ガスは、浄化される。
[0066] また、排ガス浄ィ匕装置 32にお 、て、排ガス浄ィ匕用触媒 34に含まれるハ-カム構造 体のセル壁に大量の粒子が堆積し、排ガス浄化用触媒 34の圧力損出が高くなると、 排ガス浄化用触媒 34の再生処理が行われる。この排ガス浄化用触媒 34の再生処理 のためには、加熱されたガスを、排ガス浄化用触媒 34に含まれるハ-カム構造体の セルの内部へ流入させる。このようして、排ガス浄ィ匕用触媒 34を加熱することによつ て、ハ-カム構造体のセル壁に堆積した粒子を燃焼し除去する。
[0067] 次に、本発明によるハ-カム構造体の製造方法の例を説明する。
[0068] ハ-カムユニットは、従来技術を用いて、上述した材料からなる原料の混合及び混 練、成形、並びに焼成の各工程を経て、製作することができる。このハ-カムユニット の比表面積は、例えば、粒子状の原料の平均粒径を変化させること、ハ-カムュ-ッ トのセル壁に形成される、触媒を担持する層(例えば、アルミナ層)の厚さを変化させ ること〖こよって、 ff¾御することができる。
[0069] 次に、得られたノヽ-カムユニットの外周部に、上述した材料力もなる原料を含む接 着材層用のペーストを塗布し、複数のハ-カムユニット(図 1においては、 38個のハ 二カムユニット)を仮接着する。次に、仮接着された複数のハ-カムユニットを乾燥さ せて、複数のハ-カムユニットを接着する。
[0070] 最終的に完成したノヽ-カム構造体において、接着材層の比表面積に対するハ-カ ムユニットの比表面積の比を 1. 0以上にするため、例えば、接着材層用のペーストに 含まれる粒子状の原料の粒度及び原料の配合比を制御することによって、又は、接 着材層用のペーストを乾燥させる温度及び時間を制御することによって、接着材層 の比表面積を調整する。接着材層用のペーストを乾燥させる温度及び時間は、接着 材層の比表面積の設計値によって、変化するが、通常、接着材層用のペーストの乾 燥は、 1〜2時間程度、約 400°C〜800°Cの範囲における温度で行われる。
[0071] なお、接着材層の比表面積が、 10m2Zg以上 100m2Zg以下の範囲における値と なるようにするためには、例えば、後述する実施例の表 1に示すペースト 2〜6の原料 を用いて、表 1に示す原料の配合比で、ペースト 2〜6を調整した後に、上述した接 着の処理を行う。
[0072] 接着後のハ-カム構造体の形状を整えるために、必要に応じて、接着した複数の ハ-カムユニットを切断又は研磨してもよい。図 1に示すハ-カム構造体では、接着 した複数のハ-カムユニットを、ダイヤモンドカッターで円柱状に切断している。
[0073] 次に、接着した複数のハ-カムユニットの外周部にコーティング層用のペーストを塗 布し、コーティング層用のペーストを乾燥させて、接着したノヽ-カムユニットの外周部 にコ一ティング層を形成する。 [0074] 最終的に完成したノ、二カム構造体において、コーティング層の比表面積に対する ハ-カムユニットの比表面積の比を 1. 0以上にするため、例えば、接着材層の形成 方法と同様にして、コ一ティング層用のペーストに含まれる粒子状の原料の粒度及び 原料の配合比を制御することによって、又は、コーティング層用のペーストを乾燥させ る温度及び時間を制御することによって、コーティング層の比表面積を調整する。コ 一ティング層用のペーストを乾燥させる温度及び時間は、コーティング層の比表面積 の設計値によって、変化するが、通常、コーティング層用のペーストの乾燥は、 1〜2 時間程度、約 400°C〜800°Cの範囲における温度で行われる。
実施例 1
[0075] [接着材層用ペーストの製作]
表 1に示す配合比における、第一の無機粒子としての炭化珪素粉末 (平均粒径 0. 6 m)、第二の無機粒子としての γアルミナ粒子(平均粒径 0. 5 m)、無機繊維と してのシリカアルミナファイバ(平均繊維径 10 μ m)、無機バインダとしてのシリカゾル 、カルボキシメチルセルロース、及び水で構成される七種類の接着材層用ペーストを 製作した。
[0076] [表 1]
Figure imgf000018_0001
接着材層用ペーストから形成される接着材層の比表面積を以下のように測定した。 接着材層用ペーストの各々を、 2時間の間、 150°Cで乾燥した後、 500°Cで熱処理し て、接着材層用ペーストを固化した。固化した接着材層用ペーストを、一辺 15mmの 立方体に切り出し、接着材層のサンプルとした。なお、接着材層のサンプルを製作す る条件は、以下に示すノヽ-カムユニットと接着材層との間の接着の条件に等しい。次 に、接着材層のサンプルの比表面積を、 BET測定装置(島津製作所製 Micromerit icsフローソープ Π— 2300)を用いて、 日本工業規格で定められる JIS—R— 1626 (1 996)に準じて、一点法により測定した。接着材層のサンプルの比表面積に関する測 定結果を、表 1に示す。
[0077] [ハニカム構造体の製作]
ハ-カム構造体として、炭化珪素系ハ-カム構造体及びアルミナ系ハ-カム構造 体を製作した。
[0078] (1)炭化珪素系ハニカム構造体の製作
(炭化珪素系ハニカムユニットの製作)
80重量%の平均粒子径 8. 5 μ mの炭化珪素粉末及び 20重量%の平均粒子径 0 . 2 /z mの炭化珪素粉末を混合して、原料粉末を得た。
[0079] 次に、 100重量部のこの原料粉末に、成形助剤として 10重量部のメチルセルロー スを混合した。また、有機溶媒及び水からなる分散媒の 18重量部を加えて、全ての 原料を混練した。混練した原料の押出し成形によって、 目的の形状を備えたハ-カ ム成形体を得た。この成形体を、 150°Cで乾燥し、 500°Cで脱脂した後、不活性雰囲 気下において 2200°Cで焼成し、 34. 3mm X 34. 3mm X 150mmのハ-カムュ- ットを得た。
[0080] (触媒担持層の形成)
次に、 y アルミナ、水、及び硝酸を混合し、得られた硝酸溶液に含まれる yーァ ルミナを、ボールミルを使用して、さらに粉砕し、平均粒径 2 mのアルミナスラリーを 製作した。得られたアルミナスラリーにハ-カムユニットを浸漬させ、アルミナスラリー 付きのハ-カムユニットを、 200°Cで乾燥させた。このような浸漬及び乾燥の工程を、 単位体積のハ-カムユニットに付着したアルミナ層の質量力 3g/Lから 140g/Lま で、繰り返し、アルミナ層が設けられたノヽ-カムユニットを、 600°Cで焼成した。このよ うして、このハ-カムユニットのセル壁の表面にアルミナを担持させ、互いに異なる比 表面積を備えたノヽ-カムユニットを製作した。
[0081] 得られたハ-カムユニットを円柱形状の小片(15mm φ X 15mm)に切り出して、ハ 二カムユニットのサンプルを得た。得られたハ-カムユニットの比表面積を、上述した 方法を用いて測定した。
[0082] (触媒を備えたハニカムユニットの製作)
次に、白金濃度 4. 53重量%のジニトロジアンミン白金酢酸溶液を蒸留水で希釈し た。希釈した溶液を、ハ-カムユニットのサンプルに担持されたアルミナ層に含浸さ せた。この溶液をアルミナ層に願芯させたノヽ-カムユニットのサンプルを、 2時間、 11 0°Cで保持し、さらに、窒素雰囲気中で 1時間、 500°Cで加熱して、白金触媒を担持 させたハ-カムユニットのサンプルを得た。
[0083] (接着材層の形成)
次に、得られた白金触媒を有するハ-カムユニットの接着面に、上述した接着材層 用ペーストを塗布した。接着材層用ペーストが塗布された複数のハ-カムユニットの サンプルを、 2時間、 150°Cで乾燥し、 500°Cで焼成し、複数のハ-カムユニットを接 着させた。次に、接着させたノヽ-カムユニットを、ダイヤモンドカッターを用いて、切断 して、円柱状のハ-カム構造体を形成した。接着材層の厚さは、 2mmであった。
[0084] (コーティング層の形成)
さらに、コーティング層を有するハ-カム構造体については、接着材層用ペーストを 乾燥させた後、接着材層用ペーストが塗布された複数のハ-カムユニットのサンプル を焼成する前に、接着材層用ペーストが塗布された複数のハ-カムユニットのサンプ ルにおける外周部にも、同じ接着材層用ペーストを塗布した。そして、外周部に接着 材層用ペーストを塗布した複数のハ-カムユニットのサンプルを、 2時間、 150°Cで 乾燥し、 500°Cで焼成した。すなわち、複数のハ-カムユニットのサンプルに接着材 層を形成すると同時に、複数のハ-カムユニットのサンプルにおける外周部にコーテ イング層を形成した。コーティング層の厚さは、 2mmであった。
[0085] (2)アルミナ系ハニカム構造体の製作 (アルミナ系ハ-カムユニットの作製)
40重量%の 2 μ m力ら 20 μ mまでの平均粒径を備えた γアルミナ粒子、 10重量% のシリカアルミナファイバ(平均繊維径 10 m)、及び 50重量%のシリカゾルを混合 し、 100重量部の得られた混合物に対して、有機ノインダ一としての 6重量部のメチ ルセルロース、少量の可塑剤、及び少量の潤滑剤を混合し、混合物を混練して、混 練組成物を得た。この混練組成物を、押出成形機を用いて、押出成形して、成形体 を得た。
[0086] マイクロ波乾燥機及び熱風乾燥機を用いて、得られた成形体を乾燥し、 400°Cで 2 時間保持して、脱脂した。その後、脱脂した成形体を、 2時間、 800°Cで焼成し、互い に異なる比表面積を備えた角柱状(34. 3mm X 34. 3mm X 150mm)のアルミナ系 ノヽニカムユニットを得た。
[0087] 得られたハ-カムユニットを円柱形状の小片(15mm φ X 15mm)に切り出して、ハ 二カムユニットのサンプルを得た。得られたハ-カムユニットの比表面積を、上述した 方法を用いて測定した。
[0088] (接着材層の形成)
次に、得られた白金触媒を有するハ-カムユニットの接着面に、上述した接着材層 用ペーストを塗布した。接着材層用ペーストが塗布された複数のハ-カムユニットの サンプルを、 2時間、 150°Cで乾燥し、 500°Cで焼成し、複数のハ-カムユニットを接 着させた。次に、接着させたノヽ-カムユニットを、ダイヤモンドカッターを用いて、切断 して、円柱状のハ-カム構造体を形成した。接着材層の厚さは、 2mmであった。
[0089] (コーティング層の形成)
さらに、コーティング層を有するハ-カム構造体については、接着材層用ペーストを 乾燥させた後、接着材層用ペーストが塗布された複数のハ-カムユニットのサンプル を焼成する前に、接着材層用ペーストが塗布された複数のハ-カムユニットのサンプ ルにおける外周部にも、同じ接着材層用ペーストを塗布した。そして、外周部に接着 材層用ペーストを塗布した複数のハ-カムユニットのサンプルを、 2時間、 150°Cで 乾燥し、 500°Cで焼成した。すなわち、複数のハ-カムユニットのサンプルに接着材 層を形成すると同時に、複数のハ-カムユニットのサンプルにおける外周部にコーテ イング層を形成した。コーティング層の厚さは、 2mmであった。
[0090] [ハニカム構造体の評価]
(1)ライトオフ温度の測定
上述したように製作したハ-カム構造体のライトオフ温度を測定した。
[0091] 図 4は、ハ-カム構造体のライトオフ温度を測定する装置を説明する図である。ハニ カム構造体のライトオフ温度は、例えば、図 4に示すライトオフ温度測定装置 100を 用いて測定される。ライトオフ温度測定装置 100は、窒素を空気で希釈した希釈ガス を供給する希釈ガス供給部 102、この希釈ガスをハ-カム構造体まで流通させる流 通経路 104、希釈ガスに加湿する加湿器 106、希釈ガスを加熱するヒータ 108と、加 熱された希釈ガスに排ガス成分を混合して反応ガスを調製するガス混合器 110、ハ 二カム構造体を気密状態に保持するサンプルホルダー 112、ハ-カム構造体に接触 する前の反応ガスをサンプリングする入口ガスサンプラー 114、ハ-カム構造体に接 触した後の反応ガスをサンプリングする出口ガスサンプラー 116、反応ガスに含まれ る特定のガス成分の濃度を分析するガス分析計 118を有する。
[0092] まず、上で得られたノヽ-カム構造体を、サンプルホルダー 112にセットし、希釈ガス 供給部 102から空気及び窒素を含む希釈ガスを流通経路 104に所定の流量で流通 させた。次に、カロ湿器 106を用いて、この希釈ガスを加湿し、ヒータ 108を用いて、希 釈ガスの温度を所定の温度に調整した。続いて、流通している希釈ガスに、ガス混合 器 110の上流力ゝら排ガス成分を注入し、ガス混合器 110を用いて、希釈ガス及び排 ガス成分を混合して、所定の濃度の反応ガスを調製した。そして、調製した反応ガス をノヽ-カム構造体に流通させ、反応ガスを浄ィ匕した。このとき、ヒータ 108の温度を適 宜変更し、ヒータ 108の各温度でのハ-カム構造体の内部における反応ガスの温度 を図示しない熱電対で測定した。また、入口ガスサンプラー 114及び出口ガスサンプ ラー 116を用いて、サンプリングされた反応ガスにおける排ガス成分の濃度をガス分 析計 118によって測定した。
[0093] 反応ガスの流速は、 131 (LZ分)であった。排ガス成分は、酸素、一酸化炭素、二 酸化硫黄、炭化水素、一酸化窒素、水蒸気、及び窒素からなるものであった。反応ガ スにおける酸素の濃度は、 13%であり、一酸化炭素の濃度は、 300ppmであり、二 酸化硫黄の濃度は、 8ppmであり、炭素量に基づく炭化水素の濃度は、 200ppm- Cであり、一酸化窒素の濃度は、 160ppmであり、加湿量は、若干量であった。また、 反応ガスの温度は、ヒータ 108の温度を 10°C刻みで変化させ、 50°C〜400°Cであつ た。そして、反応ガスに含まれる排ガス成分のうち、一酸化炭素及び炭化水素の濃度 を、ガス分析計 218を用いて測定した。反応ガスの浄ィ匕率は、反応ガスがハ-カム構 造体に接触する前の排ガス成分の濃度が COであり、反応ガスがハニカム構造体に 接触した後の反応ガス成分の濃度が Ciであるとき、
浄化率(%) = (C0-Ci) /C0 X 100
の式によって、定義される。
[0094] さらに、反応ガスの浄化率が 50%となる温度を、ライトオフ温度 (°C)とした。図 5は、 ハニカム構造体のライトオフ温度の測定結果を示す図である。図 5の横軸は、接着材 層の比表面積に対するハ-カムユニットの比表面積の比を表し、図 5の縦軸は、ハニ カム構造体のライトオフ温度を表す。通常、排ガス浄ィ匕用触媒のライトオフ温度が、 1 60°C〜170°C以下であれば、排ガス浄ィ匕用触媒の性能は、良好であるといわれて いる。図 5に示すように、接着材層の比表面積に対するハ-カムユニットの比表面積 の比が、 1. 0倍以上であるとき、ハ-カム構造体のライトオフ温度は、 160°C以下で あり、ハ-カム構造体は、良好な浄ィ匕性能を示すことがわ力つた。特に、接着材層の 比表面積に対するハ-カムユニットの比表面積の比力 1. 1倍以上 10倍以下である とき、ハ-カム構造体のライトオフ温度は、 130°C以下であり、ハ-カム構造体は、特 に良好な浄ィ匕性能を示すことがわ力つた。
[0095] (2)ハニカム構造体の密着性試験
5m2Zg〜150m2Zgの接着材層の比表面積を備えたノヽ-カム構造体についての 密着性試験を行った。まず、予め 900°Cで 20時間保持したノヽ-カム構造体を室温ま で冷却した後、ハ-カム構造体を中空状の円筒治具に固定した。次に、ハ-カム構 造体の中央近傍におけるハ-カムユニットの 1本を選択し、その選択したノヽ-カムュ ニットを、ステンレス製の円筒冶具で押し抜いた。そして、ハ-カムユニットをステンレ ス製の円筒冶具で押し抜くために必要な荷重の値 (kg)を測定した。この荷重の値を 、接着材層の密着強度と称する。なお、接着材層の比表面積に対するハ-カムュ- ットの比表面積の比は、 1. 1以上 3以下の範囲であった。得られた接着材層の密着 強度の結果を表 2に示す。
[¾2]
Figure imgf000024_0001
通常、車両からの排ガスを浄化するためのハ-カム構造体には、エンジンの振動及 び排ガスの圧力によって、単位面積当たり 1. Okg/cm2〜3. Okg/cm2程度の負荷 が力かるといわれている。この負荷を、上述のハニカム構造体に適用すると、ハユカ ム構造体のハニカムユニット(34. 3mm X 34. 3mm X 150mm)を接着する接着材 層(荷重支持面積 206cm2)に要求される密着強度は、最大で約 618kgとなる。 表 2に示すように、接着材層の比表面積が、 10m2/g以上 100m2/g以下である 場合には、ハ-カム構造体に負荷をかけた後でも、接着材層の密着強度は、 618kg (3kgZcm2)以上であり、接着材層は、実際に使用することができる十分な密着性を 有することがわ力つた。
[0098] 一方、接着材層の比表面積が、 5m2Zg又は 150m2Zgのいずれかである場合に は、接着材層の密着強度は、比表面積が 50m2Zgである場合の密着強度の 60%程 度にまで、減少した。
[0099] (3)コーティング層を備えたノ、二カム構造体の耐久性試験
コーティング層を備えたノヽ-カム構造体の耐久性試験についての耐久性試験を行 つた o
[0100] 耐久性試験は、ディーゼルエンジンを 50Nmのトルクで 3000回転運転し、排ガス をノヽ-カム構造体に供給し、 6時間ごとにハ-カム構造体に生じたススの再生処理を 行った。ススの再生処理は、 720°Cに設定した炉内にハ-カム構造体を設置して、ハ 二カム構造体に生じたススを燃焼させる熱処理であり、合計 600時間実施した。そし て、耐久性試験を開始する前のハニカム構造体の重量と全てのススの再生処理後に おけるハ-カム構造体の重量との差を、ハ-カム構造体の最大風食量 (g)とした。
[0101] 図 6は、コーティング層を備えたハ-カム構造体の耐久性試験の結果を示す図であ る。図 6の横軸は、コーティング層の比表面積に対するハ-カムユニットの比表面積 の比を表し、図 6の縦軸は、耐久性試験の後に、コーティング層に生じた最大風食量 の相対値を表す。ここで、最大風食量の基準' 1 'は、最大風食量が最も少ないハニ カム構造体 (コーティング層の比表面積に対するハ-カムユニットの比表面積の比が 、 3. 4であり、コーティング層の比表面積力 50m2Zgである、アルミナ系ハ-カム構 造体)の最大風食量である。
[0102] 図 6に示すように、コーティング層の比表面積に対するハ-カムユニットの比表面積 の比が、 1. 0以上である場合には、ハ-カム構造体の最大風食量は、相対的に少な ぐハ-カム構造体の耐久性は、相対的に高いことがわ力つた。特に、コーティング層 の比表面積に対するハ-カムユニットの比表面積の比力 1. 3以上 20以下である場 合には、ハ-カム構造体の最大風食量は、 1以上 2以下であり、ハ-カム構造体の耐 久性は、特に良好であることがわ力つた。 このように、接着材層の比表面積に対するハ-カムユニットの比表面積の比力 1. 0以上である場合には、ハ-カム構造体の排ガスを浄ィ匕する性能を、向上させること ができる。また、コーティング層の比表面積に対するハ-カムユニットの比表面積の 比が、 1. 0以上である場合には、ハ-カム構造体の耐久性を向上させることができる

Claims

請求の範囲
[1] 複数のセルがセル壁を隔てて長手方向に並設されたノヽ-カムユニットが、接着材 層を介して複数個接着されたノヽ-カム構造体であって、
前記接着材層に対する前記ハ-カムユニットの比表面積の比は、 1. 0以上である ことを特徴とするハ-カム構造体。
[2] 前記接着材層の比表面積は、 10m2/g以上 100m2/g以下であることを特徴とす る請求項 1に記載のハニカム構造体。
[3] 前記接着材層は、無機粒子及び無機繊維の少なくとも一方を含むことを特徴とする 請求項 1又は 2に記載のハ-カム構造体。
[4] 前記複数のハ-カムユニットの少なくとも一つにおける少なくとも一つの外周部分を 被覆するコーティング層を備え、
前記コーティング層に対する前記ハ-カムユニットの比表面積の比は、 1. 0以上で あることを特徴とする請求項 1乃至 3のいずれか一項に記載のハ-カム構造体。
[5] 前記ハ-カムユニットは、セラミックを含有することを特徴とする請求項 1乃至 4のい ずれか一項に記載のハニカム構造体。
[6] 前記セラミックは、アルミナを含むことを特徴とする請求項 5に記載のハ-カム構造 体。
[7] 前記セラミックは、炭化珪素を含むことを特徴とする請求項 5又は 6に記載のハ-カ ム構造体。
[8] 触媒を担持してなることを特徴とする請求項 1乃至 7のいずれか一項に記載のハ- カム構造体。
PCT/JP2005/022589 2005-02-01 2005-12-08 ハニカム構造体 WO2006082684A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007501512A JP5237630B2 (ja) 2005-02-01 2005-12-08 ハニカム構造体
EP06001438A EP1685899A1 (en) 2005-02-01 2006-01-24 Honeycomb structure body
US11/342,636 US7651754B2 (en) 2005-02-01 2006-01-31 Honeycomb structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005025406 2005-02-01
JP2005-025406 2005-02-01

Publications (1)

Publication Number Publication Date
WO2006082684A1 true WO2006082684A1 (ja) 2006-08-10

Family

ID=35911060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022589 WO2006082684A1 (ja) 2005-02-01 2005-12-08 ハニカム構造体

Country Status (6)

Country Link
US (1) US7651754B2 (ja)
EP (1) EP1685899A1 (ja)
JP (1) JP5237630B2 (ja)
KR (1) KR100692942B1 (ja)
CN (1) CN100435956C (ja)
WO (1) WO2006082684A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272738A (ja) * 2007-03-30 2008-11-13 Ibiden Co Ltd ハニカム構造体

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029737B2 (en) * 2002-02-05 2011-10-04 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination, adhesive, coating material and process for producing honeycomb filter for exhaust gas decontamination
ES2312794T5 (es) * 2002-02-05 2012-12-18 Ibiden Co., Ltd. Filtro de tipo panal para purificar gases de escape
CN100365252C (zh) * 2002-03-04 2008-01-30 揖斐电株式会社 废气净化用蜂巢式过滤器以及废气净化装置
US20050169819A1 (en) * 2002-03-22 2005-08-04 Ibiden Co., Ltd Honeycomb filter for purifying exhaust gas
EP1493904B1 (en) * 2002-04-10 2016-09-07 Ibiden Co., Ltd. Honeycomb filter for clarifying exhaust gas
ATE376617T1 (de) * 2002-04-11 2007-11-15 Ibiden Co Ltd Wabenfilter zur reinigung von abgas
CN1723342B (zh) * 2003-11-05 2011-05-11 揖斐电株式会社 蜂窝结构体的制造方法以及密封材料
WO2005047210A1 (ja) * 2003-11-12 2005-05-26 Ibiden Co., Ltd. セラミック構造体、セラミック構造体の製造装置、及び、セラミック構造体の製造方法
JP4815108B2 (ja) * 2003-12-26 2011-11-16 イビデン株式会社 ハニカム構造体
US7387829B2 (en) * 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
JP4527412B2 (ja) * 2004-02-04 2010-08-18 イビデン株式会社 ハニカム構造体集合体及びハニカム触媒
CN100419230C (zh) * 2004-04-05 2008-09-17 揖斐电株式会社 蜂窝结构体、蜂窝结构体的制造方法以及废气净化装置
DE602004014271D1 (de) * 2004-05-06 2008-07-17 Ibiden Co Ltd Wabenstruktur und herstellungsverfahren dafür
CN101249349B (zh) * 2004-05-18 2012-01-25 揖斐电株式会社 蜂窝结构体及废气净化装置
EP1785603B1 (en) * 2004-08-31 2009-06-24 Ibiden Co., Ltd. Exhaust gas purification system
DE602005019182D1 (de) 2004-09-30 2010-03-18 Ibiden Co Ltd Wabenstruktur
EP1795261A4 (en) * 2004-09-30 2009-07-08 Ibiden Co Ltd ALVEOLAR STRUCTURE
CN100480215C (zh) * 2004-10-08 2009-04-22 揖斐电株式会社 蜂窝结构体及其制造方法
JP5142532B2 (ja) * 2004-11-26 2013-02-13 イビデン株式会社 ハニカム構造体
KR100753377B1 (ko) * 2004-12-27 2007-08-30 이비덴 가부시키가이샤 허니컴 구조체 및 시일재층
KR20080042902A (ko) * 2004-12-27 2008-05-15 이비덴 가부시키가이샤 세라믹 허니컴 구조체
EP1769837B1 (en) * 2005-02-04 2016-05-04 Ibiden Co., Ltd. Ceramic honeycomb structure and method for manufacture thereof
EP1767508B1 (en) * 2005-02-04 2010-02-24 Ibiden Co., Ltd. Ceramic honeycomb structure
JP2006223983A (ja) * 2005-02-17 2006-08-31 Ibiden Co Ltd ハニカム構造体
CN100453511C (zh) * 2005-03-28 2009-01-21 揖斐电株式会社 蜂窝结构体及密封材料
CN101146742B (zh) * 2005-03-30 2013-05-01 揖斐电株式会社 含碳化硅颗粒、制造碳化硅质烧结体的方法、碳化硅质烧结体以及过滤器
WO2006137163A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2006137164A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2006137151A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体、及び、排気ガス浄化装置
JPWO2006137158A1 (ja) * 2005-06-24 2009-01-08 イビデン株式会社 ハニカム構造体
WO2006137155A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2006137156A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
JP5031562B2 (ja) * 2005-06-24 2012-09-19 イビデン株式会社 ハニカム構造体
CN101001698B (zh) * 2005-06-24 2011-02-09 揖斐电株式会社 蜂窝结构体
WO2006137150A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
CN100471570C (zh) * 2005-06-24 2009-03-25 揖斐电株式会社 蜂窝结构体、蜂窝结构体集合体及蜂窝催化剂
CN101023044B (zh) * 2005-06-24 2010-04-21 揖斐电株式会社 蜂窝结构体
CN100534617C (zh) * 2005-06-24 2009-09-02 揖斐电株式会社 蜂窝结构体
WO2006137149A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2007058007A1 (ja) * 2005-11-18 2007-05-24 Ibiden Co., Ltd. ハニカム構造体
JPWO2007097056A1 (ja) * 2006-02-23 2009-07-09 イビデン株式会社 ハニカム構造体および排ガス浄化装置
US20080118701A1 (en) * 2006-11-16 2008-05-22 Ibiden Co., Ltd. Method for manufacturing honeycomb structure, and honeycomb structure
EP1923373B1 (en) * 2006-11-16 2010-01-20 Ibiden Co., Ltd. Method for manufacturing honeycomb structured body
WO2008059576A1 (fr) * 2006-11-16 2008-05-22 Ibiden Co., Ltd. Corps structural en nid d'abeilles et procédé de fabrication de celui-ci
WO2008059607A1 (fr) * 2006-11-16 2008-05-22 Ibiden Co., Ltd. Procédé permettant de produire une structure en nid d'abeilles et structure en nid d'abeilles ainsi formée
US20080178992A1 (en) * 2007-01-31 2008-07-31 Geo2 Technologies, Inc. Porous Substrate and Method of Fabricating the Same
WO2008096413A1 (ja) * 2007-02-06 2008-08-14 Ibiden Co., Ltd. ハニカム構造体
JPWO2008111218A1 (ja) * 2007-03-15 2010-06-24 イビデン株式会社 熱電変換装置
JPWO2008120619A1 (ja) * 2007-03-30 2010-07-15 京セラ株式会社 繊維強化樹脂およびその製造方法
WO2008129670A1 (ja) * 2007-04-17 2008-10-30 Ibiden Co., Ltd. 触媒担持ハニカムおよびその製造方法
KR100924950B1 (ko) * 2007-09-18 2009-11-06 한국에너지기술연구원 셀룰로우스 섬유를 열처리하여 얻어진 마이크로튜블 하니컴탄소체 및 그 제조방법, 이 마이크로튜블 하니컴 탄소체를이용한 마이크로튜블 반응기 모듈 및 그 제조방법, 이마이크로튜블 반응기 모듈을 이용한 마이크로 촉매반응장치
WO2009050775A1 (ja) * 2007-10-15 2009-04-23 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2009118815A1 (ja) * 2008-03-24 2009-10-01 イビデン株式会社 ハニカム構造体
EP3727773B1 (en) 2017-12-22 2022-07-13 Corning Incorporated Extrusion die

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078026A1 (fr) * 2002-03-15 2003-09-25 Ibiden Co., Ltd. Filtre de ceramique destine au controle de l'emission de gaz d'echappement
WO2004031100A1 (ja) * 2002-10-07 2004-04-15 Ibiden Co., Ltd. ハニカム構造体

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808460A (en) 1987-06-02 1989-02-28 Corning Glass Works Laminated structures containing an inorganic corrugated or honeycomb member
JP2577147B2 (ja) 1991-09-30 1997-01-29 日本碍子株式会社 セラミックスハニカム構造体の製造方法
JPH05213681A (ja) 1992-01-31 1993-08-24 Kawata Mfg Co Ltd ハニカム状繊維強化セラミック体およびその製造方法
DE4341159B4 (de) 1993-12-02 2009-02-05 Argillon Gmbh Wabenförmiger Katalysator und Verfahren zu seiner Herstellung
DK1306358T4 (da) 1996-01-12 2012-10-22 Ibiden Co Ltd Tætningselement
JP3389851B2 (ja) 1997-01-21 2003-03-24 トヨタ自動車株式会社 排ガス浄化用触媒
JP3736986B2 (ja) 1998-07-28 2006-01-18 イビデン株式会社 セラミック構造体の製造方法
EP1144333B1 (en) 1998-12-28 2006-08-02 Corning Incorporated Method for making high strength/high surface area alumina ceramics
JP3967034B2 (ja) 1999-03-30 2007-08-29 イビデン株式会社 セラミックフィルタユニットの製造方法
JP2002161726A (ja) 2000-11-29 2002-06-07 Ibiden Co Ltd 排気ガス浄化装置及びその製造方法、セラミックハニカム構造体の収容構造
JP2002273130A (ja) 2001-03-22 2002-09-24 Ngk Insulators Ltd ハニカム構造体
JP3943366B2 (ja) 2001-10-23 2007-07-11 株式会社ニッカトー セラミックス接合体およびその製造方法
JP3893049B2 (ja) * 2001-11-20 2007-03-14 日本碍子株式会社 ハニカム構造体及びその製造方法
PL205740B1 (pl) * 2001-12-06 2010-05-31 Ngk Insulators Ltd Proces wytwarzania struktury podobnej do plastra pszczelego
FR2833857B1 (fr) * 2001-12-20 2004-10-15 Saint Gobain Ct Recherches Corps filtrant comportant une pluralite de blocs filtrants, notamment destine a un filtre a particules
JP3927038B2 (ja) 2001-12-21 2007-06-06 日本碍子株式会社 Si含有ハニカム構造体及びその製造方法
US8029737B2 (en) 2002-02-05 2011-10-04 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination, adhesive, coating material and process for producing honeycomb filter for exhaust gas decontamination
JP4317345B2 (ja) 2002-02-26 2009-08-19 株式会社日本触媒 低濃度co含有排ガス処理方法
US20050169819A1 (en) * 2002-03-22 2005-08-04 Ibiden Co., Ltd Honeycomb filter for purifying exhaust gas
DE60324121D1 (de) 2002-03-29 2008-11-27 Ibiden Co Ltd Keramikfilter und abgasdekontaminierungseinheit
WO2004003276A1 (ja) * 2002-06-28 2004-01-08 Denki Kagaku Kogyo Kabushiki Kaisha 保持材用無機質短繊維集積体、その製造方法、及び保持材
JP2004088522A (ja) * 2002-08-28 2004-03-18 Nec Corp 移動通信システム、その周波数間ho方法、移動局、基地局、基地局制御装置及びプログラム
EP1502640B1 (en) * 2002-09-13 2013-03-20 Ibiden Co., Ltd. Honeycomb structure
WO2004024295A1 (ja) 2002-09-13 2004-03-25 Ibiden Co., Ltd. ハニカム構造体
JP4868688B2 (ja) 2002-11-07 2012-02-01 イビデン株式会社 ハニカムフィルタの製造方法及びハニカムフィルタ
WO2005047210A1 (ja) * 2003-11-12 2005-05-26 Ibiden Co., Ltd. セラミック構造体、セラミック構造体の製造装置、及び、セラミック構造体の製造方法
JP4815108B2 (ja) 2003-12-26 2011-11-16 イビデン株式会社 ハニカム構造体
JP4527412B2 (ja) 2004-02-04 2010-08-18 イビデン株式会社 ハニカム構造体集合体及びハニカム触媒
JP2004322095A (ja) 2004-06-30 2004-11-18 Hitachi Metals Ltd セラミックハニカム構造体
CN100480215C (zh) 2004-10-08 2009-04-22 揖斐电株式会社 蜂窝结构体及其制造方法
KR100753377B1 (ko) * 2004-12-27 2007-08-30 이비덴 가부시키가이샤 허니컴 구조체 및 시일재층
KR20080042902A (ko) 2004-12-27 2008-05-15 이비덴 가부시키가이샤 세라믹 허니컴 구조체
WO2006137149A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
CN101023044B (zh) 2005-06-24 2010-04-21 揖斐电株式会社 蜂窝结构体
JP5031562B2 (ja) 2005-06-24 2012-09-19 イビデン株式会社 ハニカム構造体
WO2006137151A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体、及び、排気ガス浄化装置
CN101001698B (zh) 2005-06-24 2011-02-09 揖斐电株式会社 蜂窝结构体
WO2006137155A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2006137156A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2006137150A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2006137164A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
JPWO2006137158A1 (ja) 2005-06-24 2009-01-08 イビデン株式会社 ハニカム構造体
CN100534617C (zh) 2005-06-24 2009-09-02 揖斐电株式会社 蜂窝结构体
WO2006137163A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
CN100471570C (zh) 2005-06-24 2009-03-25 揖斐电株式会社 蜂窝结构体、蜂窝结构体集合体及蜂窝催化剂
WO2007000826A1 (ja) 2005-06-27 2007-01-04 Ibiden Co., Ltd. ハニカム構造体
WO2007000825A1 (ja) 2005-06-27 2007-01-04 Ibiden Co., Ltd. ハニカム構造体
WO2007000847A1 (ja) 2005-06-29 2007-01-04 Ibiden Co., Ltd. ハニカム構造体
JP2007098274A (ja) 2005-10-04 2007-04-19 Ibiden Co Ltd 多孔質ハニカム構造体及びそれを利用した排ガス浄化装置
WO2008059607A1 (fr) 2006-11-16 2008-05-22 Ibiden Co., Ltd. Procédé permettant de produire une structure en nid d'abeilles et structure en nid d'abeilles ainsi formée
EP1923373B1 (en) 2006-11-16 2010-01-20 Ibiden Co., Ltd. Method for manufacturing honeycomb structured body
US20080118701A1 (en) 2006-11-16 2008-05-22 Ibiden Co., Ltd. Method for manufacturing honeycomb structure, and honeycomb structure
WO2008096413A1 (ja) 2007-02-06 2008-08-14 Ibiden Co., Ltd. ハニカム構造体
WO2008126305A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. 触媒担持体および排気ガス処理装置
WO2008126306A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. 触媒担持体
WO2008126307A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. 触媒担持体および触媒担持体の製造方法
WO2008129670A1 (ja) 2007-04-17 2008-10-30 Ibiden Co., Ltd. 触媒担持ハニカムおよびその製造方法
WO2009050775A1 (ja) 2007-10-15 2009-04-23 Ibiden Co., Ltd. ハニカム構造体の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078026A1 (fr) * 2002-03-15 2003-09-25 Ibiden Co., Ltd. Filtre de ceramique destine au controle de l'emission de gaz d'echappement
WO2004031100A1 (ja) * 2002-10-07 2004-04-15 Ibiden Co., Ltd. ハニカム構造体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272738A (ja) * 2007-03-30 2008-11-13 Ibiden Co Ltd ハニカム構造体

Also Published As

Publication number Publication date
KR20060105737A (ko) 2006-10-11
EP1685899A1 (en) 2006-08-02
CN1898021A (zh) 2007-01-17
JP5237630B2 (ja) 2013-07-17
JPWO2006082684A1 (ja) 2008-06-26
KR100692942B1 (ko) 2007-03-12
US20060172113A1 (en) 2006-08-03
US7651754B2 (en) 2010-01-26
CN100435956C (zh) 2008-11-26

Similar Documents

Publication Publication Date Title
JP5237630B2 (ja) ハニカム構造体
JP5142529B2 (ja) ハニカム構造体
JP5142532B2 (ja) ハニカム構造体
JP4527412B2 (ja) ハニカム構造体集合体及びハニカム触媒
JP4812316B2 (ja) ハニカム構造体
JP5042824B2 (ja) ハニカム構造体、ハニカム構造体集合体及びハニカム触媒
JP5001009B2 (ja) セラミックハニカム構造体
EP1741686B1 (en) Honeycomb structure and method for producing same
JP5191657B2 (ja) セラミックハニカム構造体
US8038955B2 (en) Catalyst supporting honeycomb and method of manufacturing the same
JP3997825B2 (ja) セラミックフィルタおよび触媒付セラミックフィルタ
EP1974813B1 (en) Honeycomb structured body
WO2007043245A1 (ja) ハニカムユニット及びハニカム構造体
WO2006035823A1 (ja) ハニカム構造体
WO2005108328A1 (ja) ハニカム構造体及びその製造方法
WO2005063653A9 (ja) ハニカム構造体
JPWO2005026074A1 (ja) セラミック焼結体およびセラミックフィルタ
CN111107932B (zh) 蜂窝催化剂
JP3874443B2 (ja) パティキュレート捕集用フィルタ
JP2001187344A (ja) 排ガス浄化材及び排ガス浄化装置
JP2003265964A (ja) 排気ガス浄化用の触媒担持フィルタ
CN111132762A (zh) 蜂窝催化剂
WO2007083779A1 (en) Exhaust gas-purifying catalyst
KR100779893B1 (ko) 허니컴 구조체, 허니컴 구조체 집합체 및 허니컴 촉매

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580000803.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007501512

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067003956

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020067003956

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020067003956

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05814624

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5814624

Country of ref document: EP