JP2004088522A - 移動通信システム、その周波数間ho方法、移動局、基地局、基地局制御装置及びプログラム - Google Patents

移動通信システム、その周波数間ho方法、移動局、基地局、基地局制御装置及びプログラム Download PDF

Info

Publication number
JP2004088522A
JP2004088522A JP2002247917A JP2002247917A JP2004088522A JP 2004088522 A JP2004088522 A JP 2004088522A JP 2002247917 A JP2002247917 A JP 2002247917A JP 2002247917 A JP2002247917 A JP 2002247917A JP 2004088522 A JP2004088522 A JP 2004088522A
Authority
JP
Japan
Prior art keywords
frequency
base station
mobile station
mobile communication
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002247917A
Other languages
English (en)
Inventor
Toshihiro Hayata
早田 利浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2002247917A priority Critical patent/JP2004088522A/ja
Priority to PCT/JP2003/010743 priority patent/WO2004021721A1/ja
Priority to US10/526,067 priority patent/US20050260991A1/en
Priority to EP03791283A priority patent/EP1542480A1/en
Priority to CNA038204347A priority patent/CN1679357A/zh
Priority to KR1020057003557A priority patent/KR20050057075A/ko
Publication of JP2004088522A publication Critical patent/JP2004088522A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength

Abstract

【課題】周波数間HO(ハンドオーバ)を円滑かつ安定して行うことができる移動通信システムを得る。
【解決手段】周波数間HO中、HO先BTS2は、コンプレストモードにおけるギャップで、HO元BTS1がHO元周波数にてMS3に送信するデータと同一のデータをHO先周波数にてMS3に送信する。また、MS3は、コンプレストモードにおけるギャップで周波数をHO元周波数からHO先周波数に切替えて、MS3がBTS1へHO元周波数にて送信するデータと同一のデータをBTS2に送信する。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明は移動通信システム、その周波数間HO方法、移動局、基地局、基地局制御装置及びプログラムに関し、特にCDMA(Code Division Multiple Access)移動通信システムにおける周波数間HO(ハンドオーバ)方法に関する。
【0002】
【従来の技術】
W−CDMA(Wideband−Code Division Multiple Access)移動通信方式における周波数間HHO(ハードハンドオーバ)の手順について説明する。図15(a)〜(c)は周波数間HHOについて説明するための図であり、図16は周波数間HHOの動作について説明するためのタイミングチャートである。W−CDMA移動通信方式は、3GPP(3rd Generation Partnership Project)で議論されている第3世代の移動体通信方式である。
【0003】
通常、基地局(BTS:Base Transceiver Station)は、複数の周波数を保持し、移動機(MS:Mobile Station)といずれかの周波数を使用して通信を行う。
【0004】
しかし、図15(a)に示すように、BTS1の通信領域であるセル10において周波数f1で通信を行っているMS3が、周波数f2しか有していないBTS2の通信領域であるセル20へ移動する際に、周波数を周波数f1から周波数f2へ変更する必要がある。これが、「周波数間HHO(異周波HHO)」と呼ばれる動作である。
【0005】
なお、周波数f1から周波数f2へ変更する方法には、BTS1の通信領域内でBTS1の周波数f1からBTS1の周波数f2へ変更する方法(図15(b)参照)と、BTS1の通信領域とBTS2の通信領域とが重なっている領域でBTS1の周波数f1からBTS2の周波数f2へ変更する方法(図15(c)参照)という2つの方法があるが、いずれの方法をとってもよい。
【0006】
通常、MS3は局部発振器を1つしか有していないため、MS3は、HHO元周波数f1で通信を行いながら、HHO先BTSからHHO先周波数f2で送信されている下り信号を受信することはできないようになっている。そこで、MS3は、周波数間HHOの際に、コンプレストモード(compressed mode)と呼ばれる、間欠通信を行うモードになる。
【0007】
図16に示すように、コンプレストモードは、周波数間ハンドオーバを行う際に異周波数のセルの測定を可能とするためのモードであって、通信を行っていない時間区間であるギャップ(gap)の存在する間欠通信のモードである。
【0008】
このように、コンプレストモードは、BTS1がMS3にデータを送信しない時間区間(ギャップ)が存在する間欠通信のモードであるが、BTS1とMS3との間の通常通信時においても、MS3に送信すべきデータが無い時間区間でBTS1からMS3へのデータ送信を停止する間欠通信は行われる。ただし、通常通信時では、BTS1からMS3への送信が停止される区間の位置及び長さはBTS1からMS3への送信データの挙動に依存し、これらに規則性はない。一方、コンプレストモードでは、送信データに関係なく、予め定められたパターン(CM pattern)に従って一定の規則の下、BTS1からMS3へのデータ送信が停止される。すなわち、コンプレストモード時に生ずるギャップは、その長さや位置が予め定められたパターンに従っており、規則的になっている。
【0009】
コンプレストモードの詳細に関しては、3GPP仕様の「TS25.212 v3.5.0 4.4 Compressed Mode」や、「TS25.215 v3.5.0 6.1.1 Compressed Mode」に記載されている。
【0010】
図16に示すように、HHO先BTS2は、基準信号であるCPICH(Common Pilot Channel)の共通パイロット信号を全ての周波数にて常に送信している。MS3は、周波数間HHOの際、コンプレストモードにおけるギャップで、周波数をHHO元周波数f1からHHO先周波数f2に切替えて、HHO先BTS2からの共通パイロット信号を受信する。MS3は、HHO先BTSからの共通パイロット信号を監視することにより、HHO先周波数f2に移っても、移る前と同じ受信品質が得られること、つまりこの受信品質を得られる電力が出ていることと、HHO先周波数f2の下り信号の受信タイミングとを確認する。なお、図16では、HHO元BTSはBTS1でありHHO先BTSはBTS2であるが、HHO元BTSとHHO先BTSは同一のBTSであってもよい。
【0011】
このように、MS3は、コンプレストモードにおけるギャップを利用して、HHO先BTS2からHHO先周波数f2にて送信されている共通パイロット信号の一部を受信するようにしている。したがって、下りに関しては、MS3は、周波数間HHO終了後、BTS2からの適切な受信品質の信号をすぐに受信することができる。
【0012】
【特許文献1】
特開2001−224053号公報(第4頁、第1−2図)
【0013】
【発明が解決しようとする課題】
しかし、上りに関しては、周波数間HHO中にHHO先BTS2がMS3からのHHO先周波数f2の信号をモニタする仕組みがないので、周波数間HHO終了後の上りの初期送信電力が適切な受信品質を保証するものではないかもしれず、また、BTS2はMS3からの上り信号の受信タイミングが判らない。
【0014】
したがって、周波数間HHOの終了からBTS2がMS3から送信される上り信号の受信タイミングを検出するまでの間(図16に示した期間T)は、BTS2はMS3からの上り信号を受信することができない。また、期間TではMS3からの上り信号がBTS2により受信されていないので、BTS2とMS3間の上りリンクの送信電力制御が正常に行われず、よって、受信特性の劣化や干渉の増加が発生する可能性がある。
【0015】
また、図15(c)に示すように、HHO元BTS1の通信領域とHHO先BTS2の通信領域とが重なり合っている領域でMS3が周波数間HHOを行う場合、MS3はこれらBTS1及び2のいずれからも遠距離にあるため、MS3から見ると下り受信感度が悪くなる。この感度劣化を補うために、各BTSはMS3への下り送信電力を増加させなければならないが、この下り送信電力の増加により他のMSに対する下り干渉が増加してしまう。
【0016】
同周波のBTS間HO(DHO:Diversity HO)やセクタ間HO(Softer HO)のように、周波数を変更することなくHO元BTSからHO先BTSへ移動できる場合は、MSはこれらBTSから同じデータを同時受信することにより、ダイバーシティゲインを得ることができると共に無瞬断でハンドオーバを行うことができる。
【0017】
しかし、周波数間HHOでは、MS3はHO元BTS1からの下り信号とHO先BTS2からの下り信号とを同時に受信することができないので、ダイバーシティゲインを得ることができず、また無瞬断でハンドオーバを行うことが困難である。
【0018】
本発明の目的は、周波数間HOを円滑かつ安定して行うことができる移動通信システム、その周波数間HO方法、移動局、基地局、基地局制御装置及びプログラムを提供することにある。
【0019】
【課題を解決するための手段】
本発明による移動通信システムは、移動局とこの移動局が無線接続可能な移動通信網とを含み、前記移動局と前記移動通信網との間の移動通信において通信を行っていないギャップの存在する間欠通信のモードであるコンプレストモードを含む移動通信システムであって、前記移動通信網は、周波数間HO(ハンドオーバ)の際、前記移動通信網から前記移動局へHO元周波数にて送信されるデータと同一のデータを前記ギャップを利用してHO先周波数にて前記移動局へ送信する送信手段を有することを特徴とする。
【0020】
また、前記移動通信システムにおいて、前記移動局は、前記周波数間HOの際、前記移動局から前記移動通信網へHO元周波数にて送信されるデータと同一のデータを前記ギャップを利用してHO先周波数にて前記移動通信網へ送信する送信手段を有することを特徴とする。
【0021】
本発明による周波数間HO方法は、移動局とこの移動局が無線接続可能な移動通信網とを含み、前記移動局と前記移動通信網との間の移動通信において通信を行っていないギャップの存在する間欠通信のモードであるコンプレストモードを含む移動通信システムの周波数間HO(ハンドオーバ)方法であって、前記移動通信網は、周波数間HOの際、前記移動通信網から前記移動局へHO元周波数にて送信されるデータと同一のデータを前記ギャップを利用してHO先周波数にて前記移動局へ送信する送信ステップを有することを特徴とする。
【0022】
また、前記周波数間HO方法において、前記移動局は、前記周波数間HOの際、前記移動局から前記移動通信網へHO元周波数にて送信されるデータと同一のデータを前記ギャップを利用してHO先周波数にて前記移動通信網へ送信する送信ステップを有することを特徴とする。
【0023】
本発明による移動局は、移動局と移動通信網との間の移動通信において通信を行っていないギャップの存在する間欠通信のモードであるコンプレストモードを含む移動局であって、周波数間HO(ハンドオーバ)の際、当該移動局から前記移動通信網へHO元周波数にて送信されるデータと同一のデータを前記ギャップを利用してHO先周波数にて前記移動通信網へ送信する送信手段を含むことを特徴とする。
【0024】
本発明によるプログラムは、移動局と移動通信網との間の移動通信において通信を行っていないギャップの存在する間欠通信のモードであるコンプレストモードを含む移動局の動作をコンピュータにより実行させるためのプログラムであって、周波数間HO(ハンドオーバ)の際、前記移動局から前記移動通信網へHO元周波数にて送信されるデータと同一のデータを前記ギャップを利用してHO先周波数にて前記移動通信網へ送信する送信ステップを含むことを特徴とする。
【0025】
本発明による基地局は、移動局と基地局との間の移動通信において通信を行っていないギャップの存在する間欠通信のモードであるコンプレストモードを含む基地局であって、周波数間HO(ハンドオーバ)の際、HO元基地局から前記移動局へHO元周波数にて送信されるデータと同一のデータを前記ギャップを利用してHO先周波数にて前記移動局へ送信する送信手段を含むことを特徴とする。
【0026】
本発明によるプログラムは、移動局と基地局との間の移動通信において通信を行っていないギャップの存在する間欠通信のモードであるコンプレストモードを含む基地局の動作をコンピュータにより実行させるためのプログラムであって、周波数間HO(ハンドオーバ)の際、HO元基地局から前記移動局へHO元周波数にて送信されるデータと同一のデータを前記ギャップを利用してHO先周波数にて前記移動局へ送信する送信ステップを含むことを特徴とする。
【0027】
本発明による基地局制御装置は、移動局と移動通信網との間の移動通信において通信を行っていないギャップの存在する間欠通信のモードであるコンプレストモードを含む移動通信システムにおける基地局制御装置であって、周波数間HO(ハンドオーバ)の際に前記ギャップを利用して前記移動局からHO元周波数及びHO先周波数にて送信される互いに同一のデータをそれぞれHO元基地局及びHO先基地局を介して受信して選択合成する選択合成手段を含むことを特徴とする。
【0028】
本発明によるプログラムは、移動局と移動通信網との間の移動通信において通信を行っていないギャップの存在する間欠通信のモードであるコンプレストモードを含む移動通信システムにおける基地局制御装置の動作をコンピュータにより実行させるためのプログラムであって、周波数間HO(ハンドオーバ)の際に前記ギャップを利用して前記移動局からHO元周波数及びHO先周波数にて送信される互いに同一のデータをそれぞれHO元基地局及びHO先基地局を介して受信して選択合成する選択合成ステップを含むことを特徴とする。
【0029】
このように、本発明では、周波数間HO中のコンプレストモードにおけるギャップを利用することにより、HO元周波数を使用した移動局とHO元基地局間の通信とHO先周波数を使用した移動局とHO先基地局間の通信とが交互に行なわれ、HO元周波数及びHO先周波数を用いて送受信されるデータは同じものである。
【0030】
すなわち、HO先基地局は、ギャップにおいて、HO元基地局がHO元周波数にて移動局に送信するデータと同一のデータをHO先周波数にて移動局に送信する。また、移動局は、ギャップにおいて周波数をHO元周波数からHO先周波数に切替えることにより、移動局がHO元基地局へHO元周波数にて送信するデータと同一のデータをHO先基地局に送信する。
【0031】
【発明の実施の形態】
以下に、本発明の実施例について図面を用いて説明する。図1は本発明の実施例によるW−CDMA(Wideband−Code Division Multiple Access)移動通信システムの構成を示す図である。図1に示すように、本発明の実施例による移動通信システムは、基地局(BTS:Base Transceiver Station)1及び2と、移動機(MS:Mobile Station)3と、基地局制御装置(RNC:Radio Network Controller)4とから構成されており、RNC4はCN(Core Network)に接続されている。
【0032】
図2は図1に示したBTS1の構成を示す図である。図2に示すように、BTS1は、受信部11と、サーチ・復号部12と、上り信号監視部13と、HHO制御部14と、局部発振器(LO:Local Oscilator)15と、送信部16とから構成されている。BTS2の構成も図2に示したBTS1の構成と同様である。
【0033】
図3は図1に示したMS3の構成を示す図である。図3に示すように、MS3は、受信部21と、サーチ・復号部22と、下り信号監視部23と、HHO制御部24と、LO25と、送信部26とから構成されている。
【0034】
図4は図1に示したRNC4の構成を示す図である。図4に示すように、RNC4は、選択合成部31と、制御部32と、I/F(インタフェース)33及び34とから構成されている。
【0035】
図5〜7は本発明の実施例による移動通信システムの動作を示すタイミングチャートであり、図8〜12は本発明の実施例による移動通信システムの動作を示すフローチャートである。これら図1〜図12を参照して本発明の実施例による移動通信システムについて説明する。
【0036】
図1において、周波数間HHO(ハードハンドオーバ)の際に、MS3は、コンプレストモード(compressed mode)におけるギャップ(gap)で周波数をHHO元周波数f1からHHO先周波数f2に切替えて、HHO先BTS2から送信されている共通パイロット信号をモニタする。このHHO先BTS2からの下り信号のモニタについては、図16を用いて既に説明したので、説明を省略する。
【0037】
本実施例では、HHO先BTS2からの共通パイロット信号のモニタが終了すると、MS3は、HHO元周波数f1を使用してHHO元BTS1を介してRNC4にこの旨を通知する。この通知に応答して、RNC4は新たなコンプレストモードパターンをBTS1,BTS2及びMS3に通知する。なお、MS3は、RNC4からのこの新たなパターンをHHO元BTS1を介して受信する。
【0038】
そして、MS3及びHHO先BTS2は、通知されたパターンのギャップ区間において、HHO先周波数f2を使用してMS3とHHO先BTS2間で通信を行なう。このようにギャップ利用することにより、HHO元周波数f1を使用したMS3とHHO元BTS1間の通信とHHO先周波数f2を使用したMS3とHHO先BTS2間の通信が交互に行なわれるが、これら周波数f1及びf2を用いて送受信されるデータは同じものとする。
【0039】
すなわち、HHO先BTS2は、通知されたパターンのギャップで、HHO元BTS1がHHO元周波数f1にてMS3に送信するデータと同一のデータをHHO先周波数f2にてMS3に送信する。また、MS3は、通知されたパターンのギャップで周波数をHHO元周波数f1からHHO先周波数f2に切替えて、MS3がHHO元BTS1へHHO元周波数f1にて送信するデータと同一のデータをHHO先BTS2に送信する。
【0040】
MS3は、通知されたパターンのギャップでHHO先BTS2にデータを送信する際、このデータの送信に付随してパイロット信号もHHO先BTS2に周波数f2を用いて送信する。なお、このデータはDPCH(Dedicated Physical Channel)のDPDCH(Dedicated Physical Data Channel)を用いて送信されるものであり、パイロット信号はDPCHのDPCCH(Dedicated PhysicalControl Channel)を用いて送信されるものである。
【0041】
したがって、HHO先BTS2は、ギャップを利用して上り信号監視部13にてMS3からのパイロット信号を監視することが可能である。MS3からのパイロット信号を監視することにより、HHO先BTS2は、MS3による下り信号の監視と同様に、MS3からのHHO先周波数f2の上り信号の送信電力が適切なものであるか否かを確認すると共に、MS3からのHHO先周波数f2の上り信号の受信タイミングを確認する。
【0042】
なお、以上の説明ではHHO元BTSをBTS1としHHO先BTSをBTS2としているが、HHO元BTSとHHO先BTSは同一のBTSであってもよい。
【0043】
図5〜7は、新たなコンプレストモードにおけるギャップの位置でMS3が周波数をHHO先周波数f2に切替えることにより、MS3とHHO元BTSとの間で送受信されるデータと同一のデータをMS3とHHO先BTSとの間で送受信する様子を示している。図5〜7に示すように、HHO先BTSからの共通パイロット信号のモニタ終了後の新たなコンプレストモードでは各フレーム(frame)の半分程度がギャップ区間として確保される。
【0044】
図5では、MS3の下り受信動作が示されている。図5に示すように、MS3は、通知された新たなコンプレストモードパターン(CM pattern)に従ってHHO元BTS1からMS3へHHO元周波数f1にて送信されるデータD1〜D6と、通知された新たなコンプレストモードパターンに従ってHHO先BTS2からMS3へHHO先周波数f2にて送信されるデータD1´〜D6´とを、通知された新たなコンプレストモードパターンに従ってHHO元周波数f1とHHO先周波数f2とを切替えることにより受信する。そして、MS3は受信された互いに同一のデータを合成(例えば、最大比合成)する。
【0045】
なお、データD1とデータD1´が互いに同一のデータであり、データD2とデータD2´が互いに同一のデータであり、データD3とデータD3´が互いに同一のデータであり、データD4とデータD4´が互いに同一のデータであり、データD5とデータD5´が互いに同一のデータであり、データD6とデータD6´が互いに同一のデータである。
【0046】
図5では、HHO元BTSをBTS1としHHO先BTSをBTS2としているが、HHO元BTSとHHO先BTSは同一のBTSであってもよい。
【0047】
図6では、BTS1がHHO元BTSでありHHO先BTSでもある場合におけるBTS1の上り受信動作が示されている。図6に示すように、BTS1は、通知された新たなコンプレストモードパターンに従ってMS3からHHO元周波数f1にて送信されるデータD11〜D16と、通知された新たなコンプレストモードパターンに従ってMS3からHHO先周波数f2にて送信されるデータD11´〜D16´とを、受信する。そして、BTS1は受信された互いに同一のデータを合成(例えば、最大比合成)する。
【0048】
なお、データD11とデータD11´が互いに同一のデータであり、データD12とデータD12´が互いに同一のデータであり、データD13とデータD13´が互いに同一のデータであり、データD14とデータD14´が互いに同一のデータであり、データD15とデータD15´が互いに同一のデータであり、データD16とデータD16´が互いに同一のデータである。
【0049】
図5及び6において、MS3がBTS1からのデータD1を受信するとき、MS3の周波数は周波数f1であり、このときにMS3はBTS1にデータD11を送信するようにしている。なお、データD1とデータD11は互いに同一のデータではない。また、MS3がHHO先BTSからのデータD1´を受信するとき、MS3の周波数は周波数f2であり、このときにMS3はHHO先BTSにデータD11´を送信するようにしている。なお、データD1´とデータD11´は互いに同一のデータではない。
【0050】
図7では、HHO元BTSがBTS1でありHHO先BTSがBTS2である場合における各BTSの上り受信動作が示されている。図7に示すように、BTS1は、通知された新たなコンプレストモードパターンに従ってMS3からHHO元周波数f1にて送信されるデータD21〜D26を受信し、BTS2は、通知された新たなコンプレストモードパターンに従ってMS3からHHO先周波数f2にて送信されるデータD21´〜D26´を受信する。そして、BTS1及び2はそれぞれ、受信データをRNC4に送信する。RNC4は、BTS1からの受信データとBTS2からの受信データを選択合成する。
【0051】
なお、データD21とデータD21´が互いに同一のデータであり、データD22とデータD22´が互いに同一のデータであり、データD23とデータD23´が互いに同一のデータであり、データD24とデータD24´が互いに同一のデータであり、データD25とデータD25´が互いに同一のデータであり、データD26とデータD26´が互いに同一のデータである。
【0052】
図5及び7において、MS3がBTS1からのデータD1を受信するとき、MS3の周波数は周波数f1であり、このときにMS3はBTS1にデータD21を送信するようにしている。なお、データD1とデータD21は互いに同一のデータではない。また、MS3がBTS2からのデータD1´を受信するとき、MS3の周波数は周波数f2であり、このときにMS3はBTS2にデータD21´を送信するようにしている。なお、データD1´とデータD21´は互いに同一のデータではない。
【0053】
このように、本実施例では、周波数間HHOの際、MS3は、MS3からHHO元BTSに送信されるデータと同一のデータをギャップを利用してHHO先BTSに送信し、HHO先BTSは、HHO元BTSからMS3に送信されるデータと同一のデータをギャップを利用してMS3に送信するようにしている。したがって、同周波のBTS間HO(DHO:Diversity HO)やセクタ間HO(Softer HO)のように、無瞬断で周波数間HHOを行うことができる。
【0054】
さらに、本実施例では、以下のような手順に基づき、MS3とHHO元BTS間の下りリンク及びMS3とHHO先BTS間の下りリンクの送信電力制御(TPC)に用いられる目標SIR(target SIR(Signal to Interference Ratio))と、MS3とHHO元BTS間の上りリンク及びMS3とHHO先BTS間の上りリンクのTPCに用いられるtarget SIRとを可変制御する。
【0055】
[1]MS3とHHO元BTS1間の下りリンク及びMS3とHHO先BTS2間の下りリンクのTPCに用いられるtarget SIRを可変制御する場合
以下の変数を定義する(全て、dBでは無く真値とする)。
・SIR(ms):RNC4から指定されるMS3のtarget SIR
・SIR(dv_ms):MS3における1フレーム分の合成データを基に算出される受信SIR
・Gain(ms):MS3のダイバーシティゲイン
・SIR(hho_ms):ダイバーシティゲインを考慮したMS3のtarget SIR
【0056】
周波数間HHO中の下りTPCは、SIR(hho_ms)を用いて行なうが、SIR(hho_ms)の算出方法は以下の通りである。
(0)SIR(hho_ms)の初期値として、SIR(hho_ms)の値をSIR(ms)と同じ値にする。
(1)MS3とBTS2間の下りリンクの同期が確立するまでは、すなわち、BTS2から周波数f2を用いて送信されたデータに対してMS3においてCRC(Cyclic Redundancy Check)判定可能となるまでは、SIR(hho_ms)の値は変化させない。
【0057】
下りリンクの同期が確立した後、(2)以降の手順に従いSIR(hho_ms)を変化させる。
(2)各タイムスロット毎にSIR(hho_ms)に従い、MS3とBTS1間の下りリンク及びMS3とBTS2間の下りリンクのTPCを行なう。
(3)BTS1及びBTS2の各々からの1フレーム分のデータを受信した後、互いに同一のデータを合成(例えば、最大比合成)し、1フレーム分の合成データを基に受信SIR(=SIR(dv_ms))を算出する(図5参照)。
(4)Gain(ms)=SIR(dv_ms)−SIR(ms)
(5)SIR(hho_ms)=SIR(ms)−Gain(ms)/2
(6)以降、周波数間HHOが終了するまで各フレーム毎に(2)〜(5)の手順を繰り返す。
【0058】
以上の説明では、HHO元BTSをBTS1としHHO先BTSをBTS2としているが、HHO元BTSとHHO先BTSは同一のBTSであってもよい。
【0059】
[2]MS3とHHO元BTS間の上りリンク及びMS3とHHO先BTS間の上りリンクのTPCに用いられるtarget SIRを可変制御する場合
このtarget SIRの可変制御の方法は、HHO元BTSとHHO先BTSとが同じである場合と、HHO元BTSとHHO先BTSとが異なる場合とで異なる。
【0060】
[2−1]BTS1がHHO元BTSでありHHO先BTSでもある場合(この場合、“MS3とHHO元BTS間の上りリンク”はMS3からBTS1へHHO元周波数f1を用いて送信されるデータが通るリンクであり、“MS3とHHO先BTS間の上りリンク”はMS3からBTS1へHHO先周波数f2を用いて送信されるデータが通るリンクである)
以下の変数を定義する(全て、dBでは無く真値とする)。
・SIR(bts):RNC4から指定されるBTS1のtarget SIR
・SIR(dv_bts):BTS1における1フレーム分の合成データを基に算出される受信SIR
・Gain(bts):BTS1のダイバーシティゲイン
・SIR(hho_bts):ダイバーシティゲインを考慮したBTS1のtarget SIR
【0061】
周波数間HHO中の上りTPCは、SIR(hho_bts)を用いて行なうが、SIR(hho_bts)の算出方法は以下の通りである。
(0)SIR(hho_bts)の初期値として、SIR(hho_bts)の値をSIR(bts)と同じ値にする。
(1)MS3とHHO先BTS間の上りリンクの同期が確立するまでは、すなわち、MS3から周波数f2を用いて送信されたデータに対してBTS1においてCRC判定可能となるまでは、SIR(hho_bts)の値は変化させない。
【0062】
上りリンクの同期が確立した後、(2)以降の手順に従いSIR(hho_bts)を変化させる。
(2)各タイムスロット毎にSIR(hho_bts)に従い、MS3とHHO元BTS間の上りリンク及びMS3とHHO先BTS間の上りリンクのTPCを行なう。
(3)MS3から周波数f1及びf2の各々を用いて送信された1フレーム分のデータを受信した後、互いに同一のデータを合成(例えば、最大比合成)し、1フレーム分の合成データを基に受信SIR(=SIR(dv_bts))を算出する(図6参照)。
(4)Gain(bts)=SIR(dv_bts)−SIR(bts)
(5)SIR(hho_bts)=SIR(bts)−Gain(bts)/2
(6)以降、周波数間HHOが終了するまで各フレーム毎に(2)〜(5)の手順を繰り返す。
【0063】
[2−2]BTS1がHHO元BTSでありBTS2がHHO先BTSである場合
この場合は、上記[2−1]と異なり、BTS1及び2の上位装置であるRNC4での制御が必要となる。以下の変数を定義する(全て、dBでは無く真値とする)。
・SIR(bts):RNC4から指定されるBTS1及び2のtarget SIR
・Δ(bts1):BTS1のSIR(bts)に対するオフセット
・Δ(bts2):BTS2のSIR(bts)に対するオフセット
・N:下記n1,n2を算出するための定数
・N1:RNC4の選択合成処理において、過去N選択単位区間内でBTS1からのデータが選択された回数(図7に示した例では1選択単位区間は1フレームである)
・n1[i]:過去N選択単位区間内の(N−i)番目の選択単位区間においてBTS1からのデータが選択されたか否かを示す。“1”なら選択、“0”なら選択されなかったことを示す。N1=Σn1[i]。
・N2:RNC4の選択合成処理において、過去N選択単位区間内でBTS2からのデータが選択された回数
・n2[i]:過去N選択単位区間内の(N−i)番目の選択単位区間においてBTS2からのデータが選択されたか否かを示す。“1”なら選択、“0”なら選択されなかったことを示す。N2=Σn2[i]。
・f[x]:N1及びN2からΔ(bts1),Δ(bts2)を算出するための関数。基本的に、xに対し単調増加となる。
・SIR(hho_bts1):RNC4での選択合成を考慮したBTS1のtarget SIR
・SIR(hho_bts2):RNC4での選択合成を考慮したBTS2のtarget SIR
・M1:求められたN1及びN2をtarget SIRに反映する区間(以下、反映区間と称する)の長さを表すための定数であり、反映区間の長さはM1個の選択単位区間である。M1はcnt1によりカウントする。
・M2:求められたN1及びN2をtarget SIRに反映しない区間(以下、非反映区間と称する)の長さを表すための定数であり、非反映区間の長さはM2個の選択単位区間である。M2はcnt2によりカウントする。
【0064】
なお、1選択単位区間はRNC4が1回の選択合成を行なう区間であり、BTS1からの1選択単位区間分のデータとBTS2からのこの区間分のデータとがRNC4により選択合成される。図7に示した例では1選択単位区間は1フレームであるが、これに限定されない。例えば、データが音声データであれば1選択単位区間は2フレーム、データがパケットデータであれば1選択単位区間は4フレームとしてもよい。
【0065】
周波数間HHO中の上りTPCは、SIR(hho_bts1)及びSIR(hho_bts2)を用いて行なうが、SIR(hho_bts1)及びSIR(hho_bts2)の算出方法は以下の通りである。
(0)SIR(hho_bts1)及びSIR(hho_bts2)の初期値として、これらの値をSIR(bts)と同じ値にする。
(1)MS3とBTS2間の上りリンクの同期が確立するまでは、すなわち、MS3から周波数f2を用いて送信されたデータに対してBTS2においてCRC判定可能となるまでは、SIR(hho_bts1)及びSIR(hho_bts2)の値は変化させない。
【0066】
上りリンクの同期が確立した後、(2)以降の手順に従いSIR(hho_bts1)及びSIR(hho_bts2)を変化させる。
(2)各タイムスロット毎にSIR(hho_bts1)に従い、MS3とBTS1間の上りリンクのTPCを行なう。また、各タイムスロット毎にSIR(hho_bts2)に従い、MS3とBTS2間の上りリンクのTPCを行なう。
(3)各BTSからの1選択単位区間分のデータに対し、RNC4が選択合成を行なう (受信品質の良い方のデータを選択する)(図7参照)。また、この選択合成により各BTSからのデータが選択されたか否かをn1[i]及びn2[i]を用いて記録しておく。
(4)過去N選択単位区間内において、BTS1からのデータを選択した回数N1(=Σn1[i])と、BTS2からのデータを選択した回数N2(=Σn2[i])をRNC4が算出する。
【0067】
(5)RNC4は以下の式により、Δ(bts1)及びΔ(bts2)を求め、BTS1及びBTS2へ通知する。
Δ(bts1)=SIR(bts)* f[N1−(N1+N2)/2]
Δ(bts2)=SIR(bts)* f[N2−(N1+N2)/2]
なお、関数f[x]は例えば、図14に示すような特性を持つ関数とする。ただし、反映区間ではRNC4は上式で求めたΔ(bts1)及びΔ(bts2)をそのままBTS1及びBTS2へ通知するが、非反映区間ではΔ(bts1)及びΔ(bts2)の値をそれぞれ0として通知する。
(6)MS3とBTS1間の上りリンクのTPCに用いられるtarget SIRであるSIR(hho_bts1)及びMS3とBTS2間の上りリンクのTPCに用いられるtarget SIRであるSIR(hho_bts2)を、以下の式により算出する。
SIR(hho_bts1)=SIR(bts)+Δ(bts1)
SIR(hho_bts2)=SIR(bts)+Δ(bts2)
(7)以降、周波数間HHOが終了するまで1選択単位区間毎に(2)〜(6)の手順を繰り返す。
【0068】
次に、図8〜図12に示したフローチャートを参照して本発明の実施例による移動通信システム全体の動作について詳細に説明する。
【0069】
周波数間HHOを行うMS3は、まず、図8に示すように、コンプレストモードのギャップ区間において、HHO先BTS2が全ての周波数で常時送信している基準信号である共通パイロット信号を受信することにより、下り信号監視部23がHHO先周波数f2での下り信号の受信タイミングを把握する。これにより、BTS2からの下り信号の監視を終了する(図8ステップS2)。
【0070】
次に、MS3は、HHO元周波数f1を用いて下り信号の監視終了をHHO元BTS1を介してRNC4へ通知する(図8ステップS3)。この通知に応答して、RNC4は、新たなコンプレストモードパターンをBTS1、BTS2及びMS3へ通知し、SIR (ms)をBTS1を介してMS3へ通知すると共に、SIR(bts)をBTS1及びBTS2へ通知する(図8ステップS4)。なお、RNC4から通知される新たなコンプレストモードパターンでは、図5〜7に示したように、周波数f1を用いて送受信を行なう時間と周波数f2を用いて送受信を行なう時間とが時間的に重ならないように配置されている。
【0071】
[1]MS3の動作
MS3は、まず、SIR(hho_ms)の初期化を行なう(図8ステップS5)。次に、MS3は、図5に示したように、RNC4から通知された新たなコンプレストモードパターンに従って周波数f1と周波数f2を切替えながらデータの送受信を行ない、MS3とBTS1間の下りリンクのTPC及びMS3とBTS2間の下りリンクのTPCの各々が、SIR(hho_ms)をtargetSIRとして各タイムスロット毎に行なわれる (図8ステップS6)。
【0072】
すなわち、MS3は、SIR(hho_ms)及びBTS1からのデータの受信SIRに基づいてTPCビットをBTS1へ送信し、また、SIR(hho_ms)及びBTS2からのデータの受信SIRに基づいてTPCビットをBTS2へ送信する。BTS1及び2の各々は、MS3からのTPCビットに従ってMS3に送信するデータの送信電力を制御する。
【0073】
MS3は、BTS1及び2の各々からの1フレーム分のデータを受信すると(図8ステップS7,Yes)、SIR(hho_ms)の値を変更する手順に移行する。ただし、BTS2からのデータに対して同期が確立していない場合は、SIR(hho_ms)の値の変更を行なわない(図8ステップS8,No)。
【0074】
BTS2からのデータに対して同期が確立しているならば(図8ステップS8,Yes)、MS3は、図5に示したように、周波数f1及び周波数f2を用いて受信された互いに同一のデータをサーチ・復号部22において合成(例えば、最大比合成)し、合成された1フレーム分のデータを基に受信SIR(=SIR(dv_ms))を算出する(図8ステップS9)。
【0075】
そして、MS3は、SIR(dv_ms)とSIR(ms)の差であるGain(ms)を算出する(図8ステップS10)。MS3は、Gain(ms)を、周波数f1及び周波数f2を用いて互いに同一のデータを受信することにより得られたダイバーシティゲインと考え、SIR(hho_ms)の値を更新する(図8ステップS11)。以降、MS3は、周波数間HHOが終了するまでステップS6〜ステップS11の動作を繰り返す (図8ステップS12)。
【0076】
このように、本実施例では、周波数間HHOの際、BTS1及びBTS2はギャップを利用して同一データを送信し、MS3はギャップを利用して周波数f1と周波数f2とを切替えつつ、BTS1及びBTS2からの同一データを受信するようにしている。したがって、MS3においてダイバーシティゲインを得ることができ、よって他のMSに対する干渉を低減することが可能となる。
【0077】
なお、以上の説明ではHHO元BTSをBTS1としHHO先BTSをBTS2としているが、HHO元BTSとHHO先BTSは同一のBTSであってもよい。
【0078】
[2]BTS1,BTS2及びRNC4から構成される移動通信網側の動作
HHO元BTSとHHO先BTSとが同じである場合と、HHO元BTSとHHO先BTSとが異なる場合とで、移動通信網側の動作は異なる。
【0079】
[2−1]BTS1がHHO元BTSでありHHO先BTSでもある場合(BTS内異周波HHO)
HHO元BTS及びHHO先BTSがBTS1である場合(図9ステップS13,Yes)、BTS1は、まず、SIR(hho_bts)の初期化を行なう(図9ステップS14)。次に、BTS1は、図6に示したように、RNC4から通知された新たなコンプレストモードパターンに従って周波数f1と周波数f2を用いてデータの送受信を行ない、MS3とBTS1間の周波数f1を用いた上りリンクのTPC及びMS3とBTS1間の周波数f2を用いた上りリンクのTPCの各々が、SIR(hho_bts)をtarget SIRとして各タイムスロット毎に行なわれる(図9ステップS15)。
【0080】
すなわち、BTS1は、SIR(hho_bts)及びMS3から周波数f1を用いて送信されたデータの受信SIRに基づいてTPCビットをMS3へ送信し、また、SIR(hho_bts)及びMS3から周波数f2を用いて送信されたデータの受信SIRに基づいてTPCビットをMS3へ送信する。MS3は、BTS1からのTPCビットに従って、周波数f1及び周波数f2を用いてBTS1に送信するデータの送信電力を制御する。
【0081】
BTS1は、MS3から周波数f1及びf2の各々を用いて送信される1フレーム分のデータを受信すると(図9ステップS16,Yes)、SIR(hho_bts)の値を変更する手順に移行する。ただし、MS3から周波数f2を用いて送信されるデータに対して同期が確立していない場合は、SIR(hho_bts)の値の変更を行なわない (図9ステップS17,No)。
【0082】
MS3から周波数f2を用いて送信されるデータに対して同期が確立しているならば (図9ステップS17,Yes)、BTS1は、図6に示したように、周波数f1及び周波数f2を用いて受信された互いに同一のデータをサーチ・復号部12において合成(例えば、最大比合成)し、合成された1フレーム分のデータを基に受信SIR(=SIR (dv_bts))を算出する(図9ステップS18)。
【0083】
そして、BTS1は、SIR(dv_bts)とSIR(bts)の差であるGain(bts)を算出する(図9ステップS19)。BTS1は、Gain(bts)を、周波数f1及び周波数f2を用いて互いに同一のデータを受信することにより得られたダイバーシティゲインと考え、SIR(hho_bts)の値を更新する(図9ステップS20)。以降、BTS1は、周波数間HHOが終了するまでステップS15〜ステップS20の動作を繰り返す(図9ステップS21)。
【0084】
このように、周波数間HHOの際、MS3はギャップを利用して周波数f1と周波数f2とを切替えつつ、同一データを周波数f1及び周波数f2にてBTS1へ送信し、BTS1はMS3から周波数f1及び周波数f2を用いて送信された互いに同一のデータを受信するようにしている。したがって、BTS1においてダイバーシティゲインを得ることができ、よって干渉を低減することが可能となる。
【0085】
[2−2]HHO元BTSとHHO先BTSが異なる場合(BTS間異周波HHO)
HHO元BTSがBTS1でありHHO先BTSがBTS2である場合(図9ステップS13,No)、まず、BTS1,BTS2及びRNC4にて各変数の初期化を行なう(図10ステップS22,図11ステップS25)。そして、BTS1及びBTS2は、RNC4から通知された新たなコンプレストモードパターンに従ってデータの送受信を行ない、MS3とBTS1間の上りリンクのTPC及びMS3とBTS2間の上りリンクのTPCがそれぞれ、SIR(hho_bts1)及びSIR(hho_bts2)をtarget SIRとして各タイムスロット毎に行なわれる(図10ステップS23)。
【0086】
すなわち、BTS1は、SIR(hho_bts1)及びMS3からのデータの受信SIRに基づいてTPCビットをMS3へ送信し、また、BTS2は、SIR(hho_bts2)及びMS3からのデータの受信SIRに基づいてTPCビットをMS3へ送信する。MS3は、BTS1及びBTS2からのTPCビットに従って、BTS1及びBTS2に送信するデータの送信電力を制御する。
【0087】
BTS1及びBTS2の各々は、MS3からの受信データを、そのデータに対する受信感度情報と共にRNC4へ送信する(図10ステップS24)。RNC4は、図7に示したように、BTS1及びBTS2から通知された受信感度情報を基にBTS1からの1選択単位期間分のデータ及びBTS2からの1選択単位期間分のデータのうち受信感度の良い方のデータを選択合成部31により選択する(図11ステップS26)。そして、Δ (bts1)及びΔ(bts2)の値を変更する手順に移行する。ただし、BTS2においてMS3からのデータに対して同期が確立していない場合は(図11ステップS27,No)、Δ(bt1)及びΔ(bts2)の各々の値は初期値(=0)のままで、変更しない。
【0088】
BTS2においてMS3からのデータに対して同期が確立しているならば(図11ステップS27,Yes)、RNC4は、過去N 選択単位区間内においてBTS1からのデータを選択した回数N1及びBTS2からのデータを選択した回数N2を算出する(図11ステップS28〜ステップS31)。
【0089】
すなわち、RNC4は、ステップS26における選択合成により選択されたデータがBTS1からのデータであれば(図11ステップS28,Yes)、n1[N−1]の値を1としn2[N−1]の値を0とする(図11ステップS29)。一方、ステップS26における選択合成により選択されたデータがBTS2からのデータであれば(図11ステップS28,No)、n1[N−1]の値を0としn2[N−1]の値を1とする(図11ステップS30)。そして、RNC4は、n1[i]及びn2[i]を基にN1及びN2を算出する(図11ステップS31)。
【0090】
次に、RNC4は、過去N 選択単位区間内においてデータが選択された回数が大きいBTSのtarget SIRの値が大きくなり、データが選択された回数が小さいBTSのtarget SIRの値が小さくなるように、Δ(bts1)及びΔ(bts2)を算出する(図11ステップS32)。ただし、この算出に使用される関数f [x ]の特性は、単調増加関数であり、例えば図14に示したような特性となる。
【0091】
RNC4は、n1[i]及びn2[i]を更新し(図11ステップS33)、そして、RNC4は現在、反映区間、非反映区間のいずれであるかを検査する(図12ステップS34)。すなわち、cnt1の値がM1以上であれば、現在、非反映区間であり、cnt1の値がM1より小であれば、現在、反映区間である。
【0092】
反映区間であれば(図12ステップS34,Yes)、RNC4はcnt1の値を1増加させた後(図12ステップS35)、ステップS40へ移行する。一方、非反映区間であれば(図12ステップS34,No)、RNC4はΔ(bts1)及びΔ(bts2)の各値を0にする(図12ステップS36)。
【0093】
そして、RNC4は次の選択単位区間が反映区間、非反映区間のいずれであるかを検査する(図12ステップS37)。すなわち、cnt2の値がM2以上であれば、次の選択単位区間は反映区間であり、cnt2の値がM2より小であれば、次の選択単位区間も非反映区間である。
【0094】
次の選択単位区間も非反映区間であれば(図12ステップS37,Yes)、RNC4はcnt2の値を1増加させた後(図12ステップS38)、ステップS40へ移行する。一方、次の選択単位区間が反映区間であれば(図12ステップS37,No)、RNC4はcnt1及びcnt2の各値を0にした後(図12ステップS39)、ステップS40へ移行する。
【0095】
RNC4は、Δ(bts1)及びΔ(bts2)をそれぞれBTS1及びBTS2へ通知する(図11ステップS40)。BTS1はRNC4からのΔ(bts1)を使用してSIR(hho_bts1)を更新し、BTS2はRNC4からのΔ(bts2)を使用してSIR(hho_bts2)を更新する(図10ステップS41)。以降、移動通信網側は、周波数間HHOが終了するまでステップS23〜ステップS41の動作を繰り返す(図10ステップS42、図11ステップS43)。
【0096】
なお、上記ステップS23〜ステップS41に従ったBTS1及びBTS2のtarget SIR(SIR(hho_bts1)及びSIR(hho_bts2))の挙動例が図13に示されている。図13に示したように、非反映区間では、Δ(bts1)及びΔ(bts1)の値は共に0であるので、BTS1及びBTS2のtarget SIRは共にSIR(bts)となる。一方、反映区間では、N1及びN2の値の変化に応じて各target SIRは変化する。
【0097】
反映区間において行なわれるBTS1及びBTS2のtarget SIRの可変制御は、データが選択された回数が大きいBTSの受信特性がデータが選択された回数が小さいBTSの受信特性より良いと推定することにより、受信特性の良いBTSのtarget SIRを高くし、受信特性の悪いBTSのtarget SIRを低くするものである。したがって、BTS1及びBTS2間の受信特性差がもともと大きい場合、時間の経過と共に、本来の受信特性の差以上にtarget SIRの差が開いていく傾向がある(図13参照)。そこで、定期的に非反映区間を設けることにより、本来の受信特性の差以上にtarget SIRの差が開くことを抑制している。
【0098】
なお、図8〜図12に示したフローチャートに従ったBTS1,BTS2,MS3及びRNC4各々の処理動作は、予めROM等の記憶媒体に格納されたプログラムを、CPU(制御部)となるコンピュータに読み取らせて実行せしめることにより、実現できることは勿論である。
【0099】
【発明の効果】
本発明による効果は、周波数間HO(ハンドオーバ)を円滑かつ安定して行うことができることである。その理由は、HO先基地局が、ギャップにおいて、HO元基地局がHO元周波数にて移動局に送信するデータと同一のデータをHO先周波数にて移動局に送信し、また、移動局が、ギャップにおいて周波数をHO元周波数からHO先周波数に切替えることにより、移動局がHO元基地局へHO元周波数にて送信するデータと同一のデータをHO先基地局に送信するようにしているためである。
【図面の簡単な説明】
【図1】本発明の実施例による移動通信システムの構成を示す図である。
【図2】図1に示したBTSの構成を示す図である。
【図3】図1に示したMSの構成を示す図である。
【図4】図1に示したRNCの構成を示す図である。
【図5】本発明の実施例による移動通信システムの動作を示すタイミングチャートである。
【図6】本発明の実施例による移動通信システムの動作を示すタイミングチャートである。
【図7】本発明の実施例による移動通信システムの動作を示すタイミングチャートである。
【図8】本発明の実施例による移動通信システムの動作を示すフローチャートである。
【図9】本発明の実施例による移動通信システムの動作を示すフローチャートである。
【図10】本発明の実施例による移動通信システムの動作を示すフローチャートである。
【図11】本発明の実施例による移動通信システムの動作を示すフローチャートである。
【図12】本発明の実施例による移動通信システムの動作を示すフローチャートである。
【図13】図10〜図12に示したフローチャートに従ったtarget SIR(SIR(hho_bts1)及びSIR(hho_bts2))の変化の例を示す図である。
【図14】関数f[x]の特性例を示す図である。
【図15】(a)〜(c)は周波数間HHOについて説明するための図である。
【図16】周波数間HHOの動作について説明するためのタイミングチャートである。
【符号の説明】
1,2  BTS
3  MS
4  RNC
11,21  受信部
12,22  サーチ・復号部
13  上り信号監視部
14,24  HHO制御部
15,25  LO
16,26  送信部
23  下り信号監視部
31  選択合成部
32  制御部
33,34  I/F

Claims (46)

  1. 移動局とこの移動局が無線接続可能な移動通信網とを含み、前記移動局と前記移動通信網との間の移動通信において通信を行っていないギャップの存在する間欠通信のモードであるコンプレストモードを含む移動通信システムであって、
    前記移動通信網は、周波数間HO(ハンドオーバ)の際、前記移動通信網から前記移動局へHO元周波数にて送信されるデータと同一のデータを前記ギャップを利用してHO先周波数にて前記移動局へ送信する送信手段を有することを特徴とする移動通信システム。
  2. 前記移動局は、前記送信手段によりHO元周波数及びHO先周波数にて送信される互いに同一のデータを受信して合成する合成手段を有することを特徴とする請求項1記載の移動通信システム。
  3. 前記移動局は、前記合成手段の出力データを基に受信品質を測定する測定手段を有し、この受信品質を基に前記移動通信網と前記移動局との間の下りリンクの送信電力制御に用いられる目標受信品質を可変制御することを特徴とする請求項2記載の移動通信システム。
  4. 前記移動局は、前記周波数間HOの際、前記移動局から前記移動通信網へHO元周波数にて送信されるデータと同一のデータを前記ギャップを利用してHO先周波数にて前記移動通信網へ送信する送信手段を有することを特徴とする請求項1〜3いずれか記載の移動通信システム。
  5. 前記移動通信網を構成する複数の基地局の各々は、前記周波数間HOの際のHO元基地局及びHO先基地局が同一の基地局であり自局がこの基地局である場合に、前記移動局の前記送信手段によりHO元周波数及びHO先周波数にて送信される互いに同一のデータを受信して合成する合成手段を有することを特徴とする請求項4記載の移動通信システム。
  6. 前記複数の基地局の各々は、自局の前記合成手段の出力データを基に受信品質を測定する測定手段を有し、この受信品質を基に前記移動通信網と前記移動局との間の上りリンクの送信電力制御に用いられる目標受信品質を可変制御することを特徴とする請求項5記載の移動通信システム。
  7. 前記移動通信網を構成する複数の基地局に接続された基地局制御装置は、前記周波数間HOの際のHO元基地局及びHO先基地局が互いに異なる基地局である場合に、前記移動局の前記送信手段によりHO元周波数及びHO先周波数にて送信される互いに同一のデータをそれぞれ前記HO元基地局及び前記HO先基地局を介して受信して選択合成する選択合成手段を有することを特徴とする請求項4〜6いずれか記載の移動通信システム。
  8. 前記HO元基地局及び前記HO先基地局のうち、前記選択合成手段により過去の所定期間内になされた選択合成によってデータが選択された回数が大きい基地局と前記移動局との間の上りリンクの送信電力を増加させ、データが選択された回数が小さい基地局と前記移動局との間の上りリンクの送信電力を減少させるようこれら上りリンクの送信電力制御がなされることを特徴とする請求項7記載の移動通信システム。
  9. 前記移動局は、前記周波数間HOの際のHO先基地局が常に送信している基準信号である共通パイロット信号を前記ギャップにおいて監視する監視手段を有し、前記移動通信網及び前記移動局の前記送信手段の各々は、前記監視手段による共通パイロット信号の監視終了後に同一データの送信を開始することを特徴とする請求項4〜8いずれか記載の移動通信システム。
  10. 前記受信品質は受信SIR(Signal to Interference Ratio)であり、前記目標受信品質は目標SIRであることを特徴とする請求項3又は6記載の移動通信システム。
  11. 移動局とこの移動局が無線接続可能な移動通信網とを含み、前記移動局と前記移動通信網との間の移動通信において通信を行っていないギャップの存在する間欠通信のモードであるコンプレストモードを含む移動通信システムの周波数間HO(ハンドオーバ)方法であって、
    前記移動通信網は、周波数間HOの際、前記移動通信網から前記移動局へHO元周波数にて送信されるデータと同一のデータを前記ギャップを利用してHO先周波数にて前記移動局へ送信する送信ステップを有することを特徴とする周波数間HO方法。
  12. 前記移動局は、前記送信ステップによりHO元周波数及びHO先周波数にて送信される互いに同一のデータを受信して合成する合成ステップを有することを特徴とする請求項11記載の周波数間HO方法。
  13. 前記移動局は、前記合成ステップによる合成データを基に受信品質を測定する測定ステップを有し、この受信品質を基に前記移動通信網と前記移動局との間の下りリンクの送信電力制御に用いられる目標受信品質を可変制御することを特徴とする請求項12記載の周波数間HO方法。
  14. 前記移動局は、前記周波数間HOの際、前記移動局から前記移動通信網へHO元周波数にて送信されるデータと同一のデータを前記ギャップを利用してHO先周波数にて前記移動通信網へ送信する送信ステップを有することを特徴とする請求項11〜13いずれか記載の周波数間HO方法。
  15. 前記移動通信網を構成する複数の基地局の各々は、前記周波数間HOの際のHO元基地局及びHO先基地局が同一の基地局であり自局がこの基地局である場合に、前記移動局の前記送信ステップによりHO元周波数及びHO先周波数にて送信される互いに同一のデータを受信して合成する合成ステップを有することを特徴とする請求項14記載の周波数間HO方法。
  16. 前記複数の基地局の各々は、自局の前記合成ステップによる合成データを基に受信品質を測定する測定ステップを有し、この受信品質を基に前記移動通信網と前記移動局との間の上りリンクの送信電力制御に用いられる目標受信品質を可変制御することを特徴とする請求項15記載の周波数間HO方法。
  17. 前記移動通信網を構成する複数の基地局に接続された基地局制御装置は、前記周波数間HOの際のHO元基地局及びHO先基地局が互いに異なる基地局である場合に、前記移動局の前記送信ステップによりHO元周波数及びHO先周波数にて送信される互いに同一のデータをそれぞれ前記HO元基地局及び前記HO先基地局を介して受信して選択合成する選択合成ステップを有することを特徴とする請求項14〜16いずれか記載の周波数間HO方法。
  18. 前記HO元基地局及び前記HO先基地局のうち、前記選択合成ステップにより過去の所定期間内になされた選択合成によってデータが選択された回数が大きい基地局と前記移動局との間の上りリンクの送信電力を増加させ、データが選択された回数が小さい基地局と前記移動局との間の上りリンクの送信電力を減少させるようこれら上りリンクの送信電力制御がなされることを特徴とする請求項17記載の周波数間HO方法。
  19. 前記移動局は、前記周波数間HOの際のHO先基地局が常に送信している基準信号である共通パイロット信号を前記ギャップにおいて監視する監視ステップを有し、前記移動通信網及び前記移動局の前記送信ステップの各々は、前記監視ステップによる共通パイロット信号の監視終了後に同一データの送信を開始することを特徴とする請求項14〜18いずれか記載の周波数間HO方法。
  20. 前記受信品質は受信SIR(Signal to Interference Ratio)であり、前記目標受信品質は目標SIRであることを特徴とする請求項13又は16記載の周波数間HO方法。
  21. 移動局と移動通信網との間の移動通信において通信を行っていないギャップの存在する間欠通信のモードであるコンプレストモードを含む移動局であって、
    周波数間HO(ハンドオーバ)の際、当該移動局から前記移動通信網へHO元周波数にて送信されるデータと同一のデータを前記ギャップを利用してHO先周波数にて前記移動通信網へ送信する送信手段を含むことを特徴とする移動局。
  22. 前記周波数間HOの際に前記ギャップを利用して前記移動通信網からHO元周波数及びHO先周波数にて送信される互いに同一のデータを受信して合成する合成手段を含むことを特徴とする請求項21記載の移動局。
  23. 前記合成手段の出力データを基に受信品質を測定する測定手段を含み、この受信品質を基に前記移動通信網と前記移動局との間の下りリンクの送信電力制御に用いられる目標受信品質を可変制御することを特徴とする請求項22記載の移動局。
  24. 前記受信品質は受信SIR(Signal to Interference Ratio)であり、前記目標受信品質は目標SIRであることを特徴とする請求項23記載の移動局。
  25. 前記周波数間HOの際のHO先基地局が常に送信している基準信号である共通パイロット信号を前記ギャップにおいて監視する監視手段を含み、前記送信手段による同一データの送信及び前記移動通信網による同一データの送信は、前記監視手段による共通パイロット信号の監視終了後に開始されることを特徴とする請求項22〜24いずれか記載の移動局。
  26. 移動局と移動通信網との間の移動通信において通信を行っていないギャップの存在する間欠通信のモードであるコンプレストモードを含む移動局の動作をコンピュータにより実行させるためのプログラムであって、
    周波数間HO(ハンドオーバ)の際、前記移動局から前記移動通信網へHO元周波数にて送信されるデータと同一のデータを前記ギャップを利用してHO先周波数にて前記移動通信網へ送信する送信ステップを含むことを特徴とするプログラム。
  27. 前記周波数間HOの際に前記ギャップを利用して前記移動通信網からHO元周波数及びHO先周波数にて送信される互いに同一のデータを受信して合成する合成ステップを含むことを特徴とする請求項26記載のプログラム。
  28. 前記合成ステップによる合成データを基に受信品質を測定する測定ステップを含み、この受信品質を基に前記移動通信網と前記移動局との間の下りリンクの送信電力制御に用いられる目標受信品質を可変制御することを特徴とする請求項27記載のプログラム。
  29. 前記受信品質は受信SIR(Signal to Interference Ratio)であり、前記目標受信品質は目標SIRであることを特徴とする請求項28記載のプログラム。
  30. 前記周波数間HOの際のHO先基地局が常に送信している基準信号である共通パイロット信号を前記ギャップにおいて監視する監視ステップを含み、前記送信ステップによる同一データの送信及び前記移動通信網による同一データの送信は、前記監視ステップによる共通パイロット信号の監視終了後に開始されることを特徴とする請求項27〜29いずれか記載のプログラム。
  31. 移動局と基地局との間の移動通信において通信を行っていないギャップの存在する間欠通信のモードであるコンプレストモードを含む基地局であって、
    周波数間HO(ハンドオーバ)の際、HO元基地局から前記移動局へHO元周波数にて送信されるデータと同一のデータを前記ギャップを利用してHO先周波数にて前記移動局へ送信する送信手段を含むことを特徴とする基地局。
  32. 自局が前記周波数間HOの際のHO先基地局であると共にHO元基地局でもある場合に、前記周波数間HOの際に前記ギャップを利用して前記移動局からHO元周波数及びHO先周波数にて送信される互いに同一のデータを受信して合成する合成手段を含むことを特徴とする請求項31記載の基地局。
  33. 前記合成手段の出力データを基に受信品質を測定する測定手段を含み、この受信品質を基に自局と前記移動局との間の上りリンクの送信電力制御に用いられる目標受信品質を可変制御することを特徴とする請求項32記載の基地局。
  34. 前記受信品質は受信SIR(Signal to Interference Ratio)であり、前記目標受信品質は目標SIRであることを特徴とする請求項33記載の基地局。
  35. 基準信号である共通パイロット信号を常に送信する手段を含み、前記移動局は、この共通パイロット信号を前記ギャップにおいて監視しており、前記送信手段による同一データの送信及び前記移動局による同一データの送信は、前記移動局による共通パイロット信号の監視終了後に開始されることを特徴とする請求項32〜34いずれか記載の基地局。
  36. 移動局と基地局との間の移動通信において通信を行っていないギャップの存在する間欠通信のモードであるコンプレストモードを含む基地局の動作をコンピュータにより実行させるためのプログラムであって、
    周波数間HO(ハンドオーバ)の際、HO元基地局から前記移動局へHO元周波数にて送信されるデータと同一のデータを前記ギャップを利用してHO先周波数にて前記移動局へ送信する送信ステップを含むことを特徴とするプログラム。
  37. 自局が前記周波数間HOの際のHO先基地局であると共にHO元基地局でもある場合に、前記周波数間HOの際に前記ギャップを利用して前記移動局からHO元周波数及びHO先周波数にて送信される互いに同一のデータを受信して合成する合成ステップを含むことを特徴とする請求項36記載のプログラム。
  38. 前記合成ステップによる合成データを基に受信品質を測定する測定ステップを含み、この受信品質を基に自局と前記移動局との間の上りリンクの送信電力制御に用いられる目標受信品質を可変制御することを特徴とする請求項37記載のプログラム。
  39. 前記受信品質は受信SIR(Signal to Interference Ratio)であり、前記目標受信品質は目標SIRであることを特徴とする請求項38記載のプログラム。
  40. 基準信号である共通パイロット信号を常に送信するステップを含み、前記移動局は、この共通パイロット信号を前記ギャップにおいて監視しており、前記送信ステップによる同一データの送信及び前記移動局による同一データの送信は、前記移動局による共通パイロット信号の監視終了後に開始されることを特徴とする請求項37〜39いずれか記載のプログラム。
  41. 移動局と移動通信網との間の移動通信において通信を行っていないギャップの存在する間欠通信のモードであるコンプレストモードを含む移動通信システムにおける基地局制御装置であって、
    周波数間HO(ハンドオーバ)の際に前記ギャップを利用して前記移動局からHO元周波数及びHO先周波数にて送信される互いに同一のデータをそれぞれHO元基地局及びHO先基地局を介して受信して選択合成する選択合成手段を含むことを特徴とする基地局制御装置。
  42. 前記HO元基地局及び前記HO先基地局のうち、前記選択合成手段により過去の所定期間内になされた選択合成によってデータが選択された回数が大きい基地局と前記移動局との間の上りリンクの送信電力を増加させ、データが選択された回数が小さい基地局と前記移動局との間の上りリンクの送信電力を減少させるようこれら上りリンクの送信電力制御がなされることを特徴とする請求項41記載の基地局制御装置。
  43. 前記移動局は、前記HO先基地局が常に送信している基準信号である共通パイロット信号を前記ギャップにおいて監視しており、前記移動局による同一データの送信は、前記移動局による共通パイロット信号の監視終了後に開始されることを特徴とする請求項41又は42記載の基地局制御装置。
  44. 移動局と移動通信網との間の移動通信において通信を行っていないギャップの存在する間欠通信のモードであるコンプレストモードを含む移動通信システムにおける基地局制御装置の動作をコンピュータにより実行させるためのプログラムであって、
    周波数間HO(ハンドオーバ)の際に前記ギャップを利用して前記移動局からHO元周波数及びHO先周波数にて送信される互いに同一のデータをそれぞれHO元基地局及びHO先基地局を介して受信して選択合成する選択合成ステップを含むことを特徴とするプログラム。
  45. 前記HO元基地局及び前記HO先基地局のうち、前記選択合成手段により過去の所定期間内になされた選択合成によってデータが選択された回数が大きい基地局と前記移動局との間の上りリンクの送信電力を増加させ、データが選択された回数が小さい基地局と前記移動局との間の上りリンクの送信電力を減少させるようこれら上りリンクの送信電力制御がなされることを特徴とする請求項44記載のプログラム。
  46. 前記移動局は、前記HO先基地局が常に送信している基準信号である共通パイロット信号を前記ギャップにおいて監視しており、前記移動局による同一データの送信は、前記移動局による共通パイロット信号の監視終了後に開始されることを特徴とする請求項44又は45記載のプログラム。
JP2002247917A 2002-08-28 2002-08-28 移動通信システム、その周波数間ho方法、移動局、基地局、基地局制御装置及びプログラム Pending JP2004088522A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002247917A JP2004088522A (ja) 2002-08-28 2002-08-28 移動通信システム、その周波数間ho方法、移動局、基地局、基地局制御装置及びプログラム
PCT/JP2003/010743 WO2004021721A1 (ja) 2002-08-28 2003-08-26 移動通信システム、その周波数間ho方法、移動局、基地局、基地局制御装置及びプログラム
US10/526,067 US20050260991A1 (en) 2002-08-28 2003-08-26 Mobile communication system, inter-frequency ho method, mobile station, base station, base station control device, and program
EP03791283A EP1542480A1 (en) 2002-08-28 2003-08-26 Mobile communication system, inter-frequency ho method, mobile station, base station, base station control device, and program
CNA038204347A CN1679357A (zh) 2002-08-28 2003-08-26 移动通信系统和频间ho方法,移动站、基站收发信台、无线电网络控制器以及用于移动通信系统的程序
KR1020057003557A KR20050057075A (ko) 2002-08-28 2003-08-26 이동 통신 시스템, 주파수간 ho 방법, 이동국, 기지국, 기지국 제어장치, 및 프로그램을 수록한 컴퓨터 판독가능 기록 매체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247917A JP2004088522A (ja) 2002-08-28 2002-08-28 移動通信システム、その周波数間ho方法、移動局、基地局、基地局制御装置及びプログラム

Publications (1)

Publication Number Publication Date
JP2004088522A true JP2004088522A (ja) 2004-03-18

Family

ID=31972491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247917A Pending JP2004088522A (ja) 2002-08-28 2002-08-28 移動通信システム、その周波数間ho方法、移動局、基地局、基地局制御装置及びプログラム

Country Status (6)

Country Link
US (1) US20050260991A1 (ja)
EP (1) EP1542480A1 (ja)
JP (1) JP2004088522A (ja)
KR (1) KR20050057075A (ja)
CN (1) CN1679357A (ja)
WO (1) WO2004021721A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086615A (ja) * 2004-09-14 2006-03-30 Nec Corp 情報処理装置、情報処理方法、及び情報処理システム
WO2006123493A1 (ja) * 2005-05-20 2006-11-23 Matsushita Electric Industrial Co., Ltd. 通信端末装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100692942B1 (ko) * 2005-02-01 2007-03-12 이비덴 가부시키가이샤 허니컴 구조체
CN101156472B (zh) * 2005-03-10 2016-08-10 日本电气株式会社 移动通信系统中的不同频率监视装置和方法
EP1781056A1 (de) * 2005-10-25 2007-05-02 Siemens Aktiengesellschaft Intrafrequenz- und Interfrequenzmessungen in einem Funkkommunikationssystem
KR101016129B1 (ko) * 2006-02-24 2011-02-17 미쓰비시덴키 가부시키가이샤 통신 장치
EP2051403A4 (en) * 2006-08-09 2013-05-15 Fujitsu Ltd WIRELESS TERMINAL
US20080225796A1 (en) 2007-03-17 2008-09-18 Qualcomm Incorporated Handover in wireless communications
JP5015856B2 (ja) * 2008-02-01 2012-08-29 パナソニック株式会社 基地局、無線通信システム、およびハンドオーバ方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896368A (en) * 1995-05-01 1999-04-20 Telefonaktiebolaget Lm Ericsson Multi-code compressed mode DS-CDMA systems and methods
US6512750B1 (en) * 1999-04-16 2003-01-28 Telefonaktiebolaget Lm Ericsson (Publ) Power setting in CDMA systems employing discontinuous transmission
US6868075B1 (en) * 1999-09-28 2005-03-15 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for compressed mode communications over a radio interface
FI109862B (fi) * 2000-01-10 2002-10-15 Nokia Corp Menetelmä taajuudenvälisen yhteydenvaihdon valmistelemiseksi, verkkoelementti ja matkaviestin
FI112562B (fi) * 2000-02-29 2003-12-15 Nokia Corp Mittausaukkojen määrittäminen keskinäistaajuksien mittauksessa
FR2810177B1 (fr) * 2000-06-13 2005-05-06 Cit Alcatel Procede pour le controle de puissance d'emission dans un systeme de radiocommunications mobiles
KR100592597B1 (ko) * 2001-01-10 2006-06-26 한국전자통신연구원 압축 모드 및 인접 기지국 간 공통 주파수를 이용한핸드오버 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086615A (ja) * 2004-09-14 2006-03-30 Nec Corp 情報処理装置、情報処理方法、及び情報処理システム
WO2006123493A1 (ja) * 2005-05-20 2006-11-23 Matsushita Electric Industrial Co., Ltd. 通信端末装置

Also Published As

Publication number Publication date
KR20050057075A (ko) 2005-06-16
WO2004021721A1 (ja) 2004-03-11
US20050260991A1 (en) 2005-11-24
CN1679357A (zh) 2005-10-05
EP1542480A1 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
US7133682B2 (en) Mobile communication system and communication method for mobile communication system
JP3736429B2 (ja) セルラシステム、基地局、移動局並びに通信制御方法
JP4669841B2 (ja) 時分割複信の符号分割多重接続(tdd−cdma)ネットワークにおけるソフトハンドオーバおよびソフターハンドオーバの方法
JP4644213B2 (ja) 移動体無線通信システムにおいてパワー制御のための伝送品質目標値を設定する方法
EP1289166B1 (en) Power controlling method during a soft handoff in a mobile communication system
KR100559805B1 (ko) 폐루프 송신 전력을 제어하는 기준값의 갱신을 송수신기지국에서 실현하는 cdma 이동 통신 시스템
US7764964B2 (en) Mobile communication system and radio network controller
EP1234472A1 (en) Control of compressed mode transmission in wcdma
US9661580B2 (en) Method and apparatus for power control and parameter configuration
JP2000013842A (ja) 無線通信システムにおける周波数間ハンドオフのための方法および装置
US6337987B1 (en) Method for improving performances of a mobile radiocommunication system using a power control algorithm
JP2002247626A (ja) 基地局送信制御方法、セルラシステム及び基地局
JP2008523646A (ja) Umts用拡張型専用チャンネルレポーティング
JP2004088522A (ja) 移動通信システム、その周波数間ho方法、移動局、基地局、基地局制御装置及びプログラム
JPH11355204A (ja) Cdma移動通信システム及びcdma移動通信システムにおける送信電力制御方法
JP4240726B2 (ja) 無線通信システム、基地局制御局、基地局及び送信電力制御方法
KR100552028B1 (ko) 랜덤한 bts 선택을 이용한 cdma 셀룰라 시스템용 속도 의존 소프트 핸드오버
JP5083328B2 (ja) 送信電力制御方法及びその装置
JPWO2005008921A1 (ja) 送信電力制御の追従性を向上させた移動通信システム
JP2009065693A (ja) セルラシステム、通信制御方法及びそれに用いる基地局、移動局
KR100379461B1 (ko) 주파수간 핸드 오프를 위한 전력 제어 방법
JP2001230756A (ja) Cdma方式を適用したデータ送信装置及びデータ送信方法
JP2001119342A (ja) セルラシステムにおける送信電力制御方法及び基地局装置
JP2002044702A (ja) 移動局における欠落時区間の調整を行う方法、無線通信システムのハンドオフ速度を制御する方法および移動局
JP2006101210A (ja) 無線通信端末装置及び無線通信制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060919