WO2006075392A1 - ポリビニルアセタール樹脂ワニス、ゲル化剤、非水電解液および電気化学素子 - Google Patents

ポリビニルアセタール樹脂ワニス、ゲル化剤、非水電解液および電気化学素子 Download PDF

Info

Publication number
WO2006075392A1
WO2006075392A1 PCT/JP2005/000415 JP2005000415W WO2006075392A1 WO 2006075392 A1 WO2006075392 A1 WO 2006075392A1 JP 2005000415 W JP2005000415 W JP 2005000415W WO 2006075392 A1 WO2006075392 A1 WO 2006075392A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
acid
carbonate
varnish
negative electrode
Prior art date
Application number
PCT/JP2005/000415
Other languages
English (en)
French (fr)
Inventor
Akio Hiwara
Takashi Hayashi
Kuniyuki Takamatsu
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to JP2006552815A priority Critical patent/JP4878290B2/ja
Priority to US11/795,313 priority patent/US8124272B2/en
Priority to PCT/JP2005/000415 priority patent/WO2006075392A1/ja
Priority to CN200580046627XA priority patent/CN101103070B/zh
Publication of WO2006075392A1 publication Critical patent/WO2006075392A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/109Esters; Ether-esters of carbonic acid, e.g. R-O-C(=O)-O-R
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a polybulassal rosin varnish.
  • the polyvurecetal varnish of the present invention is useful, for example, as a coating material for conductive materials, an adhesive for inorganic materials, and organic materials.
  • the present invention also relates to the use of polyvinylacetal resin varnish, and more specifically, a gelling agent of an organic solvent containing a polyvinylacetal resin varnish, a non-aqueous electrolyte obtained using the polyvinylacetal resin varnish, and an electrochemical It relates to an element.
  • Polybulassetal resin is a general term for a resinous resin obtained by acetalizing polybutal alcohol with an aldehyde.
  • Polybulassetal resin has good electrical insulation, excellent adhesion and chemical resistance, as well as high mechanical strength such as flexibility and wear resistance. Used for. For example, it is used as a converging adhesive for enameled wire varnish, magnetic tape binder, glass fiber, carbon fiber, and the like, and is also widely used as a coating material or adhesive in structural buildings, aircraft, and the like.
  • polyvinylacetal resin is used for the above-mentioned purposes, it is desirable to dissolve it in a solvent to form a varnish.
  • polyvinylacetal resin is sufficient. It cannot be dissolved uniformly.
  • varnishing polybutacetal rosin, glacial acetic acid, monochloroacetic acid, benzyl alcohol, cresol, xylenol, furfural, dioxane, tetrahydrofuran, pyridine, dichloroethane, chloroform, N-methylpyrrolidone, dimethyl A sulfoxide, a mixed solvent of toluene and ethanol, or the like is used. All of these solvents are highly irritating, have relatively high toxicity to the human body, and have high environmental pollution. It is a force that has problems such as odor and high flammability.
  • polyvinylacetal varnish when polyvinylacetal varnish is varnished, it has sufficient capability for exhaust, detoxification, detoxification, static electricity removal, etc. so that the solvent does not come into contact with the human body or be released to the environment. It is necessary to install facilities and take many safety measures.
  • Polybutacetal resin is used to increase the charge / discharge capacity, reduce the thickness, and improve the degree of freedom in electrochemical elements such as batteries, capacitors, and solar cells that use electrolytes called dallettier cells.
  • it is used to obtain a film-like electrolyte (gel-type polymer electrolyte) by gelling the electrolytic solution (JP-A-57-143355, etc.).
  • An object of the present invention is to provide a polyvinyl acetal rosin varnish with high safety and less problems in all of irritation, toxicity, environmental pollution, odor, and flammability. Furthermore, in order to improve workability such as painting work, it is to provide a polyvinyl viscosity resin varnish having a low viscosity.
  • the present inventor has 1) that polybulacetal rosin varnish can be mixed with carbonic acid ester, especially using a mixed solvent of cyclic carbonate and chain carbonic acid ester. And polybulucetal rosin at high concentration, resulting in low viscosity 2)
  • the polyvinyl acetal rosin varnish force It has been found that it is useful as a gelling agent for non-aqueous electrolytes, organic solvents and the like in electrochemical devices, and has led to the completion of the present invention.
  • the present invention is a polyvinyl acetal varnish varnish characterized by dissolving poly (b) acetal rosin in a non-aqueous solvent such as carbonate ester carbonate.
  • the polybulassal rosin varnish of the present invention is characterized in that the carbonate is a mixture of a cyclic carbonate and a chain carbonate.
  • the polyvinylacetal rosin varnish of the present invention is characterized in that the water content is 200 ppm or less.
  • the polyvinylacetal resin varnish of the present invention is characterized in that the polybulassal resin is a polyformal resin.
  • the polyvinyl acetal resin varnish of the present invention is characterized in that the polyblucacetal resin is an acid-modified product.
  • the polyvinylacetal resin varnish of the present invention is a polyburecetal resin varnish based on the DMSO-d peak (2.49 ppm) measured by 1 H-NMR measurement. 4.25-4.35 ppm
  • the proton content having a peak at 0.25 is not more than 0.25 mol / kg.
  • the polyvurecetal rosin varnish of the present invention is characterized in that the content of hydroxyl groups in the polybuluacetal rosin is 0.1-2 mol Zkg.
  • the present invention is a gelling agent characterized by containing any of the above-mentioned polybulacetal rosin varnish and gelling an organic solvent.
  • the present invention also provides a nonaqueous electrolytic solution comprising an electrolyte and any one of the above-described polybulacetal rosin varnishes.
  • the non-aqueous electrolyte of the present invention contains an electrolyte, a non-aqueous solvent, and polyvinyl acetal resin, and has a number average molecular weight in terms of polystyrene by gel permeation chromatography measurement of poly-buracetal resin. It is characterized by the following relationship between the concentration c (wt%) of polybulassal rosin in non-aqueous electrolyte.
  • the non-aqueous electrolyte of the present invention has a non-aqueous electrolyte solution having a polybulucetal resin concentration. It is characterized by 0.3 to 3.5% by weight of the total amount.
  • non-aqueous electrolyte of the present invention is characterized by further containing a compound that generates an acid.
  • the non-aqueous electrolyte of the present invention is characterized in that the acid-generating compound is a Lewis acid having a fluorine atom and Z or a Lewis acid salt.
  • the present invention also relates to an electrochemical element including at least a negative electrode, a separator, a positive electrode, and a non-aqueous electrolyte, wherein the negative electrode and Z or the positive electrode and the separator are bonded by a cross-linked product of polybulassal resin. It is the electrochemical element characterized.
  • the electrochemical device of the present invention is characterized in that the ratio of the cross-linked product to the total amount of the cross-linked product and the nonaqueous electrolytic solution is 3.5% by weight or less.
  • the electrochemical device of the present invention includes an active material in which the negative electrode includes lithium metal and Z or an active material that can absorb and Z or release lithium, and the positive electrode can generate an electromotive force of 3 V or more with respect to the dissolution and precipitation potential of lithium. And a non-aqueous electrolyte containing an electrolyte selected from lithium salts.
  • the present invention also includes a laminate of a negative electrode, a separator, and a positive electrode, and the laminate is charged with an electrochemical element obtained by impregnating any one of the above-described non-aqueous electrolytes to form a polyvinylacetal salt.
  • a method for producing an electrochemical element characterized in that a cross-linked product of fat is produced, and the negative electrode and Z or the positive electrode and a separator are bonded together by the cross-linked product.
  • the polyvurecetal varnish varnish of the present invention has less safety problems and is less viscous compared to polyvinylacetal varnish varnishes prepared using conventional organic solvents. In addition, the work can be performed efficiently.
  • the polyvinyl acetal varnish of the present invention can be used as a gelling agent for organic solvents.
  • organic solvents for example, organic fragrances, waste edible oils, biomimetic polymer materials (for example, polymer materials for artificial skin), It is possible to perform gelation such as electrolyte in electrochemical devices such as lithium batteries and electric double layer capacitors.
  • the present invention includes a polybulassal varnish varnish, a non-aqueous electrolyte, an electrochemical element, and a method for producing the same.
  • the polybulassetal resin varnish of the present invention is a solution obtained by dissolving polyvinylacetal resin in a carbonic acid ester solvent.
  • Polybutacetal resin is a generic name for a resin obtained by acetalizing polybutal alcohol with an aldehyde, a resin obtained by esterifying polybutal alcohol, and a resin prepared by converting polybutal alcohol into acetal and esterified.
  • polybulassal fats examples include general formulas
  • R represents a hydrogen atom or an alkyl group.
  • R represents a hydrogen atom, an alkyl group or an alkyloxy group.
  • polyvinyl acetal resin containing a vinyl carboxylate unit (3) represented by the following formula as a repeating unit.
  • the poly Bulle ⁇ Se tar ⁇ , Byuruasetaru Unit (1) the 50- 80 weight 0/0, 0.
  • the Bulle alcohol units (2) 1- 20 weight 0/0 and bi - Le carboxylate units (3 ) In the proportion of 10-20% by weight Easy.
  • R ethyl group
  • R in the carboxylate unit (3) methyl group
  • the polyvinyl acetal resin according to the present invention is desired to have a small amount of bull alcohol units (2) from the viewpoint of increasing the dissolution concentration in the varnish, and adversely affects the adhesion and covering properties. Those having a low molecular weight are preferable.
  • the content of the bull alcohol unit (2) in the polyvinyl acetal rosin is preferably 0.1 to 20% by weight, more preferably 0.5 to 10% by weight, and particularly preferably 1 to 16% by weight. . If the content of the bullar coal unit (2) is much less than 0.1% by weight, the coating property, adhesion, and gelling property of the organic solvent may be deteriorated. On the other hand, if the amount exceeds 20% by weight, the dissolution concentration in the varnish may be too low.
  • the content of the bull alcohol unit (2) in the polyvurecetal resin depends on the type of polyvinylacetal resin and the production method thereof. It is around 5% by weight in Burformal, and Polybulholmar is preferred. Of course, other polybulassal rosin can also be suitably used in the same manner as polybulal formal if the content of the bull alcohol unit (2) can be adjusted within the above range.
  • the content of the vinyl acetal unit (1) and the bull carboxylate unit (3) is determined from the viewpoint of the chemical stability of the varnish. 1) Many things are desirable!
  • the content of buracetal units (1) is preferably 50-99% by weight, more preferably 60-95% by weight, particularly preferred A range force of 75-95% by weight is also selected as appropriate.
  • the molecular weight of the polybutacetal resin depends on the molecular weight of the raw polybulal alcohol, and is preferably 50-5000, more preferably 100-3000, as the number average degree of polymerization of the raw polyalcohol. Particularly preferred is 300-1500. If the molecular weight of the polyvuretal resin is too small, the covering property, adhesiveness, and gel property of the organic solvent may be impaired.
  • those having a hydroxyl group content of 0.1-2 mol Zkg are preferred, and those having 0.3-1.5 mol Zkg are more preferred.
  • poly (vinyl acetate), poly (propionate), and the like are also included in the poly (vinylacetal).
  • Polybulassetal resin can be produced by acetalizing polybulal alcohol and Z or esterifying.
  • the acetalization of polyvinyl alcohol can be carried out according to a known method.
  • an aldehyde may be allowed to act on polybulual alcohol in the presence of an acid catalyst in water.
  • Known aldehydes can be used, and examples include formaldehyde, acetonitrile, propionaldehyde, butyraldehyde, isobutyraldehyde and the like. Among these, formaldehyde is preferable.
  • the amount of aldehyde used can be appropriately selected according to the concentration of polyvinyl alcohol, etc., but is preferably 0.1-4 mol, more preferably 0.2-3 mol, per liter of the reaction solvent (water).
  • the acid catalyst examples include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, trichloroacetic acid, and organic sulfonic acid, and sulfuric acid and hydrochloric acid are preferred.
  • the amount of the acid catalyst used can be appropriately selected according to the concentration of polybulal alcohol resin and aldehyde, but is preferably 1 to 6 gram equivalent, more preferably 2 to 5 gram equivalent per liter of the reaction solvent (water). .
  • the acetalization reaction is preferably performed at a temperature of 5 to 90 ° C, more preferably 25 to 80 ° C, and is completed in about 1 to 10 hours.
  • the esterification of polybulal alcohol includes formic acid esterification, acetic acid esterification, propionic acid esterification, carbonic acid esterification, and 1,2-hydrocarbon contained in polybulal alcohol. Kishiechiren structures and Z or 1, 3-hydroxy one; L, and the like cyclic carbonates Esuterui spoon 3-propylene structure.
  • Polyester alcohol can be esterified by a known method such as a transesterification reaction.
  • the ester candy will be described by taking a carbonate ester candy as an example.
  • the esteri carbonate can be carried out by direct transesterification of polybutyl alcohol and dialkyl carbonate in the presence or absence of an esterification catalyst, or by transesterification by mixing in a solvent.
  • the ester catalyst those commonly used in this field can be used. For example, alkyl ammonium salts, pyridinium salts, diazabicycloalkenes, tertiary amines, alkyl ammonium groups. And ion exchange resins containing a tertiary amino group, alkaline catalysts, and the like.
  • esterification catalysts can be used.
  • the amount of esterification reaction catalyst used depends on the amount of polybutyl alcohol used, the type and amount of dialkyl carbonate, the type and amount of solvent used, the reaction temperature, the reaction pressure, the reaction time, and the target value for the carbonate ester concentration. Depending on the wide range force, it can be selected as appropriate, but it is preferably 50% by weight or less, preferably 30% by weight or less, based on the total amount of polybulal alcohol.
  • dialkyl carbonate examples include dimethyl carbonate, jetyl carbonate, methyl ethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, di-n-butyl carbonate, diisoptyl carbonate, di-sec-butyl carbonate, and the like.
  • the amount of dialkyl carbonate to be used is not particularly limited, but is preferably 0.1 to 20 times the molar amount, more preferably 0.1 to 10 times the molar amount relative to polybutyl alcohol.
  • the solvent those which can dissolve or disperse each raw material and are inert to the transesterification reaction can be used.
  • aliphatic hydrocarbons aromatic hydrocarbons such as benzene, toluene and xylene
  • ketones such as acetone, methyl ethyl ketone, and methyl propyl ketone
  • halogenated hydrocarbons such as dichloromethane and dichloroethane
  • ethers such as diglyme, dioxane, and tetrahydrofuran.
  • the carbonic acid esterification reaction is preferably carried out at a temperature of 50-180 ° C, which is the lower of the boiling point of the alcohol by-produced by this reaction, the boiling point of the reaction solvent or 200 ° C, whichever is lower, and for 5 minutes.
  • the polyacetal alcohol is acetalized and esterified in the same manner as described above by subjecting the polybutyl alcohol to acetalization and esterification.
  • the polybulacetal resin according to the present invention can be used as a raw material for preparing a varnish as it is, the viewpoint of gelation of an organic solvent or a non-aqueous electrolyte described later is used. Therefore, it is desirable to perform acid modification.
  • the reason is not clear enough, but is presumed as follows. That is, the state of presence of poly Bulle ⁇ Se tar ⁇ in Byuruaruko Lumpur unit (2), a random shape isolated in the polymer chain, 1, 2-dihydro Kishiechiren structure and 1, 3 over dihydroxy; L, 3 It has a block shape in which a plurality of structures such as a propylene structure are continuously formed.
  • acid modification is performed, an intramolecular exchange reaction of the acetal ring occurs, and a structure in which a plurality of isolated vinyl alcohol units (2) are connected. It is presumed that the geliness of the organic solvent is improved.
  • the acid-modified product of polyvinylacetal resin according to the present invention is preferably an acid-modified product of polyvinyl formal resin, and further has a hydroxyl group content of 0.1-2 mol per kg of the acid-modified product. It is particularly preferred that it is 0.3-3.
  • the acid-modified product can be dissolved in a non-aqueous electrolyte or uniformly swelled, or the negative electrode and Z or positive electrode can be cross-linked with the acid-modified product.
  • the adhesion between the separator and the separator is particularly good.
  • the molecular weight of the acid-modified product of polyvinylacetal resin is not particularly limited.
  • the non-aqueous electrolyte solution to the electrochemical device is used.
  • the separator and the positive electrode layer in the electrochemical device preferably 0.31 to 300,000, more preferably 1 In the unlikely event, it is 150,000, particularly preferably 40,80,000.
  • the molecular weight means the number average molecular weight in terms of polystyrene as measured by GPC (gel permeation chromatography).
  • the molecular weight of polyvinyl acetal resin depends on the degree of polymerization of the raw polybutyl alcohol and the molecular weight of the side chain substituent, In terms of the number average degree of polymerization, it can be expressed as preferably 50 to 5000, more preferably 100 to 3000, and particularly preferably 300 to 1500.
  • Polyvinylacetal resin has a 1,2-dihydroxyethylene structure and a Z or 1,3-dihydroxy group derived from a structure in which a plurality of vinyl alcohol units are continuous in the main chain together with the isolated hydroxyl group.
  • 1, 3-Propylene-containing hydroxyl group is included.
  • the ratio of hydroxyl groups in 1,2-dihydroxyethylene and Z or 1,3-dihydroxy 1,3-propylene structures to the total amount of hydroxyl groups in polyvinylacetal resin It is presumed that the relative increase increases and is increased to 70 mol% or more, more preferably 80 mol% or more by acid modification.
  • polybulformal rosin reduces or disappears the 4.25ppm – 4.35ppm peak due to acid modification.
  • Polybulal mortar has protons equivalent to a peak of 4.25 ppm-4.35 ppm before acid modification, usually 0.3 mol Zkg or more, but corresponds to a peak of 4.25-4.35 ppm due to acid modification.
  • the proton is reduced by 30% or more, preferably 50% or more, and is preferably 0.25 mol Zkg or less, more preferably 0.15 mol Zkg or less.
  • Acid modification of polyvinyl alcohol resin is carried out by various known methods. For example, poly Add an appropriate acid catalyst in the state of suspending or dissolving bulassetal resin in a non-aqueous solvent, and heat with or without stirring.
  • the content of polyvinylacetal resin in the non-aqueous solvent is not particularly limited, but it is preferable that polyacetal resin, acid catalyst and non-aqueous solvent are used in consideration of the smooth progress of the reaction.
  • the total amount of the reaction mixture is 0.2 to 20% by weight, preferably 1 to 10% by weight.
  • Known acids can be used as the acid catalyst, and examples include acetic acid, phosphoric acid, hydrochloric acid, hydrofluoric acid, sulfuric acid, trifluoroacetic acid, nitric acid and the like. Of these, acetic acid, phosphoric acid, sulfuric acid, and hydrofluoric acid are preferred.
  • One acid can be used alone, or two or more acids can be used in combination.
  • the amount of acid used is not particularly limited, but is preferably 0.0005 to 1% by weight, more preferably 0.001 to 0.01% by weight of the total amount of the reaction mixture.
  • non-aqueous solvent any solvent that does not inhibit the intramolecular exchange reaction of the acetal ring can be used, and among them, carbonic acid esters and carboxylic acid esters are preferable.
  • Nonaqueous solvents can be used alone or in combination of two or more.
  • carbonate is used as the reaction solvent, the solution after completion of the reaction can be used as it is as the varnish of the present invention, which is further desirable.
  • the reaction between the polyvinylacetal resin and the acid is preferably carried out at a room temperature of 1 to 100 ° C, more preferably 40 to 70 ° C, preferably 1 to 100 hours, more preferably 5 to 48 hours. End with.
  • the acid-modified product is separated from the reaction mixture containing the acid-modified product of polyvinylacetal resin by general refining means such as reprecipitation and used in the varnish of the present invention.
  • Carbonate ester is used as the non-aqueous solvent used for the varnish.
  • Carbonate ester has a structure in which carbonic acid and alcohol are mixed, and is a solvent with low irritation, toxicity and bad odor, and very low environmental impact.
  • the flammability is very low compared to the carboxylic acid ester solvent having a similar structure, and it is safer.
  • the flash point of cetyl acetate is 4 ° C
  • the flash point of jetyl carbonate is 31 ° C, which is above room temperature.
  • the polybulassetal resin varnish of the present invention can be operated more safely than the conventionally used polyvinylacetal resin varnish.
  • Carbonate esters include chain carbonates in which two substituents are not linked to each other, and cyclic carbonates having a structure in which two substituents are linked to each other.
  • chain carbonates examples include dimethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, methyl n-propyl carbonate, ethyl n-propyl carbonate, di-n-propyl carbonate, methyl iso propyl carbonate, ethyl iso propylene carbonate, Di-iso-propyl carbonate, butinolemethinole carbonate, butinoletinole carbonate, butinole n propinole carbonate, dibutinole carbonate, methyl-2,2,2-trifluoroethyl carbonate, ethyl-2-2,2-trifluore Tylcabonate, di (2, 2, 2 trifluoroethyl) carbonate, methyl 3, 3, 3, 2, 2-pentafluoropropyl carbonate, ethyl 3, 3, 3, 2, 2 pentafluoro Ropropyl carbonate, propyl 3, 3, 3, 2, 2 Printers Full O b propyl carbonate, di (
  • Cyclic carbonates include ethylene carbonate, 1,2-propylene carbonate, 1,3 propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2 pentene carbonate, 2,3 pentene carbonate. 1, 2-hexene carbonate, 2, 3-hexene carbonate, 3, 4 monohexene carbonate, n-butenoethylene carbonate, n-hexenoethylene carbonate, cyclohexenoethylene carbonate, phenolic ethylene Carbonate, 1,1 diphenoloethylene ethylene carbonate, 1,2-difluoroethylene carbonate, trifluoromethylethylene carbonate, fluoromethylenoethylene carbonate, difluoroethylene ethylene carbonate, chloroethylene carbonate, etc. Can be mentioned.
  • the molecular weight is small from the viewpoint of the solubility of bismuth polyacetal resin and the varnish viscosity, and the carbonic acid ester is desirable U.
  • Examples of such carbonates include ethylene carbonate, 1,2 propylene carbonate, 1,3 propylene carbonate, dimethylolate carbonate, ethinolemethinole carbonate, jetinole carbonate, methyl n propyl carbonate, ethyl n propyl carbonate, n-propyl carbonate, methyl iso-propyl carbonate, ethyl iso-propyl carbonate, di-iso propyl carbonate, di-n-propyl carbonate, etc.
  • Carbonate, 1,2-propylene carbonate, dimethyl carbonate, ethylmethyl carbonate, and jetyl carbonate are more desirable, and ethylene carbonate and 1,2-propylene carbonate are most desirable.
  • the chain carbonate ester and the cyclic carbonate ester may be used alone or in combination, but in order to further increase the solubility of polyvinylacetal resin, the chain carbonate ester and the cyclic carbonate ester are used. It is preferable to use a mixed solvent. When only one of the chain carbonate ester or the cyclic carbonate ester is used, it is possible to limit the molecular weight and the chemical structure of the polyvinylacetal resin to a specific one or by applying heat during the preparation of the varnish. Acetal rosin can be dissolved.
  • polyblucetal resin can be dissolved at a higher concentration, can be dissolved regardless of the type of polyvinylacetal resin, This means that it is not necessary to heat at the time of preparation), and there is no precipitation of polyvinylacetal resin even when the varnish temperature drops to room temperature or lower after varnish preparation.
  • ethylene carbonate and Z or 1,2-propylene carbonate are used as the cyclic carbonate, and dimethyl carbonate, ethyl methyl carbonate, Examples are those using chinole carbonate, dimethyl carbonate and ethyl methyl carbonate, and cetino carbonate and ethyl methyl carbonate.
  • a combination containing ethylene carbonate is preferable because the solubility of polyvinyl acetal resin improves.
  • the volume ratio of cyclic carbonate to chain carbonate is a force that allows a wide range of forces to be selected as appropriate depending on the type and concentration of polybulucertal resin to be dissolved.
  • the ratio is preferably 1:19 to 19: 1, more preferably 1: 4 to 9: 1, and particularly preferably 1: 3 to 3: 1.
  • the water content of the non-aqueous solvent is 200 ppm or less, preferably 50 ppm or less, and more preferably 20 ppm or less. If it is in this range, the water content of the polybulassal varnish varnish can be kept low and a preferred varnish can be obtained.
  • the polybulacetal rosin varnish of the present invention comprises the polybulacetal or an acid-modified product thereof and a carbonate ester solvent.
  • the concentration of the polyvinyl acetal resin in the varnish of the present invention is not particularly limited, and can be appropriately selected from a wide range depending on the type of the poly varacetal resin, the use of the resulting varnish, and the like.
  • the polyvurecetal fat is preferably 0.2 to 20% by weight, more preferably 1 to 10% by weight, particularly preferably 1 to 5% by weight, based on the total amount of varnish. It is. Various concentrations can be selected in this range depending on the application.
  • the type of polybulassal rosin is one that is soluble in the non-aqueous solvent, the solubility in the non-aqueous solvent, the viscosity of the varnish, and the gelation of the organic solvent described later. Appropriately selected in consideration of the nature and the like.
  • the water content in the varnish of the present invention is preferably small from the viewpoint of gelling such as an organic solvent described later and a nonaqueous solvent in an electrochemical device.
  • the amount of water is preferably 2 ppm to 200 ppm, more preferably 2 ppm to 10 Oppm, and particularly preferably 5 ppm to 50 ppm.
  • the water content of the non-aqueous solvent and polybulassetal resin is reduced in advance, and a small amount of the non-aqueous solvent in the varnish is discharged by distillation.
  • the dehydrating agent include water adsorbents such as anhydrous sodium sulfate, molecular sieves, and silica gel.
  • the moisture adsorbent is packed in a column to allow the varnish to flow through, or mixed with the varnish and stirred to remove moisture in the varnish.
  • the varnish of the present invention has a range in which preferable characteristics are not impaired (for example, a range in which irritation, toxicity, flammability and the like are not so high as to hinder the work), a solvent other than a carbonate ester, and a polyvinylacetal resin other than Even if synthetic resin is included, it does not work.
  • solvents other than carbonate esters include water, alcohols, carboxylic acid esters, ethers, amides, strong rubamic acid esters, phosphoric acid esters, aromatic hydrocarbons, and fluorine-substituted hydrocarbons. It is done.
  • a synthetic resin other than the polybulacetal resin it can be dissolved uniformly in a non-aqueous solvent such as a carbonic ester, and does not impair the adhesiveness, covering property, and gel property described later. If it is a thing, it will not restrict
  • the mechanism by which the organic solvent is gelled by the polyvurecetal resin varnish of the present invention is not necessarily clear, the water in the organic solvent is not dissolved in the state where the polyvinylacetal resin is uniformly dissolved in the organic solvent. Once removed, the hydroxyl groups in the bully alcohol unit (2) of the polybulassetal resin interact strongly with each other to form a pseudo bond, and the tertiary in organic solvent. This seems to be due to the formation of an original polyvinylacetal resin network structure.
  • the gelling agent of the present invention desirably has a low water content, preferably 200 ppm or less, more preferably 10 ppm or less, and particularly preferably 50 ppm or less.
  • a dehydrating agent is used to remove moisture from the varnish.
  • a reactive dehydrating agent is desirable in order to completely or almost completely remove moisture in the varnish and the organic solvent.
  • dehydrating agents include silyl esters, boric acid esters, disilazanes, isocyanates, organometallic compounds, and metal alkoxides.
  • the amount of the dehydrating agent added is determined in consideration of the amount of water in the mixture of the polyvinyl acetal varnish varnish and the organic solvent to be gelled. Usually, it is desirable to add 1 to 100 times, preferably 10 to 50 times, the equivalent of reacting with the contained water.
  • the polybulacetal resin may be either acid-modified or acid-modified, but is preferably acid-modified.
  • Use of the polybutylacetal resin varnish of the present invention facilitates gelation of the non-aqueous electrolyte and enhances the adhesion between the negative electrode and Z of the electrochemical device described later and the positive electrode and the separator.
  • the varnish containing polyvinyl acetal resin is prepared by dissolving the above-described polyblucacetal resin in a non-aqueous solvent.
  • the carbonate ester solvent used for varnishing the polyvinyl acetal resin acts as a non-aqueous electrolyte solvent for dissolving or dispersing the electrolyte in the non-aqueous electrolyte solution of the present invention.
  • a carbonate ester is used as described above, but when used as a non-aqueous electrolyte solvent, it also contains a non-aqueous solvent commonly used in this field other than the carbonate ester. it can.
  • Non-aqueous solvents other than carbonate esters include, for example, cyclic force rubonic acid esters such as ⁇ -petit-mouth rataton, methyl acetate, methyl propionate, pentafluoropropyl acetate.
  • Tate chain carboxylic acid esters such as methyl trifluoroacetate, ethers such as dimethoxyethane and tetrahydrofuran, amides such as N-methylpyrrolidone and dimethylformamide, methyl-N, N-dimethylcarbamate, N-methyloxazoly Carbamates such as dinone, ureas such as N, N-dimethylimidazolidinone, boric acid esters such as triethyl borate and tributyl borate, phosphate esters such as trimethyl phosphate and trioctyl phosphate, benzene, Examples include aromatic hydrocarbons such as toluene, xylene, fluorobenzene, fluorotoluene, chlorobenzene, biphenyl, fluorobiphenyl, and fluorinated ethers such as trifluoroethyl ether.
  • aromatic hydrocarbons such as toluene, xylene, flu
  • Nonaqueous solvents can be used alone or in combination of two or more. Some of these non-aqueous solvents are irritating, toxic, environmental pollutant, odor, flammable, etc., but non-aqueous electrolytes are used in the state of being sealed inside the electrochemical element. In addition, the amount of use is small, so there is no particular problem.
  • the content of polyvinylacetal resin in the non-aqueous electrolyte is not particularly limited, but it prevents the deterioration of the ionic conductivity, load characteristics, high temperature storage stability, etc. of the electrochemical element as much as possible, and is a laminate of the negative electrode, separator and positive electrode. From the viewpoint of increasing the mechanical strength of the non-aqueous electrolyte as much as possible, it is preferably 0.3 to 3.5% by weight, more preferably 0.7 to 2.3% by weight of the total amount of the non-aqueous electrolyte.
  • the electrolyte can be used by appropriately selecting from those commonly used in this field depending on the type of electrochemical element.
  • a lithium salt as an electrolyte is used, a lithium battery excellent in charge / discharge load characteristics and shape retention can be obtained.
  • an alkyl ammonium salt as an electrolyte is used, an electric double layer capacitor having excellent charge / discharge load characteristics and shape retention can be obtained.
  • the content of the electrolyte in the non-aqueous electrolyte can be selected from a wide range according to the type of electrolyte and the type of electrochemical element. Usually 0.1 to 10 mol Z liter, preferably 0.3 3 mol Z liters.
  • a compound capable of generating an acid to the non-aqueous electrolyte of the present invention in addition to the polybulacetal rosin varnish and the electrolyte.
  • Compounds that generate acid mainly consist of aldehyde groups formed by electrolytic oxidation of the hydroxyl groups in the main chain of poly (burecetal) resin by energization during the charging process, and 1,2-dihydroxyethylene structures in the main chain.
  • polyvinylacetal resin varnish that has been modified by acid modification of poly (bucylacetal) resin is added to the non-aqueous electrolyte. It is preferable to do this.
  • non-aqueous electrolyte of the present invention when a compound that generates an acid is used, gelation of the non-aqueous electrolyte is likely to occur. Adhesiveness with the insulator is improved.
  • Examples of the compound that generates an acid include a compound that generates an acid by a reaction with water, a compound that is electrolytically oxidized in the operating voltage range of an electrochemical element, and the like, but a compound that generates an acid by a reaction with water Is particularly preferred.
  • a compound that generates an acid by reaction with water reacts with moisture remaining in the separator electrode of the electrochemical device to generate an acid.
  • the generation of acid can be accelerated by heating in the aging process.
  • the current technology cannot completely remove the moisture in the electrochemical device.
  • a known compound that generates an acid by reaction with water can be used, and examples thereof include a Lewis acid having a halogen atom, a Lewis acid salt, a sulfate ester, and a nitrate ester.
  • R Organic group
  • A1C1 R (n 1-3, R two n (4-n) n (3-n)
  • Lewis acid salts examples include LiPF, LiBF, LiAsF, Li SiF, LiCIO, LiPF
  • halogen atom examples include fluorine, chlorine, bromine, and the like, but considering the influence on the corrosion resistance of the electrochemical device, the fluorine atom is preferable.
  • the sulfate ester examples include 1,3 propane sultone, methyl benzenesulfonate, 1,3 proper 2 ene sultone, 1,4 butane sultone, dimethyl sulfate, jetyl sulfate, and ethylene sulfate.
  • nitrate ester examples include ethyl nitrate.
  • the above compounds can be used alone or in combination of two or more.
  • the content of the compound that generates an acid by reaction with water in the non-aqueous electrolyte is appropriately selected according to the type of the electrochemical element. Taking the case where the electrochemical element is a lithium battery as an example, there is a concern about the deterioration of battery characteristics due to the compound. Therefore, the content of the compound in the non-aqueous electrolyte is 0.2 mol Z liter or less, preferably Less than 0.05 mol Z liter.
  • the electrochemical element is a lithium battery
  • the compound is a Lewis acid or Lewis acid salt having a fluorine atom, and is a lithium salt
  • the adverse effect on properties is less likely to occur. You may make it contain exceeding.
  • a compound that is electrolytically oxidized within the operating voltage range of the electrochemical device can be oxidized and oxidized in the initial charging step of the electrochemical device to generate an acid, which can contribute to the crosslinking of the polybulassetal resin.
  • Examples of such compounds include water, methanol, ethanol, propanol, ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, toluene, diphenyl methane, cyclohexyl benzene, acetone, and malonic esters.
  • protic compounds such as polybulal alcohol.
  • the above compounds can be used alone or in combination of two or more.
  • the voltage applied at the time of initial charging may be appropriately selected from the operating voltage range of the electrochemical element so that the compound is electrolytically oxidized. For example, with respect to the dissolution and precipitation potential of lithium, it is 3 V or more when the compound to be electrolytically oxidized is alcohol, and 4 V or more when the compound is aromatic.
  • the content of the electrolytically oxidized compound in the non-aqueous electrolyte varies depending on the type of electrochemical element, the type of crosslinkable polymer material present in the laminate composed of the negative electrode, separator, and positive electrode. Forces that can be selected appropriately from the range Normally 0.002—0.1 Monore / Ritsunore, Women or 0.005—0.05 Monore / Ritsunore.
  • a compound that generates an acid by the reaction with water described above and a compound that is electrolytically oxidized within the operating voltage range of the electrochemical element can be used in combination.
  • the nonaqueous electrolytic solution of the present invention can be adjusted to a desired composition according to a usual method.
  • a lithium salt and another non-aqueous electrolyte solution that also has a non-aqueous electrolyte solvent power are prepared in advance, and the polyblucacetal varnish varnish of the present invention and a compound that generates an acid are mixed and dissolved therein.
  • a method of mixing and dissolving a compound that generates a lithium salt and an acid in the polyvinyl acetal varnish varnish, a method of mixing and dissolving a non-aqueous solvent and a compound that generates a lithium salt and an acid in the polyvinyl acetal varnish varnish of the present invention, etc. Can be mentioned.
  • the method of preparing a different non-aqueous electrolyte solution having a lithium salt and non-aqueous solvent power in advance, and mixing and dissolving the polyblucacetal varnish varnish of the present invention and an acid-generating compound is workable.
  • the viewpoint power is also most desirable.
  • generates an acid is added as needed.
  • the nonaqueous electrolytic solution obtained as described above is injected into an electrochemical element.
  • the non-aqueous electrolyte of the present invention produces a laminated body in which a polybulacetal resin is present in a separator, between a negative electrode and Z or between a positive electrode and a separator, and the like.
  • it can also be prepared by injecting a general non-aqueous electrolyte solution (no polyvinyl acetate resin) in which an electrolyte is dissolved in a non-aqueous solvent.
  • the general non-aqueous electrolyte injected into the laminate and the polyvurecetal resin come into contact with each other, and the poly-bialacetal resin is dissolved or swelled in the non-aqueous electrolyte. A non-aqueous electrolyte is obtained.
  • the electrochemical device of the present invention includes a negative electrode, a separator, a positive electrode, and a non-aqueous electrolyte, and is bonded by an adhesive layer made of a negative electrode, a Z, or a positive electrode, a separator, and a crosslinked product of polyvinylacetal resin. It is characterized by. Among them, those in which an adhesive layer is formed between both the negative electrode and the positive electrode and the separator are preferable.
  • the adhesive layer may be formed so as to cover the entire surface of the negative electrode and the separator, or the positive electrode and the separator, or may be formed in a part of an arbitrary pattern.
  • the polyvinylacetal resin cross-linked product is preferably 3.5% by weight or less, more preferably, based on the total amount of the total amount of the non-aqueous electrolyte solvent, the electrolyte and the cross-linked product. It is contained in a proportion of 0.3-3. 5% by weight, particularly preferably 0.5-2. 5% by weight. If it is in this range, it is particularly effective in preventing deterioration of the characteristics as an electrochemical element and in preventing reduction in the adhesive strength of the negative electrode, separator and positive electrode laminate.
  • the cross-linked product is preferable because the adhesive property between the electrode and the separator is improved when the polybutacetal resin is subjected to acid modification, compared with the product that does not undergo acid modification.
  • a cross-linked product of polyvinylacetal resin can impart sufficient shape retention to an electrochemical device even if the addition amount is very small, and the cross-linked product may inhibit the movement of ions between the positive electrode and the negative electrode. Absent.
  • the use of a small amount of a cross-linked product can impart sufficient shape retention to the electrochemical device, so that the decrease in ionic conductivity due to the presence of the cross-linked product can be minimized, and charge / discharge load characteristics can be improved.
  • An excellent electrochemical device can be obtained.
  • the cross-linked product is excellent in shape retention in a wide temperature range where there is no risk of melting or dissolving in a non-aqueous electrolyte and lowering the adhesive strength even when the electrochemical device is exposed to high temperature. An electrochemical element excellent in retention can be obtained.
  • the electrochemical device of the present invention includes the nonaqueous electrolytic solution of the present invention.
  • the polybulacetal resin in the non-aqueous electrolyte becomes a cross-linked product by energization in the charging process.
  • the polyvinyl acetal resin is acid-modified, it is more likely to be a cross-linked product due to electrolytic oxidation when energized than a non-acid-modified product.
  • the non-aqueous electrolyte containing an acid-modified product of poly (bulucetal) resin has been subjected to acid modification and has higher adhesive strength than the non-aqueous electrolyte containing poly (b) -acetal resin.
  • the negative electrode used in the electrochemical device of the present invention includes a negative electrode active material and a negative electrode current collector.
  • the negative electrode active material can be used by appropriately selecting one or more kinds from those conventionally used in this field according to the type of electrochemical element.
  • Examples of the negative electrode current collector include copper, nickel, stainless steel, aluminum, and titanium.
  • the negative electrode is formed by molding a composition containing a negative electrode active material and a binder into a desired shape and then adhering it to the negative electrode current collector, or by adding a solvent to the composition containing the negative electrode active material and the binder. After adding to the negative electrode mixture slurry, this was applied to one side of the negative electrode current collector and dried, and then subjected to pressure pressing to increase the packing density of the negative electrode active material as necessary, negative electrode
  • the negative electrode active material coated with the active material or the binder can be prepared according to a method of forming a desired shape by roll molding, compression molding or the like.
  • binder used in these methods those commonly used in this field can be used, and examples thereof include latex such as fluorine resin, celluloses and rubbers.
  • solvent those commonly used in this field can be used, and examples thereof include water, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, propylene carbonate, ⁇ -butyrolatatane, and ⁇ -methyloxazolidinone. It is done.
  • One solvent can be used alone, or two or more solvents can be used in combination as required.
  • the negative electrode is preferably one in which after the active material filling density of the negative electrode active material layer is increased, a coating layer containing the polyvinyl acetal resin is provided on the surface of the negative electrode active material layer.
  • the positive electrode used in the electrochemical device of the present invention includes a positive electrode active material and a positive electrode current collector.
  • the positive electrode active material can be used by appropriately selecting one or two or more kinds from those commonly used in this field depending on the type of the electrochemical element.
  • As the positive electrode current collector for example, a passive film is formed on the surface by anodization in a non-aqueous electrolyte, such as Al, Ti, Zr, Hf, Nb, Ta, or an alloy containing two or more of these. The metal to be formed is listed.
  • the positive electrode may contain a conductive additive. Use a known conductive aid. Examples thereof include carbon black, amorphous whisker, and graphite.
  • the positive electrode can be produced in the same manner as in the above-described method for producing a negative electrode, except that a positive electrode active material is used instead of the negative electrode active material, and a positive electrode current collector is used instead of the negative electrode current collector.
  • the separator used in the electrochemical device of the present invention is a membrane that electrically insulates the positive electrode and the negative electrode and allows ions to pass therethrough, and can use various well-known porous membranes.
  • the porous membrane material include polyolefin, polyimide, polyvinylidene fluoride, and polyester, and examples of the shape of the microporous membrane include a microporous film and a nonwoven fabric.
  • the separator according to the present invention is particularly preferably a porous polyethylene film, a porous polypropylene film or a multilayer film of a porous polyethylene film and a porous polypropylene film, which is preferably a porous polyolefin film. Other resin excellent in thermal stability may be coated on the surface of the porous membrane.
  • the electrochemical device of the present invention includes, for example, a battery such as a lithium secondary battery, a lithium primary battery, a magnesium battery, and a calcium battery, a capacitor such as an aluminum electrolytic capacitor, and an electric double layer capacitor electrochemical capacitor.
  • a battery such as a lithium secondary battery, a lithium primary battery, a magnesium battery, and a calcium battery
  • a capacitor such as an aluminum electrolytic capacitor, and an electric double layer capacitor electrochemical capacitor.
  • the electrochemical element of the present invention is excellent in electrical load characteristics, charge / discharge characteristics, shape retention and high temperature storage, and exhibits high mechanical strength.
  • the electrochemical device of the present invention can be easily reduced in thickness, and can maintain sufficient electrical load characteristics and charge / discharge characteristics even when used for a long period of time, and there is no fear of liquid leakage or damage. So it is not necessary to add a special structure to prevent these!
  • the electrochemical device of the present invention is obtained by impregnating a non-aqueous electrolyte containing a polyvinyl rubetal resin component in a laminate including a negative electrode, a separator, and a positive electrode, and then conducting polyblucacetal resin by electricity in a charging process.
  • the greatest feature of the production method of the present invention is to cross-link polybutyl alcohol resin using a charging operation as a trigger, and by bonding, the negative electrode and Z or the positive electrode and the separator are bonded.
  • the polybulassetal resin component is a mixture of a) a polybutacetal resin or a mouth) and a compound that generates acid. is there.
  • a nonaqueous electrolyte is injected into the laminate to seal the casing.
  • a general method for producing an electrochemical device that performs initial charging and aging is employed, and the nonaqueous electrolytic solution of the present invention is used as the electrolytic solution.
  • the poly (vinyl acetal) resin contained in the nonaqueous electrolytic solution can be cross-linked by energization in the initial charging step to produce the electrochemical device of the present invention.
  • Polyvinyl acetal resin can be either acid-modified or acid-modified, but it is not necessary to cross-link polybutacetal resin in the current-carrying process, and negative electrode and separator and Z or positive electrode and separator. Because of its high adhesiveness, it is desirable to use an acid-modified product. In the case where the polyvinyl acetal resin is not acid-modified, if a non-aqueous electrolyte contains a compound that generates an acid, an acid is generated in the non-aqueous electrolyte in the charging step and the aging step, and the polyvinyl Cetal rosin is acid-modified, and cross-linking tends to occur.
  • an electrochemical device in which the adhesive strength of components constituting the electrochemical device is equal to or higher than that of a conventional gel-type polymer electrolyte, with a significantly smaller amount of polybutacetal resin. Obtainable. Furthermore, even if the polybulassal resin crosslinks to gel the non-aqueous electrolyte, the amount of the cross-linked product is so small that it inhibits the movement of ions in the non-aqueous electrolyte. Therefore, the high ion conductivity inherent in the non-aqueous electrolyte can be sufficiently exhibited, and an electrochemical device having excellent electrical load characteristics can be obtained.
  • the following method is preferable.
  • the method of injecting the nonaqueous electrolytic solution after the electrode and the separator are bonded in advance with an adhesive it is very difficult to inject the nonaqueous electrolytic solution.
  • a method of bonding an electrode and a separator by applying a non-aqueous electrolyte into a separator after applying an adhesive that shows adhesiveness only after swelling in the non-aqueous electrolyte is applied to the separator Since the agent is highly swellable with respect to the non-aqueous electrolyte, it will dissolve in the non-aqueous electrolyte when exposed to high temperatures or stored for a long period of time, resulting in a decrease in adhesion.
  • the production method of the present invention is carried out in a normal process for producing an electrochemical element, and it is not necessary to add a new process. Therefore, general production equipment for electrochemical elements can be used as it is, It can be a simple manufacturing process.
  • Step of injecting non-aqueous electrolyte into laminate having negative electrode, separator and positive electrode force first, the negative electrode, separator and positive electrode are laminated.
  • This laminated body is formed into an arbitrary shape such as a cylindrical shape, a coin shape, a square shape, or a film shape as required, and is attached to a casing for an electrochemical element such as a metal can or a metal laminated film bag.
  • the non-aqueous electrolyte of the present invention is injected into the laminate.
  • a general nonaqueous electrolytic solution injection method can be employed.
  • the acid content of the nonaqueous electrolyte solution is preferably kept low until it is injected into the laminate.
  • the term “acid” as used herein gradually changes the quality of the acid-modified product and is not a compound that generates acid.
  • the acid is mainly contained as an impurity in each component contained in the non-aqueous electrolyte.
  • the acid content in the non-aqueous electrolyte is usually 20 mmol Z liters or less, preferably 5 mmol Z liters or less, more preferably 2 mmol Z liters or less. If the acid content is large, the acid-modified product may be cross-linked or altered before the non-aqueous electrolyte is injected into the laminate, and the non-aqueous electrolyte may thicken and become difficult to inject into the laminate.
  • polybulacetal resin is present between the negative electrode and the separator, between the positive electrode and the separator, in the separator, and the like.
  • a nonaqueous electrolytic solution containing the above components that is, a solvent in which an electrolyte and, if necessary, a compound capable of generating an acid are added
  • the polyvinylacetate resin can be used in the form of beads, powder or pellets, or a sheet or film containing polybulecetal resin.
  • the polyvinyl acetal resin does not need to be dissolved in the non-aqueous electrolyte, so that the viscosity of the non-aqueous electrolyte does not increase and the injection into the laminate is facilitated. Can be easily obtained. Also in this case, it is preferable that the acid content of the non-aqueous electrolyte is in the above range.
  • the surface of the negative electrode active material layer of the negative electrode, both or one side of the separator, or the positive electrode of the positive electrode A coating layer containing polyvinyl acetal resin may be formed on the surface of the polar active material layer. This also simplifies the production of the electrochemical device of the present invention.
  • the coating layer is applied to the surface on which the coating layer is to be formed, for example, by applying a solution or slurry obtained by dissolving or dispersing polybulacetal resin in an organic solvent, or the varnish of the present invention. It can be formed by removing the organic solvent by heating or the like.
  • organic solvent used here a known one that can uniformly dissolve or disperse the acid modification product of polyvinylacetate resin that does not corrode the negative electrode active material or the positive electrode active material can be used.
  • examples thereof include propylene carbonate, ethylene carbonate, N-methylpyrrolidinone, dimethylformamide, and ⁇ -butyrolatathone.
  • spraying polyvinylacetal resin a method of spraying polyvinylacetal resin, a method of sputtering polybutacetal resin, a method of pressure-bonding polyvinylacetal resin, and the like.
  • polybulassetal resin may be used as a part or all of the binder for forming the active material layer, and polybulucetal resin may be included in the negative electrode active material layer. ,.
  • the amount of the polybulacetal resin used depends on the internal volume and porosity of the electrochemical element, the liquid of the non-aqueous electrolyte. It can be appropriately selected depending on the amount. If the amount of polyvinylacetate resin used is too small, the adhesive strength becomes weak, and if it is too much, ion migration in the non-aqueous electrolyte may be inhibited.
  • Negative electrode active material Examples include a method of increasing the packing density by controlling the quality formation rate, the supply rate, and the like.
  • the porosity is used as an index of the packing density in the negative electrode active material layer. The lower the porosity, the higher the packing density.
  • the packing density is increased so that the porosity of the negative electrode active material layer is 0.05 to 0.95, preferably 0.1 to 0.9, and more preferably 0.1 to 0.5. Just do it. If priority is given to suppressing the electrolysis of the non-aqueous electrolyte, the amount of poly (vinylacetal) resin used is 0.5-20 mg, preferably 1-5 mg per lm 2 of the surface area of the negative electrode active material layer. is there.
  • the porosity in the present invention is a value obtained by (Vl-VO) ZV1, where VI is the volume of the solid and V0 is the volume obtained by dividing the weight of the solid by the true density. .
  • the electrochemical device of the present invention is intended to seal the electrochemical device after injecting the non-aqueous electrolyte into the laminate as described above, and to perform the initial charging process, stabilize the characteristics of the electrochemical device, determine defects, etc. The aging process is performed.
  • the polyvinyl acetal resin In the state where the non-aqueous electrolyte is injected into the laminate, the polyvinyl acetal resin is present in a state dissolved or swollen in the non-aqueous electrolyte, and the electrode and the separator are not bonded. By receiving energization in the initial charging process, the polybulassetal resin is cross-linked, and the electrode and the separator are bonded. At this time, when the non-aqueous electrolyte solution of the present invention contains a compound that generates an acid, the cross-linking of the polyvurecetal resin proceeds more smoothly, and the acid modification and the cross-linking of the poly (vinylacetal) resin occur.
  • the electrochemical device may be heated in the initial charging step and the aging step.
  • the heating of the electrochemical element promotes the generation of acid, and the cross-linking of the polybulacetal resin proceeds more smoothly.
  • the heating at this time is performed within a range that does not deteriorate the electrochemical element.
  • specific heating conditions For example, 0.5 to 30 days (preferably 1 to 7 days) at 45 ° C, 1 hour to 7 days (preferably 5 hours to 3 days) at 60 ° C, and the like.
  • the crosslinked product of polyvinyl acetal resin is insoluble in the non-aqueous solvent by crosslinking and can be separated from the non-aqueous solvent by simple separation means such as filtration or centrifugation. Or insoluble in a non-aqueous solvent but dispersed almost uniformly in the non-aqueous solvent and gelled with the non-aqueous solvent. It can be secondarily confirmed from the improvement of the adhesive strength of the laminate, which also has a negative electrode, a separator and a positive electrode force, whether the polybula-cetal resin is crosslinked in the electrochemical element.
  • a cross-linked product of polybulacetal resin is selectively present at the interface between the negative electrode and the separator and the interface between the positive electrode and the separator.
  • the amount of the non-aqueous electrolyte including the cross-linked product is W 1 (g)
  • the amount of the filtrate after separating and removing the cross-linked product by filtration is W 2 (g).
  • the percentage value obtained by dividing W2 by W1 (W2ZW1 ⁇ 100) is preferably 20% or more, more preferably 40% or more, and even more preferably 60% or more.
  • the upper limit of this percentage value is determined by the content of acid-modified products in the non-aqueous electrolyte.
  • the polyvinylacetal resin should be rapidly oxidized after the electrolytic oxidation of the polyvinylacetal resin on the electrode surface. It is preferable to crosslink.
  • it may be heated at as high a temperature as possible without degrading the characteristics of the electrochemical element.
  • the heating temperature is 40 ° C-90 ° C, preferably 50 ° C-60 ° C.
  • the heating time may be determined in consideration of the influence on the battery characteristics.
  • a lithium battery is a battery in which a non-aqueous electrolyte is injected into a laminate including a negative electrode, a positive electrode, and a separator, and the negative electrode and the separator and Z or the positive electrode and the separator are connected by a bridge made of polybulassal resin. Glued.
  • the non-aqueous electrolyte includes a lithium salt as an electrolyte
  • the negative electrode includes lithium metal or a negative electrode active material capable of inserting and extracting lithium or lithium.
  • the negative electrode includes a negative electrode active material and a negative electrode current collector.
  • the negative electrode active material a known compound capable of inserting and extracting lithium metal or lithium can be used.
  • lithium, lithium-containing alloy, silicon that can be alloyed with lithium, silicon alloy, tin examples include tin alloys, tin oxide that can occlude and release lithium, silicon oxide, transition metal oxides that can occlude and release lithium, transition metal nitrides that can occlude and release lithium, and carbon materials that can occlude and release lithium.
  • the negative electrode current collector those commonly used in this field can be used, and examples thereof include copper, nickel, and stainless steel.
  • the negative electrode is, for example, uniformly mixed with a negative electrode active material and a binder such as polyvinylidene fluoride, carboxymethyl cellulose, latex, and a crosslinkable polymer material, and this mixture is applied onto the negative electrode current collector and dried.
  • a binder such as polyvinylidene fluoride, carboxymethyl cellulose, latex, and a crosslinkable polymer material
  • it can be formed by performing a press for increasing the packing density of the negative electrode active material.
  • Transition metal oxides or transition metal sulfides such as 2 2 2 2 2 5, LiCoO, LiMnO, LiMn O, Li
  • Conductive polymer materials such as dimercaptothiadiazole z polyarin complex, and carbon materials such as fluorinated carbon and activated carbon.
  • a composite oxide composed of lithium and a transition metal is particularly preferable, which is preferably an active material capable of generating an electromotive force of 3 V or higher, preferably 3.8 V or higher, with respect to the dissolution and precipitation potential of lithium.
  • the positive electrode active material can be used alone or in combination of two or more. If the positive electrode active material shows an electromotive force of 3 V or more with respect to the dissolution potential of the lithium, the polyvinyl acetal resin will sufficiently receive the electrolytic acid and the crosslinking of the polyvinyl acetal resin will proceed. It becomes easy to do.
  • As the positive electrode current collector those commonly used in this field can be used.
  • the positive electrode includes, for example, a positive electrode active material and polyvinylidene fluoride, polytetrafluoroethylene, Prepared by uniformly mixing with a binder such as a crosslinkable polymer material, coating the mixture on a positive electrode current collector and drying, preferably by pressing to increase the packing density of the positive electrode active material. it can.
  • a conductive additive such as carbon black, amorphous whisker, or graphite can also be used.
  • the same separator as that described in the section of the electrochemical device of the present invention can be used.
  • the non-aqueous electrolyte for a lithium battery contains a lithium salt as an electrolyte and a polyvurecetal resin varnish.
  • lithium salts those commonly used as electrolytes for lithium batteries can be used.
  • LiPF, LiBF, LiCIO, LiAsF, Li SiF, LiOSO C F (k 1
  • LiPF LiBF
  • LiBF is particularly preferred. These litchi 4
  • One or more salt can be used.
  • the content of the lithium salt in the non-aqueous electrolyte is 0.1 to 1 mol Z liter, preferably 0.5 to 2 mol Z liter.
  • Polybulassetal rosin varnish is obtained by dissolving polybulucetal rosin in a carbonate solvent.
  • Carbonate solvents are most suitable as electrolyte solutions for lithium secondary batteries because of their electrochemical stability (redox stability) and chemical stability, and are used as the main solvent.
  • Carbonates used in non-aqueous electrolytes include cyclic carbonates and chain carbonates.
  • the cyclic carbonate include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, fluoroethylene carbonate, and trifluoroethylene carbonate.
  • chain carbonic acid esters include dimethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl trifluoroethyl carbonate, ditrifluoroethyl carbonate, ethyl carbonate, dibutynole carbonate, and methyl octyl carbonate.
  • Chain car such as Bonate is mentioned.
  • a carboxylic acid ester is also suitable and can be contained in the electrolytic solution.
  • the carboxylic acid ester include cyclic carboxylic acid esters such as ⁇ -butyrolatatone, and chain carboxylic acid esters such as methyl acetate, methyl propionate, pentafluoropropyl acetate, and methyl trifluoroacetate.
  • the carbonates exemplified above can be used singly or in combination of two or more. In consideration of improving the load characteristics, low temperature characteristics, etc. of the resulting battery, a cyclic carbonate and a chain carbonate are used in combination. Is preferred.
  • the mixing ratio of cyclic carbonate and chain carbonate is 5: 95—80: 20, preferably 10: 90—70: 30, more preferably 15:85 by weight. — 55: 4 5
  • cyclic carbonate: chain carbonate is 5: 95—80: 20, preferably 10: 90—70: 30, more preferably 15:85 by weight.
  • — 55: 4 5 By setting such a ratio, it is possible to increase the degree of dissociation of the electrolyte while suppressing an increase in the viscosity of the non-aqueous electrolyte. Therefore, it is possible to increase the conductivity of the non-aqueous electrolyte related to the charge / discharge characteristics of the battery. And the solubility of the non-aqueous electrolyte can be maintained at a high level.
  • the power to use the cyclic ester alone or the mixed amount of the chain ester is the total amount of the non-aqueous solvent. It is preferable to make it 20% by weight or less.
  • the cyclic ester ethylene carbonate, propylene carbonate, ⁇ -butyrolatatone, a mixture of two or more of these is preferable.
  • a chain carbonate is preferred as the chain ester.
  • the non-aqueous electrolyte for a lithium battery may contain other solvents, additives and the like as long as the characteristics are not impaired.
  • solvents include ethers, amides, carnomates, ureas, phosphate esters, aromatic hydrocarbons, and fluorinated ethers.
  • the lithium battery of the present invention can be produced according to the above-described method using the above-described negative electrode for lithium battery, separator and positive electrode and the non-aqueous electrolyte of the present invention containing a lithium salt as an electrolyte.
  • non-aqueous electrolyte As the non-aqueous electrolyte used here, Lewis acid having a halogen atom, which is a compound that generates an acid by reaction with lithium salt (electrolyte) and water, and Z or Z The one with Lewis acid is preferred.
  • the lithium salt the same kind as that used in the non-aqueous electrolyte for lithium batteries can be used with the same content.
  • the above-mentioned ones can be used as the polybulassal varnish varnish, and among them, the acid-modified varnish of polybulal formal varnish is preferred.
  • the content of polybulassetal resin in the non-aqueous electrolyte is not more than 3.5% by weight of the total amount of the non-aqueous electrolyte, preferably 0.3-3. 5% by weight, more preferably 0.5-2.5% by weight. %. By setting the content in this range, it is possible to obtain a lithium battery having excellent shape retention properties while minimizing the influence on the charge / discharge load characteristics.
  • the Lewis acid or Lewis acid salt having a halogen atom those described above can be used, and among them, the halogen atom is preferably a fluorine atom.
  • the halogen atom is preferably a fluorine atom.
  • LiPF and LiBF that also have a function as an electrolyte salt are preferable. Also, do not use the rack in nonaqueous electrolyte
  • Specific examples of SiF R n (4-n) n (4-n) include, for example, trimethylsilyl fluoride, triphenylsilyl fluoride, dimethylsilyl difluoride, diphenylsilyl difluoride, methylsilyl triflate. Examples thereof include fluoride and fursilyl trifluoride, and trimethylsilyl fluoride is particularly preferred.
  • SiF R is directly applied to non-aqueous electrolysis n (4-n) n (4-n)
  • a Lewis acid or a Lewis acid salt containing a halogen atom can be used alone or in combination of two or more.
  • the content of the Lewis acid or Lewis acid salt having a halogen atom is 0.01 to 10% by weight, preferably 0.05 to 2% by weight, based on the total amount of the non-aqueous electrolyte.
  • the lithium battery of this invention can be used for the same use as the conventional lithium battery.
  • various consumer electronic devices among them, mobile phones, mopile, laptop personal computers, cameras, portable video recorders, portable CD players, portable MD players, and the like.
  • the hydroxyl group concentration calculated from the composition ratio of the butyl alcohol unit (2) was 1.34 mol Zkg.
  • polyvinyl formal resin having various molecular weights was obtained by using polyvinyl alcohol resin having various molecular weights in place of polybulal alcohol resin having an average degree of polymerization of 800.
  • the chemical composition of each was almost the same as that of the polybul formal oil.
  • polybutelacetal resin, polypropylpropyl resin or polyvinyl petital resin was obtained by using acetaldehyde, propionaldehyde or butyraldehyde instead of formalin.
  • Their chemical composition was 72% by weight of buracetal part, 16% by weight of butyl acetate part and 12% by weight of butyl alcohol part.
  • Polybulformal resin (average degree of polymerization 800) obtained in the same manner as in Synthesis Example 1 was added to 100 ml of a 2: 1 (volume ratio) mixed solvent of ethylene carbonate and ethylmethyl carbonate at a concentration of 5%. Dissolved, added with 0.01% sulfuric acid, and subjected to heat treatment (acid modification treatment) at 45 ° C. for 144 hours to obtain a solution containing an acid-modified product of polyvinyl formal resin.
  • varnishes were prepared using the polyvinyl provirals, polyvinylacetotals and polyvinylbutyrals obtained in the synthesis examples instead of polybulal formal resin.
  • Table 1 In the items of polyacetal rosin species in the table, “H” indicates polyvinyl formal, “P” indicates polyvinyl probiral, “A” indicates polybulasset acetal, and “B” indicates polybutyral.
  • the evaluation criteria of solubility are: ⁇ : dissolved, ⁇ : partially insoluble, X: insoluble.
  • Table 1 shows that the solubility of the mixed solvent of cyclic carbonate and chain carbonate is greatly improved. In addition, it can be seen that among polyvinylacetal resins, the solubility of polybutaform resin is excellent.
  • Polyvinyl formal resin varnish with a concentration of 5% by weight was prepared by dissolving the polyvinyl formal resin (average polymerization degree 800) obtained in Synthesis Example 1 in various non-aqueous solvents.
  • the flash points of these varnishes were measured using a closed tag type and summarized in Table 2. [Table 2]
  • the varnish composed of the polyvinyl formal resin obtained in Synthesis Example 1 or the varnish composed of the acid-modified polycarbonate of Polybul formal resin obtained in Synthesis Example 2 is mixed with a non-aqueous electrolyte solvent, and further a dehydrating agent. To prepare a non-aqueous electrolyte.
  • Varnish A (product of the present invention) was prepared by dissolving the polybulformal resin of Synthesis Example 1 in a 1: 1 (volume ratio) mixed solvent of EC and MEC.
  • Varnish B (product of the present invention) was obtained by dissolving the acid-modified product of polybulformal rosin of Synthesis Example 2 in a 1: 1 (volume ratio) mixed solvent of EC and EMC.
  • Varnish C is a non-aqueous electrolyte solvent in which the polyvinyl formal resin of Synthesis Example 1 is dissolved in a 1: 1 (volume ratio) mixed solvent of toluene and butanol.
  • the following two types were used: “for capacitors”) and lithium batteries (hereinafter “lithium batteries”).
  • non-aqueous electrolyte solvent for the capacitor propylene carbonate containing tetrabutyl ammonium tetrafluoroborate at a ratio of 1 mol Z liter was used.
  • a non-aqueous electrolyte solvent for lithium batteries a mixed solvent of EC and EMC (1: 1 volume ratio) containing lithium hexafluorophosphate at a ratio of 1 mol Z liter was used.
  • the water content of the two types of non-aqueous electrolyte solvents was adjusted to 10 ppm or less.
  • the varnish of the present invention exhibits the action of gelling the non-aqueous electrolyte solvent when used in combination with a dehydrating agent, and is useful for preventing leakage of electric double layer capacitors and lithium batteries. I was divided. In order to exert this effect, it was desirable to reduce the amount of water in the varnish.
  • a solution containing an acid-modified product of polyvinyl formal resin was obtained in the same manner as in Synthesis Example 2 except that polyvinyl formal resin having a different viscosity was used.
  • the obtained acid-modified product had the physical properties shown in Table 4.
  • the concentration of protons appearing at 4.28 ppm in all three acid-modified products was reduced to 70% or less by acid treatment. It was done.
  • the varnish containing the acid-modified product of polybulformal resin obtained in Synthesis Example 2 and Synthesis Example 3 was mixed with ethylene carbonate and ethylmethyl carbonate to obtain a non-aqueous electrolyte.
  • the non-aqueous electrolyte is composed of ethylene carbonate and ethylmethyl carbonate at a weight ratio of 2: 3, LiPF concentration of 1 mol Z liter, and acid modification of polybulal formal resin.
  • T1 1 T10 is the non-aqueous electrolyte of the present invention (Example 9)
  • R1-R4 is the non-aqueous electrolyte of the reference example.
  • Non-aqueous electrolytes Tl-T6 and R1-1R2 acid-modified products were obtained in Synthesis Example 2
  • T7-T10 and R3-R4 acid-modified products were obtained in Synthesis Example 3. It is.
  • a non-aqueous electrolyte solution having the same composition as that of the non-aqueous electrolyte solution of T3 and using a poly (vinylformal) resin, a poly (vinyl probial) resin, or a poly (butyral) resin instead of poly (b) formal resin was prepared.
  • the solubility of each resin in a non-aqueous solvent and the stability when the non-aqueous electrolyte was stored at 25 ° C were visually observed. The results are shown in Table 6.
  • the non-aqueous electrolyte (T3) using polyvinyl formal resin is uniformly used as the electrolyte. It can be dissolved, and even when stored for 30 days or more, it remains in a liquid state free from insolubles and precipitates, and is found to be optimal for use in the non-aqueous electrolyte of the present invention.
  • Non-aqueous electrolytes using other polyvinylacetal liquors may require insoluble matter removal in some cases, and after preparation of the non-aqueous electrolyte, immediately inject into the electrochemical device without storage for a long period of time. It is clear that it is good.
  • Conductive agent 7 parts and acetylene black (conductive agent) 3 parts and poly (vinylidene fluoride) (PV DF, binder) 8 parts are mixed and dispersed in 80 parts of N-methylpyrrolidone.
  • LiCoO mixture slurry is applied to a 20 m thick aluminum foil (positive electrode current collector).
  • the cloth is dry. This was pressed at a pressure of about 9.8 ⁇ 10 7 Pa (1000 kgZcm 2 ) to produce a positive electrode.
  • the porosity of the positive electrode active material in this positive electrode was 0.25.
  • the negative electrode obtained in 1) above was punched into a circle having a diameter of 14 mm.
  • the negative electrode had a negative electrode mixture thickness of 80 ⁇ m and a weight of 20 mgZl4 mm ⁇ .
  • the positive electrode As the positive electrode, the positive electrode obtained in 2) above was used by punching it into a circle having a diameter of 13.5 mm.
  • This LiCoO electrode has a LiCoO mixture thickness of 70 ⁇ m and a weight of 42 mgZl3.5 mm ⁇ .
  • the 10 nonaqueous electrolyte solutions of the present invention (T 1 1 T 10) of Example 9 or the 4 nonaqueous electrolyte solutions of Reference Example 3 (R 1— R4) 0.25 ml was poured, and an aluminum plate (thickness 1.2 mm, diameter 16 mm) and panel were stored.
  • a coin-type lithium ion secondary battery with a diameter of 20 mm and a height of 3.2 mm was manufactured by attaching a battery can lid through a polypropylene gasket to maintain the airtightness of the battery.
  • the negative electrode was produced as follows. 70 parts of mesocarbon microbeads (trade name: MCMB10-28, manufactured by Osaka Gas Co., Ltd.), 20 parts of natural graphite (trade name: LF18A, manufactured by Chuetsu Graphite Co., Ltd.) and polyvinylidene fluoride as a binder was mixed with 10 parts to prepare a negative electrode mixture, which was further dispersed in N-methyl-2-pyrrolidone to form a slurry. And this slurry was uniformly apply
  • a positive electrode mixture was prepared by mixing 91 parts of Ichi Systems Co., Ltd., 6 parts of Grauuit as a conductive agent, and 3 parts of polyvinylidene fluoride as a binder. Dispersed in methyl-2-pyrrolidone to form a slurry. Then, this slurry was uniformly applied to both surfaces of a 20 m thick aluminum foil as a positive electrode current collector, dried and then compression molded with a roll press to produce a positive electrode.
  • a negative electrode and a positive electrode were sequentially laminated through a separator made of a microporous polypropylene film having a thickness of 20 ⁇ m, and wound in a spiral shape to produce a wound body.
  • An insulating plate was inserted into the bottom of an iron battery can with nickel plating, and the wound body was stored.
  • one end of a nickel negative electrode lead was pressed onto the negative electrode, and the other end was welded to the battery can.
  • one end of an aluminum positive electrode lead is attached to the positive electrode, and the other end is electrically connected to the battery lid via a current blocking thin plate that cuts off current according to the battery internal pressure. Connected.
  • Example 9 Five kinds of non-aqueous electrolytes of the present invention ( ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 5, ⁇ 6) in Example 9 and reference While injecting 4 ml of the two types of non-aqueous electrolytes (Rl, R2) in Example 3 into the battery can, repeatedly reducing the pressure inside the battery can and returning it to normal pressure. Injected. Finally, the battery lid was fixed by applying force to the battery can through an insulating sealing gasket coated with asphalt to produce a cylindrical nonaqueous electrolyte battery with a diameter of 18 mm and a height of 65 mm.
  • the coin-type and cylindrical lithium-ion secondary batteries of the present invention were manufactured by charging to 4.2 V with a current of 2 A and crosslinking the acid-modified product of polybula formal resin contained in the non-aqueous electrolyte.
  • a coin-type lithium secondary battery using T5 of Example 9 as a non-aqueous electrolyte was prepared. This was charged to 0.5 V, 3.8 V, or 4.0 V with a current of 2 mA, and then allowed to stand at room temperature (25 ° C) or 50 ° C for 24 hours. This standing for 24 hours corresponds to an aging process in a general method for manufacturing an electrochemical device. Thereafter, the coin-type lithium secondary battery was disassembled, and the adhesion between the electrode and the separator was examined. The results are shown in Table 6.
  • CMX300 7.5 mm probe made by Chemagnetics was used.
  • the measurement conditions are: Resonance frequency: 75. 5578 MHz [Use trowel-single-nore-nores method! The bandwidth is 30 kHz.
  • the 13 C-solid NMR ⁇ vector measured by the above method shows that the cross-linked product has a signal near 70 ppm less than that of the acid-modified product, and a signal that is not present in the acid-modified product is observed around 90-lOppm. Is done.
  • the signal near 70 ppm is presumed to be a carbon signal with a hydroxyl group attached, and the signal near 90-l lOppm is presumed to be a carbon signal bound to two oxygens in the acetal ring. Therefore, a signal near 70 ppm decreases and a signal that is not present in the original acid-modified product is observed at around 90-lOppm.
  • Cylindrical and coin-type lithium ion secondary batteries were made using electrolyte solutions T1, T3, T5, T6, R1, and R2, respectively.
  • the amount (g) of nonaqueous electrolyte that can be injected into the cylindrical battery was examined.
  • Impedance change rate XZY
  • Coin-type lithium ion secondary batteries were prepared using electrolyte solutions T1, T10, and R1-R4. They were charged to 4.2V and discharged to 3.0V with a current of 0.5mA. The discharge capacity at this time was defined as “initial discharge capacity”. The battery was charged to 4.0V and left for 24 hours. For this battery, the following adhesive evaluation, initial charge / discharge characteristic evaluation, and battery characteristic evaluation after high-temperature storage were performed. The results are shown in Table 8.
  • A The active material layer of the electrode and the separator are firmly adhered to each other, and even when the peeling operation is performed, the electrode is peeled off from the interface between the current collector and the active material layer, and the separator remains attached to the active material layer of the electrode. Seven.
  • A The active material layer of the electrode and the separator were sufficiently adhered, but when the peeling operation was performed, the electrode also peeled off the interfacial force between the active material layer and the separator.
  • the battery of Reference Example 4-16 using an electrolyte solution with ⁇ 1/2 Xc greater than 1000 has a poor battery property. Force with 1/2 Xc of 100 to 1000 Reference Example 7 using an electrolyte solution with a hydroxyl group concentration of 2.0 mol Zkg or more in the acid-modified product of polybulformal rosin Although it adheres, the battery characteristics are degraded.
  • the content of LiPF is 1 mol / liter, and the content of beylene carbonate is 1%.
  • Table 10 shows the contents of Libul formal rosin and tristrimethylsilyl phosphate.
  • the electrolyte LiPF and water react to form.
  • the hydrofluoric acid contained 0.01%.
  • Tristrimethylsilyl phosphate is used as a compound for generating trimethylsilyl fluoride in a non-aqueous electrolyte, and trimethylsilyl fluoride is a Lewis acid with a high acid generation rate.
  • L1PF6 electrophilyte
  • bi-ethylene carbonate bi-ethylene carbonate
  • a radical polymerization initiator trade name: Perbutyl (registered trademark) PV, manufactured by Nippon Oil & Fats Co., Ltd.
  • the content of LiPF and beylene carbonate is 1 mol / liter, bilene carbon
  • the content of the salt is 1%.
  • the content of trimethylolpropane ethoxylate acrylate is 5%.
  • the radical polymerization initiator was added at 3000 ppm.
  • trimethylolpropan ethoxylate acrylate is a macromonomer for gel-type polymer electrolyte.
  • the radical polymerization initiator is an additive for gelling the macromonomer.
  • a negative electrode was prepared in the same manner as described above (Examples 10 to 20 and Reference Examples 4 and 8).
  • a positive electrode was prepared in the same manner as described above (Examples 10 to 20 and Reference Examples 4 to 8).
  • the negative electrode As the negative electrode, the negative electrode was punched into a disk shape having a diameter of 14 mm.
  • the coin-shaped negative electrode had a negative electrode mixture thickness of 80 ⁇ m and a weight of 20 mgZl4 mm ⁇ .
  • the above-mentioned positive electrode was punched into a disc shape having a diameter of 13.5 mm.
  • This coin-shaped LiCoO electrode has a LiCoO mixture thickness of 70 m and a weight of 42 mgZl3.5 mm ⁇ .
  • a negative electrode having a diameter of 14 mm, a separator made of a microporous polypropylene film having a diameter of 16 mm and a thickness of 25 ⁇ m, and a positive electrode having a diameter of 13.5 mm were laminated in this order. Thereafter, 0.04 ml of the nonaqueous electrolytic solution obtained above was injected into the separator, and an aluminum plate (thickness 1.2 mm, diameter 16 mm) and panel were stored.
  • a negative electrode was produced in the same manner as in Example 20. On the surface of the negative electrode active material layer of the negative electrode, a 4% propylene carbonate solution of polyvinyl formal resin was applied at a rate of 5 mg per 1 cm 2 (15 mg per lg of graphite) and dried to form a polybulal formal film.
  • a positive electrode was produced in the same manner as in Example 20. On the surface of the positive electrode active material layer of the positive electrode, a 4% propylene carbonate solution of polyvinyl formal resin was applied at a rate of 5 mg per 1 cm 2 (15 mg per gram of graphite) and dried to form a polybulal formal film.
  • a 2% propylene carbonate solution of polybulal formal resin was applied at a rate of 2 mg per lcm 2 and dried to form a polyformal formal film.
  • a negative electrode on which the polybulal formal resin film was formed was punched into a disk shape having a diameter of 14 mm.
  • the coin-shaped negative electrode had a negative electrode mixture thickness of 80 m and a weight of about 20 mgZl4 mm ⁇ .
  • the positive electrode As the positive electrode, a positive electrode on which the polybulal formal resin film was formed was punched into a disk shape having a diameter of 13.5 mm.
  • the coin-shaped LiCoO electrode has a LiCoO mixture thickness of 70 m, weight was about 42mgZl3.5mm.
  • a negative electrode having a diameter of 14 mm, a separator made of a microporous polypropylene film having a diameter of 16 mm and a thickness of 25 ⁇ m, and a positive electrode having a diameter of 13.5 mm were laminated in this order.
  • 0.04 ml of non-aqueous electrolyte was poured into the separator, and an aluminum plate (thickness 1.2 mm, diameter 16 mm) and panel were stored.
  • the battery can lid was crimped through a polypropylene gasket. This was allowed to stand at room temperature for 12 hours to produce a coin-type lithium battery of Example 30.
  • EC and MEC are mixed at a ratio of 2: 3 (weight ratio), and this mixed solvent contains 1 mol / liter of LiPF (electrolyte) and 1% of bi-ethylene carbonate. Amount
  • Example 30 A non-aqueous electrolyte solution used in Example 30 was used as the non-aqueous electrolyte solution, and the same negative electrode, positive electrode, and separator as in Example 20 were used to produce a coin-type lithium battery for comparison in the same manner as in Example 20. .
  • the coin-type lithium batteries of Examples 20-29 and Comparative Example 3-4 were first charged to 4.2 V with a current of 0.5 mA and then discharged with a constant current of 5 mA until the voltage of the battery reached 3 V (initial charge). .
  • the discharge capacity at this time was defined as “initial capacity”.
  • the ratio of initial capacity to charge capacity was defined as “initial charge / discharge efficiency (%)”.
  • the battery was discharged at a constant current of 5mA until the battery voltage reached 3V.
  • the discharge capacity at this time was defined as the "5mA discharge capacity”.
  • the ratio of 5mA discharge capacity to the initial capacity was defined as “5mA discharge capacity ratio (%)”.
  • the measurement was performed at 25 ° C.
  • the battery is charged to 4. IV and stored at 60 ° C for 2 days (called aging storage) After that, the battery characteristics (5 mA discharge capacity) were measured to obtain the 5 mA discharge capacity ratio (%). Subsequently, after charging to 4.2V and storing at 85 ° C for 3 days (referred to as high temperature storage), the battery characteristics (5mA discharge capacity) were measured to determine the 5mA discharge capacity ratio (%).
  • the storage characteristics were evaluated by comparing with the battery characteristics after initial charging.
  • the initial charging and aging storage described above sufficiently generate acid in the battery, and the polyvinyl formal resin dissolved or swollen in the nonaqueous electrolytic solution is acid-modified, further crosslinked, and non-crosslinked. Separated from the water electrolyte, the electrode and separator are strongly bonded.
  • the battery was disassembled after aging storage and high temperature storage tests, peeled off from the electrode and separator, and examined for adhesion, and evaluated according to the following criteria.
  • A The active material layer of the electrode and the separator are firmly adhered to each other, and even when the peeling operation is performed, the electrode is peeled off from the interface between the current collector and the active material layer, and the separator remains attached to the active material layer of the electrode. Seven.
  • Example 4 3. 1 9 0. 8 9 6 9 1 7 9 XXXX
  • the lithium battery of the example has the same battery characteristics as Comparative Example 4, which is a normal lithium battery, and the electrode and the separator are bonded. I was strong. In particular, the adhesion between the positive electrode and the separator was improved.
  • Example 20 A comparison between Example 20 and Examples 21-23 showed that the adhesion between the electrode and the separator could be further improved by adding tristrimethylsilyl phosphate. In particular, the adhesion between the negative electrode and the separator was improved.
  • the present invention can provide a lithium battery having excellent shape retention and excellent charge / discharge load characteristics.
  • the present invention can be implemented in various other forms without departing from the spirit or main characteristic power thereof. Therefore, the above-described embodiment is merely an example in all respects, and the scope of the present invention is shown in the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the scope of claims are within the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)

Abstract

 刺激性、毒性、環境汚染性、臭気、引火性などが実使用上問題のないほど低く、安全性が高く、かつ低粘性で作業性の良好なポリビニルアセタール樹脂ワニスおよびその用途を提供する。ポリビニルアセタール樹脂を溶解する有機溶剤として、非水溶媒、好ましくは炭酸エステル、さらに好ましくは環状炭酸エステルと鎖状炭酸エステルとの混合溶剤を用いることによって、ポリビニルアセタール樹脂がその種類に関係なく均一に溶解し、安全性が高くかつ低粘性のワニスが得られる。該ワニスは有機溶剤をゲル化する作用を有するので、各種の用途にゲル化剤として使用できる。

Description

明 細 書
ポリビュルァセタール樹脂ワニス、ゲル化剤、非水電解液および電気化 学素子
技術分野
[0001] 本発明は、ポリビュルァセタール榭脂ワニスに関する。本発明のポリビュルァセター ル榭脂ワニスは、たとえば、導電材料の被覆材料、無機材料および有機材料の接着 剤などとして有用である。
また本発明は、ポリビニルァセタール榭脂ワニスの用途に関し、詳しくは、ポリビ- ルァセタール樹脂ワニスを含む有機溶剤のゲル化剤、ポリビニルァセタール樹脂ヮ ニスを用いて得られる非水電解液および電気化学素子に関する。
背景技術
[0002] ポリビュルァセタール榭脂は、ポリビュルアルコールをアルデヒドでァセタール化し た榭脂の総称である。ポリビュルァセタール榭脂は、電気絶縁性が良好で、接着性' 耐薬品性に優れると共に、可撓性、耐摩耗性などの機械的強度も高いため、被覆材 または接着剤として広範な用途に使用される。たとえば、エナメル線用ワニス、磁気 テープバインダ、ガラス繊維、カーボン繊維などの収束用接着剤などとして用いられ 、さらに構造建築物、航空機などにおいて、被覆材または接着剤として汎用される。 ポリビニルァセタール榭脂を上記用途に使用する場合には、溶剤に溶解してワニス 化することが望ましい。し力しながら、一般的な工業用溶剤であるメチルアセテート、 ェチルアセテート、ブチルアセテートなどのエステル類、メチルェチルケトン、アセトン 、シクロへキサンなどのケトン類では、ポリビニルァセタール榭脂を充分均一に溶解 することができない。
このため、ポリビュルァセタール榭脂のワニス化に際しては、氷酢酸、モノクロル酢 酸、ベンジルアルコール、クレゾール、キシレノール、フルフラール、ジォキサン、テト ラヒドロフラン、ピリジン、ジクロロェタン、クロ口ホルム、 N—メチルピロリドン、ジメチル スルホキシド、トルエンとエタノールとの混合溶剤などが用いられる。これらの溶剤は、 いずれも、刺激性が強い、人体に対する毒性が比較的に高い、環境汚染性が高い、 悪臭を発する、引火性が高いなどの問題を有するものば力りである。
したがって、ポリビニルァセタール榭脂ワニス化に際しては、溶剤が人体に接触した りまたは環境に放出されることがないように、排気、除害、除毒、静電気除去などにつ いて充分な能力のある設備を設置し、安全上の多くの対策を施すことが必要である。 また、ポリビュルァセタール榭脂は、電池、コンデンサ、ダレツチエルセルと呼ばれる 電解質を使用する太陽電池などの電気化学素子において、充放電容量の高容量化 、薄型化、形状自由度の向上などを図るために、電解液をゲル化させてフィルム状電 解質 (ゲル型高分子電解質)を得るために用いられる (特開昭 57— 143355号公報な ど)。従来技術では、ポリビニルァセタール榭脂を用いてフィルム状電解質を得るた めには、該榭脂を電解質溶液全量の 10重量%以上含有させる必要がある力 電解 液中にポリビュルァセタール榭脂の分子がこのような高濃度で分散すると、この分子 力 Sイオンの移動を阻害する。そのため電解液そのものよりもイオン伝導度が低く電気 的負荷特性が悪くなる。ポリビュルァセタール榭脂の含有量を減らせばイオン伝導度 を高めることができるが、ゲル強度が低くなり、電気化学素子の形状自由度を向上さ せるというゲル型高分子電解質が本来有する長所が失われる。
さらに、ポリビュルァセタール榭脂に溶媒を含浸させることなぐ固体型高分子電解 質として用いることも知られている(特開平 10— 50141号公報)。しかしながら、この電 解質も、イオン伝導度が非常に低く電気的負荷特性が大幅に低下する。
発明の開示
本発明の目的は、刺激性、毒性、環境汚染性、臭気、引火性のいずれにおいても 問題が少なぐ安全性の高!、ポリビニルァセタール榭脂ワニスを提供することである。 さらに、塗装作業などの作業性を向上させるために、低粘性ィ匕したポリビニルァセタ 一ル榭脂ワニスを提供することである。
本発明の目的は、安全性が高くかつ低粘性ィ匕したポリビュルァセタール榭脂ワニス の、電気化学素子における電解液への利用を提供することである。
本発明者は、 1)ポリビュルァセタール榭脂ワニスは、ポリビュルァセタール榭脂を 炭酸エステルに混合させるのが良 ヽこと、特に環状炭酸エステルと鎖状炭酸エステ ルとの混合溶剤を用いるとポリビュルァセタール榭脂を高濃度で含み、低粘性となる こと、 2)該ポリビニルァセタール榭脂ワニス力 電気化学素子における非水電解液、 有機溶剤などのゲル化剤として有用であることなどを見出し、本発明を完成するに至 つ 7こ。
本発明は、ポリビュルァセタール榭脂が炭酸エステルカゝらなる非水溶媒に溶解して なることを特徴とするポリビニルァセタール榭脂ワニスである。
本発明のポリビュルァセタール榭脂ワニスは、炭酸エステルが環状炭酸エステルと 鎖状炭酸エステルとの混合物であることを特徴とする。
さらに本発明のポリビニルァセタール榭脂ワニスは、含有水分量が 200ppm以下で あることを特徴とする。
さらに本発明のポリビニルァセタール榭脂ワニスは、ポリビュルァセタール榭脂がポ リビュルホルマール榭脂であることを特徴とする。
さらに本発明のポリビニルァセタール榭脂ワニスは、ポリビュルァセタール榭脂が酸 変性物であることを特徴とする。
さらに本発明のポリビニルァセタール榭脂ワニスは、ポリビュルァセタール榭脂が、 1 H— NMR測定で DMSO— dのピーク(2. 49ppm)を基準として 4. 25—4. 35ppm
6
にピークを示すプロトンの含有量が 0. 25モル/ kg以下であることを特徴とする。 さらに本発明のポリビュルァセタール榭脂ワニスは、ポリビュルァセタール榭脂のヒ ドロキシル基含有量が 0. 1— 2モル Zkgであることを特徴とする。
また本発明は、前述のいずれかのポリビュルァセタール榭脂ワニスを含有し、有機 溶剤をゲル化させることを特徴とするゲル化剤である。
また本発明は、電解質と、前述のいずれかのポリビュルァセタール榭脂ワニスとを 含むことを特徴とする非水電解液である。
また本発明の非水電解液は、電解質と非水溶媒とポリビニルァセタール榭脂を含 有し、かつ、ポリビュルァセタール榭脂のゲル浸透クロマトグラフィー測定によるポリス チレン換算の数平均分子量えと、ポリビュルァセタール榭脂の非水電解液中での濃 度 c (重量%)とが次の関係を有することを特徴とする。
100≤ λ 1/2 X c≤ 1000
さらに本発明の非水電解液は、ポリビュルァセタール榭脂の濃度が、非水電解液 全量の 0. 3-3. 5重量%であることを特徴とする。
さらに本発明の非水電解液は、さらに酸を生成する化合物を含有することを特徴と する。
さらに本発明の非水電解液は、酸を生成する化合物が、フッ素原子を有するルイス 酸および Zまたはルイス酸塩であることを特徴とする。
また本発明は、少なくとも負極、セパレータ、正極および非水電解液を含む電気化 学素子であって、負極および Zまたは正極とセパレータとがポリビュルァセタール榭 脂の架橋物により接着されることを特徴とする電気化学素子である。
さらに本発明の電気化学素子は、架橋物の、該架橋物と非水電解液との合計量に 対する割合が、 3. 5重量%以下であることを特徴とする。
さらに本発明の電気化学素子は、負極がリチウム金属および Zまたはリチウムを吸 蔵および Zまたは放出できる活物質を含み、正極がリチウムの溶解析出電位に対し て 3V以上の起電力を発生させ得る活物質を含み、かつ非水電解液がリチウム塩か ら選ばれる電解質を含むことを特徴とする。
また本発明は、負極、セパレータおよび正極を積層し、この積層体に、前述のいず れカゝ 1つの非水電解液を含浸させてなる電気化学素子を充電してポリビニルァセタ ール榭脂の架橋物を生成させ、該架橋物によって負極および Zまたは正極とセパレ 一タとを接着することを特徴とする電気化学素子の製造方法である。
本発明のポリビュルァセタール榭脂ワニスは、従来の有機溶剤を用いて調製される ポリビニルァセタール榭脂ワニスに比べて、安全性について問題が少なぐかつ低粘 性であることから、安全にかつ効率良く作業を行うことができる。
また本発明のポリビニルァセタール榭脂ワニスは、有機溶剤のゲル化剤として使用 できるので、たとえば、有機系芳香剤、廃棄食用油、生体模擬高分子材料 (たとえば 人工皮膚用高分子材料など)、リチウム電池、電気二重層キャパシタなどの電気化学 素子における電解液などのゲルィ匕を行うことができる。
発明を実施するための最良の形態
本発明は、ポリビュルァセタール榭脂ワニス、非水電解液および電気化学素子とそ の製造方法を包含する。以下、それぞれの形態について、詳しく説明する。 本発明のポリビュルァセタール榭脂ワニスは、ポリビニルァセタール榭脂を、炭酸ェ ステル溶媒に溶解してなる溶液である。
〔ポリビュルァセタール榭脂〕
ポリビュルァセタール榭脂は、ポリビュルアルコールをアルデヒドでァセタール化し た榭脂、ポリビュルアルコールをエステル化した榭脂、ポリビュルアルコールをァセタ 一ルイ匕およびエステルイ匕した榭脂などの総称である。
ポリビュルァセタール榭脂としては、たとえば、一般式
[化 1]
H2 H2
…い)
。、
〔式中、 Rは水素原子またはアルキル基を示す。〕
で表されるビュルァセタール単位(1)、一般式
[化 2]
H2
/Cゝ / … (2 )
OH で表されるビュルアルコール単位(2)、および一般式
[化 3]
H2
Z ? …(3 )
°γ°
R2
〔式中、 Rは水素原子、アルキル基またはアルキルォキシ基を示す。〕
2
で表されるビニルカルボキシレート単位 (3)を繰り返し単位として含むポリビニルァセ タール榭脂が挙げられる。このポリビュルァセタール榭脂のうち、ビュルァセタール単 位(1)を 50— 80重量0 /0、ビュルアルコール単位(2)を 0. 1— 20重量0 /0およびビ- ルカルボキシレート単位(3)を 10— 20重量%の割合でそれぞれ含むものは、入手が 容易である。
上記繰り返し単位(1)一 (3)を含むポリビニルァセタール榭脂の具体例としては、た とえば、ポリビュルホルマール(ビュルァセタール単位(1)における R =水素原子、 ビュルカルボキシレート単位(3)における R =メチル基)、ポリビュルァセトァセター
2
ル(ビュルァセタール単位(1)における R =メチル基、ビュルカルボキシレート単位( 3)における R =メチル基)、ポリビュルプロビラール(ビュルァセタール単位(1)にお
2
ける R =ェチル基、ビュルカルボキシレート単位(3)における R =メチル基)、ポリビ
1 2
二ルブチラール(ビュルァセタール単位(1)における R =プロピル基、ビニルカルボ キシレート単位(3)における R =メチル基)などが挙げられる。これらの中でも、得ら
2
れるワニスの化学的安定性の観点からは、ポリビュルホルマールが好まし!/、。
本発明に係るポリビニルァセタール榭脂は、ワニス中での溶解濃度を高くするという 観点からは、ビュルアルコール単位(2)が少ないものが望ましぐまた、接着性や被 覆性に悪影響を及ぼさない範囲で分子量が低いものが望ましい。ここで、ポリビニル ァセタール榭脂のビュルアルコール単位(2)の含有量は、好ましくは 0. 1— 20重量 %、さらに好ましくは 0. 5— 10重量%、特に好ましくは 1一 6重量%である。ビュルァ ルコール単位(2)の含有量が 0. 1重量%よりも大幅に少ないと、ポリビュルァセター ル榭脂の被覆性、接着性、有機溶剤のゲルィ匕性などが低下するおそれがある。一方 、 20重量%を大幅に超えると、ワニス中での溶解濃度が低くなり過ぎるおそれがある 。ところで、ポリビュルァセタール榭脂中のビュルアルコール単位(2)の含有量は、ポ リビニルァセタール榭脂の種類およびその製法に依存し、たとえば、ポリビニルプチ ラールで 10— 20重量%、ポリビュルホルマールで 5重量%前後であり、ポリビュルホ ルマールの方が好ましい。もちろん、その他のポリビュルァセタール榭脂であっても、 ビュルアルコール単位(2)の含有量を前記範囲内に調整できれば、ポリビュルホル マールと同様に好適に使用できる。
本発明に係るポリビニルァセタール榭脂にお 、て、ビニルァセタール単位( 1)およ びビュルカルボキシレート単位(3)の含有量は、ワニスの化学的な安定性の観点か らは、ビュルァセタール単位(1)が多 、ことが望まし!/、。ビュルァセタール単位(1)の 含有量は、好ましくは 50— 99重量%、さらに好ましくは 60— 95重量%、特に好まし くは 75— 95重量%の範囲力も適宜選択される。
ポリビュルァセタール榭脂の分子量は、原料のポリビュルアルコールの分子量に依 存し、原料のビュルアルコールの数平均重合度で示すと、好ましくは 50— 5000、さ らに好ましくは 100— 3000、特に好ましくは 300— 1500である。ポリビュルァセター ル榭脂の分子量が小さすぎると、ポリビニルァセタール榭脂の被覆性、接着性、有機 溶剤のゲルィ匕性などが損なわれるおそれがある。
さらに、ポリビュルァセタール榭脂の中でも、ヒドロキシル基含有量が 0. 1— 2モル Zkgであるものが好ましぐ 0. 3-1. 5モル Zkgであるものがさらに好ましい。
なお、本発明においては、ポリ酢酸ビュル、ポリプロピオン酸ビュルなどもポリビ- ルァセタールに含める。
[ポリビニルァセタール榭脂の製造方法]
ポリビュルァセタール榭脂は、ポリビュルアルコールをァセタール化及び Z又はェ ステルイ匕することにより製造できる。
ポリビニルアルコールのァセタール化は、公知の方法に従って実施できる。たとえ ば、水中にて酸触媒の存在下に、ポリビュルアルコールにアルデヒドを作用させれば 良い。アルデヒドとしては公知のものを使用でき、たとえば、ホルムアルデヒド、ァセト アルデヒド、プロピオンアルデヒド、ブチルアルデヒド、イソブチルアルデヒドなどが挙 げられる。これらの中でもホルムアルデヒドが好ましい。アルデヒドの使用量はポリビ- ルアルコール濃度などに応じて適宜選択できるが、反応溶剤(水) 1リットル当り、好ま しくは 0. 1— 4モル、さらに好ましくは 0. 2— 3モルである。酸触媒としては、たとえば 、硫酸、塩酸、硝酸、リン酸、トリクロ口酢酸、有機スルホン酸などが挙げられ、硫酸、 塩酸などが好まし 、。酸触媒の使用量はポリビュルアルコール榭脂およびアルデヒド の濃度などに応じて適宜選択できるが、反応溶剤(水) 1リットル当り、好ましくは 1一 6 グラム当量、さらに好ましく 2— 5グラム当量である。ァセタール化反応は、好ましくは 5— 90°C、さらに好ましくは 25— 80°Cの温度下に行われ、 1一 10時間程度で終了 する。
ポリビュルアルコールのエステル化には、蟻酸エステル化、酢酸エステル化、プロピ オン酸エステル化、炭酸エステル化、ポリビュルアルコール中に含まれる 1, 2—ヒドロ キシエチレン構造および Zまたは 1, 3ーヒドロキシ一; L, 3—プロピレン構造の環状炭酸 エステルイ匕などがある。
ポリビュルアルコールのエステル化は、エステル交換反応などの公知の方法に従つ て実施できる。エステルイ匕について、炭酸エステルイ匕を例にとって説明する。炭酸ェ ステルイ匕は、エステル化触媒の存在下または不存在下、ポリビュルアルコールと炭酸 ジアルキルとを直接エステル交換反応、もしくは溶剤中に混合してエステル交換反応 させること〖こより実施できる。エステルイ匕触媒としてはこの分野で常用されるものを使 用でき、たとえば、アルキルアンモ-ゥム塩、ピリジ-ゥム塩、ジァザビシクロアルケン 類、第 3級ァミン、アルキルアンモ-ゥム基、第 3級アミノ基を含有するイオン交換榭 脂、アルカリ性触媒などが挙げられる。エステル化触媒は 1種又は 2種以上を使用で きる。エステル化反応触媒の使用量は、ポリビュルアルコールの使用量、炭酸ジアル キルの種類及び使用量、溶剤の種類及び使用量、反応温度、反応圧力、反応時間 、炭酸エステルイ匕度の目標値などに応じて広い範囲力 適宜選択できるが、好ましく はポリビュルアルコール全量の 50重量%以下、好ましくは 30重量%以下である。炭 酸ジアルキルとしては、炭酸ジメチル、炭酸ジェチル、炭酸メチルェチル、炭酸ジ n— プロピル、炭酸ジイソプロピル、炭酸ジ n—ブチル、炭酸ジイソプチル、炭酸ジ sec—ブ チル、などが挙げられる。炭酸ジアルキルの使用量は特に制限されないが、好ましく はポリビュルアルコールに対して 0. 1— 20倍モル量、さらに好ましくは 0. 1— 10倍 モル量である。溶剤としては各原料を溶解または分散することができ、かつエステル 交換反応に不活性なものを使用でき、たとえば、脂肪族炭化水素類、ベンゼン、トル ェン、キシレンなどの芳香族炭化水素類、アセトン、メチルェチルケトン、メチルプロピ ルケトンなどのケトン類、ジクロロメタン、ジクロロェタンなどのハロゲン化炭化水素類、 ジグライムなどのエーテル類、ジォキサン、テトラヒドロフラン等が挙げられる。これら の溶剤は 1種又は 2種以上を使用できる。炭酸エステル化反応は、好ましくは、この 反応により副生するアルコールの沸点一反応溶剤の沸点または 200°Cのいずれか 低い方、さらに好ましくは 50— 180°Cの温度下に行われ、 5分一 50時間、好ましくは 10分一 30時間で終了する。なお、この炭酸エステル化反応は、減圧、常圧またはカロ 圧下のいずれの圧力下でも実施できる。他のエステルイ匕反応も、炭酸ジアルキルに 代えて対応する他の原料化合物を使用する以外は、従来の方法と同様にして実施 できる。
ポリビュルアルコールのァセタール化およびエステル化は、上記と同様にして、ポリ ビュルアルコールにァセタール化およびエステル化を施すことにより実施される。
[ポリビュルァセタール榭脂の酸変性]
本発明に係るポリビュルァセタール榭脂は、上記のポリビュルァセタール榭脂をそ のまま、ワニスを調製する原料として使用できるが、後述する有機溶剤や非水電解液 のゲル化性の観点から、酸変性を施すのが望ましい。その理由は充分明らかではな いが、次のように推測される。すなわち、ポリビュルァセタール榭脂中のビュルアルコ ール単位 (2)の存在状態には、高分子鎖中で孤立したランダム状と、 1, 2—ジヒドロ キシエチレン構造や 1, 3ージヒドロキシ ; L, 3 プロピレン構造のような複数個が連続 したブロック状があり、酸変性を施すと、ァセタール環の分子内交換反応が起こるとと もに、孤立したビニルアルコール単位(2)が複数個連結した構造に変化し、これによ つて有機溶剤のゲルィ匕性が向上するもの推測される。
本発明に係るポリビニルァセタール榭脂の酸変性物は、ポリビニルホルマール榭脂 の酸変性物が好ましぐ更には該酸変性物 lkg当り、ヒドロキシル基含有量が 0. 1— 2モルであるものが好ましぐ 0. 3-1. 5モルであるものが特に好ましい。
ヒドロキシル基含有量が 0. 1— 2モルの範囲にある場合は、該酸変性物の非水電 解液への溶解性または均一膨潤性や、該酸変性物の架橋による負極および Zまた は正極とセパレータとの接着性などが特に良好である。
また、ポリビニルァセタール榭脂の酸変性物の分子量は特に制限はないが、たとえ ば、電気化学素子における非水電解液のゲルイ匕に用いる場合には、電気化学素子 への非水電解液の注液性 (注入性)を良好にし、電気化学素子における負極、セパ レータおよび正極力もなる積層体の接着強度を高める為には、好ましくは 0. 3万一 3 0万、さらに好ましくは 1万一 15万、特に好ましくは 4万一 8万である。ここで、分子量 とは、 GPC (ゲル浸透クロマトグラフィー)測定によるポリスチレン換算の数平均分子 量を意味する。また、ポリビニルァセタール榭脂の分子量は、原料のポリビュルアル コールの重合度および側鎖置換基の分子量に依存し、原料のビニルアルコールの 数平均重合度で示すと、好ましくは 50— 5000、さらに好ましくは 100— 3000、特に 好ましくは 300— 1500とも表現できる。
なお、ポリビュルァセタール榭脂が酸変性を確認するには、本発明者は、酸変性前 後でポリビュルァセタール榭脂の1 H— NMR ^ベクトルを測定する。 DMSO— dのピ
6 ーク(2. 49ppm)を基準として、 4一 5ppmの領域に現れるピークが減少すれば酸変 性を受けたと推測する。この領域には、ポリビニルァセタール榭脂のビニルアルコー ル単位のヒドロキシル基由来のピークが現れると考えられ、ァセタール環やカルボキ シル基に挟まれて孤立したヒドロキシル基特有のピークと推測される。酸変性がされ ると孤立したヒドロキシル基の量が減少するため、ピークの減少が観察される。
一方、ポリビニルァセタール榭脂は、前記の孤立したヒドロキシル基とともに、主鎖 中で複数個ビニルアルコール単位が連続した構造に由来する 1 , 2—ジヒドロキシェ チレン構造および Zまたは 1, 3—ジヒドロキシー 1, 3—プロピレン構造のヒドロキシル基 を含む。前記の孤立したヒドロキシル基が減少すると、ポリビニルァセタール榭脂中 の全ヒドロキシル基量に対する 1, 2—ジヒドロキシエチレンおよび Zまたは 1, 3—ジヒド 口キシー 1, 3—プロピレン構造中のヒドロキシル基の割合が相対的に増加し、酸変性 により、 70モル%以上、さらに好ましくは 80モル%以上に高められるものと推測され る。
また、ポリビュルホルマール榭脂を例にとれば、 4. 25ppm— 4. 35ppmのピークが 酸変性によって減少または消失する。ポリビュルホルマール榭脂は、酸変性前は 4. 25ppm— 4. 35ppmのピークに相当するプロトンを通常 0. 3モル Zkg以上有するが 、酸変性によって 4. 25-4. 35ppmのピークに相当するプロトンが 30%以上、好まし くは 50%以上減少して、好ましくは 0. 25モル Zkg以下、さらに好ましくは 0. 15モル Zkg以下となる。
ポリビュルホルマール榭脂以外のポリビュルァセタール榭脂につ 、ても同様の測 定を行い、ピーク強度の変化を調べる事で、酸処理を受けたカゝ否かを判断できると推 定する。
[ポリビニルァセタールの酸変性の方法]
ポリビニルアルコール榭脂の酸変性は、種々公知の方法で行われる。例えば、ポリ ビュルァセタール榭脂を非水溶媒に懸濁もしくは溶解した状態で、適当な酸触媒を 添加し、攪拌下または無攪拌下にて加熱する。
ポリビニルァセタール榭脂の非水溶媒中の含有量は特に制限されな 、が、反応を 円滑に進行させることなどを考慮すると、好ましくは、ポリビュルァセタール榭脂、酸 触媒および非水溶媒からなる反応混合物全量の 0. 2— 20重量%、好ましくは 1一 1 0重量%である。酸触媒としては公知の酸を使用でき、たとえば、酢酸、リン酸、塩酸 、フッ酸、硫酸、トリフルォロ酢酸、硝酸などが挙げられる。これらのうち酢酸、リン酸、 硫酸、フッ酸が望ましい。酸は 1種を単独で使用できまたは 2種以上を併用できる。酸 の使用量は特に制限されないが、好ましくは、反応混合物全量の 0. 0005— 1重量 %、さらに好ましくは 0. 001—0. 01重量%である。
非水溶媒としては、ァセタール環の分子内交換反応を阻害しないものならばいず れのものも使用でき、その中でも炭酸エステル類、カルボン酸エステル類などが好ま しい。非水溶媒は 1種を単独で使用できまたは 2種以上を併用できる。反応溶剤とし て炭酸エステルを用いた場合は、反応終了後の溶液をそのまま、本発明のワニスと する事ができるのでさらに望ましい。ポリビニルァセタール榭脂と酸との反応は、好ま しくは室温一 100°C、さらに好ましくは 40— 70°Cの温度下に行われ、好ましくは 1一 100時間、さらに好ましくは 5— 48時間で終了する。
反応終了後、再沈などの一般的な精製手段によって、ポリビニルァセタール榭脂の 酸変性物を含む反応混合物より該酸変性物を分離して、本発明のワニスに使用する
〔非水溶媒〕
ワニスに使用する非水溶媒としては、炭酸エステルを使用する。
炭酸エステルは炭酸とアルコールとをエステルイ匕した構造を有し、刺激性、毒性、 悪臭性が低ぐ環境影響が非常に低い溶剤である。また、類似の構造のカルボン酸 エステル溶剤に比べて引火性が非常に低ぐより安全であるという特徴を有する。たと えば、酢酸ェチルの引火点 4°Cに対して、炭酸ジェチルの引火点は 31°Cであり、 室温以上である。このため、本発明のポリビュルァセタール榭脂ワニスは、従来使用 されてきたポリビニルァセタール榭脂ワニスよりも、安全に作業を行なうことができる。 炭酸エステルには、 2つの置換基が互いに連結していない鎖状炭酸エステルと、 2 つの置換基が互 、に連結した構造である環状炭酸エステルとがある。
鎖状炭酸エステルとしては、ジメチルカーボネート、ェチルメチルカーボネート、ジ ェチルカーボネート、メチル n—プロピルカーボネート、ェチル n—プロピルカーボネー ト、ジ n プロピルカーボネート、メチル iso プロピルカーボネート、ェチル iso プロピ ノレカーボネート、ジ iso—プロピルカーボネート、ブチノレメチノレカーボネート、ブチノレエ チノレカーボネート、ブチノレ n プロピノレカーボネート、ジブチノレカーボネート、メチルー 2, 2, 2—トリフルォロェチルカーボネート、ェチルー 2, 2, 2—トリフルォロェチルカ一 ボネート、ジ(2, 2, 2 トリフルォロェチル)カーボネート、メチルー 3, 3, 3, 2, 2—ぺ ンタフルォロプロピルカーボネート、ェチルー 3, 3, 3, 2, 2 ペンタフルォロプロピル カーボネート、プロピル 3, 3, 3, 2, 2 ペンタフルォロプロピルカーボネート、ジ(3 , 3, 3, 2, 2 ペンタフルォロプロピル)カーボネートなどが挙げられる。
環状炭酸エステルとしては、エチレンカーボネート、 1, 2—プロピレンカーボネート、 1、 3 プロピレンカーボネート、 1 , 2—ブチレンカーボネート、 2, 3—ブチレンカーボネ ート、 1, 2 ペンテンカーボネート、 2, 3 ペンテンカーボネート、 1, 2—へキセンカー ボネート、 2, 3—へキセンカーボネート、 3, 4一へキセンカーボネート、 n—ブチノレエチ レンカーボネート、 n—へキシノレエチレンカーボネート、シクロへキシノレエチレンカーボ ネート、フノレオ口エチレンカーボネート、 1, 1 ジフノレオ口エチレンカーボネート、 1, 2 ージフルォロエチレンカーボネート、トリフルォロメチルエチレンカーボネート、フルォ ロメチノレエチレンカーボネート、ジフノレオロメチノレエチレンカーボネート、クロロェチレ ンカーボネートなどが挙げられる。
以上に例示した炭酸エステルのうち、ポリビュルァセタール榭脂の溶解性とワニス 粘度の観点からは分子量が小さ 、炭酸エステルが望ま U、。このような炭酸エステル として、エチレンカーボネート、 1, 2 プロピレンカーボネート、 1、 3 プロピレンカー ボネート、ジメチノレカーボネート、ェチノレメチノレカーボネート、ジェチノレカーボネート、 メチル n プロピルカーボネート、ェチルー n プロピルカーボネート、ジー n プロピル カーボネート、メチル iso プロピルカーボネート、ェチル iso プロピルカーボネート、 ジ iso プロピルカーボネート、ジー n プロピルカーボネートなどが望ましぐエチレン カーボネート、 1, 2—プロピレンカーボネート、ジメチルカーボネート、ェチルメチルカ ーボネート、ジェチルカーボネートなどがさらに望ましぐエチレンカーボネート及び 1 , 2—プロピレンカーボネートが最も望ましい。
鎖状炭酸エステルおよび環状炭酸エステルはそれぞれ単独で用いてもそれらを混 合して用いても良いが、ポリビニルァセタール榭脂の溶解性をさらに高めるためには 、鎖状炭酸エステルと環状炭酸エステルとの混合溶剤を用いるのが好ましい。鎖状 炭酸エステル又は環状炭酸エステルのいずれか一方のみを用いる場合には、ポリビ 二ルァセタール榭脂の分子量やィ匕学構造を特定のものに限定する力 またはワニス 調製時に加熱を行なうことによってポリビュルァセタール榭脂を溶解することができる 。ここで、ポリビュルァセタール榭脂の溶解性を高めるとは、たとえば、ポリビュルァセ タール榭脂をより高濃度で溶解すること、ポリビニルァセタール榭脂の種類に関係な く溶解できること、溶解時 (ワニス調製時)に加熱する必要がないこと、ワニス調製後 にワニス温度が低下して室温以下になってもポリビニルァセタール榭脂の析出がな いことなどを意味する。
環状炭酸エステルと鎖状炭酸エステルとの混合溶媒を使用する場合は、ポリビュル ァセタール榭脂の溶解性が極めて向上し、ポリビニルァセタール榭脂のワニス中の 溶解濃度が大幅に向上し、ワニスの粘度を下げることができる。
このような効果が得られる理由は明らかではな 、が、ポリビニルァセタール榭脂の 極性部分を環状炭酸エステルが溶解し、また非極性部分を鎖状炭酸エステルが溶 解し、さら〖こ、環状炭酸エステルと鎖状炭酸エステルの相互溶解性が極めて良好で あるためと思われる。
環状炭酸エステルと鎖状炭酸エステルの混合溶媒の組み合わせとしては、環状炭 酸エステルとしてエチレンカーボネート及び Z又は 1, 2—プロピレンカーボネートを用 い、鎖状炭酸エステルとしてジメチルカーボネート、ェチルメチルカーボネート、ジェ チノレカーボネート、ジメチルカーボネートとェチルメチルカーボネート、ジェチノレカー ボネートとェチルメチルカーボネートを用いるものが例示される。これらのうちで、ポリ ビニルァセタール榭脂の溶解性が向上する事から、エチレンカーボネートを含有する 組み合わせが望ましい。 環状炭酸エステルと鎖状炭酸エステルとの体積配合比 (環状炭酸エステル:鎖状炭 酸エステル)は、溶解しょうとするポリビュルァセタール榭脂の種類および濃度に応じ て広い範囲力も適宜選択できる力 好ましくは 1 : 19一 19 : 1、さらに好ましくは 1 :4一 9 : 1、特に好ましくは 1 : 3— 3 : 1である。このような範囲にすることで、ポリビュルァセ タール榭脂のワニス中の溶解濃度を高める事ができ、かつワニスの粘性を下げること ができる。
また、非水溶媒の含有水分量は、 200ppm以下、好ましくは 50ppm以下、さらに好 ましくは 20ppm以下である。この範囲にあれば、ポリビュルァセタール榭脂ワニスの 含有水分量が低く抑えられて好まし ヽワニスが得られる。
〔ポリビニルァセタール榭脂ワニス〕
本発明のポリビュルァセタール榭脂ワニスは、前記ポリビュルァセタール又はその 酸変性物と、炭酸エステル溶媒とからなる。
本発明のワニスにおけるポリビニルァセタール榭脂の濃度は特に制限されず、ポリ ビュルァセタール榭脂の種類、得られるワニスの用途などに応じて広 、範囲から適 宜選択できる。ワニスの粘性などを考慮すると、ポリビュルァセタール榭脂はワニス全 量に対して好ましくは 0. 2— 20重量%、さらに好ましくは 1一 10重量%であり、特に 好ましくは 1一 5重量%である。濃度はこの範囲において用途に応じて種々選択でき る。
なお、ポリビュルァセタール榭脂の種類は、用いられる非水溶媒の種類に応じて、 該非水溶媒に溶解するものの中から、該非水溶媒に対する溶解度、ワニスの粘度、 後述する有機溶剤のゲル化性などを勘案して、適宜選択される。
本発明のワニス中の含有水分量は、後述する有機溶剤、電気化学素子における非 水溶媒などのゲルィ匕の観点からは、少ないことが望ましい。一方、水分量が少なすぎ る場合は、ワニスがゲルイ匕してしまう懸念があるので、適量の水分を含有する必要が ある。このため、好ましくは 2ppm以上 200ppm以下、さらに好ましくは 2ppm以上 10 Oppm以下、特に好ましくは 5ppm以上 50ppm以下とするのが良い。ワニス中の含有 水分量を少なくする方法としては、非水溶媒およびポリビュルァセタール榭脂の含有 水分量をあらかじめ少なくする方法、ワニス中の非水溶媒を蒸留操作で少量流出さ せ、水分を非水溶媒との共沸で流出させて除く方法、ワニスを脱水剤で処理して水を 除く方法などが挙げられる。脱水剤としては、たとえば、無水硫酸ナトリウム、モレキュ ラーシーブス、シリカゲルなどの水分吸着剤が挙げられる。水分吸着剤は、カラム中 に充填してワニスを流過させたり、ワニスに混合し攪拌して、ワニス中の水分を除去す る。これら方法によって、ワニス中の含有水分量を 50ppm以下にすることができる。 本発明のワニスは、その好ましい特性を損なわない範囲(たとえば、刺激性、毒性、 引火性などを作業に支障を来たすほど高めない範囲)で、炭酸エステル以外の溶剤 、ポリビニルァセタール榭脂以外の合成樹脂を含んでも力まわない。炭酸エステル以 外の溶剤としては、水、アルコール類、カルボン酸エステル類、エーテル類、アミド類 、力ルバミン酸エステル類、リン酸エステル類、芳香族炭化水素類、フッ素置換炭化 水素類などが挙げられる。また、ポリビュルァセタール榭脂以外の合成樹脂としては 、炭酸エステルなどの非水溶媒に均一に溶解するもので、ポリビニルァセタール榭脂 の接着性、被覆性、後述のゲルィ匕性を損なわないものならば特に制限されず、たとえ ば、ポリエステル、ポリカーボネート、ポリエーテル、ポリイミドなどが挙げられる。 次に、本発明のポリビニルァセタール榭脂ワニスの用途について説明する。
〔ポリビュルァセタール榭脂ワニスによる有機溶剤のゲル化〕
本発明のポリビュルァセタール榭脂ワニスは、種々の有機溶媒をゲル化する為の ゲル化剤にすることができる。本発明のゲル化剤は、ポリビュルァセタール榭脂の濃 度が 1一 2重量%といった少量でも、有機溶剤をゲルイ匕することができる。この特性に 基づいて、本発明のワニスを、たとえば、有機系芳香剤、人工皮膚材料などの生体 模擬高分子材料、リチウム電池、電気二重層キャパシタなどの電気化学素子におけ る非水電解液などのゲル化剤として利用できる。たとえば、非水電解液のゲルイ匕に用 いると、電気化学素子の液漏れ防止に有効であり、電気化学素子の形状自由度を向 上させることができる。
本発明のポリビュルァセタール榭脂ワニスにより有機溶剤がゲルィ匕する機構は必 ずしも明らかではな ヽが、ポリビニルァセタール榭脂が有機溶剤に均一に溶解した 状態で有機溶剤中の水分が除去されると、ポリビュルァセタール榭脂のビュルアルコ ール単位 (2)の水酸基同士が強く相互作用して擬似的に結合し、有機溶剤中で 3次 元的なポリビニルァセタール榭脂の網目構造が形成されるためと思われる。
本発明のゲル化剤は含有水分量が少ないことが望ましぐ好ましくは 200ppm以下 、さらに好ましくは lOOppm以下、特に好ましくは 50ppm以下とするのが良い。このヮ ニスより含有水分を除去するには、脱水剤を用いる。脱水剤としては、ワニスおよび 有機溶剤中の水分を完全またはほぼ完全に除去するために、反応性の脱水剤が望 ましい。このような脱水剤としては、シリルエステル類、ホウ酸エステル類、ジシラザン 類、イソシァネート類、有機金属化合物、金属アルコキシド類などが挙げられる。脱水 剤の添加量は、ポリビニルァセタール榭脂ワニスとゲルイ匕させる有機溶剤との混合物 中の水分量を勘案して定められる。通常、含有水分と反応する当量の 1一 100倍量、 好ましくは 10— 50倍量を添加するのが望ましい。
〔非水電解液〕
本発明の非水電解液は、本発明のポリビュルァセタール榭脂ワニスと、電解質とを 必須成分として含有する。本発明の非水電解液は、前記必須成分とともに、酸を発 生させる化合物を含むことができる。
また、そのポリビュルァセタール榭脂は酸変性されたものでも酸変性されて ヽな ヽ ものでも良いが、酸変性されているものがより好ましい。本発明のポリビュルァセター ル榭脂ワニスを使用すると非水電解液のゲルイ匕が起こりやすくなると共に、後述する 電気化学素子の負極および Zまたは正極とセパレータの接着性が高められる。
(a)ポリビュルァセタール榭脂を含むワニス
ポリビニルァセタール榭脂を含むワニスは、前述のポリビュルァセタール榭脂を非 水溶媒に溶解させたものである。
ポリビニルァセタール榭脂をワニス化させるのに用いる炭酸エステル溶媒は、本発 明の非水電解液にぉ ヽて、電解質を溶解または分散させる非水電解液溶媒としても 作用する。本発明のワニスに使用する非水溶媒としては、前述のように炭酸エステル が用いられるが、非水電解液溶媒に用いる場合は、炭酸エステル以外のこの分野で 常用される非水溶媒をも含有できる。
炭酸エステル以外の非水溶媒としては、たとえば、 γ—プチ口ラタトンなどの環状力 ルボン酸エステル類、酢酸メチル、プロピオン酸メチル、ペンタフルォロプロピルァセ テート、トリフルォロ酢酸メチルなどの鎖状カルボン酸エステル類、ジメトキシェタン、 テトラヒドロフランなどのエーテル類、 N—メチルピロリドン、ジメチルホルムアミドなどの アミド類、メチルー N, N—ジメチルカーバメート、 N—メチルォキサゾリジノンなどのカー バメート類、 N, N—ジメチルイミダゾリジノンなどのウレァ類、ホウ酸トリエチル、ホウ酸 トリブチルなどのホウ酸エステル類、リン酸トリメチル、リン酸トリオクチルなどのリン酸 エステル類、ベンゼン、トルエン、キシレン、フルォロベンゼン、フルォロトルエン、クロ 口ベンゼン、ビフエ-ル、フルォロビフエ-ルなどの芳香族炭化水素類、トリフルォロ ェチルメチルエーテルなどのフッ素化エーテル類などが挙げられる。非水溶媒は 1種 を単独で使用できまたは 2種以上を併用できる。これらの非水溶媒の中には、刺激性 、毒性、環境汚染性、臭気、引火性などを有するものが含まれるが、非水電解液は電 気化学素子の内部に密閉された状態で使用され、またその使用量も少ないので、特 に問題にはならない。
(b)ポリビュルァセタール榭脂の非水電解液中の含有量
ポリビニルァセタール榭脂の非水電解液における含有量は特に制限されないが、 電気化学素子のイオン伝導度、負荷特性、高温保存性などの低下をできるだけ防止 し、かつ負極、セパレータおよび正極の積層体の機械的強度をできるだけ高めるとい う観点から、好ましくは非水電解液全量の 0. 3— 3. 5重量%、さらに好ましくは 0. 7 一 2. 3重量%である。
さらに本発明では、非水電解液の電気化学素子への注入性、負極、セパレータぉ よび正極力 なる積層体の接着強度などを一層高めるという観点から、ポリビュルァ セタール榭脂の数平均分子量 λの平方根( λ 1/2)と、ポリビニルァセタール榭脂の 非水電解液における濃度 c (重量0 /0)との積( λ 1/2 X c)力 好ましくは 100— 1000 ( 100≤ λ l/2 X c≤1000)、さらに好ましくは 200— 800 (200≤ λ l/2 X c≤800 )の範囲にあることが望ましい。ここで、数平均分子量とは、ゲル浸透クロマトグラフィ 一 (GPC)測定によるポリスチレン換算の数平均分子量を意味する。ゲル浸透クロマ トグラフィ一の条件は次の通りである。検出器に示差屈折率検出器を使用し、分離力 ラムとして Shoudex KF— 805L (商品名) X 2本およびプレカラムとして Shoudex KF— 800P (商品名)を用い、キャリア溶媒としてテトラヒドロフランを用いる。分子量標準の ポリスチレンおよびサンプルのポリビュルァセタール榭脂 20mgをテトラヒドロフラン 2 Omlに溶解してサンプルとする。キャリア溶媒の流量を lmlZminとして、 30°Cで、サ ンプル lOOulを注入しクロマトグラムを得る。
(b)電解質
電解質は、電気化学素子の種類に応じて、この分野で常用されるものの中から適 宜選択して使用できる。電解質としてたとえばリチウム塩を含む本発明の非水電解液 を用いれば、充放電負荷特性および形状保持性に優れたリチウム電池が得られる。 また電解質としてアルキルアンモ-ゥム塩を含む本発明の非水電解液を用いれば、 充放電負荷特性および形状保持性に優れる電気二重層コンデンサが得られる。電 解質の非水電解液中における含有量は、電解質の種類および電気化学素子の種類 に応じて広い範囲力も適宜選択できる力 通常は 0. 1— 10モル Zリットル、好ましく は 0. 3— 3モル Zリットルである。
(c)酸を生成する化合物
本発明の非水電解液には、ポリビュルァセタール榭脂ワニスおよび電解質の他に、 酸を生成する化合物を添加することが好ましい。酸を生成する化合物は、主に、ポリ ビュルァセタール榭脂の主鎖中のヒドロキシル基が充電工程での通電により電解酸 化されて生成するアルデヒド基と、主鎖中の 1, 2—ジヒドロキシエチレン構造または 1
, 3—ジヒドロキシー 1, 3—プロピレン構造の中の、電解酸化を免れたヒドロキシル基と の反応を触媒する作用を示す。また、ポリビュルァセタール榭脂の酸変性をも行うこ とができる。従って、非水電解液中に含有されるポリビニルァセタール榭脂が酸変性 されていなくても、酸を生成する化合物とを添加しておけば、水分を添加して酸を生 成させたり、充電工程およびエージング工程で酸を生成れば、電解液中のポリビ- ルァセタール樹脂を酸変性させることもできる。ただし、負極、セパレータおよび正極 力もなる積層体の接着強度を高めるという観点からは、ポリビュルァセタール榭脂を あらカゝじめ酸変性させたポリビニルァセタール榭脂ワニスを非水電解液に添加するの が好ましい。
本発明の非水電解液は、酸を生成する化合物を使用すると、非水電解液のゲル化 が起こりやすくなると共に、後述する電気化学素子の負極および Zまたは正極とセパ レータとの接着性が高められる。
酸を生成する化合物としては、たとえば、水との反応によって酸を生成する化合物、 電気化学素子の作動電圧範囲で電解酸化される化合物などが挙げられるが、水との 反応により酸を生成する化合物が特に好まし 、。
水との反応により酸を生成する化合物は、電気化学素子のセパレータゃ電極中に 残存する水分と反応して酸を発生させる。酸の発生は、エージング工程の加温により カロ速させることができる。なお、現在の技術では、電気化学素子中の水分を完全に 除去することはできない。このような化合物としては、水との反応によって酸を発生す る公知の化合物を使用でき、たとえば、ハロゲン原子を有するルイス酸、ルイス酸塩、 硫酸エステル、硝酸エステルなどが挙げられる。ハロゲン原子を有するルイス酸とし ては、たとえば、 PF R (11= 1—5、1^=有機基)、8 1^ (11= 1ー3、1^=有機 n (5-n) n (3— n) 基)、 AsF R (n= l— 5、R=有機基)、 SiF R (n= 1— 4、 R=有機基)、 A1F
n (5-n) n (4-n)
R (n= 1 3、 R=有機基)、 TiF R (n= 1 4、 R=有機基)、 PCI R (n n (3-n) n (4-n) n (5-n)
= 1 5、 R=有機基)、 BC1 R (n= 1 3、 R=有機基)、 AsCl R (n= 1 5
n (3-n) n (5-n)
、 R=有機基)、 SiCl R (n= 1 4、 R=有機基)、 A1C1 R (n= 1 3、 R二有 n (4-n) n (3-n)
機基)、 TiCl R (n= l 4、 R二有機基)などが挙げられる。ハロゲン原子を有す n (4-n)
るルイス酸塩としては、たとえば、 LiPF、 LiBF、 LiAsF、 Li SiF、 LiCIO、 LiPF
6 4 6 2 6 4 n
(C F ) (n= 1 5、 k= 1一 8の整数)、 LiBF (C F ) (n= 1 3、 k k (2k+ 1) (6-n) n k (2k+ 1) (4-n)
= 1一 8の整数)、 R NPF (R=有機基)、 R NBF (R=有機基)、 R NAsF (R =有
4 6 4 4 4 6 機基)、 R N SiF (R=有機基)、 R NPF (C F ) (n= 1 5、 k= 1一 8の
4 2 6 4 n k (2k+ l) (6-n)
整数、 R=有機基)、 R NBF (C F ) (11= 1ー3、1^= 1ー8の整数、1 =有
4 n k (2k+ l) (4-n)
機基)などが挙げられる。ハロゲン原子としては、フッ素、塩素、臭素などが挙げられ るが、電気化学素子の耐食性への影響などを考慮すると、フッ素原子が望ましい。硫 酸エステルとしては、たとえば、 1, 3 プロパンスルトン、ベンゼンスルホン酸メチル、 1, 3 プロパー 2 エンスルトン、 1, 4 ブタンスルトン、硫酸ジメチル、硫酸ジェチル、 硫酸エチレンなどが挙げられる。硝酸エステルとしては、たとえば、硝酸ェチルなどが 挙げられる。これらの中でも、ハロゲン原子を有するルイス酸、ルイス酸塩が好ましぐ 取り扱い性、入手性などを考慮すると、 LiPF、 LiBF、 R NPF (R =有機基)、 R N BF (R=有機基)、 SiF R (n= l— 4、 R=有機基)などがさらに好ましい。また、
4 n (4-n)
LiPF、 LiBF、 R NPF (R=有機基)、 R NBF (R=有機基)などは、電気化学素
6 4 4 6 4 4
子の電解質塩としても働くので特に好ま ヽ。上記化合物は 1種を単独で使用できま たは 2種以上を併用できる。水との反応により酸を発生する化合物の非水電解液中 の含有量は、電気化学素子の種類に応じて適宜選択される。電気化学素子がリチウ ム電池である場合を例にとると、該化合物による電池特性低下が懸念されるので、該 化合物の非水電解液中の含有量は 0. 2モル Zリットル以下、好ましくは 0. 05モル Z リットル以下である。ただし、電気化学素子がリチウム電池であり、該化合物がフッ素 原子を有するルイス酸またはルイス酸塩であり、且つリチウム塩である場合は、特性 への悪影響が現れにくいため、 0. 2モル/リットルを超えて含有させても良い。 電気化学素子の作動電圧範囲で電解酸化される化合物は、電気化学素子の初期 充電工程で電解酸化されて酸を発生させ、ポリビュルァセタール榭脂の架橋に寄与 することができる。このような化合物としては、たとえば、水、メタノール、エタノール、 プロパノーノレ、エチレングリコーノレ、ジエチレングリコーノレ、ポリエチレングリコーノレ、 プロピレングリコール、トルエン、ジフエ-ルメタン、シクロへキシルベンゼン、アセトン 、マロン酸エステル類、ポリビュルアルコールなどのプロトン性化合物などが挙げられ る。上記化合物は 1種を単独で使用できまたは 2種以上を併用できる。初期充電の際 に印加する電圧は、電気化学素子の作動電圧範囲の中から、その化合物が電解酸 化される電圧を適宜選択すればよい。たとえば、リチウムの溶解析出電位に対して、 電解酸化される化合物がアルコール類の場合は、 3V以上、芳香族化合物類の場合 は 4V以上である。電解酸化される化合物の非水電解液中の含有量は、電気化学素 子の種類、負極、セパレータおよび正極からなる積層体中に存在させた架橋性高分 子材料の種類などに応じて広い範囲から適宜選択できる力 通常は 0. 002—0. 1 モノレ/リツ卜ノレ、女子ましくは 0. 005— 0. 05モノレ/リツ卜ノレである。
また、上記の水との反応により酸を生成する化合物と電気化学素子の作動電圧範 囲で電解酸化される化合物とを併用することもできる。
これらの中でも、水との反応により酸を発生する化合物が好ましぐハロゲン原子を 有するルイス酸、ルイス酸塩が特に好ましい。 (d)非水電解液の調製
本発明の非水電解液は、通常の方法に従い所望の組成に調整することができる。 例えば、あらかじめリチウム塩と非水電解液溶媒力もなる別の非水電解液を調製し、 これに本発明のポリビュルァセタール榭脂ワニスや酸を生成する化合物を混合溶解 する或いは、本発明のポリビニルァセタール榭脂ワニスにリチウム塩や酸を生成する 化合物を混合溶解する方法、本発明のポリビニルァセタール榭脂ワニスに非水溶媒 とリチウム塩や酸を生成する化合物を混合溶解する方法などが挙げられる。このうち 、あらかじめリチウム塩と非水溶媒力もなる別の非水電解液を調製し、これに本発明 のポリビュルァセタール榭脂ワニスや酸を生成する化合物を混合溶解する方法が作 業性の観点力も最も望ましい。但し、酸を生成する化合物は必要に応じて添加する。 通常は、上記のように得られた非水電解液を電気化学素子中にを注入する。
また、本発明の非水電解液は、セパレータ中や、負極および Zまたは正極とセパレ ータとの間などにポリビュルァセタール榭脂を存在させてなる積層体を作製し、この 積層体に、非水溶媒に電解質を溶解させた一般的な非水電解液 (ポリビニルァセタ 一ル榭脂を含まな ヽ)を注入することによつても調製することもできる。積層体に注入 された前記一般的な非水電解液とポリビュルァセタール榭脂とが接触し、該ポリビ- ルァセタール樹脂が前記の非水電解液中に溶解または膨潤することにより、本発明 の非水電解液が得られる。
このような調製法を採る場合は、一般的な非水電解液を積層体に注入した後、該ポ リビュルァセタール榭脂を充分に溶解または膨潤させるために、しばらく放置してお くのがよい。放置条件は特に制限はないが、金属缶、集電体などから金属成分が溶 出することなどを考慮すると、たとえば、室温下で半日一 2日、 45°Cでは数時間一 1 日、 60°Cでは 1一数時間である。
〔電気化学素子〕
本発明の電気化学素子は、負極、セパレータ、正極および非水電解液を含み、負 極および Zまたは正極とセパレータとカ ポリビニルァセタール榭脂の架橋物からな る接着層により接着されていることを特徴とする。その中でも、負極及び正極の両方 の電極とセパレータとの間に接着層が形成されているものが好ましい。 接着層は、負極とセパレータまたは正極とセパレータの全面を覆うように形成されて もよぐまたは一部に任意のパターンで形成されていてもよい。
本発明の電気化学素子において、ポリビニルァセタール榭脂の架橋物は、非水電 解液溶媒、電解質および該架橋物の合計量全量に対して、好ましくは、 3. 5重量% 以下、さらに好ましくは 0. 3— 3. 5重量%、特に好ましくは 0. 5-2. 5重量%の割合 で含まれる。この範囲にあれば、電気化学素子としての特性が低下するのを防止し、 負極、セパレータおよび正極力 なる積層体の接着強度が低下するのを防止する上 で、特に有効である。尚、該架橋物は、ポリビュルァセタール榭脂が酸変性を受けた 物の方が酸変性を受けない物よりも、電極とセパレータの接着性が向上するので望 ましい。
ポリビニルァセタール榭脂の架橋物は、添加量が非常に少なくても電気化学素子 に充分な形状保持性を付与できるので、該架橋物によって正極と負極間のイオンの 移動が阻害されることがない。換言すれば、少量の架橋物の使用で、電気化学素子 に充分な形状保持性を付与できるので、架橋物の存在によるイオン伝導性の低下を 最小限にすることができ、充放電負荷特性に優れた電気化学素子を得ることができる 。また、該架橋物は、電気化学素子が高温にさらされても、溶融したりまたは非水電 解液に溶解して接着強度が低下する恐れがなぐ広い温度範囲で形状保持性に優 れ、高温保持性にも優れた電気化学素子を得ることができる。
本発明の電気化学素子は、本発明の非水電解液を含む。ただし、該非水電解液 中のポリビュルァセタール榭脂は、充電工程において通電により架橋物となっている 。ポリビニルァセタール榭脂が酸変性されている場合は、酸変性されていない物より も通電により電解酸化を受けて架橋物になりやすい。また、ポリビュルァセタール榭 脂の酸変性物を含有する非水電解液は、酸変性を受けて 、な 、ポリビュルァセター ル榭脂を含有する非水電解液よりも接着強度が高 ヽので、酸変性を受けて ヽな ヽポ リビュルァセタール榭脂よりも少ない量で、電気化学素子の機械的強度を高め、その 形状保持性及び高温保存性などを向上させることができる。また、該酸変性物の含 有量を非常に少なくできるので、通電による架橋の際に非水電解液がゲルイ匕したとし ても、イオンの移動を阻害するほどのゲルィ匕は起こらないので、非水電解液のイオン 伝導度が実用上支障を来たすほど低下することがなぐ電気的負荷特性、充放電特 性に優れた電気化学素子が得られるという利点を有する。
本発明の電気化学素子において用いられる負極は、負極活物質と負極集電体とを 含む。負極活物質は、電気化学素子の種類に応じて、従来力 この分野で常用され るものの中から 1種又は 2種以上を適宜選択して使用できる。負極集電体としては、 たとえば、銅、ニッケル、ステンレス鋼、アルミニウム、チタンなどが挙げられる。
負極は、負極活物質と結着剤とを含む組成物を所望の形状に成形した後これを負 極集電体に接着する或いは、負極活物質と結着剤とを含む組成物にさらに溶媒を加 えて負極合剤スラリーとした後これを負極集電体の片面に塗布して乾燥させた後、必 要に応じて負極活物質の充填密度を高めるための加圧プレスを行う方法、負極活物 質または結着剤を被覆した負極活物質をロール成形、圧縮成形などによって所望の 形状に成形する方法などに従って作成することができる。
これらの方法において使用する結着剤としては、この分野で常用されるものを使用 でき、たとえば、フッ素榭脂、セルロース類、ゴムなどのラテックス類などが挙げられる 。溶媒としても、この分野で常用されるものを使用でき、たとえば、水、 N—メチルピロリ ドン、ジメチルァセトアミド、ジメチルホルムアミド、プロピレンカーボネート、 γ—ブチロ ラタトン、 Ν—メチルォキサゾリジノンなどが挙げられる。溶媒は 1種を単独で使用でき または必要に応じて 2種以上を併用できる。
なお、負極としては、負極活物質層の活物質充填密度を高めた後に、負極活物質 層の表面に前記のポリビニルァセタール榭脂を含む被覆層を設けたものが好ましい 。このような負極を用いることによって、負極表面で起こる副反応が抑制され、得られ る電気化学素子の電気化学素子としての容量を大きくすることができる。
本発明の電気化学素子において用いられる正極は、正極活物質と正極集電体とを 含んで構成される。正極活物質は、電気化学素子の種類に応じて、この分野で常用 されるものの中から 1種又は 2種以上を適宜選択して使用できる。正極集電体として は、たとえば、 Al、 Ti、 Zr、 Hf、 Nb、 Taあるいはこれらの 2種以上を含む合金などの 、非水電解液中での陽極酸ィ匕によって表面に不動態被膜を形成する金属などが挙 げられる。正極は、導電助剤を含んでいてもよい。導電助剤としては公知のものを使 用でき、たとえば、カーボンブラック、アモルファスウイスカ、黒鉛などが挙げられる。 正極は、前述の負極の製造法において、負極活物質に代えて正極活物質を用い、 かつ負極集電体に代えて正極集電体を用いる以外は同様にして製造できる。
本発明の電気化学素子において用いられるセパレータは、正極と負極とを電気的 に絶縁してイオンを透過させる膜であって公知の種々のものを用いることができる力 多孔性膜が好適に使用できる。多孔性膜の素材は、たとえば、ポリオレフイン、ポリイ ミド、ポリフッ化ビ-リデン、ポリエステルなどが挙げられ、微多孔膜の形状は微多孔 フィルムゃ不織布などが挙げられる。本発明に係るセパレータは、多孔ポリオレフイン フィルムであることが好ましぐ多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィ ルム或いは多孔性ポリエチレンフィルムと多孔性ポリプロピレンフィルムとの多層フィ ルムなどが特に好ましい。多孔性膜の表面には、熱安定性に優れる他の樹脂がコー ティングされてもよい。
本発明の電気化学素子は、たとえば、リチウム二次電池、リチウム一次電池、マグネ シゥム電池、カルシウム電池などの電池、アルミ電解コンデンサ、電気二重層コンデ ンサ電気化学コンデンサなどのコンデンサなどが含まれる。
本発明の電気化学素子は、上記のように、電気的負荷特性、充放電特性、形状保 持性および高温保存性に優れ、高い機械的強度を示す。また、本発明の電気化学 素子は、薄型化が容易であり、長期間使用しても、充分な電気的負荷特性および充 放電特性を維持することができ、液漏れや破損などの心配もないので、これらを防止 するための特殊な構造を付与する必要がな!、。
〔電気化学素子の製造方法〕
本発明の電気化学素子は、負極、セパレータおよび正極を含む積層体に、ポリビ 二ルァセタール榭脂成分を含む非水電解液を含漬させた後、充電工程における通 電によりポリビュルァセタール榭脂を電解酸ィ匕して架橋物とすることによって得られる 。本発明の製造方法の最大の特徴は、充電操作をトリガーとして、ポリビュルァセタ 一ル榭脂を架橋させることであり、架橋することにより、負極および Zまたは正極とセ パレータとを接着する。ここで、ポリビュルァセタール榭脂成分は、ィ)ポリビュルァセ タール榭脂または口)ポリビュルァセタール榭脂と酸を生成する化合物との混合物で ある。
本発明の電気化学素子の製造方法は、負極、セパレータおよび正極を含む積層 体を電気化学素子用筐体に収容した後、該積層体に非水電解液を注入して該筐体 を密閉し、初期充電及びエージングを施す一般的な電気化学素子の製造方法をとる が、電解液として本発明の非水電解液を用いる。該非水電解液に含まれるポリビ- ルァセタール樹脂は、初期充電工程において通電により架橋させることによって、本 発明の電気化学素子を製造できる。
ポリビニルァセタール榭脂は、酸変性されて ヽても酸変性されて 、なくても良!、が、 通電工程におけるポリビュルァセタール榭脂の架橋が起こりやすく負極とセパレータ および Zまたは正極とセパレータの接着性が高 、ことから、酸変性されて 、る物が望 ましい。ポリビニルァセタール榭脂が酸変性されていない場合は、非水電解液に酸を 生成する化合物を含有させれば、充電工程およびエージング工程において、非水電 解液中に酸を生成させてポリビニルァセタール榭脂を酸変性させ、ひ 、ては架橋が 起こりやすくなる。
本発明の製造方法によれば、従来のゲル型高分子電解質に比べ、ポリビュルァセ タール榭脂が大幅に少ない量で、電気化学素子を構成する部品の接着強度が同等 またはそれ以上の電気化学素子を得ることができる。さらに、ポリビュルァセタール榭 脂が架橋して非水電解液をゲル化させたとしても、該架橋物の量が非常に少な 、た め非水電解液中でのイオンの移動を阻害することがほとんどないので、非水電解液 が本来有する高 ヽイオン伝導度が充分に発揮され、電気的負荷特性に優れた電気 化学素子を得ることができる。
なお、類似の構成の電気化学素子を得る方法として例えば以下の方法があるが好 ましくない。電極とセパレータとを接着剤で予め接着した後に非水電解液を注入する 方法は、非水電解液を注入するのが非常に困難になる。また、非水電解液中に膨潤 してはじめて接着性を示す接着剤を電極とセパレータに塗布した後、非水電解液を セパレータに注入して電極とセパレータを接着させる方法は、そのような接着剤は非 水電解液に対する膨潤性が高いので、高温にさらされる力または長期間保管される と、非水電解液に溶解し、接着性が低下する。 本発明の製造方法は、電気化学素子を作製する通常の工程内で行われ、新たな 工程を付加する必要がないため、電気化学素子の一般的な製造設備をそのまま利 用することができ、シンプルな製造工程とすることができる。
1)負極、セパレータおよび正極力もなる積層体中に非水電解液を注入する工程 本発明においては、まず、負極、セパレータおよび正極を積層する。この積層体は 、必要に応じて、円筒型、コイン型、角型、フィルム状などの任意の形状に形成され、 金属缶、金属ラミネートフィルム力 なる袋体などの電気化学素子用の筐体に収納さ れる。積層体には、本発明の非水電解液が注入される。注入には、一般的な非水電 解液の注入方法が採用できる。
なお、非水電解液は、積層体に注入するために、流動性を有することが必要である ので、積層体に注入するまでは、非水電解液の酸分量が低く保たれることが好ましい 。ここで言う「酸」は酸変性物を徐々に変質させるものであり、酸を生成する化合物で はない。酸は、主に、非水電解液に含まれる各成分中に不純物として含まれるもので
、フッ化水素が例示される。具体的には、非水電解液中の酸分量は、通常 20ミリモル Zリットル以下、好ましくは 5ミリモル Zリットル以下、さらに好ましくは 2ミリモル Zリット ル以下とするのがよい。酸分量が多いと、非水電解液を積層体に注入する前に酸変 性物が架橋または変質され、非水電解液が増粘して積層体への注入が困難になる おそれがある。
また、積層体中、たとえば、負極とセパレータとの間、正極とセパレータとの間、セパ レータ内などに、ポリビュルァセタール榭脂を存在させておき、この積層体にポリビ- ルァセタール榭脂以外の成分を含む非水電解液 (すなわち溶媒に電解質および必 要に応じて酸を発生する化合物を添加したもの)を注入してもよい。ポリビニルァセタ 一ル榭脂は、ビーズ、粉末或いはペレット、又はポリビュルァセタール榭脂を含むシ ート或いはフィルムなどの形状にして用いることができる。これらの場合は、非水電解 液にポリビニルァセタール榭脂を溶解させなくてもよ 、ので、非水電解液の粘度が上 がらず、積層体への注入が容易になるので電気化学素子を容易に得ることができる 。この場合にも、非水電解液の酸分量を、前述の範囲にすることが好ましい。
また、負極の負極活物質層の表面、セパレータの両面または片面、又は正極の正 極活物質層の表面に、ポリビニルァセタール榭脂を含む被覆層を形成してもよい。こ れによっても、本発明の電気化学素子の製造を簡便化できる。被覆層は、公知の方 法に従い、たとえば、ポリビュルァセタール榭脂を有機溶剤に溶解または分散させた 溶液またはスラリー、もしくは本発明のワニスを、被覆層を形成しょうとする面に塗布し 、加熱などにより有機溶媒を除去することによって形成できる。ここで使用する有機溶 剤としては、負極活物質または正極活物質を腐食することがなぐポリビニルァセター ル榭脂の酸変性物を均一に溶解または分散させることのできる公知のものを使用で き、たとえば、プロピレンカーボネート、エチレンカーボネート、 N—メチルピロリジノン、 ジメチルホルムアミド、 γ—ブチロラタトンなどが挙げられる。また、ポリビニルァセター ル榭脂を溶射する方法、ポリビュルァセタール榭脂をスパッタする方法、ポリビニルァ セタール榭脂を圧着する方法なども挙げられる。さら〖こ、活物質層を形成するための 結着剤の一部または全部としてポリビュルァセタール榭脂を用い、負極活物質層の 中に、ポリビュルァセタール榭脂を含ませてもよ 、。
負極、セパレータおよび正極力 なる積層体中にポリビュルァセタール榭脂を存在 させる場合、ポリビュルァセタール榭脂の使用量は、電気化学素子の内容積と空孔 率、非水電解液の液量などに応じて適宜選択することができる。ポリビニルァセター ル榭脂の使用量が少なすぎると接着力が弱くなり、多すぎると非水電解液中でのィ オン移動を阻害する場合がある。
負極の負極活物質層の表面に、ポリビュルァセタール榭脂の被覆層を形成する場 合には、負極活物質層の表面で副次的に起こる非水電解液の電気分解が抑制され 、その結果、負極への初回充放電時の充放電効率が向上し、電気化学素子を大容 量ィ匕できる効果も得られる。その理由は充分明らかではないが、負極活物質層の表 面への非水溶媒分子の拡散が抑制されるか、または初期充電時に負極活物質層表 面に形成される保護層が安定ィ匕されることによるものと推測される。この効果は、負極 活物質層の充填密度を高めた後に、ポリビュルァセタール榭脂を含む被覆層を形成 することによって、さらに顕著になる。充填密度を高める方法としては、たとえば、負 極を加圧プレスする方法、負極活物質の粒度分布を最密充填できるものに選択する 方法、メツキ法または CVD法によって負極活物質層を形成するにあたり、負極活物 質の形成速度、供給速度などを制御して充填密度を高める方法などが挙げられる。 負極活物質層における充填密度の指標には、たとえば、空孔率が使われる。空孔率 が低いほど、充填密度は高くなる。本発明では、負極活物質層の空孔率が 0. 05— 0 . 95、好ましくは 0. 1-0. 9、さらに好ましくは 0. 1-0. 5になるように充填密度を高 めればよい。なお、非水電解液の電気分解を抑制することを優先する場合、ポリビ- ルァセタール樹脂の使用量は、負極活物質層の表面積 lm2あたり 0. 5— 20mg、好 ましくは 1一 5mgである。
なお、本発明における空孔率とは、固形物の体積を VI、当該固形物の重さを真密 度で除した体積を V0としたとき、 (Vl-VO) ZV1で求められる値である。
2)充電によりポリビニルァセタール榭脂を架橋する工程
本発明の電気化学素子は、前述のように積層体に非水電解液を注入した後、電気 化学素子を密閉し、初期充電工程および、電気化学素子の特性安定化、不良判定 などを目的としたエージング工程に供する。
非水電解液が積層体に注入された状態では、ポリビニルァセタール榭脂は非水電 解液に溶解または膨潤した状態で存在しており、電極とセパレータとは接着していな い。初期充電工程で通電を受けることにより、ポリビュルァセタール榭脂が架橋され、 電極とセパレータとを接着する。このとき、本発明の非水電解液が酸を生成する化合 物を含む場合には、ポリビュルァセタール榭脂の架橋はより円滑に進行し、ポリビ- ルァセタール樹脂の酸変性および架橋が起こる。
ポリビニルァセタール榭脂の架橋を行うには、充電工程において、電気化学素子の 正極に、リチウムの溶解析出電池に対して 3V以上、好ましくは 3. 8V以上の電位が 力かるように充電すればよい。通電における電気量は特に制限されないが、ポリビニ ルァセタール樹脂に対して、 lkg当り 100クーロン以上の電解酸ィ匕反応が起こるよう に適宜選択すればよい。
非水電解液が酸を生成する化合物を含有する場合、初期充電工程およびエージ ング工程で、電気化学素子を加温してもよい。電気化学素子の加温により、酸の発 生が促進され、ポリビュルァセタール榭脂の架橋がより円滑に進行する。この時の加 温は、電気化学素子を劣化させない範囲で実施される。具体的な加温条件としては 、たとえば、 45°Cで 0. 5— 30日(好ましくは 1一 7日)、 60°Cで 1時間一 7日(好ましく は 5時間一 3日)などが挙げられる。
なお、電気化学素子内において、ポリビニルァセタール榭脂の架橋物は、架橋によ り非水溶媒に不溶ィ匕し、例えばろ過或いは遠心分離などの簡単な分離手段によって 非水溶媒と分離できる状態で存在したり、又は、非水溶媒に不溶であるが非水溶媒 中にほぼ均一に分散して非水溶媒をゲルイ匕させて存在することがある。ポリビュルァ セタール榭脂が、電気化学素子内において架橋しているか否かは、負極、セパレー タおよび正極力もなる積層体の接着強度の向上などから二次的に確認できる。 該積層体の接着強度を向上させる為には、ポリビュルァセタール榭脂の架橋物が 負極とセパレータとの界面、および正極とセパレータとの界面に選択的に存在するこ とが好ましい。このような構造を採る場合、該架橋物をも含めた非水電解液の量を W 1 (g)、ろ過により該架橋物を分離除去した後のろ液の量を W2 (g)とした場合、 W2を W1で除した百分率値 (W2ZW1 X 100)が 20%以上であることが好ましぐ 40%以 上であることがさらに好ましぐ 60%以上であることが特に好ましい。この百分率値の 上限は、非水電解液における酸変性物の含有量によって決定される。ポリビニルァ セタール榭脂の架橋物を、負極とセパレータとの界面および正極とセパレータとの界 面に出来るだけ多く存在させるためには、電極表面でポリビニルァセタール榭脂を電 解酸化された後に速やかに架橋させることが好ましい。たとえば、電気化学素子を充 電後に、直ちに、電気化学素子の特性低下しない範囲でできるだけ高い温度で加温 すれば良い。加温する温度は、 40°C— 90°C、好ましくは 50°C— 60°Cとする事が望 ましい。加温する時間は、電池特性への影響を勘案して決めればよい。
〔リチウム電池〕
本発明電気化学素子の一形態として、リチウム電池を挙げる。リチウム電池は、負 極、正極およびセパレータを含む積層体に非水電解液を注入した電池であって、負 極とセパレータおよび Zまたは正極とセパレータとがポリビュルァセタール榭脂の架 橋物によって接着される。非水電解液は、電解質としてリチウム塩を含み、かつ負極 がリチウム金属或いはリチウムを吸蔵および Zまたは放出できる負極活物質を含むこ とを特徴とする。 負極は、負極活物質と負極集電体とを含んで構成される。負極活物質としては、リ チウム金属或いはリチウムを吸蔵および Zまたは放出できる公知の化合物を使用で き、たとえば、リチウム、リチウム含有合金、リチウムとの合金化が可能なシリコン、シリ コン合金、スズ、スズ合金、リチウムを吸蔵放出できる酸化スズ、酸ィ匕シリコン、リチウ ムを吸蔵放出できる遷移金属酸化物、リチウムを吸蔵放出できる遷移金属窒素化物 、リチウムを吸蔵放出できる炭素材料などが挙げられる。これらの負極活物質は 1種 又は 2種以上を使用できる。負極集電体としては、この分野で常用されるものを使用 でき、たとえば、銅、ニッケル、ステンレス鋼などが挙げられる。
負極は、たとえば、負極活物質とポリフッ化ビ-リデン、カルボキシメチルセルロース 、ラテックス、架橋性高分子材料などの結着剤と均一に混合し、この混合物を負極集 電体上塗布して乾燥させ、好ましくは負極活物質の充填密度を上げるためのプレス を行うことにより作成できる。負極の中でも、前述のように、負極活物質層における負 極活物質の充填密度を高めた後に、負極活物質層の表面にポリビュルァセタール 榭脂を含む被覆層を設けたものが好まし 、。
正極は、正極活物質と正極集電体とを含んで構成される。正極活物質としては、こ の分野で常用されるものを使用でき、たとえば、 FeS、 MoS、 TiS、 MnO、 V O
2 2 2 2 2 5 などの遷移金属酸化物または遷移金属硫化物、 LiCoO、 LiMnO、 LiMn O、 Li
2 2 2 4
NiO、 LiNi Co O、 LiNi Co Mn Oなどのリチウムと遷移金属とからなる
2 X (1— X) 2 (1 2
複合酸化物、ポリア-リン、ポリチォフェン、ポリピロール、ポリアセチレン、ポリアセン
、ジメルカプトチアジアゾール zポリア-リン複合体などの導電性高分子材料、フッ素 化炭素、活性炭などの炭素材料などが挙げられる。これらの中でも、リチウムの溶解 析出電位に対して 3V以上、好ましくは 3. 8V以上の起電力を発生させ得る活物質が 好ましぐリチウムと遷移金属とからなる複合酸ィ匕物が特に好ましい。正極活物質は 1 種を単独で使用できまたは 2種以上を併用できる。正極活物質がリチウムの溶解析 出電位に対して 3V以上の起電力を示せば、ポリビニルァセタール榭脂が十分に電 解酸ィ匕を受けるようになり、ポリビニルァセタール榭脂の架橋が進行しやすくなる。正 極集電体としては、この分野で常用されるものを使用できる。
正極は、たとえば、正極活物質とポリフッ化ビ-リデン、ポリテトラフルォロエチレン、 架橋性高分子材料などの結着剤とを均一に混合し、この混合物を正極集電体に塗 布して乾燥させ、好ましくは正極活物質の充填密度を上げるためにプレスを行うこと により作成できる。正極活物質とともに、カーボンブラック、アモルファスウイスカ、黒鉛 などの導電助剤を用いることもできる。
セパレータとしては、本発明の電気化学素子の項に示したセパレータと同様のもの を使用できる。
リチウム電池用非水電解液は、電解質であるリチウム塩およびポリビュルァセター ル榭脂ワニスを含有する。
リチウム塩としては、リチウム電池用電解質として常用されているものを使用でき、た とえば、 LiPF、 LiBF、 LiCIO、 LiAsF、 Li SiF、 LiOSO C F (k= 1
2 6 2 k (2k+ l) 一 8の
6 4 4 6
整数)、 LiPF (C F ) (n= l— 5、 k= l一 8の整数)、 LiC (SO R5) (SO R6 n k (2k+ l) (6-n) 2 2
) (SO R7)、 LiN (SO OR8) (SO OR9)、 LiN (SO R10) (SO R11) (R7— R13は同一
2 2 2 2 2
または異なって炭素数 1一 8のパーフルォロアルキル基を示す)などのリチウム塩が 挙げられる。これらの中でも、 LiPF、 LiBF、 LiN (SO R10) (SO R ) (R10および R
6 4 2 2
11は前記に同じ)などが好ましぐ LiPF
6、 LiBFなどが特に好ましい。これらのリチウ 4
ム塩は 1種又は 2種以上を使用できる。リチウム塩の非水電解液中での含有量は 0. 1一 3モル Zリットル、好ましくは 0. 5— 2モル Zリットルである。
ポリビュルァセタール榭脂ワニスは、ポリビュルァセタール榭脂を炭酸エステル溶 媒に溶解させたものである。炭酸エステル溶媒は、電気化学的安定性 (酸化還元安 定性)、化学的安定性から,リチウム二次電池用電解液の溶媒に最も適しており、主 溶媒として使用されている。
非水電解液に使用する炭酸エステルには環状炭酸エステルと鎖状炭酸エステルが ある。環状炭酸エステルとしては、たとえば、エチレンカーボネート、プロピレンカーボ ネート、ブチレンカーボネート、フルォロエチレンカーボネート、トリフルォロエチレン カーボネートなどの環状カーボネートが挙げられる。鎖状炭酸エステルとしては、たと えば、ジメチルカーボネート、ェチルメチルカーボネート、メチルプロピルカーボネー ト、メチルトリフルォロェチルカーボネート、ジトリフルォロェチルカーボネート、ジェチ ルカーボネート、ジブチノレカーボネート、メチルォクチルカーボネートなどの鎖状カー ボネートが挙げられる。リチウム電池用の溶媒として、炭酸エステル以外に、カルボン 酸エステルも適しており、電解液に含有させる事ができる。カルボン酸エステルとして は、 γ—ブチロラタトンなどの環状カルボン酸エステル、酢酸メチル、プロピオン酸メチ ル、ペンタフルォロプロピルアセテート、トリフルォロ酢酸メチルなどの鎖状カルボン 酸エステルなどが挙げられる。以上に例示した炭酸エステル類は 1種又は 2種以上を 使用できるが、得られる電池の負荷特性、低温特性などを向上させることを考慮する と、環状炭酸エステルと鎖状炭酸エステルとを併用するのが好ましい。環状炭酸エス テルと鎖状炭酸エステルの混合割合 (環状カーボネート:鎖状カーボネート)は、重量 比で、 5 : 95— 80: 20、好ましくは 10 : 90— 70 : 30、さらに好ましくは 15 : 85— 55 :4 5である。このような比率にすることによって、非水電解液の粘度上昇を抑制しつつ、 電解質の解離度を高めることができるので、電池の充放電特性に関わる非水電解液 の伝導度を高めることができ、非水電解質の溶解度を高い状態に維持することがで きる。その結果、常温または低温での電気伝導性に優れた非水電解液とすることでき るため、常温力も低温での電池の充放電負荷特性を向上させることができる。また、 溶媒組成を調整して溶媒の引火点を上げ、電池の安全性を向上させることを考慮す ると、環状エステルを単独で使用する力または鎖状エステルの混合量を非水溶媒全 量の 20重量%以下にすることが好ましい。この場合の環状エステルとしては、ェチレ ンカーボネート、プロピレンカーボネート、 γ—ブチロラタトン、これらの 2種以上の混 合物などが好ま 、。鎖状エステルとしては鎖状カーボネートが好ま 、。
また、前述のエステル類とともに、ビニル基を有する環状カーボネート類を併用して もよい。これによつて、負極上での非水電解液の還元分解反応が抑制され、電池の 高温保存特性、サイクル充放電特性などがさらに向上する。ビニル基を有する環状 カーボネート類としては公知のものを使用でき、たとえば、ビニレンカーボネート、メチ ノレビニレンカーボネート、ェチルビ二レンカーボネート、プロピルビニレンカーボネー ト、フエ二ルビ-レンカーボネート、ジメチルビ-レンカーボネート、ジェチルビ-レン カーボネート、ジプロピルビニレンカーボネート、ジフエ二ルビ二レンカーボネート、ビ -ルエチレンカーボネート、 4, 5—ジビュルエチレンカーボネートなどが挙げられる。 これらの中でも、ビュルエチレンカーボネート、ジビュルエチレンカーボネート、ビ-レ ンカーボネートなどが好ましぐビ-レンカーボネートが特に好ましい。ビュル基を有 する環状カーボネート類は 1種又は 2種以上を使用できる。 2種以上を併用する場合 の組み合わせとしては、ビ-レンカーボネートとビュルエチレンカーボネート、ビ-レ ンカーボネートとジビュルエチレンカーボネートなどが好まし 、。ビニル基を有する環 状カーボネート類の含有量は、非水電解液全量の 0. 1— 10重量%、好ましくは 0. 5 一 5重量%である。
リチウム電池用非水電解液は、その特性を損なわない範囲で、前記以外の溶媒、 添加剤などを含んでいてもよい。たとえば、エーテル類、アミド類、カーノメート類、ゥ レア類、リン酸エステル類、芳香族炭化水素類、フッ素化エーテル類などが挙げられ る。
本発明のリチウム電池は、前述のリチウム電池用負極、セパレータおよび正極なら びに電解質としてリチウム塩を含む本発明の非水電解液を用い、前述の方法に従つ て製造できる。
ここで使用される非水電解液としては、前記のポリビュルァセタール榭脂ワニスに、 リチウム塩 (電解質)および水との反応により酸を生成する化合物であるハロゲン原子 を有するルイス酸および Zまたはルイス酸塩を添カ卩したものが好まし ヽ。リチウム塩と しては、リチウム電池用非水電解液で用いられるのと同種のものを、同じ含有量で使 用することができる。ポリビュルァセタール榭脂ワニスとしても前述のものを使用でき、 その中でもポリビュルホルマール榭脂の酸変性物ワニスが好まし 、。ポリビュルァセ タール榭脂の非水電解液における含有量は、非水電解液全量の 3. 5重量%以下、 好ましくは 0. 3-3. 5重量%、さらに好ましくは 0. 5-2. 5重量%である。この範囲 の含有量とすることによって、充放電負荷特性への影響を極小にして、形状保持性 の優れたリチウム電池を得ることができる。
ハロゲン原子を有するルイス酸あるいはルイス酸塩としても前述のものを使用でき、 その中でもハロゲン原子がフッ素原子であるものが好ましい。たとえば、電解質塩とし ての機能をも併せ持つ LiPFおよび LiBFが好ましい。また、非水電解液中での架
6 4
橋速度を高めるために、酸発生速度が大きいルイス酸、ルイス酸塩が好ましい。中で も、取り扱い易さ、高純度品の入手し易さ、電解液への安定性、酸発生速度などを考 慮すると、 SiF R (n= l— 4、 Rは有機基を表す)がさらに好ましい。 SiF R の n (4-n) n (4-n) 具体例としては、たとえば、トリメチルシリルフルオライド、トリフエニルシリルフルオラィ ド、ジメチルシリルジフルオライド、ジフヱ-ルシリルジフルオライド、メチルシリルトリフ ルォライド、フ -ルシリルトリフルオライドなどが挙げられ、トリメチルシリルフルオラィ ドが特に好ま 、。なお、 SiF R を用いる場合には、 SiF R を直接非水電解 n (4-n) n (4-n)
液に添加する力または非水電解液中で変化して SiF R を生成する化合物を添加 n (4-n)
すればょ 、。非水電解液中で変化して SiF R になる化合物としては、各種シリル n (4-n)
エステルなどが挙げられ力 中でも、リン酸シリルエステルが好ましい。リン酸シリルェ ステルは、 SiF R を生成するだけでなぐ脱水剤として作用して、ポリビニルァセ n (4-n)
タール榭脂ワニスを含む液をゲルイ匕させる特性を有する。電池内の電極積層体から はみ出た部分の非水電解液中では、通電が起こらないので、酸変性物の架橋が起こ りにくいが、リン酸シリルエステルを非水電解液に添加すると、非水電解液がほど良く ゲル化し、液漏れ防止効果が高まる。ハロゲン原子を含有するルイス酸あるいはルイ ス酸塩は 1種を単独で使用できまたは 2種以上を併用できる。ハロゲン原子を有する ルイス酸あるいはルイス酸塩の含有量は、非水電解液全量の 0. 01— 10重量%、好 ましくは 0. 05— 2重量%である。
本発明のリチウム電池は、任意の形状にすることができ、たとえば、円筒型、コイン 型、角型、フィルム型などに形成される。し力しながら、電池の基本構造は形状に関 係なく同じであり、目的に応じて設計変更を施すことができる。
本発明のリチウム電池は、従来のリチウム電池と同様の用途に使用できる。たとえ ば、各種の民生用電子機器類、その中でも特に、携帯電話、モパイル、ラップトップ 式パーソナルコンピュータ、カメラ、携帯用ビデオレコーダ、携帯用 CDプレーヤ、携 帯用 MDプレーヤなどが挙げられる。
実施例
以下に本発明を実施例等で具体的に説明するが、本発明はこれに限定されるもの ではない。以下において、「%」および「部」は、特に断らない限り、「重量%」および「 重量部」を示すものとする。また、「vZv」は体積比を示す。
(合成例 1)〔ポリビニルァセタール榭脂の合成例〕 ポリ酢酸ビュルをアルカリ鹼化して、一部が酢酸エステル化されたポリビュルアルコ 一ル榭脂(鹼ィ匕度 89%、平均重合度 800)を得た。このポリビュルアルコール 25g、 5 0%酢酸水溶液 200mlおよび 10%塩酸 40mlを混合した後に、ホルマリン(37%ホ ルムアルデヒド水溶液) 100mlを加え、 30°Cで 5時間反応した。反応終了後に反応 液に希酢酸を加えて反応物を析出させ、析出物を濾取し、水酸化ナトリウムで中和、 水洗し乾燥してポリビュルホルマールを得た。この固形物を、 JIS K6729「ポリビニ ルホルマール試験方法」に基づき組成比を分析したところ、ビュルホルマール単位( 一般式(1)において R =水素原子) 82. 5%、ビュルアルコール単位(2) 5. 9%およ びビュルアセテート単位(一般式(3)において R =メチル基) 11. 6%からなるポリビ
2
ニルホルマール榭脂であることが確認された。該ポリビニルホルマール榭脂における
、ビュルアルコール単位(2)の組成比から換算したヒドロキシル基濃度は 1. 34モル Zkgであった。
同様の方法で、平均重合度 800のポリビュルアルコール榭脂に代えて、種々分子 量のポリビニルアルコール榭脂を使用する事で、種々の分子量のポリビニルホルマ 一ル榭脂を得た。それぞれの化学組成は、上述のポリビュルホルマール榭脂とほぼ 同一であった。
また、同様の方法で、ホルマリンに代えて、ァセトアルデヒド、プロピオンアルデヒド またはブチルアルデヒドを使用することにより、ポリビュルァセトァセタール榭脂、ポリ ビュルプロビラール榭脂またはポリビニルプチラール榭脂を得た。これらの化学組成 は、ビュルァセタール部分 72重量%、ビュルアセテート部分 16重量%、ビュルアル コール部分 12重量%であった。
(合成例 2)〔ポリビュルァセタール榭脂の酸変性例〕
合成例 1と同様にして得られたポリビュルホルマール榭脂(平均重合度 800)をェチ レンカーボネートとェチルメチルカーボネートとの 2 : 1 (体積比)の混合溶媒 100mlに 5%の濃度で溶解し、硫酸 0. 01%を加えて、 45°Cで 144時間加熱処理 (酸変性処 理)を行い、ポリビニルホルマール榭脂の酸変性物を含む溶液を得た。
ポリビュルァセタール榭脂が酸変性を受けたことは、ポリビュルホルマール榭脂の 酸変性処理前と後の、 NMR^ぺクトロメータ(商品名: JNM— A500 (500MHz)、 日 本電子 (株)製)による 4. 28ppmに現れるプロトンの濃度の変化により確認した。測 定には DMSO-dを溶媒として、 DMSO-dをシフト基準(2. 49ppm)とし、テトラタ
6 6
ロロエタンを内部標準にした。 4. 28ppmに現れるプロトンの濃度は、ポリビュルホル マール榭脂 lkgあたり、酸変性処理前は 0. 3モルであつたが、酸変性処理後は 0. 1 モルであった。プロトンの濃度の低下によりポリビュルホルマール榭脂が酸変性した ことを確認した。
(試験例 1) [溶媒組成とポリビニルァセタール榭脂の溶解性との関係]
合成例 1で得られたポリビニルホルマール榭脂を減圧下 80°Cで乾燥し、水分量 20 Oppmのポリビュルホルマール榭脂を作製した。また、非水溶媒は、環状炭酸エステ ルとして、 EC (エチレンカーボネート)又は PC (プロピレンカーボネート)、鎖状炭酸 エステルとして DMC (ジメチルカーボネート)、 EMC (ェチルメチルカーボネート)、 D EC (ジェチルカーボネート)を用いた。非水溶媒をそれぞれ、モレキュラーシーブス で乾燥を行い、含有水分量を 20ppm以下に調整した。上記で得られたポリビュルホ ルマール榭脂と非水溶媒とを比率を適宜変更して混合し、 45°Cで 10時間攪拌し、ポ リビュルホルマール榭脂ワニスを得た。得られたワニスの溶解性及びワニス粘度を測 定した。参考例として、ポリビュルホルマール榭脂の代わりに、合成例で得られたポリ ビニルプロビラール、ポリビニルァセトァセタールおよびポリビニルブチラールをそれ ぞれ用いたワニスを作成した。その結果を表 1に示す。表中のポリアセタール榭脂種 の項目において、「H」はポリビニルホルマール、「P」はポリビニルプロビラール、「A」 はポリビュルァセトァセタールおよび「B」はポリビュルブチラールをそれぞれ示す。 また、溶解性の評価基準は、〇;溶解、△;一部不溶、 X;不溶である。
[表 1] ポリビュルァ
溶 媒 ワニス セタール樹脂
非水溶媒 混合比 溶解性 粘 度 平 均 濃 度
種 V / V mPa/ cm
No. 重合度 重量%
1 H 5 0 0 5 EC + MEC 1 1 o 1 0 例参例施考実 1
2 H 5 0 0 1 0 EC + MEC 1 1 〇 1 8 5
3 H 5 0 0 5 EC + MEC 1 4 〇 , 9
4 H 7 0 0 5 EC + MEC 1 3 〇 1 0
5 H 7 0 0 5 EC + MEC 1 2 〇 1 2
6 H 7 0 0 5 EC + MEC 1 1 〇 1 4
7 H 7 0 0 5 EC + MEC 2 1 〇 2 5
8 H 7 0 0 5 EC + MEC 3 1 ο 3 5
9 H 7 0 0 5 EC + MEC 4 1 〇 6 0
1 0 H 7 0 0 1 0 EC + MEC 1 1 〇 2 6 4
1 1 H 8 0 0 5 EC + PC + MEC 2 : 2 : 1 〇 7 0
1 2 H 8 0 0 5 EC + PC + MEC 5 : 4 : 1 〇 9 0
1 3 H 8 0 0 5 EC + MEC 2 1 〇 5 8
1 4 H 8 0 0 5 EC + MEC 1 1 〇 4 2
1 5 H 8 0 0 5 EC + D C 1 1 〇 3 8
1 6 H 8 0 0 5 EC + DEC 1 1 〇 3 8
1 7 H 8 0 0 5 PC + DMC 1 1 〇 3 3
1 8 H 8 0 0 5 EC + MEC 1 2 ο 2 9
1 9 H 8 0 0 7 EC + MEC 1 2 Ο 1 5 1
2 0 H 8 0 0 1 0 EC + MEC 1 2 Ο 8 1 0
2 1 H 8 0 0 1 5 EC + MEC 1 2 〇 * 3
2 2 H 1 3 0 0 5 EC + MEC 1 〇 1 9 2
2 3 H 1 3 0 0 5 EC + MEC 1 1 〇 1 3 1
2 4 H 1 3 0 0 5 EC + MEC 1 2 〇 1 0 4
1 H 7 0 0 5 EC + MEC 1 4 Δ * 1
2 H 7 0 0 5 EC + MEC 1 Δ * 2
3 H 8 0 0 2 0 EC + MEC 1 2 Δ * 1
測定
4 H 1 3 0 0 5 EC + MEC 1 4 △ * 1
不能
5 P 8 0 0 5 EC + MEC 1 1 △ * 1
6 A 8 0 0 5 EC + MEC 1 1 △ * 1
7 B 8 0 0 5 EC + MEC 1 1 Δ * 1
* 1 溶解しきらず不溶物あり。
* 2 一旦は溶解するが、 室温に冷却するとポリビュルホルマール樹脂が析出する。
* 3 測定せず。 表 1から、環状炭酸エステルと鎖状炭酸エステルとの混合溶剤では、溶解性が大幅 に向上することが分かる。また、ポリビニルァセタール榭脂のうちポリビュルホルマー ル榭脂の溶解性が優れることが分かる。
(試験例 2) [ワニスの引火点の測定]
合成例 1で得られたポリビニルホルマール榭脂(平均重合度 800)を、種々の非水 溶媒に溶解して 5重量%の濃度のポリビニルホルマール榭脂ワニスを調製した。これ らワニスの引火点をタグ密閉式で測定し、表 2にまとめた。 [表 2]
Figure imgf000039_0001
表 2から、本発明のワニスは引火性が低ぐ火災発生の危険性が非常に少なぐ安 全性が高いことが分かる。
(試験例 3) [非水電解液のゲル化試験]
合成例 1で得られたポリビニルホルマール榭脂からなるワニス又は合成例 2で得ら れたポリビュルホルマール榭脂の酸変性カゝらなるワニスを、非水電解液溶媒に混合 し、更に脱水剤を混合して非水電解液を作成した。
ワニスは、ポリビュルホルマール榭脂又はその酸変性物の濃度が 10%となるように 非水溶媒に混合し、以下の A— Cのワニスを得た。ワニス A (本発明品)は、合成例 1 のポリビュルホルマール榭脂を ECと MECとの 1: 1 (体積比)混合溶媒に溶解した。 ワニス B (本発明品)は、合成例 2のポリビュルホルマール榭脂の酸変性物を ECと E MCとの 1: 1 (体積比)混合溶媒に溶解した。ワニス C (比較品)は、合成例 1のポリビ -ルホルマール榭脂を、トルエンとブタノールとの 1: 1 (体積比)混合溶媒に溶解した 非水電解液溶媒には、電気二重層キャパシタ用(以下、「キャパシタ用」という。)、リ チウム電池用(以下、「リチウム電池用」という。)の 2種類を用いた。
キャパシタ用の非水電解液溶媒としては、テトラプチルアンモ-ゥムテトラフルォロ ボレートを 1モル Zリットルの割合で含むプロピレンカーボネートを用いた。リチウム電 池用の非水電解液溶媒としては、リチウムへキサフルオロフォスフェートを 1モル Zリ ットルの割合で含む、 ECと EMCとの混合溶剤(1: 1体積比)を用いた。 2種類の非水 電解液溶媒の含有水分量はいずれも lOppm以下に調整した。
非水電解液溶媒とワニスとを、 4 : 1 (重量比)の割合で混合した後に、脱水剤を 0. 5 重量%加えて室温で放置し、 15分毎にゲルィ匕の様子を観察した。脱水剤は、ホウ酸 トリブチルまたはリン酸トリストリメチルシリルを用いた。結果を表 3に示す。 [表 3]
Figure imgf000040_0001
表 3から、本発明のワニスは、脱水剤と併用することにより、非水電解液溶媒をゲル 化する作用を示すことがわかり、電気二重層キャパシタゃリチウム電池の液漏れ防止 などに有用であることが分力つた。また、この効果を発揮させるためには、ワニス中の 水分量を少なくすることが望ましいことが分力つた。
(合成例 3)
ビュルホルマール単位(一般式(1)において R =水素原子)、ビュルアルコール単 位(2)およびビュルアセテート単位 (一般式(3)にお 、て R =メチル基)の含有比率
2
が異なるポリビニルホルマール榭脂を使用する以外は、合成例 2と同様にして、ポリ ビニルホルマール榭脂の酸変性物を含む溶液を得た。得られた酸変性物は、表 4に 示す物性を有していた。また、ヒドロキシル基の含有量が 2. 8モル Zkgのポリビュル ホルマールを除いて、得られた 3種の酸変性物における、 4. 28ppmに現れるプロト ンの濃度は全て酸処理により 7割以下に減じられていた。
(実施例 9および参考例 3)
合成例 2および合成例 3で得られた、ポリビュルホルマール榭脂の酸変性物を含む ワニス、エチレンカーボネート及びェチルメチルカーボネートを混合して非水電解液 を得た。非水電解液は、エチレンカーボネートとェチルメチルカーボネートの重量比 が 2 : 3、 LiPFを 1モル Zリットルの濃度、およびポリビュルホルマール榭脂の酸変性
6
物を表 4に示す濃度 (c、 %)に調製した。 T1一 T10が本発明の非水電解液 (実施例 9)であり、 R1— R4が参考例の非水電解液である。 なお、非水電解液 Tl一 T6および R 1一 R2の酸変性物は合成例 2で得られたもの であり、 T7— T10及び R3— R4の酸変性物は合成例 3で得られたものである。
[表 4]
Figure imgf000041_0001
※ 不溶物が多く、 算出不能 表 4に示す非水電解液のうち、 R4は、酸変性物が非水溶媒に均一に溶解せず不 溶解物が多量に残った。このことから、ポリビニルホルマール榭脂中のヒドロキシ基の 含有量が 2mol/リットルを超えると、非水電解液への添加剤としては適切ではな!/ヽ 事がわかる。他の非水電解液は、酸変性物が非水溶媒に溶解した。
(試験例 4)
T3の非水電解液と同一の組成にて、ポリビュルホルマール榭脂に代えてポリビ- ルァセタール樹脂、ポリビュルプロビラール樹脂またはポリビュルブチラール樹脂を 使用した非水電解液を調製した。各榭脂の非水溶媒への溶解性および非水電解液 を 25°Cで保管したときの安定性を目視で観察した。結果を表 6に示す。
[表 5]
Figure imgf000041_0002
表 5から、ポリビニルホルマール榭脂を用いた非水電解液 (T3)は均一に電解液に 溶解することができ、 30日以上保存しても、不溶物および析出物のない液体状態を 保ち、本発明の非水電解液に使用するのに最適であることが判る。他のポリビニルァ セタール液榭脂を用いた非水電解液は、場合によっては不溶物の除去処理が必要 であり、さらに非水電解液調製後、長期に保存することなぐ直ぐに電気化学素子に 注入するのが良いことが明らかである。
(実施例 10— 19および参考例 4一 8)
1)負極の作製
メソカーボンマイクロビーズ (商品名: MCMB10— 28、大阪瓦斯 (株)製) 74部、天 然黒鉛 (商品名: LF18A、中越黒鉛 (株)製) 20部およびポリフッ化ビニリデン (PVD F、結着剤) 6部を混合し、 N—メチルピロリジノン 100部に分散させ、負極合剤スラリ 一を調製した。この負極合剤スラリーを厚さ 18 μ mの帯状銅箔製の負極集電体に塗 布、乾燥した。これを約 29. 42 X 106Pa (300kg/cm2)の圧力でプレスし、負極を 作成した。この負極における負極活物質の空孔率は 0. 3であった。
2)正極の作製
LiCoO (商品名: HLC— 22、本荘 FMCエナジーシステムズ (株)製) 82部、黒鉛(
2
導電剤) 7部およびアセチレンブラック (導電剤) 3部およびポリフッ化ビ-リデン (PV DF、結着剤) 8部を混合し、 N—メチルピロリドン 80部に分散させ、 LiCoO合剤スラリ
2 一を調製した。この LiCoO合剤スラリーを厚さ 20 mのアルミ箔 (正極集電体)に塗
2
布、乾燥した。これを、約 9. 8 X 107Pa (1000kgZcm2)の圧力でプレスし、正極を 作成した。この正極における正極活物質の空孔率は 0. 25であった。
3)コイン型電池の作製
負極には、上記 1)で得られた負極を径 14mmの円状に打ち抜いて用いた。この負 極は、負極合剤の厚さが 80 μ m、重量が 20mgZl4mm φであった。
正極には、上記 2)で得られた正極を径 13. 5mmの円状に打ち抜いて用いた。こ の LiCoO電極は、 LiCoO合剤の厚さが 70 μ m、重量が 42mgZl3. 5mm φであ
2 2
つた ο
2032サイズのステンレス鋼製電池缶内の負極缶面に、負極集電体が接するように 負極(直径 14mm)を配置し、さらに微多孔性ポリプロピレンフィルムからなるセパレ ータ(厚さ 25 /ζ πι、直径 16mm)および正極(直径 13. 5mm)を順に積層した。その 後、セパレータと負極およびセパレータと正極の間に、実施例 9の 10種の本発明非 水電解液 (T 1一 T 10)または参考例 3の 4種の非水電解液 (R 1— R4) 0. 25mlを注 入し、アルミニウム製の板 (厚さ 1. 2mm、直径 16mm)およびパネを収納した。最後 に、ポリプロピレン製のガスケットを介して、電池缶蓋を装着することにより、電池内の 気密性を保持し、直径 20mm、高さ 3. 2mmのコイン型リチウムイオン二次電池を作 製した。
4)円筒型二次電池の作製
先ず、負極を次のように作製した。メソカーボンマイクロビーズ(商品名: MCMB10 —28、大阪瓦斯 (株)製) 70部、天然黒鉛 (商品名: LF18A、中越黒鉛 (株)製) 20部 と、結着剤としてポリフッ化ビ-リデンを 10部とを混合して、負極合剤を調製し、さらに これを N—メチルー 2—ピロリドンに分散させて、スラリー状とした。そして、このスラリー を負極集電体である厚さ 10 mの帯状銅箔の両面に均一に塗布し、乾燥後ロール プレス機で圧縮成型し、負極を作製した。
次に、正極を次のように作製した。 LiCoO (商品名: HLC—22、本荘 FMCェナジ
2
一システムズ (株)製)を 91部と、導電剤としてグラフアイトを 6部と、結着剤としてポリフ ッ化ビユリデンを 3部とを混合して正極合剤を調製し、さらにこれを N—メチルー 2—ピロ リドンに分散させてスラリー状とした。そして、このスラリーを正極集電体である厚さ 20 mのアルミニウム箔の両面に均一塗布し、乾燥後ロールプレス機で圧縮成型し、正 極を作製した。
次に、厚さ 20 μ mの微多孔性ポリプロピレンフィルムからなるセパレータを介して、 負極と正極とを順次積層し、渦巻型に多数回卷回することにより卷回体を作製した。 これをニッケルメツキを施した鉄製の電池缶の底部に絶縁板を挿入し、卷回体を収納 した。そして、負極の集電体をとるために、ニッケル製の負極リードの一端を負極に圧 着し、他端を電池缶に溶接した。また、正極の集電をとるために、アルミニウム製の正 極リードの一端を正極に取り付け、他端を電池内圧に応じて電流を遮断する電流遮 断用薄板を介して電池蓋と電気的に接続した。
次に、実施例 9のうち 5種の本発明非水電解液 (Τ1、 Τ2, Τ3, Τ5, Τ6)及び参考 例 3のうち 2種の非水電解液 (Rl、 R2) 4mlをそれぞれ上記電池缶の中に注入しつ つ、電池缶内を減圧し常圧に戻す操作を繰り返し、電池缶内に電解液を注入した。 最後に、アスファルトを塗布した絶縁封口ガスケットを介して電池缶を力しめること〖こ より電池蓋を固定し、直径 18mm、高さ 65mmの円筒型非水電解液電池を作製した
5)充電による架橋
上記 3)で得られた実施例 10— 19のコイン型リチウムイオン二次電池について 2m Aで、および上記 4)で得られた実施例 11一 20の円筒型リチウムイオン二次電池に ついて 0. 2Aの電流で 4. 2Vまで充電を行い、非水電解液中に含まれるポリビュル ホルマール樹脂の酸変性物を架橋させ、本発明のコイン型および円筒型リチウムィ オン二次電池を製造した。
(試験例 5)
非水電解液として実施例 9の T5を用いたコイン型リチウム二次電池を作成した。こ れを、 2mAの電流で 0. 5V、 3. 8Vまたは 4. 0Vまで充電した後、室温(25°C)また は 50°Cで 24時間放置した。この 24時間放置することは一般的な電気化学素子の製 造方法ではエージング工程に相当する。その後、このコイン型リチウム二次電池を解 体し、電極とセパレータとの接着性を調べた。結果を表 6に示す。
また、充電を行うことなぐ室温(25°C)または 50°Cで 24時間放置したコイン型リチ ゥム二次電池についても、同様に、電極とセパレータとの接着性を調べた。結果を表 6に示す。
[表 6]
Figure imgf000044_0001
表 6から、 3. 8Vまたは 4. 0Vまで充電を行うことによって、 T5の非水電解液中に含 まれるポリビニルァセタール榭脂の酸変性物が架橋し、電極 (負極および正極)とセ パレータとが接着することが明らかである。さらに、 3. 8-4. OV迄充電した後、 50°C でエージングを行う場合には、接着強度がさらに高まることも明らかである。これに対 して、 0. 5V迄の充電または未充電では、エージング工程で加温しても、酸変性物の 架橋が起こらず、電極とセパレータとが全く接着しな 、ことも判る。
なお、ポリビニルホルマール榭脂の酸変性物と、該酸変性物の架橋物との機器分 析的な相違点は、両者の13 C—固体 NMR ^ベクトルにおいて明らかになると推定す る。具体的には以下のように行った。電池を解体しセパレータ中またはセパレータと 電極の界面に存在するゲル状物を収集し、市販のテフロン (登録商標)製の密閉セ ルにゲル状物を入れ、 7. 5mmサンプル管に密閉セルを挿入した。そのサンプル管 を 2000Hzでスピユングし、 13C—固体 NMR測定を行った。測定装置は、
Chemagnetics社製、 CMX300 7. 5mmプローブを使用した。測定条件は、共鳴周 波数 75. 5578MHz【こてシングノレノ ノレス法で行!/、、ノ ノレス ίま 1. の 30。 ノ ノレス 、帯域幅は 30kHzとした。
以上の方法で測定された13 C—固体 NMR ^ベクトルは、架橋物は酸変性物に比し 、 70ppm付近のシグナルが減少し、 90— l lOppm付近に酸変性物にはないシグナ ルが観察される。 70ppm付近のシグナルはヒドロキシル基が結合した炭素のシグナ ルであると推定し、 90— l lOppm付近のシグナルはァセタール環の 2つの酸素に結 合した炭素のシグナルであると推定する。したがって、 70ppm付近のシグナルが減 少し、かつ 90— l lOppm付近に元の酸変性物にはないシグナルが観察される事は 、ポリビニルホルマール榭脂の酸変性物中のヒドロキシル基が高分子鎖末端に生成 したアルデヒド基と反応して新たなァセタール環を形成し、高分子鎖が架橋された事 を示すと推定できる。
(試験例 6)
電解液 T1一 T3、 T5、 T6、 R1及び R2を用いてそれぞれ円筒型及びコイン型のリ チウムイオン二次電池を作成した。円筒型電池への非水電解液の注液可能量 (g)を 調べた。
また、コイン型および円筒型の電池について、 10kHzのインピーダンスを測定し、 下記式に従ってインピーダンス変化率を調べた。結果を表 7に示す。
インピーダンス変化率 =XZY
X:各電池のインピーダンス
Y:実施例 10の非水電解液を注液した電池のインピーダンス
[表 7]
Figure imgf000046_0001
表 7から、実施例では、電池への非水電解液の注液性の低下がほとんどないのに 対し、参考例では非水電解液の注液量が低下することが判る。
また表 8から、実施例では 10kHzのインピーダンスの変化率がほとんど無いのに対 して、参考例では著しく増加した。 10kHzのインピーダンスは、電池中の非水電解液 由来の電気抵抗に相当し、このインピーダンスが大きい事は非水電解液の電池への 注入が不十分である力、活物質中あるいは活物質間の細孔中への電解液の浸透が 不十分である事を示す。よって、 λ 1/2 X cが 1000以上の非水電解液は電池への非 水電解液の注液性が悪ぐ特に電極活物質などが高充填されている円筒型電池で は、注液性の低下が顕著であった。
(試験例 7)
電解液 T1一 T10及び R1— R4を用いてそれぞれコイン型リチウムイオン二次電池 作成した。それらを、 4. 2Vに充電し、 0. 5mAの電流で 3. 0Vまで放電した。この時 の放電容量を「初回放電容量」とした。この電池を 4. 0Vまで充電し 24時間放置した 。この電池について、下記に示す接着性評価、初期充放電特性評価および高温保 存後の電池特性評価を行った。結果を表 8に示す。
[接着性評価]
これらの電池を解体し、電極とセパレータと剥離させて接着性を調べ、下記の基準 に従って評価した。
◎:電極の活物質層とセパレータとは強固に密着し、剥離操作を行っても、集電体 と活物質層との界面から剥離し、セパレータが電極の活物質層に張り付いたままであ つ 7こ。
〇:電極の活物質層とセパレータとは充分に密着していたが、剥離操作を行うと、電 極はその活物質層とセパレータとの界面力も剥離した。
△:電極の活物質層とセパレータとは密着したが、剥離操作を行うと、電極は容易 にその活物質層とセパレーターとの界面力 剥離した。
X X X
[初期充放電特性評価] X
o
電池を 4. 2Vに充電した後 10mAの電流で 3. OVまで放電し、「 10mAでの放電容 量」を求めた。続いて、 4. 2Vに充電した後 5mAの電流で 3. OVまで放電し、「5mA での放電容量」を求めた。「初回放電容量」に対する「 10mAでの放電容量」の百分 率を「高負荷指標」とし、「初回放電容量」に対する「5mAでの放電容量」の百分率を 「中負荷指標」とし、比較して評価した。
[高温保存後の電池特性評価]
これらの電池を 4. 2Vに充電した後に、 85°Cで 3日間保存した後、再度、「高負荷 指標」と「中負荷指標」を求めた。
[表 8] 電解液 添加量 重量平均 λ 1 / 2 OH基 初期 高温保存後
No. c 分子量 X c S ¾ 接着性 負荷 負荷 重量% λ mol/kg 中 高 中 高
1 0 T 1 0. 5 7. 1 X 104 133 1. 3 Δ 93 60 68 22
1 1 T 2 1 266 1. 3 Ο 93 58 68 21
1 2 T 3 1. 5 7. 1 X 104 400 1. 3 〇 93 53 68 21
1 3 T 5 2 7. 1 X 104 533 1. 3
実 ◎ 92 48 67 21
1 4 T 6 3 7. 1 X 104 800 1. 3 67 15 施 ◎ 90 44
1 5 T 4 1. 5 400 0. 74 Δ 94 58 68 21 例
1 6 T 7 1. 5 51 1 1. 4 ◎ 94 57 68 24
1 7 T 8 0. 8 20. 4 X 104 361 1. 7 〇 94 62 69 26
1 8 T 9 1. 5 20. 4 X 104 677 1. 7 ◎ 94 59 68 24
1 9 T 10 2. 0 20. 4 X 104 903 1. 7 ◎ 92 46 67 21
4 R 1 4 1070 1. 3 39 7 参 ◎ 62 20
5 R 2 5 7. 1 X 104 1330 1. 3
考 ◎ 42 15 11 3
6 R 3 2. 5 20. 4 X 104 1130 1. 7
例 ◎ 75 31 58 15
7 R 4 1. 5 7. 1 X 104 ※ 5 2. 79 Δ 77 35 60 15 以上から、 λ 1/2 X cが 100から 1000の非水電解液を使用した実施例 10— 19の電 池は電極とセパレータが接着し、かつ、電池特性も優れている。
これに対して、 λ 1/2 X cが 1000より大きい電解液を使用した参考例 4一 6の電池は 電極とセパレータとは接着している力 電池特性が低下している。 1/2 X cが 100か ら 1000である力 ポリビュルホルマール榭脂の酸変性物におけるヒドロキシル基の 濃度が 2. 0モル Zkg以上の電解液を使用した参考例 7は、電極とセパレータとは接 着するが、電池特性が低下している。
(実施例 20— 29および比較例 3)
1)非水電解液の調製 (実施例 21— 30)
ECと MECとを 2: 3 (重量比)の割合で混合し、この混合溶媒に、 LiPF (電解質)
6 及びビ-レンカーボネートを溶解した。この電解液に、ポリビュルホルマール榭脂を E C: MEC = 2 : 3 (重量比)の混合溶媒に溶解したワニスを添加して溶解した。その後 に、リン酸トリストリメチルシリルを添加して本発明の非水電解液を調製し、表 9に示し た。
LiPFの含有量は 1モル/リットル、ビ-レンカーボネートの含有量は 1%である。ポ
6
リビュルホルマール榭脂およびリン酸トリストリメチルシリルの含有量は、表 10に記載 のとおりである。なお、この非水電解液中には、電解質の LiPFと水を反応させ生成
6
したフッ酸が 0. 01%含有されていた。
リン酸トリストリメチルシリルは、トリメチルシリルフルオライドを非水電解液中に生成 させるための化合物として使用しており、トリメチルシリルフルオライドは酸発生速度の 大きいルイス酸である。
[表 9] ポリ ビュルホルマール樹脂 リン酸ト リス トリメチ
実施例
平均重合度 含有量 (%) ルシリル含有量 (%)
2 0 8 0 0 2 ―
2 1 8 0 0 2 0 . 1
2 2 8 0 0 2 0 . 5
2 3 8 0 0 2 0 . 2 5
2 4 8 0 0 1 . 5 0 . 2 5
2 5 8 0 0 2 . 5 0 . 2 5
2 6 1 3 0 0 2 0 . 2 5
2 7 5 0 0 2 0 . 2 5
2 8 5 0 0 1 - 5 0 . 2 5
2 9 1 0 0 2 . 5 0 . 2 5
2)非水電解液の調製 (比較例 3)
ECと MECとを、 2: 3 (重量比)の割合で混合し、この混合溶媒に、 L1PF6 (電解質) 、ビ-レンカーボネート、トリメチロールプロパンエトキシレートアタリレート(EO/OH = 14/3,アルドリッチ社製)およびラジカル重合開始剤(商品名:パーブチル (登録 商標) PV、 日本油脂 (株)製)を順次添加して溶解し、比較例の非水電解液を調製し た。
LiPFおよびビ-レンカーボネートの含有量は 1モル/リットル、ビ-レンカーボネ
6
ートの含有量は 1%である。トリメチロールプロパンエトキシレートアタリレートの含有量 は 5%である。ラジカル重合開始剤は 3000ppm添カ卩した。ここで、トリメチロールプロ パンエトキシレートアタリレートは、ゲル型高分子電解質用のマクロモノマーである。ラ ジカル重合開始剤は、前記マクロモノマーをゲルイ匕させるための添加剤である。
3)負極の作製
前記(実施例 10— 20及び参考例 4一 8)と同様にして負極を作成した。
4)正極の作製
前記(実施例 10— 20及び参考例 4一 8)と同様にして正極を作成した。
<コイン型電池の作製 >
負極には、上述の負極を径 14mmの円盤状に打ち抜いて用いた。このコイン状負 極は、負極合剤の厚さが 80 μ m、重量が 20mgZl4mm φであった。
正極には、上述の正極を径 13. 5mmの円盤状に打ち抜いて用いた。このコイン状 LiCoO電極は、 LiCoO合剤の厚さが 70 m、重量が 42mgZl3. 5mm φであつ
2 2
た。 2032サイズのステンレス製電池缶内に、直径 14mmの負極、直径 16mm、厚さ 25 μ mの微多孔性ポリプロピレンフィルム製セパレータおよび直径 13. 5mmの正極を この順序で積層した。その後、セパレータに上記で得られた非水電解液 0. 04mlを 注入し、アルミニウム製の板 (厚さ 1. 2mm、直径 16mm)およびパネを収納した。最 後に、ポリプロピレン製のガスケットを介して、電池缶蓋を力しめることにより、電池内 の気密性を保持し、直径 20mm、高さ 3. 2mmの、実施例 20— 29および比較例 3の コイン型リチウム電池を作製した。なお、比較例 3のコイン型リチウム電池は、さらに 6 0°Cで 5時間加熱することによって、非水電解液をゲル化させ、ゲル型高分子電解質 を生成させた。
(実施例 31)
1)負極の作製
実施例 20と同様にして負極を作製した。負極の負極活物質層の表面に、ポリビ- ルホルマール榭脂の 4%プロピレンカーボネート溶液を lcm2あたり 5mg (黒鉛 lgあ たり 15mg)の割合で塗布し乾燥し、ポリビュルホルマール被膜を形成した。
2)正極の作製
実施例 20と同様にして正極を作製した。正極の正極活物質層の表面に、ポリビ- ルホルマール榭脂の 4%プロピレンカーボネート溶液を lcm2あたり 5mg (黒鉛 lgあ たり 15mg)の割合で塗布し乾燥し、ポリビュルホルマール被膜を形成した。
3)セパレータの作成
微多孔性ポリプロピレンフィルムであるセパレータの表面に、ポリビュルホルマール 榭脂の 2%プロピレンカーボネート溶液を lcm2あたり 2mgの割合で塗布し乾燥し、ポ リビュルホルマール被膜を形成した。
4)コイン型電池の作製
負極には、上述のポリビュルホルマール榭脂被膜を形成した負極を径 14mmの円 盤状に打ち抜いて用いた。このコイン状負極は、負極合剤の厚さが 80 m、重量が 約 20mgZl4mm φであった。
正極には、上述のポリビュルホルマール榭脂被膜を形成した正極を径 13. 5mmの 円盤状に打ち抜いて用いた。コイン状 LiCoO電極は、 LiCoO合剤の厚さが 70 m、重量が約 42mgZl3. 5mm であった。
セパレータには、上述のポリビニルホルマール榭脂被膜を形成した厚さ約 25 m の微多孔性ポリプロピレンフィルムを直径 16mmに打ち抜いて用いた。
2032サイズのステンレス製電池缶内に、直径 14mmの負極、直径 16mm、厚さ 25 μ mの微多孔性ポリプロピレンフィルム製セパレータおよび直径 13. 5mmの正極を この順序で積層した。その後、セパレータに非水電解液 0. 04mlを注入し、アルミ- ゥム製の板 (厚さ 1. 2mm、直径 16mm)およびパネを収納した。最後に、電池内の 気密性を保持するために、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめ た。このものを室温で 12時間放置し、実施例 30のコイン型リチウム電池を作製した。 なお、非水電解液としては、 ECと MECとを 2 : 3 (重量比)の割合で混合し、この混 合溶媒に、 LiPF (電解質) 1モル/リットル、ビ-レンカーボネート 1%の含有量にな
6
るようにこれらを添加し、溶解させた。
(比較例 4)
非水電解液として実施例 30で用いた非水電解液を使用し、実施例 20と同じ負極、 正極、セパレータを用い、実施例 20と同様にして比較用のコイン型リチウム電池を作 製した。
(試験例 8)
<非水電解液の粘度測定 >
E型粘度計 (陶機産業 (株)製)を使用して、実施例 20— 29および比較例 4の非水 電解液について、 25°Cの粘度を測定した。
<電池特性の評価 >
実施例 20— 29および比較例 3— 4のコイン型リチウム電池を、まず 0. 5mAの電流 で 4. 2Vに充電後 5mAの定電流で電池の電圧が 3Vになるまで放電した (初期充電 )。この時の放電容量を「初期容量」とした。また、充電容量に対する初期容量の比率 を「初回充放電効率(%)」とした。次に、 4. 2Vに充電後 5mAの定電流で電池の電 圧が 3Vになるまで放電し、この時の放電容量を「5mA放電容量」とした。また、初期 容量に対する 5mA放電容量の比率を「5mA放電容量比(%)」とした。測定は 25°C で行った。次に、電池を 4. IVに充電後 60°Cで 2日間保存 (エージング保存と呼ぶ) した後に、電池特性(5mA放電容量)を測定し、 5mA放電容量比(%)を求めた。続 いて、 4. 2Vに充電後 85°Cで 3日間保存 (高温保存と呼ぶ)した後に、電池特性(5m A放電容量)を測定し、 5mA放電容量比(%)を求めた。初期充電後の電池特性と比 較することによって保存特性を評価した。なお、上述の初期充電およびエージング保 存により、電池中に充分に酸が生成し、非水電解液中に溶解または膨潤していたポ リビニルホルマール榭脂が酸変性され、さらに架橋され、非水電解液から分離し、電 極とセパレータとが強く接着される。
<電極とセパレータの接着性の確認 >
電池をエージング保存および高温保存試験後に解体し、電極とセパレータと剥離 させて接着性を調べ、下記の基準に従って評価した。
◎:電極の活物質層とセパレータとは強固に密着し、剥離操作を行っても、集電体 と活物質層との界面から剥離し、セパレータが電極の活物質層に張り付いたままであ つ 7こ。
〇:電極の活物質層とセパレータとは充分に密着していたが、剥離操作を行うと、負 極はその活物質層とセパレータとの界面力も剥離した。
△:電極の活物質層とセパレータとは密着したが、剥離操作を行うと、負極は容易 にその活物質層とセパレーターとの界面力 剥離した。
X:正極、負極とも剥離操作で容易に活物質層とセパレータとの界面力 剥離した
X X密着していなかった。
結果を表 10に示す。
[表 10] 電解液 初回充放 5 m A放電容量比 (%) 接着性 粘 度 電効率 初 期 エージン t ) 皿 エージン
(c p) (%) 充電後 グ保存後 保存後 グ保存後 保存後
20 1 5. 0 9 1. 2 9 2 8 6 66 △ O
2 1 1 5. 0 9 1. 5 93 8 6 7 1 Δ 〇 実 2 2 1 5. 0 9 1. 5 9 6 90 77 ◎ ◎
2 3 1 5. 0 9 1. 5 96 90 79 ◎ , ◎
24 1 0. 5 9 1. 1 96 90 68 ◎ ◎ 施 2 5 2 1. 8 92. 0 95 89 75 ◎ ◎
2 6 28. 5 9 1. 5 95 89 7 7 ◎ ◎
2 7 1 3. 0 92. 1 94 90 7 1 ◎ ◎ 例 28 9 - 5 92. 0 95 9 1 77 〇 ◎
2 9 6. 3 9 1. 4 9 3 86 6 6 Δ o
30 - 92. 8 95 9 1 78 ◎ ◎ 比 3 - 90. 6 92 8 7 6 7 X X 較
例 4 3. 1 9 0. 8 9 6 9 1 7 9 X X X X 実施例のリチウム電池は、通常のリチウム電池である比較例 4と同等の電池特性を 示し、かつ、電極とセパレータが接着されていることがわ力つた。特に正極とセパレー タとの接着性が高められていた。
実施例 20と実施例 21— 23の比較により、リン酸トリストリメチルシリルの添カ卩により、 電極とセパレータの接着性をさらに高めることができることが判った。特に負極とセパ レータとの接着性が高められていた。
実施例 23— 24の比較により、ポリビュルホルマール榭脂を電解液に 2%前後添カロ することにより、充分に電極とセパレータの接着性を高めることができることが判った。 実施例 26— 29の比較により、ポリビニルホルマール榭脂の重合度を低めると、非 水電解液の粘度を低めることができることが判った。
実施例 30と、その他の実施例および比較例との比較により、表面にポリビニルホル マール榭脂被膜をあらかじめ形成させた負極を使用すると、榭脂被膜を形成させて いない負極を使用した場合にくらべて、充放電効率が 2%程度向上し、電池の容量 も高くなることが判った。また、電極とセパレータの接着性も向上することが判った。 比較例 3より、従来のゲル電解質では、高分子成分を 5%にしても十分な接着性を 得ることはできな力つた。
以上より、本発明によって、形状保持性に優れ、充放電負荷特性に優れるリチウム 電池が得られることが明らかである。 本発明は、その精神または主要な特徴力 逸脱することなぐ他のいろいろな形態 で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本 発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束され ない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のもので ある。

Claims

請求の範囲
[I] ポリビニルァセタール榭脂が、炭酸エステル力もなる非水溶媒に溶解してなることを 特徴とするポリビュルァセタール榭脂ワニス。
[2] 炭酸エステルが、環状炭酸エステルと鎖状炭酸エステルとの混合物であることを特 徴とする請求項 1記載のポリビニルァセタール榭脂ワニス。
[3] 含有水分量が 200ppm以下であることを特徴とする請求項 1又は 2記載のポリビ- ルァセタール榭脂ワニス。
[4] ポリビニルァセタール榭脂が、ポリビュルホルマール榭脂であることを特徴とする請 求項 1一 3のいずれかに記載のポリビュルァセタール榭脂ワニス。
[5] ポリビニルァセタール榭脂が、酸変性物であることを特徴とする請求項 1一 4のいず れかに記載のポリビュルァセタール榭脂ワニス。
[6] ポリビュルァセタール榭脂力 — NMR測定で DMSO— dのピーク(2. 49ppm)
6
を基準として 4. 25—4. 35ppmにピークを示すプロトンの含有量が 0. 25モル Zkg 以下であることを特徴とする請求項 1一 5のいずれか 1つに記載のポリビニルァセター ル榭脂ワニス。
[7] ポリビュルァセタール榭脂のヒドロキシル基含有量が 0. 1— 2モル Zkgであることを 特徴とする請求項 1一 6のいずれ力 1つに記載のポリビュルァセタール榭脂ワニス。
[8] 請求項 1一 7のいずれかに記載のポリビュルァセタール榭脂ワニスを含有し、有機 溶剤をゲル化させることを特徴とするゲル化剤。
[9] 電解質と請求項 1一 7の 、ずれか〖こ記載のポリビニルァセタール榭脂ワニスとを含 むことを特徴とする非水電解液。
[10] ポリビニルァセタール榭脂のゲル浸透クロマトグラフィー測定によるポリスチレン換 算の数平均分子量えと、ポリビュルァセタール榭脂の非水電解液中でのポリビュル ァセタール樹脂ワニス中での濃度 c (重量%)とが次の関係を有することを特徴とする 請求項 9記載の非水電解液。
100≤ λ 1/2 X c≤ 1000
[II] ポリビニルァセタール榭脂の濃度力 非水電解液全量の 0. 3-3. 5重量0 /0である ことを特徴とする請求項 9又は 10記載の非水電解液。
[12] 非水電解液が、酸を生成する化合物を含有することを特徴とする請求項 9一 11の いずれか 1つに記載の非水電解液。
[13] 酸を生成する化合物が、フッ素原子を有するルイス酸および Zまたはルイス酸塩で あることを特徴とする請求項 12記載の非水電解液。
[14] 少なくとも、負極、セパレータ、正極および非水電解液を含む電気化学素子であつ て、負極および Zまたは正極とセパレータとがポリビュルァセタール榭脂の架橋物に より接着されることを特徴とする電気化学素子。
[15] ポリビニルァセタール榭脂の架橋物が、該架橋物と非水電解液との合計量に対す る割合が、 3. 5重量%以下であることを特徴とする請求項 14記載の電気化学素子。
[16] 負極がリチウム金属および Zまたはリチウムを吸蔵および Zまたは放出できる活物 質を含み、正極がリチウムの溶解析出電位に対して 3V以上の起電力を発生させ得 る活物質を含み、かつ非水電解液がリチウム塩から選ばれる電解質を含むことを特 徴とする請求項 14または 15記載のリチウム電池。
[17] 負極、セパレータおよび正極を積層し、この積層体に、請求項 11一 13のいずれか
1つの非水電解液を含浸させてなる電気化学素子を充電してポリビュルァセタール 榭脂の架橋物を生成させ、該架橋物によって負極および Zまたは正極とセパレータ とを接着することを特徴とする電気化学素子の製造方法。
PCT/JP2005/000415 2005-01-14 2005-01-14 ポリビニルアセタール樹脂ワニス、ゲル化剤、非水電解液および電気化学素子 WO2006075392A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006552815A JP4878290B2 (ja) 2005-01-14 2005-01-14 ポリビニルアセタール樹脂ワニス、ゲル化剤、非水電解液および電気化学素子
US11/795,313 US8124272B2 (en) 2005-01-14 2005-01-14 Polyvinyl acetal resin varnish gelling agent, nonaqueous electrolyte solution, and electrochemical device
PCT/JP2005/000415 WO2006075392A1 (ja) 2005-01-14 2005-01-14 ポリビニルアセタール樹脂ワニス、ゲル化剤、非水電解液および電気化学素子
CN200580046627XA CN101103070B (zh) 2005-01-14 2005-01-14 聚乙烯醇缩醛树脂清漆、胶凝剂、非水电解液和电化学元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/000415 WO2006075392A1 (ja) 2005-01-14 2005-01-14 ポリビニルアセタール樹脂ワニス、ゲル化剤、非水電解液および電気化学素子

Publications (1)

Publication Number Publication Date
WO2006075392A1 true WO2006075392A1 (ja) 2006-07-20

Family

ID=36677428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000415 WO2006075392A1 (ja) 2005-01-14 2005-01-14 ポリビニルアセタール樹脂ワニス、ゲル化剤、非水電解液および電気化学素子

Country Status (4)

Country Link
US (1) US8124272B2 (ja)
JP (1) JP4878290B2 (ja)
CN (1) CN101103070B (ja)
WO (1) WO2006075392A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278171A (ja) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd 非水電解質二次電池
JP2008088328A (ja) * 2006-10-03 2008-04-17 Nitto Denko Corp カーボネート化ポリビニルアルコールおよびその製造方法ならびにゲル状電解質
JP2009545154A (ja) * 2006-07-21 2009-12-17 エーディーディー・パワー・テクノロジーズ・リミテッド 電解質及びコンデンサ
JP2010503198A (ja) * 2006-08-31 2010-01-28 エスケー ケミカルズ カンパニー リミテッド 電解質溶液およびこれを含む超高容量キャパシター
JP2010062231A (ja) * 2008-09-02 2010-03-18 Meidensha Corp 電解液およびそれを用いた電気二重層キャパシタ
JP2010108679A (ja) * 2008-10-29 2010-05-13 Panasonic Corp 非水系二次電池用電極群およびこれを用いた非水系二次電池
US20110262817A1 (en) * 2007-08-22 2011-10-27 National Institute Of Advanced Industrial Science And Technology Lithium ion secondary battery
JP2015537352A (ja) * 2013-10-29 2015-12-24 エルジー・ケム・リミテッド ゲルポリマー電解質及びこれを含むリチウム二次電池
KR20170003614A (ko) * 2014-05-20 2017-01-09 다이슨 테크놀러지 리미티드 전기화학 전지의 제조 방법
CN109135626A (zh) * 2018-08-30 2019-01-04 浏阳象形精品烟花出口制造有限公司 一种免焙免晒快干烟花捲筒胶水
KR20190040871A (ko) * 2017-10-11 2019-04-19 광주과학기술원 촉매중합을 이용한 삼중블록 공중합체 및 그 제조 방법

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235592B2 (en) * 2004-10-12 2007-06-26 Zimmer Gmbh PVA hydrogel
WO2006091706A1 (en) * 2005-02-23 2006-08-31 Zimmer Technology, Inc. Blend hydrogels and methods of making
US20070098799A1 (en) * 2005-10-28 2007-05-03 Zimmer, Inc. Mineralized Hydrogels and Methods of Making and Using Hydrogels
US8262730B2 (en) 2005-12-07 2012-09-11 Zimmer, Inc. Methods of bonding or modifying hydrogels using irradiation
US20070141108A1 (en) * 2005-12-20 2007-06-21 Zimmer, Inc. Fiber-reinforced water-swellable articles
DE602006017160D1 (de) * 2005-12-22 2010-11-11 Zimmer Inc Perfluorcyclobutanvernetzte Hydrogele
US8110242B2 (en) * 2006-03-24 2012-02-07 Zimmer, Inc. Methods of preparing hydrogel coatings
US7731988B2 (en) * 2007-08-03 2010-06-08 Zimmer, Inc. Multi-polymer hydrogels
US20090043398A1 (en) * 2007-08-09 2009-02-12 Zimmer, Inc. Method of producing gradient articles by centrifugation molding or casting
US8062739B2 (en) * 2007-08-31 2011-11-22 Zimmer, Inc. Hydrogels with gradient
US7947784B2 (en) * 2007-11-16 2011-05-24 Zimmer, Inc. Reactive compounding of hydrogels
US8034362B2 (en) * 2008-01-04 2011-10-11 Zimmer, Inc. Chemical composition of hydrogels for use as articulating surfaces
US20100186806A1 (en) * 2009-01-26 2010-07-29 Mitsubishi Electric Corporation Photovoltaic module
KR101757178B1 (ko) 2010-01-15 2017-07-12 주식회사 쿠라레 고분자 전해질 겔 조성물
CN101831231A (zh) * 2010-04-21 2010-09-15 江苏宝杰隆电磁线有限公司 铌钛镍合金改性缩醛树脂超导体漆包扁线的绝缘涂漆
CN103804892B (zh) * 2012-11-09 2019-01-18 北京科技大学 一种聚合物多孔膜及其制备方法和在凝胶聚合物电解质中的应用
CN103337365B (zh) * 2013-06-05 2017-02-08 奇瑞汽车股份有限公司 凝胶电解质及其制备方法、染料敏化电池
CN103367799B (zh) * 2013-07-18 2015-02-25 北京科技大学 一种全固态聚电解质薄膜及其制备和应用方法
CN103872378B (zh) * 2014-02-27 2017-06-06 宁德新能源科技有限公司 锂离子二次电池及其凝胶电解液的配方
KR20190027957A (ko) * 2014-08-14 2019-03-15 솔베이(소시에떼아노님) 술톤 및 플루오린화된 용매를 포함하는 비수성 전해질 조성물
CN104319420B (zh) * 2014-10-28 2017-01-25 北京科技大学 基于聚乙烯醇缩醛的凝胶聚合物电解质的制备方法及应用
CN109565052A (zh) * 2017-03-28 2019-04-02 积水化学工业株式会社 蓄电设备电极用粘合剂
EP3780224B1 (en) * 2018-09-10 2024-08-21 LG Energy Solution, Ltd. Thermosetting electrolyte composition for lithium secondary battery, gel polymer electrolyte prepared therefrom, and lithium secondary battery including the electrolyte
WO2020075152A2 (en) * 2018-10-11 2020-04-16 Shell Oil Company A composition and uses thereof
CN115472910B (zh) * 2022-01-20 2023-06-20 长虹三杰新能源有限公司 一种含电聚合交联助剂的防过充电解液、锂离子电池
CN116964767A (zh) * 2022-05-31 2023-10-27 宁德时代新能源科技股份有限公司 二次电池及其制备方法、电池模块、电池包和用电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200125A (ja) * 2000-01-17 2001-07-24 Toyo Ink Mfg Co Ltd イオン伝導性組成物
JP2001200126A (ja) * 2000-01-17 2001-07-24 Toyo Ink Mfg Co Ltd イオン伝導性組成物
JP2005050808A (ja) * 2003-07-16 2005-02-24 Mitsui Chemicals Inc 非水電解液、電気化学素子およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1019598B (it) * 1973-05-18 1977-11-30 Comp Generale Electricite Elementi elettrochimici a strati sottili
US3985574A (en) * 1973-05-18 1976-10-12 Compagnie Generale D'electricite Electrochemical elements in thin layers
JPH0525213A (ja) 1991-07-17 1993-02-02 Sekisui Chem Co Ltd ポリビニルブチラール樹脂及びその製造方法
JP2005050800A (ja) * 1995-06-23 2005-02-24 Hitachi Ltd 二次電池及び二次電池を用いた電源
JP3623050B2 (ja) 1996-07-29 2005-02-23 Tdk株式会社 高分子電解質および電気化学デバイス
CN1224127C (zh) * 1997-12-22 2005-10-19 三菱电机株式会社 锂离子二次电池的制造方法
DE69737567T2 (de) * 1997-12-22 2007-12-27 Mitsubishi Denki K.K. Herstellung einer lithiumionensekundärbatterie
CN1302306A (zh) * 1999-03-23 2001-07-04 日清纺织株式会社 聚合物、粘结剂树脂、离子导电聚合物电解质组合物和蓄电池
JP2001064323A (ja) 1999-08-30 2001-03-13 Denki Kagaku Kogyo Kk ポリビニルアセタール系樹脂及びそれを含有するコーティング材組成物
JP3563646B2 (ja) 1999-09-14 2004-09-08 株式会社東芝 電気化学デバイス
JP2001250586A (ja) 2000-03-03 2001-09-14 Mitsubishi Chemicals Corp 電 池
JPWO2002093679A1 (ja) 2001-05-10 2004-09-02 日清紡績株式会社 非水電解質溶液、高分子ゲル電解質用組成物、および高分子ゲル電解質、ならびに二次電池および電気二重層キャパシタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200125A (ja) * 2000-01-17 2001-07-24 Toyo Ink Mfg Co Ltd イオン伝導性組成物
JP2001200126A (ja) * 2000-01-17 2001-07-24 Toyo Ink Mfg Co Ltd イオン伝導性組成物
JP2005050808A (ja) * 2003-07-16 2005-02-24 Mitsui Chemicals Inc 非水電解液、電気化学素子およびその製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278171A (ja) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009545154A (ja) * 2006-07-21 2009-12-17 エーディーディー・パワー・テクノロジーズ・リミテッド 電解質及びコンデンサ
JP2010503198A (ja) * 2006-08-31 2010-01-28 エスケー ケミカルズ カンパニー リミテッド 電解質溶液およびこれを含む超高容量キャパシター
JP2008088328A (ja) * 2006-10-03 2008-04-17 Nitto Denko Corp カーボネート化ポリビニルアルコールおよびその製造方法ならびにゲル状電解質
US20110262817A1 (en) * 2007-08-22 2011-10-27 National Institute Of Advanced Industrial Science And Technology Lithium ion secondary battery
US8546025B2 (en) * 2007-08-22 2013-10-01 Japan Vilene Company, Ltd. Lithium ion secondary battery
JP2010062231A (ja) * 2008-09-02 2010-03-18 Meidensha Corp 電解液およびそれを用いた電気二重層キャパシタ
JP2010108679A (ja) * 2008-10-29 2010-05-13 Panasonic Corp 非水系二次電池用電極群およびこれを用いた非水系二次電池
JP2015537352A (ja) * 2013-10-29 2015-12-24 エルジー・ケム・リミテッド ゲルポリマー電解質及びこれを含むリチウム二次電池
US11121404B2 (en) 2013-10-29 2021-09-14 Lg Chem, Ltd. Gel polymer electrolyte and lithium secondary battery comprising the same
KR20170003614A (ko) * 2014-05-20 2017-01-09 다이슨 테크놀러지 리미티드 전기화학 전지의 제조 방법
JP2017520084A (ja) * 2014-05-20 2017-07-20 ダイソン テクノロジー リミテッド 電気化学セルを製造する方法
KR102041167B1 (ko) * 2014-05-20 2019-11-06 다이슨 테크놀러지 리미티드 전기화학 전지의 제조 방법
KR20190040871A (ko) * 2017-10-11 2019-04-19 광주과학기술원 촉매중합을 이용한 삼중블록 공중합체 및 그 제조 방법
KR101998693B1 (ko) 2017-10-11 2019-07-11 광주과학기술원 촉매중합을 이용한 삼중블록 공중합체 및 그 제조 방법
CN109135626A (zh) * 2018-08-30 2019-01-04 浏阳象形精品烟花出口制造有限公司 一种免焙免晒快干烟花捲筒胶水

Also Published As

Publication number Publication date
CN101103070B (zh) 2010-08-25
JPWO2006075392A1 (ja) 2008-06-12
CN101103070A (zh) 2008-01-09
JP4878290B2 (ja) 2012-02-15
US20080090145A1 (en) 2008-04-17
US8124272B2 (en) 2012-02-28

Similar Documents

Publication Publication Date Title
WO2006075392A1 (ja) ポリビニルアセタール樹脂ワニス、ゲル化剤、非水電解液および電気化学素子
EP3093906B1 (en) Lithium metal battery
EP1892789B1 (en) Lithium secondary battery
EP3001495A2 (en) Composite, method of preparing the composite, electrolyte comprising the composite, and lithium secondary battery comprising the electrolyte
KR101884568B1 (ko) 전이금속 이온을 킬레이팅하는 작용기를 포함하고 열적 겔화가 가능한 전이금속 킬레이팅 작용기 중합체
EP3648228B1 (en) Electrolyte composition for lithium secondary battery and lithium secondary battery comprising same
CN111937190B (zh) 用于制造包含聚合物固体电解质的电极的方法和由该方法获得的电极
EP2833468A1 (en) Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
TWI518975B (zh) 電極保護膜形成劑、電極、電解液、鋰二次電池、鋰離子電容器、電雙層電容器以及電極保護膜的製造方法
EP4156399A1 (en) Isolating membrane of electrochemical device and preparation method therefor
JP4647948B2 (ja) 電気化学素子およびその製造方法
TWI329937B (en) Functional electrolyte additives and electrochemical device comprising the same
KR20190032390A (ko) 축전 디바이스용 양극 및 축전 디바이스
KR101954601B1 (ko) 유무기 복합고체 전해질, 이를 포함하는 리튬 이차전지 및 그 제조방법
CN111162315B (zh) 电解液及锂离子电池
CN105580167A (zh) 锂离子二次电池用电极和锂离子二次电池
CN111837258B (zh) 制造含聚合物固体电解质的电极的方法和由此获得的电极
Swiderska-Mocek et al. Compatibility of polymer electrolyte based on N-methyl-N-propylpiperidinium bis (trifluoromethanesulphonyl) imide ionic liquid with LiMn2O4 cathode in Li-ion batteries
TW200425560A (en) Heat resistant lithium battery
WO2003018687A2 (en) Thermosetting polyvinyl alcohol binder resin composition, slurry of electrode mix, electrode, non-aqueous electrolysis solution-containing secondary battery and use of thermosetting polyvinyl alcohol binder resin as electrode material
WO2021174444A1 (zh) 电化学装置和包含其的电子装置
KR100856955B1 (ko) 폴리비닐아세탈 수지 니스, 겔화제, 비수전해액 및 전기화학소자
KR102651545B1 (ko) 리튬전지용 복합막, 리튬전지용 양극 및 이를 포함하는 리튬전지
JP5237213B2 (ja) 電気化学素子用の非水電解液
KR102071593B1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006552815

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580046627.X

Country of ref document: CN

Ref document number: 11795313

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077017192

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 05703654

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5703654

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11795313

Country of ref document: US