WO2006073150A1 - 固体酸化物形燃料電池システムの起動方法 - Google Patents

固体酸化物形燃料電池システムの起動方法 Download PDF

Info

Publication number
WO2006073150A1
WO2006073150A1 PCT/JP2006/300017 JP2006300017W WO2006073150A1 WO 2006073150 A1 WO2006073150 A1 WO 2006073150A1 JP 2006300017 W JP2006300017 W JP 2006300017W WO 2006073150 A1 WO2006073150 A1 WO 2006073150A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
temperature
reforming
fuel cell
partial oxidation
Prior art date
Application number
PCT/JP2006/300017
Other languages
English (en)
French (fr)
Inventor
Iwao Anzai
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to US11/813,444 priority Critical patent/US8623563B2/en
Priority to CA2594394A priority patent/CA2594394C/en
Priority to KR1020077017138A priority patent/KR101102804B1/ko
Priority to DK06702116.2T priority patent/DK1840997T3/da
Priority to EP06702116.2A priority patent/EP1840997B8/en
Publication of WO2006073150A1 publication Critical patent/WO2006073150A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/085Methods of heating the process for making hydrogen or synthesis gas by electric heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a solid oxide fuel cell (SOFC) system. More specifically, the start-up of a SOFC system comprising a reformer for reforming a raw material for hydrogen production such as a hydrocarbon fuel to produce a reformed gas containing hydrogen, and a SOFC using the reformed gas as fuel. Regarding the method.
  • SOFC solid oxide fuel cell
  • the reforming types include partial acid reforming (POX), autothermal reforming (ATR) and water steam reforming (SR).
  • POX partial acid reforming
  • ATR autothermal reforming
  • SR water steam reforming
  • methane is taken as an example of a raw material for hydrogen production
  • methane is decomposed by a reaction represented by CH + H 0 ⁇ CO + 3H to produce hydrogen.
  • methane is separated by a reaction expressed as CH + 1/20 ⁇ CO + 2H.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-272690
  • the steam reforming reaction is a reaction with a relatively large endotherm, and the reaction is not substantially started unless the temperature is relatively high. Therefore, at start-up, the steam reformer, especially its The medium layer is heated to a high temperature of about 600 ° C, for example. In addition, SOFC is heated to a high temperature of, for example, about 800 ° C at the time of startup.
  • An object of the present invention is that the reformer can be started up efficiently and in a short time without impairing the advantage of steam reforming that the hydrogen concentration in the reformed gas can be made relatively high.
  • the object is to provide a startup method that can start the OFC system efficiently and in a short time.
  • a reformer having a reforming catalyst for reforming a raw material for hydrogen production to produce a reformed gas containing hydrogen, and a solid oxide form using the reformed gas as a fuel
  • a starting method of a solid oxide fuel cell system having a fuel cell
  • a catalyst having a partial oxidation reforming function and a catalyst having a steam reforming function are used as the reforming catalyst.
  • the steam reforming is performed by reducing the rate of the partial oxidation reforming reaction or stopping the partial oxidation reforming reaction.
  • the temperature of the catalyst having the partial acid reforming function is raised to a temperature at which the partial oxidation reforming reaction can proceed with the combustion gas obtained by burning the raw material for hydrogen production, and the raw material for hydrogen production
  • the temperature of the solid oxide fuel cell can be raised by supplying the combustion gas obtained by burning the gas to the power sword of the solid oxide fuel cell.
  • step c the catalyst having the steam reforming function is heated by the combustion gas obtained by burning the reformed gas discharged from the anode of the solid oxide fuel cell, and the solid oxide fuel
  • the temperature of the solid oxide fuel cell can be raised.
  • a reformer having a reforming catalyst for reforming a raw material for hydrogen production to produce a reformed gas containing hydrogen, and a solid oxide form using the reformed gas as a fuel
  • a starting method of a solid oxide fuel cell system having a fuel cell
  • a catalyst having a partial oxidation reforming function and a catalyst having a steam reforming function are used as the reforming catalyst.
  • the steam reforming is performed by reducing the ratio of the partial oxidation reforming reaction or stopping the partial oxidation reforming reaction.
  • a method for starting a solid oxide fuel cell system is provided.
  • the temperature of the catalyst having a partial acid / ole reforming function is raised to a temperature at which the partial oxidation reforming reaction can proceed with the combustion gas obtained by burning the raw material for hydrogen production, and the raw material for hydrogen production
  • the temperature of the solid oxide fuel cell can be raised by supplying the combustion gas obtained by burning the gas to the power sword of the solid oxide fuel cell.
  • the reformer can be started up efficiently and in a short time without impairing the advantage of steam reforming that the hydrogen concentration in the reformed gas can be made relatively high. Can start the S OFC system efficiently and in a short time.
  • FIG. 1 is a flowchart showing an example of a SOFC system to which the activation method of the present invention can be applied.
  • FIG. 2 is a flowchart showing another example of a SOFC system to which the activation method of the present invention can be applied.
  • FIG. 3 is a flowchart showing another example of a SOFC system to which the activation method of the present invention can be applied.
  • FIG. 4 is a flowchart showing another example of a SOFC system to which the activation method of the present invention can be applied.
  • a material force capable of obtaining a reformed gas containing hydrogen by a partial acid reforming method or an autothermal reforming method and by a steam reforming method can be appropriately selected and used.
  • compounds having carbon and hydrogen in the molecule such as hydrocarbons, alcohols and ethers can be used.
  • Preferable examples that can be obtained at low cost for industrial use or consumer use include methanol, ethanol, dimethyl ether, city gas, LPG (liquid petroleum gas), gasoline, and kerosene. Of these, kerosene is preferable because it is easily available for industrial use and for consumer use and is easy to handle.
  • a catalyst having a partial oxidation reforming function and a catalyst having a steam reforming function are used as a reforming catalyst.
  • Steam reforming catalyst may be used as the reforming catalyst.
  • only the autothermal reforming catalyst having both the partial oxidation reforming function and the steam reforming function may be used as the reforming catalyst.
  • the reformer includes a reforming reaction section having a reforming catalyst and an external heating of the reforming reaction section. And a container through which the gas can be circulated.
  • a reformer having a reforming reaction tube filled with a reforming catalyst and having a reforming catalyst layer formed therein as a reforming reaction section and having a container for accommodating the reaction tube inside can be used.
  • a structure in which the reaction tube penetrates the container may be used.
  • the reformer is connected to a line that supplies an oxygen-containing gas such as air, a raw material for hydrogen production, and water vapor to the reforming catalyst individually or appropriately mixed.
  • a line for supplying the modified gas to the SOFC anode is also connected.
  • a partial oxidation reforming catalyst is filled in the previous stage (upstream side) inside the reforming reaction tube, and a steam reforming catalyst is filled in the subsequent stage (downstream side) to form a reforming catalyst layer.
  • the reforming catalyst layer can be formed by filling the autothermal reforming catalyst in the former stage inside the reaction tube and filling the steam reforming catalyst in the latter stage. Further, the reforming catalyst layer can be formed by filling only the autothermal reforming catalyst into the reaction tube.
  • reformer basically one reformer may be used, but a plurality of reformers having different types of reforming catalysts are not necessarily required. It can also be used.
  • a reformer having a reforming catalyst layer made of a partial oxidation reforming catalyst partial oxidation reformer
  • a reformer having a reforming catalyst layer made of a steam reforming catalyst steam reformer
  • Known catalysts can be used for the partial oxidation reforming catalyst, the steam reforming catalyst, and the autothermal reforming catalyst.
  • the partial oxidation reforming catalyst include platinum-based catalysts
  • examples of the steam reforming catalyst include ruthenium-based and nickel-based catalysts
  • examples of the autothermal reforming catalyst include rhodium-based catalysts.
  • the temperature at which the partial acidification reforming reaction can proceed is, for example, 200 ° C to 1000 ° C, and the temperature at which the steam reforming reaction can proceed is, for example, 400 ° C to 1000 ° C.
  • the steam reforming reaction temperature can be, for example, 450 ° C to 900 ° C, preferably 500 ° C to 850 ° C, and more preferably 550 ° C to 800 ° C.
  • the amount of steam introduced into the reaction system is defined as the ratio of the number of moles of water molecule to the number of moles of carbon atoms contained in the raw material for hydrogen production (steam / carbon ratio), and this value is preferably 0.5 to 10, More preferably, it is 1-7, and more preferably 2-5.
  • the space velocity (LHSV) at this time is AZB when the flow rate in the liquid state of the raw material for hydrogen production is A (L / h) and the volume of the catalyst layer is B (L).
  • This value is preferably 0. More preferably, it is set in the range of 0.1 to 10h, more preferably 0.2 to 5h- 1 .
  • an oxygen-containing gas is added to the raw material in addition to steam.
  • the oxygen-containing gas may be pure oxygen, but air is also preferred because of its availability.
  • An oxygen-containing gas can be added to balance the endothermic reaction associated with the steam reforming reaction and to maintain a temperature of the reforming catalyst layer or SOFC or to generate a heat generation amount that can raise the temperature.
  • the amount of the oxygen-containing gas added is preferably 0.05 to 1, more preferably 0.1 to 0 as the ratio of the number of moles of oxygen molecules to the number of moles of carbon atoms contained in the raw material for hydrogen production (oxygen Z carbon ratio). 75, more preferably 0.2 to 0.6.
  • the reaction temperature of the autothermal reforming reaction is 450, for example. C ⁇ 900.
  • the space velocity (LHSV) at this time is preferably selected in the range of 0.1 to 30, more preferably 0.5 to 20, and still more preferably 1 to 10.
  • the amount of steam introduced into the reaction system is preferably 0.3 to 10, more preferably 0.5 to 5, more preferably 1 to 3 as the steam Z carbon ratio.
  • SOFC a known SOFC force can be appropriately selected and used. It may be cylindrical or flat.
  • the temperature at which SOFC can generate electricity is, for example, 500 ° C or higher and 1200 ° C or lower.
  • Known components of the SOFC system having a reformer can be appropriately provided as necessary.
  • Specific examples include a desulfurizer that reduces the concentration of sulfur in the raw material for hydrogen production, a vaporizer that vaporizes the raw material for hydrogen production, and a SOFC cathode.
  • flow rate adjusting means such as valves for adjusting the flow rate of the fluid, or shutting off the fluid flow Z shutting off the flow path Z switching means ,
  • Heat exchange 'heat exchanger for heat recovery
  • vaporizer for vaporizing liquid
  • condenser for condensing gas
  • heating to externally heat various devices with steam, etc.Z heat retention means storage means for various fluids, instrumentation Air, electrical system, signal system for control, control device, electrical system for output and power.
  • step a or i is performed by heating the catalyst having a partial oxidation reforming function to a temperature at which the partial oxidation reforming reaction can proceed by combustion heat or electricity.
  • a partial oxidation reforming catalyst or an autothermal reforming catalyst can be used as the catalyst having a partial oxidation reforming function.
  • Combustion heat can be obtained by combusting combustibles with a combustor as appropriate.
  • combustibles can be combusted appropriately in a combustor, and the catalyst can be heated by heat exchange with the combustion gas.
  • an electric heater can be used.
  • An electric heater is provided in the reaction tube containing the catalyst, and the electric heater can be energized.
  • the catalyst when the catalyst can be energized, such as a metal support catalyst, the catalyst itself can be energized and the catalyst itself can be heated. These heating methods may be used in combination as appropriate.
  • the temperature of a water vaporizer, a hydrogen production raw material vaporizer, or the like can be increased by combustion heat or electricity, and steam generation or hydrogen production raw material can be vaporized.
  • step a After step a, a partial oxidation reforming reaction is performed, the temperature of the catalyst having the steam reforming function is raised by the partial oxidation reforming reaction heat, and the reformed gas is supplied to the solid oxide fuel cell anode. By doing so, step b of raising the temperature of the solid oxide fuel cell can be performed.
  • the steam reforming reaction may proceed together with the partial oxidation reforming reaction.
  • Partial acid-reforming can be performed, and autothermal reforming can be performed.
  • the temperature of the catalyst is raised by the heat of reaction, so in autothermal reforming, the heat generated by the partial acid reforming reaction exceeds the endotherm by the steam reforming reaction, generating a total heat! ⁇ .
  • a steam reforming catalyst or an autothermal reforming catalyst can be used as the catalyst having a steam reforming function.
  • the partial oxidation reformer When the partial oxidation reformer and the steam reformer are used separately, the partial oxidation reformer performs partial oxidation reforming, and the temperature is relatively high due to heat generated by the partial oxidation reforming reaction.
  • the reformed gas can be supplied to the steam reformer to raise the temperature of the steam reforming catalyst.
  • a raw material for hydrogen production and an oxygen-containing gas are supplied to the partial oxidation reforming catalyst (or autothermal reforming catalyst).
  • the partial oxidation reforming catalyst or autothermal reforming catalyst.
  • steam is also supplied to the reforming catalyst.
  • steam can be supplied to the reforming catalyst as desired.
  • the temperature of SOFC is raised by supplying the reformed gas obtained from the reformer, which has a relatively high temperature due to heat generated by the partial oxidation reforming reaction, to the anode of SOFC.
  • Step C of heating the medium or autothermal reforming catalyst can be performed.
  • This combustion heat can be used to preheat the oxygen-containing gas used for this combustion, to heat the SOFC, to preheat or vaporize the raw material for hydrogen production, and to generate steam.
  • step c an oxygen-containing gas such as air is supplied to the SOFC power sword, and the reformed gas that has passed through the anode and the oxygen-containing gas that has passed through the power sword can be subjected to a combustion reaction.
  • an oxygen-containing gas such as air
  • a combustor capable of combusting the reformed gas as appropriate can be used.
  • This combustor may be provided in a reformer that may be provided in a container that accommodates SOFC.
  • a partial oxidation reforming reaction is performed, the temperature of the catalyst having the steam reforming function is raised by the partial oxidation reforming reaction heat, and the reformed gas is combusted to solidify the combustion gas.
  • Step ii of heating the catalyst having a steam reforming function with the combustion gas obtained by burning the reformed gas while raising the temperature of the solid oxide fuel cell by supplying the power sword of the physical fuel cell It can also be done.
  • the ratio of the partial oxidation reforming reaction is reduced or the partial oxidation reforming reaction is stopped to perform the steam reforming. Perform step d or iii. Even if the rate of partial oxidation reforming reaction is reduced or zero, the steam reforming catalyst (or autothermal reforming catalyst) is heated by the combustion gas obtained by burning the reformed gas in step c or step ii. Will continue.
  • the ratio of the partial oxidation reforming reaction is reduced, preferably by stopping the partial acid reforming reaction and performing steam reforming to reduce the hydrogen concentration in the reformed gas. Can be relatively high.
  • the supply amount of oxygen-containing gas such as air to the reforming catalyst is reduced or made zero, that is, O
  • step b or ii Using a partial acid-oxide reformer and a steam reformer separately, in step b or ii, a raw material for hydrogen production or the like is supplied to the partial acid-oxide reformer and obtained from the partial oxidation reformer.
  • the reformed gas to be supplied is supplied to the water vapor reformer, in step d or iii, the raw material for hydrogen production or the like can be supplied to the steam reformer without being supplied to the partial oxidation reformer. That is, in step d, the use of the partial oxidation reformer can be stopped by switching the gas flow path.
  • reaction tube contains oxygen. If the supply of gas is stopped and the supply of steam is started or continued, the partial oxidation reforming reaction can be stopped and steam reforming can be performed.
  • step e or iv can be performed in which power is generated by the fuel cell and the temperature of the fuel cell is raised by cell reaction heat. This step is preferably performed because the SOFC can be further heated.
  • the power generated here may be output to the grid when the SOFC is linked to the grid. Alternatively, it may be used as power for auxiliary equipment such as a pump and a blower of a fuel cell system.
  • Partial oxidation reforming (or autothermal reforming) can be started at a relatively low temperature, and the reforming catalyst is directly heated by the partial oxidation reforming reaction. It can be done promptly. In addition, after the temperature rise is completed, only steam reforming can be performed, or even if accompanied by a partial acid-sodium reforming reaction, the ratio can be reduced, so that the hydrogen concentration in the reformed gas is relatively high. can do. Further, since the temperature of the reformer is raised quickly, and the SOFC is heated using a high-temperature reformed gas that also provides the reformer power, the temperature of the SOFC can be raised quickly.
  • the temperature of the partial oxidation reforming catalyst should be 200 ° C or higher from the viewpoint of promoting the progress of the partial oxidation reforming reaction.
  • the preferred temperature is 250 ° C or higher, and the more preferred temperature is 300 ° C or higher.
  • the temperature of the hydrogen production raw material supplied to the reformer or the gas containing the hydrogen production raw material and the temperature of the catalyst layer inlet of the reformer are used to suppress thermal decomposition of the hydrogen production raw material.
  • the temperature is not more than 00 ° C. Further, the temperature is preferably higher than the temperature at which water and the raw material for hydrogen production are vaporized.
  • Fig. 1 shows an example of a SOFC system to which the activation method of the present invention can be applied.
  • the cylindrical SOFC 1 is accommodated in a container (SOFC accommodating container) 2.
  • the figure shows only one SOFC, but many SOFCs are arranged.
  • the SOFC container 2 is partitioned into a region (anode gas chamber) 2a and a region (here, combustion chamber) 2b by a partition plate 3 through which gas can flow so that gas can flow.
  • the reformed gas is supplied to the region 2a, and the reformed gas is supplied to the region 2b through the partition plate 3.
  • the partition plate through which gas can flow for example, a punching plate, a foam plate, or a woven plate made of a heat-resistant metal or ceramics can be used.
  • the partition plate through which gas can flow is a member for preventing combustion in the region (anode gas chamber) 2a.
  • the SOFC has a cylindrical shape with the inner side being the force sword side and the outer side being the anode side, one end (the lower end in the drawing) is closed, and the other end opens into the region 2b.
  • the reformed gas obtained in the reformer is supplied to the region 2a and supplied to the anode of the SOFC (the outer surface of the cylinder).
  • the air preheated by the air preheater 4 provided in the region 2b is supplied from the air supply pipe 5 to the SOFC power sword (the inner surface of the cylinder). in this way As a result, hydrogen in the reformed gas and oxygen in the air cause an electrochemical reaction to generate electricity.
  • the anode gas (anode off-gas) after being used for power generation is supplied to the region 2b through the partition plate 3, and the power sword gas (power sword-off gas) after being used for power generation is the open end of the SOFC. Is supplied to the force region 2b, where they undergo a combustion reaction. That is, the region 2b functions as a combustion chamber. The air flowing through the air preheater 4 is preheated by this combustion heat.
  • the air preheater 4 a known heat exchange structure capable of heating air with the combustion gas in the region 2b can be used.
  • a reforming reaction tube 10a that houses a reforming catalyst is provided in the container 10b or through the container 10b.
  • a partial oxidation reforming catalyst (or autothermal reforming catalyst) is filled in the former stage, and a steam reforming catalyst is filled in the latter stage to form a reforming catalyst layer.
  • the reforming catalyst layer may be formed by filling only the autothermal reforming catalyst.
  • a water vaporizer 20 that vaporizes water to generate steam
  • a kerosene vaporizer 21 that vaporizes kerosene
  • a start-up combustor 22 that is used in an initial stage of startup (step a) are provided.
  • kerosene and air are supplied to the start-up combustor 22 to perform combustion.
  • the combustion gas is supplied to the reformer vessel 10b and the reforming reaction tube 10a is heated. After the reforming reaction tube is heated, the combustion gas is led to the kerosene vaporizer 21 and the water vaporizer 20 in order, and the temperature is raised.
  • combustor 22 known combustion means capable of burning kerosene, for example, a panner or the like can be used as appropriate.
  • the same fuel as the raw material for hydrogen production is used as the fuel for the combustor, but this is not necessarily the case.
  • the water vaporizer reaches a temperature at which steam can be generated
  • the kerosene air heater reaches a temperature at which kerosene can be vaporized
  • the reforming catalyst or autothermal reforming catalyst
  • the temperature reaches a temperature at which the partial oxidation reforming reaction can proceed
  • steam is generated by the water vaporizer
  • kerosene is vaporized by the kerosene vaporizer
  • steam, vaporized kerosene and air are mixed
  • the reformed reaction tube 10a is mixed.
  • Supply Note that steam is not required to perform the partial acid-reforming reforming reaction, but the point of view for preventing carbon deposition on the piping is the case where only partial oxidation reforming is performed. Even if it exists, it is preferable to mix steam.
  • a vaporizer is provided for using kerosene, which is a liquid fuel, as a raw material for hydrogen production.
  • kerosene which is a liquid fuel
  • the raw material for hydrogen production is used. No vaporizer is required.
  • a preheater may be provided in place of the vaporizer for the raw material for hydrogen production.
  • a partial oxidation reforming reaction (autothermal reforming reaction accompanied by a steam reforming reaction) occurs. Due to the heat generated by the reforming reaction, high-temperature reformed gas is generated, and the temperature of the reformer is increased. In particular, the partial oxidation reforming catalyst itself is heated by the heat generation, and the subsequent steam reforming catalyst is also heated by the reformed gas.
  • Combustion by the start-up combustor may be stopped when heat generation due to reforming occurs!
  • the high-temperature reformed gas obtained from the reformer 10 is guided to the region 2a (anode gas chamber) of the container 2 that accommodates the SOFC, and raises the temperature of the SOFC.
  • air is supplied to the SOFC power sword side through the air preheater 4 and the air supply pipe 5.
  • the air discharged from the power sword causes a combustion reaction with the reformed gas supplied to the region 2b (combustion chamber) through the partition plate 3, and generates heat here. With this combustion heat, air is preheated by the air preheater 4 provided in the region 2b.
  • the combustion gas discharged from the region 2b is led to the reformer vessel 10b, the reforming reaction tube 10a is heated from the outside thereof, and then led to the kerosene vaporizer 21 to vaporize kerosene, and then It is guided to the water vaporizer 20 to generate steam.
  • a known heat exchange structure can be adopted as appropriate for the kerosene vaporizer and the water vaporizer.
  • the temperature of the reformer and the SOFC can be increased by the heat generated by the reforming reaction and the combustion heat obtained by burning the reformed gas.
  • FIG. 2 shows another example of a SOFC system to which the activation method of the present invention can be applied.
  • SOFC area 2b simply functions as a header for collecting power sword off gas, and anode off gas and power sword off gas are supplied into the reformer vessel 10b (outside the reforming reaction tube). Combustion is performed, and an air preheater 4 is provided here.
  • the region 2a and the region 2b are partitioned by a partition plate 103 incapable of gas flow.
  • the anode off-gas can be burned in the reformer rather than being burned in the container containing the SOFC.
  • the start-up operation can also be performed in the same manner as in Example 1 except that the reformed gas that also discharges the SOFC anode chamber power is combusted in the reformer.
  • combustion means for burning the force sword off gas and the anode off gas for example, a burner surface combustor or the like can be used.
  • FIG. 3 shows still another example of the SOFC system to which the activation method of the present invention can be applied.
  • the reformer 10 the kerosene vaporizer 21 and the water vaporizer 20 are installed in the region 2b of the container for accommodating the 20-power SOFC.
  • this reformer can be configured only by the reforming reaction section such as a catalyst reaction tube.
  • a reformer having the same configuration as that of the reforming reaction tube of Example 1 is used.
  • the combustion gas generated in the start-up combustor 22 is guided to the region 2b, and the temperature of the reformer, kerosene vaporizer, and water vaporizer can be increased by this combustion gas.
  • the start-up operation can be performed in the same manner as in Example 1 except that the temperature of the reformer, kerosene vaporizer, and water vaporizer in the region 2b is increased by the combustion gas of the start-up combustor.
  • FIG. 4 shows still another example of the SOFC system to which the activation method of the present invention can be applied.
  • the cylindrical SOFC101 has an anode on the inside and a force sword on the outside.
  • the inside of the container 2 is partitioned into a region 2a (functioning as an anode off-gas header) and a region 2b (forced sword gas chamber) by a partition plate 103 that cannot flow gas.
  • Region 2b force A reformer 10, a starting water vaporizer 120a, and a starting kerosene vaporizer 12la are provided in the sword gas chamber.
  • a start-up combustor 22 is provided outside the SOFC container 2, and the combustion gas is guided to the region 2b so that the reformer, the start-up water vaporizer, and the start-up kerosene vaporizer can be heated.
  • a normal operation combustor 122 is provided, and the combustion gas of the combustor can heat the normal operation water vaporizer 120b and the normal operation kerosene vaporizer 121b.
  • the reformer 10 has the same configuration as in the third embodiment.
  • kerosene and air are supplied to the start-up combustor 22 to perform combustion.
  • the combustion gas is supplied to the region 2b, and the temperature of the startup water vaporizer 120a, the startup kerosene vaporizer 121a, the reformer 10, and the SOFC101 is increased.
  • the reformer, the start-up water vaporizer, and the start-up kerosene vaporizer reach predetermined temperatures, and the partial oxidation reforming catalyst (or autothermal reforming catalyst) reaches a temperature at which the partial oxidation reforming reaction can proceed.
  • the partial oxidation reforming catalyst or autothermal reforming catalyst
  • a partial oxidation reforming reaction autothermal reforming reaction accompanied by steam reforming reaction
  • the reformed gas obtained in this reformer is supplied from the reformed gas supply pipe 105 to the anode of the SOFC 101 to raise the temperature of the SOFC.
  • the reformed gas discharged from the anode to the region 2a is supplied to the start-up combustor 22 as fuel. At this time, the supply of kerosene to the start-up combustor 22 can be stopped.
  • the reformed gas discharged from the region 2a is supplied to the normal operation combustor 122 instead of the start combustor 22.
  • Air is supplied to region 2b.
  • the oxygen concentration in the region 2b (force sword chamber) can be made equal to air.
  • the air can be preheated as appropriate.
  • the heat required for the steam reforming reaction can be supplied mainly by radiant heat of SOFC power.
  • the reformer 10 is preferably arranged at a position where the radiant heat of SOFC can easily reach.
  • Example 4 after the partial oxidation reforming catalyst (or autothermal reforming catalyst) reaches a temperature at which the partial oxidation reforming reaction can proceed, and steam generation and kerosene vaporization are possible, partial oxidation reforming is performed.
  • the reformed gas is supplied from the reformed gas supply pipe 105 to the anode of the SOFC 101 to raise the temperature of the SOFC.
  • Example 5 instead of supplying the reformed gas to the anode of the SOFC, the reformed gas is supplied as fuel to the start-up combustor 22 using the line shown by the broken line in FIG. Is burned and the combustion gas is supplied to area 2b (power sword gas chamber) to heat the SOFC.
  • the combustion heat of the reformed gas can be used to heat the startup water vaporizer, the startup kerosene vaporizer, and the reformer.
  • the supply of kerosene to the start-up combustor can be stopped.
  • the reformed gas is not supplied to the anode of the SOFC. Therefore, when generating electricity with SOFC, the reformed gas is supplied to the anode. For example, when the SOFC reaches a temperature at which power generation is possible, use of the line indicated by the broken line is stopped, and the reformed gas is supplied from the reformer 10 to the anode via the reformed gas supply pipe 105. The reformed gas discharged from the anode to the region 2a can be supplied to the normal operation combustor 122. In addition, preheated air is appropriately supplied to the region 2b. This enables power generation with SOFC.
  • the SOFC system can be activated in the same manner as in the fourth embodiment.
  • the power sword When supplying combustion gas to the power sword as in Examples 4 and 5, the power sword is returned. From the viewpoint of preventing deterioration in the original atmosphere, it is preferable to perform combustion gas management so that the oxygen concentration of the combustion gas becomes a desired concentration.
  • the oxygen concentration of the combustion gas is governed by the air ratio. The lower the air ratio (close to 1), the higher the combustion gas can be obtained, and the viewpoint power to shorten the startup time is also preferable. However, the higher the air ratio, the higher the oxygen concentration, which is advantageous for the chemical stability of the force sword member.
  • the oxygen concentration of the combustion gas supplied to the power sword is preferably 1% (dry mole basis) or more, more preferably 3% (dry mole basis) or more, and more preferably 5% (dry mole basis) or more. preferable.

Abstract

 改質ガス中の水素濃度を高くしつつSOFCシステムの起動を効率的、短時間で行う。改質触媒を有する改質器と、改質ガスを燃料として用いるSOFCとを有するSOFCシステムの起動方法において、改質触媒としてPOX機能を有する触媒A及びSR機能を有する触媒Bを用い、燃焼熱又は電気で触媒AをPOX反応進行可能温度まで昇温する工程;POX反応熱で触媒Bを昇温し改質ガスをアノードに供給してSOFCを昇温する工程及びアノードから排出される改質ガスを燃焼させた燃焼熱で触媒Bを加熱する工程、又はPOX反応熱で触媒Bを昇温し改質ガスを燃焼させた燃焼ガスをカソードに供給してSOFCを昇温しこの燃焼ガスで触媒Bを加熱する工程;触媒BがSR反応が進行可能な温度になった後、POX反応の割合を低減し又はPOX反応を停止して、SRを行う工程を有する。

Description

明 細 書
固体酸化物形燃料電池システムの起動方法
技術分野
[0001] 本発明は、固体酸化物形燃料電池(Solid Oxide Fuel Cell: SOFC)システム に関する。より詳しくは、炭化水素燃料などの水素製造用原料を改質し水素を含む 改質ガスを製造するための改質器と、該改質ガスを燃料として用いる SOFCとを備え る SOFCシステムの起動方法に関する。
背景技術
[0002] SOFCは水素と酸素との電気化学的な反応により発電するため、 SOFCのアノード には水素に富んだガスが供給される。このため、炭化水素燃料などの水素製造用原 料を改質し水素を製造するための改質器を備える SOFCシステムが知られている。
[0003] 改質のタイプには部分酸ィヒ改質 (POX)、オートサーマル改質 (ATR)および水蒸 気改質 (SR)がある。例えば水素製造用原料としてメタンを例にとると、水蒸気改質で は CH +H 0→CO + 3Hで表される反応によってメタンが分解されて水素が製造さ
4 2 2
れ、部分酸化改質は CH + 1/20→CO + 2Hで表される反応によってメタンが分
4 2 2
解されて水素が製造される。オートサーマル改質では、これら反応の両方が行われる
[0004] 他の改質に比べ、水蒸気改質では得られる改質ガス中の水素濃度が高ぐ SOFC システムに適用した場合に発電効率が高くなる。このように優れた点があるため、水 蒸気改質器と、水蒸気改質器で得られた改質ガスを燃料とする SOFCを備える SOF Cシステムが開発されている。
[0005] このような SOFCシステム力 例えば特許文献 1に記載されている。
特許文献 1:特開 2003 - 272690号公報
発明の開示
発明が解決しょうとする課題
[0006] しかし、水蒸気改質反応は比較的大きな吸熱を伴う反応であり、比較的高温でない と実質的に反応が開始されない。従って、起動時には水蒸気改質器、特にはその触 媒層が例えば 600°C程度の高温まで昇温される。また、 SOFCについては、その起 動時に例えば 800°C程度の高温まで昇温される。
[0007] このように、水蒸気改質器を備えた SOFCシステムでは、比較的高温まで昇温する 必要があり、その起動を効率的にかつ短時間で行うことが求められている。
[0008] 本発明の目的は、改質ガス中の水素濃度を比較的高くできるという水蒸気改質の 長所を損なわずに、改質器の起動を効率的かつ短時間で行うことができ、さらには S
OFCシステムの起動を効率的かつ短時間で行うことができる起動方法を提供するこ とである。
課題を解決するための手段
[0009] 本発明により、水素製造用原料を改質して水素を含む改質ガスを製造するための、 改質触媒を有する改質器と、該改質ガスを燃料として用いる固体酸化物形燃料電池 とを有する固体酸ィ匕物形燃料電池システムの起動方法において、
該改質触媒として部分酸化改質機能を有する触媒および水蒸気改質機能を有す る触媒を用い、
a)燃焼熱もしくは電気によって、部分酸化改質機能を有する触媒を、部分酸化改質 反応が進行可能な温度まで昇温する工程;
b)部分酸化改質反応を行!ヽ、部分酸化改質反応熱によって水蒸気改質機能を有す る触媒を昇温し、かつ、改質ガスを固体酸化物形燃料電池のアノードに供給すること により固体酸化物形燃料電池を昇温する工程;
c)固体酸ィ匕物形燃料電池のアノードから排出される改質ガスを燃焼させ、この燃焼 熱によって水蒸気改質機能を有する触媒を加熱する工程;および
d)水蒸気改質機能を有する触媒が水蒸気改質反応が進行可能な温度になった後、 部分酸化改質反応の割合を低減しもしくは部分酸化改質反応を停止して、水蒸気改 質を行う工程を有することを特徴とする固体酸化物形燃料電池システムの起動方法 が提供される。
[0010] この方法が、 e)前記固体酸化物形燃料電池が発電可能な温度になった後、該燃 料電池で発電を行!ヽ、電池反応熱によって該燃料電池を昇温する工程
をさらに有することが好まし 、。 [0011] 前記工程 aにおいて、水素製造用原料を燃焼させた燃焼ガスによって部分酸ィ匕改 質機能を有する触媒を部分酸化改質反応が進行可能な温度まで昇温するとともに、 水素製造用原料を燃焼させた燃焼ガスを固体酸化物形燃料電池の力ソードに供給 することにより固体酸化物形燃料電池を昇温することができる。
[0012] 前記工程 cにおいて、固体酸化物形燃料電池のアノードから排出される改質ガスを 燃焼させた燃焼ガスによって水蒸気改質機能を有する触媒を加熱するとともに、固 体酸ィ匕物形燃料電池のアノードから排出される改質ガスを燃焼させた燃焼ガスを固 体酸化物形燃料電池の力ソードに供給することにより、固体酸化物形燃料電池を昇 温することができる。
[0013] 本発明により、水素製造用原料を改質して水素を含む改質ガスを製造するための、 改質触媒を有する改質器と、該改質ガスを燃料として用いる固体酸化物形燃料電池 とを有する固体酸ィ匕物形燃料電池システムの起動方法において、
該改質触媒として部分酸化改質機能を有する触媒および水蒸気改質機能を有す る触媒を用い、
i)燃焼熱もしくは電気によって、部分酸化改質機能を有する触媒を、部分酸化改質 反応が進行可能な温度まで昇温する工程;
ii)部分酸化改質反応を行!ヽ、部分酸化改質反応熱によって水蒸気改質機能を有す る触媒を昇温し、かつ、改質ガスを燃焼させてその燃焼ガスを固体酸化物形燃料電 池の力ソードに供給することにより固体酸化物形燃料電池を昇温するとともに、該改 質ガスを燃焼させた燃焼ガスによって水蒸気改質機能を有する触媒を加熱する工程 ;および
iii)水蒸気改質機能を有する触媒が水蒸気改質反応が進行可能な温度になった後 、部分酸化改質反応の割合を低減しもしくは部分酸化改質反応を停止して、水蒸気 改質を行う工程
を有することを特徴とする固体酸化物形燃料電池システムの起動方法が提供される
[0014] この方法が、 iv)前記固体酸化物形燃料電池が発電可能な温度になった後、該燃 料電池で発電を行!ヽ、電池反応熱によって該燃料電池を昇温する工程 をさらに有することが好ま 、。
[0015] 前記工程 iにおいて、水素製造用原料を燃焼させた燃焼ガスによって部分酸ィ匕改 質機能を有する触媒を部分酸化改質反応が進行可能な温度まで昇温するとともに、 水素製造用原料を燃焼させた燃焼ガスを固体酸化物形燃料電池の力ソードに供給 することにより固体酸化物形燃料電池を昇温することができる。
発明の効果
[0016] 本発明によれば、改質ガス中の水素濃度を比較的高くできるという水蒸気改質の 長所を損なわずに、改質器の起動を効率的かつ短時間で行うことができ、さらには S OFCシステムの起動を効率的かつ短時間で行うことができる。
図面の簡単な説明
[0017] [図 1]本発明の起動方法を適用できる SOFCシステムの一例を示すフロー図である。
[図 2]本発明の起動方法を適用できる SOFCシステムの別の例を示すフロー図である
[図 3]本発明の起動方法を適用できる SOFCシステムの別の例を示すフロー図である
[図 4]本発明の起動方法を適用できる SOFCシステムの別の例を示すフロー図である 符号の説明
1 SOFC (アノード外側)
2 SOFCを収容する容器
2a 領域 (アノード側)
2b 領域 (力ソード側)
3 ガス流通可能な仕切り板
4 空気予熱器
5 空気供給管
10 改質器
10a 改質反応管
10b 改質器容器 20 水気化器
21 灯油気化器
22 起動用燃焼器
101 SOFC (力ソード外側)
103 ガス流通不能な仕切り板
105 改質ガス供給管
120a 水気化器 (起動運転用)
120b 水気化器 (通常運転用)
121a 灯油気化器 (起動運転用)
121b 灯油気化器 (通常運転用)
122 通常運転用燃焼器
発明を実施するための最良の形態
[0019] 〔水素製造用原料〕
水素製造用原料としては、部分酸ィ匕改質法もしくはオートサーマル改質法によって 、かつ、水蒸気改質法によって水素を含む改質ガスを得ることのできる物質力 適宜 選択して使用できる。例えば、炭化水素類、アルコール類、エーテル類など分子中に 炭素と水素を有する化合物を用いることができる。工業用あるいは民生用に安価に 入手できる好ましい例として、メタノール、エタノール、ジメチルエーテル、都市ガス、 LPG (液ィ匕石油ガス)、ガソリン、灯油などを挙げることができる。なかでも灯油は工業 用としても民生用としても入手容易であり、その取り扱いも容易なため、好ましい。
[0020] 〔改質器〕
本発明にお!ヽては、改質触媒として部分酸化改質機能を有する触媒および水蒸気 改質機能を有する触媒を用いる。上記改質触媒として、部分酸化改質機能を有し水 蒸気改質機能は実質的に有さない部分酸化改質触媒と、水蒸気改質機能を有し部 分酸化改質機能を実質的に有さな!/ヽ水蒸気改質触媒とを改質触媒として用いてもよ い。あるいは、上記改質触媒として、部分酸化改質機能と水蒸気改質機能とを併せ 持つオートサーマル改質触媒のみを用いてもよ 、。
[0021] 改質器は、改質触媒を有する改質反応部と、改質反応部を外部から加熱するため のガスを流通させることのできる容器とを有する。例えば、改質触媒を充填して改質 触媒層を内部に形成した改質反応管を改質反応部として有し、この反応管を内部に 収容する容器を有する改質器を用いることができる。反応管が容器を貫通する構造 であってもよい。また、改質器内部かつ改質反応部の外部に、燃焼器を備え、この燃 焼器の燃焼ガスによって改質反応部を加熱する構造を採用することができる。ある ヽ はまた、改質器外部から加熱用のガスを供給できる場合は、このような燃焼器を備え る必要はない。
[0022] 改質器には、空気等の酸素含有ガス、水素製造用原料および水蒸気をそれぞれ 単独で、もしくは適宜混合した上で改質触媒に供給するラインが接続される。また改 質ガスを SOFCのアノードへ供給するラインが接続される。
[0023] 例えば、改質反応管内部の前段 (上流側)に部分酸化改質触媒を充填し、その後 段 (下流側)に水蒸気改質触媒を充填して、改質触媒層を形成することができる。あ るいは、反応管内部の前段にオートサーマル改質触媒を充填し、後段に水蒸気改質 触媒を充填して改質触媒層を形成することもできる。また、反応管内部にオートサー マル改質触媒のみを充填して改質触媒層を形成することもできる。
[0024] 上のような形態では、改質器は基本的に一つでよいが、必ずしも改質器が一つで ある必要はなぐ互いに異なる種類の改質触媒を有する複数の改質器を使用するこ ともできる。例えば、部分酸化改質触媒からなる改質触媒層を備える改質器 (部分酸 化改質器)と、水蒸気改質触媒からなる改質触媒層を備える改質器 (水蒸気改質器) とを用いることちでさる。
[0025] 部分酸化改質触媒、水蒸気改質触媒、オートサーマル改質触媒とも、それぞれ公 知の触媒を用いることができる。部分酸化改質触媒の例としては白金系触媒、水蒸 気改質触媒の例としてはルテニウム系およびニッケル系、オートサーマル改質触媒 の例としてはロジウム系触媒を挙げることができる。
[0026] 部分酸ィ匕改質反応が進行可能な温度は例えば 200°C以上 1000°C以下、水蒸気 改質反応が進行可能な温度は例えば 400°C以上 1000°C以下である。
[0027] 以下、水蒸気改質、オートサーマル改質のそれぞれにっき、通常運転の条件につ いて説明する。 [0028] 水蒸気改質の反応温度は例えば 450°C〜900°C、好ましくは 500°C〜850°C、さ らに好ましくは 550°C〜800°Cの範囲で行うことができる。反応系に導入するスチー ムの量は、水素製造用原料に含まれる炭素原子モル数に対する水分子モル数の比 (スチーム/カーボン比)として定義され、この値は好ましくは 0. 5〜10、より好ましく は 1〜7、さらに好ましくは 2〜5とされる。水素製造用原料が液体の場合、この時の空 間速度 (LHSV)は水素製造用原料の液体状態での流速を A (L/h)、触媒層体積 を B (L)とした場合 AZBで表すことができ、この値は好ましくは 0.
Figure imgf000009_0001
より好 ましくは 0. l〜10h さらに好ましくは 0. 2〜5h— 1の範囲で設定される。
[0029] オートサーマル改質ではスチームの他に酸素含有ガスが原料に添加される。酸素 含有ガスとしては純酸素でも良いが入手容易性力も空気が好ましい。水蒸気改質反 応に伴う吸熱反応をバランスし、かつ、改質触媒層や SOFCの温度を保持もしくはこ れらを昇温できる発熱量が得られるように酸素含有ガスを添加することができる。酸素 含有ガスの添加量は、水素製造用原料に含まれる炭素原子モル数に対する酸素分 子モル数の比(酸素 Zカーボン比)として好ましくは 0. 05〜1、より好ましくは 0. 1〜 0. 75、さらに好ましくは 0. 2〜0. 6とされる。オートサーマル改質反応の反応温度は 例えば 450。C〜900。C、好ましくは 500。C〜850。C、さらに好ましくは 550。C〜800 °Cの範囲で設定される。水素製造用原料が液体の場合、この時の空間速度 (LHSV )は、好ましくは 0. 1〜30、より好ましくは 0. 5〜20、さらに好ましくは 1〜10の範囲 で選ばれる。反応系に導入するスチームの量は、スチーム Zカーボン比として好まし くは 0. 3〜10、より好ましくは 0. 5〜5、さら〖こ好ましくは 1〜3とされる。
[0030] [SOFC]
SOFCとしては、公知の SOFC力も適宜選んで用いることができる。円筒形でも平 板形でもよい。
[0031] SOFCが発電可能な温度は例えば 500°C以上 1200°C以下である。
[0032] 〔SOFCシステムの構成機器〕
改質器を有する SOFCシステムの公知の構成要素は、必要に応じて適宜設けるこ とができる。具体例を挙げれば、水素製造用原料中の硫黄分濃度を低減する脱硫器 、水素製造用原料が液体である場合にその原料を気化する気化器、 SOFCのカソー ドに空気等の酸素含有ガスを供給する手段、改質器や SOFCに供給するガスをカロ 湿するための水蒸気を発生する水蒸気発生器、 SOFC等の各種機器を冷却するた めの冷却系、各種流体を加圧するためのポンプ、圧縮機、ブロワなどの加圧手段、 流体の流量を調節するため、あるいは流体の流れを遮断 Z切り替えるためのバルブ 等の流量調節手段ゃ流路遮断 Z切り替え手段、熱交換'熱回収を行うための熱交換 器、液体を気化する気化器、気体を凝縮する凝縮器、スチームなどで各種機器を外 熱する加熱 Z保温手段、各種流体の貯蔵手段、計装用の空気や電気系統、制御用 の信号系統、制御装置、出力用や動力用の電気系統などである。
[0033] 〔起動方法〕
〔工程 aもしくは i〕
本発明では、まず、燃焼熱もしくは電気によって、部分酸化改質機能を有する触媒 を、部分酸化改質反応が進行可能な温度まで昇温する工程 aもしくは iを行う。
[0034] 部分酸化改質機能を有する触媒として、部分酸化改質触媒もしくはオートサーマル 改質触媒を用いることができる。
[0035] 燃焼熱は、適宜燃焼器で可燃物を燃焼させて得ることができる。例えば燃焼器で 適宜可燃物を燃焼させ、その燃焼ガスとの熱交換によって触媒を加熱することができ る。電気によって触媒を加熱するには、例えば電気ヒータを用いることができる。触媒 を内蔵する反応管に電気ヒータを設け、電気ヒータに通電することができる。あるいは 、金属支持体触媒のように触媒が通電可能な場合、触媒に通電し、触媒自体を加熱 することもできる。これら加熱方法を適宜併用してもよ 、。
[0036] また、必要に応じ、燃焼熱もしくは電気によって、水気化器や水素製造用原料気化 器などの昇温を行うことができ、スチーム発生や水素製造用原料の気化を行うことが できる。
[0037] 〔工程 b〕
上記工程 aの後、部分酸化改質反応を行い、部分酸化改質反応熱によって水蒸気 改質機能を有する触媒を昇温し、かつ、改質ガスを固体酸化物形燃料電池のァノー ドに供給することにより固体酸ィ匕物形燃料電池を昇温する工程 bを行うことができる。
[0038] 部分酸化改質反応とともに水蒸気改質反応が進行してもよい。つまり、この工程で 部分酸ィ匕改質を行うこともできるしオートサーマル改質を行うこともできる。この工程で は、反応熱によって触媒を昇温するため、オートサーマル改質においては部分酸ィ匕 改質反応による発熱が水蒸気改質反応による吸熱を上回り、トータルとして発熱する ようにすればよ!ヽ。水蒸気改質機能を有する触媒としては水蒸気改質触媒もしくはォ 一トサーマル改質触媒を用いることができる。
[0039] 例えば改質反応管内部の前段に部分酸ィ匕改質触媒 (もしくはオートサーマル改質 触媒)を充填し、後段に水蒸気改質触媒を充填した場合、部分酸化改質触媒 (もしく はオートサーマル改質触媒)にお!ヽて部分酸化改質反応 (水蒸気改質反応をともな うオートサーマル改質反応でもよ!/ヽ)を進行させ、そこで得られた改質ガスを水蒸気 改質触媒 (もしくはオートサーマル改質触媒)に接触させることにより、水蒸気改質触 媒 (もしくはオートサーマル改質触媒)を昇温することができる。部分酸ィ匕改質機能を 有する触媒および水蒸気改質機能を有する改質触媒として、オートサーマル改質触 媒のみを用いる場合、オートサーマル改質触媒層にお 、て部分酸化改質反応による 発熱が生じ、その熱によってそのオートサーマル触媒層を昇温することができる。
[0040] また、部分酸化改質器と水蒸気改質器とを別々に用いる場合、部分酸化改質器に て部分酸化改質を行い、部分酸化改質反応による発熱によって比較的高温となった 改質ガスを、水蒸気改質器に供給し、水蒸気改質触媒を昇温することができる。
[0041] 部分酸化改質 (もしくはオートサーマル改質)を行うために、部分酸化改質触媒 (も しくはオートサーマル改質触媒)には水素製造用原料と酸素含有ガスを供給する。ォ 一トサーマル改質の場合は水蒸気も改質触媒に供給する。また部分酸化改質の場 合でも、所望により、改質触媒に水蒸気を供給することができる。
[0042] いずれの場合も、改質器から得られる、部分酸化改質反応による発熱によって比較 的高温になった改質ガスを、 SOFCのアノードに供給することにより SOFCを昇温す る。
[0043] 〔工程 c〕
上記工程 bを行えば、 SOFCのアノードから改質ガスが排出される。従って、好まし くは工程 bを行うのと同時に、固体酸化物形燃料電池のアノードから排出される改質 ガスを燃焼させ、この燃焼熱によって水蒸気改質機能を有する触媒 (水蒸気改質触 媒もしくはオートサーマル改質触媒)を加熱する工程 Cを行うことができる。この燃焼 熱を利用して、この燃焼に用いる酸素含有ガスの予熱や、 SOFCの加熱、水素製造 用原料の予熱ゃ気化、スチーム発生を行うこともできる。上記燃焼熱によって水蒸気 改質触媒 (もしくはオートサーマル改質触媒)を加熱し、水蒸気改質触媒 (もしくはォ 一トサーマル改質触媒)と接触したガスを SOFCのアノードに流すことによって、上記 燃焼熱により間接的に SOFCを加熱することができる。
[0044] 工程 cにおいて、空気等の酸素含有ガスを SOFCの力ソードに供給し、アノードを 通過した改質ガスと、力ソードを通過した酸素含有ガスとを燃焼反応させることができ る。
[0045] この燃焼のために、適宜改質ガスを燃焼可能な燃焼器を用いることができる。この 燃焼器は、 SOFCを収容する容器内に設けてもよぐ改質器内に設けてもよい。
[0046] 〔工程 ii〕
工程 bおよび cに替えて、部分酸化改質反応を行い、部分酸化改質反応熱によって 水蒸気改質機能を有する触媒を昇温し、かつ、改質ガスを燃焼させてその燃焼ガス を固体酸化物形燃料電池の力ソードに供給することにより固体酸化物形燃料電池を 昇温するとともに、該改質ガスを燃焼させた燃焼ガスによって水蒸気改質機能を有す る触媒を加熱する工程 iiを行うこともできる。
[0047] 〔工程 dもしくは iii〕
本発明では、水蒸気改質機能を有する触媒が水蒸気改質反応が進行可能な温度 になった後、部分酸化改質反応の割合を低減しもしくは部分酸化改質反応を停止し て、水蒸気改質を行う工程 dもしくは iiiを行う。部分酸化改質反応の割合を低減もしく はゼロにしても、上記工程 cもしくは工程 iiにおける改質ガスを燃焼させた燃焼ガスに よって、水蒸気改質触媒 (もしくはオートサーマル改質触媒)の加熱は継続される。起 動運転を終了するまでに、部分酸化改質反応の割合を低減し、好ましくは部分酸ィ匕 改質反応を停止して、水蒸気改質を行うことにより、改質ガス中の水素濃度を比較的 高くすることができる。このためには、改質触媒への空気などの酸素含有ガスの供給 量を低減もしくはゼロにし、すなわち O
2 ZC比(酸素 Zカーボン比)を例えば 1〜6程 度から 1未満に低減もしくはゼロにし、水蒸気供給量を増加、すなわち szc (スチ一 ム Zカーボン比)を増加させればょ 、。
[0048] 部分酸ィ匕改質器と水蒸気改質器とを別々に用い、工程 bもしくは iiでは部分酸ィ匕改 質器に水素製造用原料等を供給し、部分酸化改質器から得られる改質ガスを水蒸 気改質器に供給する場合、工程 dもしくは iiiでは水素製造用原料等を部分酸化改質 器には供給せずに水蒸気改質器に供給することができる。つまり工程 dにおいて、ガ ス流路を切り替えることによって、部分酸化改質器の使用を停止することができる。反 応管の前段に部分酸ィ匕改質触媒 (もしくはオートサーマル改質触媒)を充填し、後段 に水蒸気改質触媒 (もしくはオートサーマル改質触媒)を充填する場合、反応管に酸 素含有ガスを供給するのを停止し、水蒸気の供給を開始もしくは継続すれば、部分 酸化改質反応を停止して水蒸気改質を行うことができる。
[0049] 〔工程 eもしくは iv〕
前記固体酸化物形燃料電池が発電可能な温度になった後、該燃料電池で発電を 行い、電池反応熱によって該燃料電池を昇温する工程 eもしくは ivを行うこともできる 。 SOFCの昇温をさらに進めることができるため、この工程を行うことが好ましい。
[0050] ここで発電した電力は、 SOFCが系統連携されている場合は系統に出力してもよい 。あるいは燃料電池システムのポンプ、ブロア一等の補器類の電力として利用しても よい。
[0051] 部分酸化改質 (もしくはオートサーマル改質)は比較的低温で開始でき、さらに部 分酸化改質反応により改質触媒が直接加熱されるため、改質触媒の昇温を効率的 かつ速やかに行うことができる。また昇温を終えた後は、水蒸気改質のみを行うことが でき、あるいは部分酸ィ匕改質反応を伴ったとしてもその割合は低減できるので、改質 ガス中の水素濃度を比較的高くすることができる。また改質器が速やかに昇温される ため、そして、改質器力も得られる高温の改質ガスを用いて SOFCを加熱することで 、 SOFCの昇温も速やかに行うことができる。
[0052] 工程 bもしくは iiの開始時点で、部分酸化改質触媒 (もしくはオートサーマル改質触 媒)の温度は、部分酸化改質反応の進行促進の観点から、 200°C以上とすることが 好ましぐ 250°C以上とすることがより好ましぐ 300°C以上とすることがさらに好ましい 。また、触媒や容器の耐久性の観点から、 1000°C以下とすることが好ましぐ 900°C 以下とすることがより好ましぐ 800°C以下とすることがさらに好ましい。部分酸化改質 触媒あるいはオートサーマル改質触媒によって、水素製造用原料を酸化する反応を 開始できるための温度とするためである。
[0053] 改質器へ供給する水素製造用原料もしくは水素製造用原料を含むガスの温度、お よび改質器の触媒層入口部の温度は、水素製造用原料の熱分解を抑制するため 7
00°C以下とすることが好ましい。また、水および水素製造用原料が気化する温度以 上であることが好ましい。
[0054] 酸素含有ガスとしては純酸素を用いることもできるが、入手容易性力も空気を用い ることが好ましい。
実施例
[0055] 以下、本発明を実施例に基づき更に詳細に説明する力 本発明はこれによって限 定されるものではない。
[0056] 〔実施例 1〕
図 1に本発明の起動方法を適用しうる SOFCシステムの一例を示す。
[0057] 円筒型 SOFC1は容器(SOFC収容容器) 2に収容される。図では SOFCを一本し か示していないが、多数の SOFCが配列される。 SOFC収容容器 2は内部でガス流 通可能な仕切り板 3によって領域 (アノードガス室) 2aと領域 (ここでは燃焼室) 2bとに ガス流通可能に仕切られる。領域 2aには改質ガスが供給され、改質ガスは仕切り板 3を通って領域 2bに供給される。
[0058] ガス流通可能な仕切り板としては、例えば、耐熱性金属もしくはセラミックスで構成 される、パンチングプレート、フォーム状プレートまたは織物状プレートを用いることが できる。ガス流通可能な仕切り板は、領域 (アノードガス室) 2aでの燃焼を防止するた めの部材である。
[0059] SOFCは、内側が力ソード側、外側がアノード側である円筒状であり、一端(図面下 方の端部)が閉じられ、他端は領域 2bに開口する。
[0060] 改質器で得られる改質ガスが領域 2aに供給され、 SOFCのアノード(円筒の外側 面)に供給される。一方、領域 2b内に設けられた空気予熱器 4によって予熱された空 気が、空気供給管 5から SOFCの力ソード(円筒の内側面)に供給される。このように して改質ガス中の水素と空気中の酸素とが電気化学反応を起こし、発電が行われる
[0061] 発電に供された後のアノードガス (アノードオフガス)は、仕切り板 3を通って領域 2b に供給され、発電に供された後の力ソードガス (力ソードオフガス)は、 SOFCの開口 端力 領域 2bに供給され、ここで両者が燃焼反応を起こす。つまり、領域 2bは燃焼 室として機能する。この燃焼熱によって空気予熱器 4を流れる空気が予熱される。
[0062] 空気予熱器 4としては、領域 2b内の燃焼ガスによって空気を加熱することのできる 公知の熱交換構造を利用することができる。
[0063] 改質器 10は、改質触媒を収容する改質反応管 10aが、容器 10b内にもしくは容器 10bを貫通して設けられる。改質反応管内には、前段に部分酸化改質触媒 (もしくは オートサーマル改質触媒)が充填され、後段に水蒸気改質触媒が充填されて改質触 媒層が形成される。オートサーマル改質触媒のみが充填されて改質触媒層が形成さ れてもよい。
[0064] また、水を気化させてスチームを発生させる水気化器 20、灯油を気化させる灯油気 ィ匕器 21、また起動の初期段階 (工程 a)で用いる起動用燃焼器 22が設けられる。
[0065] この SOFCシステムの起動方法につ!、て説明する。
[0066] まず起動用燃焼器 22に灯油と空気を供給し、燃焼を行う。その燃焼ガスを改質器 の容器 10bに供給し、改質反応管 10aを加熱する。燃焼ガスは改質反応管を加熱し た後、灯油気化器 21、水気化器 20に順に導かれ、それぞれを昇温する。
[0067] 燃焼器 22としては、灯油を燃焼させることのできる公知の燃焼手段、例えばパーナ 等を適宜用いることができる。また、ここでは水素製造用原料と同じ燃料を燃焼器用 燃料として用いて 、るが、必ずしもその限りではな 、。
[0068] 上記燃焼器による昇温により、水気化器がスチーム発生可能な温度になり、灯油気 ィ匕器が灯油を気化可能な温度になり、改質触媒 (もしくはオートサーマル改質触媒) が部分酸化改質反応が進行可能な温度になったら、水気化器でスチームを発生さ せ、灯油気化器で灯油を気化し、スチーム、気化した灯油および空気を混合し、改 質反応管 10aに供給する。なお、部分酸ィ匕改質反応を行うためにはスチームは不要 であるが、配管等への炭素析出防止の観点力 は、部分酸化改質のみを行う場合で あっても、スチームを混合しておくことが好ましい。
[0069] また、ここでは水素製造用原料として液体燃料である灯油を用いて 、るために気化 器を設けているが、水素製造用原料がもともと気体である場合には、水素製造用原 料の気化器は不要である。この場合、水素製造用原料の気化器に替えて予熱器を 設けてもよい。
[0070] 改質反応管では酸素が存在するために部分酸化改質反応 (水蒸気改質反応が伴 えばオートサーマル改質反応)がおこる。この改質反応の発熱によって、高温の改質 ガスが発生し、改質器が昇温される。特には、部分酸化改質触媒自身が発熱によつ て昇温されるとともにその後段の水蒸気改質触媒も改質ガスによって昇温される。
[0071] 改質による発熱が生じた段階で、起動用燃焼器による燃焼は停止してもよ!、。
[0072] 改質器 10から得られる高温改質ガスは、 SOFCを収容する容器 2の領域 2a (ァノー ドガス室)に導かれ、 SOFCを昇温する。
[0073] 一方、高温改質ガスを容器 2に供給するのとほぼ同時に、空気予熱器 4、空気供給 管 5を経て SOFCの力ソード側に空気を供給する。力ソードから排出される空気は、 仕切り板 3を通って領域 2b (燃焼室)に供給される改質ガスと燃焼反応を起こし、ここ でも発熱する。この燃焼熱によって、領域 2b内に設けられた空気予熱器 4にて空気 が予熱される。
[0074] 領域 2bから排出される燃焼ガスは、改質器の容器 10bに導かれ、改質反応管 10a をその外側から加熱し、次いで灯油気化器 21に導かれて灯油を気化し、次いで水 気化器 20に導かれてスチームを発生させる。灯油気化器、水気化器とも、適宜公知 の熱交換構造を採用することができる。
[0075] このようにして、改質反応による発熱と、改質ガスを燃焼させた燃焼熱とにより、改質 器と SOFCとをそれぞれ昇温することができる。
[0076] 燃焼室 2bで燃焼が行われて 、る段階で、水蒸気改質触媒 (もしくはオートサーマ ル改質触媒)の温度が水蒸気改質可能な温度になったら、改質反応管への空気の 供給を減らし、あるいは停止することができる。
[0077] SOFCが発電可能な温度になったら、発電を開始して発電に伴う発熱によって SO
FCの加熱を加速することができる。 [0078] 〔実施例 2〕
図 2には、本発明の起動方法を適用しうる SOFCシステムの別の例を示す。この SO FCシステムは、 SOFCの領域 2bは単に力ソードオフガスを集合させるヘッダーとして 機能するのみで、改質器の容器 10b内(改質反応管の外)にアノードオフガスおよび 力ソードオフガスが供給されて燃焼が行われ、またここに空気予熱器 4が設けられる。 領域 2aと領域 2bとは、ガス流通不能な仕切り板 103で仕切られる。つまり、この例は 、アノードオフガスを、 SOFCを収容する容器内で燃焼させるのではなぐ改質器内 で燃焼させることができるようになって 、る。この点以外は実施例 1に示したシステムと 同様である。起動運転についても、 SOFCのアノード室力も排出される改質ガスを改 質器内で燃焼させること以外は、実施例 1と同様に行うことができる。
[0079] 力ソードオフガスとアノードオフガスを燃焼させる燃焼手段としては、例えば、バー ナーゃ面燃焼器等を用いることができる。
[0080] 〔実施例 3〕
図 3には、本発明の起動方法を適用しうる SOFCシステムのさらに別の例を示す。こ の SOFCシステムでは、改質器 10、灯油気化器 21および水気化器 20力 SOFCを 収容する容器の領域 2b内に設置されている。この形態では、改質器容器は SOFC 収容容器 2が兼ねるため、この改質器は触媒反応管などの改質反応部のみで構成 することができる。ここでは実施例 1の改質反応管と同様の構成の改質器が用いられ る。また、起動用燃焼器 22で発生した燃焼ガスが領域 2bに導かれ、この燃焼ガスに よって改質器、灯油気化器、水気化器を昇温することが可能となっている。この点以 外は実施例 1に示したシステムと同様である。起動運転についても、起動用燃焼器の 燃焼ガスによって領域 2b内の改質器、灯油気化器、水気化器を昇温すること以外は 、実施例 1と同様に行うことができる。
[0081] 〔実施例 4〕
図 4には、本発明の起動方法を適用しうる SOFCシステムのさらに別の例を示す。こ の SOFCシステムでは、円筒形 SOFC101の内側がアノード、外側が力ソードとなつ ている。容器 2の内部が領域 2a (アノードオフガスのヘッダーとして機能する)と領域 2 b (力ソードガス室)とにガス流通不能な仕切り板 103によって区画される。領域 2b (力 ソードガス室)内に、改質器 10、起動用水気化器 120aおよび起動用灯油気化器 12 laが設けられる。また SOFC収容容器 2の外部に起動用燃焼器 22が設けられ、その 燃焼ガスが領域 2bに導かれて改質器、起動用水気化器、起動用灯油気化器を加熱 可能となっている。また、起動用燃焼器 22とは別に、通常運転用燃焼器 122が設け られ、この燃焼器の燃焼ガスによって、通常運転用水気化器 120bおよび通常運転 用灯油気化器 121bを加熱可能となっている。改質器 10は実施例 3と同様の構成で ある。
[0082] まず、起動用燃焼器 22に灯油と空気を供給し、燃焼を行う。その燃焼ガスを領域 2 bに供給し、起動用水気化器 120a、起動用灯油気化器 121a、改質器 10、 SOFC1 01を昇温する。
[0083] 改質器、起動用水気化器および起動用灯油気化器が所定の温度となって、部分 酸化改質触媒 (もしくはオートサーマル改質触媒)が部分酸化改質反応が進行可能 な温度になり、スチーム発生および灯油の気化が可能となったら、スチーム、気化し た灯油および酸素を改質器に供給し、部分酸化改質反応 (水蒸気改質反応が伴え ばオートサーマル改質反応)を行う。この改質器で得られる改質ガスを改質ガス供給 管 105から SOFC101のアノードに供給し、 SOFCを昇温する。アノードから領域 2a に排出される改質ガスを起動用燃焼器 22に燃料として供給する。このとき、起動用 燃焼器 22への灯油の供給を停止することができる。
[0084] SOFCが発電可能な温度となったところで、領域 2aから排出される改質ガスを起動 用燃焼器 22ではなく通常運転用燃焼器 122に供給する。また、領域 2bには空気を 供給する。これによつて、領域 2b (力ソード室)内の酸素濃度を空気と同等にすること ができる。空気は適宜予熱することができる。これらの操作により、改質ガスが通常運 転用燃焼器 122で燃焼され、その燃焼ガスの熱によって、水が通常運転用水気化器 120bで気化され、灯油が通常運転用灯油気化器 121bで気化され、スチーム、気化 した灯油、空気が改質器に供給され部分酸化改質 (もしくはオートサーマル改質)さ れ、改質ガスが SOFCのアノードに供給される。力ソードには空気が供給される。この 段階で SOFCの発電を開始し、発電による SOFC自身の発熱も併用して昇温を加速 することができる。 [0085] 水蒸気改質触媒の温度が水蒸気改質可能な温度になった後、部分酸化改質反応 用に改質器に供給する空気の量を低減し、もしくはこの空気の供給を停止し、改質 に必要な熱源を灯油の酸ィ匕反応熱力も外部加熱 (燃焼器 22もしくは 122で発生する 熱による加熱)へと移行し、水蒸気改質反応を行う。これにより、改質ガス中の水素濃 度を増加させることができ、その結果 SOFCの発電効率を高めることができる。なお、 水蒸気改質反応に必要な熱は、主に SOFC力 の輻射熱によって供給することがで きる。この場合、改質器 10は、 SOFCの輻射熱が届きやすい位置に配置することが 好ましい。
[0086] 〔実施例 5〕
実施例 4では、部分酸化改質触媒 (もしくはオートサーマル改質触媒)が部分酸ィ匕 改質反応が進行可能な温度になり、スチーム発生および灯油の気化が可能となった 後、部分酸化改質反応 (水蒸気改質反応が伴えばオートサーマル改質反応)を行 ヽ 、改質ガスを改質ガス供給管 105から SOFC101のアノードに供給して SOFCを昇 温する。
[0087] 実施例 5では、改質ガスを SOFCのアノードに供給する替わりに、図 4に破線で示し たラインを用い、改質ガスを起動用燃焼器 22に燃料として供給し、改質ガスを燃焼さ せ、燃焼ガスを領域 2b (力ソードガス室)に供給し、 SOFCを加熱する。この改質ガス の燃焼熱によって、起動用水気化器、起動用灯油気化器、改質器の加熱もあわせて 行うことができる。改質ガスを起動用燃焼器に供給する段階で、起動用燃焼器への 灯油の供給を停止することができる。
[0088] この場合、 SOFCのアノードには改質ガスが供給されない。従って、 SOFCにて発 電を行う際には、改質ガスをアノードに供給する。例えば、 SOFCが発電可能な温度 となったところで、破線で示したラインの使用は停止し、改質器 10から改質ガスを改 質ガス供給管 105を経てアノードに供給する。アノードから領域 2aに排出された改質 ガスは、通常運転用燃焼器 122に供給することができる。また、領域 2bには適宜予 熱した空気を供給する。これによつて SOFCで発電が可能となる。
[0089] 上記以外は実施例 4と同様にして SOFCシステムを起動することができる。
[0090] なお、実施例 4および 5のように、力ソードに燃焼ガスを供給する場合、力ソードが還 元雰囲気で劣化することを防止する観点力 は、燃焼ガスの酸素濃度が所望の濃度 となるよう、燃焼ガス管理を行うことが好ましい。燃焼ガスの酸素濃度は空気比に支配 される。空気比が低い(1に近い)方がより高温の燃焼ガスを得ることができ、起動時 間を短縮する観点力もは好ましい。しかし、空気比が高い方が、酸素濃度が高くなり 、力ソード部材の化学的安定性のためには有利である。この観点から、力ソードに供 給する燃焼ガスの酸素濃度は 1% (ドライモルベース)以上が好ましぐ 3% (ドライモ ルベース)以上がより好ましぐ 5% (ドライモルベース)以上がさらに好ましい。

Claims

請求の範囲
[1] 水素製造用原料を改質して水素を含む改質ガスを製造するための、改質触媒を有 する改質器と、該改質ガスを燃料として用いる固体酸化物形燃料電池とを有する固 体酸ィ匕物形燃料電池システムの起動方法において、
該改質触媒として部分酸化改質機能を有する触媒および水蒸気改質機能を有す る触媒を用い、
a)燃焼熱もしくは電気によって、部分酸化改質機能を有する触媒を、部分酸化改質 反応が進行可能な温度まで昇温する工程;
b)部分酸化改質反応を行!ヽ、部分酸化改質反応熱によって水蒸気改質機能を有す る触媒を昇温し、かつ、改質ガスを固体酸化物形燃料電池のアノードに供給すること により固体酸化物形燃料電池を昇温する工程;
c)固体酸ィ匕物形燃料電池のアノードから排出される改質ガスを燃焼させ、この燃焼 熱によって水蒸気改質機能を有する触媒を加熱する工程;および
d)水蒸気改質機能を有する触媒が水蒸気改質反応が進行可能な温度になった後、 部分酸化改質反応の割合を低減しもしくは部分酸化改質反応を停止して、水蒸気改 質を行う工程を有することを特徴とする固体酸化物形燃料電池システムの起動方法
[2] e)前記固体酸化物形燃料電池が発電可能な温度になった後、該燃料電池で発電 を行い、電池反応熱によって該燃料電池を昇温する工程
をさらに有する請求項 1記載の方法。
[3] 前記工程 aにお 、て、水素製造用原料を燃焼させた燃焼ガスによって部分酸ィ匕改 質機能を有する触媒を部分酸化改質反応が進行可能な温度まで昇温するとともに、 水素製造用原料を燃焼させた燃焼ガスを固体酸化物形燃料電池の力ソードに供給 することにより固体酸ィ匕物形燃料電池を昇温する請求項 1または 2記載の方法。
[4] 前記工程 cにおいて、固体酸化物形燃料電池のアノードから排出される改質ガスを 燃焼させた燃焼ガスによって水蒸気改質機能を有する触媒を加熱するとともに、固 体酸ィ匕物形燃料電池のアノードから排出される改質ガスを燃焼させた燃焼ガスを固 体酸化物形燃料電池の力ソードに供給することにより、固体酸化物形燃料電池を昇 温する請求項 1〜3の何れか一項記載の方法。
[5] 水素製造用原料を改質して水素を含む改質ガスを製造するための、改質触媒を有 する改質器と、該改質ガスを燃料として用いる固体酸化物形燃料電池とを有する固 体酸ィ匕物形燃料電池システムの起動方法において、
該改質触媒として部分酸化改質機能を有する触媒および水蒸気改質機能を有す る触媒を用い、
i)燃焼熱もしくは電気によって、部分酸化改質機能を有する触媒を、部分酸化改質 反応が進行可能な温度まで昇温する工程;
ii)部分酸化改質反応を行!ヽ、部分酸化改質反応熱によって水蒸気改質機能を有す る触媒を昇温し、かつ、改質ガスを燃焼させてその燃焼ガスを固体酸化物形燃料電 池の力ソードに供給することにより固体酸化物形燃料電池を昇温するとともに、該改 質ガスを燃焼させた燃焼ガスによって水蒸気改質機能を有する触媒を加熱する工程 ;および
iii)水蒸気改質機能を有する触媒が水蒸気改質反応が進行可能な温度になった後 、部分酸化改質反応の割合を低減しもしくは部分酸化改質反応を停止して、水蒸気 改質を行う工程
を有することを特徴とする固体酸化物形燃料電池システムの起動方法。
[6] iv)前記固体酸化物形燃料電池が発電可能な温度になった後、該燃料電池で発 電を行 ヽ、電池反応熱によって該燃料電池を昇温する工程
をさらに有する請求項 5記載の方法。
[7] 前記工程 iにお 、て、水素製造用原料を燃焼させた燃焼ガスによって部分酸ィ匕改 質機能を有する触媒を部分酸化改質反応が進行可能な温度まで昇温するとともに、 水素製造用原料を燃焼させた燃焼ガスを固体酸化物形燃料電池の力ソードに供給 することにより固体酸ィ匕物形燃料電池を昇温する請求項 5または 6記載の方法。
PCT/JP2006/300017 2005-01-07 2006-01-05 固体酸化物形燃料電池システムの起動方法 WO2006073150A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/813,444 US8623563B2 (en) 2005-01-07 2006-01-05 Method for starting-up solid oxide fuel cell system
CA2594394A CA2594394C (en) 2005-01-07 2006-01-05 Method of starting-up solid oxide fuel cell system
KR1020077017138A KR101102804B1 (ko) 2005-01-07 2006-01-05 고체산화물형 연료전지 시스템의 기동 방법
DK06702116.2T DK1840997T3 (da) 2005-01-07 2006-01-05 Fremgangsmåde til at starte fastoxid-brændselscellesystem
EP06702116.2A EP1840997B8 (en) 2005-01-07 2006-01-05 Method of starting solid oxide fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-002537 2005-01-07
JP2005002537A JP4767543B2 (ja) 2005-01-07 2005-01-07 固体酸化物形燃料電池システムの起動方法

Publications (1)

Publication Number Publication Date
WO2006073150A1 true WO2006073150A1 (ja) 2006-07-13

Family

ID=36647626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300017 WO2006073150A1 (ja) 2005-01-07 2006-01-05 固体酸化物形燃料電池システムの起動方法

Country Status (8)

Country Link
US (1) US8623563B2 (ja)
EP (1) EP1840997B8 (ja)
JP (1) JP4767543B2 (ja)
KR (1) KR101102804B1 (ja)
CN (1) CN100521337C (ja)
CA (1) CA2594394C (ja)
DK (1) DK1840997T3 (ja)
WO (1) WO2006073150A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2439653A (en) * 2006-06-29 2008-01-02 Ceres Ip Co Ltd Steam reforming method for fuel cells
JP2008133144A (ja) * 2006-11-27 2008-06-12 Mitsubishi Heavy Ind Ltd 水素製造システム及びこれを用いた排熱回収方法
WO2008153011A1 (ja) * 2007-06-13 2008-12-18 Nippon Oil Corporation 燃料電池システムとその起動方法
WO2009028427A1 (ja) * 2007-08-29 2009-03-05 Kyocera Corporation 燃料電池装置
WO2009031458A1 (en) 2007-09-03 2009-03-12 Honda Motor Co., Ltd. Fuel cell system and method of operating the fuel cell system
US20100279185A1 (en) * 2007-12-04 2010-11-04 Nippon Oil Corporation Fuel cell system and method for starting up the same
JP2011204390A (ja) * 2010-03-24 2011-10-13 Osaka Gas Co Ltd 固体酸化物形燃料電池システム及びこれを備えたコージェネレーションシステム
JP2012174534A (ja) * 2011-02-22 2012-09-10 Toto Ltd 燃料電池装置

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5197944B2 (ja) * 2006-09-26 2013-05-15 Jx日鉱日石エネルギー株式会社 間接内部改質型固体酸化物形燃料電池システム
WO2009028113A1 (ja) 2007-08-29 2009-03-05 National University Corporation Oita University 低温水素製造用触媒及びその製造方法と水素製造方法
JP5428103B2 (ja) 2007-02-21 2014-02-26 国立大学法人 大分大学 低温水素製造用触媒及びその製造方法と水素製造方法
JP2008234994A (ja) * 2007-03-20 2008-10-02 Osaka Gas Co Ltd 燃料電池システム
JP5328119B2 (ja) * 2007-07-27 2013-10-30 京セラ株式会社 燃料電池装置
JP5325403B2 (ja) 2007-08-29 2013-10-23 Jx日鉱日石エネルギー株式会社 燃料電池システムの起動方法
JP5260132B2 (ja) * 2008-05-07 2013-08-14 日本特殊陶業株式会社 固体酸化物形燃料電池
JP2009298618A (ja) * 2008-06-11 2009-12-24 Ihi Corp 有機化合物改質装置及び改質方法
JP2010040416A (ja) * 2008-08-07 2010-02-18 Toto Ltd 燃料電池用改質器ユニット及び燃料電池モジュール
JP5519357B2 (ja) * 2009-03-24 2014-06-11 大阪瓦斯株式会社 固体酸化物形燃料電池システム及びこれを備えたコージェネレーションシステム
JP4650799B2 (ja) * 2009-03-31 2011-03-16 Toto株式会社 固体電解質型燃料電池
JP4863171B2 (ja) 2009-03-31 2012-01-25 Toto株式会社 固体電解質型燃料電池
JP5418960B2 (ja) * 2009-03-31 2014-02-19 Toto株式会社 固体電解質型燃料電池
US20120028149A1 (en) * 2009-04-08 2012-02-02 Jx Nippon Oil & Energy Corporation Shutdown method for shutting down indirect internal reforming solid oxide fuel cell
KR20110137399A (ko) 2009-04-24 2011-12-22 쿄세라 코포레이션 연료 전지 장치
JP5441001B2 (ja) * 2009-05-28 2014-03-12 Toto株式会社 固体電解質型燃料電池
JP5500504B2 (ja) * 2009-05-28 2014-05-21 Toto株式会社 固体電解質型燃料電池
JP2010277843A (ja) * 2009-05-28 2010-12-09 Toto Ltd 固体電解質型燃料電池
JP5263019B2 (ja) * 2009-06-11 2013-08-14 トヨタ自動車株式会社 燃料電池とその制御方法
JP5431800B2 (ja) * 2009-06-12 2014-03-05 日本特殊陶業株式会社 燃料電池用原料供給装置
JP5391976B2 (ja) * 2009-09-30 2014-01-15 Toto株式会社 固体電解質型燃料電池
JP4707023B2 (ja) * 2009-09-30 2011-06-22 Toto株式会社 固体電解質型燃料電池
WO2011060530A1 (en) * 2009-11-18 2011-05-26 Dionne Design Inc. Method and system for power generation
JP5503345B2 (ja) * 2010-03-11 2014-05-28 Jx日鉱日石エネルギー株式会社 燃料電池システム
JP5584022B2 (ja) * 2010-06-24 2014-09-03 Jx日鉱日石エネルギー株式会社 燃料電池システム及びその起動方法
WO2012043647A1 (ja) * 2010-09-30 2012-04-05 Toto株式会社 固体酸化物形燃料電池装置
JP5561655B2 (ja) * 2010-09-30 2014-07-30 Toto株式会社 固体酸化物形燃料電池装置
JP5818502B2 (ja) 2011-04-28 2015-11-18 本田技研工業株式会社 燃料電池モジュール
JP5763405B2 (ja) 2011-04-28 2015-08-12 本田技研工業株式会社 燃料電池システム
JP6070923B2 (ja) * 2011-09-07 2017-02-01 Toto株式会社 固体酸化物型燃料電池
JP5327491B1 (ja) * 2012-07-19 2013-10-30 Toto株式会社 固体酸化物型燃料電池
KR102056265B1 (ko) * 2013-10-11 2019-12-16 에스케이이노베이션 주식회사 연료전지 가열장치 및 가열방법과 이를 포함하는 연료전지장치
JP6357242B2 (ja) 2013-11-06 2018-07-11 ワット・フューエル・セル・コーポレイションWatt Fuel Cell Corp. 化学反応器へのガス状反応媒体の流れの管理のためのマニフォルドを備える燃料触媒部分酸化改質反応器
EP3065855B1 (en) 2013-11-06 2022-06-29 Watt Fuel Cell Corp. Liquid fuel cpox reformer and fuel cell systems, and methods of producing electricity
WO2015069749A2 (en) 2013-11-06 2015-05-14 Watt Fuel Cell Corp. Liquid fuel cpox reformers and methods of cpox reforming
CA2929546C (en) 2013-11-06 2019-03-05 Watt Fuel Cell Corp. Gaseous fuel cpox reformers and methods of cpox reforming
EP3065854A2 (en) 2013-11-06 2016-09-14 Watt Fuel Cell Corp. Reformer with perovskite as structural component thereof
EP3065857B1 (en) 2013-11-06 2022-06-08 Watt Fuel Cell Corp. Integrated gaseous fuel cpox reformer and fuel cell systems, and methods of producing electricity
JP5946027B2 (ja) * 2014-03-20 2016-07-05 住友電気工業株式会社 ガス分解装置及び発電装置
WO2018087694A1 (en) 2016-11-09 2018-05-17 8 Rivers Capital, Llc Systems and methods for power production with integrated production of hydrogen
EP3664208B1 (en) * 2017-07-31 2021-06-16 Nissan Motor Co., Ltd. Fuel cell system control method and fuel cell system
WO2019035167A1 (ja) * 2017-08-14 2019-02-21 日産自動車株式会社 燃料電池システム及び燃料電池システムの暖機方法
JP6944349B2 (ja) * 2017-11-09 2021-10-06 エア・ウォーター株式会社 水素発生装置
AT520719B1 (de) * 2018-05-03 2019-07-15 Avl List Gmbh Reversibel betreibbarer Energiewandler und Verfahren zum Betreiben desselben
US11859517B2 (en) 2019-06-13 2024-01-02 8 Rivers Capital, Llc Power production with cogeneration of further products
CN113540503B (zh) * 2021-07-13 2022-05-20 山东科技大学 一种管式sofc自热系统及工作方法
WO2023089570A1 (en) 2021-11-18 2023-05-25 8 Rivers Capital, Llc Apparatus for hydrogen production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203802A (ja) * 1999-01-13 2000-07-25 Toyota Motor Corp 改質器
JP2001106507A (ja) * 1999-04-26 2001-04-17 Fuji Electric Co Ltd 改質器および該改質器を備えた燃料電池発電装置
JP2001146405A (ja) * 1999-11-18 2001-05-29 Fuji Electric Co Ltd 燃料改質装置とその運転方法
JP2004087169A (ja) * 2002-08-23 2004-03-18 Nissan Motor Co Ltd 発電装置
JP2004319420A (ja) * 2003-02-25 2004-11-11 Kyocera Corp 燃料電池及びその運転方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729589A (ja) * 1993-07-09 1995-01-31 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電装置におけるプレート型改質器の差圧制御方法
JP3254671B2 (ja) * 1996-12-27 2002-02-12 石川島播磨重工業株式会社 リショルムコンプレッサを用いた燃料電池発電装置
JP2003272690A (ja) 2002-03-19 2003-09-26 Toto Ltd 燃料電池システム
JP4000888B2 (ja) * 2002-04-09 2007-10-31 日産自動車株式会社 改質型燃料電池システム
US6942940B2 (en) * 2002-05-03 2005-09-13 Gas Research Institute System for generating electricity
US7008711B2 (en) * 2003-01-27 2006-03-07 Gas Technology Institute Thermally integrated fuel cell power system
US7422810B2 (en) 2004-01-22 2008-09-09 Bloom Energy Corporation High temperature fuel cell system and method of operating same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203802A (ja) * 1999-01-13 2000-07-25 Toyota Motor Corp 改質器
JP2001106507A (ja) * 1999-04-26 2001-04-17 Fuji Electric Co Ltd 改質器および該改質器を備えた燃料電池発電装置
JP2001146405A (ja) * 1999-11-18 2001-05-29 Fuji Electric Co Ltd 燃料改質装置とその運転方法
JP2004087169A (ja) * 2002-08-23 2004-03-18 Nissan Motor Co Ltd 発電装置
JP2004319420A (ja) * 2003-02-25 2004-11-11 Kyocera Corp 燃料電池及びその運転方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2439653A (en) * 2006-06-29 2008-01-02 Ceres Ip Co Ltd Steam reforming method for fuel cells
WO2008001119A2 (en) * 2006-06-29 2008-01-03 Ceres Intellectual Property Company Limited Steam reforming method for fuel cells
WO2008001119A3 (en) * 2006-06-29 2008-05-22 Ceres Ip Co Ltd Steam reforming method for fuel cells
GB2439653B (en) * 2006-06-29 2008-08-27 Ceres Ip Co Ltd Steam reforming method for fuel cells
JP2008133144A (ja) * 2006-11-27 2008-06-12 Mitsubishi Heavy Ind Ltd 水素製造システム及びこれを用いた排熱回収方法
JP2008311030A (ja) * 2007-06-13 2008-12-25 Nippon Oil Corp 燃料電池システムの起動方法
WO2008153011A1 (ja) * 2007-06-13 2008-12-18 Nippon Oil Corporation 燃料電池システムとその起動方法
WO2009028427A1 (ja) * 2007-08-29 2009-03-05 Kyocera Corporation 燃料電池装置
JP5213865B2 (ja) * 2007-08-29 2013-06-19 京セラ株式会社 燃料電池装置
US8771887B2 (en) 2007-08-29 2014-07-08 Kyocera Corporation Method of operating a fuel cell apparatus
WO2009031458A1 (en) 2007-09-03 2009-03-12 Honda Motor Co., Ltd. Fuel cell system and method of operating the fuel cell system
US20100279185A1 (en) * 2007-12-04 2010-11-04 Nippon Oil Corporation Fuel cell system and method for starting up the same
JP2011204390A (ja) * 2010-03-24 2011-10-13 Osaka Gas Co Ltd 固体酸化物形燃料電池システム及びこれを備えたコージェネレーションシステム
JP2012174534A (ja) * 2011-02-22 2012-09-10 Toto Ltd 燃料電池装置

Also Published As

Publication number Publication date
CA2594394C (en) 2013-05-28
US8623563B2 (en) 2014-01-07
EP1840997B8 (en) 2013-06-26
EP1840997B1 (en) 2013-05-22
JP2006190605A (ja) 2006-07-20
CA2594394A1 (en) 2006-07-13
US20090291335A1 (en) 2009-11-26
DK1840997T3 (da) 2013-08-05
EP1840997A1 (en) 2007-10-03
JP4767543B2 (ja) 2011-09-07
KR101102804B1 (ko) 2012-01-05
CN101099256A (zh) 2008-01-02
CN100521337C (zh) 2009-07-29
KR20070091362A (ko) 2007-09-10
EP1840997A4 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP4767543B2 (ja) 固体酸化物形燃料電池システムの起動方法
JP5164441B2 (ja) 燃料電池システムの起動方法
JP5325403B2 (ja) 燃料電池システムの起動方法
JP5214230B2 (ja) 燃料電池システムの起動方法
JP5078696B2 (ja) 燃料電池システムの負荷追従運転方法
KR101384040B1 (ko) 간접 내부 개질형 고체 산화물형 연료전지 시스템
JP2009176660A (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
JP5078698B2 (ja) 燃料電池システムの負荷追従運転方法
JP5325666B2 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
JP2008007372A (ja) 改質器および間接内部改質型固体酸化物形燃料電池
JP5078697B2 (ja) 燃料電池システムの負荷追従運転方法
JP4805735B2 (ja) 間接内部改質型固体酸化物形燃料電池
JP5291915B2 (ja) 間接内部改質型固体酸化物形燃料電池とその運転方法
JP2008186759A (ja) 間接内部改質型固体酸化物形燃料電池システムおよび間接内部改質型固体酸化物形燃料電池の運転方法
JP5433323B2 (ja) 燃料電池システムの負荷追従運転方法
JP5281991B2 (ja) 燃料電池システムの負荷追従運転方法
JP5281997B2 (ja) 燃料電池システムの負荷追従運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680001850.7

Country of ref document: CN

Ref document number: 2006702116

Country of ref document: EP

Ref document number: 2594394

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11813444

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077017138

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006702116

Country of ref document: EP