WO2012043647A1 - 固体酸化物形燃料電池装置 - Google Patents

固体酸化物形燃料電池装置 Download PDF

Info

Publication number
WO2012043647A1
WO2012043647A1 PCT/JP2011/072225 JP2011072225W WO2012043647A1 WO 2012043647 A1 WO2012043647 A1 WO 2012043647A1 JP 2011072225 W JP2011072225 W JP 2011072225W WO 2012043647 A1 WO2012043647 A1 WO 2012043647A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
reformer
fuel cell
transition
power generation
Prior art date
Application number
PCT/JP2011/072225
Other languages
English (en)
French (fr)
Inventor
大塚 俊治
勝久 土屋
重住 司
大江 俊春
中野 清隆
卓哉 松尾
Original Assignee
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010220709A external-priority patent/JP5618069B2/ja
Priority claimed from JP2010220710A external-priority patent/JP5618070B2/ja
Application filed by Toto株式会社 filed Critical Toto株式会社
Priority to CN201180045420.6A priority Critical patent/CN103119769B/zh
Priority to EP11829200.2A priority patent/EP2624348B1/en
Priority to US13/823,906 priority patent/US9214690B2/en
Publication of WO2012043647A1 publication Critical patent/WO2012043647A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04052Storage of heat in the fuel cell system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04738Temperature of auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell device, and more particularly to a solid oxide fuel cell device that prevents excessive temperature rise of a reformer or the like during startup.
  • a solid oxide fuel cell device has a plurality of processes for reforming a fuel gas in a reformer in a start-up process, that is, a partial oxidation reforming reaction process (POX process), an autothermal reforming reaction.
  • a process (ATR process) and a steam reforming reaction process (SR process) are performed to shift to a power generation process (see, for example, Patent Document 1).
  • the reformer, the fuel cell stack, and the like disposed in the fuel cell module storage chamber can be heated to the operating temperature by sequentially executing these steps.
  • the SOFC has an operating temperature as high as 600 to 800 ° C., and a heat storage material is disposed around the fuel cell module storage chamber. Therefore, this heat storage material can maintain a large amount of heat during operation and improve the thermal efficiency during operation.
  • heat generated in the POX process which is an exothermic reaction among the reforming reaction processes in the reformer, raises the temperature of the reformer itself, but the configuration outside the reformer The temperature of the heat storage material as a member is also raised.
  • the components outside the reformer have already been heated to a certain temperature, and the heat storage material holds a large amount of heat.
  • the generated heat is mainly used to raise the temperature of the reformer.
  • the reformer may be heated at a higher temperature increase rate than during the normal start-up operation, which may cause an excessive temperature increase that exceeds the predetermined operating temperature. It was. And there existed a possibility that a reformer might deteriorate or be damaged by this excessive temperature rise.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a solid oxide fuel cell device that prevents the temperature in the fuel cell module from rising excessively in the startup process. It is said.
  • the present invention provides a cell stack formed by combining a plurality of fuel cells and a reformer for reforming a fuel gas supplied to the fuel cells in a solid oxide fuel cell device.
  • a combustion section that heats the reformer and the cell stack with exhaust gas generated by burning surplus combustion gas or reformed combustion gas that has passed through the fuel cell, and the temperature of the cell stack and the reformer
  • a temperature detector for detecting the temperature of the fuel cell, a module storage chamber for storing the cell stack and the reformer, a heat storage means disposed around the module storage chamber, and the heat storage means accumulated during startup of the fuel cell device.
  • determining means for determining whether or not the temperature rise assisting state is a state in which the temperature rise of the reformer and / or the cell stack is promoted by the amount of heat, and the start of the fuel cell device is controlled.
  • Control means for controlling the supply amount of fuel gas, oxidant gas, and water vapor supplied to the reformer in the start-up process of the fuel cell device, the temperature of the cell stack and the temperature of the reformer.
  • the fuel gas reforming reaction process performed in the reformer is transferred to the POX process, ATR process, and SR process, and then transferred to the power generation process.
  • the control means Is characterized in that it performs over-temperature suppression control that prevents the temperature of the reformer from being raised to a predetermined value or more at least during the transition to the power generation process.
  • the control means is in the start-up process, particularly the power generation process.
  • the temperature of the reformer is equal to or higher than a predetermined value (for example, an abnormality determination temperature at which the reformer may be deteriorated) in a predetermined period after the transition to the power generation process or in a predetermined period after the power generation process transition (that is, when the temperature becomes highest)
  • a predetermined value for example, an abnormality determination temperature at which the reformer may be deteriorated
  • Excessive temperature rise suppression control is performed so as not to cause
  • the excessive temperature rise suppression control in the present invention is a control that relaxes the transition conditions of each reforming process in the start-up process and shifts to the next process as soon as possible, and the cell stack temperature rises while suppressing the reformer temperature rise. To reduce the temperature difference between them, control to reduce the amount of fuel gas supply in the start-up process, and control to suppress the rise in reformer temperature by controlling the output power after shifting to the power generation process It includes control to suppress excessive temperature rise before and after the power generation process transition.
  • the control unit starts the excessive temperature rise suppression control before the transition to the power generation step during the start-up step when the determination unit determines that the temperature increase promotion state is in effect.
  • the cell stack temperature tends to further increase due to a power generation reaction or the like.
  • the excessive temperature rise suppression control is started before the power generation process transition, the influence of the local or overall temperature increase due to the residual heat amount is eliminated by the time of the power generation start. Further, it is possible to prevent the cell stack temperature and the reformer temperature rising with the increase of the cell stack temperature from exceeding a predetermined value corresponding to each.
  • the SR process preferably includes an SR1 process and an SR2 process in which the amount of fuel gas supplied is reduced compared to the SR1 process, and the control means includes the temperature of the reformer and the cell stack.
  • the SR1 process is switched to the SR2 process when the temperature satisfies the SR2 transition condition, which is the transition condition from the SR1 process to the SR2 process, set for each of these. If it is determined that the temperature increase is in the promoted state, the process proceeds to the SR2 process even before the SR2 transition condition is satisfied.
  • the fuel gas supply amount is reduced in the SR2 process compared to the SR1 process, heating of the reformer by the combustion unit is suppressed, and in the SR2 process, an increase in the reformer temperature is suppressed compared to the SR1 process.
  • a temperature increase due to the residual heat amount is expected in the temperature increase promotion state, so the process shifts to the SR2 process that suppresses the temperature increase earlier. By doing so, it is possible to prevent the occurrence of excessive heating due to the residual heat quantity.
  • the shortage of the temperature rise of the cell stack or the like is compensated by the residual heat quantity, there is no problem of insufficient temperature rise in the subsequent steps.
  • the control means satisfies the SR2 transition condition, and if the reformer temperature is equal to or higher than a predetermined forced transition temperature, the cell stack temperature satisfies the SR2 transition condition. Even if not, the process proceeds to the SR2 process.
  • heat is generated by a partial oxidation reforming reaction that is an exothermic reaction, but this generated heat is not easily taken away by the heat storage means due to the presence of the remaining heat amount. For this reason, the rate of rise of the reformer temperature in the startup process tends to be greater than the rate of rise of the cell stack temperature.
  • the reformer temperature rises too much.
  • the reformer temperature is a high temperature state equal to or higher than the predetermined forced transition temperature, the cell stack temperature is shifted to the SR2 step early without waiting for the temperature to reach the transition condition temperature. Further, it is possible to prevent excessive temperature rise of the reformer.
  • the SR process preferably includes an SR1 process and an SR2 process in which the amount of fuel gas supplied is reduced compared to the SR1 process, and the control means includes the temperature of the reformer and the cell stack.
  • the SR1 process is switched to the SR2 process when the temperature satisfies the SR2 transition condition, which is the transition condition from the SR1 process to the SR2 process, set for each of these. If it is determined that the temperature increase promotion state is set, before switching from the SR1 process to the SR2 process, the SR1.5 process in which the fuel gas supply amount is smaller than the SR1 process and larger than the SR2 process is executed.
  • the present invention configured as described above, it is possible to prevent excessive temperature rise of the reformer while preventing a rapid change in temperature distribution by decreasing the fuel gas supply amount in multiple stages. .
  • the transition condition when switching from the SR1 process to the SR1.5 process is a temperature condition lower than the SR2 transition condition.
  • the transition condition to the SR1.5 process is a temperature condition lower than the SR2 transition condition, it is possible to shift from the SR1 process to the SR1.5 process earlier, and it is possible to prevent overheating of the reformer. It becomes.
  • the control unit overheats the temperature difference reduction control for reducing the temperature difference between the reformer temperature and the cell stack temperature when the determination unit determines that the temperature increase promotion state is present. Execute as suppression control.
  • the reformer temperature is likely to rise due to the influence of the residual heat quantity
  • the present invention by performing the temperature difference reduction control for reducing the temperature difference between the reformer temperature and the cell stack temperature, the start-up process and In the power generation process, only one temperature is prevented from rising, and excessive temperature rise can be prevented.
  • the control unit performs power extraction lower than the rated value before the shift to the power generation step as the temperature difference reduction control in the SR step. If it is SR process, it can be taken out if the power is lower than the rating. When the electric power is taken out, the reformed fuel gas is consumed by power generation, so that the amount of exhaust gas generated in the combustion section is reduced and the temperature rise of the reformer can be suppressed. Further, when the electric power is taken out, the cell stack is accelerated by the power generation reaction. Thus, in the present invention, the temperature difference between the reformer and the cell stack can be reduced by promoting the increase in the temperature of the cell stack while suppressing the temperature rise of the reformer.
  • the control means makes the amount of electric power taken out before shifting to the power generation process constant.
  • the balance between heat generation and heat absorption in the reformer and the cell stack changes, and the temperature changes transiently.
  • the electric power extraction amount is made constant, and this can reduce a temperature difference reliably.
  • control means supplies the electric power taken out before shifting to the power generation process to the auxiliary equipment of the fuel cell device.
  • the electric power taken out in the start-up process can be effectively used in the auxiliary machine, not wastefully consumed by the heating element or the like.
  • the determination unit determines that the temperature raising assisting state is present when the temperature of the reformer is equal to or higher than the first predetermined temperature at the time of transition from at least one step to the next step. Based on the determination, the control means shifts to the next process even when the temperature of the cell stack does not satisfy the transition condition for shifting to the next process.
  • the heat generated by the partial oxidation reforming reaction in the POX process and the ATR process is not easily deprived by the heat storage means due to the presence of the residual heat quantity, so the rate of increase in the reformer temperature in the start-up process is higher than the increase in cell stack temperature. Get faster. Therefore, if the cell stack temperature waits until the transition condition is satisfied, the reformer may overheat. For this reason, in the present invention, when the reformer temperature reaches the forced transition temperature, the process proceeds to the next step as soon as possible without waiting for the cell stack temperature to satisfy the transition condition. Overheating can be prevented.
  • the first predetermined temperature is set to a temperature higher than the temperature of the reformer transition condition.
  • the reformer temperature exceeds the temperature of the transition condition and is in a high temperature state (i.e., the first stack temperature) even though the cell stack temperature is still lower than the temperature of the transition condition.
  • the forced transition temperature which is the predetermined temperature of 1
  • the stack temperature should not be raised any longer, and it can be determined without error that the remaining heat amount is in the temperature rising promotion state. .
  • the determination unit determines that the temperature raising assisting state is in a state where the temperature of the reformer is equal to or higher than the first predetermined temperature, and based on this determination, the control unit Even if the temperature of the cell stack does not satisfy the transition condition for transitioning to the next process, the transition to the power generation process is performed, and the first predetermined temperature is higher than the temperature of the transition condition to the power generation process of the reformer. And is set lower than a second predetermined temperature which is an abnormality determination temperature of the reformer.
  • the reformer temperature tends to be the highest. For this reason, according to the present invention, when the remaining heat amount is in a temperature rising promotion state, the reformer is made abnormal even after the power generation process transition by shifting to power generation at a time lower than the reformer abnormality determination temperature. It is possible to operate within the normal operating temperature range while keeping it below the judgment temperature.
  • the control means operates the fuel cell device so that the temperature of the reformer does not exceed a second predetermined temperature, which is an abnormality determination temperature of the reformer, after shifting to the power generation process.
  • the temperature monitoring control to be controlled is executed.
  • the reformer temperature becomes closer to the abnormality determination temperature than during normal startup.
  • the reformer temperature is reduced with the start of power generation. Furthermore, it can prevent that it becomes high temperature and exceeds abnormality determination temperature.
  • the determination means determines whether or not the temperature increase assisting state is determined based on the temperature of the reformer in the POX process or the ATR process. Relax the transition conditions in The rise in the reformer temperature due to the residual heat amount appears remarkably in the POX process and the ATR process (particularly the POX process) in which an exothermic reaction is performed, and the temperature difference between the reformer temperature and the cell stack temperature generated at that time is thereafter It tends to be maintained in this process. Therefore, in the present invention, the determination is made in the POX process or the ATR process in which the determination of the temperature rising promotion state by the residual heat quantity can be performed accurately.
  • the switching temperature condition of the reforming process after the determination is switched at the time of the POX process or the ATR process, the temperature rise due to the remaining heat amount at each switching time from the ATR process to the SR process and / or the SR process to the power generation process. Even if it does not determine a promotion state, generation
  • the solid oxide fuel cell device of the present invention it is possible to prevent the temperature in the fuel cell module from rising excessively in the startup process.
  • 1 is an overall configuration diagram showing a fuel cell device according to an embodiment of the present invention. It is front sectional drawing which shows the fuel cell module of the fuel cell apparatus by one Embodiment of this invention. It is sectional drawing which follows the III-III line of FIG. It is a fragmentary sectional view showing a fuel cell unit of a fuel cell device by one embodiment of the present invention. It is a perspective view which shows the fuel cell stack of the fuel cell apparatus by one Embodiment of this invention. 1 is a block diagram showing a fuel cell device according to an embodiment of the present invention. It is a time chart which shows the operation
  • 3 is an operation table for excessive temperature rise suppression control of the fuel cell device according to the first embodiment of the present invention. It is explanatory drawing of the overheating suppression control at the time of starting of the fuel cell apparatus by 2nd Embodiment of this invention. It is an operation
  • FIG. 1 is an overall configuration diagram showing a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
  • a solid oxide fuel cell (SOFC) 1 according to an embodiment of the present invention includes a fuel cell module 2 and an auxiliary unit 4.
  • the fuel cell module 2 includes a housing 6, and a sealed space 8 is formed around the housing 6 via a heat storage material 7.
  • the heat storage material 7 can store the heat generated in the fuel module 2, and can improve the thermal efficiency of the fuel cell module 2.
  • a fuel cell assembly 12 that performs a power generation reaction with fuel gas and an oxidant (air) is disposed in a power generation chamber 10 that is a lower portion of the sealed space 8.
  • the fuel cell assembly 12 includes ten fuel cell stacks 14 (see FIG. 5), and the fuel cell stack 14 includes 16 fuel cell unit 16 (see FIG. 4). Yes.
  • the fuel cell assembly 12 has 160 fuel cell units 16, and all of these fuel cell units 16 are connected in series.
  • a combustion chamber 18 is formed above the above-described power generation chamber 10 in the sealed space 8 of the fuel cell module 2.
  • this combustion chamber 18 the remaining fuel gas that has not been used for the power generation reaction and the remaining oxidant (air) ) And combusted to generate exhaust gas.
  • a reformer 20 for reforming the fuel gas is disposed above the combustion chamber 18, and the reformer 20 is heated to a temperature at which a reforming reaction can be performed by the combustion heat of the residual gas.
  • an air heat exchanger 22 for receiving combustion heat and heating air is disposed above the reformer 20.
  • the auxiliary unit 4 stores a pure water tank 26 that stores water from a water supply source 24 such as tap water and uses the filter to obtain pure water, and a water flow rate that adjusts the flow rate of the water supplied from the water storage tank.
  • An adjustment unit 28 (such as a “water pump” driven by a motor) is provided.
  • the auxiliary unit 4 also includes a gas shut-off valve 32 that shuts off the fuel gas supplied from a fuel supply source 30 such as city gas, a desulfurizer 36 for removing sulfur from the fuel gas, and a flow rate of the fuel gas.
  • a fuel flow rate adjusting unit 38 (such as a “fuel pump” driven by a motor) is provided.
  • the auxiliary unit 4 includes an electromagnetic valve 42 that shuts off air that is an oxidant supplied from the air supply source 40, a reforming air flow rate adjusting unit 44 that adjusts the flow rate of air, and a power generation air flow rate adjusting unit. 45 (such as an “air blower” driven by a motor), a first heater 46 for heating the reforming air supplied to the reformer 20, and a second for heating the power generating air supplied to the power generation chamber And a heater 48.
  • the first heater 46 and the second heater 48 are provided in order to efficiently raise the temperature at startup, but may be omitted.
  • a hot water production apparatus 50 to which exhaust gas is supplied is connected to the fuel cell module 2.
  • the hot water production apparatus 50 is supplied with tap water from the water supply source 24, and the tap water is heated by the heat of the exhaust gas and supplied to a hot water storage tank of an external hot water heater (not shown).
  • the fuel cell module 2 is provided with a control box 52 for controlling the amount of fuel gas supplied and the like. Furthermore, the fuel cell module 2 is connected to an inverter 54 that is a power extraction unit (power conversion unit) for supplying the power generated by the fuel cell module to the outside.
  • FIG. 2 is a side sectional view showing a solid oxide fuel cell (SOFC) fuel cell module according to an embodiment of the present invention
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • the fuel cell assembly 12, the reformer 20, and the air heat exchange are sequentially performed from below.
  • a vessel 22 is arranged.
  • the reformer 20 is provided with a pure water introduction pipe 60 for introducing pure water and a reformed gas introduction pipe 62 for introducing reformed fuel gas and reforming air to the upstream end side thereof.
  • a pure water introduction pipe 60 for introducing pure water
  • a reformed gas introduction pipe 62 for introducing reformed fuel gas and reforming air to the upstream end side thereof.
  • an evaporation unit 20a and a reforming unit 20b are formed in order from the upstream side, and the reforming unit 20b is filled with a reforming catalyst.
  • the fuel gas and air mixed with the steam (pure water) introduced into the reformer 20 are reformed by the reforming catalyst filled in the reformer 20.
  • the reforming catalyst a catalyst obtained by imparting nickel to the alumina sphere surface or a catalyst obtained by imparting ruthenium to the alumina sphere surface is appropriately used.
  • a fuel gas supply pipe 64 is connected to the downstream end side of the reformer 20, and the fuel gas supply pipe 64 extends downward and further in an manifold 66 formed below the fuel cell assembly 12. It extends horizontally.
  • a plurality of fuel supply holes 64 b are formed in the lower surface of the horizontal portion 64 a of the fuel gas supply pipe 64, and the reformed fuel gas is supplied into the manifold 66 from the fuel supply holes 64 b.
  • a lower support plate 68 having a through hole for supporting the fuel cell stack 14 described above is attached above the manifold 66, and the fuel gas in the manifold 66 flows into the fuel cell unit 16. Supplied.
  • the air heat exchanger 22 includes an air aggregation chamber 70 on the upstream side and two air distribution chambers 72 on the downstream side.
  • the air aggregation chamber 70 and the air distribution chamber 72 include six air flow path tubes 74. Connected by.
  • three air flow path pipes 74 form a set (74a, 74b, 74c, 74d, 74e, 74f), and the air in the air collecting chamber 70 is in each set. It flows into each air distribution chamber 72 from the air flow path pipe 74.
  • the air flowing through the six air flow path pipes 74 of the air heat exchanger 22 is preheated by exhaust gas that burns and rises in the combustion chamber 18.
  • An air introduction pipe 76 is connected to each of the air distribution chambers 72, the air introduction pipe 76 extends downward, and the lower end side communicates with the lower space of the power generation chamber 10, and the air that has been preheated in the power generation chamber 10. Is introduced.
  • an exhaust gas chamber 78 is formed below the manifold 66. Further, as shown in FIG. 3, an exhaust gas passage 80 extending in the vertical direction is formed inside the front surface 6 a and the rear surface 6 b which are surfaces along the longitudinal direction of the housing 6, and the upper end side of the exhaust gas passage 80 is formed. Is in communication with the space in which the air heat exchanger 22 is disposed, and the lower end side is in communication with the exhaust gas chamber 78. Further, an exhaust gas discharge pipe 82 is connected to substantially the center of the lower surface of the exhaust gas chamber 78, and the downstream end of the exhaust gas discharge pipe 82 is connected to the above-described hot water producing apparatus 50 shown in FIG. As shown in FIG. 2, an ignition device 83 for starting combustion of fuel gas and air is provided in the combustion chamber 18.
  • FIG. 4 is a partial cross-sectional view showing a fuel cell unit of a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
  • the fuel cell unit 16 includes a fuel cell 84 and inner electrode terminals 86 respectively connected to the vertical ends of the fuel cell 84.
  • the fuel cell 84 is a tubular structure extending in the vertical direction, and includes a cylindrical inner electrode layer 90 that forms a fuel gas flow path 88 therein, a cylindrical outer electrode layer 92, an inner electrode layer 90, and an outer side.
  • An electrolyte layer 94 is provided between the electrode layer 92 and the electrode layer 92.
  • the inner electrode layer 90 is a fuel electrode through which fuel gas passes and becomes a ( ⁇ ) electrode, while the outer electrode layer 92 is an air electrode in contact with air and becomes a (+) electrode.
  • the upper portion 90 a of the inner electrode layer 90 includes an outer peripheral surface 90 b and an upper end surface 90 c exposed to the electrolyte layer 94 and the outer electrode layer 92.
  • the inner electrode terminal 86 is connected to the outer peripheral surface 90b of the inner electrode layer 90 through a conductive sealing material 96, and is further in direct contact with the upper end surface 90c of the inner electrode layer 90, thereby Electrically connected.
  • a fuel gas passage 98 communicating with the fuel gas passage 88 of the inner electrode layer 90 is formed at the center of the inner electrode terminal 86.
  • the inner electrode layer 90 includes, for example, a mixture of Ni and zirconia doped with at least one selected from rare earth elements such as Ca, Y, and Sc, and Ni and ceria doped with at least one selected from rare earth elements.
  • the mixture is formed of at least one of Ni and a mixture of lanthanum garade doped with at least one selected from Sr, Mg, Co, Fe, and Cu.
  • the electrolyte layer 94 is, for example, zirconia doped with at least one selected from rare earth elements such as Y and Sc, ceria doped with at least one selected from rare earth elements, lanthanum gallate doped with at least one selected from Sr and Mg, Formed from at least one of the following.
  • the outer electrode layer 92 includes, for example, lanthanum manganite doped with at least one selected from Sr and Ca, lanthanum ferrite doped with at least one selected from Sr, Co, Ni and Cu, Sr, Fe, Ni and Cu. It is formed from at least one of lanthanum cobaltite doped with at least one selected from the group consisting of silver and silver.
  • FIG. 5 is a perspective view showing a fuel cell stack of a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
  • the fuel cell stack 14 includes 16 fuel cell units 16, and the lower end side and the upper end side of these fuel cell units 16 are a ceramic lower support plate 68 and an upper side, respectively. It is supported by the support plate 100.
  • the lower support plate 68 and the upper support plate 100 are formed with through holes 68a and 100a through which the inner electrode terminal 86 can pass.
  • the current collector 102 includes a fuel electrode connection portion 102a that is electrically connected to an inner electrode terminal 86 attached to the inner electrode layer 90 that is a fuel electrode, and an entire outer peripheral surface of the outer electrode layer 92 that is an air electrode. And an air electrode connecting portion 102b electrically connected to each other.
  • the air electrode connecting portion 102b is formed of a vertical portion 102c extending in the vertical direction on the surface of the outer electrode layer 92 and a plurality of horizontal portions 102d extending in a horizontal direction along the surface of the outer electrode layer 92 from the vertical portion 102c. Has been.
  • the fuel electrode connection portion 102a is linearly directed obliquely upward or obliquely downward from the vertical portion 102c of the air electrode connection portion 102b toward the inner electrode terminal 86 positioned in the vertical direction of the fuel cell unit 16. It extends.
  • the inner electrode terminals 86 at the upper end and the lower end of the two fuel cell units 16 located at the ends of the fuel cell stack 14 are external terminals, respectively. 104 is connected. These external terminals 104 are connected to the external terminals 104 (not shown) of the fuel cell unit 16 at the end of the adjacent fuel cell stack 14, and as described above, the 160 fuel cell units 16 Everything is connected in series.
  • FIG. 6 is a block diagram illustrating a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
  • the solid oxide fuel cell 1 includes a control unit 110, and the control unit 110 includes operation buttons such as “ON” and “OFF” for operation by the user.
  • a device 112 a display device 114 for displaying various data such as a power generation output value (wattage), and a notification device 116 for issuing an alarm (warning) in an abnormal state are connected.
  • the notification device 116 may be connected to a remote management center and notify the management center of an abnormal state.
  • the combustible gas detection sensor 120 is for detecting a gas leak, and is attached to the fuel cell module 2 and the auxiliary unit 4.
  • the CO detection sensor 122 detects whether or not CO in the exhaust gas originally discharged to the outside through the exhaust gas passage 80 or the like leaks to an external housing (not shown) that covers the fuel cell module 2 and the auxiliary unit 4. Is to do.
  • the hot water storage state detection sensor 124 is for detecting the temperature and amount of hot water in a water heater (not shown).
  • the power state detection sensor 126 is for detecting the current and voltage of the inverter 54 and the distribution board (not shown).
  • the power generation air flow rate detection sensor 128 is for detecting the flow rate of power generation air supplied to the power generation chamber 10.
  • the reforming air flow sensor 130 is for detecting the flow rate of the reforming air supplied to the reformer 20.
  • the fuel flow sensor 132 is for detecting the flow rate of the fuel gas supplied to the reformer 20.
  • the water flow rate sensor 134 is for detecting the flow rate of pure water (steam) supplied to the reformer 20.
  • the water level sensor 136 is for detecting the water level of the pure water tank 26.
  • the pressure sensor 138 is for detecting the pressure on the upstream side outside the reformer 20.
  • the exhaust temperature sensor 140 is for detecting the temperature of the exhaust gas flowing into the hot water production apparatus 50.
  • the power generation chamber temperature sensor 142 is provided on the front side and the back side in the vicinity of the fuel cell assembly 12, and detects the temperature in the vicinity of the fuel cell stack 14 to thereby detect the fuel cell stack. 14 (ie, the fuel cell 84 itself) is estimated.
  • the combustion chamber temperature sensor 144 is for detecting the temperature of the combustion chamber 18.
  • the exhaust gas chamber temperature sensor 146 is for detecting the temperature of the exhaust gas in the exhaust gas chamber 78.
  • the reformer temperature sensor 148 is for detecting the temperature of the reformer 20, and calculates the temperature of the reformer 20 from the inlet temperature and the outlet temperature of the reformer 20.
  • the outside air temperature sensor 150 is for detecting the temperature of the outside air when the solid oxide fuel cell (SOFC) is disposed outdoors. Further, a sensor for measuring the humidity or the like of the outside air may be provided.
  • SOFC solid oxide fuel cell
  • Signals from these sensors are sent to the control unit 110, and the control unit 110, based on data based on these signals, the water flow rate adjustment unit 28, the fuel flow rate adjustment unit 38, the reforming air flow rate adjustment unit 44, A control signal is sent to the power generation air flow rate adjusting unit 45 to control each flow rate in these units. Further, the control unit 110 sends a control signal to the inverter 54 to control the power supply amount.
  • FIG. 7 is a time chart showing the operation at the time of startup of the solid oxide fuel cell (SOFC) according to one embodiment of the present invention.
  • reforming air is supplied from the reforming air flow rate adjustment unit 44 to the reformer 20 of the fuel cell module 2 via the first heater 46.
  • the power generation air is supplied from the power generation air flow rate adjustment unit 45 to the air heat exchanger 22 of the fuel cell module 2 via the second heater 48, and this power generation air is supplied to the power generation chamber 10 and the combustion chamber.
  • the fuel gas is also supplied from the fuel flow rate adjustment unit 38, and the fuel gas mixed with the reforming air passes through the reformer 20, the fuel cell stack 14, and the fuel cell unit 16, and It reaches the combustion chamber 18.
  • the ignition device 83 is ignited to burn the fuel gas and air (reforming air and power generation air) in the combustion chamber 18.
  • Exhaust gas is generated by the combustion of the fuel gas and air
  • the power generation chamber 10 is warmed by the exhaust gas, and when the exhaust gas rises in the sealed space 8 of the fuel cell module 2,
  • the fuel gas containing the reforming air is warmed, and the power generation air in the air heat exchanger 22 is also warmed.
  • the fuel gas mixed with the reforming air is supplied to the reformer 20 by the fuel flow rate adjusting unit 38 and the reforming air flow rate adjusting unit 44.
  • the heated fuel gas is supplied to the lower side of the fuel cell stack 14 through the fuel gas supply pipe 64, whereby the fuel cell stack 14 is heated from below, and the combustion chamber 18 also has the fuel gas and air.
  • the fuel cell stack 14 is also heated from above, and as a result, the fuel cell stack 14 can be heated substantially uniformly in the vertical direction. Even if the partial oxidation reforming reaction POX proceeds, the combustion reaction between the fuel gas and air continues in the combustion chamber 18.
  • the water flow rate is determined based on the temperature of the reformer 20 detected by the reformer temperature sensor 148 and the temperature of the fuel cell stack 14 detected by the power generation chamber temperature sensor 142.
  • the adjustment unit 28, the fuel flow rate adjustment unit 38, and the reforming air flow rate adjustment unit 44 start supplying a gas in which fuel gas, reforming air, and water vapor are mixed in advance to the reformer 20.
  • an autothermal reforming reaction ATR in which the partial oxidation reforming reaction POX described above and a steam reforming reaction SR described later are used together proceeds. Since the autothermal reforming reaction ATR is thermally balanced internally, the reaction proceeds in the reformer 20 in a thermally independent state.
  • the temperature of the reformer 20 detected by the reformer temperature sensor 146 and the temperature of the fuel cell stack 14 detected by the power generation chamber temperature sensor 142 Based on the above, the supply of reforming air by the reforming air flow rate adjusting unit 44 is stopped and the supply of water vapor by the water flow rate adjusting unit 28 is increased. As a result, the reformer 20 is supplied with a gas that does not contain air and contains only fuel gas and water vapor, and the steam reforming reaction SR of formula (3) proceeds in the reformer 20.
  • this steam reforming reaction SR is an endothermic reaction, the reaction proceeds while maintaining a heat balance with the combustion heat from the combustion chamber 18. At this stage, since the fuel cell module 2 is in the final stage of start-up, the power generation chamber 10 is heated to a sufficiently high temperature. Therefore, even if the endothermic reaction proceeds, the power generation chamber 10 is greatly reduced in temperature. There is nothing. Even if the steam reforming reaction SR proceeds, the combustion reaction continues in the combustion chamber 18.
  • the partial oxidation reforming reaction POX, the autothermal reforming reaction ATR, and the steam reforming reaction SR proceed in sequence, thereby causing the inside of the power generation chamber 10 to The temperature gradually increases.
  • power is taken out from the fuel cell module 2 to the inverter 54. That is, power generation is started. Due to the power generation of the fuel cell module 2, the fuel cell 84 itself also generates heat, and the temperature of the fuel cell 84 also rises.
  • FIG. 8 is a time chart showing the operation when the solid oxide fuel cell (SOFC) is stopped according to this embodiment.
  • the fuel flow rate adjustment unit 38 and the water flow rate adjustment unit 28 are operated to supply fuel gas and water vapor to the reformer 20. Reduce the amount.
  • the amount of fuel gas and water vapor supplied to the reformer 20 is reduced, and at the same time, the fuel cell module for generating air by the reforming air flow rate adjusting unit 44
  • the supply amount into 2 is increased, the fuel cell assembly 12 and the reformer 20 are cooled by air, and these temperatures are lowered.
  • the temperature of the power generation chamber decreases to a predetermined temperature, for example, 400 ° C.
  • the supply of fuel gas and steam to the reformer 20 is stopped, and the steam reforming reaction SR of the reformer 20 is ended.
  • This supply of power generation air continues until the temperature of the reformer 20 decreases to a predetermined temperature, for example, 200 ° C., and when this temperature is reached, the power generation air from the power generation air flow rate adjustment unit 45 is supplied. Stop supplying.
  • the steam reforming reaction SR by the reformer 20 and the cooling by the power generation air are used in combination.
  • the operation of the fuel cell module can be stopped.
  • FIG. 9 is a basic operation table showing the start-up process procedure of the fuel cell 1, and is used when the amount of heat remaining in the fuel cell module 2 at the start of start-up is less than a predetermined amount and there is no risk of overheating as described later. It is what As shown in FIG. 9, in the start-up process, the control unit 110 sequentially executes each operation control state (combustion operation process, POX1 process, POX2 process, ATR1 process, ATR2 process, SR1 process, SR2 process) in time sequence, It is comprised so that it may transfer to a power generation process.
  • operation control state combustion operation process, POX1 process, POX2 process, ATR1 process, ATR2 process, SR1 process, SR2 process
  • the POX1 process and the POX2 process are processes in which a partial oxidation reforming reaction is performed in the reformer 20.
  • the ATR1 process and the ATR2 process are processes in which an autothermal reforming reaction is performed in the reformer 20.
  • the SR1 process and the SR2 process are processes in which a steam reforming reaction is performed in the reformer 20.
  • Each of the POX process, the ATR process, and the SR process is subdivided into two parts.
  • the present invention is not limited thereto, and the POX process, ATR process, and SR process may be subdivided into three or more, or may be configured not to be subdivided.
  • the control unit 110 sends a signal to the reforming air flow rate adjustment unit 44 and the power generation air flow rate adjustment unit 45 to start them, and the reforming air ( (Oxidant gas) and air for power generation are supplied to the fuel cell module 2.
  • the supply amount of reforming air that is started to be supplied at time t 0 is 10.0 (L / min)
  • the supply amount of power generation air is 100.0 (L / min). It is set (see “combustion operation” step in FIG. 9).
  • the control unit 110 sends a signal to the fuel flow rate adjustment unit 38 and starts supplying fuel gas to the reformer 20.
  • the fuel gas and reforming air sent to the reformer 20 are sent into each fuel cell unit 16 via the reformer 20, the fuel gas supply pipe 64, and the manifold 66.
  • the fuel gas and reforming air sent into each fuel cell unit 16 flow out from the upper end of the fuel gas flow path 98 of each fuel cell unit 16.
  • the supply amount of the fuel gas to be supplied at time t 1 is set to 6.0 (L / min) (see “combustion operation” step in FIG. 9).
  • the control unit 110 sends a signal to the ignition device 83 to ignite the fuel gas flowing out from the fuel cell unit 16.
  • the fuel gas is combusted in the fuel chamber 18, and the reformer 20 disposed above the fuel gas is heated by the exhaust gas generated thereby, and the combustion chamber 18, the power generation chamber 10, and the inside thereof
  • the temperature of the arranged fuel cell stack 14 (hereinafter referred to as “cell stack temperature”) also rises (see times t 2 to t 3 in FIG. 7).
  • the fuel cell unit 16 including the fuel gas passage 98 and the upper end portion thereof correspond to a combustion portion.
  • reformer temperature When the temperature of the reformer 20 (hereinafter referred to as “reformer temperature”) rises to about 300 ° C. by heating the reformer 20, a partial oxidation reforming reaction (POX) occurs in the reformer 20. (Time t 3 in FIG. 7: POX1 process starts). Since the partial oxidation reforming reaction is an exothermic reaction, the reformer 20 is also heated by the reaction heat due to the occurrence of the partial oxidation reforming reaction (time t 3 to t 5 in FIG. 7).
  • the control unit 110 sends a signal to the fuel flow rate adjustment unit 38 to reduce the fuel gas supply amount and the reforming air.
  • a signal is sent to the flow rate adjustment unit 38 to increase the supply amount of reforming air (time t 4 in FIG. 7: POX2 process start). Accordingly, the fuel gas supply amount is changed to 5.0 (L / min), and the reforming air supply amount is changed to 18.0 (L / min) (see the “POX2” step in FIG. 9).
  • These supply amounts are appropriate supply amounts for generating the partial oxidation reforming reaction.
  • the controller 110 changes the reforming air flow rate adjustment unit 44. Is sent to the water flow rate adjusting unit 28 to start the water supply (ATR1 process start). As a result, the reforming air supply amount is changed to 8.0 (L / min), and the water supply amount is set to 2.0 (cc / min) (see “ATR1” step in FIG. 9).
  • ATR1 autothermal reforming
  • the cell stack temperature is measured by the power generation chamber temperature sensor 142 disposed in the power generation chamber 10.
  • the temperature detected by the power generation chamber temperature sensor reflects the cell stack temperature
  • the cell is detected by the power generation chamber temperature sensor arranged in the power generation chamber.
  • the stack temperature can be grasped.
  • the cell stack temperature means a temperature measured by an arbitrary sensor that indicates a value reflecting the cell stack temperature.
  • the control unit 110 sends a signal to the fuel flow rate adjustment unit 38. Reduce the fuel gas supply. Further, the control unit 110 sends a signal to the reforming air flow rate adjustment unit 44 to reduce the reforming air supply amount and sends a signal to the water flow rate adjustment unit 28 to increase the water supply amount (ATR2). Process start). As a result, the fuel gas supply amount is changed to 4.0 (L / min), the reforming air supply amount is changed to 4.0 (L / min), and the water supply amount is 3.0 (cc / min). (Refer to “ATR2” step in FIG. 9).
  • the ratio of the partial oxidation reforming reaction that is an exothermic reaction is reduced in the reformer 20, and the steam reforming that is an endothermic reaction.
  • the rate of reaction increases.
  • the rise in the reformer temperature is suppressed, while the fuel cell stack 14 is heated by the gas flow received from the reformer 20, so that the cell stack temperature rises to catch up with the reformer temperature.
  • the temperature difference between the two is reduced, and the temperature is stably increased.
  • the controller 110 sends a signal to the reforming air flow rate adjustment unit 44 and stops the supply of the reforming air. Further, the control unit 110 sends a signal to the fuel flow rate adjustment unit 38 to decrease the fuel gas supply amount, and sends a signal to the water flow rate adjustment unit 28 to increase the water supply amount (SR1 process start). Accordingly, the fuel gas supply amount is changed to 3.0 (L / min), and the water supply amount is changed to 8.0 (cc / min) (see the “SR1” process in FIG. 9). When the supply of the reforming air is stopped, the partial oxidation reforming reaction does not occur in the reformer 20, and SR in which only the steam reforming reaction occurs is started.
  • the control unit 110 sends a signal to the fuel flow rate adjustment unit 38 to reduce the fuel gas supply amount, and sends a signal to the water flow rate adjustment unit 28 to reduce the water supply amount. Further, the control unit 110 sends a signal to the power generation air flow rate adjustment unit 45 to reduce the supply amount of the power generation amount air (SR2 process start).
  • the fuel gas supply amount is changed to 2.3 (L / min)
  • the water supply amount is changed to 6.3 (cc / min)
  • the power generation air supply amount is 80.0 (L / min).
  • the fuel gas supply amount and the water supply amount are kept high in order to raise the reformer temperature and the stack temperature to near the temperature at which power generation is possible. Thereafter, in the SR2 step, the fuel gas flow rate and the water supply amount are reduced, the temperature distributions of the reformer temperature and the cell stack temperature are settled, and are stabilized in a temperature range where power generation is possible.
  • Control unit 110 in the SR2 step, after maintaining the supply amount predetermined transition time electrical generation or more, at time t 9 in FIG. 7, the reformer temperature is 650 ° C. or above and the stack temperature is more than 700 ° C. (power generation step transition condition), the fuel cell module 2 to output power to the inverter 54, and shifts to the power generation process to start power generation (time in FIG. 7 t 9: power step starts).
  • the power generation process, the control unit 110 during the time t 10 from the time t 9 maintains the fuel gas supply amount and the water supply amount constant.
  • control unit 110 sends a signal to the fuel flow rate adjustment unit 38 and the water flow rate adjustment unit 28 to change the fuel gas supply amount and the water supply amount so as to follow the output power.
  • the control unit 110 sends a signal to the fuel flow rate adjustment unit 38 and the water flow rate adjustment unit 28 to change the fuel gas supply amount and the water supply amount so as to follow the output power.
  • the fuel cell module 2 is provided with the heat storage material 7 as the heat storage means around the housing 6 as the module storage chamber in order to improve the thermal efficiency, so that the heat generated inside does not escape to the outside. It is configured so that it can be used effectively.
  • the fuel cell device 1 is operated, and the fuel cell module 2 including the heat storage material 7 as a whole enters a stop operation in a state where the temperature has risen, and then the restart process is performed with the heat storage material 7 and the like accumulating a large amount of heat. If it enters, it will become easy to heat up the component (especially reformer 20) in the fuel cell module 2 compared with the time of starting from a normal room temperature state.
  • the heat generated in the reformer 20 in the partial oxidation reforming reaction that is an exothermic reaction is not limited to the temperature of the reformer 20 itself when starting from a normal room temperature state, but other components and heat storage materials. 7 is discharged out of the reformer 20 to raise the temperature.
  • the heat generated in the partial oxidation reforming reaction is mainly used to raise the temperature of the reformer 20, and the reformer 20 The heating rate is increased. Thereby, for example, the reformer 20 may be deteriorated due to excessive temperature rise.
  • the excessive temperature increase suppression control is performed according to this state. Is performed, and an appropriate restart is performed to prevent overheating.
  • the excessive temperature rise suppression control is configured so that the transition temperature condition is relaxed so that when the temperature elevation promotion state is detected, the SR1 step is quickly shifted to the next step.
  • FIG. 10 shows a case where the reformer temperature rises faster than in the case of FIG.
  • FIG. 11 differs from FIG. 9 only in the transition temperature condition, and the supply amount of fuel gas and the like in each step is set to be the same.
  • portions different from those in FIG. 9 are enclosed by squares.
  • the activation state from time t 20 to time t 27 is substantially the same as the activation state from time t 0 to time t 7 in FIG. Since the temperature rise in the reformer 20 is earlier than the temperature rise of the fuel cell stack 14, the temperature of the reformer 20 before the time t 27 is, 650 ° C. is a transition temperature to the SR1 step from ATR2 step Is over. Then, at time t 27 when the cell stack temperature reaches 600 ° C., which is the transition temperature condition, both transition conditions are satisfied, so that the control unit 110 shifts from the ATR2 process to the SR1 process.
  • the normal transition conditions from the SR1 process to the SR2 process are a reformer temperature of 650 ° C. or higher and a cell stack temperature of 650 ° C. or higher (SR2 transition condition).
  • the reformer temperature continues to rise after the transition to the SR1 process, and reaches a predetermined forced transition temperature (700 ° C. in this example) exceeding the 650 ° C. transition temperature condition to SR2 at time t 28 . .
  • a predetermined forced transition temperature 700 ° C. in this example
  • the cell stack temperature is not reached 650 ° C. is a transition temperature to SR2 even at time t 28.
  • the reformer temperature After the reformer temperature first reaches 650 ° C. or higher, it takes time until the cell stack temperature reaches 650 ° C. or higher. Therefore, when the cell stack temperature reaches 650 ° C., the reformer temperature increases excessively.
  • the temperature may reach 800 ° C., which is an abnormality determination temperature.
  • the abnormality determination temperature is a set temperature that forcibly stops the fuel cell 1 forcibly because the reformer 20 may be deteriorated or damaged.
  • the control unit 110 serving as a determination unit determines that the reformer temperature is equal to or higher than the forced transition temperature (700 ° C. in this example) even though the cell stack temperature does not reach the transition temperature condition for the SR2 process.
  • the temperature rise rate of the reformer temperature is increased because the temperature rise process of the transition temperature that is the reference of the reformer temperature and the cell stack temperature shown in the operation table of FIG. A large amount of heat is accumulated in the fuel cell module 2, and the temperature rise of the reformer 20 is promoted due to the amount of heat, or the temperature rise rate is faster than normal startup. It is determined that it is in a state of being warmed up, that is, in a temperature rising promotion state.
  • the temperature increase rate of the reformer temperature is faster than the temperature increase rate of the cell stack temperature, the temperature difference between the two becomes larger than usual, and the reforming is performed before the cell stack temperature reaches the transition temperature.
  • the temperature of the instrument reaches a forced transition temperature that is higher than the transition condition temperature by a predetermined temperature or more, it is determined that the temperature elevation is in an enhanced state.
  • the control unit 110 sets the transition temperature condition from the SR1 process to the SR2 process in accordance with the cell stack temperature in addition to the reformer temperature being 650 ° C. or higher and the cell stack temperature being 650 ° C. or higher.
  • the reformer temperature is 700 ° C. or higher (SR2 transition condition after change). Therefore, although the cell stack temperature has not reached 650 ° C., the controller 110 shifts from the SR1 step to the SR2 step because the reformer temperature has reached the forced transition temperature (700 ° C.).
  • the period of the SR1 step in which the fuel gas supply amount and the water supply amount are larger than those in the SR2 step is shortened, and the temperature rise of the reformer 20 is suppressed. Furthermore, since the fuel gas supply amount and the water supply amount are reduced as compared with the SR1 step after the transition to the SR2 step, an increase in the reformer temperature is suppressed.
  • the steam reforming reaction which is an endothermic reaction is suppressed, which is disadvantageous as an effect of suppressing the rise in the reformer temperature.
  • the amount of fuel gas supplied in the SR2 step is reduced, so that the amount of reformed fuel gas that flows out of the fuel cell unit 16 also decreases, and the exhaust gas from the combustion section that heats the reformer 20 Since the amount decreases, the increase in the reformer temperature is suppressed as a whole.
  • the control unit 110 proceeds from SR2 step to the power generation process
  • the reformer temperature and the cell stack temperature at the time of the power generation process transition and during a predetermined period after the power generation process transition. Is controlled so as not to exceed a predetermined value (for example, an abnormality determination temperature at which the reformer 20 or the fuel cell stack 14 may be deteriorated or damaged).
  • the cell stack temperature is changed by changing the transition temperature condition. Even if the above condition is not satisfied, when the reformer temperature reaches the forced transition temperature set to be higher than the normal transition temperature condition, the process proceeds to the next process at an early stage.
  • the rise in the reformer temperature is suppressed, and the reformer temperature is increased during the start-up process and the power generation process including the SR process, particularly during the transition to the power generation process and after the power generation process.
  • the temperature increase promotion state is determined during the SR process, and the transition temperature condition from the SR1 process to the SR2 process is changed.
  • the present invention is not limited to this, and the same applies to the POX process and the ATR process. It may be configured such that the transition temperature condition is changed so that the temperature rising promotion state is determined and the transition to the next process is performed early.
  • the excessive temperature rise suppression control of the present embodiment is configured to prevent an excessive temperature rise by adding an SR1.5 step between the SR1 step and the SR2 step when a temperature increase promotion state is detected. .
  • FIG. 12 shows a case where the rise rate of the reformer temperature and the cell stack temperature is faster than in the case of FIGS. 7 and 10.
  • FIG. 13 compared with FIG. 9, SR1.5 process is added between SR1 process and SR2 process, and the transition temperature conditions relevant to this differ.
  • Activation state from time t 40 to time t 47 is omitted because the start state from time t 0 in FIG. 7 to time t 7 is substantially the same. Since the temperature rise in the reformer 20 is earlier than the temperature rise of the fuel cell stack 14, the temperature of the reformer 20 before the time t 47 is, 650 ° C. is a transition temperature to the SR1 step from ATR2 step Over 700 ° C. Then, at time t 47 when the cell stack temperature reaches 600 ° C., which is the transition temperature condition, both transition conditions are satisfied, so that the control unit 110 shifts from the ATR2 process to the SR1 process.
  • the control part 110 changes the starting process after SR1 process into the process shown in FIG.
  • the transition condition from the SR1 process to the SR1.5 process is the transition condition from the normal SR1 process to the SR2 process shown in FIG.
  • the temperature condition is set lower than (650 ° C.). Therefore, after the transition to the SR1 process, at the time when the cell stack temperature reaches 620 ° C. (time t 48 ), the control unit 110 shifts from the SR1 process to the SR1.5 process at an early stage.
  • the reformer temperature is 650 ° C. or more, which is the transition temperature condition, and in FIG. 12, the temperature is further increased and still exceeds 700 ° C. than at the start of the SR1 process (time t 47 ).
  • the control unit 110 reduces the fuel gas supply amount to 2.6 (L / min).
  • This fuel gas supply amount is set to a larger amount than the SR1 step, although it is smaller than the SR1 step.
  • the amount of exhaust gas is reduced, and an increase in reformer temperature is suppressed.
  • the cell stack temperature rises to catch up with the reformer temperature.
  • the control unit 110 shifts from the SR1.5 step to the SR2 step (SR2 transition condition).
  • the reformer temperature is 650 ° C. or higher, which is the transition temperature condition, and the state exceeding 700 ° C. continues in FIG.
  • the control unit 110 reduces the fuel gas supply amount to 2.3 (L / min) and the water supply amount to 6.3 (cc / min). As a result, the amount of exhaust gas is further reduced, and an increase in reformer temperature is suppressed.
  • the cell stack temperature rises to catch up with the reformer temperature.
  • the control unit 110 shifts from the SR2 process to the power generation process (power generation process transition condition).
  • the reformer temperature is 650 ° C. or higher which is the transition temperature condition.
  • the SR1 process is performed.
  • SR1.5 which has a temperature rise suppression effect, at an early stage, and then shifts to the SR2 step having a high temperature rise suppression effect in multiple stages.
  • the transition between processes in multiple stages in the SR process suppresses a rapid change in temperature distribution and an increase in the reformer temperature, and particularly the start-up process and the power generation process including the SR process, It is possible to prevent the reformer temperature and the cell stack temperature from being overheated above the abnormality determination temperature that causes deterioration and damage during the transition to the power generation process and in a predetermined period after the transition to the power generation process.
  • the temperature increase promotion state is determined at the time of transition to the SR process, and the SR1.5 process that is an intermediate process is provided between SR1 and SR2.
  • the present invention is not limited to this, but the POX process, ATR Similarly, in the process, it may be configured such that an intermediate process is provided by determining the temperature rising promotion state.
  • the excessive temperature rise suppression control is configured to execute temperature difference reduction control for reducing the temperature difference between the reformer temperature and the cell stack temperature when a temperature rise promotion state is detected. More specifically, the temperature difference reduction control is configured to execute a restrictive power generation process in parallel with the start-up process before shifting to the power generation process for supplying power to the external load.
  • FIG. 14 shows the case where the reformer temperature and the cell stack temperature increase at a high rate, as in the case of FIG. In the following, differences from the normal startup operation and processing described with reference to FIGS. 7 and 9 will be mainly described.
  • the control unit 110 from time t 60 to time t 71, based on the transition temperature of the reformer temperature and the cell stack temperature, is performed migration processing between each step.
  • the reformer temperature at the time of transition from the ATR process to the SR1 process further exceeds the transition temperature condition of 650 ° C. and reaches the early power generation start temperature (700 ° C. in this example)
  • a large amount of heat is accumulated in the battery module 2, and it is determined that the reformer 20 is in a temperature rising assist state in which the temperature of the reformer 20 is increased by this amount of heat.
  • control unit 110 executes the limited power generation process in which the electric energy is limited to a constant value lower than the rated value in parallel with the SR1 process.
  • the power extraction amount in the restrictive power generation process is set to be constant, and the temperature difference reduction control is executed in a stable state.
  • the restrictive power generation process may be started at any point in the SR process (including the SR1.5 process when the SR1.5 process is provided).
  • FIG. 14 shows the difference in temperature change between the reformer temperature and the cell stack temperature when the temperature difference reduction control is not executed (thin one-dot chain line) and when it is executed.
  • the electric power generated in the restrictive power generation process is used for a pump and an electrical resistance of the auxiliary unit 4 (for example, the water flow rate adjusting unit 28, the first heater 46, etc.) of the fuel cell device 1. It can also be configured to supply power to an external load. Further, at time t 69, when the condition for shifting to the power generation process is satisfied from SR2 step, the control unit 110 proceeds to full-scale power generation step for external power load following.
  • the temperature difference reduction control (excess temperature rise suppression control) of this embodiment
  • a limited power generation step is performed during the SR step.
  • the temperature increase rate of the cell stack temperature is increased and the temperature increase of the reformer temperature is suppressed.
  • the temperature difference between the reformer temperature and the cell stack temperature is reduced to suppress the rise in the reformer temperature, and the start-up process and the power generation process including the SR process, in particular, the power generation process. It is possible to prevent the reformer temperature and the cell stack temperature from excessively rising above a predetermined abnormality determination temperature that causes deterioration and damage during the transition and in a predetermined period after the transition to the power generation process.
  • the temperature difference reduction control is executed when the reformer temperature at the time of transition to SR1 is equal to or higher than the early power generation start temperature (700 ° C.).
  • the temperature difference between the reformer temperature and the cell stack temperature at the time of SR1 transition is equal to or greater than a predetermined temperature difference, it may be determined that the temperature increase is promoted and the temperature difference reduction control is executed. .
  • the excessive temperature rise suppression control of the solid oxide fuel cell (SOFC) according to the fourth embodiment will be described.
  • This embodiment is similar to the first embodiment, but the conditions for shifting from the SR2 process to the power generation process are further relaxed.
  • the rate of increase of the reformer temperature is faster than the rate of increase from the normal room temperature state, it is determined that the temperature increase is in an accelerated state, and the excessive temperature increase suppression control is executed.
  • the transition temperature condition of the operation table shown in FIG. 9 is relaxed so as to shift to the next process at an early stage by detecting the temperature rise promotion state.
  • FIG. 15 is an operation table used in the excessive temperature rise suppression control of this embodiment. Compared with FIG. 9, only the transition temperature condition is different, and the supply amount of fuel gas and the like in each process is set to be the same. . In the operation table in FIG. 15 and subsequent figures, portions different from those in FIG. 9 are surrounded by squares.
  • the combustion operation process, the POX1 process, the POX2 process, the ATR1 process, the ATR2 process, and the SR1 process are sequentially performed in a state where the reformer temperature increase speed is higher than the cell stack temperature increase speed compared with the normal start-up process.
  • the temperature difference between the reformer temperature and the cell stack temperature becomes larger than during normal startup.
  • the normal transition conditions from the SR1 step to the SR2 step are a reformer temperature of 650 ° C. or higher and a cell stack temperature of 650 ° C. or higher (normal SR2 transition conditions).
  • the cell stack temperature reaches 650 ° C. or higher after the reformer temperature first reaches 650 ° C. or higher. Therefore, when the cell stack temperature reaches 650 ° C., the reformer temperature may reach 800 ° C., which is the abnormality determination temperature, due to excessive temperature rise.
  • control unit 110 as the determination unit performs reforming even though the cell stack temperature has not reached the transition temperature condition (650 ° C.) to the SR2 process in the SR1 process.
  • the vessel temperature reaches the first forced transition temperature (700 ° C. in this example), it is determined that the temperature increase is in an enhanced state.
  • the control unit 110 sets the transition temperature condition from the SR1 process to the SR2 process in accordance with the cell stack temperature in addition to the reformer temperature being 650 ° C. or higher and the cell stack temperature being 650 ° C. or higher.
  • the reformer temperature is 700 ° C. or higher (SR2 transition condition after change).
  • the control unit 110 cannot transition to the SR2 process depending on the normal SR2 transition condition.
  • the reformer temperature reaches the first forced transition temperature (700 ° C.)
  • the transition condition is relaxed as a whole and the changed SR2 transition condition is satisfied.
  • the SR1 process can be shifted to the SR2 process at an early stage.
  • the steam reforming reaction that is an endothermic reaction is suppressed, which is disadvantageous as an effect of suppressing the rise in the reformer temperature.
  • the amount of fuel gas supplied in the SR2 step is reduced, so that the amount of reformed fuel gas that flows out of the fuel cell unit 16 also decreases, and the exhaust gas from the combustion section that heats the reformer 20 Since the amount decreases, the increase in the reformer temperature is suppressed as a whole.
  • the cell stack temperature can be raised to gradually catch up with the reformer temperature by receiving the gas flow from the reformer 20 in the SR2 step.
  • the normal transition conditions from the SR2 process to the power generation process are the reformer temperature of 650 ° C. or higher and the cell stack temperature of 700 ° C. or higher (normal power generation process transition conditions). .
  • the reformer temperature may reach 800 ° C., which is the abnormality determination temperature.
  • control unit 110 serving as the determination unit determines that the reformer temperature is the second in the SR2 step even though the cell stack temperature has not reached the transition temperature condition (700 ° C.) for the power generation step.
  • transition temperature condition 700 ° C.
  • the control unit 110 serving as the determination unit determines that the reformer temperature is the second in the SR2 step even though the cell stack temperature has not reached the transition temperature condition (700 ° C.) for the power generation step.
  • the forcible transition temperature 720 ° C. in this example
  • the control unit 110 changes the transition temperature condition from the SR2 process to the power generation process in accordance with the cell stack temperature in addition to the reformer temperature being 650 ° C. or higher and the cell stack temperature being 700 ° C. or higher.
  • the reformer temperature is 720 ° C. or more (power generation process transition condition after change). Therefore, the control unit 110 does not reach the cell stack temperature of 700 ° C., but the reformer temperature reaches the second forced transition temperature (720 ° C.), thereby mitigating the changed power generation process.
  • the condition is satisfied, and the SR2 process can be shifted to the power generation process at an early stage.
  • the first and second forced transition temperatures are set lower than the abnormality determination temperature.
  • the cell stack temperature When shifting to the power generation process, the cell stack temperature is gradually raised by the inflow gas from the reformer 20 so as to catch up with the reformer temperature, and is also raised by the power generation reaction and the Joule heat in the fuel cell stack 14. To do. Thereby, the cell stack temperature can reach 700 ° C. or more. On the other hand, the temperature of the reformer is reduced in the fuel gas supply amount and water supply amount in the power generation process. Maintained. In addition, by quickly shifting from the SR2 process to the power generation process, the reformer temperature has a temperature margin with respect to the abnormality determination temperature at the time of shifting to the power generation process, so a temporary temperature increase in the period immediately after the start of power generation This prevents the reformer temperature from reaching the abnormality determination temperature.
  • the cell stack temperature is reduced by mitigating the transition temperature condition. Even if the above condition is not satisfied, when the reformer temperature reaches the first or second forced transition temperature set to a temperature higher than the normal transition temperature condition, the process proceeds to the next step at an early stage.
  • the rise in the reformer temperature is suppressed, and the reformer temperature is increased during the start-up process and the power generation process including the SR process, particularly during the transition to the power generation process and after the power generation process.
  • the temperature increase promotion state is determined during the SR process, and the transition temperature condition from the SR1 process to the SR2 process and from the SR2 process to the power generation process is changed.
  • the transition temperature condition may be changed by determining the temperature rising promotion state.
  • the excessive temperature rise suppression control of the solid oxide fuel cell (SOFC) according to the fifth embodiment will be described.
  • SOFC solid oxide fuel cell
  • the transition to the next process is made early by taking the predetermined condition into consideration.
  • the transition temperature conditions of both the reformer temperature and the cell stack temperature are not satisfied, the transition to the next process is quickly performed when the predetermined conditions are satisfied. It is configured as follows.
  • start time t 120 is started, the supply of fuel gas is started at time t 121, is ignited at time t 122, the time t 123 POX1 step proceeds to, and then proceeds to time t 124 to POX2 process. Also, in FIG. 16, the time change of the reformer temperature in the normal startup process shown in FIG. 7 is added with a thin one-dot chain line for comparison.
  • the transition temperature conditions from the POX2 process to the ATR1 process are a reformer temperature of 600 ° C. or higher and a cell stack temperature of 250 ° C. (normal ATR1 transition conditions).
  • the control unit 110 serving as the determination unit is configured so that the reformer temperature rises faster than usual in the POX process, and the reformer temperature is forcibly shifted within the predetermined limit period T from the start of the POX process. When the temperature (in this example, 550 ° C.) is reached, it is determined that the temperature elevation is in an enhanced state.
  • the forcible transition temperature is set lower than the transition temperature condition of the reformer temperature from the SR2 process to the ATR1 process, but the reformer temperature is forcibly transitioned within the limit period T from the start of the POX process. If the temperature is reached, it is expected that the reformer temperature will rise faster than usual. Therefore, if the reformer temperature reaches the forced transition temperature within the limit period T from the start of the POX process before the normal ATR1 transition condition is satisfied, there is a possibility that an excessive temperature rise may occur. It is determined that the temperature increase is in a high temperature promotion state.
  • the procedure moves to the time t 125 to time limit T has elapsed from the POX process begins SR2 step to ATR1 step.
  • the steam reforming reaction that is an endothermic reaction is performed, so the rate of increase in reformer temperature is reduced, and the reformer temperature and cell stack temperature are reduced. An increase in the temperature difference can be suppressed.
  • the temperature increase promotion state is determined based on the temperature increase rate of the reformer temperature. By doing so, it is possible to shift to the next step and prevent overheating.
  • the temperature increase promotion state is determined based on the temperature increase rate of the reformer temperature during the time limit T.
  • the present invention is not limited to this, and the reformer temperature every predetermined short time is determined.
  • the temperature increase rate may be calculated from the time rate of change, and the temperature increase promotion state may be determined based on the calculated temperature increase rate.
  • the excessive temperature rise suppression control is executed based on the temperature increase rate of the reformer temperature in the POX process.
  • the present invention is not limited to this, and the same excessive temperature rise is also performed in the ATR process and SR process. It can comprise so that temperature suppression control may be performed.
  • the excessive temperature rise suppression control is executed based on the temperature increase rate of the reformer temperature.
  • the present invention is not limited to this, and the same excessive increase is determined based on the temperature increase rate of the cell stack temperature. It can comprise so that temperature suppression control may be performed.
  • the excessive temperature rising suppression control of the solid oxide fuel cell (SOFC) by 6th Embodiment is demonstrated.
  • the temperature rise rate of the reformer temperature is faster than the temperature rise rate of the cell stack temperature, and the reformer temperature is the first or first at the end of the POX process or the ATR process.
  • the second transition condition change temperature has been reached (650 ° C. and 700 ° C. in this example, respectively)
  • the subsequent transition temperature condition is changed from the normal operation table.
  • start time t 140 is started, the supply of fuel gas is started at time t 141, is ignited at time t 142, the time t 143 POX1 step proceeds to, the process proceeds to POX2 step at time t 144, and then proceeds to time t 145 to ATR1 step.
  • the time change of the reformer temperature in the normal startup process shown in FIG. 7 is added with a thin one-dot chain line for comparison.
  • the basic operation table used is as shown in FIG.
  • the control unit 110 serving as a determination unit has a higher rate of reformer temperature increase than during normal startup, and the cell stack temperature is changed to the ATR1 process at the time of transition from the POX2 process to the ATR1 process.
  • the reformer temperature reaches the first transition condition change temperature (650 ° C.) higher than 600 ° C. which is the transition temperature condition to the ATR1 step when the transition temperature condition (250 ° C.) is reached. Is determined to be in the temperature rising promotion state.
  • the control unit 110 relaxes the transition temperature condition of the subsequent cell stack temperature and performs operation control using the operation table shown in FIG.
  • the transition temperature condition of the cell stack temperature after the ATR1 step is relaxed, and each is reduced by 50 ° C. That is, the temperature condition during the transition to the ATR2 process is reduced from 400 ° C. to 350 ° C., the temperature condition during the transition to the SR1 process is reduced from 600 ° C. to 550 ° C., and the temperature condition during the transition to the SR2 process is changed from 650 ° C. to 600 ° C. The temperature condition at the time of shifting to the power generation process is reduced from 700 ° C. to 650 ° C.
  • the control unit 110 serving as a determination unit has a rate of increase in the reformer temperature that is higher than usual, and the transition temperature from the ATR2 process to the SR1 process is such that the cell stack temperature is the transition temperature to the SR1 process.
  • the condition (600 ° C.) is reached, if the reformer temperature has reached the second transition condition change temperature (700 ° C.) higher than 650 ° C. which is the transition temperature condition to the SR1 step, the temperature rises. It is determined that the temperature is in a warm-promoting state.
  • the controller 110 relaxes the subsequent cell stack temperature transition temperature condition and performs operation control using the operation table shown in FIG. In the operation table of FIG. 19, the transition temperature condition of the cell stack temperature after the SR1 step is relaxed and each is reduced by 50 ° C. That is, the temperature condition at the time of transition to the SR2 process is reduced from 650 ° C. to 600 ° C., and the temperature condition at the time of transition to the power generation process is reduced from 700 ° C. to 650 ° C.
  • the reformer temperature becomes a predetermined second transition condition change temperature.
  • the ATR process and SR process that are subsequently executed, a large temperature difference between the reformer temperature and the cell stack temperature is maintained, and there is a high possibility that excessive temperature rise will occur.
  • the reformer temperature when the reformer temperature has reached the first or second transition condition change temperature at the end of the POX process or the ATR process, it is determined that the temperature increase is promoted. Overheating can be prevented by relaxing the transition temperature conditions thereafter, shifting the process at an early stage, and finally shifting to the power generation process.
  • the excessive temperature rise suppression control is executed when the reformer temperature reaches the first or second transition condition change temperature.
  • the present invention is not limited to this, and the cell stack temperature changes the transition condition. By reaching the temperature, the transition temperature condition of the reformer temperature can be relaxed.
  • the excessive temperature rise suppression control of the solid oxide fuel cell (SOFC) according to the seventh embodiment will be described.
  • the abnormality determination temperature 800 ° C. in this example
  • It is configured to perform temperature monitoring control. This temperature monitoring control backs up the excessive temperature rise suppression control during the start-up process in the above embodiment, and the excessive temperature rise is reliably prevented in the power generation process.
  • FIG. 20 is a control table for setting the extractable current value Iinv by the control unit 110.
  • FIGS. 21 and 22 are flowcharts for determining the extractable current value Iinv by applying the control table shown in FIG.
  • the control unit 110 is configured to set an extractable current value Iinv based on input signals from various sensors and a demand power monitor signal, and output this value to an inverter control unit (not shown). .
  • the control unit 110 is a system that is a power generation room temperature (cell stack temperature) Tfc, a power generation voltage Vdc output from the fuel cell module 2, and power supplied from a commercial power source to a facility such as a house.
  • the increase, decrease, or maintenance of the extractable current value Iinv is determined based on the power Wl, the interconnection power Winv that is output from the inverter 54, the current value of the extractable current value Iinv, and the fuel supply current value If.
  • a temperature that is an index of the power generation capacity of the fuel cell module 2 such as the power generation chamber temperature Tfc, is referred to as a “temperature of the fuel cell module”.
  • the generated voltage Vdc is an output voltage output from the fuel cell module 2.
  • the system power Wl is the power supplied from the commercial power supply to the facility such as a house, and corresponds to the power obtained by subtracting the power supplied by the fuel cell from the total demand power of the facility. It is detected based on the signal.
  • the interconnection power Winv is electric power output from the inverter 54.
  • the electric power actually extracted from the fuel cell module 2 to the inverter 54 is detected by the electric power state detection sensor 126, and electric power converted from this electric power is output from the inverter 54.
  • the actual extraction current Ic [A] actually output from the fuel cell module 2 is obtained based on the power detected by the power state detection sensor 126. Therefore, the power state detection sensor 126 functions as an extraction current detection unit.
  • the fuel supply current value If is a current value based on which the fuel gas supply amount is obtained, and is a current that can be generated by the fuel gas supply amount (L / min) supplied to the fuel cell module 2. Corresponds to the value. Therefore, the fuel supply current value If is always set so as not to fall below the extractable current value Iinv.
  • the control unit 110 determines which of the numbers 1 to 9 in FIG. 20 corresponds to the current state of the fuel cell module 2, and changes the extractable current value Iinv shown in the rightmost column of FIG. Perform maintenance.
  • the control unit 110 sets the extractable current value Iinv to 5 [mA] as shown at the right end of the No. 1 column. Change to lower.
  • the control cycle of the control unit 110 is 500 [msec]. Therefore, when the condition in the number 1 column continues, the extractable current value Iinv is 500 [msec]. It decreases by 5 [mA] every [msec]. In this case, the extractable current value Iinv is decreased at a current decrease rate of 10 [mA / sec].
  • the control unit 110 sets the extractable current value Iinv to 10 [mA, as at the right end of the number 8 column. ] Change to increase. Therefore, when the state in which the condition of the number 8 column is satisfied continues, the extractable current value Iinv is increased at a change rate of 20 [mA / sec] which is the first current increase change rate.
  • reference symbols A to D in FIGS. 21 and 22 indicate processing shift destinations. For example, the flow process shifts from “C” in FIG. 21 to “C” in FIG.
  • the control unit 110 does not meet a plurality of predetermined increase regulation conditions even in a situation where the extractable current value Iinv should be increased, such as when demand power is rising. Only, the extractable current value Iinv is increased.
  • the increase regulation condition includes a plurality of current reduction conditions and current maintenance conditions. When these conditions are satisfied, the extractable current value Iinv is reduced or maintained.
  • the plurality of current reduction conditions (steps S5, S7, S9, S11, and S13 in FIG. 21) have priority over the plurality of current maintenance conditions (steps S15, S16, S17, S18, and S19 in FIG. 22). Is applied to.
  • step S1 in FIG. 21 is a step of determining whether or not a very large deviation has occurred between the extractable current value Iinv and the actual extractable current value Ic, and between them, it is more than 1000 [mA]. It is determined whether a large deviation has been born.
  • a case in which a deviation in which the difference between the extractable current value Iinv and the actual extractable current value Ic is larger than 1000 [mA] is first generated in a short control cycle is that the inverter 54 has a sudden increase in the total demand power.
  • the process proceeds to step S2 on the assumption that there is a deviation due to a significant decrease or a sudden decrease in the actual extracted power Ic for some reason.
  • step S2 it is determined whether or not the system power Wl is less than 50 [W].
  • the system power Wl is less than 50 [W]
  • the output power from the inverter 54 flows into the commercial power source "reverse power flow (a state where the system power W1 becomes negative). "Is likely to occur. Therefore, it can be determined that the inverter 54 is in a state where the actual extraction current value Ic is suddenly lowered in order to prevent a reverse power flow from being caused by a very large drop in the total important power by the determination of S2 and the determination of S1.
  • the value of the system power W1 is set to 50W in S2 because a margin of 50W is provided so that a reverse power flow should not occur.
  • step S3 when it is determined YES in both S1 and S2, that is, when reverse power flow prevention control is performed by the inverter 54 due to a very large drop in the total important power, in step S3, the control unit 110 The value of the extractable current value Iinv instructed to the control unit is rapidly reduced to the value of the actual extraction current Ic (corresponding to number 6 in FIG. 20).
  • the inverter 54 is regulated so as to arbitrarily increase the extraction current from the current extraction current value Ic. If there is a sudden drop in the total power demand, there is a high possibility that the total power demand will rapidly recover (increase) soon after that, but it will exceed 1000 [mA]. If there is a large amount of deviation and if the inverter 54 abruptly performs power extraction to meet the recovered total demand power, the power that erroneously exceeds the power demand or the current value linv that can be extracted due to control overshoot or the like. This is a device that can prevent the inverter 54 from taking out.
  • the inverter 54 can extract at a place higher than the actual extraction current value Ic.
  • the power is allowed to be taken out quickly and freely up to the current value linv. This is a further contrivance that allows for quick follow-up of the recovery of the total important power, because such a small deviation does not cause problems such as excessive power extraction due to overshoot.
  • step S4 it is determined whether or not the current value Iinv that can be taken out is greater than 1 [A]. When the extractable current value Iinv is larger than 1 [A], the process proceeds to step S5, and it is determined whether or not the generated voltage Vdc is lower than 95 [V]. When the generated voltage Vdc is lower than 95 [V], the process proceeds to step S6.
  • step S6 the control unit 110 decreases the value of the extractable current value Iinv instructed to the inverter control unit by 10 [mA] (corresponding to number 4 in FIG. 20).
  • the process in step S6 ends, the one-time process in the flowcharts of FIGS. 21 and 22 ends.
  • the extractable current value Iinv is decreased at a current decrease rate of 20 [mA / sec]. .
  • the power generation voltage Vdc is lower than 95 [V]
  • the current value Iinv By reducing the current value Iinv, the current taken out by the inverter 54 is suppressed, and the burden on the fuel cell module 2 is reduced.
  • step S7 it is determined whether or not the interconnection power Winv exceeds 710 [W].
  • the control unit 110 decreases the value of the extractable current value Iinv instructed to the inverter control unit by 5 [mA]. (Corresponding to number 5 in FIG. 20). That is, when the interconnection power Winv exceeds 710 [W], since the output power from the fuel cell module 2 exceeds the rated power, the current taken out from the fuel cell module 2 is reduced to reduce the rated power. Do not exceed.
  • step S8 ends, the one-time process in the flowcharts of FIGS. 21 and 22 ends.
  • the process of step S8 is continuously executed every time the flowchart of FIG. 21 is executed, the extractable current value Iinv is decreased at a current decrease change rate of 10 [mA / sec]. .
  • the control unit 110 changes the extractable current value Iinv so that the change rate at which the extractable current value Iinv is reduced varies depending on the current decrease condition among the plurality of current decrease conditions.
  • step S9 it is determined whether or not the power generation chamber temperature Tfc exceeds 850 [° C.].
  • the control unit 110 sets the value of the extractable current value Iinv instructed to the inverter control unit (not shown). Decrease by 5 [mA] (corresponding to number 2 in FIG. 20). That is, when the power generation chamber temperature Tfc exceeds 850 [° C.], the fuel cell module 2 exceeds the proper operating temperature, and therefore the value of the current value Iinv that can be taken out is reduced to reduce the temperature.
  • step S10 the one-time process in the flowcharts of FIGS. 21 and 22 is completed.
  • the process of step S10 is continuously executed every time the flowchart of FIG. 21 is executed, the extractable current value Iinv is decreased at a current decrease change rate of 10 [mA / sec]. .
  • step S11 it is determined whether or not the power generation chamber temperature Tfc is lower than 550 [° C.].
  • step S12 the control unit 110 decreases the value of the extractable current value Iinv instructed to the inverter control unit by 5 [mA]. (Corresponding to number 3 in FIG. 20).
  • step S12 the one-time process in the flowcharts of FIGS. 21 and 22 ends.
  • the process of step S12 is continuously executed every time the flowchart of FIG. 21 is executed, the extractable current value Iinv is decreased at a current decrease change rate of 10 [mA / sec]. .
  • step S13 it is determined whether or not the difference between the extractable current value Iinv and the actual extract current Ic exceeds 400 [mA] and the extractable current value Iinv exceeds 1 [A]. If the difference between the extractable current value Iinv and the actual extract current Ic exceeds 400 [mA] and the extractable current value Iinv exceeds 1 [A], the process proceeds to step S14.
  • Unit 110 reduces the value of extractable current value Iinv instructed to the inverter control unit by 5 [mA] (corresponding to number 1 in FIG. 20).
  • step S14 the one-time processing in the flowcharts of FIGS. 21 and 22 is completed.
  • the process of step S14 is continuously executed every time the flowchart of FIG. 21 is executed, the extractable current value Iinv is decreased at a current decrease rate of 10 [mA / sec]. .
  • control unit 110 is also in a situation where the demand power is increasing in the case where any one of the plurality of current reduction conditions (steps S5, S7, S9, S11, and S13 in FIG. 21) is applicable.
  • the extractable current value Iinv is decreased (steps S6, S8, S10, S12, S14).
  • step S15 it is determined whether or not the difference between the extractable current value Iinv and the actual extraction current Ic is 300 [mA] or less.
  • step S16 whether or not the generated voltage Vdc is 100 [V] or more.
  • step S17 it is determined whether or not the interconnection power Winv is 690 [W] or less.
  • step S18 whether or not the power generation room temperature Tfc is 600 [° C.] or more.
  • step S19 it is determined whether or not the system power W1 exceeds 40 [W]. If all of these conditions are satisfied, the process proceeds to step S20. If any of these conditions is not satisfied (corresponding to number 9 in FIG. 20), the process proceeds to step S21. In step S21, the value of the extractable current value Iinv is not changed and is maintained at the previous value, and one process of the flowcharts of FIGS. 21 and 22 is completed.
  • the extractable current value Iinv is kept constant if the predetermined condition is not satisfied ( Step S21 in FIG. Further, focusing on the power generation chamber temperature Tfc, when the power generation chamber temperature Tfc exceeds the upper limit threshold value of 850 [° C.], the extractable current value Iinv is decreased (steps S9 and S10 in FIG. 21). When the power generation chamber temperature Tfc is lower than the lower limit threshold value 600 [° C.], the extractable current value Iinv is maintained (steps S18 and S21 in FIG. 22). Further, when the power generation chamber temperature Tfc is lower and lower than 550 [° C.], the extractable current value Iinv is decreased (steps S11 and S12 in FIG. 21).
  • step S20 the value of the extractable current value Iinv is increased.
  • the control unit 110 increases the extractable current value Iinv only when none of the plurality of current maintenance conditions (steps S15, S16, S17, S18, and S19 in FIG. 22) is satisfied (step S22 in FIG. 22, S23).
  • step S15 when the difference between the extractable current value Iinv and the actual extraction current Ic exceeds 300 [mA] (step S15), the difference between the extractable current value Iinv and the actual extraction current Ic is relatively large. The possible current value Iinv should not be increased.
  • step S16 When the generated voltage Vdc is lower than 100 [V] (step S16), the current that can be extracted from the fuel cell module 2 should not be increased by increasing the current value Iinv that can be extracted.
  • step S17 when the interconnection power Winv exceeds 690 [W] (step S17), the output power from the fuel cell module 2 has already reached the rated output power, and thus is taken out from the fuel cell module 2. The current that can be increased should not be increased.
  • step S18 when the power generation chamber temperature Tfc is lower than 600 [° C.] (step S18), since the fuel cell module 2 has not reached a temperature at which sufficient power generation is possible, the value of the extractable current value Iinv is set. It should not increase the current that can be extracted from the fuel cell module 2 and place a burden on the fuel cell unit 16. Further, when the system power Wl is 40 [W] or less (step S19), the “reverse power flow” is likely to occur, and therefore the current that can be taken from the fuel cell module 2 should not be increased.
  • step S20 it is determined whether the difference between the fuel supply current value If and the actual extraction current Ic is 1000 [mA] or more.
  • step S20 if the difference between the fuel supply current value If and the actual extraction current Ic is 1000 [mA] or more, the process proceeds to step S22, and if it is less than 1000 [mA], the process proceeds to step S23.
  • step S22 since a large amount of excess fuel is supplied to the fuel cell module 2, the control unit 110 increases the value of the extractable current value Iinv instructed to the inverter control unit by 100 [mA]. (Corresponding to number 7 in FIG. 20), the extractable current value Iinv is rapidly increased.
  • step S22 the one-time process in the flowcharts of FIGS. 21 and 22 is completed.
  • the extractable current value Iinv is a change rate of 200 [mA / sec] which is the second current increase change rate. Will be raised.
  • step S23 the current value Iinv that can be taken out is increased, but since a large amount of excess fuel is not being supplied to the fuel cell module 2, the control unit 110 instructs the inverter control unit.
  • the value of the extractable current value Iinv is increased by 10 [mA] (corresponding to number 8 in FIG. 20), and the extractable current value Iinv is gradually increased.
  • step S23 the one-time process in the flowcharts of FIGS. 21 and 22 is completed.
  • the extractable current value Iinv is a change rate of 20 [mA / sec] which is the first current increase change rate. Will be raised.
  • the control unit 110 controls the extractable current value Iinv so that the cell stack temperature Tfc does not exceed 850 ° C.
  • the cell stack temperature Tfc and the reformer temperature are related, and in the power generation process, when the cell stack temperature Tfc is 850 ° C., there is a correlation that the reformer temperature is 800 ° C. Therefore, by controlling the cell stack temperature Tfc so as not to exceed 850 ° C., the reformer temperature can be prevented from exceeding 800 ° C., which is the abnormality determination temperature.
  • the reformer temperature is backed up so as not to reach the abnormality determination temperature by the temperature monitoring control even after the power generation process shifts. Therefore, even if the excessive temperature rise suppression control before the power generation process transition cannot be sufficiently suppressed, the reformer 20 and the like can be reliably prevented from being deteriorated or damaged.
  • the said embodiment can be modified as follows.
  • the reformer 20 and the fuel cell stack 14 are overheated by the amount of heat accumulated in the fuel cell module 2 based on the reformer temperature and the cell stack temperature.
  • the present invention is not limited to this, and other methods may be used for determination.
  • the temperature increase promotion state may be determined according to the temperature difference between the reformer temperature and the cell stack temperature, or other conditions including the reformer temperature, the cell stack temperature, and the temperature of the heat storage material 7 may be determined. Judgment may be made according to the temperature, the rate of temperature change, or the rate of temperature change, and the amount of heat remaining at startup is estimated from the temperature rise of the reformer temperature and stack temperature with respect to the fuel gas supply amount. The determination may be made according to the amount of heat, or may be made according to the operating state before the restart. As described above, various methods can be used to determine the degree of occurrence of overheating due to the residual heat quantity. In the above embodiment, the reformer temperature and the cell stack temperature are measured in each step. A simple method of judging from the value is adopted.
  • the reformer temperature, the power generation chamber temperature, and the combustion part temperature are reduced at substantially the same temperature, and the residual heat amount is locally contained in the fuel cell module 2. It is thought that it remains almost uniform throughout. For this reason, not only the residual heat quantity that affects the reformer temperature but also the residual heat quantity that affects the cell stack temperature can be estimated only by measuring the reformer temperature. Therefore, in the said embodiment, like the example of FIG. 16, the control part 110 as a determination means can be comprised so that a temperature increase promotion state may be determined based on the measured value only of reformer temperature.
  • control part 110 as a determination means performs the temperature rising promotion state determination, for example during the SR process or the transition to the SR1 process, the determination timing can be arbitrarily set. Moreover, even when determining according to the above-mentioned temperature difference, temperature, temperature change rate or temperature change rate, and estimated heat quantity, it can be determined at any time.
  • the reformer temperature is faster than the cell stack temperature.
  • the present invention is not limited to this, and depending on the arrangement of the heat storage material 7 and the like, the cell stack temperature may be the reformer temperature.
  • the cell stack temperature may be excessively increased according to the same technical idea by replacing the reformer temperature and the cell stack temperature in the above embodiment. It can be configured to prevent temperature.
  • Solid electrolyte fuel cell solid oxide fuel cell device
  • Fuel cell module Auxiliary machine unit 6 Housing (module storage room) 7 heat storage material (heat storage means) DESCRIPTION OF SYMBOLS 10 Power generation chamber 12
  • Fuel cell assembly 14
  • Fuel cell stack 16
  • Fuel cell unit 18
  • Combustion chamber 20
  • Reformer 22
  • Air heat exchanger 28
  • Water flow rate adjustment unit 38
  • Reformation air flow rate adjustment unit 45
  • Inverter 83
  • Ignition device Fuel cell 110 Control unit (control means, determination means)

Abstract

 起動工程において燃料電池モジュール内の温度が上昇し過ぎることを防止する固体酸化物形燃料電池装置を提供する。 制御部110は、起動工程において、燃料ガス改質反応工程をPOX工程、ATR工程、SR工程へ移行させた後、発電工程へ移行させ、各工程においてセルスタック温度及び改質器温度がそれぞれに対して設定された移行条件を満足した場合に、次の工程へ移行するように制御するよう構成されており、制御部110が昇温助長状態であると判定した場合、少なくとも発電工程への移行時において改質器温度が所定値以上にならないようにする過昇温抑制制御を実行する。

Description

固体酸化物形燃料電池装置
 本発明は、固体酸化物形燃料電池装置に係わり、特に、起動中における改質器等の過昇温を防止する固体酸化物形燃料電池装置に関する。
 従来、固体酸化物形燃料電池装置(SOFC)は、起動工程において、燃料ガスを改質器において改質する複数の工程、すなわち、部分酸化改質反応工程(POX工程)、オートサーマル改質反応工程(ATR工程)、水蒸気改質反応工程(SR工程)を経て、発電工程へ移行するように構成されている(例えば、特許文献1参照)。
 SOFCでは、これらの工程を順に実行することにより、燃料電池モジュール収納室内に配置された改質器や燃料電池セルスタック等を動作温度まで昇温させることができる。
 また、SOFCは、動作温度が600~800℃と高温であり、燃料電池モジュール収納室周囲に蓄熱材が配置されている。したがって、この蓄熱材は、動作中に多量の熱量を保持し、動作中の熱効率を向上させることができる。
特開2004-319420号公報
 しかしながら、動作中のSOFCを一旦停止動作に移行させた後、再起動させる場合、上述のように蓄熱材には多量の熱量が蓄えられているため、通常の起動工程で起動させると、改質器や燃料電池セルスタックの温度が上昇し過ぎてしまうという問題があった。
 例えば、通常の起動動作中において、改質器内での改質反応工程のうち、発熱反応であるPOX工程で発生した熱は、改質器自体を昇温させるが、改質器外の構成部材である蓄熱材等をも昇温させる。
 これに対して、再起動動作中には、改質器外の構成部材が既にある程度の温度まで昇温されており、また、蓄熱材が多量の熱量を保持しているため、POX工程で発生した熱が、主に改質器を昇温するために用いられる。その結果、再起動動作中には、改質器が、通常の起動動作中よりも大きな昇温速度で昇温し、所定の動作温度を超えた状態となる過昇温が引き起こされるおそれがあった。そして、この過昇温により改質器が劣化したり損傷したりするおそれがあった。
 本発明は、このような課題を解決するためになされたものであり、起動工程において、燃料電池モジュール内の温度が上昇し過ぎることを防止する固体酸化物形燃料電池装置を提供することを目的としている。
 上記の目的を達成するために、本発明は、固体酸化物形燃料電池装置において、複数の燃料電池セルを組み合わせてなるセルスタックと、燃料電池セルに供給する燃料ガスを改質する改質器と、燃料電池セルを通過した余剰の燃焼ガス又は改質された燃焼ガスを燃焼させることにより発生する排気ガスによって改質器及びセルスタックを加熱する燃焼部と、セルスタックの温度及び改質器の温度をそれぞれ検出する温度検出器と、セルスタック及び改質器を収納するモジュール収納室と、モジュール収納室の周囲に配置された蓄熱手段と、燃料電池装置の起動中に蓄熱手段が蓄積している熱量によって改質器及び/又はセルスタックの昇温が助長される状態である昇温助長状態であるか否かを判定する判定手段と、燃料電池装置の起動を制御する制御手段と、を備えており、制御手段は、燃料電池装置の起動工程において、改質器に供給する燃料ガス、酸化剤ガス、水蒸気の供給量をセルスタックの温度及び改質器の温度に基づいて制御し、改質器で行われる燃料ガス改質反応工程をPOX工程、ATR工程、SR工程へ移行させた後、発電工程へ移行させ、各工程においてセルスタックの温度及び改質器の温度がそれぞれに対して設定された移行条件を満足した場合に、次の工程へ移行するように制御するよう構成されており、判定手段が昇温助長状態であると判定した場合、制御手段は、少なくとも発電工程への移行時において改質器の温度が所定値以上に昇温されることを防止する過昇温抑制制御を実行することを特徴としている。
 蓄熱手段に所定量以上の残存熱量がある状況において燃料電池装置を起動する場合、改質器内での部分酸化改質反応で生じた熱が蓄熱手段に奪われ難くなる。このため、起動中における改質器の温度上昇速度が大きくなる。このように改質器温度の上昇速度が大きい場合に、通常の起動時と同じ方法・条件で起動動作を実行すると、改質器の温度が上昇し過ぎてしまい、例えば改質器の温度が異常判定温度以上に過昇温し、改質器の劣化・損傷及び燃料電池セルの劣化が生じるおそれがある。
 本発明によれば、判定手段によって、過昇温が発生し易い状況である昇温助長状態であるか否かを判定し、この判定に基づいて、制御手段が、起動工程中、特に発電工程への移行時や、発電工程移行後の所定期間(すなわち、温度が最も高くなる時点又は期間)において改質器の温度が所定値以上(例えば改質器が劣化するおそれのある異常判定温度)にならないようにする過昇温抑制制御を実行する。これにより、本発明では、起動時に改質器の温度が所定値以上に上昇し過ぎること(過昇温)を防止することができる。
 なお、本発明における過昇温抑制制御は、起動工程における各改質工程の移行条件を緩和して早めに次工程へ移行させる制御、改質器温度の上昇を抑制しつつセルスタック温度の上昇を促して両者の温度差を縮小する制御、起動工程における燃料ガス供給量を低減する制御、発電工程移行後の出力電力制御により改質器温度の上昇を抑制する制御のように、発電工程移行前及び発電工程移行後に過昇温を抑制する制御を含んでいる。
 本発明において、好ましくは、制御手段は、判定手段が昇温助長状態であると判定した場合、起動工程中において発電工程への移行前に、過昇温抑制制御を開始する。
 発電の開始後は、セルスタック温度は発電反応等により更に温度が上昇する傾向にある。本発明では、発電工程移行前に過昇温抑制制御が開始されるため、発電開始時点までには残存熱量による局所的又は全体的な温度上昇の影響が解消されるので、発電開始に伴って、セルスタック温度や、セルスタック温度の上昇に伴って上昇する改質器温度がそれぞれに対応する所定値以上となることを防止できる。
 本発明において、好ましくは、SR工程は、SR1工程と、このSR1工程よりも燃料ガス供給量が低減されたSR2工程とを有しており、制御手段は、改質器の温度及びセルスタックの温度がこれらに対してそれぞれ設定された、SR1工程からSR2工程への移行条件であるSR2移行条件を満足した場合に、SR1工程をSR2工程へ切り替えるものであって、制御手段は、判定手段が昇温助長状態であると判定した場合には、SR2移行条件が満足される前であってもSR2工程へ移行する。
 SR2工程ではSR1工程よりも燃料ガス供給量が低減されるので、燃焼部による改質器の加熱が抑制され、SR2工程ではSR1工程よりも改質器温度の上昇が抑制される。本発明では、一部低温状態であって移行条件が満足される前であっても、昇温助長状態では残存熱量による温度上昇が見込まれるので、より温度上昇を抑制するSR2工程へ早期に移行することにより、残存熱量に起因する過昇温の発生を防止することができる。また、残存熱量によりセルスタック等の温度上昇の不足分が補われるので、次工程以降において温度上昇不足となる問題は生じない。
 本発明において、好ましくは、制御手段は、SR1工程において、改質器の温度がSR2移行条件を満足しさらに所定の強制移行温度以上であれば、セルスタックの温度がSR2移行条件を満足していなくても、SR2工程へ移行する。
 POX工程、ATR工程では発熱反応である部分酸化改質反応によって熱が発生するが、この発生熱は、残存熱量が存在することによって蓄熱手段に奪われにくい。このため、起動工程における改質器温度の上昇速度がセルスタック温度の上昇速度より大きくなり易い。よって、セルスタック温度が移行条件の温度に到達するまで待つと、改質器温度が上昇し過ぎてしまう。
 本発明では、SR1工程において、改質器温度が所定強制移行温度以上の高温状態であれば、セルスタック温度が移行条件の温度に到達するのを待つことなく早期にSR2工程へ移行することにより、改質器の過昇温を防止することができる。
 本発明において、好ましくは、SR工程は、SR1工程と、このSR1工程よりも燃料ガス供給量が低減されたSR2工程とを有しており、制御手段は、改質器の温度及びセルスタックの温度がこれらに対してそれぞれ設定された、SR1工程からSR2工程への移行条件であるSR2移行条件を満足した場合に、SR1工程をSR2工程へ切り替えるものであって、制御手段は、判定手段が昇温助長状態であると判定した場合には、SR1工程からSR2工程へ切り替える前に、燃料ガス供給量がSR1工程よりも少なくSR2工程よりも多い、SR1.5工程を実行する。
 このように構成された本発明によれば、燃料ガス供給量を多段階で低下させていくことにより、温度分布の急激な変化を防止しながら改質器の過昇温を防止することができる。
 本発明において、好ましくは、SR1工程からSR1.5工程に切り替える際の移行条件は、SR2移行条件よりも低い温度条件である。
 このように構成された本発明によれば、燃料ガス供給量を多段に低下させることで、温度分布の急激な変化を防止しながら改質器の過昇温を防止できることに加えて、さらに、SR1.5工程への移行条件はSR2移行条件よりも低い温度条件であるので、SR1工程からSR1.5工程へ早めに移行させることができ、改質器の過昇温を防止することが可能となる。
 本発明において、好ましくは、制御手段は、判定手段が昇温助長状態であると判定した場合、改質器の温度とセルスタックの温度との温度差を小さくする温度差縮小制御を過昇温抑制制御として実行する。
 改質器温度は残存熱量の影響で温度が上昇し易いが、本発明によれば、改質器温度とセルスタック温度の温度差を小さくする温度差縮小制御を実行することにより、起動工程及び発電工程において一方の温度のみが上昇してしまうことが防止され、過昇温を防止することができる。
 本発明において、好ましくは、制御手段は、判定手段が昇温助長状態であると判定した場合、SR工程において、温度差縮小制御として、発電工程への移行前に定格より低い電力取出しを行う。
 SR工程であれば定格より低い電力なら取出しが可能である。電力取出しを行うと、改質された燃料ガスが発電により消費されるので、燃焼部で発生する排気ガス量が少なくなり、改質器の温度上昇を抑制することができる。また、電力取出しを行うと、セルスタックは発電反応により加熱が促進される。これにより、本発明では、改質器の温度上昇を抑制しつつ、セルスタックの温度の上昇を促進することにより、改質器とセルスタックとの温度差を縮小することができる。
 本発明において、好ましくは、制御手段は、発電工程への移行前における電力取出し量を一定にする。
 電力取出しを開始した後は、改質器及びセルスタックにおける発熱及び吸熱のバランスが変化し、温度が過渡的に変わっていく。このとき、電力取出し量が変動すると、過渡的な変化に変動要因が更に加わってしまい、局所的に温度差が緩和されないことも考えられる。このため、本発明では、電力取出し量を一定にしており、これにより確実に温度差を縮小させることができる。
 本発明において、好ましくは、制御手段は、発電工程への移行前に取出した電力を燃料電池装置の補機へ供給する。
 このように構成された本発明によれば、起動工程で取出した電力を発熱体等で無駄に消費するのではなく、補機で有効利用することができる。
 本発明において、好ましくは、判定手段は、少なくとも1つの工程から次工程への移行時において改質器の温度が第1の所定温度以上である場合に昇温助長状態であると判定し、この判定に基づいて、制御手段は、セルスタックの温度が次工程へ移行するための移行条件を満たしていない場合であっても次工程へ移行させる。
 再起動時には、POX工程及びATR工程における部分酸化改質反応による発生熱が、残存熱量の存在によって蓄熱手段に奪われ難いため、起動工程における改質器温度の上昇速度がセルスタック温度の上昇より速くなる。よって、セルスタック温度が移行条件を満たすまで待つと、改質器が過昇温してしまうおそれがある。このため、本発明では、改質器温度が強制移行温度に到達した場合には、セルスタック温度が移行条件を満足するのを待つことなく早めに次工程へ移行することにより、改質器の過昇温を防止することができる。
 本発明において、好ましくは、第1の所定温度は、改質器の移行条件の温度よりも高い温度に設定されている。
 このように構成された本発明によれば、セルスタック温度が未だ移行条件の温度よりも低い状態であるにもかかわらず、改質器温度が移行条件の温度を超えて高温状態(すなわち、第1の所定温度である強制移行温度)に達している場合には、スタック温度の上昇をこれ以上待つべきではなく、残存熱量が大きい昇温助長状態であるとの判断を誤りなく行うことができる。
 本発明において、好ましくは、判定手段は、SR工程において、改質器の温度が第1の所定温度以上である場合に昇温助長状態であると判定し、この判定に基づいて、制御手段は、セルスタックの温度が次工程へ移行するための移行条件を満たしていない場合であっても発電工程へ移行させ、第1の所定温度は、改質器の発電工程への移行条件の温度よりも高く、且つ、改質器の異常判定温度である第2の所定温度よりも低く設定されている。
 発電工程へ移行する時点(SR工程)は、起動工程(すなわち昇温工程)の最期であるため、改質器温度が最も高温になりやすい。このため、本発明によれば、残存熱量が大きい昇温助長状態である場合に、改質器の異常判定温度より低い時点で発電に移行させることにより、発電工程移行後も改質器を異常判定温度以下に抑えて、正常動作温度範囲で動作させることができる。
 本発明において、好ましくは、制御手段は、発電工程へ移行後において、改質器の温度が改質器の異常判定温度である第2の所定温度を超えないように、燃料電池装置の運転を規制する温度監視制御を実行する。
 残存熱量が大きい昇温助長状態である場合には、改質器温度が通常の起動時と比べて異常判定温度に近づいた状態となる。このため、本発明では、発電工程移行後においても改質器の温度が改質器の異常判定温度を超えないように温度監視制御を実行することにより、発電開始に伴って改質器温度が更に高温になって異常判定温度を超えてしまうことを防止することができる。これにより、本発明では、起動工程から発電工程への強制移行しても、過昇温を確実に防止することが可能となる。
 本発明において、好ましくは、判定手段は、POX工程又はATR工程における改質器の温度により昇温助長状態であるか否かを判定し、昇温助長状態であると判定したとき、その工程以降における移行条件を緩和する。
 残存熱量による改質器温度の上昇は、発熱反応が行われるPOX工程及びATR工程(特に、POX工程)において顕著に現れ、そのとき生じた改質器温度とセルスタック温度との温度差が以降の工程において維持されてしまう傾向がある。
 したがって、本発明では、残存熱量による昇温助長状態の判定を正確に行うことができるPOX工程又はATR工程において、判定を行うこととしている。更に、判定以後における改質工程の切替温度条件をPOX工程又はATR工程の時点で切り替えるため、以後のATR工程からSR工程及び/又はSR工程から発電工程への各切替時点では残存熱量による昇温助長状態の判定を行わなくても、起動工程全体において過昇温の発生を防止することができる。
 本発明の固体酸化物形燃料電池装置によれば、起動工程において、燃料電池モジュール内の温度が上昇し過ぎることを防止することができる。
本発明の一実施形態による燃料電池装置を示す全体構成図である。 本発明の一実施形態による燃料電池装置の燃料電池モジュールを示す正面断面図である。 図2のIII-III線に沿う断面図である。 本発明の一実施形態による燃料電池装置の燃料電池セル単体を示す部分断面図である。 本発明の一実施形態による燃料電池装置の燃料電池セルスタックを示す斜視図である。 本発明の一実施形態による燃料電池装置を示すブロック図である。 本発明の一実施形態による燃料電池装置の起動時の動作を示すタイムチャートである。 本発明の一実施形態による燃料電池装置の運転停止時の動作を示すタイムチャートである。 本発明の一実施形態による燃料電池装置の起動処理手順の動作テーブルである。 本発明の一実施形態による燃料電池装置の起動時における過昇温抑制制御の説明図である。 本発明の第1実施形態による燃料電池装置の過昇温抑制制御の動作テーブルである。 本発明の第2実施形態による燃料電池装置の起動時における過昇温抑制制御の説明図である。 本発明の第2実施形態による燃料電池装置の過昇温抑制制御の動作テーブルである。 本発明の第3実施形態による燃料電池装置の起動時における過昇温抑制制御の説明図である。 本発明の第4実施形態による燃料電池装置の過昇温抑制制御の動作テーブルである。 本発明の第5実施形態による燃料電池装置の起動時における過昇温抑制制御の説明図である。 本発明の第6実施形態による燃料電池装置の起動時における過昇温抑制制御の説明図である。 本発明の第6実施形態による燃料電池装置の過昇温抑制制御の動作テーブルである。 本発明の第6実施形態による燃料電池装置の過昇温抑制制御の動作テーブルである。 本発明の第7実施形態による燃料電池装置の制御テーブルである。 制御部により実行される制御のフローチャートである。 制御部により実行される制御のフローチャートである。
 次に、添付図面を参照して、本発明の実施形態による固体酸化物形燃料電池装置又は固体電解質型燃料電池(SOFC)を説明する。
 図1は、本発明の一実施形態による固体電解質型燃料電池(SOFC)を示す全体構成図である。この図1に示すように、本発明の一実施形態による固体電解質型燃料電池(SOFC)1は、燃料電池モジュール2と、補機ユニット4を備えている。
 燃料電池モジュール2は、ハウジング6を備え、このハウジング6周囲には、蓄熱材7を介して密封空間8が形成されている。なお、蓄熱材7は、燃料モジュール2内で発生した熱を蓄熱することができるようになっており、燃料電池モジュール2の熱効率を向上させることができる。この密閉空間8の下方部分である発電室10には、燃料ガスと酸化剤(空気)とにより発電反応を行う燃料電池セル集合体12が配置されている。この燃料電池セル集合体12は、10個の燃料電池セルスタック14(図5参照)を備え、この燃料電池セルスタック14は、16本の燃料電池セルユニット16(図4参照)から構成されている。このように、燃料電池セル集合体12は、160本の燃料電池セルユニット16を有し、これらの燃料電池セルユニット16の全てが直列接続されている。
 燃料電池モジュール2の密封空間8の上述した発電室10の上方には、燃焼室18が形成され、この燃焼室18で、発電反応に使用されなかった残余の燃料ガスと残余の酸化剤(空気)とが燃焼し、排気ガスを生成するようになっている。
 また、この燃焼室18の上方には、燃料ガスを改質する改質器20が配置され、前記残余ガスの燃焼熱によって改質器20を改質反応が可能な温度となるように加熱している。さらに、この改質器20の上方には、燃焼熱を受けて空気を加熱するための空気用熱交換器22が配置されている。
 次に、補機ユニット4は、水道等の水供給源24からの水を貯水してフィルターにより純水とする純水タンク26と、この貯水タンクから供給される水の流量を調整する水流量調整ユニット28(モータで駆動される「水ポンプ」等)を備えている。また、補機ユニット4は、都市ガス等の燃料供給源30から供給された燃料ガスを遮断するガス遮断弁32と、燃料ガスから硫黄を除去するための脱硫器36と、燃料ガスの流量を調整する燃料流量調整ユニット38(モータで駆動される「燃料ポンプ」等)を備えている。さらに、補機ユニット4は、空気供給源40から供給される酸化剤である空気を遮断する電磁弁42と、空気の流量を調整する改質用空気流量調整ユニット44及び発電用空気流量調整ユニット45(モータで駆動される「空気ブロア」等)と、改質器20に供給される改質用空気を加熱する第1ヒータ46と、発電室に供給される発電用空気を加熱する第2ヒータ48とを備えている。これらの第1ヒータ46と第2ヒータ48は、起動時の昇温を効率よく行うために設けられているが、省略しても良い。
 次に、燃料電池モジュール2には、排気ガスが供給される温水製造装置50が接続されている。この温水製造装置50には、水供給源24から水道水が供給され、この水道水が排気ガスの熱により温水となり、図示しない外部の給湯器の貯湯タンクへ供給されるようになっている。
 また、燃料電池モジュール2には、燃料ガスの供給量等を制御するための制御ボックス52が取り付けられている。
 さらに、燃料電池モジュール2には、燃料電池モジュールにより発電された電力を外部に供給するための電力取出部(電力変換部)であるインバータ54が接続されている。
 次に、図2及び図3により、本発明の実施形態による固体電解質型燃料電池(SOFC)の燃料電池モジュールの内部構造を説明する。図2は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池モジュールを示す側面断面図であり、図3は、図2のIII-III線に沿って断面図である。
 図2及び図3に示すように、燃料電池モジュール2のハウジング6内の密閉空間8には、上述したように、下方から順に、燃料電池セル集合体12、改質器20、空気用熱交換器22が配置されている。
 改質器20は、その上流端側に純水を導入するための純水導入管60と改質される燃料ガスと改質用空気を導入するための被改質ガス導入管62が取り付けられ、また、改質器20の内部には、上流側から順に、蒸発部20aと改質部20bを形成され、改質部20bには改質触媒が充填されている。この改質器20に導入された水蒸気(純水)が混合された燃料ガス及び空気は、改質器20内に充填された改質触媒により改質される。改質触媒としては、アルミナの球体表面にニッケルを付与したものや、アルミナの球体表面にルテニウムを付与したものが適宜用いられる。
 この改質器20の下流端側には、燃料ガス供給管64が接続され、この燃料ガス供給管64は、下方に延び、さらに、燃料電池セル集合体12の下方に形成されたマニホールド66内で水平に延びている。燃料ガス供給管64の水平部64aの下方面には、複数の燃料供給孔64bが形成されており、この燃料供給孔64bから、改質された燃料ガスがマニホールド66内に供給される。
 このマニホールド66の上方には、上述した燃料電池セルスタック14を支持するための貫通孔を備えた下支持板68が取り付けられており、マニホールド66内の燃料ガスが、燃料電池セルユニット16内に供給される。
 次に、改質器20の上方には、空気用熱交換器22が設けられている。この空気用熱交換器22は、上流側に空気集約室70、下流側に2つの空気分配室72を備え、これらの空気集約室70と空気分配室72は、6個の空気流路管74により接続されている。ここで、図3に示すように、3個の空気流路管74が一組(74a,74b,74c,74d,74e,74f)となっており、空気集約室70内の空気が各組の空気流路管74からそれぞれの空気分配室72へ流入する。
 空気用熱交換器22の6個の空気流路管74内を流れる空気は、燃焼室18で燃焼して上昇する排気ガスにより予熱される。
 空気分配室72のそれぞれには、空気導入管76が接続され、この空気導入管76は、下方に延び、その下端側が、発電室10の下方空間に連通し、発電室10に余熱された空気を導入する。
 次に、マニホールド66の下方には、排気ガス室78が形成されている。また、図3に示すように、ハウジング6の長手方向に沿った面である前面6aと後面6bの内側には、上下方向に延びる排気ガス通路80が形成され、この排気ガス通路80の上端側は、空気用熱交換器22が配置された空間と連通し、下端側は、排気ガス室78と連通している。また、排気ガス室78の下面のほぼ中央には、排気ガス排出管82が接続され、この排気ガス排出管82の下流端は、図1に示す上述した温水製造装置50に接続されている。
 図2に示すように、燃料ガスと空気との燃焼を開始するための点火装置83が、燃焼室18に設けられている。
 次に図4により燃料電池セルユニット16について説明する。図4は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セルユニットを示す部分断面図である。
 図4に示すように、燃料電池セルユニット16は、燃料電池セル84と、この燃料電池セル84の上下方向端部にそれぞれ接続された内側電極端子86とを備えている。
 燃料電池セル84は、上下方向に延びる管状構造体であり、内部に燃料ガス流路88を形成する円筒形の内側電極層90と、円筒形の外側電極層92と、内側電極層90と外側電極層92との間にある電解質層94とを備えている。この内側電極層90は、燃料ガスが通過する燃料極であり、(-)極となり、一方、外側電極層92は、空気と接触する空気極であり、(+)極となっている。
 燃料電池セル16の上端側と下端側に取り付けられた内側電極端子86は、同一構造であるため、ここでは、上端側に取り付けられた内側電極端子86について具体的に説明する。内側電極層90の上部90aは、電解質層94と外側電極層92に対して露出された外周面90bと上端面90cとを備えている。内側電極端子86は、導電性のシール材96を介して内側電極層90の外周面90bと接続され、さらに、内側電極層90の上端面90cとは直接接触することにより、内側電極層90と電気的に接続されている。内側電極端子86の中心部には、内側電極層90の燃料ガス流路88と連通する燃料ガス流路98が形成されている。
 内側電極層90は、例えば、Niと、CaやY、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニアとの混合体、Niと、希土類元素から選ばれる少なくとも一種をドープしたセリアとの混合体、Niと、Sr、Mg、Co、Fe、Cuから選ばれる少なくとも一種をドープしたランタンガレードとの混合体、の少なくとも一種から形成される。
 電解質層94は、例えば、Y、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニア、希土類元素から選ばれる少なくとも一種をドープしたセリア、Sr、Mgから選ばれる少なくとも一種をドープしたランタンガレート、の少なくとも一種から形成される。
 外側電極層92は、例えば、Sr、Caから選ばれた少なくとも一種をドープしたランタンマンガナイト、Sr、Co、Ni、Cuから選ばれた少なくとも一種をドープしたランタンフェライト、Sr、Fe、Ni、Cuから選ばれた少なくとも一種をドープしたランタンコバルタイト、銀、などの少なくとも一種から形成される。
 次に図5により燃料電池セルスタック14について説明する。図5は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セルスタックを示す斜視図である。
 図5に示すように、燃料電池セルスタック14は、16本の燃料電池セルユニット16を備え、これらの燃料電池セルユニット16の下端側及び上端側が、それぞれ、セラミック製の下支持板68及び上支持板100により支持されている。これらの下支持板68及び上支持板100には、内側電極端子86が貫通可能な貫通穴68a及び100aがそれぞれ形成されている。
 さらに、燃料電池セルユニット16には、集電体102及び外部端子104が取り付けられている。この集電体102は、燃料極である内側電極層90に取り付けられた内側電極端子86と電気的に接続される燃料極用接続部102aと、空気極である外側電極層92の外周面全体と電気的に接続される空気極用接続部102bとにより一体的に形成されている。空気極用接続部102bは、外側電極層92の表面を上下方向に延びる鉛直部102cと、この鉛直部102cから外側電極層92の表面に沿って水平方向に延びる多数の水平部102dとから形成されている。また、燃料極用接続部102aは、空気極用接続部102bの鉛直部102cから燃料電池セルユニット16の上下方向に位置する内側電極端子86に向って斜め上方又は斜め下方に向って直線的に延びている。
 さらに、燃料電池セルスタック14の端(図5では左端の奥側及び手前側)に位置する2個の燃料電池セルユニット16の上側端及び下側端の内側電極端子86には、それぞれ外部端子104が接続されている。これらの外部端子104は、隣接する燃料電池セルスタック14の端にある燃料電池セルユニット16の外部端子104(図示せず)に接続され、上述したように、160本の燃料電池セルユニット16の全てが直列接続されるようになっている。
 次に図6により本実施形態による固体電解質型燃料電池(SOFC)に取り付けられたセンサ類等について説明する。図6は、本発明の一実施形態による固体電解質型燃料電池(SOFC)を示すブロック図である。
 図6に示すように、固体電解質型燃料電池1は、制御部110を備え、この制御部110には、使用者が操作するための「ON」や「OFF」等の操作ボタンを備えた操作装置112、発電出力値(ワット数)等の種々のデータを表示するための表示装置114、及び、異常状態のとき等に警報(ワーニング)を発する報知装置116が接続されている。なお、この報知装置116は、遠隔地にある管理センタに接続され、この管理センタに異常状態を通知するようなものであっても良い。
 次に、制御部110には、以下に説明する種々のセンサからの信号が入力されるようになっている。
 先ず、可燃ガス検出センサ120は、ガス漏れを検知するためのもので、燃料電池モジュール2及び補機ユニット4に取り付けられている。
 CO検出センサ122は、本来排気ガス通路80等を経て外部に排出される排気ガス中のCOが、燃料電池モジュール2及び補機ユニット4を覆う外部ハウジング(図示せず)へ漏れたかどうかを検知するためのものである。
 貯湯状態検出センサ124は、図示しない給湯器におけるお湯の温度や水量を検知するためのものである。
 電力状態検出センサ126は、インバータ54及び分電盤(図示せず)の電流及び電圧等を検知するためのものである。
 発電用空気流量検出センサ128は、発電室10に供給される発電用空気の流量を検出するためのものである。
 改質用空気流量センサ130は、改質器20に供給される改質用空気の流量を検出するためのものである。
 燃料流量センサ132は、改質器20に供給される燃料ガスの流量を検出するためのものである。
 水流量センサ134は、改質器20に供給される純水(水蒸気)の流量を検出するためのものである。
 水位センサ136は、純水タンク26の水位を検出するためのものである。
 圧力センサ138は、改質器20の外部の上流側の圧力を検出するためのものである。
 排気温度センサ140は、温水製造装置50に流入する排気ガスの温度を検出するためのものである。
 発電室温度センサ142は、図3に示すように、燃料電池セル集合体12の近傍の前面側と背面側に設けられ、燃料電池セルスタック14の近傍の温度を検出して、燃料電池セルスタック14(即ち燃料電池セル84自体)の温度を推定するためのものである。
 燃焼室温度センサ144は、燃焼室18の温度を検出するためのものである。
 排気ガス室温度センサ146は、排気ガス室78の排気ガスの温度を検出するためのものである。
 改質器温度センサ148は、改質器20の温度を検出するためのものであり、改質器20の入口温度と出口温度から改質器20の温度を算出する。
 外気温度センサ150は、固体電解質型燃料電池(SOFC)が屋外に配置された場合、外気の温度を検出するためのものである。また、外気の湿度等を測定するセンサを設けるようにしても良い。
 これらのセンサ類からの信号は、制御部110に送られ、制御部110は、これらの信号によるデータに基づき、水流量調整ユニット28、燃料流量調整ユニット38、改質用空気流量調整ユニット44、発電用空気流量調整ユニット45に、制御信号を送り、これらのユニットにおける各流量を制御するようになっている。
 また、制御ユニット110は、インバータ54に、制御信号を送り、電力供給量を制御するようになっている。
 次に図7により本実施形態による固体酸化物形燃料電池(SOFC)による起動時の動作を説明する。図7は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の起動時の動作を示すタイムチャートである。
 最初は、燃料電池モジュール2を温めるために、無負荷状態で、即ち、燃料電池モジュール2を含む回路を開いた状態で、運転を開始する。このとき、回路に電流が流れないので、燃料電池モジュール2は発電を行わない。
 先ず、改質用空気流量調整ユニット44から改質用空気を第1ヒータ46を経由して燃料電池モジュール2の改質器20へ供給する。また、同時に、発電用空気流量調整ユニット45から発電用空気を第2ヒータ48を経由して燃料電池モジュール2の空気用熱交換器22へ供給し、この発電用空気が、発電室10及び燃焼室18に到達する。
 この直ぐ後、燃料流量調整ユニット38からも燃料ガスが供給され、改質用空気が混合された燃料ガスが、改質器20及び燃料電池セルスタック14、燃料電池セルユニット16を通過して、燃焼室18に到達する。
 次に、点火装置83により着火して、燃焼室18にある燃料ガスと空気(改質用空気及び発電用空気)とを燃焼させる。この燃料ガスと空気との燃焼により排気ガスが生じ、この排気ガスにより、発電室10が暖められ、また、排気ガスが燃料電池モジュール2の密封空間8内を上昇する際、改質器20内の改質用空気を含む燃料ガスを暖めると共に、空気熱交換器22内の発電用空気も暖める。
 このとき、燃料流量調整ユニット38及び改質用空気流量調整ユニット44により、改質用空気が混合された燃料ガスが改質器20に供給されているので、改質器20において、式(1)に示す部分酸化改質反応POXが進行する。この部分酸化改質反応POXは、発熱反応であるので、起動性が良好となる。また、この昇温した燃料ガスが燃料ガス供給管64により燃料電池セルスタック14の下方に供給され、これにより、燃料電池セルスタック14が下方から加熱され、また、燃焼室18も燃料ガスと空気が燃焼して昇温されているので、燃料電池セルスタック14は、上方からも加熱され、この結果、燃料電池セルスタック14は、上下方向において、ほぼ均等に昇温可能となっている。この部分酸化改質反応POXが進行しても、燃焼室18では継続して燃料ガスと空気との燃焼反応が持続される。
  Cmn+xO2 → aCO2+bCO+cH2        (1)
 部分酸化改質反応POXの開始後、改質器温度センサ148により検出された改質器20の温度、及び発電室温度センサ142により検出された燃料電池セルスタック14の温度に基づいて、水流量調整ユニット28、燃料流量調整ユニット38及び改質用空気流量調整ユニット44により、燃料ガスと改質用空気と水蒸気とを予め混合したガスの改質器20への供給が開始される。このとき、改質器20においては、上述した部分酸化改質反応POXと後述する水蒸気改質反応SRとが併用されたオートサーマル改質反応ATRが進行する。このオートサーマル改質反応ATRは、熱的に内部バランスが取れるので、改質器20内では熱的に自立した状態で反応が進行する。即ち、酸素(空気)が多い場合には部分酸化改質反応POXによる発熱が支配的となり、水蒸気が多い場合には水蒸気改質反応SRによる吸熱反応が支配的となる。この段階では、既に起動の初期段階は過ぎており、発電室10内がある程度の温度まで昇温されているので、吸熱反応が支配的であっても大幅な温度低下を引き起こすことはない。また、オートサーマル改質反応ATRが進行中も、燃焼室18では燃焼反応が継続して行われている。
 式(2)に示すオートサーマル改質反応ATRの開始後、改質器温度センサ146により検出された改質器20の温度、及び発電室温度センサ142により検出された燃料電池セルスタック14の温度に基づいて、改質用空気流量調整ユニット44による改質用空気の供給が停止されると共に、水流量調整ユニット28による水蒸気の供給を増加させる。これにより、改質器20には、空気を含まず燃料ガスと水蒸気のみを含むガスが供給され、改質器20において、式(3)の水蒸気改質反応SRが進行する。
  Cmn+xO2+yH2O → aCO2+bCO+cH2    (2)
  Cmn+xH2O → aCO2+bCO+cH2       (3)
 この水蒸気改質反応SRは吸熱反応であるので、燃焼室18からの燃焼熱と熱バランスをとりながら反応が進行する。この段階では、燃料電池モジュール2の起動の最終段階であるため、発電室10内が十分高温に昇温されているので、吸熱反応が進行しても、発電室10が大幅な温度低下を招くこともない。また、水蒸気改質反応SRが進行しても、燃焼室18では継続して燃焼反応が進行する。
 このようにして、燃料電池モジュール2は、点火装置83により点火した後、部分酸化改質反応POX、オートサーマル改質反応ATR、水蒸気改質反応SRが、順次進行することにより、発電室10内の温度が徐々に上昇する。以上の起動処理が終了した後、燃料電池モジュール2からインバータ54に電力が取り出される。即ち、発電が開始される。燃料電池モジュール2の発電により、燃料電池セル84自体も発熱し、燃料電池セル84の温度も上昇する。
 発電開始後においても、改質器20の温度を維持するために、燃料電池セル84で発電に消費される燃料ガス及び発電用空気の量よりも多い燃料ガス及び発電用空気を供給し、燃焼室18での燃焼を継続させる。なお、発電中は、改質効率の高い水蒸気改質反応SRで発電が進行する。
 次に、図8により本実施形態による固体酸化物形燃料電池(SOFC)の運転停止時の動作を説明する。図8は、本実施形態により固体電解質型燃料電池(SOFC)の運転停止時の動作を示すタイムチャートである。
 図8に示すように、燃料電池モジュール2の運転停止を行う場合には、先ず、燃料流量調整ユニット38及び水流量調整ユニット28を操作して、燃料ガス及び水蒸気の改質器20への供給量を減少させる。
 また、燃料電池モジュール2の運転停止を行う場合には、燃料ガス及び水蒸気の改質器20への供給量を減少させると同時に、改質用空気流量調整ユニット44による発電用空気の燃料電池モジュール2内への供給量を増大させて、燃料電池セル集合体12及び改質器20を空気により冷却し、これらの温度を低下させる。その後、発電室温度が所定温度、例えば、400℃まで低下したとき、燃料ガス及び水蒸気の改質器20への供給を停止し、改質器20の水蒸気改質反応SRを終了する。この発電用空気の供給は、改質器20の温度が所定温度、例えば、200℃まで低下するまで、継続し、この所定温度となったとき、発電用空気流量調整ユニット45からの発電用空気の供給を停止する。
 このように、本実施形態においては、燃料電池モジュール2の運転停止を行うとき、改質器20による水蒸気改質反応SRと発電用空気による冷却とを併用しているので、比較的短時間に、燃料電池モジュールの運転を停止させることができる。
 次に、図7及び図9を参照して、本実施形態による固体酸化物形燃料電池(SOFC)の起動時の動作を詳細に説明する。
 図9は、燃料電池1の起動処理手順を示す基本となる動作テーブルであり、起動開始時に燃料電池モジュール2に残存する熱量が所定量以下で、後述する過昇温のおそれがない場合に用いられるものである。
 図9に示すように、起動工程では、制御部110が各運転制御状態(燃焼運転工程、POX1工程、POX2工程、ATR1工程、ATR2工程、SR1工程、SR2工程)を時間的に順に実行し、発電工程へ移行するように構成されている。
 なお、POX1工程及びPOX2工程は、改質器20内で部分酸化改質反応が行われる工程である。また、ATR1工程及びATR2工程は、改質器20内でオートサーマル改質反応が行われる工程である。また、SR1工程及びSR2工程は、改質器20内で水蒸気改質反応が行われる工程である。上記各POX工程、ATR工程、SR工程は、それぞれ2つに細分化されているが、これに限らず、3つ以上に細分化してもよいし、細分化しない構成とすることもできる。
 まず、時刻t0において燃料電池1を起動すると、制御部110は、改質用空気流量調整ユニット44及び発電用空気流量調整ユニット45に信号を送って、これらを起動させ、改質用空気(酸化剤ガス)及び発電用空気を燃料電池モジュール2に供給する。なお、本実施形態においては、時刻t0において供給が開始される改質用空気の供給量は10.0(L/min)、発電用空気の供給量は100.0(L/min)に設定される(図9の「燃焼運転」工程参照)。
 次いで、時刻t1において、制御部110は、燃料流量調整ユニット38に信号を送って、改質器20への燃料ガス供給を開始する。これにより、改質器20へ送り込まれた燃料ガス及び改質用空気は、改質器20、燃料ガス供給管64、マニホールド66を介して各燃料電池セルユニット16内に送り込まれる。各燃料電池セルユニット16内に送り込まれた燃料ガス及び改質用空気は、各燃料電池セルユニット16の燃料ガス流路98上端から流出する。なお、本実施形態において、時刻t1において供給が開始される燃料ガスの供給量は6.0(L/min)に設定されている(図9の「燃焼運転」工程参照)。
 さらに、時刻t2において、制御部110は、点火装置83に信号を送り、燃料電池セルユニット16から流出する燃料ガスに点火する。これにより、燃料室18内で燃料ガスが燃焼され、これによって生成した排気ガスにより、その上方に配置された改質器20が加熱されると共に、燃焼室18、発電室10、及びその中に配置された燃料電池セルスタック14の温度(以下「セルスタック温度」という)も上昇する(図7の時刻t2~t3参照)。燃料ガス流路98を含む燃料電池セルユニット16及びその上端部位は燃焼部に相当する。
 改質器20が加熱されることにより、改質器20の温度(以下「改質器温度」という)が300℃程度まで上昇すると、改質器20内においては、部分酸化改質反応(POX)が発生する(図7の時刻t3:POX1工程開始)。部分酸化改質反応は発熱反応であるため、改質器20は、部分酸化改質反応の発生により、その反応熱によっても加熱されるようになる(図7の時刻t3~t5)。
 さらに温度が上昇し、改質器温度が350℃に達すると(POX2移行条件)、制御部110は、燃料流量調整ユニット38に信号を送り、燃料ガス供給量を減少させると共に、改質用空気流量調整ユニット38に信号を送り、改質用空気供給量を増加させる(図7の時刻t4:POX2工程開始)。これにより、燃料ガス供給量は5.0(L/min)に変更され、改質用空気供給量は18.0(L/min)に変更される(図9の「POX2」工程参照)。これらの供給量は、部分酸化改質反応を発生させるために適切な供給量である。即ち、部分酸化改質反応が発生し始める初期の温度領域においては、供給する燃料ガスの割合を多くすることにより、燃料ガスに確実に着火させる状態を形成すると共に、その供給量を維持して着火を安定させる(図9の「POX1」工程参照)。さらに、安定して着火され、温度が上昇した後には、部分酸化改質反応を生成するために必要にして十分な燃料ガス供給量として、燃料の浪費を抑えている(図9の「POX2」工程参照)。
 次に、図7の時刻t5において、改質器温度が600℃以上、且つ、セルスタック温度が250℃以上になると(ATR1移行条件)、制御部110は、改質用空気流量調整ユニット44に信号を送り、改質用空気供給量を減少させると共に、水流量調整ユニット28に信号を送り、水の供給を開始させる(ATR1工程開始)。これにより、改質用空気供給量は8.0(L/min)に変更され、水供給量は2.0(cc/min)にされる(図9の「ATR1」工程参照)。改質器20内に水(水蒸気)が導入されることにより、改質器20内で水蒸気改質反応も発生するようになる。即ち、図9の「ATR1」工程においては、部分酸化改質反応と水蒸気改質反応が混在したオートサーマル改質(ATR)が発生するようになる。
 本実施形態においては、セルスタック温度は、発電室10内に配置された発電室温度センサ142によって測定されている。発電室内の温度とセルスタック温度は、厳密には同一ではないが、発電室温度センサによって検出される温度はセルスタック温度を反映したものであり、発電室内に配置された発電室温度センサによりセルスタック温度を把握することができる。なお、本明細書において、セルスタック温度とは、セルスタック温度を反映した値を指示する任意のセンサにより測定された温度を意味するものとする。
 さらに、図7の時刻t6において、改質器温度が600℃以上、且つ、セルスタック温度が400℃以上になると(ATR2移行条件)、制御部110は、燃料流量調整ユニット38に信号を送り、燃料ガス供給量を減少させる。また、制御部110は、改質用空気流量調整ユニット44に信号を送り、改質用空気供給量を減少させると共に、水流量調整ユニット28に信号を送り、水の供給量を増加させる(ATR2工程開始)。これにより、燃料ガス供給量は4.0(L/min)に変更され、改質用空気供給量は4.0(L/min)に変更され、水供給量は3.0(cc/min)に変更される(図9の「ATR2」工程参照)。改質用空気供給量が減少され、水供給量が増加されることにより、改質器20内においては、発熱反応である部分酸化改質反応の割合が減少し、吸熱反応である水蒸気改質反応の割合が増加する。これにより、改質器温度の上昇は抑制され、一方、改質器20から受けるガス流により燃料電池セルスタック14が昇温されることによって、セルスタック温度は改質器温度に追い付くように昇温していくので、両者の温度差が縮小され、両者は安定的に昇温されていく。
 次に、図7の時刻t7において、改質器温度とセルスタック温度の温度差が縮まり、改質器温度が650℃以上、且つ、スタック温度が600℃以上になると(SR1移行条件)、制御部110は、改質用空気流量調整ユニット44に信号を送り、改質用空気の供給を停止する。また、制御部110は、燃料流量調整ユニット38に信号を送り、燃料ガス供給量を減少させると共に、水流量調整ユニット28に信号を送り、水の供給量を増加させる(SR1工程開始)。これにより、燃料ガス供給量は3.0(L/min)に変更され、水供給量は8.0(cc/min)に変更される(図9の「SR1」工程参照)。改質用空気の供給が停止されることにより、改質器20内においては部分酸化改質反応は発生しなくなり、水蒸気改質反応のみが発生するSRが開始される。
 さらに、図7の時刻t8において、改質器温度とセルスタック温度の温度差がさらに縮まり、改質器温度が650℃以上、且つ、スタック温度が650℃以上になると(SR2移行条件)、制御部110は、燃料流量調整ユニット38に信号を送り、燃料ガス供給量を減少させると共に、水流量調整ユニット28に信号を送り、水の供給量も減少させる。また、制御部110は、発電用空気流量調整ユニット45に信号を送り、発電量空気の供給量も減少させる(SR2工程開始)。これにより、燃料ガス供給量は2.3(L/min)に変更され、水供給量は6.3(cc/min)に変更され、発電用空気供給量は80.0(L/min)に変更される(図9の「SR2」工程参照)。
 SR1工程では、改質器温度及びスタック温度を発電可能な温度付近まで上昇させるため、燃料ガス供給量及び水供給量を高めに保持している。その後、SR2工程では、燃料ガス流量及び水供給量を低減して、改質器温度及びセルスタック温度の温度分布を落ち着かせ、発電可能な温度範囲に安定化させる。
 制御部110は、SR2工程において、各供給量を所定の発電移行時間以上維持した後、図7の時刻t9において、改質器温度が650℃以上、且つ、スタック温度が700℃以上になると(発電工程移行条件)、燃料電池モジュール2からインバータ54に電力を出力させ、発電工程に移行して発電を開始する(図7の時刻t9:発電工程開始)。発電工程では、制御部110は、時刻t9から時刻t10の間は燃料ガス供給量及び水供給量を一定に維持する。
 その後、制御部110は、出力電力に追従させるように、燃料流量調整ユニット38及び水流量調整ユニット28に信号を送って燃料ガス供給量及び水の供給量を変更する。よって、時刻t10から時刻t11にかけて、燃料ガス供給量及び水の供給量が減少し、時刻t11以降は、要求出力電力に応じて、燃料ガス供給量及び水の供給量が調整され、負荷追従運転が実行される。
 次に、図10及び図11を参照して、第1実施形態による固体酸化物形燃料電池(SOFC)の過昇温抑制制御を説明する。
 上述のように、燃料電池モジュール2は、熱効率向上のためにモジュール収納室としてのハウジング6の周囲に蓄熱手段としての蓄熱材7が設けられており、内部で発生した熱を外部へ逃がさずに有効利用できるように構成されている。
 しかしながら、燃料電池装置1を稼動し、蓄熱材7を含む燃料電池モジュール2全体が昇温した状態で停止動作に入り、その後、蓄熱材7等が多量の熱量を蓄積した状態で再起動工程に入ると、燃料電池モジュール2内の構成部品(特に改質器20)が通常の室温状態からの起動時に比べて昇温し易くなる。例えば、発熱反応である部分酸化改質反応において改質器20で発生した熱は、通常の室温状態からの起動時には、改質器20そのものを昇温する以外に、他の構成部品や蓄熱材7を昇温するために改質器20外へ放出される。しかしながら、蓄熱材7が多量の熱量を保持している状況では、部分酸化改質反応で発生した熱は、主に改質器20を昇温するために用いられることになり、改質器20の昇温速度が速められる。これにより、例えば、改質器20が過昇温により劣化するおそれがある。
 このため、本実施形態では、このような過昇温が発生するおそれがある状態(すなわち、昇温助長状態)であるか否かを検知して、この状態に応じて、過昇温抑制制御を実行し、過昇温を防止した適切な再起動が行われる。この過昇温抑制制御では、昇温助長状態を検知した場合に、SR1工程からSR2工程へ早期に次工程へ移行するように、移行温度条件が緩和されるように構成されている。
 図10は、図7の場合と比べて、改質器温度の上昇速度が速い場合を示している。なお、以下では、図7及び図9で説明した通常の起動時の動作及び処理と異なる点について主に説明する。
 また、図11は、図9と比べて、移行温度条件のみが異なり、各工程における燃料ガス等の供給量は同一に設定されている。なお、図11以降の動作テーブルでは、図9と異なる部分を四角で囲ってある。
 時刻t20から時刻t27までの起動状態は、図7の時刻t0から時刻t7までの起動状態とほぼ同じであるので説明を省略する。
 改質器20の温度上昇が燃料電池セルスタック14の温度上昇よりも早いので、時刻t27よりも前に改質器20の温度は、ATR2工程からSR1工程への移行温度条件である650℃を超えている。そして、セルスタック温度が移行温度条件である600℃に到達した時刻t27に、両方の移行条件が満たされたことにより、制御部110は、ATR2工程からSR1工程へ移行させている。
 SR1工程からSR2工程への通常の移行条件は、改質器温度が650℃以上、且つ、セルスタック温度が650℃以上である(SR2移行条件)。SR1工程移行後も改質器温度は上昇を続け、時刻t28には、SR2への移行温度条件である650℃を超えて所定の強制移行温度(本例では700℃)に到達している。一方、セルスタック温度は、時刻t28においてもSR2への移行温度条件である650℃に達していない。
 改質器温度が先に650℃以上に達した後、セルスタック温度が650℃以上に達するまでには時間が掛かるため、セルスタック温度が650℃に達したときには、改質器温度が過昇温により異常判定温度である800℃に達してしまうおそれがある。異常判定温度は、改質器20が劣化・損傷するおそれのあるため、燃料電池1を強制的に異常停止させる設定温度である。
 判定手段としての制御部110は、SR1工程において、セルスタック温度がSR2工程への移行温度条件に到達していないにもかかわらず、改質器温度が強制移行温度(本例では700℃)以上に到達した場合には、図9の動作テーブルで示した改質器温度及びセルスタック温度の基準となる移行温度の昇温過程から外れ、改質器温度の昇温速度が速まっているので、燃料電池モジュール2に多量の熱量が蓄積されており、この熱量に起因して改質器20の昇温が助長されている状態、又は、昇温速度が通常の起動時よりも速まっている状態、すなわち昇温助長状態であると判定する。
 すなわち、本実施形態では、セルスタック温度の昇温速度に比べて改質器温度の昇温速度が速く、両者の温度差が通常よりも大きくなり、セルスタック温度が移行温度に達する前に改質器温度が移行条件の温度よりも所定温度以上高い強制移行温度に達した場合に、昇温助長状態であると判定される。
 これにより、制御部110は、SR1工程からSR2工程への移行温度条件を、改質器温度が650℃以上、且つ、セルスタック温度が650℃以上であることに加えて、セルスタック温度にかかわらず、改質器温度が700℃以上であることを付加又は変更する(変更後のSR2移行条件)。よって、制御部110は、セルスタック温度が650℃に到達していないが、改質器温度が強制移行温度(700℃)に到達しているので、SR1工程からSR2工程へ移行させる。
 したがって、図10の場合、燃料ガス供給量及び水供給量がSR2工程よりも多いSR1工程の期間が短縮化され、改質器20の温度上昇が抑制される。さらに、SR2工程へ移行後は、燃料ガス供給量及び水供給量がSR1工程よりも低減されるので、改質器温度の上昇が抑制される。
 SR2工程ではSR1工程よりも燃料ガス供給量及び水供給量が低減されるので、吸熱反応である水蒸気改質反応が抑えられる点では、改質器温度の上昇抑制効果としては不利である。しかしながら、SR2工程で燃料ガス供給量が低減されることにより、燃料電池セルユニット16から流出する改質後の燃料ガスの流出量も減少し、改質器20を加熱する燃焼部からの排気ガス量が減少するので、改質器温度の上昇は全体として抑制される。
 一方、セルスタック温度は、SR2工程において改質器20からガス流を受けることにより、徐々に改質器温度に追い付くように上昇していき、発電可能な温度まで到達する。これにより、時刻t29に、改質器温度及びセルスタック温度がそれぞれ650℃以上、700℃以上の移行温度条件(発電工程移行条件)を満たし、制御部110は、SR2工程から発電工程へ移行させる。
 発電工程に移行すると、燃料電池セルスタック14での発電反応に起因して、セルスタック温度が上昇する。また、これに伴って、改質器温度も上昇する。本実施形態では、このような発電工程における改質器温度やセルスタック温度の上昇分を考慮して、発電工程移行時に、及び発電工程移行後の所定期間に、改質器温度及びセルスタック温度がそれぞれの所定値(例えば改質器20や燃料電池セルスタック14が劣化・損傷するおそれのある異常判定温度)以上にならないように制御している。
 このように、本実施形態の過昇温抑制制御では、改質器温度の上昇速度がセルスタック温度の上昇速度よりも速い場合、移行温度条件を変更することにより、セルスタック温度が移行温度条件を満たしていなくても、改質器温度が通常の移行温度条件よりも高温に設定された強制移行温度に到達することにより、次工程へ早期に移行される。これにより、本実施形態では、改質器温度の上昇を抑制し、SR工程を含む起動工程及び発電工程、特に、発電工程への移行時及び発電工程移行後の所定期間において、改質器温度やセルスタック温度が劣化・損傷を引き起こす所定値(異常判定温度)以上に過昇温してしまうことを防止することができる。
 なお、本実施形態では、SR工程中に昇温助長状態を判定して、SR1工程からSR2工程への移行温度条件を変更しているが、これに限らず、POX工程、ATR工程においても同様に昇温助長状態を判定して、早期に次工程へ移行するように移行温度条件を変更するように構成してもよい。
 次に、図12及び図13を参照して、第2実施形態による固体酸化物形燃料電池(SOFC)の過昇温抑制制御を説明する。
 本実施形態の過昇温抑制制御では、昇温助長状態を検知した場合に、SR1工程とSR2工程との間にSR1.5工程を追加して過昇温を防止するように構成されている。
 図12は、図7及び図10の場合と比べて、さらに改質器温度及びセルスタック温度の上昇速度が速い場合を示している。なお、以下では、図7及び図9で説明した通常の起動時の動作及び処理と異なる点について主に説明する。
 また、図13は、図9と比べて、SR1工程とSR2工程の間にSR1.5工程が追加されており、これに伴い関連する移行温度条件が異なっている。
 時刻t40から時刻t47までの起動状態は、図7の時刻t0から時刻t7までの起動状態とほぼ同じであるので説明を省略する。
 改質器20の温度上昇が燃料電池セルスタック14の温度上昇よりも早いので、時刻t47よりも前に改質器20の温度は、ATR2工程からSR1工程への移行温度条件である650℃を超えて700℃に達している。そして、セルスタック温度が移行温度条件である600℃に到達した時刻t47に、両方の移行条件が満たされたことにより、制御部110は、ATR2工程からSR1工程へ移行させている。
 制御部110は、ATR工程からSR1工程への移行時における改質器温度が移行温度条件である650℃をさらに上回って所定の移行条件変更温度(本例では700℃)以上に達している場合、燃料電池モジュール2に多量の熱量が蓄積されており、この熱量によって改質器20が昇温されている昇温助長状態であると判定する。これにより、制御部110は、SR1工程以降の起動工程を図13に示す工程に変更する。
 本実施形態では、セルスタック温度について、SR1工程からSR1.5工程への移行条件(SR1.5移行条件:620℃)は、図9に示された通常のSR1工程からSR2工程への移行条件(650℃)よりも低い温度条件に設定されている。よって、SR1工程へ移行後、セルスタック温度が620℃に到達した時点(時刻t48)で、制御部110は、SR1工程からSR1.5工程へ早期に次工程へ移行させる。なお、時刻t48において、改質器温度は移行温度条件である650℃以上であり、図12ではSR1工程開始時(時刻t47)よりもさらに昇温し依然として700℃を超えている。
 このSR1.5工程では、制御部110は、燃料ガス供給量を2.6(L/min)に低減する。この燃料ガス供給量は、SR1工程よりも少ないが、SR2工程よりも多い量に設定されている。これにより、排気ガス量が減少し、改質器温度の上昇が抑制される。そして、SR1.5工程において、セルスタック温度は、改質器温度に追い付くように上昇する。
 SR1.5工程へ移行後、セルスタック温度が660℃に到達した時点(時刻t49)で、制御部110は、SR1.5工程からSR2工程へ移行させる(SR2移行条件)。時刻t49において、改質器温度は移行温度条件である650℃以上であり、図12では700℃を超えた状態が継続している。
 SR2工程では、制御部110は、燃料ガス供給量を2.3(L/min)に低減すると共に、水供給量を6.3(cc/min)に低減する。これにより、さらに排気ガス量が減少し、改質器温度の上昇が抑制される。そして、SR2工程において、セルスタック温度は、改質器温度に追い付くように上昇する。
 SR2工程へ移行後、セルスタック温度が700℃に到達した時点(時刻t50)で、制御部110は、SR2工程から発電工程へ移行させる(発電工程移行条件)。時刻t50において、改質器温度は移行温度条件である650℃以上である。
 このように、本実施形態の過昇温抑制制御では、改質器温度の温度上昇が非常に早く、SR1工程移行時に移行条件変更温度(この例では700℃)以上である場合に、SR1工程から昇温抑制効果のあるSR1.5へ早期に移行させ、さらにその後、昇温抑制効果の高いSR2工程へと多段階で移行させる。これにより、本実施形態では、SR工程内での多段階での工程間移行により、温度分布の急激な変化及び改質器温度の上昇を抑制し、SR工程を含む起動工程及び発電工程、特に、発電工程への移行時及び発電工程移行後の所定期間において、改質器温度及びセルスタック温度が劣化・損傷を引き起こす異常判定温度以上に過昇温してしまうことを防止することができる。
 なお、本実施形態では、SR工程移行時に昇温助長状態を判定して、SR1とSR2との間に中間工程であるSR1.5工程を設けているが、これに限らず、POX工程、ATR工程においても同様に昇温助長状態を判定して、中間工程を設けるように構成してもよい。
 次に、図14を参照して、第3実施形態による固体酸化物形燃料電池(SOFC)の過昇温抑制制御を説明する。
 本実施形態の過昇温抑制制御では、昇温助長状態を検知した場合に、改質器温度とセルスタック温度との温度差を小さくする温度差縮小制御を実行するように構成されている。より具体的には、この温度差縮小制御では、外部負荷に電力を供給する発電工程に移行する前に、制限的な発電工程を起動工程と並行して実行するように構成されている。
 図14は、図12の場合と同様に改質器温度及びセルスタック温度の上昇速度が速い場合を示している。なお、以下では、図7及び図9で説明した通常の起動時の動作及び処理と異なる点について主に説明する。
 本実施形態では、制御部110は、時刻t60から時刻t71にかけて、改質器温度とセルスタック温度の移行温度条件に基づいて、各工程間で移行処理を行っている。
 制御部110は、ATR工程からSR1工程への移行時における改質器温度が移行温度条件である650℃をさらに上回って早期発電開始温度(本例では700℃)以上に達している場合、燃料電池モジュール2に多量の熱量が蓄積されており、この熱量によって改質器20が昇温されている昇温助長状態であると判定する。
 これにより、制御部110は、電力量が定格値よりも低い一定値に制限された制限的な発電工程をSR1工程と並行して実行する。制限的な発電工程での電力取り出し量は一定に設定され、安定した状態で温度差縮小制御を実行するように構成されている。なお、制限的な発電工程は、SR工程(SR1.5工程を設けた場合はSR1.5工程を含む)中の任意の時点で開始してもよい。
 SR工程では、本格的に外部負荷に電力供給できるほどは大きな電力を取り出すことはできないが、少量の電力であれば取り出すことができる。制限的な発電工程において、セルスタック温度は、発電反応及びジュール熱によって昇温される。一方、発電が開始されると、発電反応により改質後の燃料ガスが消費されるので、燃料電池セルユニット16から流出する改質後の燃料ガスの流出量も減少し、改質器20を加熱する排気ガス量が減少するので、改質器温度の上昇は抑制される。これにより、改質器温度及びセルスタック温度の温度差が縮小される。図14には、温度差縮小制御を実行しなかった場合(細い一点鎖線)と、実行した場合の改質器温度とセルスタック温度の温度変化の相違が示されている。
 また、制限的な発電工程において発電された電力は、燃料電池装置1の補機ユニット4(例えば、水流量調整ユニット28、第1ヒータ等46)のポンプや電気抵抗に用いられる。また、外部負荷へ電力供給するように構成することもできる。
 さらに、時刻t69において、SR2工程から発電工程への移行条件が満足されると、制御部110は、外部電力負荷追従を行う本格的な発電工程へ移行する。
 このように、本実施形態の温度差縮小制御(過昇温抑制制御)では、改質器温度の温度上昇がセルスタック温度の温度上昇よりも早い場合に、SR工程中に制限的な発電工程を実行することにより、セルスタック温度の昇温速度を増加させると共に、改質器温度の昇温を抑制する。これにより、本実施形態では、改質器温度とセルスタック温度の温度差を縮小して、改質器温度の上昇を抑制し、SR工程を含む起動工程及び発電工程、特に、発電工程への移行時及び発電工程移行後の所定期間において、改質器温度及びセルスタック温度が劣化・損傷を引き起こす所定の異常判定温度以上に過昇温してしまうことを防止することができる。
 なお、本実施形態では、SR1移行時の改質器温度が早期発電開始温度(700℃)以上である場合に、温度差縮小制御を実行するように構成されているが、これに限らず、SR1移行時における改質器温度とセルスタック温度の温度差が所定温度差以上である場合に、昇温助長状態であると判定して、温度差縮小制御を実行するように構成してもよい。
 次に、図15を参照して、第4実施形態による固体酸化物形燃料電池(SOFC)の過昇温抑制制御を説明する。この実施形態では、第1実施形態と類似しているが、更にSR2工程から発電工程への移行条件が緩和されている。
 本実施形態では、改質器温度の上昇速度が通常の室温状態からの上昇速度よりも速い場合に、昇温助長状態であると判定し、過昇温抑制制御を実行する。この過昇温抑制制御では、昇温助長状態の検知により、早期に次工程へ移行するように、図9に示した動作テーブルの移行温度条件を緩和するように構成されている。
 図15は、本実施形態の過昇温抑制制御で用いられる動作テーブルであり、図9と比べて、移行温度条件のみが異なり、各工程における燃料ガス等の供給量は同一に設定されている。なお、図15以降の動作テーブルでは、図9と異なる部分を四角で囲ってある。
 起動工程において、通常起動時と比べて改質器温度の上昇速度がセルスタック温度の上昇速度よりも速い状態で、燃焼運転工程、POX1工程、POX2工程、ATR1工程、ATR2工程、SR1工程を順に移行してくると、SR1工程において、改質器温度とセルスタック温度の温度差が通常の起動時よりも大きくなる。
 図9の動作テーブルでは、SR1工程からSR2工程への通常の移行条件は、改質器温度が650℃以上、且つ、セルスタック温度が650℃以上である(通常のSR2移行条件)。
 ところが、上述のようにSR1工程において、改質器温度とセルスタック温度との温度差が大きい場合、先に改質器温度が650℃以上に達した後、セルスタック温度が650℃以上に達するまでには時間が掛かるため、セルスタック温度が650℃に達したときには、改質器温度が過昇温により異常判定温度である800℃に達してしまうおそれがある。
 したがって、判定手段としての制御部110は、第1実施形態と同様に、SR1工程において、セルスタック温度がSR2工程への移行温度条件(650℃)に到達していないにもかかわらず、改質器温度が第1の強制移行温度(本例では700℃)に到達した場合には、昇温助長状態であると判定する。
 これにより、制御部110は、SR1工程からSR2工程への移行温度条件を、改質器温度が650℃以上、且つ、セルスタック温度が650℃以上であることに加えて、セルスタック温度にかかわらず、改質器温度が700℃以上であることを付加する(変更後のSR2移行条件)。
 セルスタック温度が650℃に到達していないので、通常のSR2移行条件は満たされないので、制御部110は、通常のSR2移行条件によっては、SR2工程へ移行することができない。しかしながら、改質器温度が第1の強制移行温度(700℃)に到達することにより、全体として移行条件が緩和された変更後のSR2移行条件を満たすことになり、制御部110は、変更後のSR2移行条件によって、SR1工程からSR2工程へ早期に移行させることができる。
 SR2工程ではSR1工程よりも燃料ガス供給量及び水供給量が低減されるので、吸熱反応である水蒸気改質反応が抑えられる点では、改質器温度の上昇抑制効果としては不利である。しかしながら、SR2工程で燃料ガス供給量が低減されることにより、燃料電池セルユニット16から流出する改質後の燃料ガスの流出量も減少し、改質器20を加熱する燃焼部からの排気ガス量が減少するので、改質器温度の上昇は全体として抑制される。
 一方、セルスタック温度は、SR2工程において改質器20からガス流を受けることにより、徐々に改質器温度に追い付くように上昇させることができる。
 また、図9の動作テーブルでは、SR2工程から発電工程への通常の移行条件は、改質器温度が650℃以上、且つ、セルスタック温度が700℃以上である(通常の発電工程移行条件)。
 ところが、SR2工程においても、改質器温度とセルスタック温度との温度差が依然として大きい場合、改質器温度はSR2移行時点で650℃以上に達しているので、セルスタック温度が700℃以上に達するまで待つと、セルスタック温度が700℃に達したときには、改質器温度が異常判定温度である800℃に達してしまうおそれがある。
 よって、この場合も判定手段としての制御部110は、SR2工程において、セルスタック温度が発電工程への移行温度条件(700℃)に到達していないにもかかわらず、改質器温度が第2の強制移行温度(本例では720℃)に到達した場合には、昇温助長状態であると判定する。
 これにより、制御部110は、SR2工程から発電工程への移行温度条件を、改質器温度が650℃以上、且つ、セルスタック温度が700℃以上であることに加えて、セルスタック温度にかかわらず、改質器温度が720℃以上であることを付加する(変更後の発電工程移行条件)。よって、制御部110は、セルスタック温度が700℃に到達していないが、改質器温度が第2の強制移行温度(720℃)に到達することにより、緩和された変更後の発電工程移行条件を満たすことになり、SR2工程から発電工程へ早期に移行させることができる。なお、第1及び第2の強制移行温度は、異常判定温度よりも低く設定されている。
 発電工程に移行すると、セルスタック温度は、徐々に改質器20からの流入ガスにより改質器温度に追い付くように昇温すると共に、燃料電池セルスタック14での発電反応及びジュール熱によって昇温する。これにより、セルスタック温度は、700℃以上に達することができる。一方、改質器温度は、発電工程において、燃料ガス供給量及び水供給量が低減されるので、発電工程移行直後の一時的な昇温後には、温度上昇が抑制され、適切な温度範囲に維持される。また、SR2工程から発電工程へ早期に移行することにより、発電工程移行時において改質器温度は異常判定温度に対して温度余裕があるので、発電開始後の直後の期間における一時的な昇温によって、改質器温度が異常判定温度に到達することが防止される。
 このように、本実施形態の過昇温抑制制御では、改質器温度の上昇速度がセルスタック温度の上昇速度よりも速い場合、移行温度条件を緩和することにより、セルスタック温度が移行温度条件を満たしていなくても、改質器温度が通常の移行温度条件よりも高温に設定された第1又は第2の強制移行温度に到達することにより、次工程へ早期に移行される。これにより、本実施形態では、改質器温度の上昇を抑制し、SR工程を含む起動工程及び発電工程、特に、発電工程への移行時及び発電工程移行後の所定期間において、改質器温度やセルスタック温度が劣化・損傷を引き起こす所定値(異常判定温度)以上に過昇温してしまうことを防止することができる。
 なお、本実施形態では、SR工程中に昇温助長状態を判定して、SR1工程からSR2工程へ、及び、SR2工程から発電工程への移行温度条件を変更しているが、これに限らず、POX工程、ATR工程においても同様に昇温助長状態を判定して、移行温度条件を変更するように構成してもよい。
 次に、図16を参照して、第5実施形態による固体酸化物形燃料電池(SOFC)の過昇温抑制制御を説明する。
 図15による実施形態では、改質器温度とセルスタック温度の一方の移行温度条件が満たされていない場合であっても、所定の条件を加味することによって、次工程へ早期に移行させていたが、図16による実施形態では、改質器温度及びセルスタック温度の双方の移行温度条件が満たされていない場合であっても、所定の条件が満たされることにより、次工程へ早期に移行させるように構成されている。
 図16に示す起動時の動作中、起動の初期段階において、時刻t120に起動が開始され、時刻t121に燃料ガスの供給が開始され、時刻t122に着火され、時刻t123にPOX1工程に移行し、その後時刻t124にPOX2工程に移行している。また、図16には、図7で示した通常時の起動工程における改質器温度の時間変化が比較のために細い一点鎖線で付加されている。
 本実施形態においても、用いられる基本的な動作テーブルは、図9に示したものである。したがって、POX2工程からATR1工程への移行温度条件は、改質器温度が600℃以上、且つ、セルスタック温度が250℃である(通常のATR1移行条件)。
 しかしながら、本実施形態では、判定手段としての制御部110は、POX工程において、改質器温度の上昇速度が通常よりも速く、POX工程開始から所定制限期間T内に改質器温度が強制移行温度(本例では550℃)に達した場合には、昇温助長状態であると判定する。
 本実施形態では、強制移行温度は、SR2工程からATR1工程への改質器温度の移行温度条件よりも低く設定されているが、POX工程開始から制限期間T内に改質器温度が強制移行温度に達した場合は、改質器温度の上昇速度が通常よりも速いことが予測される。このため、制御部110は、通常のATR1移行条件が満たされる前に、POX工程開始から制限期間T内に改質器温度が強制移行温度に達した場合は、過昇温が発生するおそれが高い昇温助長状態であると判定する。
 これにより、図16に示すように、通常のATR1移行条件が満たされていないが、POX工程開始から制限時間Tが経過した時刻t125にSR2工程からATR1工程へ移行される。これにより、発熱反応である部分酸化改質反応に加えて、吸熱反応である水蒸気改質反応が実行されるので、改質器温度の上昇速度が低減され、改質器温度とセルスタック温度との温度差が大きくなるのを抑制することができる。
 このように本実施形態では、改質器温度及びセルスタック温度が双方とも移行温度条件を満たしていない場合であっても、改質器温度の昇温速度に基づいて、昇温助長状態を判定することにより次工程へ移行し、過昇温を防止することができる。
 なお、本実施形態では、制限時間Tの間の改質器温度の昇温速度に基づいて、昇温助長状態を判定しているが、これに限らず、所定短時間毎の改質器温度の時間変化率から昇温速度を算出し、算出した昇温速度に基づいて、昇温助長状態を判定してもよい。
 また、本実施形態では、POX工程における改質器温度の昇温速度に基づいて、過昇温抑制制御を実行しているが、これに限らず、ATR工程、SR工程においても同様の過昇温抑制制御を実行するように構成することができる。
 さらに、本実施形態では、改質器温度の昇温速度に基づいて、過昇温抑制制御を実行しているが、これに限らず、セルスタック温度の昇温速度に基づいて同様の過昇温抑制制御を実行するように構成することができる。
 次に、図17乃至図19を参照して、第6実施形態による固体酸化物形燃料電池(SOFC)の過昇温抑制制御を説明する。
 本実施形態の過昇温抑制制御は、改質器温度の昇温速度がセルスタック温度の昇温速度よりも速く、POX工程終了時又はATR工程終了時において、改質器温度が第1又は第2の移行条件変更温度(本例ではそれぞれ650℃、700℃)に到達している場合に、これ以降の移行温度条件を通常の動作テーブルから変更するように構成されている。
 図17に示す起動時の動作中、起動の初期段階において、時刻t140に起動が開始され、時刻t141に燃料ガスの供給が開始され、時刻t142に着火され、時刻t143にPOX1工程に移行し、時刻t144にPOX2工程に移行し、その後時刻t145にATR1工程に移行している。また、図17には、図7で示した通常時の起動工程における改質器温度の時間変化が比較のために細い一点鎖線で付加されている。
 本実施形態においても、用いられる基本的な動作テーブルは、図9に示したものである。
 しかしながら、本実施形態では、判定手段としての制御部110は、改質器温度の上昇速度が通常の起動時よりも速く、POX2工程からATR1工程への移行時において、セルスタック温度がATR1工程への移行温度条件(250℃)に到達した時点で、改質器温度がATR1工程への移行温度条件である600℃よりも高い第1の移行条件変更温度(650℃)に達している場合には、昇温助長状態であると判定する。
 POX2工程終了時に昇温助長状態であると判定すると、制御部110は、それ以降のセルスタック温度の移行温度条件を緩和し、図18に示す動作テーブルを用いて動作制御を行う。図18の動作テーブルでは、ATR1工程以降のセルスタック温度の移行温度条件が緩和され、それぞれ50℃ずつ低減されている。すなわち、ATR2工程移行時の温度条件が400℃から350℃へ低減され、SR1工程移行時の温度条件が600℃から550℃へ低減され、SR2工程移行時の温度条件が650℃から600℃へ低減され、発電工程移行時の温度条件が700℃から650℃へ低減される。
 また、本実施形態では、判定手段としての制御部110は、改質器温度の上昇速度が通常よりも速く、ATR2工程からSR1工程への移行時において、セルスタック温度がSR1工程への移行温度条件(600℃)に到達した時点で、改質器温度がSR1工程への移行温度条件である650℃よりも高い第2の移行条件変更温度(700℃)に達している場合には、昇温助長状態であると判定する。
 ATR2工程終了時に昇温助長状態であると判定すると、制御部110は、それ以降のセルスタック温度の移行温度条件を緩和し、図19に示す動作テーブルを用いて動作制御を行う。図19の動作テーブルでは、SR1工程以降のセルスタック温度の移行温度条件が緩和され、それぞれ50℃ずつ低減されている。すなわち、SR2工程移行時の温度条件が650℃から600℃へ低減され、発電工程移行時の温度条件が700℃から650℃へ低減される。
 改質器温度の昇温幅が大きいPOX工程又はATR工程(特にPOX工程で改質器温度の昇温が顕著である)の終了時に、改質器温度が所定の第2の移行条件変更温度に達していた場合、引き続き実行されるATR工程及びSR工程においても、改質器温度とセルスタック温度との間の大きな温度差が維持され、過昇温が発生するおそれが高くなる。
 そこで、本実施形態では、POX工程又はATR工程の終了時に改質器温度が第1又は第2の移行条件変更温度まで達していた場合には、昇温助長状態であると判定して、それ以降の移行温度条件を緩和して、早期に工程を移行させ、最終的に発電工程まで移行させることにより、過昇温を防止することができる。
 なお、本実施形態では、改質器温度が第1又は第2の移行条件変更温度に達することにより過昇温抑制制御を実行しているが、これに限らず、セルスタック温度が移行条件変更温度に達することにより、改質器温度の移行温度条件を緩和するように構成することができる。
 次に、図20乃至図22を参照して、第7実施形態による固体酸化物形燃料電池(SOFC)の過昇温抑制制御を説明する。
 本実施形態では、残存熱量の影響によって、通常よりも改質器温度が異常判定温度(本例では800℃)に接近した状態で発電工程移行した場合に、過昇温抑制制御の一環として、温度監視制御を行うように構成されている。この温度監視制御は、上記実施形態における起動工程中の過昇温抑制制御をバックアップするものであり、発電工程において確実に過昇温が防止されるようになっている。
 まず、本実施形態の燃料電池1の発電工程の処理フローを説明する。図20は、制御部110により取出可能電流値Iinvを設定するための制御テーブルである。図21及び図22は、図20に示す制御テーブルを適用して取出可能電流値Iinvを決定するフローチャートである。
 制御部110は、各種センサからの入力信号、及び需要電力モニター信号に基づいて、取出可能電流値Iinvを設定し、この値をインバータ制御部(図示せず)に出力するように構成されている。
 図20に示すように、制御部110は、発電室温度(セルスタック温度)Tfc、燃料電池モジュール2から出力される発電電圧Vdc、商用電源から住宅等の施設へ供給されている電力である系統電力Wl、インバータ54から出力される電力である連系電力Winv、取出可能電流値Iinvの現在値、及び燃料供給電流値Ifに基づいて、取出可能電流値Iinvの増加、低下、又は維持を決定する。
 なお、本明細書においては、発電室温度Tfc等、燃料電池モジュール2の発電能力の指標となる温度を「燃料電池モジュールの温度」ということにする。
 発電電圧Vdcは、燃料電池モジュール2から出力される出力電圧である。
 系統電力Wlは、住宅等の施設に対して商用電源から供給されている電力であり、施設の総需要電力から燃料電池によって供給されている電力を差し引いた電力がこれに相当し、需要電力モニター信号に基づいて検出される。
 連系電力Winvは、インバータ54から出力される電力である。燃料電池モジュール2からインバータ54に実際に取り出される電力は電力状態検出センサ126によって検出され、この電力から変換された電力がインバータ54から出力される。燃料電池モジュール2から実際に出力される実取出電流Ic[A]は電力状態検出センサ126によって検出された電力に基づいて求められる。従って、電力状態検出センサ126は、取出電流検出手段として機能する。
 燃料供給電流値Ifは、燃料ガス供給量を求めるための基にする電流値であって、燃料電池モジュール2に供給されている燃料ガス供給量(L/min)によって発電することが可能な電流値に相当する。そのため、燃料供給電流値Ifは、常に必ず取出可能電流値Iinvを下回ることのない様に設定する。
 制御部110は、燃料電池モジュール2の現在の状態が、図20の番号1~9の何れに該当するかを判定し、図20の右端欄に示されている取出可能電流値Iinvの変更又は維持を実行する。
 例えば、図20の番号1欄に記載されている条件の全てが同時に満足された場合には、番号1欄の右端にあるように、制御部110は、取出可能電流値Iinvを5[mA]低下させるように変更する。上記のように、本実施形態においては、制御部110の制御周期は500[msec]であるので、番号1欄の条件が満たされる状態が連続した場合には、取出可能電流値Iinvは500[msec]毎に5[mA]ずつ低下する。この場合、取出可能電流値Iinvは、10[mA/sec]の電流減少変化率で減少されることになる。
 同様に、図20の番号8欄に記載されている条件の全てが同時に満足された場合には、番号8欄の右端にあるように、制御部110は、取出可能電流値Iinvを10[mA]増加させるように変更する。従って、番号8欄の条件が満たされる状態が連続した場合には、取出可能電流値Iinvは、第1電流上昇変化率である20[mA/sec]の変化率で上昇されることになる。
 また、図20の番号1~8欄に記載されている条件が何れも満足されない場合には、番号9欄の条件に該当し、取出可能電流値Iinvの値は変更されずに維持される。
 次に、図21及び図22を参照して、図20の制御テーブルの条件の判断手順を説明する。なお、図21及び図22における符号A~Dは、処理の移行先を示している。例えば、フローの処理は、図21の符号「C」から図22の符号「C」へ移行する。
 また、以下に説明するように、制御部110は、需要電力が上昇している場合等、取出可能電流値Iinvを増加させるべき状況にあっても、所定の複数の増加規制条件に該当しない場合にのみ、取出可能電流値Iinvを増加させるように構成されている。さらに、増加規制条件は、複数の電流低下条件及び電流維持条件を含んでおり、これらの条件に該当すると、取出可能電流値Iinvは、低下され、又は維持される。また、複数の電流低下条件(図21のステップS5、S7、S9、S11、S13)は、複数の電流維持条件(図22のステップS15、S16、S17、S18、S19)よりも先に、優先的に適用される。
 まず、図21のステップS1は、取出可能電流値Iinvと実取出電流値Icとの間で非常に大きな偏差が生まれたかどうかを判断するステップであって、両者の間に1000[mA]よりも大きいような偏差が生まれたか否かが判断される。取出可能電流値Iinvと実取出電流値Icとの差が短い制御周期の中で1000[mA]よりも大きいような偏差が初めて生まれるような場合というのは、インバータ54が、総需要電力の急激な低下、もしくは何らかの理由によって実取出電力Icを急激に低下させたことによって偏差が生じた状況であるとしてステップS2に進む。
 ステップS2においては、系統電力Wlが50[W]よりも少ないか否かが判断される。系統電力Wlが50[W]よりも少ない場合というのは、系統電力Wlがこれ以上減少すると、インバータ54からの出力電力が、商用電源に流れ込む「逆潮流(系統電力W1がマイナスになる状態)」が発生する可能性が高くなる状態である。よってS2の判定とS1の判定によって総重要電力のとても大きな落ち込みによって逆潮流が生じることを防止するために、インバータ54が実取出電流値Icを急激に下げた状態であると判断できる。なお、S2で系統電力W1の値を50Wに設定しているのは逆潮流が万が一にも発生することがないように50W分のマージンを設けているものである。
 次にS1、S2の双方でYESと判断された場合、即ち、とても大きな総重要電力の落ち込みに伴うインバータ54による逆潮流防止制御が行われた場合は、ステップS3において、制御部110は、インバータ制御部に指示する取出可能電流値Iinvの値を実取出電流Icの値まで急激に低下させる(図20の番号6に対応)。ステップS3の処理の終了により、図21及び図22のフローチャートの1回の処理が終了する。インバータ54は取出可能電流値Iinvの値を超えない範囲で実取出電流値Icを取り出すので、取出可能電流値Iinvを低下させて取出可能電流値linv=実取出電流値Icとすることにより、インバータ54は現在の取出電流値Icより取出電流を勝手に増やすような対応が規制される。これは、総需要電力の急激な低下があったような場合は、その後すぐに総需要電力が急激に回復する(増える)ような状況が起こる可能性が高いが、1000[mA]を超えるような大きな偏差量がある中で、インバータ54が回復した総需要電力に応えるべく電力取出を急激に行なってしまうと、制御オーバーシュート等によって需要電力や取出可能電流値linvを誤って超えるような電力取出をインバータ54が行ってしまうことを未然に防止できるようにした工夫である。言い換えると1000[mA]以下のような小さな偏差では取出可能電流値linvを実取出電流値Icにするような制御を行っていないため、インバータ54は実取出電流値Icより高い所にある取出可能電流値linvまでの間で自由に電力取出を迅速に行えるように許容したものである。これはこのような小さな偏差であればオーバーシュートによる過剰な電力取出等の問題を生じないため、総重要電力の回復に速やかに追従できるように配慮した更なる工夫である。
 一方、ステップS1とS2の判定でとても大きな総重要電力低下に伴う逆潮流が起こるような状況ではないと判断された場合には、ステップS4に進む。ステップS4においては、取出可能電流値Iinvが1[A]よりも大きいか否かが判断される。取出可能電流値Iinvが1[A]よりも大きい場合には、ステップS5に進み、発電電圧Vdcが95[V]よりも低いか否かが判断される。発電電圧Vdcが95[V]よりも低い場合には、ステップS6に進む。
 ステップS6においては、制御部110は、インバータ制御部に指示する取出可能電流値Iinvの値を10[mA]低下させる(図20の番号4に対応)。ステップS6の処理の終了により、図21及び図22のフローチャートの1回の処理が終了する。図21のフローチャートが実行されるごとにステップS6の処理が連続して実行された場合には、取出可能電流値Iinvは、20[mA/sec]の電流減少変化率で減少されることになる。発電電圧Vdcが95[V]よりも低い場合には、燃料電池モジュール2からインバータ54に電力が取り出される際に燃料電池モジュールの劣化等により、電圧降下が生じていると考えられるため、取出可能電流値Iinvを低下させることにより、インバータ54に取り出される電流を抑制して、燃料電池モジュール2にかかる負担を軽減する。
 一方、ステップS5において、発電電圧Vdcが95[V]以上の場合には、ステップS7に進む。ステップS7においては、連系電力Winvが710[W]を超えているか否かが判断される。連系電力Winvが710[W]を超えている場合にはステップS8に進み、ステップS8においては、制御部110は、インバータ制御部に指示する取出可能電流値Iinvの値を5[mA]低下させる(図20の番号5に対応)。即ち、連系電力Winvが710[W]を超えている場合には、燃料電池モジュール2からの出力電力が定格電力を超えているので、燃料電池モジュール2から取り出す電流を低下させて定格電力を超えないようにする。ステップS8の処理の終了により、図21及び図22のフローチャートの1回の処理が終了する。図21のフローチャートが実行されるごとにステップS8の処理が連続して実行された場合には、取出可能電流値Iinvは、10[mA/sec]の電流減少変化率で減少されることになる。
 このように、制御部110は、複数の電流低下条件のうち該当した電流低下条件により、取出可能電流値Iinvを減少させる変化率が異なるように、取出可能電流値Iinvを変化させる。
 一方、ステップS7において、連系電力Winvが710[W]以下の場合には、ステップS9に進む。ステップS9においては、発電室温度Tfcが850[℃]を超えているか否かが判断される。発電室温度Tfcが850[℃]を超えている場合にはステップS10に進み、ステップS10においては、制御部110は、インバータ制御部(図示せず)に指示する取出可能電流値Iinvの値を5[mA]低下させる(図20の番号2に対応)。即ち、発電室温度Tfcが850[℃]を超えている場合には、燃料電池モジュール2の適正な作動温度を超えているため、取出可能電流値Iinvの値を低下させて、温度の低下を待つ。ステップS10の処理の終了により、図21及び図22のフローチャートの1回の処理が終了する。図21のフローチャートが実行されるごとにステップS10の処理が連続して実行された場合には、取出可能電流値Iinvは、10[mA/sec]の電流減少変化率で減少されることになる。
 一方、ステップS9において、発電室温度Tfcが850[℃]以下の場合には、ステップS11に進む。ステップS11においては、発電室温度Tfcが550[℃]よりも低いか否かが判断される。発電室温度Tfcが550[℃]よりも低い場合にはステップS12に進み、ステップS12においては、制御部110は、インバータ制御部に指示する取出可能電流値Iinvの値を5[mA]低下させる(図20の番号3に対応)。即ち、発電室温度Tfcが550[℃]よりも低い場合には、燃料電池モジュール2が適正な発電を行うことができる温度を下回っているため、取出可能電流値Iinvの値を低下させる。これにより、発電に消費される燃料を減少させ、燃料を燃料電池セルユニット16の加熱に振り向け、温度を上昇させる。ステップS12の処理の終了により、図21及び図22のフローチャートの1回の処理が終了する。図21のフローチャートが実行されるごとにステップS12の処理が連続して実行された場合には、取出可能電流値Iinvは、10[mA/sec]の電流減少変化率で減少されることになる。
 一方、ステップS11において、発電室温度Tfcが550[℃]以上の場合には、ステップS13に進む。ステップS13においては、取出可能電流値Iinvと実取出電流Icの差が400[mA]を超え、且つ取出可能電流値Iinvが1[A]を超えているか否かが判断される。取出可能電流値Iinvと実取出電流Icの差が400[mA]を超え、且つ取出可能電流値Iinvが1[A]を超えている場合には、ステップS14に進み、ステップS14においては、制御部110は、インバータ制御部に指示する取出可能電流値Iinvの値を5[mA]低下させる(図20の番号1に対応)。即ち、取出可能電流値Iinvと実取出電流Icの差が400[mA]を超えている場合には、取り出し可能な電流である取出可能電流値Iinvに対して、燃料電池モジュール2から実際に取り出されている実取出電流Icが少なすぎ、燃料が無駄に供給されるので、取出可能電流値Iinvの値を低下させて燃料の浪費を抑制する。ステップS14の処理の終了により、図21及び図22のフローチャートの1回の処理が終了する。図21のフローチャートが実行されるごとにステップS14の処理が連続して実行された場合には、取出可能電流値Iinvは、10[mA/sec]の電流減少変化率で減少されることになる。
 このように、制御部110は、複数の電流低下条件(図21のステップS5、S7、S9、S11、S13)のうち1つでも該当した場合においては、需要電力が上昇している状況においても取出可能電流値Iinvを減少させる(ステップS6、S8、S10、S12、S14)。
 一方、ステップS4において、取出可能電流値Iinvが1[A]以下の場合、及びステップS13において、取出可能電流値Iinvと実取出電流Icの差が400[mA]以下の場合には、図22のステップS15に進む。
 ステップS15においては、取出可能電流値Iinvと実取出電流Icの差が300[mA]以下であるか否かが判断され、ステップS16においては、発電電圧Vdcが100[V]以上であるか否かが判断され、ステップS17においては、連系電力Winvが690[W]以下であるか否かが判断され、ステップS18においては、発電室温度Tfcが600[℃]以上であるか否かが判断され、ステップS19においては、系統電力Wlが40[W]を超えているか否かが判断される。これらの条件が全て満足された場合にはステップS20に進み、これらのうちの1つでも満足されない条件がある場合(図20の番号9に対応)には、ステップS21進む。ステップS21においては、取出可能電流値Iinvの値は変更されずに従前の値に維持され、図21及び図22のフローチャートの1回の処理が終了する。
 このように、本実施形態の固体電解質型燃料電池1においては、需要電力が上昇している状況においても、所定の条件が満たされない場合には、取出可能電流値Iinvが一定に維持される(図22のステップS21)。また、発電室温度Tfcに着目すると、発電室温度Tfcが上限の閾値である850[℃]を超えている場合には、取出可能電流値Iinvは低下され(図21のステップS9、S10)、発電室温度Tfcが下限の閾値である600[℃]よりも低いと、取出可能電流値Iinvは維持される(図22のステップS18、S21)。また、発電室温度Tfcが更に低く、550[℃]よりも低いと、取出可能電流値Iinvは低下される(図21のステップS11、S12)。
 一方、ステップS20以下の処理では、取出可能電流値Iinvの値は上昇される。制御部110は、複数の電流維持条件(図22のステップS15、S16、S17、S18、S19)の何れにも該当しない場合にのみ、取出可能電流値Iinvを増加させる(図22のステップS22、S23)。
 即ち、取出可能電流値Iinvと実取出電流Icの差が300[mA]を超えている場合(ステップS15)には、取出可能電流値Iinvと実取出電流Icの差が比較的大きいため、取出可能電流値Iinvを上昇させるべきではない。また、発電電圧Vdcが100[V]よりも低い場合(ステップS16)には、取出可能電流値Iinvを上昇させて、燃料電池モジュール2から取り出され得る電流を増加させるべきではない。さらに、連系電力Winvが690[W]を超えている場合(ステップS17)には、燃料電池モジュール2からの出力電力は既にほぼ定格出力電力に到達しているため、燃料電池モジュール2から取り出され得る電流を増加させるべきではない。
 さらに、発電室温度Tfcが600[℃]よりも低い場合(ステップS18)には、燃料電池モジュール2が十分に発電を行うことができる温度に達していないため、取出可能電流値Iinvの値を上昇させ、燃料電池モジュール2から取り出され得る電流を増加させて、燃料電池セルユニット16に負担をかけるべきではない。また、系統電力Wlが40[W]以下の場合(ステップS19)には、「逆潮流」が発生しやすい状況にあるため、燃料電池モジュール2から取り出され得る電流を増加させるべきではない。
 ステップS15乃至ステップS19の条件が全て満足された場合には、ステップS20に進む。ステップS20においては、燃料供給電流値Ifと実取出電流Icの差が1000[mA]以上か否かが判断される。燃料供給電流値Ifに対応した燃料ガス供給量を求めて、燃料電池モジュール2に供給して発電運転している。そのため、換言すれば、その燃料により燃料電池モジュール2が発電可能な電流値を換算した値である。例えば、燃料供給電流値If=5[A]に相当する燃料ガス供給量[L/min]が供給されている場合には、燃料電池モジュール2は、潜在的に5[A]の電流を安全に安定して出力する能力がある。従って、燃料供給電流値Ifと実取出電流Icの差が1000[mA]である場合には、実際に発電している実取出電流Icよりも1[A]分多い電流を出力することができる分量の燃料が燃料電池モジュール2に供給されていることになる。
 ステップS20において、燃料供給電流値Ifと実取出電流Icの差が1000[mA]以上である場合にはステップS22進み、1000[mA]よりも少ない場合にはステップS23進む。ステップS22においては、多くの余分な燃料が燃料電池モジュール2に供給されている状態であるため、制御部110は、インバータ制御部に指示する取出可能電流値Iinvの値を100[mA]増加させ(図20の番号7に対応)、取出可能電流値Iinvを急速に上昇させる。ステップS22の処理の終了により、図21及び図22のフローチャートの1回の処理が終了する。図22のフローチャートが実行されるごとにステップS22の処理が連続して実行された場合には、取出可能電流値Iinvは、第2電流上昇変化率である200[mA/sec]の変化率で上昇されることになる。
 一方、ステップS23においては、取出可能電流値Iinvを上昇させる状況にあるが、多くの余分な燃料が燃料電池モジュール2に供給されている状態ではないので、制御部110は、インバータ制御部に指示する取出可能電流値Iinvの値を10[mA]増加させ(図20の番号8に対応)、取出可能電流値Iinvを緩やかに上昇させる。ステップS23の処理の終了により、図21及び図22のフローチャートの1回の処理が終了する。図22のフローチャートが実行されるごとにステップS23の処理が連続して実行された場合には、取出可能電流値Iinvは、第1電流上昇変化率である20[mA/sec]の変化率で上昇されることになる。
 このように本実施形態では、発電工程において、制御部110は、セルスタック温度Tfcが850℃を超えないように、取出可能電流値Iinvを制御する。セルスタック温度Tfcと改質器温度は関連しており、発電工程において、セルスタック温度Tfcが850℃である場合、改質器温度が800℃であるという相関がある。したがって、セルスタック温度Tfcが850℃を超えないように制御することにより、改質器温度が異常判定温度である800℃を超えないようにすることができる。
 これにより、本実施形態では、発電工程移行後においても温度監視制御によって改質器温度が異常判定温度に到達しないようにバックアップされている。したがって、発電工程移行前における過昇温抑制制御が十分に過昇温を抑制できない場合であっても、改質器20等の劣化・損傷を確実に防止することができる。
 また、上記実施形態は以下のように改変することができる。
 上記実施形態では、判定手段としての制御部110が改質器温度及びセルスタック温度に基づいて、燃料電池モジュール2に蓄積している熱量によって、改質器20、燃料電池セルスタック14が過昇温される状態(昇温助長状態)であるか否かを判定していたが、これに限らず、他の方法によって判定するように構成してもよい。
 例えば、各工程において、改質器温度とセルスタック温度の温度差に応じて昇温助長状態を判定してもよいし、改質器温度やセルスタック温度や蓄熱材7の温度を含む他の温度、その温度変化率又は温度変化速度に応じて判定してもよいし、燃料ガス供給量に対する改質器温度やスタック温度の温度上昇から起動時に残存していた熱量を推定し、この推定した熱量に応じて判定してもよいし、再起動前の動作状態に応じて判定してもよい。このように、種々の方法で、残存熱量に起因する過昇温の発生のおそれの程度を判定することができるが、上記実施形態では、各工程での改質器温度及びセルスタック温度の測定値から判定するという簡単な方法を採用している。
 なお、図8の停止動作の時間変化において示されているように、改質器温度、発電室温度、燃焼部温度がほぼ同じ温度で低下しており、残留熱量は燃料電池モジュール2内に局所的ではなく全体にほぼ均一に残ると考えられる。このため、改質器温度に影響を与える残存熱量だけでなく、セルスタック温度に影響を与える残存熱量も、改質器温度の測定のみによって推定できる。したがって、上記実施形態において、図16の例のように、判定手段としての制御部110が改質器温度のみの測定値に基づいて、昇温助長状態を判定するように構成することができる。
 また、上記実施形態では、判定手段としての制御部110が、例えばSR工程中やSR1工程への移行時に昇温助長状態の判定を行っているが、判定の時期は任意に設定することができる。また、上述の温度差、温度、温度変化率又は温度変化速度、推定熱量に応じて判定する場合においても、任意の時期に判定することができる。
 また、上記実施形態では、改質器温度がセルスタック温度よりも温度上昇速度が速い場合であったが、これに限らず、蓄熱材7等に対する配置によっては、セルスタック温度が改質器温度よりも温度上昇速度が速い場合があり、この場合には、上記実施形態において改質器温度とセルスタック温度とを入れ替えた構成にすることにより、同様の技術思想によって、セルスタック温度の過昇温を防止するように構成することができる。
  1 固体電解質形燃料電池(固体酸化物形燃料電池装置)
  2 燃料電池モジュール
  4 補機ユニット
  6 ハウジング(モジュール収納室)
  7 蓄熱材(蓄熱手段)
 10 発電室
 12 燃料電池セル集合体
 14 燃料電池セルスタック
 16 燃料電池セルユニット
 18 燃焼室
 20 改質器
 22 空気用熱交換器
 28 水流量調整ユニット
 38 燃料流量調整ユニット
 44 改質用空気流量調整ユニット
 45 発電用空気流量調整ユニット
 54 インバータ
 83 点火装置
 84 燃料電池セル
110 制御部(制御手段、判定手段)

Claims (15)

  1.  固体酸化物形燃料電池装置において、
     複数の燃料電池セルを組み合わせてなるセルスタックと、
     前記燃料電池セルに供給する燃料ガスを改質する改質器と、
     前記燃料電池セルを通過した余剰の燃焼ガス又は改質された燃焼ガスを燃焼させることにより発生する排気ガスによって前記改質器及び前記セルスタックを加熱する燃焼部と、
     前記セルスタックの温度及び前記改質器の温度をそれぞれ検出する温度検出器と、
     前記セルスタック及び前記改質器を収納するモジュール収納室と、
     前記モジュール収納室の周囲に配置された蓄熱手段と、
     前記燃料電池装置の起動中に前記蓄熱手段が蓄積している熱量によって前記改質器及び/又は前記セルスタックの昇温が助長される状態である昇温助長状態であるか否かを判定する判定手段と、
     前記燃料電池装置の起動を制御する制御手段と、を備えており、
     前記制御手段は、前記燃料電池装置の起動工程において、前記改質器に供給する燃料ガス、酸化剤ガス、水蒸気の供給量を前記セルスタックの温度及び前記改質器の温度に基づいて制御し、前記改質器で行われる燃料ガス改質反応工程をPOX工程、ATR工程、SR工程へ移行させた後、発電工程へ移行させ、各工程において前記セルスタックの温度及び前記改質器の温度がそれぞれに対して設定された移行条件を満足した場合に、次の工程へ移行するように制御するよう構成されており、
     前記判定手段が昇温助長状態であると判定した場合、前記制御手段は、少なくとも前記発電工程への移行時において前記改質器の温度が所定値以上に昇温されることを防止する過昇温抑制制御を実行することを特徴とする燃料電池装置。
  2.  前記制御手段は、前記判定手段が昇温助長状態であると判定した場合、前記起動工程中において前記発電工程への移行前に、前記過昇温抑制制御を開始することを特徴とする請求項1に記載の燃料電池装置。
  3.  前記SR工程は、SR1工程と、このSR1工程よりも燃料ガス供給量が低減されたSR2工程とを有しており、
     前記制御手段は、前記改質器の温度及び前記セルスタックの温度がこれらに対してそれぞれ設定された、前記SR1工程から前記SR2工程への移行条件であるSR2移行条件を満足した場合に、前記SR1工程を前記SR2工程へ切り替えるものであって、
     前記制御手段は、前記判定手段が昇温助長状態であると判定した場合には、前記SR2移行条件が満足される前であっても前記SR2工程へ移行することを特徴とする請求項2に記載の燃料電池装置。
  4.  前記制御手段は、前記SR1工程において、前記改質器の温度が前記SR2移行条件を満足しさらに所定の強制移行温度以上であれば、前記セルスタックの温度が前記SR2移行条件を満足していなくても、前記SR2工程へ移行することを特徴とする請求項3に記載の燃料電池装置。
  5.  前記SR工程は、SR1工程と、このSR1工程よりも燃料ガス供給量が低減されたSR2工程とを有しており、
     前記制御手段は、前記改質器の温度及び前記セルスタックの温度がこれらに対してそれぞれ設定された、前記SR1工程から前記SR2工程への移行条件であるSR2移行条件を満足した場合に、前記SR1工程を前記SR2工程へ切り替えるものであって、
     前記制御手段は、前記判定手段が昇温助長状態であると判定した場合には、前記SR1工程から前記SR2工程へ切り替える前に、燃料ガス供給量が前記SR1工程よりも少なく前記SR2工程よりも多い、SR1.5工程を実行することを特徴とする請求項2に記載の燃料電池装置。
  6.  前記SR1工程から前記SR1.5工程に切り替える際の移行条件は、前記SR2移行条件よりも低い温度条件であることを特徴とする請求項5に記載の燃料電池装置。
  7.  前記制御手段は、前記判定手段が昇温助長状態であると判定した場合、前記改質器の温度と前記セルスタックの温度との温度差を小さくする温度差縮小制御を前記過昇温抑制制御として実行することを特徴とする請求項2に記載の燃料電池装置。
  8.  前記制御手段は、前記判定手段が昇温助長状態であると判定した場合、前記SR工程において、前記温度差縮小制御として、前記発電工程への移行前に定格より低い電力取出しを行うことを特徴とする請求項7に記載の燃料電池装置。
  9.  前記制御手段は、前記発電工程への移行前における電力取出し量を一定にすることを特徴とする請求項8に記載の燃料電池装置。
  10.  前記制御手段は、前記発電工程への移行前に取出した電力を前記燃料電池装置の補機へ供給することを特徴とする請求項8に記載の燃料電池装置。
  11.  前記判定手段は、少なくとも1つの前記工程から次工程への移行時において前記改質器の温度が第1の所定温度以上である場合に昇温助長状態であると判定し、この判定に基づいて、前記制御手段は、前記セルスタックの温度が次工程へ移行するための移行条件を満たしていない場合であっても次工程へ移行させることを特徴とする請求項2に記載の燃料電池装置。
  12.  前記第1の所定温度は、前記改質器の移行条件の温度よりも高い温度に設定されていることを特徴とする請求項11に記載の燃料電池装置。
  13.  前記判定手段は、前記SR工程において、前記改質器の温度が第1の所定温度以上である場合に昇温助長状態であると判定し、この判定に基づいて、前記制御手段は、前記セルスタックの温度が次工程へ移行するための移行条件を満たしていない場合であっても前記発電工程へ移行させ、前記第1の所定温度は、前記改質器の前記発電工程への移行条件の温度よりも高く、且つ、前記改質器の異常判定温度である第2の所定温度よりも低く設定されていることを特徴とする請求項12に記載の燃料電池装置。
  14.  前記制御手段は、前記発電工程へ移行後において、前記改質器の温度が前記改質器の異常判定温度である第2の所定温度を超えないように、前記燃料電池装置の運転を規制する温度監視制御を実行するように構成されていることを特徴とする請求項11に記載の燃料電池装置。
  15.  前記判定手段は、前記POX工程又は前記ATR工程における前記改質器の温度により昇温助長状態であるか否かを判定し、昇温助長状態であると判定したとき、その工程以降における移行条件を緩和することを特徴とする請求項11に記載の燃料電池装置。
PCT/JP2011/072225 2010-09-30 2011-09-28 固体酸化物形燃料電池装置 WO2012043647A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180045420.6A CN103119769B (zh) 2010-09-30 2011-09-28 固体氧化物型燃料电池装置
EP11829200.2A EP2624348B1 (en) 2010-09-30 2011-09-28 Solid oxide fuel cell device
US13/823,906 US9214690B2 (en) 2010-09-30 2011-09-28 Solid oxide fuel cell device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010220709A JP5618069B2 (ja) 2010-09-30 2010-09-30 固体酸化物形燃料電池装置
JP2010-220710 2010-09-30
JP2010-220709 2010-09-30
JP2010220710A JP5618070B2 (ja) 2010-09-30 2010-09-30 固体酸化物形燃料電池装置

Publications (1)

Publication Number Publication Date
WO2012043647A1 true WO2012043647A1 (ja) 2012-04-05

Family

ID=45893086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072225 WO2012043647A1 (ja) 2010-09-30 2011-09-28 固体酸化物形燃料電池装置

Country Status (4)

Country Link
US (1) US9214690B2 (ja)
EP (1) EP2624348B1 (ja)
CN (1) CN103119769B (ja)
WO (1) WO2012043647A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2763226A4 (en) * 2011-09-29 2015-06-10 Toto Ltd SOLID ELECTROLYTE FUEL CELL
EP3136485B1 (en) 2014-04-25 2018-10-31 Panasonic Corporation Solid oxide fuel cell
CN114188577B (zh) * 2021-10-29 2024-04-02 东风汽车集团股份有限公司 一种燃料电池汽车发电方法及其动力系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095611A (ja) * 2001-09-19 2003-04-03 Toyota Motor Corp 水素生成装置の起動方法
JP2004319420A (ja) 2003-02-25 2004-11-11 Kyocera Corp 燃料電池及びその運転方法
JP2004338975A (ja) * 2003-05-13 2004-12-02 Mitsubishi Kakoki Kaisha Ltd 水素製造装置の起動方法
JP2005317405A (ja) * 2004-04-30 2005-11-10 Kyocera Corp 燃料電池構造体の運転方法
JP2008243597A (ja) * 2007-03-27 2008-10-09 Kyocera Corp 燃料電池装置
JP2010238623A (ja) * 2009-03-31 2010-10-21 Toto Ltd 固体電解質型燃料電池
JP2011096635A (ja) * 2009-09-30 2011-05-12 Toto Ltd 固体電解質型燃料電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3879635B2 (ja) * 2002-09-06 2007-02-14 日産自動車株式会社 移動体用燃料電池パワープラントシステム
JP4043421B2 (ja) * 2003-08-22 2008-02-06 三洋電機株式会社 燃料電池装置
JP4767543B2 (ja) * 2005-01-07 2011-09-07 Jx日鉱日石エネルギー株式会社 固体酸化物形燃料電池システムの起動方法
WO2006137211A1 (ja) * 2005-06-24 2006-12-28 Murata Manufacturing Co., Ltd. 燃料電池用改質装置
CN101170177A (zh) * 2006-10-25 2008-04-30 奇鋐科技股份有限公司 具预留信号脚位的燃料电池装置
JP5328119B2 (ja) * 2007-07-27 2013-10-30 京セラ株式会社 燃料電池装置
US20110053017A1 (en) * 2007-08-29 2011-03-03 Kyocera Corporation Fuel Cell Apparatus
JP4474688B1 (ja) 2009-03-31 2010-06-09 Toto株式会社 固体電解質型燃料電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095611A (ja) * 2001-09-19 2003-04-03 Toyota Motor Corp 水素生成装置の起動方法
JP2004319420A (ja) 2003-02-25 2004-11-11 Kyocera Corp 燃料電池及びその運転方法
JP2004338975A (ja) * 2003-05-13 2004-12-02 Mitsubishi Kakoki Kaisha Ltd 水素製造装置の起動方法
JP2005317405A (ja) * 2004-04-30 2005-11-10 Kyocera Corp 燃料電池構造体の運転方法
JP2008243597A (ja) * 2007-03-27 2008-10-09 Kyocera Corp 燃料電池装置
JP2010238623A (ja) * 2009-03-31 2010-10-21 Toto Ltd 固体電解質型燃料電池
JP2011096635A (ja) * 2009-09-30 2011-05-12 Toto Ltd 固体電解質型燃料電池

Also Published As

Publication number Publication date
EP2624348A4 (en) 2015-12-02
EP2624348B1 (en) 2016-06-15
EP2624348A1 (en) 2013-08-07
US9214690B2 (en) 2015-12-15
US20130171534A1 (en) 2013-07-04
CN103119769A (zh) 2013-05-22
CN103119769B (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
JP4863171B2 (ja) 固体電解質型燃料電池
JP4761260B2 (ja) 固体電解質型燃料電池
JP6048662B2 (ja) 固体酸化物型燃料電池
WO2012043645A1 (ja) 燃料電池装置
JP5561655B2 (ja) 固体酸化物形燃料電池装置
WO2012043647A1 (ja) 固体酸化物形燃料電池装置
JP5741803B2 (ja) 固体酸化物形燃料電池装置
JP5618069B2 (ja) 固体酸化物形燃料電池装置
JP4868268B1 (ja) 固体酸化物型燃料電池
JP5682865B2 (ja) 固体酸化物形燃料電池装置
JP5618070B2 (ja) 固体酸化物形燃料電池装置
JP5696875B2 (ja) 固体電解質型燃料電池
JP2012079409A (ja) 燃料電池システム
WO2013046396A1 (ja) 固体電解質型燃料電池
JP5783370B2 (ja) 固体酸化物型燃料電池
JP5800273B2 (ja) 固体電解質型燃料電池
JP6041091B2 (ja) 固体酸化物型燃料電池
JP5505872B2 (ja) 固体電解質型燃料電池
JP5748054B2 (ja) 固体酸化物型燃料電池
JP5704333B2 (ja) 固体酸化物型燃料電池
JP5800281B2 (ja) 固体酸化物型燃料電池
JP2010238617A (ja) 固体電解質型燃料電池
WO2013046397A1 (ja) 固体電解質型燃料電池
JP5585931B2 (ja) 固体電解質型燃料電池
WO2013046395A1 (ja) 固体電解質型燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045420.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829200

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13823906

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011829200

Country of ref document: EP