WO2013046396A1 - 固体電解質型燃料電池 - Google Patents

固体電解質型燃料電池 Download PDF

Info

Publication number
WO2013046396A1
WO2013046396A1 PCT/JP2011/072401 JP2011072401W WO2013046396A1 WO 2013046396 A1 WO2013046396 A1 WO 2013046396A1 JP 2011072401 W JP2011072401 W JP 2011072401W WO 2013046396 A1 WO2013046396 A1 WO 2013046396A1
Authority
WO
WIPO (PCT)
Prior art keywords
current value
fuel cell
current
extractable
fuel
Prior art date
Application number
PCT/JP2011/072401
Other languages
English (en)
French (fr)
Inventor
大塚 俊治
勝久 土屋
重住 司
大江 俊春
中野 清隆
卓哉 松尾
Original Assignee
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto株式会社 filed Critical Toto株式会社
Priority to CN201180073698.4A priority Critical patent/CN103828109B/zh
Priority to PCT/JP2011/072401 priority patent/WO2013046396A1/ja
Priority to US14/347,990 priority patent/US9515335B2/en
Priority to EP11873354.2A priority patent/EP2763226A4/en
Publication of WO2013046396A1 publication Critical patent/WO2013046396A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04626Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell, and more particularly to a solid oxide fuel cell that generates variable power according to demand power.
  • Patent Document 1 describes a fuel cell power generator. This fuel cell is configured such that the electric power to be generated is changed according to the load.
  • FIG. 15 shows an example of a conventional system for supplying power to a house using a fuel cell.
  • the power consumed in the house 200 is covered by the fuel cell 202 and the system power 204.
  • the maximum power consumption consumed in a house is larger than the maximum rated power that can be generated by the fuel cell 202. Therefore, even in the house 200 that uses the fuel cell 202, the shortage is compensated for by the grid power 204.
  • Is supplied from the system power 204 in order to prevent the power generated by the fuel cell 202 from flowing backward to the grid power 204.
  • System power 204 is purchased power that is transmitted from the transmission line to the distribution board in the house. That is, the sum of the power generated by the fuel cell 202 and the system power 204 corresponds to the power consumption in the house 200.
  • the fuel cell 202 acquires a monitor signal of the power purchased by the house 200 from the demand power detector 206, and changes the power generated by the fuel cell 202 based on the monitor signal. That is, the fuel cell 202 determines a base current Ii representing a current to be generated by the fuel cell 202 based on the monitor signal acquired from the demand power detector 206 so that the base current Ii can be generated.
  • the amount of fuel supplied to the fuel cell module 208 is controlled. Base current Ii is set to a value corresponding to the maximum rated power of fuel cell 202 regardless of the power consumption of house 200.
  • the signal of the base current Ii instructing the power generation amount to the fuel cell module 208 is moderated by applying a filter 210 that performs integration processing or the like to the monitor signal so as to change very slowly compared to the change in power consumption. Determined to change.
  • the fuel cell 202 supplies the fuel cell module 208 with an amount of fuel corresponding to the base current Ii so that the fuel cell module 208 has a capability of generating the current of the base current Ii.
  • the inverter 212 extracts a direct current extraction current Ic from the fuel cell module 208, converts it into alternating current, and supplies it to the house 200.
  • the actual extraction current Ic that the inverter 212 takes out from the fuel cell module 208 is always set to be equal to or less than the value of the base current Ii so as not to exceed the power generation capacity of the fuel cell module 208.
  • the set current value is set via a delay setter. Updated to delay the increase of the set current value to prevent problems such as fuel exhaustion. Further, in this fuel cell power generator, when the set current value is updated, it is always changed by a predetermined subtraction current value or addition current value, so the rate of change for changing the set current value is always a constant change. Become a rate.
  • an object of the present invention is to provide a solid oxide fuel cell capable of improving power generation efficiency while reliably avoiding problems such as fuel exhaustion and enabling stable operation of the fuel cell module. .
  • the present invention provides a solid oxide fuel cell that generates variable power according to demand power, a fuel cell module that generates power with supplied fuel, and the fuel cell module.
  • a fuel supply means for supplying fuel, a demand power detection means for detecting demand power, a fuel supply amount by the fuel supply means based on the demand power detected by the demand power detection means, and a fuel cell module A controller that sets the maximum current value that can be extracted from the fuel cell module according to the state, and the current is extracted from the fuel cell module within the range that does not exceed the current value that can be extracted according to demand power.
  • the controller controls the amount of fuel supplied by the fuel supply means based on the demand power detected by the demand power detection means, and supplies fuel to the fuel cell module. Further, the controller sets an extractable current value that is the maximum current value that can be extracted from the fuel cell module according to the state of the fuel cell module.
  • the inverter takes out from the fuel cell module in a range in which the current according to the demand power does not exceed the current value that can be taken out.
  • the controller increases the extractable current value at a predetermined first current increase rate, while the actual extract current detected by the extract current detecting means decreases. The possible current value is rapidly reduced.
  • the controller controls the fuel supply means so that the fuel supply amount is decreased after the decrease in the extractable current value so as to follow the decrease in the extractable current value. Further, the controller increases the second current larger than the first current increase rate when the demand power starts to increase in a state where there is a margin in the fuel supply amount after suddenly decreasing the available current value. Increase the current that can be taken out at the rate of change.
  • the inverter is controlled with high responsiveness so that a necessary current can be taken out from the fuel cell module according to rapidly changing demand power.
  • the controller controls the fuel supply means so that the fuel supply amount is reduced later than the decrease in the extractable current value even when the extractable current value is suddenly reduced. A sudden temperature drop of the fuel cell module can be avoided.
  • the controller increases the current value that can be taken out at a second current increase rate that is larger than the normal current increase rate. It can be increased, and the frequency of reliance on commercial power can be reduced to save energy.
  • the controller increases the current value that can be taken out at a second current increase rate that is larger than the normal current increase rate. It can be increased, and the frequency of reliance on commercial power can be reduced to save energy.
  • when creating a state where there is a margin of fuel and speeding up the power extraction of the inverter within that range if there is a large deviation between the current value that can be extracted and the actual current value, demand will recover rapidly.
  • the inverter tries to take out the current abruptly, but if this is allowed, a current overshoot that exceeds the current that can be taken out occurs due to control overshoot, etc., causing damage to the cell.
  • the current that can be taken out of the inverter can be managed at a high level so that both the followability to the demand power and the burden on the cell can be achieved at a high level. Since the current that can be taken out is increased quickly by the amount that has been obtained, the new problem can be reliably solved.
  • the controller when the actual extraction current decreases, the controller rapidly decreases the extractable current value so as to follow the decrease in the actual extraction current, and then the current corresponding to the fuel supply amount and the extraction Fuel supply when there is a difference of more than a predetermined amount during the predetermined fuel decrease standby period, or when the difference between the current corresponding to the fuel supply amount and the current that can be taken out increases.
  • the fuel supply means is controlled so as to reduce the amount.
  • the fuel supply amount is delayed and lowered, so that the followability at the time of increase accompanying the recovery of demand power can be improved. If there is a large deviation between the fuel supply amount and the current that can be taken out, or if the state in which the fuel supply amount is not reduced becomes longer, it can be said that the fuel is wasted. According to the present invention configured as described above, a deviation of a predetermined amount or more between the current corresponding to the fuel supply amount and the extractable current value during the standby period for suppressing the fuel decrease after the extractable current value is reduced.
  • the controller reduces the extractable current value and then delays the fuel supply amount so as to decrease the fuel supply amount. While the supply means is controlled, when the difference between the actual extraction current and the extractable current value is a predetermined amount or less, the extractable current value is not lowered.
  • the extractable current value when the difference between the actual extraction current and the extractable current value is a predetermined amount or less, the extractable current value is not lowered. This is because the deviation is small even if the inverter follows the recovery of demand power without lowering the extractable current value if the difference between the actual extractable current value and the extractable current value is small. Since there is no problem such as overshoot and the influence on the cell can be avoided, there is an excellent practical effect that the follow-up to the demand power can be further accelerated.
  • the controller reduces the extractable current value to the actual extraction current when the extractable current value is reduced.
  • the decrease in the fuel supply amount is delayed and the extractable current value is reduced to the minimum required actual extraction current value. Because it can be controlled by controlling the current that can be taken out, the inverter can create a state where the amount of the drawn current per unit time cannot be freely performed, so damage to the cell due to control overshoot that tends to occur in a large deviation state It can be completely avoided.
  • the controller rapidly decreases the extractable current value so as to follow the decrease in the actual extraction current, and then the fuel supply amount is maintained constant. If the demand power starts to increase during the period, the current value that can be taken out is increased at a second current increase rate greater than the first current increase rate.
  • the power demand is reduced when the fuel supply amount is kept constant after the extractable current value is sharply decreased so as to follow the decrease in the actual extraction current.
  • the current that can be taken out is increased at a large rate of change in current, so that the current that can be taken out can be increased rapidly with a certain amount of fuel supply.
  • solid oxide fuel cell of the present invention a highly practical solid oxide type capable of achieving both energy saving performance and improved load followability for demand power at a high level while reducing the burden on the fuel cell module.
  • a fuel cell can be provided.
  • FIG. 1 is an overall configuration diagram showing a fuel cell device according to an embodiment of the present invention. It is front sectional drawing which shows the fuel cell module of the fuel cell apparatus by one Embodiment of this invention.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. It is a fragmentary sectional view showing a fuel cell unit of a fuel cell device by one embodiment of the present invention. It is a perspective view which shows the fuel cell stack of the fuel cell apparatus by one Embodiment of this invention.
  • 1 is a block diagram showing a fuel cell device according to an embodiment of the present invention. It is a time chart which shows the operation
  • FIG. 1 is an overall configuration diagram showing a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
  • a solid oxide fuel cell (SOFC) 1 according to an embodiment of the present invention includes a fuel cell module 2 and an auxiliary unit 4.
  • the fuel cell module 2 includes a housing 6, and a sealed space 8 is formed inside the housing 6 via a heat insulating material (not shown, but the heat insulating material is not an essential component and may not be necessary). Is formed. In addition, you may make it not provide a heat insulating material.
  • a fuel cell assembly 12 that performs a power generation reaction with fuel gas and an oxidant (air) is disposed in a power generation chamber 10 that is a lower portion of the sealed space 8.
  • the fuel cell assembly 12 includes ten fuel cell stacks 14 (see FIG. 5), and the fuel cell stack 14 includes 16 fuel cell unit 16 (see FIG. 4). Yes.
  • the fuel cell assembly 12 has 160 fuel cell units 16, and all of these fuel cell units 16 are connected in series.
  • a combustion chamber 18 is formed above the above-described power generation chamber 10 in the sealed space 8 of the fuel cell module 2.
  • this combustion chamber 18 the remaining fuel gas that has not been used for the power generation reaction and the remaining oxidant (air) ) And combusted to generate exhaust gas.
  • a reformer 20 for reforming the fuel gas is disposed above the combustion chamber 18, and the reformer 20 is heated to a temperature at which a reforming reaction can be performed by the combustion heat of the residual gas.
  • an air heat exchanger 22 is disposed above the reformer 20 to heat the air by receiving heat from the reformer 20 and suppress a temperature drop of the reformer 20.
  • the auxiliary unit 4 stores a pure water tank 26 that stores water from a water supply source 24 such as tap water and uses the filter to obtain pure water, and a water flow rate that adjusts the flow rate of the water supplied from the water storage tank.
  • An adjustment unit 28 (such as a “water pump” driven by a motor) is provided.
  • the auxiliary unit 4 also includes a gas shut-off valve 32 that shuts off the fuel gas supplied from a fuel supply source 30 such as city gas, a desulfurizer 36 for removing sulfur from the fuel gas, and a flow rate of the fuel gas.
  • a fuel flow rate adjusting unit 38 (such as a “fuel pump” driven by a motor) is provided.
  • the auxiliary unit 4 includes an electromagnetic valve 42 that shuts off air that is an oxidant supplied from the air supply source 40, a reforming air flow rate adjusting unit 44 that adjusts the flow rate of air, and a power generation air flow rate adjusting unit. 45 (such as an “air blower” driven by a motor), a first heater 46 for heating the reforming air supplied to the reformer 20, and a second for heating the power generating air supplied to the power generation chamber And a heater 48.
  • the first heater 46 and the second heater 48 are provided in order to efficiently raise the temperature at startup, but may be omitted.
  • a hot water production apparatus 50 to which exhaust gas is supplied is connected to the fuel cell module 2.
  • the hot water production apparatus 50 is supplied with tap water from the water supply source 24, and the tap water is heated by the heat of the exhaust gas and supplied to a hot water storage tank of an external hot water heater (not shown).
  • the fuel cell module 2 is provided with a control box 52 for controlling the amount of fuel gas supplied and the like. Furthermore, the fuel cell module 2 is connected to an inverter 54 that is a power extraction unit (power conversion unit) for supplying the power generated by the fuel cell module to the outside.
  • FIG. 2 is a side sectional view showing a solid oxide fuel cell (SOFC) fuel cell module according to an embodiment of the present invention
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • the fuel cell assembly 12, the reformer 20, and the air heat exchange are sequentially performed from below.
  • a vessel 22 is arranged.
  • the reformer 20 is provided with a pure water introduction pipe 60 for introducing pure water and a reformed gas introduction pipe 62 for introducing reformed fuel gas and reforming air to the upstream end side thereof.
  • a pure water introduction pipe 60 for introducing pure water
  • a reformed gas introduction pipe 62 for introducing reformed fuel gas and reforming air to the upstream end side thereof.
  • an evaporator 20a and a reformer 20b are formed in this order from the upstream side, and the evaporator 20a and the reformer 20b are filled with a reforming catalyst.
  • the fuel gas and air mixed with the steam (pure water) introduced into the reformer 20 are reformed by the reforming catalyst filled in the reformer 20.
  • the reforming catalyst a catalyst obtained by imparting nickel to the alumina sphere surface or a catalyst obtained by imparting ruthenium to the alumina sphere surface is appropriately used.
  • a fuel gas supply pipe 64 is connected to the downstream end side of the reformer 20, and the fuel gas supply pipe 64 extends downward and further in an manifold 66 formed below the fuel cell assembly 12. It extends horizontally.
  • a plurality of fuel supply holes 64 b are formed in the lower surface of the horizontal portion 64 a of the fuel gas supply pipe 64, and the reformed fuel gas is supplied into the manifold 66 from the fuel supply holes 64 b.
  • a lower support plate 68 having a through hole for supporting the fuel cell stack 14 described above is attached above the manifold 66, and the fuel gas in the manifold 66 flows into the fuel cell unit 16. Supplied.
  • the air heat exchanger 22 includes an air aggregation chamber 70 on the upstream side and two air distribution chambers 72 on the downstream side.
  • the air aggregation chamber 70 and the air distribution chamber 72 include six air flow path tubes 74. Connected by.
  • three air flow path pipes 74 form a set (74a, 74b, 74c, 74d, 74e, 74f), and the air in the air collecting chamber 70 is in each set. It flows into each air distribution chamber 72 from the air flow path pipe 74.
  • the air flowing through the six air flow path pipes 74 of the air heat exchanger 22 is preheated by exhaust gas that burns and rises in the combustion chamber 18.
  • An air introduction pipe 76 is connected to each of the air distribution chambers 72, the air introduction pipe 76 extends downward, and the lower end side communicates with the lower space of the power generation chamber 10, and the air that has been preheated in the power generation chamber 10. Is introduced.
  • an exhaust gas chamber 78 is formed below the manifold 66. Further, as shown in FIG. 3, an exhaust gas passage 80 extending in the vertical direction is formed inside the front surface 6 a and the rear surface 6 b which are surfaces along the longitudinal direction of the housing 6, and the upper end of the exhaust gas chamber passage 80 is formed. The side communicates with the space in which the air heat exchanger 22 is disposed, and the lower end side communicates with the exhaust gas chamber 78. Further, an exhaust gas discharge pipe 82 is connected to substantially the center of the lower surface of the exhaust gas chamber 78, and the downstream end of the exhaust gas discharge pipe 82 is connected to the above-described hot water producing apparatus 50 shown in FIG. As shown in FIG. 2, an ignition device 83 for starting combustion of fuel gas and air is provided in the combustion chamber 18.
  • FIG. 4 is a partial cross-sectional view showing a fuel cell unit of a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
  • the fuel cell unit 16 includes a fuel cell 84 and inner electrode terminals 86 respectively connected to the vertical ends of the fuel cell 84.
  • the fuel cell 84 is a tubular structure extending in the vertical direction, and includes a cylindrical inner electrode layer 90 that forms a fuel gas flow path 88 therein, a cylindrical outer electrode layer 92, an inner electrode layer 90, and an outer side.
  • An electrolyte layer 94 is provided between the electrode layer 92 and the electrode layer 92.
  • the inner electrode layer 90 is a fuel electrode through which fuel gas passes and becomes a ( ⁇ ) electrode, while the outer electrode layer 92 is an air electrode in contact with air and becomes a (+) electrode.
  • the upper portion 90 a of the inner electrode layer 90 includes an outer peripheral surface 90 b and an upper end surface 90 c exposed to the electrolyte layer 94 and the outer electrode layer 92.
  • the inner electrode terminal 86 is connected to the outer peripheral surface 90b of the inner electrode layer 90 through a conductive sealing material 96, and is further in direct contact with the upper end surface 90c of the inner electrode layer 90, thereby Electrically connected.
  • a fuel gas passage 98 communicating with the fuel gas passage 88 of the inner electrode layer 90 is formed at the center of the inner electrode terminal 86.
  • the inner electrode layer 90 includes, for example, a mixture of Ni and zirconia doped with at least one selected from rare earth elements such as Ca, Y, and Sc, and Ni and ceria doped with at least one selected from rare earth elements.
  • the mixture is formed of at least one of Ni and a mixture of lanthanum garade doped with at least one selected from Sr, Mg, Co, Fe, and Cu.
  • the electrolyte layer 94 includes, for example, zirconia doped with at least one selected from rare earth elements such as Y and Sc, ceria doped with at least one selected from rare earth elements, lanthanum gallate doped with at least one selected from Sr and Mg, Formed from at least one of the following.
  • the outer electrode layer 92 includes, for example, lanthanum manganite doped with at least one selected from Sr and Ca, lanthanum ferrite doped with at least one selected from Sr, Co, Ni and Cu, Sr, Fe, Ni and Cu. It is formed from at least one of lanthanum cobaltite doped with at least one selected from the group consisting of silver and silver.
  • FIG. 5 is a perspective view showing a fuel cell stack of a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
  • the fuel cell stack 14 includes 16 fuel cell units 16, and the lower end side and the upper end side of these fuel cell units 16 are a ceramic lower support plate 68 and an upper side, respectively. It is supported by the support plate 100.
  • the lower support plate 68 and the upper support plate 100 are formed with through holes 68a and 100a through which the inner electrode terminal 86 can pass.
  • the current collector 102 includes a fuel electrode connection portion 102a that is electrically connected to an inner electrode terminal 86 attached to the inner electrode layer 90 that is a fuel electrode, and an entire outer peripheral surface of the outer electrode layer 92 that is an air electrode. And an air electrode connecting portion 102b electrically connected to each other.
  • the air electrode connecting portion 102b is formed of a vertical portion 102c extending in the vertical direction on the surface of the outer electrode layer 92 and a plurality of horizontal portions 102d extending in a horizontal direction along the surface of the outer electrode layer 92 from the vertical portion 102c. Has been.
  • the fuel electrode connection portion 102a is linearly directed obliquely upward or obliquely downward from the vertical portion 102c of the air electrode connection portion 102b toward the inner electrode terminal 86 positioned in the vertical direction of the fuel cell unit 16. It extends.
  • the inner electrode terminals 86 at the upper end and the lower end of the two fuel cell units 16 located at the ends of the fuel cell stack 14 are external terminals, respectively. 104 is connected. These external terminals 104 are connected to the external terminals 104 (not shown) of the fuel cell unit 16 at the end of the adjacent fuel cell stack 14, and as described above, the 160 fuel cell units 16 Everything is connected in series.
  • FIG. 6 is a block diagram illustrating a solid oxide fuel cell (SOFC) according to an embodiment of the present invention.
  • the solid oxide fuel cell 1 includes a control unit 110, and the control unit 110 includes operation buttons such as “ON” and “OFF” for operation by the user.
  • a device 112 a display device 114 for displaying various data such as a power generation output value (wattage), and a notification device 116 for issuing an alarm (warning) in an abnormal state are connected.
  • the notification device 116 may be connected to a remote management center and notify the management center of an abnormal state.
  • the combustible gas detection sensor 120 is for detecting a gas leak, and is attached to the fuel cell module 2 and the auxiliary unit 4.
  • the CO detection sensor 122 detects whether or not CO in the exhaust gas originally discharged to the outside through the exhaust gas passage 80 or the like leaks to an external housing (not shown) that covers the fuel cell module 2 and the auxiliary unit 4. Is to do.
  • the hot water storage state detection sensor 124 is for detecting the temperature and amount of hot water in a water heater (not shown).
  • the power state detection sensor 126 is for detecting the current and voltage of the inverter 54 and the distribution board (not shown).
  • the power generation air flow rate detection sensor 128 is for detecting the flow rate of power generation air supplied to the power generation chamber 10.
  • the reforming air flow sensor 130 is for detecting the flow rate of the reforming air supplied to the reformer 20.
  • the fuel flow sensor 132 is for detecting the flow rate of the fuel gas supplied to the reformer 20.
  • the water flow rate sensor 134 is for detecting the flow rate of pure water (steam) supplied to the reformer 20.
  • the water level sensor 136 is for detecting the water level of the pure water tank 26.
  • the pressure sensor 138 is for detecting the pressure on the upstream side outside the reformer 20.
  • the exhaust temperature sensor 140 is for detecting the temperature of the exhaust gas flowing into the hot water production apparatus 50.
  • the power generation chamber temperature sensor 142 is provided on the front side and the back side in the vicinity of the fuel cell assembly 12, and detects the temperature in the vicinity of the fuel cell stack 14 to thereby detect the fuel cell stack. 14 (ie, the fuel cell 84 itself) is estimated.
  • the combustion chamber temperature sensor 144 is for detecting the temperature of the combustion chamber 18.
  • the exhaust gas chamber temperature sensor 146 is for detecting the temperature of the exhaust gas in the exhaust gas chamber 78.
  • the reformer temperature sensor 148 is for detecting the temperature of the reformer 20, and calculates the temperature of the reformer 20 from the inlet temperature and the outlet temperature of the reformer 20.
  • the outside air temperature sensor 150 is for detecting the temperature of the outside air when the solid oxide fuel cell (SOFC) is disposed outdoors. Further, a sensor for measuring the humidity or the like of the outside air may be provided.
  • SOFC solid oxide fuel cell
  • Signals from these sensors are sent to the control unit 110, and the control unit 110, based on data based on these signals, the water flow rate adjustment unit 28, the fuel flow rate adjustment unit 38, the reforming air flow rate adjustment unit 44, A control signal is sent to the power generation air flow rate adjusting unit 45 to control each flow rate in these units.
  • FIG. 7 is a time chart showing the operation at the time of startup of the solid oxide fuel cell (SOFC) according to one embodiment of the present invention.
  • reforming air is supplied from the reforming air flow rate adjustment unit 44 to the reformer 20 of the fuel cell module 2 via the first heater 46.
  • the power generation air is supplied from the power generation air flow rate adjustment unit 45 to the air heat exchanger 22 of the fuel cell module 2 via the second heater 48, and this power generation air is supplied to the power generation chamber 10 and the combustion chamber.
  • the fuel gas is also supplied from the fuel flow rate adjustment unit 38, and the fuel gas mixed with the reforming air passes through the reformer 20, the fuel cell stack 14, and the fuel cell unit 16, and It reaches the combustion chamber 18.
  • the ignition device 83 is ignited to burn the fuel gas and air (reforming air and power generation air) in the combustion chamber 18.
  • Exhaust gas is generated by the combustion of the fuel gas and air, and the power generation chamber 10 is warmed by the exhaust gas, and when the exhaust gas rises in the sealed space 8 of the fuel cell module 2, The fuel gas containing the reforming air is warmed, and the power generation air in the air heat exchanger 22 is also warmed.
  • the fuel gas mixed with the reforming air is supplied to the reformer 20 by the fuel flow rate adjusting unit 38 and the reforming air flow rate adjusting unit 44.
  • the heated fuel gas is supplied to the lower side of the fuel cell stack 14 through the fuel gas supply pipe 64, whereby the fuel cell stack 14 is heated from below, and the combustion chamber 18 also has the fuel gas and air.
  • the fuel cell stack 14 is also heated from above, and as a result, the fuel cell stack 14 can be heated substantially uniformly in the vertical direction. Even if the partial oxidation reforming reaction POX proceeds, the combustion reaction between the fuel gas and air continues in the combustion chamber 18.
  • the reformer temperature sensor 148 detects that the reformer 20 has reached a predetermined temperature (for example, 600 ° C.) after the partial oxidation reforming reaction POX is started, the water flow rate adjustment unit 28 and the fuel flow rate adjustment unit 38 are detected.
  • the reforming air flow rate adjusting unit 44 supplies a gas in which fuel gas, reforming air, and water vapor are mixed in advance to the reformer 20.
  • an autothermal reforming reaction ATR in which the partial oxidation reforming reaction POX described above and a steam reforming reaction SR described later are used proceeds. Since the autothermal reforming reaction ATR is thermally balanced internally, the reaction proceeds in the reformer 20 in a thermally independent state.
  • the reformer temperature sensor 146 detects that the reformer 20 has reached a predetermined temperature (for example, 700 ° C.) after the start of the autothermal reforming reaction ATR shown in Formula (2), the reforming air flow rate The supply of reforming air by the adjustment unit 44 is stopped, and the supply of water vapor by the water flow rate adjustment unit 28 is increased. As a result, the reformer 20 is supplied with a gas that does not contain air and contains only fuel gas and water vapor, and the steam reforming reaction SR of formula (3) proceeds in the reformer 20.
  • a predetermined temperature for example, 700 ° C.
  • this steam reforming reaction SR is an endothermic reaction, the reaction proceeds while maintaining a heat balance with the combustion heat from the combustion chamber 18. At this stage, since the fuel cell module 2 is in the final stage of start-up, the power generation chamber 10 is heated to a sufficiently high temperature. Therefore, even if the endothermic reaction proceeds, the power generation chamber 10 is greatly reduced in temperature. There is nothing. Even if the steam reforming reaction SR proceeds, the combustion reaction continues in the combustion chamber 18.
  • the partial oxidation reforming reaction POX, the autothermal reforming reaction ATR, and the steam reforming reaction SR proceed in sequence, so that the inside of the power generation chamber 10 The temperature gradually increases.
  • the circuit including the fuel cell module 2 is closed, and the fuel cell Power generation by the module 2 is started, so that a current flows in the circuit. Due to the power generation of the fuel cell module 2, the fuel cell 84 itself also generates heat, and the temperature of the fuel cell 84 also rises.
  • the rated temperature at which the fuel cell module 2 is operated becomes, for example, 600 ° C. to 800 ° C.
  • FIG. 8 is a time chart showing the operation when the solid oxide fuel cell (SOFC) is stopped according to this embodiment.
  • the fuel flow rate adjustment unit 38 and the water flow rate adjustment unit 28 are operated to supply fuel gas and water vapor to the reformer 20. Reduce the amount.
  • the amount of fuel gas and water vapor supplied to the reformer 20 is reduced, and at the same time, the fuel cell module for generating air by the reforming air flow rate adjusting unit 44
  • the supply amount into 2 is increased, the fuel cell assembly 12 and the reformer 20 are cooled by air, and these temperatures are lowered. Thereafter, when the temperature of the reformer 20 decreases to a predetermined temperature, for example, 400 ° C., the supply of fuel gas and steam to the reformer 20 is stopped, and the steam reforming reaction SR of the reformer 20 is ended. .
  • This supply of power generation air continues until the temperature of the reformer 20 decreases to a predetermined temperature, for example, 200 ° C., and when this temperature is reached, the power generation air from the power generation air flow rate adjustment unit 45 is supplied. Stop supplying.
  • the steam reforming reaction SR by the reformer 20 and the cooling by the power generation air are used in combination.
  • the operation of the fuel cell module can be stopped.
  • the solid oxide fuel cell 1 of the present embodiment includes a control unit 110 that is a fuel cell controller and an inverter control unit 111 that is an inverter controller.
  • the control unit 110 includes first demand power detection means 110a, and detects demand power based on the demand power monitor signal Ms input from the demand power detector 206 (FIG. 15).
  • the total demand power consumed in the facility such as the house 200 (FIG. 15) is covered by the grid power supplied from the commercial power source and the power supplied from the solid oxide fuel cell 1.
  • the system current purchased current
  • the AC voltage at the output end obtained from the inverter 54 and the power generation interconnection output power are obtained.
  • electric power for demand can be obtained together with grid power and power generation interconnection.
  • the system power of the total demand power is input to the control unit 110 as the demand power monitor signal Ms.
  • the control unit may use the total demand power as the demand power monitor signal. it can.
  • the control unit 110 is configured to control the water flow rate adjustment unit 28, the fuel flow rate adjustment unit 38, the reforming air flow rate adjustment unit 44, and the like based on the demand power monitor signal Ms and the like. Further, the control unit 110 is configured to set an extractable current value Iinv based on input signals from various sensors and the demand power monitor signal Ms, and output this value to the inverter control unit 111. Specifically, the control unit 110 includes a microprocessor, a memory, a program for operating these, and the like.
  • the inverter control unit 111 includes second demand power detection means 111a, and detects demand power based on the demand power monitor signal Ms input from the demand power detector 206 (FIG. 15).
  • the system current purchased current
  • the demand power monitor signal Ms as the monitor signal, so that the output by the voltage detection means provided at the output terminal obtained by the inverter 54 is obtained.
  • demand power is obtained together with the system power / power generation connection power. Also, the information can be transmitted to the control unit 110.
  • the inverter control unit 111 controls the inverter 54 based on the demand power monitor signal Ms and the extractable current value Iinv input from the control unit 110, and from the fuel cell module 2 within a range not exceeding the extractable current value Iinv.
  • the actual extraction current Ic is configured to be extracted.
  • the inverter control unit 111 includes a microprocessor, a memory, a program for operating these, and the like.
  • the control unit 110 includes an extractable current value setting unit that sequentially sets an extractable current value Iinv that is the maximum current that can be extracted from the fuel cell module 2 at that time according to the state of the fuel cell module 2. .
  • the inverter control unit 111 controls the inverter 54 independently of the control unit 110, and extracts the actual extraction current Ic from the fuel cell module 2 within a range not exceeding the extractable current value Iinv input from the control unit 110. 200 (FIG. 15).
  • the control cycle of the control unit 110 is 500 [msec]
  • the control cycle of the inverter control unit 111 is 1 [msec] or less.
  • control unit 110 is operated with a sufficient control cycle necessary to control the slow-responsive fuel cell module 2, and the inverter control unit 111 responds to the rapidly changing power demand from the inverter 54. It is operated with a short control cycle so that power can be extracted. Further, the control of the control unit 110 and the inverter control unit 111 is not synchronized, and the inverter control unit 111 controls the control unit based on the extractable current value Iinv input from the control unit 110 and the demand power monitor signal Ms. Inverter 54 is controlled independently of 110.
  • FIG. 9 is a control table for setting the extractable current value Iinv by the control unit 110.
  • FIGS. 10 and 11 are flowcharts for determining the extractable current value Iinv by applying the control table shown in FIG.
  • the control unit 110 includes a power generation chamber temperature Tfc, a power generation voltage Vdc output from the fuel cell module 2, a system power Wl that is power supplied from a commercial power source to a facility such as a house, and an inverter 54.
  • the increase, decrease, or maintenance of the extractable current value Iinv is determined based on the grid power Winv that is output from the current value, the current value of the extractable current value Iinv, and the fuel supply current value If.
  • the power generation chamber temperature Tfc is the temperature in the power generation chamber 10 in which the fuel cell unit 16 is accommodated, and is detected by the power generation chamber temperature sensor 142 serving as temperature detection means and input to the control unit 110.
  • a temperature that is an index of the power generation capacity of the fuel cell module 2 such as the power generation chamber temperature Tfc, is referred to as a “temperature of the fuel cell module”.
  • the generated voltage Vdc is an output voltage output from the fuel cell module 2.
  • the system power Wl is the power supplied from the commercial power supply to the facility such as a house, and corresponds to the power obtained by subtracting the power supplied by the fuel cell from the total demand power of the facility. Detection is based on the signal Ms.
  • the interconnection power Winv is electric power output from the inverter 54.
  • the electric power actually extracted from the fuel cell module 2 to the inverter 54 is detected by the electric power state detection sensor 126, and electric power converted from this electric power is output from the inverter 54.
  • the actual extraction current Ic [A] actually output from the fuel cell module 2 is obtained based on the power detected by the power state detection sensor 126. Therefore, the power state detection sensor 126 functions as an extraction current detection unit.
  • the fuel supply current value If is a current value used as a basis for obtaining the fuel supply amount, and is a current value that can be generated by the fuel supply amount (L / min) supplied to the fuel cell module 2. Equivalent to. Therefore, the fuel supply current value If is always set so as not to fall below the extractable current value Iinv.
  • the control unit 110 determines which of the numbers 1 to 9 in FIG. 9 corresponds to the current state of the fuel cell module 2, and changes the extractable current value Iinv shown in the rightmost column of FIG. Perform maintenance.
  • the control unit 110 sets the extractable current value Iinv to 5 [mA] as shown at the right end of the No. 1 column. Change to lower.
  • the control cycle of the control unit 110 is 500 [msec]. Therefore, when the condition in the number 1 column continues, the extractable current value Iinv is 500 [msec]. It decreases by 5 [mA] every [msec]. In this case, the extractable current value Iinv is decreased at a current decrease rate of 10 [mA / sec].
  • the control unit 110 sets the extractable current value Iinv to 10 [mA as at the right end of the number 8 column. ] Change to increase. Therefore, when the state in which the condition of the number 8 column is satisfied continues, the extractable current value Iinv is increased at a change rate of 20 [mA / sec] which is the first current increase change rate.
  • reference symbols A to D in FIGS. 10 and 11 indicate processing shift destinations.
  • the flow processing shifts from the reference “C” in FIG. 10 to the reference “C” in FIG. 11.
  • the control unit 110 does not meet a plurality of predetermined increase regulation conditions even in a situation where the extractable current value Iinv should be increased, such as when demand power is rising. Only, the extractable current value Iinv is increased.
  • the increase regulation condition includes a plurality of current reduction conditions and current maintenance conditions. When these conditions are satisfied, the extractable current value Iinv is reduced or maintained.
  • the plurality of current reduction conditions (steps S5, S7, S9, S11, and S13 in FIG. 10) have priority over the plurality of current maintenance conditions (steps S15, S16, S17, S18, and S19 in FIG. 11). Is applied to.
  • step S1 in FIG. 10 is a step of determining whether or not a very large deviation has occurred between the extractable current value Iinv and the actual extractable current value Ic, and between them is more than 1000 [mA]. It is determined whether a large deviation has been born.
  • a case in which a deviation in which the difference between the extractable current value Iinv and the actual extractable current value Ic is larger than 1000 [mA] is first generated in a short control cycle is that the inverter 54 has a sudden increase in the total demand power.
  • the process proceeds to step S2 on the assumption that there is a deviation due to a slight decrease or a sudden decrease in the actual extracted power Ic for some reason.
  • step S2 it is determined whether or not the system power Wl is less than 50 [W].
  • the system power Wl is less than 50 [W]
  • the output power from the inverter 54 flows into the commercial power source "reverse power flow (a state where the system power W1 becomes negative). "Is likely to occur. Therefore, it can be determined that the inverter 54 is in a state where the actual extraction current value Ic is suddenly lowered in order to prevent a reverse power flow from being caused by a very large drop in the total important power by the determination of S2 and the determination of S1.
  • the value of the system power W1 is set to 50W in S2 because a margin of 50W is provided so that a reverse power flow should not occur.
  • step S3 when it is determined YES in both S1 and S2, that is, when reverse power flow prevention control is performed by the inverter 54 due to a very large drop in the total important power, in step S3, the control unit 110 The value of the extractable current value Iinv instructed to the control unit 111 is rapidly reduced to the value of the actual extraction current Ic (corresponding to number 6 in FIG. 9).
  • No. 54 is regulated so as to arbitrarily increase the extraction current from the current actual extraction current value Ic. If there is a sudden drop in the total power demand, there is a high possibility that the total power demand will rapidly recover (increase) soon after that, but it will exceed 1000 [mA]. If there is a large amount of deviation and if the inverter 54 abruptly performs power extraction to meet the recovered total demand power, the power that erroneously exceeds the power demand or the current value linv that can be extracted due to control overshoot or the like. This is a device that can prevent the inverter 54 from taking out.
  • the inverter 54 can extract at a place higher than the actual extraction current value Ic.
  • the power is allowed to be taken out quickly and freely up to the current value linv. This is a further contrivance that allows for quick follow-up of the recovery of the total important power, because such a small deviation does not cause problems such as excessive power extraction due to overshoot.
  • step S4 it is determined whether or not the current value Iinv that can be taken out is greater than 1 [A]. When the extractable current value Iinv is larger than 1 [A], the process proceeds to step S5, and it is determined whether or not the generated voltage Vdc is lower than 95 [V]. When the generated voltage Vdc is lower than 95 [V], the process proceeds to step S6.
  • step S6 the control unit 110 decreases the value of the extractable current value Iinv instructed to the inverter control unit 111 by 10 [mA] (corresponding to number 4 in FIG. 9).
  • the one-time process in the flowcharts of FIGS. 10 and 11 ends.
  • the process of step S6 is continuously executed every time the flowchart of FIG. 10 is executed, the extractable current value Iinv is decreased at a current decrease change rate of 20 [mA / sec]. .
  • the power generation voltage Vdc is lower than 95 [V]
  • the current value Iinv By reducing the current value Iinv, the current taken out by the inverter 54 is suppressed, and the burden on the fuel cell module 2 is reduced.
  • step S7 it is determined whether or not the interconnection power Winv exceeds 710 [W].
  • step S8 the control unit 110 sets the value of the extractable current value Iinv instructed to the inverter control unit 111 to 5 [mA]. Decrease (corresponding to number 5 in FIG. 9). That is, when the interconnection power Winv exceeds 710 [W], since the output power from the fuel cell module 2 exceeds the rated power, the current taken out from the fuel cell module 2 is reduced to reduce the rated power. Do not exceed.
  • step S8 Upon completion of the process in step S8, the one-time process in the flowcharts of FIGS. 10 and 11 ends.
  • the process of step S8 is continuously executed every time the flowchart of FIG. 10 is executed, the extractable current value Iinv is decreased at a current decrease change rate of 10 [mA / sec]. .
  • the control unit 110 changes the extractable current value Iinv so that the change rate at which the extractable current value Iinv is reduced varies depending on the current decrease condition among the plurality of current decrease conditions.
  • step S9 it is determined whether or not the power generation chamber temperature Tfc exceeds 850 [° C.].
  • the control unit 110 sets the value of the extractable current value Iinv instructed to the inverter control unit 111 to 5 [mA]. Decrease (corresponding to number 2 in FIG. 9). That is, when the power generation chamber temperature Tfc exceeds 850 [° C.], the fuel cell module 2 exceeds the proper operating temperature, and therefore the value of the current value Iinv that can be taken out is reduced to reduce the temperature. wait.
  • step S10 Upon completion of the process in step S10, the one-time process in the flowcharts of FIGS. 10 and 11 ends.
  • the process of step S10 is continuously executed every time the flowchart of FIG. 10 is executed, the extractable current value Iinv is decreased at a current decrease rate of 10 [mA / sec]. .
  • step S11 it is determined whether or not the power generation chamber temperature Tfc is lower than 550 [° C.].
  • step S12 the control unit 110 decreases the value of the extractable current value Iinv instructed to the inverter control unit 111 by 5 [mA]. (Corresponding to number 3 in FIG. 9).
  • step S12 the one-time process in the flowcharts of FIGS. 10 and 11 ends.
  • the process of step S12 is continuously executed every time the flowchart of FIG. 10 is executed, the extractable current value Iinv is decreased at a current decrease rate of 10 [mA / sec]. .
  • step S13 it is determined whether or not the difference between the extractable current value Iinv and the actual extract current Ic exceeds 400 [mA] and the extractable current value Iinv exceeds 1 [A]. If the difference between the extractable current value Iinv and the actual extract current Ic exceeds 400 [mA] and the extractable current value Iinv exceeds 1 [A], the process proceeds to step S14.
  • Unit 110 decreases the value of extractable current value Iinv instructed to inverter control unit 111 by 5 [mA] (corresponding to number 1 in FIG. 9).
  • step S14 the one-time process in the flowcharts of FIGS. 10 and 11 ends.
  • the extractable current value Iinv is decreased at a current decrease rate of 10 [mA / sec]. .
  • control unit 110 is also in a situation where the demand power is increasing in the case where any one of the plurality of current reduction conditions (steps S5, S7, S9, S11, and S13 in FIG. 10) is applicable.
  • the extractable current value Iinv is decreased (steps S6, S8, S10, S12, S14).
  • step S15 it is determined whether or not the difference between the extractable current value Iinv and the actual extraction current Ic is 300 [mA] or less.
  • step S16 whether or not the generated voltage Vdc is 100 [V] or more.
  • step S17 it is determined whether or not the interconnection power Winv is 690 [W] or less.
  • step S18 whether or not the power generation room temperature Tfc is 600 [° C.] or more.
  • step S19 it is determined whether or not the system power W1 exceeds 40 [W]. If all of these conditions are satisfied, the process proceeds to step S20. If any of these conditions is not satisfied (corresponding to number 9 in FIG. 9), the process proceeds to step S21. In step S21, the value of the extractable current value Iinv is not changed and is maintained at the previous value, and one process of the flowcharts of FIGS. 10 and 11 ends.
  • the extractable current value Iinv is kept constant if the predetermined condition is not satisfied ( Step S21 in FIG. Further, focusing on the power generation chamber temperature Tfc, when the power generation chamber temperature Tfc exceeds the upper limit threshold value of 850 [° C.], the extractable current value Iinv is decreased (steps S9 and S10 in FIG. 10). When the power generation chamber temperature Tfc is lower than the lower limit threshold of 600 [° C.], the extractable current value Iinv is maintained (steps S18 and S21 in FIG. 11). Further, when the power generation chamber temperature Tfc is lower and lower than 550 [° C.], the extractable current value Iinv is decreased (steps S11 and S12 in FIG. 10).
  • step S20 the value of the extractable current value Iinv is increased.
  • the control unit 110 increases the extractable current value Iinv only when none of the plurality of current maintenance conditions (steps S15, S16, S17, S18, and S19 in FIG. 11) is satisfied (steps S22 and S19 in FIG. 11). S23).
  • step S15 when the difference between the extractable current value Iinv and the actual extraction current Ic exceeds 300 [mA] (step S15), the difference between the extractable current value Iinv and the actual extraction current Ic is relatively large. The possible current value Iinv should not be increased.
  • step S16 When the generated voltage Vdc is lower than 100 [V] (step S16), the current that can be extracted from the fuel cell module 2 should not be increased by increasing the current value Iinv that can be extracted.
  • step S17 when the interconnection power Winv exceeds 690 [W] (step S17), the output power from the fuel cell module 2 has already reached the rated output power, and thus is taken out from the fuel cell module 2. The current that can be increased should not be increased.
  • step S18 when the power generation chamber temperature Tfc is lower than 600 [° C.] (step S18), since the fuel cell module 2 has not reached a temperature at which sufficient power generation is possible, the value of the extractable current value Iinv is set. It should not increase the current that can be extracted from the fuel cell module 2 and place a burden on the fuel cell unit 16. Further, when the system power Wl is 40 [W] or less (step S19), the “reverse power flow” is likely to occur, and therefore the current that can be taken from the fuel cell module 2 should not be increased.
  • step S20 it is determined whether the difference between the fuel supply current value If and the actual extraction current Ic is 1000 [mA] or more.
  • step S20 if the difference between the fuel supply current value If and the actual extraction current Ic is 1000 [mA] or more, the process proceeds to step S22, and if it is less than 1000 [mA], the process proceeds to step S23.
  • step S22 since a large amount of excess fuel is being supplied to the fuel cell module 2, the control unit 110 increases the value of the extractable current value Iinv instructed to the inverter control unit 111 by 100 [mA]. (Corresponding to number 7 in FIG. 9), the extractable current value Iinv is rapidly increased.
  • the one-time process in the flowcharts of FIGS. 10 and 11 ends.
  • the extractable current value Iinv is a change rate of 200 [mA / sec] which is the second current increase change rate. Will be raised.
  • step S23 the current value Iinv that can be taken out is raised, but since a large amount of excess fuel is not being supplied to the fuel cell module 2, the control unit 110 causes the inverter control unit 111 to The instructionable current value Iinv to be instructed is increased by 10 [mA] (corresponding to number 8 in FIG. 9), and the extractable current value Iinv is gradually increased.
  • the one-time process in the flowcharts of FIGS. 10 and 11 ends.
  • the extractable current value Iinv is a change rate of 20 [mA / sec] which is the first current increase change rate. Will be raised.
  • FIG. 12 shows a power graph in the upper stage and a current graph in the lower stage.
  • step S23 of the flowchart of FIG. 11 is repeatedly executed, and the extractable current value Iinv is increased at a first current increase rate of 20 [mA / sec].
  • the inverter control unit 111 controls the inverter 54 independently of the control of the control unit 110, and the actual extraction current in a range not exceeding the extractable current value Iinv. Ic is taken out from the fuel cell module 2.
  • the total demand power always exceeds the power corresponding to the current value Iinv that can be extracted, and therefore the actual current Ic that can be extracted is the upper limit value that can be extracted.
  • the interconnection power Winv also increases with the actual extraction current Ic.
  • the inverter control unit 111 controls the inverter 54 independently of the control unit 110
  • the actual extraction current Ic is substantially under the control of the control unit 110.
  • the fuel supply current value If rises slightly ahead of the extractable current value Iinv.
  • the shortage of the difference between the total demand power and the interconnection power Winv is covered by the grid power Wl.
  • the inverter control unit 111 controls the inverter 54 in response to the decrease, and the actual extraction current Ic (interconnection) extracted from the fuel cell module 2 The power Winv) is reduced.
  • the controller 110 reduces the extractable current value Iinv to the same value as the actual extraction current value Ic so that excessive power extraction due to the overshoot is not performed (step S3 in FIG. 10).
  • controller 110 maintains the previous value without decreasing the value of fuel supply current value If.
  • the fuel cell module 2 In the state in which the fuel supply current value If is maintained immediately after the extractable current value Iinv is decreased, the fuel cell module 2 has a margin in the fuel supply amount with respect to the extractable current value Iinv that can be extracted. It will be in a certain state.
  • the control unit 110 keeps the value of the extractable current value Iinv constant (step S21 in FIG. 11), and also supplies fuel.
  • the value of the current value If is also kept constant with surplus fuel.
  • the control unit 110 maintains the fuel supply current value If constant, and the fuel supply amount to the fuel cell module 2 is in a state with a margin.
  • the value of the extractable current value Iinv is rapidly increased at a second current increase rate of 200 [mA / sec] larger than the normal rate of change (first current increase rate) (step S22 in FIG. 11). As a result, the load followability to the total demand is enhanced.
  • the inverter control unit 111 performs actual extraction from the fuel cell module 2 within the range of the increased extractable current value Iinv.
  • the current Ic is taken out.
  • the extractable current value Iinv is increased by the rate.
  • the current increase rate is only the normal first current increase rate
  • the extractable current value Iinv gradually increases from time t2, as indicated by a two-dot chain line in FIG.
  • the rate of change in current increase is not rapidly increased, the actual extraction current Ic is reduced by the shaded area in FIG. 12 even though the fuel supply amount is the same, and fuel is wasted. Will be consumed.
  • the fuel supply current value If is maintained as it is. However, if the fuel supply current value If and the extractable current value Iinv are too large in deviation, the total demand power is not restored. It is useless that the amount of surplus fuel becomes too large even when the recovery is taken into account, and it is a more desirable measure to maintain the fuel supply current value If after maintaining the amount of deviation so as not to be too large. It can be said.
  • the control unit 110 changes the current increase change rate to 20 [mA / sec] which is the first current increase change rate. Then, the increase in the extractable current value Iinv is moderated (step S23 in FIG. 11). This is because when the takeable current value Iinv is rapidly increased in a state where there is little margin of the fuel supply amount (fuel supply current value If), the inverter control unit 111 that controls the inverter 54 independently of the control unit 110 This is to prevent fuel depletion from occurring due to a shift in operation.
  • the value of the extractable current value Iinv rises, and when the fuel supply current value If approaches the fuel supply current value If at time t4 in FIG. 12, the fuel supply is performed so that a predetermined margin is secured with respect to the extractable current value Iinv.
  • the value of the current value If is also raised together with the extractable current value Iinv.
  • the control unit 110 sets the fuel reduction standby period tw to 15 [sec. ], The fuel supply current value If is maintained constant.
  • the total demand power remains reduced at time t12 when the fuel reduction standby period tw has elapsed after the total demand power has sharply decreased at time t11.
  • the fuel supply current value If (fuel supply amount) is decreased at a predetermined decrease rate. This decrease change rate is selected to a value that allows the fuel cell module 2 to maintain proper operation.
  • the fuel supply current value If is decreased after the fuel decrease standby period tw has elapsed, but the difference between the extractable current value Iinv and the fuel supply current value If is less than a predetermined amount. In this case, the fuel supply current value If is maintained without being lowered even if the fuel lowering standby period tw elapses. As a result, it is possible to prevent a slight fluctuation in the fuel supply current value If from adversely affecting the operation of the fuel cell module 2.
  • the control unit 110 increases the extractable current value Iinv and the fuel supply current value If.
  • the increase rate of change is set to 20 [mA / sec], which is the first current increase rate of change, which is a normal value. That is, at time t13 in FIG. 13, the condition in step S20 in FIG. 11 is not satisfied, and step S23 is executed.
  • the fuel supply current value If is decreased after 15 seconds to stop maintaining the surplus fuel.
  • the total important power further decreases, the total important power Therefore, it can be said that it is more desirable to quickly decrease the fuel supply current value If without waiting for 15 seconds of the time for maintaining the fuel supply current value If.
  • the fuel supply current value is delayed after the decrease of the extractable current value Iinv. Since the fuel flow rate adjusting unit 38 is controlled so that If (fuel supply amount) is reduced (FIGS. 12 to 14), a rapid temperature drop of the fuel cell module 2 can be avoided. In addition, since the fuel supply amount is decreased with a delay after the extractable current value Iinv is rapidly reduced, a state occurs in which the fuel supply amount has a margin with respect to the extractable current value Iinv (time in FIG. 12). t1 to t2).
  • the controller increases the extractable current value Iinv at a second current rise change rate larger than the normal current rise change rate (time t2 to t3 in FIG. 12), thereby suppressing fuel waste. As a result, the power generation efficiency can be increased.
  • the solid oxide fuel cell 1 of the present embodiment it is possible to reliably avoid problems such as fuel exhaustion and to improve the power generation efficiency while enabling stable operation of the fuel cell module 2.
  • the solid oxide fuel cell 1 of the present embodiment when there is a difference of a predetermined amount or more over the fuel decrease standby period (15 [sec]) after the take-out current value decreases (time t11 in FIG. 13). (Time t12 in FIG. 13) or when the difference between the current corresponding to the fuel supply amount (fuel supply current value If) and the extractable current value Iinv increases (time t22 in FIG. 14), the fuel supply amount decreases. Therefore, both stable operation of the fuel cell module 2 and improvement in power generation efficiency can be achieved.
  • the fuel supply amount is delayed to reduce, so that a sudden temperature drop or the like of the fuel cell module 2 can be avoided, but the extractable current value Iinv decreases. After that, if the time during which the fuel supply amount is not reduced becomes long, fuel waste is likely to occur. Therefore, the fuel supply amount is reduced after the elapse of the fuel reduction standby period.
  • the extractable current value Iinv when the difference between the actual extraction current value Ic and the extractable current value Iinv is equal to or less than a predetermined amount (step S1 in FIG. 10), the extractable current value Iinv is Since the current does not decrease to the extraction current value Ic, when the total demand power is recovered immediately after dropping, the extractable current value Iinv is maintained at a level higher than the actual extraction current value Ic, so that the inverter 54 is within that range.
  • a predetermined amount when the difference between the actual extraction current value Ic and the extractable current value Iinv is equal to or less than a predetermined amount (step S1 in FIG. 10)
  • the extractable current value Iinv is Since the current does not decrease to the extraction current value Ic, when the total demand power is recovered immediately after dropping, the extractable current value Iinv is maintained at a level higher than the actual extraction current value Ic, so that the inverter 54 is within that range.
  • the extractable current value Iinv is reduced to the actual extraction current Ic (step S3 in FIG. 10). ) After that, since the fuel supply amount is lowered later, waste of fuel can be suppressed while the fuel cell module 2 is stably operated.
  • the reduction in the fuel supply amount is delayed, and then the extractable current value Iinv is reduced to the necessary minimum actual extraction current Ic (step S3 in FIG. 10, FIG. 12 at time t1, time t11 in FIG. 13, time t21 in FIG. 14), it is possible to sufficiently suppress fuel waste while ensuring stable operation of the fuel cell module 2.
  • the fuel supply amount is maintained constant ( At time t1 to t2 in FIG. 12, when the demand power starts to increase (time t2 in FIG. 12), the extractable current value Iinv is increased at a large current increase rate (time t2 to t3 in FIG. 12). It is possible to rapidly increase the current value Iinv that can be taken out in a state where the fuel supply amount is surely sufficient, and to improve the followability to the change in demand power while ensuring the stable operation of the fuel cell module 2. it can.

Abstract

 燃料枯れ等の不具合を確実に回避して、発電効率を高めることができる固体電解質型燃料電池を提供する。本発明は、固体電解質型燃料電池(1)であって、燃料電池モジュール(2)と、燃料供給手段(38)と、需要電力検出手段(110a)と、燃料供給量を制御すると共に、燃料電池モジュールから取出し可能な取出可能電流値を設定するコントローラ(110)と、取出可能電流値を越えない範囲で電流を取り出すインバータ(54)と、実際に取り出される実取出電流を検出する取出電流検出手段(126)と、を有し、コントローラは、実取出電流が低下した場合において、取出可能電流値を急激に低下させると共に、遅れて燃料供給量を低下させ、取出可能電流値を急激に低下させた後、燃料供給量に余裕がある状態で需要電力が上昇し始めた場合には、大きな電流上昇変化率で取出可能電流値を増加させることを特徴としている。

Description

固体電解質型燃料電池
 本発明は、固体電解質型燃料電池に係わり、特に、需要電力に応じた可変の電力を発電する固体電解質型燃料電池に関する。
 近年、次世代エネルギーとして、燃料(水素ガス)と空気とを用いて発電して電力を得ることができる燃料電池と、この燃料電池を稼働するための補機類とを備えた燃料電池装置が種々提案されている。
 特開平7-307163号公報(特許文献1)には、燃料電池発電装置が記載されている。この燃料電池は、発電する電力が負荷に応じて変更されるように構成されている。
 ここで、図15を参照して、燃料電池を使用した電力供給システムを説明する。図15は、燃料電池を使用して住宅に電力を供給する従来のシステムの一例を示している。このシステムにおいては、住宅200で消費される電力は、燃料電池202及び系統電力204により賄われている。通常、住宅において消費される最大の消費電力は、燃料電池202で発電可能な最大定格電力よりも大きいので、燃料電池202を利用する住宅200においても系統電力204からその不足分が補われ、住宅には燃料電池202及び系統電力204から電力が供給される。さらに、燃料電池202による発電電力が系統電力204へ逆潮流することがないよう、住宅における消費電力が燃料電池202の最大定格電力を下回っている場合においても、一般に、住宅200の消費電力のうちの一部が系統電力204から供給されるようになっている。
 系統電力204は、送電線から住宅内の分電盤へ送られた電力であり購入電力である。つまり、燃料電池202による発電電力と系統電力204の総計が、住宅200における消費電力にあたる。燃料電池202は、住宅200が購入している電力のモニター信号を需要電力検出器206から取得し、これに基づいて燃料電池202により発電する電力を変更している。即ち、燃料電池202は、需要電力検出器206から取得したモニター信号に基づいて、燃料電池202が生成すべき電流を表すベース電流Iiを決定し、このベース電流Iiを生成することができるよう、燃料電池モジュール208に供給する燃料供給量等が制御される。また、ベース電流Iiは、住宅200の消費電力に関わらず、燃料電池202の最大定格電力に対応する値以下に設定される。
 燃料電池202に内蔵されている燃料電池モジュール208は、一般に極めて応答が遅いので、住宅200における消費電力の変化に追従して発電電力を変更することは困難である。このため、燃料電池モジュール208に発電量を指示するベース電流Iiの信号は、消費電力の変化に比べ、極めて緩やかに変化するよう、モニター信号に積分処理等を行うフィルター210を掛けることによって緩やかに変化するように決定される。
 燃料電池202は、燃料電池モジュール208がベース電流Iiの電流を生成できる能力を持つよう、ベース電流Iiに応じた量の燃料を燃料電池モジュール208に供給する。一方、インバータ212は、燃料電池モジュール208から直流の実取出電流Icを取り出し、これを交流に変換して住宅200に供給する。また、インバータ212が燃料電池モジュール208から取り出す実取出電流Icは、常にベース電流Iiの値以下に設定され、燃料電池モジュール208の発電能力を超えないようになっている。ベース電流Iiに基づいて決定される燃料供給量等に対応した発電能力以上の電流を燃料電池モジュール208から取り出すと、燃料電池モジュール208内の燃料電池セルに燃料枯れが発生し、燃料電池セルの寿命を著しく短縮したり、燃料電池セルを破壊する虞がある。
 一方、住宅200において消費される電力は急激に変動するため、消費電力が急減すると、住宅200の消費電力は、緩慢に変化されるベース電流Iiに対応した電力よりも低くなる。
 特開平7-307163号公報記載の燃料電池発電装置においては、このような燃料電池モジュール208の遅れに対応するために、電流値を増加させる場合には、遅れ設定器を介して設定電流値を更新し、設定電流値の増加を遅らせて燃料枯れ等の不具合を防止している。また、この燃料電池発電装置においては、設定電流値を更新する際には、常に所定の減算電流値又は加算電流値ずつ変更されるので、設定電流値を変化させる変化率は、常に一定の変化率になる。
特開平7-307163号公報
 しかしながら、特開平7-307163号公報記載の燃料電池発電装置においては、燃料ガスを増加させた後、一定時間遅れて燃料電池から取り出す電流を増加させているので、燃料枯れ等の不具合を防止することができるものの、供給した燃料が無駄になるという問題がある。即ち、応答が極めて緩慢な燃料電池モジュールに対して、需要電力は急激な増減を繰り返すので、常に一定時間の遅れを持たせる制御では、発電効率を十分に高めることは困難である。
 従って、本発明は、燃料枯れ等の不具合を確実に回避して、燃料電池モジュールの安定した運転を可能にしながら、発電効率を高めることができる固体電解質型燃料電池を提供することを目的としている。
 上述した課題を解決するために、本発明は、需要電力に応じた可変の電力を発電する固体電解質型燃料電池であって、供給された燃料により発電する燃料電池モジュールと、この燃料電池モジュールに燃料を供給する燃料供給手段と、需要電力を検出する需要電力検出手段と、この需要電力検出手段により検出された需要電力に基づいて燃料供給手段による燃料供給量を制御すると共に、燃料電池モジュールの状態に応じて燃料電池モジュールから取り出し可能な最大の電流値である取出可能電流値を設定するコントローラと、需要電力に応じて、燃料電池モジュールから、取出可能電流値を越えない範囲で電流を取り出し、交流に変換するインバータと、燃料電池モジュールからインバータに実際に取り出される実取出電流を検出する取出電流検出手段と、を有し、コントローラは、取出可能電流値を上昇させる場合には、所定の第1電流上昇変化率で取出可能電流値を増加させる一方、取出電流検出手段によって検出された実取出電流が低下した場合において、取出可能電流値を急激に低下させると共に、この取出可能電流値の低下に追従するように取出可能電流値の低下よりも遅れて燃料供給量が低下されるように、燃料供給手段を制御し、取出可能電流値を急激に低下させた後、燃料供給量に余裕がある状態で需要電力が上昇し始めた場合には、第1電流上昇変化率よりも大きな第2電流上昇変化率で取出可能電流値を増加させることを特徴としている。
 このように構成された本発明においては、コントローラは、需要電力検出手段により検出された需要電力に基づいて燃料供給手段による燃料供給量を制御し、燃料電池モジュールに燃料を供給する。さらに、コントローラは、燃料電池モジュールの状態に応じて燃料電池モジュールから取り出し可能な最大の電流値である取出可能電流値を設定する。インバータは、需要電力に応じた電流が、取出可能電流値を越えない範囲において燃料電池モジュールから取り出す。コントローラは、取出可能電流値を上昇させる場合には、所定の第1電流上昇変化率で取出可能電流値を増加させる一方、取出電流検出手段によって検出された実取出電流が低下した場合において、取出可能電流値を急激に低下させる。さらに、コントローラは、取出可能電流値の低下に追従するように取出可能電流値の低下よりも遅れて燃料供給量が低下されるように、燃料供給手段を制御する。また、コントローラは、取出可能電流値を急激に低下させた後、燃料供給量に余裕がある状態で需要電力が上昇し始めた場合には、第1電流上昇変化率よりも大きな第2電流上昇変化率で取出可能電流値を増加させる。
 一般に、インバータは、急激に変化する需要電力に応じて必要な電流を燃料電池モジュールから取り出すことができるように、高い応答性で制御される。一方、燃料電池モジュールに供給する燃料供給量は、急激に変化させると、燃料電池モジュールによる発電が不安定になることがあるので、応答性の高い制御を行うことができない。さらに、需要電力が急激に低下した場合には、これに応答して取出可能電流値及び燃料供給量を急激に低下させても燃料枯れを起こすことはないが、燃料電池モジュールが急激な温度低下を起こして、温度が回復するまで十分な発電が行えなくなる。本発明によれば、コントローラは、取出可能電流値を急激に低下させた場合でも、取出可能電流値の低下よりも遅れて燃料供給量が低下されるように、燃料供給手段を制御するので、燃料電池モジュールの急激な温度低下等を回避することができる。また、取出可能電流値が急激に低下された後、燃料供給量が遅れて低下されるので、取出可能電流値に対して燃料供給量に余裕がある状態が発生する。このような場合には、コントローラは、通常の電流上昇変化率よりも大きな第2電流上昇変化率で取出可能電流値を増加させるので、燃料の無駄を抑制しつつ需要電力の回復に対する追従性を高めることができ、商用電力に頼る頻度の低下が図れ省エネとすることができる。また、燃料の余裕がある状態を作り出してその範囲でインバータの電力取出を早めるようにするに際して、取出可能電流値と実取出電流値との間に大きな偏差がある状態では、需要が急激に回復した場合インバータがそれに追従して急激に電流を取り出そうとするが、それを許してしまうと制御オーバーシュート等によって取出可能電流値を超えるような電流取出が発生してセルにダメージを与えると言う新たな課題が発生するが、本発明にあっては、インバータの電流取出を需要電力に対する追従性とセルへの負担を高いレベルで両立できるように、取出可能電流値を一旦低下させた後に、管理された量で取出可能電流値を速く上昇させるように構成しているため、新たな課題も確実に解決できたものである。
 本発明において、好ましくは、コントローラは、実取出電流が低下した場合において、実取出電流の低下に追従するように取出可能電流値を急激に低下させた後、燃料供給量に対応する電流と取出可能電流値との間に、所定の燃料低下待機期間中に所定量以上の差が存在した場合、又は、燃料供給量に対応する電流と取出可能電流値の差が拡大した場合に、燃料供給量を低下させるように燃料供給手段を制御する。
 取出可能電流値が低下された後、燃料供給量を遅れて低下させることにより、需要電力の回復に伴う上昇時の追従性を高めることができるが、取出可能電流値の低下の後、あまりにも大きな偏差が燃料供給量と取出可能電流値との間にある場合、もしくは燃料供給量を低下させない状態が長くなると、やはり燃料の無駄と言える。上記のように構成された本発明によれば、取出可能電流値低下後、燃料低下を抑制する待機期間中に燃料供給量に対応する電流と取出可能電流値との間に所定量以上の偏差が存在する場合、もしくは偏差が拡大した場合に、燃料供給量を低下させるので、需要電力の回復に備える目的に対してあまりにも余剰な燃料となる状態、もしくは需要電力の回復可能性が低いと判断されるような状況では速やかに燃料の供給を余剰とする状態を回避させるので、無駄な燃料消費を回避して省エネが図れ、一方で需要の回復時は速やかに負荷への追従を行うことができるため商用電力に頼る頻度を低下させることができ、やはり省エネ性能を向上することができる。
 本発明において、好ましくは、コントローラは、実取出電流と取出可能電流値の差が所定量を超えた場合には、取出可能電流値を低下させ、その後遅れて燃料供給量を低下させるように燃料供給手段を制御する一方、実取出電流と取出可能電流値の差が所定量以下の場合には、取出可能電流値を低下させない。
 このように構成された本発明によれば、実取出電流と取出可能電流値の差が所定量以下の場合には、取出可能電流値が低下されない。これは、実取出電流値と取出可能電流値の差が小さいような状況であれば取出可能電流値を低下させるまでもなく需要電力の回復に対してインバータが追従しても偏差が小さいため制御オーバーシュート等の問題はなくセルへの影響を回避できるため需要電力に対する追従性を一層速めることができるという実用上優れた効果を奏するものである。
 本発明において、好ましくは、コントローラは、取出可能電流値を低下させる場合において、取出可能電流値を実取出電流まで低下させる。
 このように構成された本発明によれば、燃料供給量の低下を遅らせた上で、取出可能電流値を必要最小限の実取出電流値まで低下させるので、需要電力の回復に対する追従性を完全に取出可能電流値の制御によってコントロールできるためインバータは取出電流の単位時間当たりの量を自由に行うことができない状態を作り出せるため、偏差が大きい状態では発生しやすい制御オーバーシュートによるセルへのダメージを完全に回避させることができる。
 本発明において、好ましくは、コントローラは、実取出電流が低下した場合において、実取出電流の低下に追従するように取出可能電流値を急激に低下させた後、燃料供給量が一定に維持されている間に需要電力が上昇し始めた場合には、第1電流上昇変化率よりも大きな第2電流上昇変化率で取出可能電流値を増加させる。
 このように構成された本発明によれば、実取出電流の低下に追従するように取出可能電流値を急激に低下させた後、燃料供給量が一定に維持されている場合において、需要電力が上昇し始めたタイミングを持ってすぐに、大きな電流上昇変化率で取出可能電流値を増加させるので、燃料供給量に確実に余裕のある状態で、急速に取出可能電流値を増加させることができ、燃料電池モジュールの安定した運転を確実にしながら、需要電力の変化に対する追従性を高めることができる。
 本発明の固体電解質型燃料電池によれば、省エネ性能と需要電力に対する負荷追従性の向上を燃料電池モジュールへの負担を軽減しつつ高いレベルで両立させることができる実用性の高い固体酸化物型燃料電池を提供できる。
本発明の一実施形態による燃料電池装置を示す全体構成図である。 本発明の一実施形態による燃料電池装置の燃料電池モジュールを示す正面断面図である。 図2のIII-III線に沿った断面図である。 本発明の一実施形態による燃料電池装置の燃料電池セルユニットを示す部分断面図である。 本発明の一実施形態による燃料電池装置の燃料電池セルスタックを示す斜視図である。 本発明の一実施形態による燃料電池装置を示すブロック図である。 本発明の一実施形態による燃料電池装置の起動時の動作を示すタイムチャートである。 本発明の一実施形態による燃料電池装置の停止時の動作を示すタイムチャートである。 本発明の一実施形態による燃料電池装置の制御テーブルである。 制御部により実行される制御のフローチャートである。 制御部により実行される制御のフローチャートである。 本発明の一実施形態による燃料電池装置の作用を示すタイムチャートである。 本発明の一実施形態による燃料電池装置の作用を示すタイムチャートである。 本発明の一実施形態による燃料電池装置の作用を示すタイムチャートである。 燃料電池を使用して住宅に電力を供給する従来のシステムの一例を示している。
 次に、添付図面を参照して、本発明の実施形態による固体電解質型燃料電池(SOFC)を説明する。
 図1は、本発明の一実施形態による固体電解質型燃料電池(SOFC)を示す全体構成図である。この図1に示すように、本発明の一実施形態による固体電解質型燃料電池(SOFC)1は、燃料電池モジュール2と、補機ユニット4を備えている。
 燃料電池モジュール2は、ハウジング6を備え、このハウジング6内部には、断熱材(図示せず但し断熱材は必須の構成ではなく、なくても良いものである。)を介して密封空間8が形成されている。なお、断熱材は設けないようにしても良い。この密閉空間8の下方部分である発電室10には、燃料ガスと酸化剤(空気)とにより発電反応を行う燃料電池セル集合体12が配置されている。この燃料電池セル集合体12は、10個の燃料電池セルスタック14(図5参照)を備え、この燃料電池セルスタック14は、16本の燃料電池セルユニット16(図4参照)から構成されている。このように、燃料電池セル集合体12は、160本の燃料電池セルユニット16を有し、これらの燃料電池セルユニット16の全てが直列接続されている。
 燃料電池モジュール2の密封空間8の上述した発電室10の上方には、燃焼室18が形成され、この燃焼室18で、発電反応に使用されなかった残余の燃料ガスと残余の酸化剤(空気)とが燃焼し、排気ガスを生成するようになっている。
 また、この燃焼室18の上方には、燃料ガスを改質する改質器20が配置され、前記残余ガスの燃焼熱によって改質器20を改質反応が可能な温度となるように加熱している。さらに、この改質器20の上方には、改質器20の熱を受けて空気を加熱し、改質器20の温度低下を抑制するための空気用熱交換器22が配置されている。
 次に、補機ユニット4は、水道等の水供給源24からの水を貯水してフィルターにより純水とする純水タンク26と、この貯水タンクから供給される水の流量を調整する水流量調整ユニット28(モータで駆動される「水ポンプ」等)を備えている。また、補機ユニット4は、都市ガス等の燃料供給源30から供給された燃料ガスを遮断するガス遮断弁32と、燃料ガスから硫黄を除去するための脱硫器36と、燃料ガスの流量を調整する燃料流量調整ユニット38(モータで駆動される「燃料ポンプ」等)を備えている。さらに、補機ユニット4は、空気供給源40から供給される酸化剤である空気を遮断する電磁弁42と、空気の流量を調整する改質用空気流量調整ユニット44及び発電用空気流量調整ユニット45(モータで駆動される「空気ブロア」等)と、改質器20に供給される改質用空気を加熱する第1ヒータ46と、発電室に供給される発電用空気を加熱する第2ヒータ48とを備えている。これらの第1ヒータ46と第2ヒータ48は、起動時の昇温を効率よく行うために設けられているが、省略しても良い。
 次に、燃料電池モジュール2には、排気ガスが供給される温水製造装置50が接続されている。この温水製造装置50には、水供給源24から水道水が供給され、この水道水が排気ガスの熱により温水となり、図示しない外部の給湯器の貯湯タンクへ供給されるようになっている。
 また、燃料電池モジュール2には、燃料ガスの供給量等を制御するための制御ボックス52が取り付けられている。
 さらに、燃料電池モジュール2には、燃料電池モジュールにより発電された電力を外部に供給するための電力取出部(電力変換部)であるインバータ54が接続されている。
 次に、図2及び図3により、本発明の実施形態による固体電解質型燃料電池(SOFC)の燃料電池モジュールの内部構造を説明する。図2は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池モジュールを示す側面断面図であり、図3は、図2のIII-III線に沿って断面図である。
 図2及び図3に示すように、燃料電池モジュール2のハウジング6内の密閉空間8には、上述したように、下方から順に、燃料電池セル集合体12、改質器20、空気用熱交換器22が配置されている。
 改質器20は、その上流端側に純水を導入するための純水導入管60と改質される燃料ガスと改質用空気を導入するための被改質ガス導入管62が取り付けられ、また、改質器20の内部には、上流側から順に、蒸発部20aと改質部20bを形成され、これらの蒸発部20aと改質部20bには改質触媒が充填されている。この改質器20に導入された水蒸気(純水)が混合された燃料ガス及び空気は、改質器20内に充填された改質触媒により改質される。改質触媒としては、アルミナの球体表面にニッケルを付与したものや、アルミナの球体表面にルテニウムを付与したものが適宜用いられる。
 この改質器20の下流端側には、燃料ガス供給管64が接続され、この燃料ガス供給管64は、下方に延び、さらに、燃料電池セル集合体12の下方に形成されたマニホールド66内で水平に延びている。燃料ガス供給管64の水平部64aの下方面には、複数の燃料供給孔64bが形成されており、この燃料供給孔64bから、改質された燃料ガスがマニホールド66内に供給される。
 このマニホールド66の上方には、上述した燃料電池セルスタック14を支持するための貫通孔を備えた下支持板68が取り付けられており、マニホールド66内の燃料ガスが、燃料電池セルユニット16内に供給される。
 次に、改質器20の上方には、空気用熱交換器22が設けられている。この空気用熱交換器22は、上流側に空気集約室70、下流側に2つの空気分配室72を備え、これらの空気集約室70と空気分配室72は、6個の空気流路管74により接続されている。ここで、図3に示すように、3個の空気流路管74が一組(74a,74b,74c,74d,74e,74f)となっており、空気集約室70内の空気が各組の空気流路管74からそれぞれの空気分配室72へ流入する。
 空気用熱交換器22の6個の空気流路管74内を流れる空気は、燃焼室18で燃焼して上昇する排気ガスにより予熱される。
 空気分配室72のそれぞれには、空気導入管76が接続され、この空気導入管76は、下方に延び、その下端側が、発電室10の下方空間に連通し、発電室10に余熱された空気を導入する。
 次に、マニホールド66の下方には、排気ガス室78が形成されている。また、図3に示すように、ハウジング6の長手方向に沿った面である前面6aと後面6bの内側には、上下方向に延びる排気ガス通路80が形成され、この排気ガス室通路80の上端側は、空気用熱交換器22が配置された空間と連通し、下端側は、排気ガス室78と連通している。また、排気ガス室78の下面のほぼ中央には、排気ガス排出管82が接続され、この排気ガス排出管82の下流端は、図1に示す上述した温水製造装置50に接続されている。
 図2に示すように、燃料ガスと空気との燃焼を開始するための点火装置83が、燃焼室18に設けられている。
 次に図4により燃料電池セルユニット16について説明する。図4は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セルユニットを示す部分断面図である。
 図4に示すように、燃料電池セルユニット16は、燃料電池セル84と、この燃料電池セル84の上下方向端部にそれぞれ接続された内側電極端子86とを備えている。
 燃料電池セル84は、上下方向に延びる管状構造体であり、内部に燃料ガス流路88を形成する円筒形の内側電極層90と、円筒形の外側電極層92と、内側電極層90と外側電極層92との間にある電解質層94とを備えている。この内側電極層90は、燃料ガスが通過する燃料極であり、(-)極となり、一方、外側電極層92は、空気と接触する空気極であり、(+)極となっている。
 燃料電池セル16の上端側と下端側に取り付けられた内側電極端子86は、同一構造であるため、ここでは、上端側に取り付けられた内側電極端子86について具体的に説明する。内側電極層90の上部90aは、電解質層94と外側電極層92に対して露出された外周面90bと上端面90cとを備えている。内側電極端子86は、導電性のシール材96を介して内側電極層90の外周面90bと接続され、さらに、内側電極層90の上端面90cとは直接接触することにより、内側電極層90と電気的に接続されている。内側電極端子86の中心部には、内側電極層90の燃料ガス流路88と連通する燃料ガス流路98が形成されている。
 内側電極層90は、例えば、Niと、CaやY、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニアとの混合体、Niと、希土類元素から選ばれる少なくとも一種をドープしたセリアとの混合体、Niと、Sr、Mg、Co、Fe、Cuから選ばれる少なくとも一種をドープしたランタンガレードとの混合体、の少なくとも一種から形成される。
 電解質層94は、例えば、Y、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニア、希土類元素から選ばれる少なくとも一種をドープしたセリア、Sr、Mgから選ばれる少なくとも一種をドープしたランタンガレート、の少なくとも一種から形成される。
 外側電極層92は、例えば、Sr、Caから選ばれた少なくとも一種をドープしたランタンマンガナイト、Sr、Co、Ni、Cuから選ばれた少なくとも一種をドープしたランタンフェライト、Sr、Fe、Ni、Cuから選ばれた少なくとも一種をドープしたランタンコバルタイト、銀、などの少なくとも一種から形成される。
 次に図5により燃料電池セルスタック14について説明する。図5は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セルスタックを示す斜視図である。
 図5に示すように、燃料電池セルスタック14は、16本の燃料電池セルユニット16を備え、これらの燃料電池セルユニット16の下端側及び上端側が、それぞれ、セラミック製の下支持板68及び上支持板100により支持されている。これらの下支持板68及び上支持板100には、内側電極端子86が貫通可能な貫通穴68a及び100aがそれぞれ形成されている。
 さらに、燃料電池セルユニット16には、集電体102及び外部端子104が取り付けられている。この集電体102は、燃料極である内側電極層90に取り付けられた内側電極端子86と電気的に接続される燃料極用接続部102aと、空気極である外側電極層92の外周面全体と電気的に接続される空気極用接続部102bとにより一体的に形成されている。空気極用接続部102bは、外側電極層92の表面を上下方向に延びる鉛直部102cと、この鉛直部102cから外側電極層92の表面に沿って水平方向に延びる多数の水平部102dとから形成されている。また、燃料極用接続部102aは、空気極用接続部102bの鉛直部102cから燃料電池セルユニット16の上下方向に位置する内側電極端子86に向って斜め上方又は斜め下方に向って直線的に延びている。
 さらに、燃料電池セルスタック14の端(図5では左端の奥側及び手前側)に位置する2個の燃料電池セルユニット16の上側端及び下側端の内側電極端子86には、それぞれ外部端子104が接続されている。これらの外部端子104は、隣接する燃料電池セルスタック14の端にある燃料電池セルユニット16の外部端子104(図示せず)に接続され、上述したように、160本の燃料電池セルユニット16の全てが直列接続されるようになっている。
 次に図6により本実施形態による固体電解質型燃料電池(SOFC)に取り付けられたセンサ類等について説明する。図6は、本発明の一実施形態による固体電解質型燃料電池(SOFC)を示すブロック図である。
 図6に示すように、固体電解質型燃料電池1は、制御部110を備え、この制御部110には、使用者が操作するための「ON」や「OFF」等の操作ボタンを備えた操作装置112、発電出力値(ワット数)等の種々のデータを表示するための表示装置114、及び、異常状態のとき等に警報(ワーニング)を発する報知装置116が接続されている。なお、この報知装置116は、遠隔地にある管理センタに接続され、この管理センタに異常状態を通知するようなものであっても良い。
 次に、制御部110には、以下に説明する種々のセンサからの信号が入力されるようになっている。
 先ず、可燃ガス検出センサ120は、ガス漏れを検知するためのもので、燃料電池モジュール2及び補機ユニット4に取り付けられている。
 CO検出センサ122は、本来排気ガス通路80等を経て外部に排出される排気ガス中のCOが、燃料電池モジュール2及び補機ユニット4を覆う外部ハウジング(図示せず)へ漏れたかどうかを検知するためのものである。
 貯湯状態検出センサ124は、図示しない給湯器におけるお湯の温度や水量を検知するためのものである。
 電力状態検出センサ126は、インバータ54及び分電盤(図示せず)の電流及び電圧等を検知するためのものである。
 発電用空気流量検出センサ128は、発電室10に供給される発電用空気の流量を検出するためのものである。
 改質用空気流量センサ130は、改質器20に供給される改質用空気の流量を検出するためのものである。
 燃料流量センサ132は、改質器20に供給される燃料ガスの流量を検出するためのものである。
 水流量センサ134は、改質器20に供給される純水(水蒸気)の流量を検出するためのものである。
 水位センサ136は、純水タンク26の水位を検出するためのものである。
 圧力センサ138は、改質器20の外部の上流側の圧力を検出するためのものである。
 排気温度センサ140は、温水製造装置50に流入する排気ガスの温度を検出するためのものである。
 発電室温度センサ142は、図3に示すように、燃料電池セル集合体12の近傍の前面側と背面側に設けられ、燃料電池セルスタック14の近傍の温度を検出して、燃料電池セルスタック14(即ち燃料電池セル84自体)の温度を推定するためのものである。
 燃焼室温度センサ144は、燃焼室18の温度を検出するためのものである。
 排気ガス室温度センサ146は、排気ガス室78の排気ガスの温度を検出するためのものである。
 改質器温度センサ148は、改質器20の温度を検出するためのものであり、改質器20の入口温度と出口温度から改質器20の温度を算出する。
 外気温度センサ150は、固体電解質型燃料電池(SOFC)が屋外に配置された場合、外気の温度を検出するためのものである。また、外気の湿度等を測定するセンサを設けるようにしても良い。
 これらのセンサ類からの信号は、制御部110に送られ、制御部110は、これらの信号によるデータに基づき、水流量調整ユニット28、燃料流量調整ユニット38、改質用空気流量調整ユニット44、発電用空気流量調整ユニット45に、制御信号を送り、これらのユニットにおける各流量を制御するようになっている。
 次に図7により本実施形態による固体電解質型燃料電池(SOFC)による起動時の動作を説明する。図7は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の起動時の動作を示すタイムチャートである。
 最初は、燃料電池モジュール2を温めるために、無負荷状態で、即ち、燃料電池モジュール2を含む回路を開いた状態で、運転を開始する。このとき、回路に電流が流れないので、燃料電池モジュール2は発電を行わない。
 先ず、改質用空気流量調整ユニット44から改質用空気を第1ヒータ46を経由して燃料電池モジュール2の改質器20へ供給する。また、同時に、発電用空気流量調整ユニット45から発電用空気を第2ヒータ48を経由して燃料電池モジュール2の空気用熱交換器22へ供給し、この発電用空気が、発電室10及び燃焼室18に到達する。
 この直ぐ後、燃料流量調整ユニット38からも燃料ガスが供給され、改質用空気が混合された燃料ガスが、改質器20及び燃料電池セルスタック14、燃料電池セルユニット16を通過して、燃焼室18に到達する。
 次に、点火装置83により着火して、燃焼室18にある燃料ガスと空気(改質用空気及び発電用空気)とを燃焼させる。この燃料ガスと空気との燃焼により排気ガスが生じ、この排気ガスにより、発電室10が暖められ、また、排気ガスが燃料電池モジュール2の密封空間8内を上昇する際、改質器20内の改質用空気を含む燃料ガスを暖めると共に、空気熱交換器22内の発電用空気も暖める。
 このとき、燃料流量調整ユニット38及び改質用空気流量調整ユニット44により、改質用空気が混合された燃料ガスが改質器20に供給されているので、改質器20において、式(1)に示す部分酸化改質反応POXが進行する。この部分酸化改質反応POXは、発熱反応であるので、起動性が良好となる。また、この昇温した燃料ガスが燃料ガス供給管64により燃料電池セルスタック14の下方に供給され、これにより、燃料電池セルスタック14が下方から加熱され、また、燃焼室18も燃料ガスと空気が燃焼して昇温されているので、燃料電池セルスタック14は、上方からも加熱され、この結果、燃料電池セルスタック14は、上下方向において、ほぼ均等に昇温可能となっている。この部分酸化改質反応POXが進行しても、燃焼室18では継続して燃料ガスと空気との燃焼反応が持続される。
  Cmn+xO2 → aCO2+bCO+cH2        (1)
 部分酸化改質反応POXの開始後、改質器温度センサ148により改質器20が所定温度(例えば、600℃)になったことを検知したとき、水流量調整ユニット28、燃料流量調整ユニット38及び改質用空気流量調整ユニット44により、燃料ガスと改質用空気と水蒸気とを予め混合したガスを改質器20に供給する。このとき、改質器20においては、上述した部分酸化改質反応POXと後述する水蒸気改質反応SRとが併用されたオートサーマル改質反応ATRが進行する。このオートサーマル改質反応ATRは、熱的に内部バランスが取れるので、改質器20内では熱的に自立した状態で反応が進行する。即ち、酸素(空気)が多い場合には部分酸化改質反応POXによる発熱が支配的となり、水蒸気が多い場合には水蒸気改質反応SRによる吸熱反応が支配的となる。この段階では、既に起動の初期段階は過ぎており、発電室10内がある程度の温度まで昇温されているので、吸熱反応が支配的であっても大幅な温度低下を引き起こすことはない。また、オートサーマル改質反応ATRが進行中も、燃焼室18では燃焼反応が継続して行われている。
 式(2)に示すオートサーマル改質反応ATRの開始後、改質器温度センサ146により改質器20が所定温度(例えば、700℃)になったことを検知したとき、改質用空気流量調整ユニット44による改質用空気の供給を停止すると共に、水流量調整ユニット28による水蒸気の供給を増加させる。これにより、改質器20には、空気を含まず燃料ガスと水蒸気のみを含むガスが供給され、改質器20において、式(3)の水蒸気改質反応SRが進行する。
  Cmn+xO2+yH2O → aCO2+bCO+cH2    (2)
  Cmn+xH2O → aCO2+bCO+cH2       (3)
 この水蒸気改質反応SRは吸熱反応であるので、燃焼室18からの燃焼熱と熱バランスをとりながら反応が進行する。この段階では、燃料電池モジュール2の起動の最終段階であるため、発電室10内が十分高温に昇温されているので、吸熱反応が進行しても、発電室10が大幅な温度低下を招くこともない。また、水蒸気改質反応SRが進行しても、燃焼室18では継続して燃焼反応が進行する。
 このようにして、燃料電池モジュール2は、点火装置83により点火した後、部分酸化改質反応POX、オートサーマル改質反応ATR、水蒸気改質反応SRが、順次進行することにより、発電室10内の温度が徐々に上昇する。次に、発電室10内及び燃料電池セル84の温度が燃料電池モジュール2を安定的に作動させる定格温度よりも低い所定の発電温度に達したら、燃料電池モジュール2を含む回路を閉じ、燃料電池モジュール2による発電を開始し、それにより、回路に電流が流れる。燃料電池モジュール2の発電により、燃料電池セル84自体も発熱し、燃料電池セル84の温度も上昇する。この結果、燃料電池モジュール2を作動させる定格温度、例えば、600℃~800℃になる。
 この後、定格温度を維持するために、燃料電池セル84で消費される燃料ガス及び空気の量よりも多い燃料ガス及び空気を供給し、燃焼室18での燃焼を継続させる。なお、発電中は、改質効率の高い水蒸気改質反応SRで発電が進行する。
 次に、図8により本実施形態による固体電解質型燃料電池(SOFC)の運転停止時の動作を説明する。図8は、本実施形態により固体電解質型燃料電池(SOFC)の運転停止時の動作を示すタイムチャートである。
 図8に示すように、燃料電池モジュール2の運転停止を行う場合には、先ず、燃料流量調整ユニット38及び水流量調整ユニット28を操作して、燃料ガス及び水蒸気の改質器20への供給量を減少させる。
 また、燃料電池モジュール2の運転停止を行う場合には、燃料ガス及び水蒸気の改質器20への供給量を減少させると同時に、改質用空気流量調整ユニット44による発電用空気の燃料電池モジュール2内への供給量を増大させて、燃料電池セル集合体12及び改質器20を空気により冷却し、これらの温度を低下させる。その後、改質器20の温度が所定温度、例えば、400℃まで低下したとき、燃料ガス及び水蒸気の改質器20への供給を停止し、改質器20の水蒸気改質反応SRを終了する。この発電用空気の供給は、改質器20の温度が所定温度、例えば、200℃まで低下するまで、継続し、この所定温度となったとき、発電用空気流量調整ユニット45からの発電用空気の供給を停止する。
 このように、本実施形態においては、燃料電池モジュール2の運転停止を行うとき、改質器20による水蒸気改質反応SRと発電用空気による冷却とを併用しているので、比較的短時間に、燃料電池モジュールの運転を停止させることができる。
 次に、図6を参照して、本発明の実施形態による固体電解質型燃料電池1の制御を説明する。
 まず、図6に示すように、本実施形態の固体電解質型燃料電池1は、燃料電池コントローラである制御部110と、インバータコントローラであるインバータ制御部111と、を備えている。
 制御部110は、第1需要電力検出手段110aを備えており、需要電力検出器206(図15)から入力される需要電力モニター信号Msに基づいて需要電力を検出している。住宅200(図15)等の施設で消費されている総需要電力は、商用電源から供給される系統電力及び固体電解質型燃料電池1から供給される電力によって賄われている。需要電力検出器206としてカレントトランスを用いる場合は、需要電力モニター信号Msとしては系統電流(購入電流)がモニタ信号として得られるので、インバータ54から得られる出力端の交流電圧および発電連系出力電力より、系統電力・発電連系電力とあわせて需用電力が得られる。また、それらの情報をインバータ54から間接的に得ることで第1需要電力検出手段110aとすることも出来る。本実施形態においては、制御部110には、総需要電力のうちの系統電力が需要電力モニター信号Msとして入力されているが、制御部により、総需要電力を需要電力モニター信号として使用することもできる。
 また、制御部110は、需要電力モニター信号Ms等に基づいて、水流量調整ユニット28、燃料流量調整ユニット38、改質用空気流量調整ユニット44等を制御するように構成されている。また、制御部110は、各種センサからの入力信号、及び需要電力モニター信号Msに基づいて、取出可能電流値Iinvを設定し、この値をインバータ制御部111に出力するように構成されている。具体的には、制御部110は、マイクロプロセッサ、メモリ、及びこれらを作動させるプログラム等により構成される。
 インバータ制御部111は、第2需要電力検出手段111aを備えており、需要電力検出器206(図15)から入力される需要電力モニター信号Msに基づいて需要電力を検出している。需要電力検出器206としてカレントトランスを用いる場合は、需要電力モニター信号Msとしては系統電流(購入電流)がモニタ信号として得られるので、インバータ54で得られる出力端に備えられた電圧検知手段による出力端の交流電圧および出力部での出力電力検知手段による発電連系出力電力より、系統電力・発電連系電力とあわせて需用電力が得られる。また、それらの情報を制御部110へ伝えることも出来る。インバータ制御部111は、需要電力モニター信号Ms、及び制御部110から入力された取出可能電流値Iinvに基づいて、インバータ54を制御し、取出可能電流値Iinvを超えない範囲で燃料電池モジュール2から実取出電流Icを取り出すように構成されている。具体的には、インバータ制御部111は、マイクロプロセッサ、メモリ、及びこれらを作動させるプログラム等により構成される。
 制御部110は、燃料電池モジュール2の状態に応じて、そのとき燃料電池モジュール2から取り出すことのできる最大の電流である取出可能電流値Iinvを逐次設定する取出可能電流値設定手段を備えている。インバータ制御部111は、制御部110とは独立してインバータ54を制御し、制御部110から入力された取出可能電流値Iinvを超えない範囲で燃料電池モジュール2から実取出電流Icを取り出し、住宅200(図15)等の施設に供給する。なお、本実施形態においては、制御部110の制御周期は500[msec]であり、インバータ制御部111の制御周期は1[msec]以下である。このように、制御部110は応答の遅い燃料電池モジュール2を制御するために必要にして十分な制御周期で作動され、インバータ制御部111は急速に変動する需要電力に対応して、インバータ54から電力を取り出すことができるように、短い制御周期で作動される。また、制御部110及びインバータ制御部111の制御は同期されておらず、インバータ制御部111は、制御部110から入力された取出可能電流値Iinv、及び需要電力モニター信号Msに基づいて、制御部110とは独立してインバータ54を制御している。
 次に、図9乃至14を参照して、本発明の実施形態による固体電解質型燃料電池1の作用を説明する。図9は、制御部110により取出可能電流値Iinvを設定するための制御テーブルである。図10及び図11は、図9に示す制御テーブルを適用して取出可能電流値Iinvを決定するフローチャートである。
 図9に示すように、制御部110は、発電室温度Tfc、燃料電池モジュール2から出力される発電電圧Vdc、商用電源から住宅等の施設へ供給されている電力である系統電力Wl、インバータ54から出力される電力である連系電力Winv、取出可能電流値Iinvの現在値、及び燃料供給電流値Ifに基づいて、取出可能電流値Iinvの増加、低下、又は維持を決定する。
 発電室温度Tfcは、燃料電池セルユニット16を収容した発電室10内の温度であり、温度検出手段である発電室温度センサ142によって検出され、制御部110に入力される。なお、本明細書においては、発電室温度Tfc等、燃料電池モジュール2の発電能力の指標となる温度を「燃料電池モジュールの温度」ということにする。
 発電電圧Vdcは、燃料電池モジュール2から出力される出力電圧である。
 系統電力Wlは、住宅等の施設に対して商用電源から供給されている電力であり、施設の総需要電力から燃料電池によって供給されている電力を差し引いた電力がこれに相当し、需要電力モニター信号Msに基づいて検出される。
 連系電力Winvは、インバータ54から出力される電力である。燃料電池モジュール2からインバータ54に実際に取り出される電力は電力状態検出センサ126によって検出され、この電力から変換された電力がインバータ54から出力される。燃料電池モジュール2から実際に出力される実取出電流Ic[A]は電力状態検出センサ126によって検出された電力に基づいて求められる。従って、電力状態検出センサ126は、取出電流検出手段として機能する。
 燃料供給電流値Ifは、燃料供給量を求めるための基にする電流値であって、燃料電池モジュール2に供給されている燃料供給量(L/min)によって発電することが可能な電流値に相当する。そのため、燃料供給電流値Ifは、常に必ず取出可能電流値Iinvを下回ることのない様に設定する。
 制御部110は、燃料電池モジュール2の現在の状態が、図9の番号1~9の何れに該当するかを判定し、図9の右端欄に示されている取出可能電流値Iinvの変更又は維持を実行する。
 例えば、図9の番号1欄に記載されている条件の全てが同時に満足された場合には、番号1欄の右端にあるように、制御部110は、取出可能電流値Iinvを5[mA]低下させるように変更する。上記のように、本実施形態においては、制御部110の制御周期は500[msec]であるので、番号1欄の条件が満たされる状態が連続した場合には、取出可能電流値Iinvは500[msec]毎に5[mA]ずつ低下する。この場合、取出可能電流値Iinvは、10[mA/sec]の電流減少変化率で減少されることになる。
 同様に、図9の番号8欄に記載されている条件の全てが同時に満足された場合には、番号8欄の右端にあるように、制御部110は、取出可能電流値Iinvを10[mA]増加させるように変更する。従って、番号8欄の条件が満たされる状態が連続した場合には、取出可能電流値Iinvは、第1電流上昇変化率である20[mA/sec]の変化率で上昇されることになる。
 また、図9の番号1~8欄に記載されている条件が何れも満足されない場合には、番号9欄の条件に該当し、取出可能電流値Iinvの値は変更されずに維持される。
 次に、図10及び図11を参照して、図9の制御テーブルの条件の判断手順を説明する。なお、図10及び図11における符号A~Dは、処理の移行先を示している。例えば、フローの処理は、図10の符号「C」から図11の符号「C」へ移行する。
 また、以下に説明するように、制御部110は、需要電力が上昇している場合等、取出可能電流値Iinvを増加させるべき状況にあっても、所定の複数の増加規制条件に該当しない場合にのみ、取出可能電流値Iinvを増加させるように構成されている。さらに、増加規制条件は、複数の電流低下条件及び電流維持条件を含んでおり、これらの条件に該当すると、取出可能電流値Iinvは、低下され、又は維持される。また、複数の電流低下条件(図10のステップS5、S7、S9、S11、S13)は、複数の電流維持条件(図11のステップS15、S16、S17、S18、S19)よりも先に、優先的に適用される。
 まず、図10のステップS1は、取出可能電流値Iinvと実取出電流値Icとの間で非常に大きな偏差が生まれたかどうかを判断するステップであって、両者の間に1000[mA]よりも大きいような偏差が生まれたか否かが判断される。取出可能電流値Iinvと実取出電流値Icとの差が短い制御周期の中で1000[mA]よりも大きいような偏差が初めて生まれるような場合というのは、インバータ54が、総需要電力の急激な低下、もしくは何らかの理由によって実取出電力Icを急激に低下させたことによって偏差が生じた状況であるとしてステップS2に進む。
 ステップS2においては、系統電力Wlが50[W]よりも少ないか否かが判断される。系統電力Wlが50[W]よりも少ない場合というのは、系統電力Wlがこれ以上減少すると、インバータ54からの出力電力が、商用電源に流れ込む「逆潮流(系統電力W1がマイナスになる状態)」が発生する可能性が高くなる状態である。よってS2の判定とS1の判定によって総重要電力のとても大きな落ち込みによって逆潮流が生じることを防止するために、インバータ54が実取出電流値Icを急激に下げた状態であると判断できる。なお、S2で系統電力W1の値を50Wに設定しているのは逆潮流が万が一にも発生することがないように50W分のマージンを設けているものである。
 次にS1、S2の双方でYESと判断された場合、即ち、とても大きな総重要電力の落ち込みに伴うインバータ54による逆潮流防止制御が行われた場合は、ステップS3において、制御部110は、インバータ制御部111に指示する取出可能電流値Iinvの値を実取出電流Icの値まで急激に低下させる(図9の番号6に対応)。ステップS3の処理の終了により、図10及び図11のフローチャートの1回の処理が終了する。インバータ54は取出可能電流値Iinvの値を超えない範囲で実取出電流値Icを取り出すので、取出可能電流値Iinvを低下させて取出可能電流値linv=実取出電流値Icとすることにより、インバータ54は現在の実取出電流値Icより取出電流を勝手に増やすような対応が規制される。これは、総需要電力の急激な低下があったような場合は、その後すぐに総需要電力が急激に回復する(増える)ような状況が起こる可能性が高いが、1000[mA]を超えるような大きな偏差量がある中で、インバータ54が回復した総需要電力に応えるべく電力取出を急激に行なってしまうと、制御オーバーシュート等によって需要電力や取出可能電流値linvを誤って超えるような電力取出をインバータ54が行ってしまうことを未然に防止できるようにした工夫である。言い換えると1000[mA]以下のような小さな偏差では取出可能電流値linvを実取出電流値Icにするような制御を行っていないため、インバータ54は実取出電流値Icより高い所にある取出可能電流値linvまでの間で自由に電力取出を迅速に行えるように許容したものである。これはこのような小さな偏差であればオーバーシュートによる過剰な電力取出等の問題を生じないため、総重要電力の回復に速やかに追従できるように配慮した更なる工夫である。
 一方、ステップS1とS2の判定でとても大きな総重要電力低下に伴う逆潮流が起こるような状況ではないと判断された場合には、ステップS4に進む。ステップS4においては、取出可能電流値Iinvが1[A]よりも大きいか否かが判断される。取出可能電流値Iinvが1[A]よりも大きい場合には、ステップS5に進み、発電電圧Vdcが95[V]よりも低いか否かが判断される。発電電圧Vdcが95[V]よりも低い場合には、ステップS6に進む。
 ステップS6においては、制御部110は、インバータ制御部111に指示する取出可能電流値Iinvの値を10[mA]低下させる(図9の番号4に対応)。ステップS6の処理の終了により、図10及び図11のフローチャートの1回の処理が終了する。図10のフローチャートが実行されるごとにステップS6の処理が連続して実行された場合には、取出可能電流値Iinvは、20[mA/sec]の電流減少変化率で減少されることになる。発電電圧Vdcが95[V]よりも低い場合には、燃料電池モジュール2からインバータ54に電力が取り出される際に燃料電池モジュールの劣化等により、電圧降下が生じていると考えられるため、取出可能電流値Iinvを低下させることにより、インバータ54に取り出される電流を抑制して、燃料電池モジュール2にかかる負担を軽減する。
 一方、ステップS5において、発電電圧Vdcが95[V]以上の場合には、ステップS7に進む。ステップS7においては、連系電力Winvが710[W]を超えているか否かが判断される。連系電力Winvが710[W]を超えている場合にはステップS8に進み、ステップS8においては、制御部110は、インバータ制御部111に指示する取出可能電流値Iinvの値を5[mA]低下させる(図9の番号5に対応)。即ち、連系電力Winvが710[W]を超えている場合には、燃料電池モジュール2からの出力電力が定格電力を超えているので、燃料電池モジュール2から取り出す電流を低下させて定格電力を超えないようにする。ステップS8の処理の終了により、図10及び図11のフローチャートの1回の処理が終了する。図10のフローチャートが実行されるごとにステップS8の処理が連続して実行された場合には、取出可能電流値Iinvは、10[mA/sec]の電流減少変化率で減少されることになる。
 このように、制御部110は、複数の電流低下条件のうち該当した電流低下条件により、取出可能電流値Iinvを減少させる変化率が異なるように、取出可能電流値Iinvを変化させる。
 一方、ステップS7において、連系電力Winvが710[W]以下の場合には、ステップS9に進む。ステップS9においては、発電室温度Tfcが850[℃]を超えているか否かが判断される。発電室温度Tfcが850[℃]を超えている場合にはステップS10に進み、ステップS10においては、制御部110は、インバータ制御部111に指示する取出可能電流値Iinvの値を5[mA]低下させる(図9の番号2に対応)。即ち、発電室温度Tfcが850[℃]を超えている場合には、燃料電池モジュール2の適正な作動温度を超えているため、取出可能電流値Iinvの値を低下させて、温度の低下を待つ。ステップS10の処理の終了により、図10及び図11のフローチャートの1回の処理が終了する。図10のフローチャートが実行されるごとにステップS10の処理が連続して実行された場合には、取出可能電流値Iinvは、10[mA/sec]の電流減少変化率で減少されることになる。
 一方、ステップS9において、発電室温度Tfcが850[℃]以下の場合には、ステップS11に進む。ステップS11においては、発電室温度Tfcが550[℃]よりも低いか否かが判断される。発電室温度Tfcが550[℃]よりも低い場合にはステップS12に進み、ステップS12においては、制御部110は、インバータ制御部111に指示する取出可能電流値Iinvの値を5[mA]低下させる(図9の番号3に対応)。即ち、発電室温度Tfcが550[℃]よりも低い場合には、燃料電池モジュール2が適正な発電を行うことができる温度を下回っているため、取出可能電流値Iinvの値を低下させる。これにより、発電に消費される燃料を減少させ、燃料を燃料電池セルユニット16の加熱に振り向け、温度を上昇させる。ステップS12の処理の終了により、図10及び図11のフローチャートの1回の処理が終了する。図10のフローチャートが実行されるごとにステップS12の処理が連続して実行された場合には、取出可能電流値Iinvは、10[mA/sec]の電流減少変化率で減少されることになる。
 一方、ステップS11において、発電室温度Tfcが550[℃]以上の場合には、ステップS13に進む。ステップS13においては、取出可能電流値Iinvと実取出電流Icの差が400[mA]を超え、且つ取出可能電流値Iinvが1[A]を超えているか否かが判断される。取出可能電流値Iinvと実取出電流Icの差が400[mA]を超え、且つ取出可能電流値Iinvが1[A]を超えている場合には、ステップS14に進み、ステップS14においては、制御部110は、インバータ制御部111に指示する取出可能電流値Iinvの値を5[mA]低下させる(図9の番号1に対応)。即ち、取出可能電流値Iinvと実取出電流Icの差が400[mA]を超えている場合には、取り出し可能な電流である取出可能電流値Iinvに対して、燃料電池モジュール2から実際に取り出されている実取出電流Icが少なすぎ、燃料が無駄に供給されるので、取出可能電流値Iinvの値を低下させて燃料の浪費を抑制する。ステップS14の処理の終了により、図10及び図11のフローチャートの1回の処理が終了する。図10のフローチャートが実行されるごとにステップS14の処理が連続して実行された場合には、取出可能電流値Iinvは、10[mA/sec]の電流減少変化率で減少されることになる。
 このように、制御部110は、複数の電流低下条件(図10のステップS5、S7、S9、S11、S13)のうち1つでも該当した場合においては、需要電力が上昇している状況においても取出可能電流値Iinvを減少させる(ステップS6、S8、S10、S12、S14)。
 一方、ステップS4において、取出可能電流値Iinvが1[A]以下の場合、及びステップS13において、取出可能電流値Iinvと実取出電流Icの差が400[mA]以下の場合には、図11のステップS15に進む。
 ステップS15においては、取出可能電流値Iinvと実取出電流Icの差が300[mA]以下であるか否かが判断され、ステップS16においては、発電電圧Vdcが100[V]以上であるか否かが判断され、ステップS17においては、連系電力Winvが690[W]以下であるか否かが判断され、ステップS18においては、発電室温度Tfcが600[℃]以上であるか否かが判断され、ステップS19においては、系統電力Wlが40[W]を超えているか否かが判断される。これらの条件が全て満足された場合にはステップS20に進み、これらのうちの1つでも満足されない条件がある場合(図9の番号9に対応)には、ステップS21進む。ステップS21においては、取出可能電流値Iinvの値は変更されずに従前の値に維持され、図10及び図11のフローチャートの1回の処理が終了する。
 このように、本実施形態の固体電解質型燃料電池1においては、需要電力が上昇している状況においても、所定の条件が満たされない場合には、取出可能電流値Iinvが一定に維持される(図11のステップS21)。また、発電室温度Tfcに着目すると、発電室温度Tfcが上限の閾値である850[℃]を超えている場合には、取出可能電流値Iinvは低下され(図10のステップS9、S10)、発電室温度Tfcが下限の閾値である600[℃]よりも低いと、取出可能電流値Iinvは維持される(図11のステップS18、S21)。また、発電室温度Tfcが更に低く、550[℃]よりも低いと、取出可能電流値Iinvは低下される(図10のステップS11、S12)。
 一方、ステップS20以下の処理では、取出可能電流値Iinvの値は上昇される。制御部110は、複数の電流維持条件(図11のステップS15、S16、S17、S18、S19)の何れにも該当しない場合にのみ、取出可能電流値Iinvを増加させる(図11のステップS22、S23)。
 即ち、取出可能電流値Iinvと実取出電流Icの差が300[mA]を超えている場合(ステップS15)には、取出可能電流値Iinvと実取出電流Icの差が比較的大きいため、取出可能電流値Iinvを上昇させるべきではない。また、発電電圧Vdcが100[V]よりも低い場合(ステップS16)には、取出可能電流値Iinvを上昇させて、燃料電池モジュール2から取り出され得る電流を増加させるべきではない。さらに、連系電力Winvが690[W]を超えている場合(ステップS17)には、燃料電池モジュール2からの出力電力は既にほぼ定格出力電力に到達しているため、燃料電池モジュール2から取り出され得る電流を増加させるべきではない。
 さらに、発電室温度Tfcが600[℃]よりも低い場合(ステップS18)には、燃料電池モジュール2が十分に発電を行うことができる温度に達していないため、取出可能電流値Iinvの値を上昇させ、燃料電池モジュール2から取り出され得る電流を増加させて、燃料電池セルユニット16に負担をかけるべきではない。また、系統電力Wlが40[W]以下の場合(ステップS19)には、「逆潮流」が発生しやすい状況にあるため、燃料電池モジュール2から取り出され得る電流を増加させるべきではない。
 ステップS15乃至ステップS19の条件が全て満足された場合には、ステップS20に進む。ステップS20においては、燃料供給電流値Ifと実取出電流Icの差が1000[mA]以上か否かが判断される。燃料供給電流値Ifに対応した燃料供給量を求めて、燃料電池モジュール2に供給して発電運転している。そのため、換言すれば、その燃料により燃料電池モジュール2が発電可能な電流値を換算した値である。例えば、燃料供給電流値If=5[A]に相当する燃料供給量[L/min]が供給されている場合には、燃料電池モジュール2は、潜在的に5[A]の電流を安全に安定して出力する能力がある。従って、燃料供給電流値Ifと実取出電流Icの差が1000[mA]である場合には、実際に発電している実取出電流Icよりも1[A]分多い電流を出力することができる分量の燃料が燃料電池モジュール2に供給されていることになる。
 ステップS20において、燃料供給電流値Ifと実取出電流Icの差が1000[mA]以上である場合にはステップS22進み、1000[mA]よりも少ない場合にはステップS23進む。ステップS22においては、多くの余分な燃料が燃料電池モジュール2に供給されている状態であるため、制御部110は、インバータ制御部111に指示する取出可能電流値Iinvの値を100[mA]増加させ(図9の番号7に対応)、取出可能電流値Iinvを急速に上昇させる。ステップS22の処理の終了により、図10及び図11のフローチャートの1回の処理が終了する。図11のフローチャートが実行されるごとにステップS22の処理が連続して実行された場合には、取出可能電流値Iinvは、第2電流上昇変化率である200[mA/sec]の変化率で上昇されることになる。
 一方、ステップS23においては、取出可能電流値Iinvを上昇させる状況にあるが、多くの余分な燃料が燃料電池モジュール2に供給されている状態ではないので、制御部110は、インバータ制御部111に指示する取出可能電流値Iinvの値を10[mA]増加させ(図9の番号8に対応)、取出可能電流値Iinvを緩やかに上昇させる。ステップS23の処理の終了により、図10及び図11のフローチャートの1回の処理が終了する。図11のフローチャートが実行されるごとにステップS23の処理が連続して実行された場合には、取出可能電流値Iinvは、第1電流上昇変化率である20[mA/sec]の変化率で上昇されることになる。
 次に、図12乃至図14を参照して、本実施形態による固体電解質型燃料電池の作用の一例を説明する。
 図12は、上段に電力のグラフを示し、下段に電流のグラフを示している。
 まず、図12上段に細い実線で示すように、住宅200等の施設の総需要電力が細かく変動しながら緩やかに増加している場合には、これに対応して、取出可能電流値Iinvも緩やかに上昇される(図12の時刻t0~t1)。この間には、図11のフローチャートのステップS23が繰り返し実行され、取出可能電流値Iinvは、20[mA/sec]の第1電流上昇変化率で上昇される。インバータ制御部111は、制御部110から取出可能電流値Iinvが入力されると、制御部110の制御とは独立してインバータ54を制御し、取出可能電流値Iinvを超えない範囲の実取出電流Icを燃料電池モジュール2から取り出す。また、図12の時刻t0~t1においては、総需要電力は、常に取出可能電流値Iinvに対応した電力を上回っているため、実取出電流Icは取り出すことができる上限値である取出可能電流値Iinvに一致し、連系電力Winvも実取出電流Icと共に上昇している。このような状態においては、インバータ制御部111は、制御部110から独立してインバータ54を制御しているにも関わらず、実取出電流Icは、実質的に制御部110の支配下におかれる。なお、燃料供給電流値Ifは、取出可能電流値Iinvよりも若干先行して上昇される。また、総需要電力と連系電力Winvの差の不足分の電力は、系統電力Wlによって賄われる。
 次に、図12の時刻t1において、総需要電力が急激に減少すると、インバータ制御部111は、この減少に応答してインバータ54を制御し、燃料電池モジュール2から取り出す実取出電流Ic(連系電力Winv)を減少させる。制御部110は、前記したオーバーシュートによる過剰な電力取出が行われないように取出可能電流値Iinvを、実取出電流値Icと同じ値まで減少させる(図10のステップS3)。一方、制御部110は、時刻t1において、燃料供給電流値Ifの値は低下させずに従前の値に維持する。これは、燃料供給量(燃料供給電流値If)を取出可能電流値Iinvと共に急激に減少させてしまうと、燃料電池モジュール2の急激な温度低下を招き、燃料電池モジュール2の動作が不安定になるだけでなく、急激に需要電力が低下した場合はすぐに需要が増える可能性が高いため、これへの追従を早くしたいが燃料電池モジュール2の温度を低下させた場合は回復させるのに長時間を要してしまうため、これへの追従性を高めるために燃料供給電流値Ifは低下させていない。このため、取出可能電流値Iinvが急激に減少された場合には、燃料供給電流値Ifは、それよりも遅れて減少される。取出可能電流値Iinvが減少された直後における、燃料供給電流値Ifが維持されている状態においては、燃料電池モジュール2は、取り出され得る取出可能電流値Iinvに対して、燃料供給量に余裕のある状態となる。
 図12の時刻t1~t2においては、総需要電力は低下したままであるので、制御部110は、取出可能電流値Iinvの値を一定に維持し(図11のステップS21)、また、燃料供給電流値Ifの値も燃料が余剰な状態で一定に維持される。
 次いで、時刻t2において、総需要電力が再び上昇すると、制御部110は、燃料供給電流値Ifが一定に維持されており、燃料電池モジュール2への燃料供給量に余裕のある状態であるため、取出可能電流値Iinvの値を、通常の変化率(第1電流上昇変化率)よりも大きい200[mA/sec]の第2電流上昇変化率で急速に上昇させる(図11のステップS22)。これによって、総需要に対する負荷追従性を高めている。すなわち、制御部110から出力される取出可能電流値Iinvの値が上昇されると、インバータ制御部111は、この上昇されている取出可能電流値Iinvの範囲内で、燃料電池モジュール2から実取出電流Icを取り出す。取出可能電流値Iinvの値を急速に上昇させることにより、燃料供給電流値Ifに見合った多くの電力を燃料電池モジュール2から取り出すことができ、系統電力Wlの使用量を抑制することができる。
 なお、本実施形態においては、第2電流上昇変化率である200[mA/sec]の大きな電流上昇変化率、及び第1電流上昇変化率である20[mA/sec]の通常の電流上昇変化率により取出可能電流値Iinvが上昇される。ここで、電流上昇変化率が通常の第1電流上昇変化率のみである場合には、取出可能電流値Iinvは、図12に二点鎖線で示すように、時刻t2から緩やかに上昇する。このため、電流上昇変化率が急速に上昇されない場合には、燃料供給量が同じであるにも関わらず、図12に斜線を施した領域分だけ実取出電流Icが減少し、燃料が無駄に消費されることになる。反対に言えば、本技術における需要予測制御の採用によって固体酸化物型燃料電池の大きな課題である温度変化が遅いという問題を解決して速やかに負荷への追従性を高めることができる。
 なお、本実施例では燃料供給電流値Ifをそのままの状態で維持しているが、燃料供給電流値Ifと取出可能電流値Iinvがあまりにも大きな偏差になっている場合は、総需要電力の再復帰を考慮しても余剰燃料となる量が多くなり過ぎるのはやはり無駄であるため、あまり大きな偏差量にならない程度で留めた上で燃料供給電流値Ifを維持することは更に望ましい対応であると言える。
 図12の時刻t3において、燃料供給電流値Ifと実取出電流Icの差が小さくなると、制御部110は、電流上昇変化率を第1電流上昇変化率である20[mA/sec]に変更し、取出可能電流値Iinvの上昇を緩やかにする(図11のステップS23)。これは、燃料供給量(燃料供給電流値If)の余裕が少ない状態で取出可能電流値Iinvを急激に上昇させると、制御部110とは独立してインバータ54を制御するインバータ制御部111との動作のずれにより、燃料枯れが発生するのを防止するためである。
 次いで、取出可能電流値Iinvの値が上昇し、図12の時刻t4において、燃料供給電流値Ifに近づくと、取出可能電流値Iinvに対して所定の余裕量が確保されるように、燃料供給電流値Ifの値も取出可能電流値Iinvと共に上昇される。
 次に、図13を参照して、本実施形態による固体電解質型燃料電池の他の作用例を説明する。
 図12に示した作用例では、時刻t1において総需要電力が低下した後、燃料供給電流値Ifの値が維持されている間に総需要電力が上昇に転じている。これに対し、図13に示す例では、総需要電力が低下した後、これが上昇に転じるまでの時間が長くなっている。燃料供給電流値Ifを大きな値に維持する時間が長くなると供給した燃料が無駄になるので、燃料供給電流値Ifは所定の燃料低下待機期間twが経過すると減少される。
 図13の時刻t11において、総需要電力が急激に低下した後、時刻t13まで総需要電力は低下したままである。本実施形態においては、制御部110は、総需要電力が急激に低下し、取出可能電流値Iinvを実取出電流Icまで低下させた場合には、その後、燃料低下待機期間twである15[sec]間、燃料供給電流値Ifを一定に維持するように構成されている。
 図13に示す例では、時刻t11において総需要電力が急激に低下した後、燃料低下待機期間twが経過した時刻t12においても、総需要電力は低下したままであるので、制御部110は、時刻t12から燃料供給電流値If(燃料供給量)を所定の減少変化率で低下させる。この減少変化率は、燃料電池モジュール2が適正な作動を維持できる値に選択されている。なお、図13に示す例では、燃料低下待機期間twが経過後、燃料供給電流値Ifを低下させているが、取出可能電流値Iinvと燃料供給電流値Ifの差が所定量未満である場合には、燃料低下待機期間twが経過しても燃料供給電流値Ifは低下されずに維持される。これにより、燃料供給電流値Ifの微少変動が、燃料電池モジュール2の運転に悪影響を及ぼすのを防止することができる。
 次いで、図13の時刻t13において総需要電力が上昇すると、制御部110は、取出可能電流値Iinv及び燃料供給電流値Ifを上昇させる。ただし、この際の取出可能電流値Iinvの上昇は、取出可能電流値Iinvが急激に減少された直後ではなく、燃料供給電流値Ifの値も減少されているので、取出可能電流値Iinvの電流上昇変化率は、通常の値である第1電流上昇変化率の20[mA/sec]に設定される。即ち、図13の時刻t13においては、図11のステップS20の条件が満足されず、ステップS23が実行される。
 なお、本実施形態では燃料供給電流値Ifを15秒後に低下させて余剰な燃料の維持を中止するように構成しているが、総重要電力が更に低下していくような場合は総重要電力が回復して上昇してくる可能性が低いため燃料供給電流値Ifを維持させる時間の15秒を待たずに燃料供給電流値Ifを速やかに低下させるようにすることは更に望ましい対応と言える。
 次に、図14を参照して、本実施形態による固体電解質型燃料電池の他の作用例を説明する。
 図14に示す作用例では、総需要電力が急激に低下した後、上昇することなく再び総需要電力が急激に低下している。このような場合においては、最初の急激な低下から燃料低下待機期間twが経過していなくても、すぐに総需要電力が上昇に転じる確率が低いと考えられるため、制御部110は、燃料供給電流値Ifを低下させる。
 図14に示す例では、時刻t21において総需要電力が急激に低下した後、燃料低下待機期間twである15[sec]が経過する前の時刻t22において、総需要電力は再び急激に低下している。このように燃料供給電流値Ifと取出可能電流値Iinvの差が拡大した場合には、制御部110は、総需要電力の最初の急激な低下から燃料低下待機期間twが経過する前であっても、時刻t22から燃料供給電流値If(燃料供給量)を所定の減少変化率で低下させる。次いで、図14の時刻t23において総需要電力が上昇すると、制御部110は、取出可能電流値Iinv及び燃料供給電流値Ifを上昇させる。
 本発明の実施形態の固体電解質型燃料電池1によれば、制御部110は、取出可能電流値Iinvを急激に低下させた場合でも、取出可能電流値Iinvの低下よりも遅れて燃料供給電流値If(燃料供給量)が低下されるように、燃料流量調整ユニット38を制御する(図12~図14)ので、燃料電池モジュール2の急激な温度低下等を回避することができる。また、取出可能電流値Iinvが急激に低下された後、燃料供給量が遅れて低下されるので、取出可能電流値Iinvに対して燃料供給量に余裕がある状態が発生する(図12の時刻t1~t2)。このような場合には、コントローラは、通常の電流上昇変化率よりも大きな第2電流上昇変化率で取出可能電流値Iinvを増加させる(図12の時刻t2~t3)ので、燃料の無駄を抑制し、発電効率を上昇させることができる。
 これにより、本実施形態の固体電解質型燃料電池1によれば、燃料枯れ等の不具合を確実に回避して、燃料電池モジュール2の安定した運転を可能にしながら、発電効率を高めることができる。
 本実施形態の固体電解質型燃料電池1によれば、取出可能電流値低下(図13の時刻t11)後、燃料低下待機期間(15[sec])に亘って所定量以上の差が存在した場合(図13の時刻t12)、又は、燃料供給量に対応する電流(燃料供給電流値If)と取出可能電流値Iinvの差が拡大した場合(図14の時刻t22)に、燃料供給量を低下させるので、燃料電池モジュール2の安定した運転と、発電効率向上を両立することができる。即ち、取出可能電流値Iinvが低下された後、燃料供給量を遅れて低下させることにより、燃料電池モジュール2の急激な温度低下等を回避することができるが、取出可能電流値Iinvの低下の後、燃料供給量を低下させない時間が長くなると、燃料の無駄が発生しやすくなるので、燃料低下待機期間経過後等に燃料供給量を低下させる。
 本実施形態の固体電解質型燃料電池1によれば、実取出電流値Icと取出可能電流値Iinvの差が所定量以下の場合(図10のステップS1)には、取出可能電流値Iinvを実取出電流値Icまで低下させないので、総需要電力が落ち込んだ後にすぐに回復するような場合、取出可能電流値Iinvは実取出電流値Icよりも高いレベルで維持されているのでインバータ54はその範囲で自由に総重要電力の回復に追従でき、オーバーシュート等の懸念を心配することなく負荷への追従性を高めることができる。さらに、実取出電流値Icと取出可能電流値Iinvの差が所定量である1000[mA]を超えた場合には、取出可能電流値Iinvを実取出電流Icまで低下させ(図10のステップS3)、その後遅れて燃料供給量を低下させるので、燃料電池モジュール2を安定して運転しながら、燃料の無駄を抑制することができる。
 本実施形態の固体電解質型燃料電池1によれば、燃料供給量の低下を遅らせた上で、取出可能電流値Iinvを必要最小限の実取出電流Icまで低下させる(図10のステップS3、図12の時刻t1、図13の時刻t11,図14の時刻t21)ので、燃料電池モジュール2の運転の安定を確保しながら、燃料の無駄を十分に抑制することができる。
 本実施形態の固体電解質型燃料電池1によれば、実取出電流Icの低下に追従するように取出可能電流値Iinvを急激に低下させた後、燃料供給量が一定に維持されている場合(図12の時刻t1~t2)において、需要電力が上昇し始める(図12の時刻t2)と、大きな電流上昇変化率で取出可能電流値Iinvを増加させる(図12の時刻t2~t3)ので、燃料供給量に確実に余裕のある状態で、急速に取出可能電流値Iinvを増加させることができ、燃料電池モジュール2の安定した運転を確実にしながら、需要電力の変化に対する追従性を高めることができる。
  1  固体電解質型燃料電池
  2  燃料電池モジュール
  4  補機ユニット
  8  密封空間
 10  発電室
 12  燃料電池セル集合体
 14  燃料電池セルスタック
 16  燃料電池セルユニット(固体電解質型燃料電池セル)
 18  燃焼室
 20  改質器
 22  空気用熱交換器
 24  水供給源
 26  純水タンク
 28  水流量調整ユニット(水供給手段)
 30  燃料供給源
 38  燃料流量調整ユニット(燃料供給手段)
 40  空気供給源
 44  改質用空気流量調整ユニット
 45  発電用空気流量調整ユニット
 46  第1ヒータ
 48  第2ヒータ
 50  温水製造装置
 52  制御ボックス
 54  インバータ
 83  点火装置
 84  燃料電池セル
110  制御部(燃料電池コントローラ)
110a 第1需要電力検出手段
111  インバータ制御部(インバータコントローラ)
111a 第2需要電力検出手段
112  操作装置
114  表示装置
116  警報装置
126  電力状態検出センサ(取出電流検出手段)
132  燃料流量センサ(燃料供給量検出センサ)
138  圧力センサ(改質器圧力センサ)
142  発電室温度センサ(温度検出手段)
150  外気温度センサ
200  住宅
202  燃料電池
204  系統電力
206  カレントトランス
208  燃料電池モジュール
210  フィルター
212  インバータ

Claims (5)

  1.  需要電力に応じた可変の電力を発電する固体電解質型燃料電池であって、
     供給された燃料により発電する燃料電池モジュールと、
     この燃料電池モジュールに燃料を供給する燃料供給手段と、
     需要電力を検出する需要電力検出手段と、
     この需要電力検出手段により検出された需要電力に基づいて上記燃料供給手段による燃料供給量を制御すると共に、上記燃料電池モジュールの状態に応じて上記燃料電池モジュールから取り出し可能な最大の電流値である取出可能電流値を設定するコントローラと、
     需要電力に応じて、上記燃料電池モジュールから、上記取出可能電流値を越えない範囲で電流を取り出し、交流に変換するインバータと、
     上記燃料電池モジュールから上記インバータに実際に取り出される実取出電流を検出する取出電流検出手段と、を有し、
     上記コントローラは、上記取出可能電流値を上昇させる場合には、所定の第1電流上昇変化率で取出可能電流値を増加させる一方、上記取出電流検出手段によって検出された実取出電流が低下した場合において、上記取出可能電流値を急激に低下させると共に、この取出可能電流値の低下に追従するように取出可能電流値の低下よりも遅れて燃料供給量が低下されるように、上記燃料供給手段を制御し、取出可能電流値を急激に低下させた後、燃料供給量に余裕がある状態で需要電力が上昇し始めた場合には、上記第1電流上昇変化率よりも大きな第2電流上昇変化率で取出可能電流値を増加させることを特徴とする固体電解質型燃料電池。
  2.  上記コントローラは、実取出電流が低下した場合において、実取出電流の低下に追従するように取出可能電流値を急激に低下させた後、燃料供給量に対応する電流と取出可能電流値との間に、所定の燃料低下待機期間中に所定量以上の差が存在した場合、又は、燃料供給量に対応する電流と取出可能電流値の差が拡大した場合に、燃料供給量を低下させるように上記燃料供給手段を制御する請求項1記載の固体電解質型燃料電池。
  3.  上記コントローラは、実取出電流と取出可能電流値の差が所定量を超えた場合には、取出可能電流値を低下させ、その後遅れて燃料供給量を低下させるように上記燃料供給手段を制御する一方、実取出電流と取出可能電流値の差が所定量以下の場合には、取出可能電流値を低下させない請求項2記載の固体電解質型燃料電池。
  4.  上記コントローラは、取出可能電流値を低下させる場合において、取出可能電流値を実取出電流まで低下させる請求項3記載の固体電解質型燃料電池。
  5.  上記コントローラは、実取出電流が低下した場合において、実取出電流の低下に追従するように取出可能電流値を急激に低下させた後、燃料供給量が一定に維持されている間に需要電力が上昇し始めた場合には、上記第1電流上昇変化率よりも大きな第2電流上昇変化率で取出可能電流値を増加させる請求項2記載の固体電解質型燃料電池。
PCT/JP2011/072401 2011-09-29 2011-09-29 固体電解質型燃料電池 WO2013046396A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180073698.4A CN103828109B (zh) 2011-09-29 2011-09-29 固体电解质型燃料电池
PCT/JP2011/072401 WO2013046396A1 (ja) 2011-09-29 2011-09-29 固体電解質型燃料電池
US14/347,990 US9515335B2 (en) 2011-09-29 2011-09-29 Solid oxide fuel cell system
EP11873354.2A EP2763226A4 (en) 2011-09-29 2011-09-29 SOLID ELECTROLYTE FUEL CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072401 WO2013046396A1 (ja) 2011-09-29 2011-09-29 固体電解質型燃料電池

Publications (1)

Publication Number Publication Date
WO2013046396A1 true WO2013046396A1 (ja) 2013-04-04

Family

ID=47994503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072401 WO2013046396A1 (ja) 2011-09-29 2011-09-29 固体電解質型燃料電池

Country Status (4)

Country Link
US (1) US9515335B2 (ja)
EP (1) EP2763226A4 (ja)
CN (1) CN103828109B (ja)
WO (1) WO2013046396A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2546729B (en) 2016-01-19 2022-02-16 Intelligent Energy Ltd Fuel cell controller, fuel cell system and method of operation
JP7192692B2 (ja) * 2019-07-18 2022-12-20 トヨタ自動車株式会社 燃料電池システム用の水素インジェクタ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07307163A (ja) 1994-05-13 1995-11-21 Tokyo Gas Co Ltd 燃料電池発電装置の負荷制御装置
JP2004063368A (ja) * 2002-07-31 2004-02-26 Daikin Ind Ltd 燃料電池発電システム
JP2004063180A (ja) * 2002-07-26 2004-02-26 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電設備の逆変換制御方法
JP2007012403A (ja) * 2005-06-30 2007-01-18 Equos Research Co Ltd 燃料電池システム
JP2007188827A (ja) * 2006-01-16 2007-07-26 Nissan Motor Co Ltd 燃料電池システム及び燃料電池システムの起動方法
JP2007294443A (ja) * 2006-03-31 2007-11-08 Osaka Gas Co Ltd 固体酸化物型燃料電池システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3446465B2 (ja) 1996-04-01 2003-09-16 富士電機株式会社 燃料電池発電装置の原燃料流量制御装置
JP4456197B2 (ja) 1999-06-08 2010-04-28 本田技研工業株式会社 燃料電池の発電制御方法
JP5258180B2 (ja) 2006-09-28 2013-08-07 京セラ株式会社 固体電解質形燃料電池システム
JP4458126B2 (ja) * 2007-07-30 2010-04-28 トヨタ自動車株式会社 燃料電池システム及びその制御方法
JP5314364B2 (ja) 2008-09-04 2013-10-16 三菱重工業株式会社 燃料電池発電システムおよび燃料電池の出力制御方法
JP2011076941A (ja) * 2009-09-30 2011-04-14 Toto Ltd 固体電解質型燃料電池
EP2624348B1 (en) * 2010-09-30 2016-06-15 Toto Ltd. Solid oxide fuel cell device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07307163A (ja) 1994-05-13 1995-11-21 Tokyo Gas Co Ltd 燃料電池発電装置の負荷制御装置
JP2004063180A (ja) * 2002-07-26 2004-02-26 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電設備の逆変換制御方法
JP2004063368A (ja) * 2002-07-31 2004-02-26 Daikin Ind Ltd 燃料電池発電システム
JP2007012403A (ja) * 2005-06-30 2007-01-18 Equos Research Co Ltd 燃料電池システム
JP2007188827A (ja) * 2006-01-16 2007-07-26 Nissan Motor Co Ltd 燃料電池システム及び燃料電池システムの起動方法
JP2007294443A (ja) * 2006-03-31 2007-11-08 Osaka Gas Co Ltd 固体酸化物型燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2763226A4 *

Also Published As

Publication number Publication date
US20140234738A1 (en) 2014-08-21
CN103828109A (zh) 2014-05-28
EP2763226A1 (en) 2014-08-06
EP2763226A4 (en) 2015-06-10
CN103828109B (zh) 2017-05-31
US9515335B2 (en) 2016-12-06

Similar Documents

Publication Publication Date Title
JP4761260B2 (ja) 固体電解質型燃料電池
JP5500504B2 (ja) 固体電解質型燃料電池
JP4761259B2 (ja) 固体電解質型燃料電池
JP5517106B2 (ja) 固体電解質型燃料電池
WO2012043645A1 (ja) 燃料電池装置
JP2010238623A (ja) 固体電解質型燃料電池
JP6048662B2 (ja) 固体酸化物型燃料電池
JP2011096635A (ja) 固体電解質型燃料電池
JP2013218861A (ja) 固体酸化物型燃料電池
JP5741803B2 (ja) 固体酸化物形燃料電池装置
JP2012079422A (ja) 固体酸化物形燃料電池装置
JP5696875B2 (ja) 固体電解質型燃料電池
WO2013046396A1 (ja) 固体電解質型燃料電池
WO2012043647A1 (ja) 固体酸化物形燃料電池装置
JP2011076945A (ja) 固体電解質型燃料電池システム
JP5618069B2 (ja) 固体酸化物形燃料電池装置
JP5800273B2 (ja) 固体電解質型燃料電池
JP5618070B2 (ja) 固体酸化物形燃料電池装置
WO2013046397A1 (ja) 固体電解質型燃料電池
WO2013046395A1 (ja) 固体電解質型燃料電池
JP6041091B2 (ja) 固体酸化物型燃料電池
JP5783370B2 (ja) 固体酸化物型燃料電池
JP6080090B2 (ja) 固体酸化物型燃料電池
JP2012059444A (ja) 固体電解質型燃料電池
JP5585931B2 (ja) 固体電解質型燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873354

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14347990

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011873354

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP