JP2009176660A - 間接内部改質型固体酸化物形燃料電池の停止方法 - Google Patents

間接内部改質型固体酸化物形燃料電池の停止方法 Download PDF

Info

Publication number
JP2009176660A
JP2009176660A JP2008016346A JP2008016346A JP2009176660A JP 2009176660 A JP2009176660 A JP 2009176660A JP 2008016346 A JP2008016346 A JP 2008016346A JP 2008016346 A JP2008016346 A JP 2008016346A JP 2009176660 A JP2009176660 A JP 2009176660A
Authority
JP
Japan
Prior art keywords
reformer
anode
reforming
sofc
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008016346A
Other languages
English (en)
Inventor
Susumu Hatada
進 旗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2008016346A priority Critical patent/JP2009176660A/ja
Priority to CN200980102817.7A priority patent/CN101953010B/zh
Priority to CA2713273A priority patent/CA2713273A1/en
Priority to KR1020107018960A priority patent/KR20100120171A/ko
Priority to EP09705122.1A priority patent/EP2246926B1/en
Priority to PCT/JP2009/050351 priority patent/WO2009096221A1/ja
Priority to US12/864,963 priority patent/US8927166B2/en
Priority to TW098102026A priority patent/TWI449251B/zh
Publication of JP2009176660A publication Critical patent/JP2009176660A/ja
Priority to US14/282,337 priority patent/US9040206B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04328Temperature; Ambient temperature of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1609Shutting down the process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】炭化水素系燃料を確実に改質し改質ガスによりアノードの酸化劣化を防止可能な間接内部改質型SOFCの停止方法を提供する。
【解決手段】改質器、SOFC、SOFCのアノードオフガスを燃焼させる燃焼領域、並びに改質器、SOFC及び燃焼領域を収容する筐体を有する間接内部改質型SOFCの停止方法であって、アノード温度が定常かつ酸化劣化点未満で、改質器で燃料が改質されアノードに供給するのに適した組成の改質ガスが生成し、かつその生成量がアノード温度が酸化劣化点以上の温度にある場合においてアノード酸化劣化を防止するために必要最小限な流量以上である状態で改質器に供給される燃料流量をFE、停止方法開始時点で改質器に供給していた燃料流量をFSとしたとき、改質器に供給する燃料の流量をFSからFEにする工程及びアノード温度が酸化劣化点を下回ったら改質器への燃料供給を停止する工程を有する。
【選択図】図2

Description

本発明は、改質器を燃料電池近傍に有する間接内部改質型固体酸化物形燃料電池の停止方法に関する。
固体酸化物電解質形燃料電池(Solid Oxide Fuel Cell。以下場合によりSOFCという。)システムには、通常、灯油や都市ガスなどの炭化水素系燃料を改質して水素含有ガスとして改質ガスを発生させるための改質器と、改質ガスと空気を電気化学的に発電反応させるためのSOFCが含まれる。
SOFCは通常、550〜1000℃の高温で作動させる。
改質には水蒸気改質(SR)、部分酸化改質(POX)、自己熱改質(ATR)など種々の反応が利用されるが、改質触媒を用いるためには、触媒活性が発現する温度に加熱する必要がある。
水蒸気改質は非常に大きな吸熱反応であり、また、反応温度が550〜750℃と比較的高く、高温の熱源を必要とする。そのため、SOFCの近傍に改質器(内部改質器)を設置し、SOFCからの輻射熱やSOFCのアノードオフガス(アノードから排出されるガス)の燃焼熱を熱源として改質器を加熱する間接内部改質型SOFCが知られている(特許文献1)。
また、発電停止の際に、燃料電池に水、および水素または炭化水素系燃料の流量を減少させながら供給することにより、燃料極層側を還元状態に保持しつつ、スタック温度を低下させる燃料電池の運転停止方法が特許文献2に開示される。
特開2004−319420号公報 特開2006−294508号公報
特許文献2記載の方法を利用すれば、燃料電池の停止時にアノードを還元雰囲気に保持することができ、アノードの酸化劣化を防止することができると考えられる。
しかし、特許文献2記載の方法では、炭化水素系燃料を改質して得られる水素含有ガスを用いてSOFCアノードを還元状態に保持する場合に、確実な改質が担保されていない。つまり、未改質の炭化水素系燃料が改質器から排出され、アノードに流入するおそれがある。
特に、灯油のような高次炭化水素を用いる場合、改質器から高次炭化水素がリークしてSOFCに流入すると、炭素析出によってSOFCの性能が劣化することがある。
本発明の目的は、炭化水素系燃料を確実に改質するとともに、改質ガスによってアノードの酸化劣化を防止することのできる間接内部改質型SOFCの停止方法を提供することである。
本発明により、炭化水素系燃料を改質して改質ガスを製造する、改質触媒層を有する改質器と、
該改質ガスを用いて発電を行う固体酸化物形燃料電池と、
該固体酸化物燃料電池から排出されるアノードオフガスを燃焼させる燃焼領域と、
該改質器、固体酸化物形燃料電池および燃焼領域を収容する筐体と、を有する間接内部改質型固体酸化物形燃料電池の停止方法であって、
次の条件iからiv、
i)該固体酸化物燃料電池のアノード温度が定常であり、
ii)該アノード温度が酸化劣化点未満であり、
iii)改質器において、炭化水素系燃料が改質され、アノードに供給するのに適した組成の改質ガスが生成しており、
iv)前記改質ガスの生成量が、該固体酸化物燃料電池のアノード温度が酸化劣化点以上の温度にある場合においてアノードの酸化劣化を防止するために必要最小限な流量以上である、
が全て満たされる状態において改質器に供給される炭化水素系燃料の流量をFEと表し、
該停止方法開始時点で改質器に供給していた炭化水素系燃料の流量をFSと表したとき、
a)改質器に供給する炭化水素系燃料の流量をFSからFEにする工程、および
b)アノード温度が酸化劣化点を下回ったら、該改質器への炭化水素系燃料の供給を停止する工程
を有する間接内部改質型固体酸化物形燃料電池の停止方法が提供される。
前記炭化水素系燃料が、炭素数が2以上の炭化水素系燃料を含む場合に、本発明は特に有効である。
この場合、前記改質ガス中の、炭素数2以上の化合物の濃度が、質量基準で50ppb以下であることが好ましい。
本発明により、炭化水素系燃料を確実に改質するとともに、改質ガスによってアノードの酸化劣化を防止することのできる間接内部改質型SOFCの停止方法が提供される。
以下、図面を用いて本発明の形態について説明するが、本発明はこれによって限定されるものではない。
〔間接内部改質型SOFC〕
図1に、本発明を実施することのできる間接内部改質型SOFCの一形態を模式的に示す。
間接内部改質型SOFCは、炭化水素系燃料を改質して改質ガス(水素含有ガス)を製造する改質器3を有する。改質器は、改質触媒層4を有する。
間接内部改質型SOFCは、上記改質ガスを用いて発電を行うSOFC6を有し、また、SOFC(特にはそのアノード)から排出されるアノードオフガスを燃焼させる燃焼領域5を有する。
間接内部改質型SOFCは、改質器、固体酸化物形燃料電池および燃焼領域を収容する筐体8を有する。
間接内部改質型SOFCは、筐体(モジュール容器)8およびその内部に含まれる設備をいう。
図1に示した形態の間接内部改質型SOFCでは、アノードオフガスに着火するための着火手段であるイグナイター7が設けられており、また、改質器は電気ヒータ9を備える。
各供給ガスは必要に応じて適宜予熱されたうえで改質器もしくはSOFCに供給される。
間接内部改質型SOFCには、電気ヒータ2を備える水気化器1が接続され、その接続配管の途中に炭化水素系燃料を改質器に供給するための配管が接続される。水気化器1は電気ヒータ2による加熱によって水蒸気を発生する。水蒸気は水気化器においてもしくはその下流において適宜スーパーヒートしたうえで改質触媒層に供給することができる。
また空気も改質触媒層に供給されるが、ここでは、空気を水気化器で予熱したうえで改質触媒層に供給できるようになっている。水気化器からは、水蒸気を得ることができ、また空気と水蒸気との混合ガスを得ることができる。
水蒸気または空気と水蒸気との混合ガスは、炭化水素系燃料と混合されて改質器3、特にはその改質触媒層4に供給される。炭化水素系燃料として灯油等の液体燃料を用いる場合は、炭化水素系燃料を適宜気化したうえで改質触媒層に供給することができる。
改質器から得られる改質ガスがSOFC6、特にはそのアノードに供給される。図示しないが、空気が適宜予熱されてSOFCのカソードに供給される。
アノードオフガス(アノードから排出されるガス)中の可燃分がSOFC出口において、カソードオフガス(カソードから排出されるガス)中の酸素によって燃焼される。このために、イグナイター7を用いて着火することができる。アノード、カソードともその出口がモジュール容器8内に開口している。燃焼ガスは、モジュール容器から適宜排出される。
改質器とSOFCが一つのモジュール容器に収容されモジュール化される。改質器はSOFCから受熱可能な位置に配される。例えば改質器をSOFCからの熱輻射を受ける位置に配置すれば、発電時にSOFCからの熱輻射によって改質器が加熱される。
間接内部改質型SOFCにおいて、改質器は、SOFCから改質器の外表面へと直接輻射伝熱可能な位置に配することが好ましい。従って改質器とSOFCとの間には実質的に遮蔽物は配置しないこと、つまり改質器とSOFCとの間は空隙にすることが好ましい。また、改質器とSOFCとの距離は極力短くすることが好ましい。
燃焼領域5において発生するアノードオフガスの燃焼熱によって、改質器3が加熱される。また、SOFCが改質器より高温である場合には、SOFCからの輻射熱によっても改質器が加熱される。
さらに、改質による発熱によって改質器が加熱される場合もある。改質が部分酸化改質である場合、あるいは自己熱改質(オートサーマルリフォーミング)の場合であって水蒸気改質反応による吸熱より部分酸化改質反応による発熱の方が大きい場合、改質に伴って発熱する。
〔改質停止可能状態〕
本明細書において、次の条件i〜ivの全てが満たされている状態を改質停止可能状態と呼ぶ。
i)SOFCのアノード温度が定常である。
ii)前記アノード温度が酸化劣化点未満である。
iii)改質器においてアノードに供給するのに適した組成の改質ガスが生成している。
iv)この改質ガスの生成量が、SOFCのアノード温度が酸化劣化点以上の温度にある場合においてアノードの酸化劣化を防止するために必要最小限な流量以上である。
<条件iおよびii>
アノード温度は、アノード電極の温度を意味するが、アノード電極の温度を物理的に直接測定することが困難な場合には、アノード近傍のセパレータなどのスタック構成部材の温度とすることができる。アノード温度の測定位置は、安全制御の観点から相対的に温度が高くなる箇所、より好ましくは最も温度が高くなる箇所を採用することが好ましい。温度が高くなる位置は、予備実験やシミュレーションにより知ることができる。
酸化劣化点は、アノードが酸化劣化する温度で、例えば、アノード材料の電気伝導度を還元性、または、酸化性ガス雰囲気下で温度を変えて直流4端子法で測定し、酸化性ガス雰囲気下での電気伝導度が還元性ガス雰囲気下での値より低くなる最低温度を酸化劣化点とすることができる。
<条件iii>
条件iiiは、改質器において炭化水素系燃料が改質されており、アノードに供給するのに適した組成の改質ガスが得られている状態であることを意味している。例えば、炭化水素系燃料が炭素数2以上の炭化水素系燃料を含む場合、改質ガスが還元性であるとともに、改質ガス中のC2+成分(炭素数2以上の化合物)が炭素析出による流路閉塞やアノード劣化に対して問題にならない濃度以下である状態であることを意味している。このときのC2+成分の濃度は、改質ガス中の質量分率として50ppb以下が好ましい。
<条件iv>
アノードの酸化劣化を防止するために必要最小限の改質ガス流量は、カソードオフガスのアノード出口からアノード内部への拡散によりアノード電極が酸化劣化しない流量のうち最も小さい流量である。この改質ガス流量は、アノード温度を酸化劣化点以上に保持した状態で、改質ガス流量を変えて実験やシミュレーションを行い、予め知っておくことができる。アノード酸化劣化は、例えば、実験でアノード電極の電気伝導度を測定し、酸化劣化していないアノード電極との比較により判断することができる。あるいは、移流拡散項を含む方程式を用いたシミュレーションによりアノードのガス組成分圧を計算し、アノード電極の酸化反応における平衡分圧との比較により判断することができる。例えば、アノード電極材料がNiの場合、次式で表されるアノード電極酸化反応における酸素の平衡分圧は1.2×10-14atm(1.2×10-9Pa)であり、この値よりアノードの酸素分圧の計算値が小さければ、アノード電極が酸化劣化しないと判断することができる。
Figure 2009176660
アノードの酸化劣化を防止するためにSOFCに供給する改質ガス流量(改質器で生成する改質ガスの量)は、改質ガスがSOFCを通過してアノードから排出された段階で燃焼可能であるような流量であるのが好ましい。燃焼可能な改質ガス流量のうち最も小さい流量が上記必要最小限の改質ガス流量より大きい場合、燃焼可能な改質ガス流量のうち最も小さい流量を、条件ivでいう「必要最小限の流量以上」の改質ガス流量とすることができる。燃焼可否は、例えば、燃焼ガス排出ライン中のガスを実験でサンプリングし組成分析を行う、あるいはシミュレーションで計算することで判断できる。
改質停止可能状態において改質器(特には改質触媒層)に供給される炭化水素系燃料の流量をFEと表す。
FEは、予め、実験もしくはシミュレーションによって求めることができる。改質器に供給する水蒸気改質または自己熱改質用の水(スチームを含む)流量、自己熱改質または部分酸化改質用の空気流量、カソード空気流量、バーナーに供給する燃料および空気流量、熱交換器に供給する水や空気などの流体の流量などの、間接内部改質型SOFCに供給する流体の流量;ならびに改質器、水や液体燃料の蒸発器、SOFC、流体の供給配管などを加熱するための電気ヒータ出力、熱電変換モジュールなどから取り出される電気入力等の間接内部改質型SOFCへの電気入出力を変化させて、すなわち間接内部改質型SOFCの操作条件を変化させて、実験もしくはシミュレーションを行い、定常的に条件i〜ivを満たすFEを探索することによって、FEを知ることができる。FEは条件i〜ivを満たす限り任意の値でよいが、熱効率の観点から最も小さいFEを用いるのが好ましい。そのFEを含む間接内部改質型SOFCの操作条件を改質停止可能状態の操作条件として予め定める。
〔停止方法〕
停止方法開始時点で改質器に供給していた炭化水素系燃料の流量をFSと表す。
本発明の停止方法は、次の工程aおよびbを有する。
a)改質器に供給する炭化水素系燃料の流量をFSからFEにする。必要に応じ、これにあわせて改質器に供給する水蒸気改質または自己熱改質用の水(スチームを含む)流量、自己熱改質または部分酸化改質用の空気流量、カソード空気流量、バーナーに供給する燃料および空気流量、熱交換器に供給する水や空気などの流体の流量などの、間接内部改質型SOFCに供給する流体の流量、改質器および水や液体燃料の蒸発器、セルスタック、流体の供給配管などを加熱するための電気ヒータ出力、熱電変換モジュールなどから取り出される電気入力などの、間接内部改質型SOFCへの電気の入出力を、予め定めた改質停止可能状態における操作条件にする。すなわち、予め定めた改質停止可能状態における間接内部改質型SOFCの操作条件に設定する。
b)アノード温度が酸化劣化点を下回ったら、改質器への炭化水素系燃料の供給を停止する工程。
間接内部改質型SOFCを停止する際、すなわち停止方法を開始する時点で、直ちに工程aを行うことができる。
工程aを行った後、工程bを行うまでの間、炭化水素系燃料の改質器への供給量は、FEのままとすればよい。
工程aの後、アノード温度が酸化劣化点を下回ったら、還元性ガスは不要となるので、改質器への炭化水素系燃料の供給を停止することができる。熱効率の観点から、アノード温度が酸化劣化点を下回ったら極力短時間のうちに炭化水素系燃料の改質器への供給を停止することが好ましい。
工程bを行うために、熱電対等の温度センサーを用いて、アノード温度を適宜監視する(継続して測定する)ことができる。
アノード温度の監視は、停止方法を開始してすぐに開始することが好ましい。停止方法開始前からこれらの温度監視を行っていれば、停止方法を行う際にも、そのまま温度監視を続ければよい。
本発明の停止方法において、改質器において、水蒸気改質、部分酸化改質およびオートサーマルリフォーミングのうちのいずれのタイプの改質を行ってもよい。
ただし、工程aを行う際、そして工程aを行った後工程bを行うまでの間、改質停止可能状態において採用される改質タイプと同じタイプの改質を行う。つまり、改質停止可能状態において水蒸気改質が採用されていれば、工程aを行う際、そして工程aを行った後工程bを行うまでの間、水蒸気改質を行う。
停止方法開始前後で異なるタイプの改質を行っても良い。例えば、停止方法開始前に水蒸気改質を行い、停止方法を開始してからはオートサーマルリフォーミングを行う、あるいはその逆を行うことができる。また、停止方法開始前に水蒸気改質を行い、停止方法を開始してからは部分酸化改質を行う、あるいはその逆を行うことができる。
前記改質触媒層として、水蒸気改質反応を促進可能な改質触媒層を用い、工程aを行った後工程bを行うまでの間、つまり流量FEの炭化水素系燃料を改質する際に、水蒸気改質を行うことが好ましい。水蒸気改質は大きな吸熱を伴うため、より速く改質器を降温することが可能だからである。
なお、水蒸気改質反応を行う場合、つまり水蒸気改質もしくはオートサーマルリフォーミングを行う場合には、改質触媒層にスチームを供給する。部分酸化改質反応を行う場合、つまり部分酸化改質もしくはオートサーマルリフォーミングを行う場合には、改質触媒層に酸素含有ガスを供給する。酸素含有ガスとしては、酸素を含有するガスを適宜用いることができるが、入手容易性から空気が好ましい。
本発明は、炭化水素系燃料の炭素数が2以上の場合に特に有効である。このような燃料の場合、特に、確実な改質が求められるからである。
〔炭化水素系燃料〕
炭化水素系燃料としては、改質ガスの原料としてSOFCの分野で公知の、分子中に炭素と水素を含む(酸素など他の元素を含んでもよい)化合物もしくはその混合物から適宜選んで用いることができ、炭化水素類、アルコール類など分子中に炭素と水素を有する化合物を用いることができる。例えばメタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、ガソリン、ナフサ、灯油、軽油等の炭化水素燃料、また、メタノール、エタノール等のアルコール、ジメチルエーテル等のエーテル等である。
なかでも灯油やLPGは、入手容易であり好ましい。また独立して貯蔵可能であるため、都市ガスのラインが普及していない地域において有用である。さらに、灯油やLPGを利用したSOFC発電装置は、非常用電源として有用である。特には、取り扱いも容易である点で、灯油が好ましい。
〔改質器〕
改質器は、炭化水素系燃料から水素を含む改質ガスを製造する。
改質器においては、水蒸気改質、部分酸化改質、および、水蒸気改質反応に部分酸化反応が伴うオートサーマルリフォーミングのいずれを行ってもよい。
改質器には、水蒸気改質能を有する水蒸気改質触媒、部分酸化改質能を有する部分酸化改質触媒、部分酸化改質能と水蒸気改質能とを併せ持つ自己熱改質触媒を適宜用いることができる。
改質器の構造は、改質器として公知の構造を適宜採用できる。例えば、密閉可能な容器内に改質触媒を収容する領域を有し、改質に必要な流体の導入口と改質ガスの排出口を有する構造とすることができる。
改質器の材質は、改質器として公知の材質から、使用環境における耐性を考慮して適宜選んで採用できる。
改質器の形状は、直方体状や円管状など適宜の形状とすることができる。
炭化水素系燃料(必要に応じて予め気化される)および水蒸気、さらに必要に応じて空気等の酸素含有ガスをそれぞれ単独で、もしくは適宜混合した上で改質器(改質触媒層)に供給することができる。また、改質ガスはSOFCのアノードに供給される。
〔SOFC〕
改質器から得られる改質ガスが、SOFCのアノードに供給される。一方、SOFCのカソードには空気などの酸素含有ガスが供給される。発電時には、発電に伴いSOFCが発熱し、その熱がSOFCから改質器へと、輻射伝熱などにより伝わる。こうしてSOFC排熱が改質器を加熱するために利用される。ガスの取り合い等は適宜配管等を用いて行う。
SOFCとしては、公知のSOFCを適宜選んで採用できる。SOFCでは、一般的に、酸素イオン導電性セラミックスもしくはプロトンイオン導電性セラミックスが電解質として利用される。
SOFCは単セルであってもよいが、実用上は複数の単セルを配列させたスタック(円筒型の場合はバンドルと呼ばれることもあるが、本明細書でいうスタックはバンドルも含む)が好ましく用いられる。この場合、スタックは1つでも複数でもよい。
SOFCの形状も、立方体状スタックに限らず、適宜の形状を採用できる。
例えば400℃程度でアノードの酸化劣化が起きることがある。
〔筐体〕
筐体(モジュール容器)としては、SOFC、改質器および燃焼領域を収容可能な適宜の容器を用いることができる。その材料としては、例えばステンレス鋼など、使用する環境に耐性を有する適宜の材料を用いることができる。容器には、ガスの取り合い等のために、適宜接続口が設けられる。
モジュール容器の内部と外界(大気)とが連通しないように、モジュール容器が気密性を持つことが好ましい。
〔燃焼領域〕
燃焼領域は、SOFCのアノードから排出されるアノードオフガスを燃焼可能な領域である。例えば、アノード出口を筐体内に開放し、アノード出口近傍の空間を燃焼領域とすることができる。酸素含有ガスとして例えばカソードオフガスを用いてこの燃焼を行なうことができる。このために、カソード出口を筐体内に開放することができる。
燃焼用燃料もしくはアノードオフガスを燃焼させるために、イグナイターなどの着火手段を適宜用いることができる。
〔改質触媒〕
改質器で用いる水蒸気改質触媒、部分酸化改質触媒、自己熱改質触媒のいずれも、それぞれ公知の触媒を用いることができる。部分酸化改質触媒の例としては白金系触媒、水蒸気改質触媒の例としてはルテニウム系およびニッケル系、自己熱改質触媒の例としてはロジウム系触媒を挙げることができる。燃焼を促進可能な改質触媒の例としては白金系およびロジウム系触媒を挙げることができる。
部分酸化改質反応が進行可能な温度は例えば200℃以上、水蒸気改質反応が進行可能な温度は例えば400℃以上である。
〔改質器の運転条件〕
以下、水蒸気改質、自己熱改質、部分酸化改質のそれぞれにつき、改質器における定格運転時および停止運転時の条件について説明する。
水蒸気改質では、灯油等の改質原料にスチームが添加される。水蒸気改質の反応温度は例えば400℃〜1000℃、好ましくは500℃〜850℃、さらに好ましくは550℃〜800℃の範囲で行うことができる。反応系に導入するスチームの量は、炭化水素系燃料に含まれる炭素原子モル数に対する水分子モル数の比(スチーム/カーボン比)として定義され、この値は好ましくは1〜10、より好ましくは1.5〜7、さらに好ましくは2〜5とされる。炭化水素系燃料が液体の場合、この時の空間速度(LHSV)は炭化水素系燃料の液体状態での流速をA(L/h)、触媒層体積をB(L)とした場合A/Bで表すことができ、この値は好ましくは0.05〜20h-1、より好ましくは0.1〜10h-1、さらに好ましくは0.2〜5h-1の範囲で設定される。
自己熱改質ではスチームの他に酸素含有ガスが改質原料に添加される。酸素含有ガスとしては純酸素でも良いが入手容易性から空気が好ましい。水蒸気改質反応に伴う吸熱反応をバランスし、かつ、改質触媒層やSOFCの温度を保持もしくはこれらを昇温できる発熱量が得られるように酸素含有ガスを添加することができる。酸素含有ガスの添加量は、炭化水素系燃料に含まれる炭素原子モル数に対する酸素分子モル数の比(酸素/カーボン比)として好ましくは0.005〜1、より好ましくは0.01〜0.75、さらに好ましくは0.02〜0.6とされる。自己熱改質反応の反応温度は例えば400℃〜1000℃、好ましくは450℃〜850℃、さらに好ましくは500℃〜800℃の範囲で設定される。炭化水素系燃料が液体の場合、この時の空間速度(LHSV)は、好ましくは0.05〜20、より好ましくは0.1〜10、さらに好ましくは0.2〜5の範囲で選ばれる。反応系に導入するスチームの量は、スチーム/カーボン比として好ましくは1〜10、より好ましくは1.5〜7、さらに好ましくは2〜5とされる。
部分酸化改質では酸素含有ガスが改質原料に添加される。酸素含有ガスとしては純酸素でも良いが入手容易性から空気が好ましい。反応を進めるための温度を確保するため、熱のロス等において適宜添加量は決定される。その量は、炭化水素系燃料に含まれる炭素原子モル数に対する酸素分子モル数の比(酸素/カーボン比)として好ましくは0.1〜3、より好ましくは0.2〜0.7とされる。部分酸化反応の反応温度は、例えば450℃〜1000℃、好ましくは500℃〜850℃、さらに好ましくは550℃〜800℃の範囲で設定することができる。炭化水素系燃料が液体の場合、この時の空間速度(LHSV)は、好ましくは0.1〜30の範囲で選ばれる。反応系においてすすの発生を抑制するためにスチームを導入することができ、その量は、スチーム/カーボン比として好ましくは0.1〜5、より好ましくは0.1〜3、さらに好ましくは1〜2とされる。
〔他の機器〕
間接内部改質型SOFCの公知の構成要素は、必要に応じて適宜設けることができる。具体例を挙げれば、液体を気化させる気化器、各種流体を加圧するためのポンプ、圧縮機、ブロワなどの昇圧手段、流体の流量を調節するため、あるいは流体の流れを遮断/切り替えるためのバルブ等の流量調節手段や流路遮断/切り替え手段、熱交換・熱回収を行うための熱交換器、気体を凝縮する凝縮器、スチームなどで各種機器を外熱する加熱/保温手段、炭化水素系燃料(改質原料)や燃焼用燃料の貯蔵手段、計装用の空気や電気系統、制御用の信号系統、制御装置、出力用や動力用の電気系統、燃料中の硫黄分濃度を低減する脱硫器などである。
本発明は、例えば定置用もしくは移動体用の発電装置やコージェネレーションシステムに利用される間接内部改質型SOFCに適用できる。
本発明を適用することのできる間接内部改質型SOFCの概要を示す模式図である。 本発明の方法を説明するための、時間に対する炭化水素系燃料流量の関係を示す概念的グラフである。
符号の説明
1 水気化器
2 水気化器に付設された電気ヒータ
3 改質器
4 改質触媒層
5 燃焼領域
6 SOFC
7 イグナイター
8 筐体(モジュール容器)
9 改質器に付設された電気ヒータ

Claims (3)

  1. 炭化水素系燃料を改質して改質ガスを製造する、改質触媒層を有する改質器と、
    該改質ガスを用いて発電を行う固体酸化物形燃料電池と、
    該固体酸化物燃料電池から排出されるアノードオフガスを燃焼させる燃焼領域と、
    該改質器、固体酸化物形燃料電池および燃焼領域を収容する筐体と、を有する間接内部改質型固体酸化物形燃料電池の停止方法であって、
    次の条件iからiv、
    i)該固体酸化物燃料電池のアノード温度が定常であり、
    ii)該アノード温度が酸化劣化点未満であり、
    iii)改質器において、炭化水素系燃料が改質され、アノードに供給するのに適した組成の改質ガスが生成しており、
    iv)前記改質ガスの生成量が、該固体酸化物燃料電池のアノード温度が酸化劣化点以上の温度にある場合においてアノードの酸化劣化を防止するために必要最小限な流量以上である、
    が全て満たされる状態において改質器に供給される炭化水素系燃料の流量をFEと表し、
    該停止方法開始時点で改質器に供給していた炭化水素系燃料の流量をFSと表したとき、
    a)改質器に供給する炭化水素系燃料の流量をFSからFEにする工程、および
    b)アノード温度が酸化劣化点を下回ったら、該改質器への炭化水素系燃料の供給を停止する工程
    を有する間接内部改質型固体酸化物形燃料電池の停止方法。
  2. 前記炭化水素系燃料が、炭素数が2以上の炭化水素系燃料を含む請求項1記載の方法。
  3. 前記改質ガス中の、炭素数2以上の化合物の濃度が、質量基準で50ppb以下である請求項2記載の方法。
JP2008016346A 2008-01-28 2008-01-28 間接内部改質型固体酸化物形燃料電池の停止方法 Pending JP2009176660A (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2008016346A JP2009176660A (ja) 2008-01-28 2008-01-28 間接内部改質型固体酸化物形燃料電池の停止方法
CN200980102817.7A CN101953010B (zh) 2008-01-28 2009-01-14 间接内部转化型固体氧化物型燃料电池及其停止方法
CA2713273A CA2713273A1 (en) 2008-01-28 2009-01-14 Indirect internal reforming solid oxide fuel cell and method for shutting down the same
KR1020107018960A KR20100120171A (ko) 2008-01-28 2009-01-14 간접 내부 개질형 고체 산화물형 연료 전지와 그 정지 방법
EP09705122.1A EP2246926B1 (en) 2008-01-28 2009-01-14 Indirect internally reforming solid oxide fuel cell and a method of stopping same
PCT/JP2009/050351 WO2009096221A1 (ja) 2008-01-28 2009-01-14 間接内部改質型固体酸化物形燃料電池とその停止方法
US12/864,963 US8927166B2 (en) 2008-01-28 2009-01-14 Indirect internal reforming solid oxide fuel cell and method for shutting down the same
TW098102026A TWI449251B (zh) 2008-01-28 2009-01-20 間接內部重組型固體氧化物燃料電池及其停止運轉方法
US14/282,337 US9040206B2 (en) 2008-01-28 2014-05-20 Indirect internal reforming solid oxide fuel cell and method for shutting down the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008016346A JP2009176660A (ja) 2008-01-28 2008-01-28 間接内部改質型固体酸化物形燃料電池の停止方法

Publications (1)

Publication Number Publication Date
JP2009176660A true JP2009176660A (ja) 2009-08-06

Family

ID=40912574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008016346A Pending JP2009176660A (ja) 2008-01-28 2008-01-28 間接内部改質型固体酸化物形燃料電池の停止方法

Country Status (8)

Country Link
US (2) US8927166B2 (ja)
EP (1) EP2246926B1 (ja)
JP (1) JP2009176660A (ja)
KR (1) KR20100120171A (ja)
CN (1) CN101953010B (ja)
CA (1) CA2713273A1 (ja)
TW (1) TWI449251B (ja)
WO (1) WO2009096221A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054377A (ja) * 2009-09-01 2011-03-17 Toto Ltd 燃料電池システム
WO2011065320A1 (ja) * 2009-11-24 2011-06-03 Jx日鉱日石エネルギー株式会社 間接内部改質型固体酸化物形燃料電池の停止方法
US20120028149A1 (en) * 2009-04-08 2012-02-02 Jx Nippon Oil & Energy Corporation Shutdown method for shutting down indirect internal reforming solid oxide fuel cell
US20120312255A1 (en) * 2010-04-08 2012-12-13 Ford Global Technologies, Llc Operating an engine with reformate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6070923B2 (ja) * 2011-09-07 2017-02-01 Toto株式会社 固体酸化物型燃料電池
JPWO2013069632A1 (ja) * 2011-11-09 2015-04-02 Jx日鉱日石エネルギー株式会社 固体酸化物形燃料電池システムの停止方法及び停止装置
CA2997388C (en) * 2015-09-04 2019-05-07 Nissan Motor Co., Ltd. Fuel cell system and fuel cell control method
EP3396762B1 (en) 2015-12-25 2020-02-26 Nissan Motor Co., Ltd. Fuel cell system and method for controlling same
CN108091907B (zh) 2016-11-22 2020-09-25 通用电气公司 燃料电池系统及其停机方法
AT520156B1 (de) * 2017-07-03 2020-11-15 Avl List Gmbh Verfahren zum Kühlen eines Brennstoffzellenstapels mit teilweise reformiertem Brennstoff
JPWO2021014822A1 (ja) * 2019-07-19 2021-01-28

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613095A (ja) * 1992-06-29 1994-01-21 Sanyo Electric Co Ltd 内部改質溶融炭酸塩型燃料電池の昇温及び降温方法
JP2005293951A (ja) * 2004-03-31 2005-10-20 Sumitomo Precision Prod Co Ltd 燃料電池及びその運転方法
JP2007128717A (ja) * 2005-11-02 2007-05-24 Mitsubishi Materials Corp 燃料電池の運転方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3989604B2 (ja) * 1997-12-02 2007-10-10 東京瓦斯株式会社 固体電解質燃料電池の起動停止方法
US6562496B2 (en) * 2000-05-01 2003-05-13 Delphi Technologies, Inc. Integrated solid oxide fuel cell mechanization and method of using for transportation industry applications
JP4967185B2 (ja) * 2000-10-24 2012-07-04 トヨタ自動車株式会社 改質器内の析出炭素の除去
US6680136B2 (en) * 2001-01-25 2004-01-20 Delphi Technologies, Inc. Gas containment/control valve for a solid oxide fuel cell
JP4056770B2 (ja) 2002-02-05 2008-03-05 東京瓦斯株式会社 固体酸化物形燃料電池システム
JP4369685B2 (ja) 2003-02-25 2009-11-25 京セラ株式会社 燃料電池の運転方法
JP4906242B2 (ja) 2004-05-28 2012-03-28 京セラ株式会社 燃料電池の稼動停止方法
EP2101371A3 (en) 2005-02-22 2009-09-30 Mitsubishi Materials Corporation Solid Oxide Type Fuel Cell and Operating Method Thereof
JP4961682B2 (ja) 2005-04-13 2012-06-27 三菱マテリアル株式会社 燃料電池発電装置および運転停止方法
JP2007273311A (ja) * 2006-03-31 2007-10-18 Central Res Inst Of Electric Power Ind 固体酸化物形燃料電池の運転方法
KR100804703B1 (ko) * 2006-11-01 2008-02-18 삼성에스디아이 주식회사 전기 출력량 측정장치 및 이를 포함하는 연료 전지용 스택

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613095A (ja) * 1992-06-29 1994-01-21 Sanyo Electric Co Ltd 内部改質溶融炭酸塩型燃料電池の昇温及び降温方法
JP2005293951A (ja) * 2004-03-31 2005-10-20 Sumitomo Precision Prod Co Ltd 燃料電池及びその運転方法
JP2007128717A (ja) * 2005-11-02 2007-05-24 Mitsubishi Materials Corp 燃料電池の運転方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120028149A1 (en) * 2009-04-08 2012-02-02 Jx Nippon Oil & Energy Corporation Shutdown method for shutting down indirect internal reforming solid oxide fuel cell
JP2011054377A (ja) * 2009-09-01 2011-03-17 Toto Ltd 燃料電池システム
WO2011065320A1 (ja) * 2009-11-24 2011-06-03 Jx日鉱日石エネルギー株式会社 間接内部改質型固体酸化物形燃料電池の停止方法
JP2011113651A (ja) * 2009-11-24 2011-06-09 Jx Nippon Oil & Energy Corp 間接内部改質型固体酸化物形燃料電池の停止方法
CN102742058A (zh) * 2009-11-24 2012-10-17 吉坤日矿日石能源株式会社 间接内部重整型固体氧化物型燃料电池的停止方法
US8790837B2 (en) 2009-11-24 2014-07-29 Jx Nippon Oil & Energy Corporation Method for shutting down indirect internal reforming solid oxide fuel cell
US20120312255A1 (en) * 2010-04-08 2012-12-13 Ford Global Technologies, Llc Operating an engine with reformate
US8662024B2 (en) * 2010-04-08 2014-03-04 Ford Global Technologies, Llc Operating an engine with reformate

Also Published As

Publication number Publication date
WO2009096221A1 (ja) 2009-08-06
US8927166B2 (en) 2015-01-06
EP2246926A1 (en) 2010-11-03
US9040206B2 (en) 2015-05-26
EP2246926A4 (en) 2013-01-02
EP2246926B1 (en) 2014-07-23
CN101953010A (zh) 2011-01-19
TW200941813A (en) 2009-10-01
US20140255809A1 (en) 2014-09-11
KR20100120171A (ko) 2010-11-12
CN101953010B (zh) 2014-05-07
US20110189566A1 (en) 2011-08-04
CA2713273A1 (en) 2009-08-06
TWI449251B (zh) 2014-08-11

Similar Documents

Publication Publication Date Title
JP5164441B2 (ja) 燃料電池システムの起動方法
WO2009096221A1 (ja) 間接内部改質型固体酸化物形燃料電池とその停止方法
WO2009131010A1 (ja) 間接内部改質型固体酸化物形燃料電池システムの運転方法
JP5078696B2 (ja) 燃料電池システムの負荷追従運転方法
JP2009295380A (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
JP5325666B2 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
JP5078698B2 (ja) 燃料電池システムの負荷追従運転方法
JP2010044909A (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
JP5078697B2 (ja) 燃料電池システムの負荷追従運転方法
WO2010117033A1 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
JP5469440B2 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
JP2008217999A (ja) 高温型燃料電池システムの運転方法
JP5461834B2 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
JP5325641B2 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
JP5325662B2 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
JP5281996B2 (ja) 燃料電池システムの負荷追従運転方法
JP5307592B2 (ja) 間接内部改質型固体酸化物形燃料電池システムの運転方法
JP5325661B2 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
JP5325660B2 (ja) 間接内部改質型固体酸化物形燃料電池の停止方法
JP5281998B2 (ja) 燃料電池システムの負荷追従運転方法
JP5281991B2 (ja) 燃料電池システムの負荷追従運転方法
JP5281997B2 (ja) 燃料電池システムの負荷追従運転方法
JP2011014386A (ja) 燃料電池システムの負荷追従運転方法
JP2010225284A (ja) 間接内部改質型固体酸化物形燃料電池システムの運転方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130412

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130416

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130515

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130621