WO2006070473A1 - 半導体装置及びその動作制御方法 - Google Patents

半導体装置及びその動作制御方法 Download PDF

Info

Publication number
WO2006070473A1
WO2006070473A1 PCT/JP2004/019645 JP2004019645W WO2006070473A1 WO 2006070473 A1 WO2006070473 A1 WO 2006070473A1 JP 2004019645 W JP2004019645 W JP 2004019645W WO 2006070473 A1 WO2006070473 A1 WO 2006070473A1
Authority
WO
WIPO (PCT)
Prior art keywords
inversion
gate
inversion gate
voltage
semiconductor device
Prior art date
Application number
PCT/JP2004/019645
Other languages
English (en)
French (fr)
Inventor
Masaru Yano
Hideki Arakawa
Hidehiko Shiraiwa
Original Assignee
Spansion Llc
Spansion Japan Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spansion Llc, Spansion Japan Limited filed Critical Spansion Llc
Priority to EP04808000A priority Critical patent/EP1833091A4/en
Priority to JP2006550539A priority patent/JP5392985B2/ja
Priority to CN2004800447293A priority patent/CN101091252B/zh
Priority to PCT/JP2004/019645 priority patent/WO2006070473A1/ja
Priority to US11/316,800 priority patent/US7321511B2/en
Priority to TW094146638A priority patent/TWI420649B/zh
Publication of WO2006070473A1 publication Critical patent/WO2006070473A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0491Virtual ground arrays

Definitions

  • the present invention relates to a semiconductor device and an operation control method thereof.
  • non-volatile memory as a memory having a function of storing information, which is stored even when the power is turned off.
  • flash memory as a rewritable nonvolatile memory.
  • a floating gate is provided, and writing and erasing can be performed by injecting and extracting electrons into the floating gate!
  • the following technologies have been proposed as conventional technologies related to flash memory.
  • Non-Patent Document 1 relates to an AG-AND type flash memory without a diffusion layer using a floating gate.
  • Figure 1 is a plan view of the memory array of a 90-nm-node AG-AND flash memory.
  • Fig. 2 (a) is a cross-sectional view showing voltage conditions during programming, and (b) is a cross-sectional view showing voltage conditions during reading.
  • Fig. 3 shows an AG-AND array configuration.
  • Assist gates AG to AG are disposed on a silicon substrate. This assist game
  • An inversion layer (channel) is formed on the substrate below AG. Therefore, the diffusion layer
  • the word line WL extends in a direction perpendicular to the assist gate AG.
  • voltage forces of 0, 5, 1 and 8V are supplied to the assist gates AG, AG, AG and AG, respectively.
  • a channel serving as a source is formed under the assist gate AG to which 5 V is applied.
  • a drain channel is formed under the assist gate AG to which 8V is applied.
  • the channel weakens, increasing the electric field at the boundary with the floating gate FG and suppressing the current.
  • OV is applied to the left assist gate of the assist gate AG to which 5V is applied to cut the channel so that no current flows.
  • Gate FG assist gate AG, floating gate FG of selected cell, Assist
  • a channel is formed under the assist gate AG by applying a voltage of 5V to the assist gate AG on both sides of the floating gate of interest.
  • the floating gate FG of interest is read by using one as the source and the other as the drain.
  • Patent Document 1 relates to an AG-AND type flash memory using SONOS type memory cells.
  • two assist gates are provided between two diffusion regions serving as source or drain, and a SONOS type memory cell is formed between the assist gates.
  • a SONOS type memory cell is formed between the assist gates.
  • Non-Patent Document 1 Y. Sasago, et al., 90-nm-node multi-level AG- AND type flash
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-156275
  • the present invention has been made in view of the above problems, and an object thereof is to provide a semiconductor device and an operation control method thereof that can suppress an increase in circuit area.
  • the present invention provides a semiconductor substrate, a word line, a global bit line, and an inversion layer serving as a local bit line formed on the semiconductor substrate, and the inversion layer is used as the global layer.
  • the inverting gate can be operated like a sector transistor, it is not necessary to provide a sector transistor. For this reason, the area for the sector transistor can be reduced. Therefore, an increase in circuit area can be suppressed. In this way, an array structure including a decoding circuit for minimizing the array size can be provided.
  • the inversion layer is connected to the global bit line through a metal wiring.
  • the memory cell is formed between adjacent inversion gates.
  • the present invention further includes a selection circuit for selecting a memory cell to be written or erased by supplying a predetermined voltage to the inverting gate.
  • the inversion gate includes a first inversion gate forming an inversion layer serving as the source, a second inversion gate forming an inversion layer serving as the drain, the first inversion gate, and the second inversion gate.
  • a third inverting gate provided between the inverting gates, and further includes a selection circuit that selects a memory cell to be written by supplying a predetermined voltage to the first to third inverting gates at the time of writing. .
  • the selection circuit forms a small channel region under the third inversion gate among the channel regions formed between the source and the drain in the semiconductor substrate in the third inversion gate at the time of writing. It is preferable to supply a voltage for this purpose.
  • the channel region under the third inversion gate among the channel regions formed between the source and the drain in the semiconductor substrate can be made small by turning on the transistor in the inversion gate portion only slightly. .
  • the inversion gate further includes a fourth inversion gate provided at a position opposite to the third inversion gate as viewed from the first inversion gate, and the selection circuit includes It is preferable to supply a voltage for cutting a channel formed in the semiconductor substrate to the fourth inversion gate.
  • the channel formed in the semiconductor substrate in the fourth inversion gate can be cut by turning off the inversion gate transistor.
  • the present invention further includes a write voltage supply circuit for supplying a write voltage to the inversion layer at the time of writing. Including.
  • the present invention further includes a voltage supply circuit for supplying, to the word line, a voltage for extracting electrons injected into the memory cell to the semiconductor substrate side by using the FN tunnel effect at the time of erasing. At this time, it is preferable that the voltage for pulling out to the semiconductor substrate side is a negative voltage.
  • the present invention further includes a voltage supply circuit that supplies, to the word line, a voltage for extracting electrons injected into the memory cell to the word line side using the FN tunnel effect at the time of erasing.
  • the present invention further includes a voltage supply circuit for supplying, to the inversion gate, a voltage for extracting electrons injected into the memory cell using the FN tunnel effect at the time of erasing.
  • the present invention has a plurality of column sets (i) each having the glow bit line force, and a page buffer (G) corresponding to a predetermined global bit line in each column set by a common selection signal (C). 60— further includes a decoder connected to i).
  • the inversion layer is shared by a plurality of memory cells.
  • the memory cell stores 2 bits per cell by storing 1 bit at both ends of the insulating film between the inversion gates.
  • the memory cell is preferably a SONOS type.
  • the semiconductor device is preferably a semiconductor memory device.
  • the present invention provides a first step of electrically connecting an inversion layer to a global bit line by supplying a predetermined voltage to the inversion gate to form an inversion layer serving as a local bit line on a semiconductor substrate. And a second step of selecting a word line.
  • the inverting gate can be operated like a sector transistor, it is not necessary to provide a sector transistor. For this reason, the area for the sector transistor can be reduced. Therefore, an increase in circuit area can be suppressed. In this manner, an array structure including a decoding circuit for minimizing the array size can be provided.
  • the inversion gate includes a first inversion gate forming an inversion layer serving as a source, a second inversion gate forming an inversion layer serving as a drain, the first inversion gate, and the second inversion gate.
  • a third inversion gate provided between the inversion gates, and the first step supplies a predetermined voltage to the first to third inversion gates at the time of writing.
  • a voltage for forming a small channel region under the third inversion gate in the channel region formed between the source and the drain in the semiconductor substrate is formed in the third inversion gate.
  • Supply Including steps.
  • the inversion gate further includes a fourth inversion gate provided at a position opposite to the third inversion gate when viewed from the first inversion gate, and the first step includes: The method further includes the step of supplying a voltage to cut the channel formed in the semiconductor substrate to the fourth inversion gate.
  • the inversion gate includes a first inversion gate forming an inversion layer serving as a source, a second inversion gate forming an inversion layer serving as a drain, and a gap between the first inversion gate and the second inversion gate.
  • a third inversion gate provided on the first inversion gate, and at the time of writing, a step of storing each bit in an insulating film at both ends of the third inversion gate.
  • the present invention further includes a step of supplying a write voltage to the inversion layer via the global bit line during writing.
  • the present invention further includes a step of supplying, to the word line, a voltage for extracting electrons injected into the memory cell to the semiconductor substrate side using the FN tunnel effect at the time of erasing. At this time, it is preferable that the voltage for pulling out to the semiconductor substrate side is a negative voltage.
  • FIG. 1 is a diagram showing a memory array of a conventional AG-AND flash memory.
  • FIG. 2 (a) is a cross-sectional view showing voltage conditions during programming, and (b) is a cross-sectional view showing voltage conditions during reading.
  • FIG. 3 is a diagram showing an AG-AND array configuration.
  • FIG. 4 is a plan view of a memory array of the semiconductor memory device of the present embodiment.
  • FIG. 5 is a cross-sectional view taken along the word line in FIG.
  • FIG. 6 is a schematic sectional view showing a program operation state of the semiconductor memory device of the present embodiment.
  • FIG. 7 is a schematic cross-sectional view showing a read operation state of the semiconductor memory device of the present embodiment.
  • FIG. 8 is a schematic cross-sectional view showing the erase operation state of the semiconductor memory device of the present embodiment.
  • FIG. 9 is a layout diagram of the core array in the embodiment of the present invention.
  • FIG. 10 is a cross-sectional view taken along line AA ′ in FIG.
  • FIG. 11 is an equivalent circuit diagram of the core array shown in FIG.
  • FIG. 12 is a block diagram of a semiconductor memory device in the present embodiment.
  • FIG. 13 is an enlarged view of a column decoder, page buffer, BL decoder, and global bit line GBL.
  • FIG. 4 is a plan view of the memory array of the semiconductor memory device according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along the line of FIG. As shown in FIG. 4, the word line WL extends in a direction perpendicular to the inversion gates HG to IG.
  • Inversion gates IG through IG are semiconductors
  • the G gates IG through G function the same as conventional sector transistors.
  • the memory cell has a SONOS (semiconductor-oxide-nitride-oxi de-semiconductor) structure.
  • a part of the surface of the semiconductor substrate 11 and the inversion gates I G to IG are covered with an ONO film 12 having a structure in which an oxide film, a nitride film, and an oxide film are stacked.
  • a polysilicon gate electrode 13 to be the word line W is formed on the ONO film 12.
  • a channel is formed by applying a predetermined voltage to the inversion layer used as the source and drain of the memory cell and raising the gate voltage.
  • this SONOS memory cell by injecting charges into the gate insulating film, the bias direction applied to both the source and drain electrodes is switched, so that binary information is independently applied to the gate insulating film near both electrodes.
  • 2 bits per memory cell can be stored. That is, this memory cell can store 2 bits per cell by storing 1 bit at both ends of the insulating film between the inversion gates.
  • FIG. 6 is a schematic cross-sectional view showing the program operation state of the semiconductor memory device of this embodiment.
  • the memory cell is written by source side injection.
  • Source side injection refers to injection of electrons into a region located on the source side of the gate insulating film between adjacent IGs.
  • Fig. 6 (a) the left bit product Voltage operation at 0, 5, 1, and 8V
  • Inversion gate (first inversion gate) When 5V is applied to IG, it is applied to the semiconductor substrate 11 below it.
  • inversion layer (channel) 14 serving as a source is formed.
  • the channel region under 2 2 can be reduced to increase the electric field at the boundary and suppress the current.
  • Inversion gate fourth inversion gate
  • a voltage of 10-15V is supplied to the in WL.
  • 5V is applied to the inverting gate IG.
  • Inverting gate IG is marked with 8V
  • an inversion layer 16 serving as a drain is formed in the semiconductor substrate 11 therebelow. Applying IV to inverting gate HG weakens the channel under its inverting gate IG and
  • the electric field can be strengthened and the current can be suppressed.
  • the current is prevented from flowing by cutting the channel.
  • OV OV to the inversion layer 17 and 4.5 V to the inversion layer 16
  • electrons move in the channel from the inversion layer 17 serving as the source to the inversion layer 16 serving as the drain.
  • the drain side under the inverting gate IG is high
  • the current flowing in the channel can be suppressed, and the program current can be reduced to It can be suppressed below the AZ cell.
  • the program current force is less than S1Z100. As a result, 100 times more cells can be written at one time than before, and for example, lk bits can be programmed simultaneously. Therefore, high-speed writing becomes possible
  • FIG. 7 is a schematic cross-sectional view showing a read operation state of the semiconductor memory device of this embodiment. As shown in Fig. 7, in the read operation, a voltage of 5V is applied to the inverting gate IG and the inverting gate IG.
  • Inversion layers 18 and 19 are formed, respectively.
  • a voltage of 0 V is applied to the inversion layer 18 and 1.5 V to the inversion layer 19 and 45 V is supplied to the word line WL of the selected cell, the data of the cell of interest is read out.
  • FIG. 8 is a schematic cross-sectional view showing the erase operation state of the semiconductor memory device of this embodiment.
  • the inversion layers 20 and 21 are formed on the semiconductor substrate 11 therebelow.
  • a voltage of ⁇ 15 to ⁇ 20V is applied to the word line WL.
  • the inversion layers 20 and 21 under the inversion gate IG are biased to 0V. Electrons injected into the ONO film 12 can be extracted to the semiconductor substrate 11 side using the F N (Fowler Nordheim) tunnel effect.
  • FIG. 9 is a layout diagram of the core array in the embodiment of the present invention.
  • Figure 10 shows A–A in Figure 9.
  • symbol S is a sector selection area
  • M is a 4 Mb memory, for example Sector areas such as cell cards are shown.
  • the semiconductor device according to the present invention includes a plurality of sector selection areas and sector areas.
  • IG (0) through IG (3) are the inverted gate wiring patterns such as metal wiring caps, and GBL (0) through GBL (9) are the global bit lines that also have metal wiring power.
  • the memory cell is located in a region where the word line WL and the global bit lines GBL (0) to GBL (9) are orthogonal to each other.
  • a memory cell is formed between adjacent inversion gates. A portion surrounded by a dotted line corresponds to a unit cell.
  • polysilicon P1 that becomes an inversion gate IG that forms an inversion layer functioning as a local bit line is formed in parallel to each other corresponding to the global bit lines GBL (O) to GBL (9). ing.
  • the inverted gate wiring patterns IG (O) to IG (3) are connected to the polysilicon P1 through the contacts 30.
  • the inverting layer 23 functioning as a local bit line is formed on the semiconductor substrate under the polysilicon P1.
  • the inversion layer 23 is connected to the metal wiring Ml via the n + diffusion region SZD and the contact 31.
  • the metal wiring Ml is electrically connected to the global bit lines GBL (O) to GBL (9) through the contact 32.
  • the inverting gate IG By applying the voltages shown in FIGS. 6 to 8 to the global bit lines GBL (O) to (9), the inverting gate IG, and the word line WL, writing, reading, and Erasing is possible.
  • the inversion gate IG functions as a switching transistor, so that the inversion layer functioning as the local bit line LBL is used as the global bit lines G BL (1) to GBL (9). Can be electrically connected. For this reason, it is not necessary to provide a sector transistor, which has been conventionally required. Therefore, the area for the sector transistor can be reduced. As a result, for example, the height (the width of the symbol S in FIG. 9) can be reduced to 2 / zm or less.
  • the channel under the inverting gate IG can be weakened, the current flowing through the channel can be suppressed, and the program current can be suppressed to, for example, ⁇ cells or less. it can. For this reason, even when the word line width W is narrow, a program current necessary for writing can sufficiently flow. Therefore, the word line width W can be set to 90 nm or less. In the example shown in FIG. 9, the number of word lines is 8, but may be 128 or 256, for example.
  • FIG. 11 is an equivalent circuit diagram of the core array shown in FIG. As shown in FIG.
  • a plurality of memory cells Ml 1 to Mnm having an ONO film are arranged in a matrix.
  • a group of memory cells arranged in the row direction in the memory cell array M is commonly connected to one of the word lines WL extending in the row direction in the memory cell array M at each gate electrode.
  • the group of memory cells arranged in the column direction share an inversion layer that functions as the local bit line LBL. That is, the source and drain of a group of memory cells arranged in the column direction are commonly connected to one of the global bit lines GBL through an inversion layer formed by the inversion gate IG and functioning as a normal bit line LBL. .
  • the memory cell can be written, read and erased by applying the voltages shown in Fig. 6 to Fig. 8 to the Grono bit lines GBL (l) to (9), the inverting gate IG, and the word line WL. It becomes.
  • the inversion gate IG functions as a switching transistor, as indicated by the symbol IGTr, the inversion layer functioning as the local bit line LBL can be electrically connected to the global bit line GBL. For this reason, it is possible to reduce the area for the sector transistor which does not need to be provided with the sector transistor which has been conventionally required.
  • FIG. 11 is a block diagram of the semiconductor memory device in the present embodiment.
  • the semiconductor memory device 51 includes a memory cell array 52, an IZO register 'buffer 53, an address register 54, a status register 55, a command register 56, a state machine 57, a high voltage generation circuit 58, a row decoder 59, Includes page buffer 60, column decoder 61, inverted gate decoder 70, and BL decoder 71.
  • the semiconductor memory device 51 may be built in a semiconductor device! /.
  • rewritable nonvolatile memory cell transistors are arranged along a plurality of word lines WL and a plurality of bit lines BL arranged in a matrix.
  • the “register” buffer 53 controls various signals or data corresponding to the terminal.
  • the address register 54 is for temporarily storing an address signal input through the I / O register buffer 53.
  • the status register 55 is for temporarily storing status information.
  • Command register 56 is the IZO register ' This is for temporarily storing operation commands input through the noffer.
  • the state machine 57 controls the operation of each circuit in the device in response to each control signal, and controls to apply the voltages as shown in FIGS.
  • the high voltage generation circuit 58 generates a high voltage used inside the device.
  • the high voltage used inside the device includes a high voltage for data writing, a high voltage for data erasing, a high voltage for data reading, and sufficient Z writing to the memory cells during data writing.
  • High voltage for verify eye used to check whether or not Therefore the high voltage generation circuit 58 supplies a write voltage to the inversion layer at the time of writing. Further, the high voltage generation circuit 58 supplies a voltage to the word line for extracting electrons injected into the memory cell to the semiconductor substrate 11 side using the FN tunnel effect at the time of erasing. Further, the high voltage generation circuit 58 supplies a voltage to the word line for extracting electrons injected into the memory cell to the word line side using the FN tunnel effect at the time of erasing. The high voltage generation circuit 58 supplies, to the inverting gate, a voltage for extracting electrons injected into the memory cell using the FN tunnel effect at the time of erasing.
  • the row decoder 59 decodes the row address input through the address register 54 and selects the word line WL.
  • the page buffer 60 includes a data latch circuit, a sense amplifier circuit, and the like, and senses and latches data stored in a plurality of memory cells connected to the same word line at the time of reading. At the time of writing, the write data input from the IZO register & buffer 53 is sequentially latched in the latch circuit via the column decoder 61, and a write voltage is supplied to the memory cell according to the latch data.
  • the page buffer 60 is provided for 512 pages (one page), for example.
  • the column decoder 61 decodes the column address input through the address register 54, selects a plurality of latched data latched in the page buffer 60 at the time of reading, for each predetermined unit, and registers & buffers 53 Forward to. At the time of writing, the write data input from the register & buffer 53 is sequentially transferred to the latch circuit in the page buffer 60 every predetermined unit. Note that the IZO register buffer 53, row decoder 59, column decoder 61, and high voltage generation circuit 58 function based on control from the state machine 57.
  • the inverting gate decoder 70 supplies a predetermined voltage to the inverting gate IG and selects a memory cell to be written or erased. The inverting gate decoder 70 supplies a predetermined voltage signal to the inverting gate IG under the control of the address register. In the sector not selected by the input address, OV is given to IG to IG. Selection
  • OV, IV, 5V, and 8V are supplied to the predetermined inversion gate IG at the time of writing, and OV and 5V are supplied to the predetermined inversion gate at the time of reading. Supplied to IG.
  • the inverting gate decoder 70 weakens the channel formed between the source and drain in the semiconductor substrate 11 in the inverting gate IG during writing.
  • the inverting gate decoder 70 is connected to the inverting gate IG provided on the opposite side of the inverting gate IG with respect to the inverting gate IG when writing.
  • FIG. 13 is an enlarged view of the column decoder 61, the page buffer 60, the BL decoder 71, and the global bit line GBL.
  • the BL decoder 71 includes a plurality of pass transistors 711 controlled by signals CO, / CO to C3, / C3 from the address register 54.
  • the global bit line GBL is a set of four i 0 to i 3, each of which is controlled by a common selection signal C0, ZC0 to C3, ZC3 and connected to the respective page buffer 60 i. The At the time of reading, as described in FIG.
  • the selection signal C2 is set to the selection level (High), the global bit line GBLi-2 is connected to the page buffer 60, and the reading voltage 1.5V is supplied and the selection signal is supplied.
  • Set ZC1 to the selected level (High) and set global bit line GBLi-1 to 0V.
  • the selection signal C3 is set to the selection level (High) and the global bit line GBLi-3 is connected to the page buffer 60 to supply the writing voltage 4.5V.
  • select signal C1 is set to the selection level (High) and global bit line GBLi-1 is set to OV.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)

Abstract

 半導体装置は、半導体基板にローカルビット線となる反転層を形成することによって該反転層をグローバルビット線に電気的に接続する反転ゲートと、前記反転層をソース及びドレインとして用いるメモリセルとを含む。これにより、反転ゲートをセクタトランジスタのように働かせることができるため、セクタトランジスタを別途設ける必要がない。このため、セクタトランジスタのための領域を縮小できるので、回路面積の増大を抑えることができる。また、消去時、前記メモリセルに注入された電子をFNトンネル効果を用いて前記半導体基板側に引き抜くようにしてもよい。また、消去時、前記メモリセルに注入された電子をFNトンネル効果を用いてワード線側に引き抜くようにしてもよい。消去時、前記メモリセルに注入された電子をFNトンネル効果を用いて前記反転ゲートから引き抜くようにしてもよい。

Description

明 細 書
半導体装置及びその動作制御方法
技術分野
[0001] 本発明は、半導体装置及びその動作制御方法に関する。
背景技術
[0002] 情報を記憶する働きを持ったメモリにお 、て、電源を切っても記憶し続けるメモリと して不揮発性メモリがある。書換え可能な不揮発性メモリとしては、フラッシュメモリが ある。このようなフラッシュメモリでは、フローティングゲートが設けられており、このフロ 一ティングゲートへの電子の注入'引き抜きにより、書込みや消去を行うことができる ようになって!/、る。フラッシュメモリに関する従来技術として以下のようなものが提案さ れている。
[0003] 非特許文献 1は、フローティングゲートを用いた拡散層なしの AG-AND型のフラッ シュメモリに関する。図 1は、 90- nm-nodeの AG— ANDフラッシュメモリのメモリァレ ィの平面図である。図 2 (a)はプログラム時の電圧条件を示す断面図、(b)はリード時 の電圧条件を示す断面図である。図 3は、 AG-ANDのアレイ構成を示す図である。
[0004] アシストゲート AG乃至 AGは、シリコン基板上に配置されている。このアシストゲー
0 3
ト AG乃至 AGの下の基板に反転層(チャネル)が形成される。したがって拡散層が
0 3
存在しない。ワードライン WLは、アシストゲート AGに対して垂直方向に延びている。 プログラム動作では、図 2 (a)に示すように、 0、 5、 1及び 8Vの電圧力 アシストゲート AG、 AG、 AG及び AGにそれぞれ供給される。選択されたセルのワードライン W
0 1 2 3
Lに 18Vの電圧が供給される。
[0005] 5Vが印加されるアシストゲート AGの下にソースとなるチャネルが形成される。 8Vが 印加されたアシストゲート AGの下にドレインとなるチャネルが形成される。 IVが印加 されるアシストゲート AGの下は、チャネルが弱くなり、フローティングゲート FGとの境 界の電界を強めると共に電流を抑える。 5Vが印加されたアシストゲート AGの左側の アシストゲートには OVを印加してチャネルをカットすることによって電流が流れないよ うにしている。 [0006] ソースからの電子の流れは、アシストゲート AG下のチャネル、セルのフローテイン
1
グゲート FG、アシストゲート AG、選択されたセルのフローティングゲート FG、アシス
2
トゲート AGを通って順次進み、 IVが印加されたアシストゲート AG下とドレイン側の
3
フローティングゲートとの境界の電界が強いためホットエレクトロンが選択されたセル のフローティングゲートに注入される。
[0007] リード動作では、図 2 (b)に示すように、注目しているフローティングゲートの両側の アシストゲート AGに 5Vの電圧を印加することによって、アシストゲート AG下にチヤネ ルを形成し、一方をソース、他方をドレインとして用いることによって注目しているフロ 一ティングゲート FGの読み出しが行われる。
[0008] 特許文献 1は、 SONOS型メモリセルによる AG— AND型フラッシュメモリに関する。
これには、ソースまたはドレインとなる 2つの拡散領域の間に 2つのアシストゲートを設 け、そのアシストゲート間に SONOS型メモリセルが形成されている。ソース、ドレイン を入れ替えることで、メモリセルのアシストゲート付近の 2箇所の窒化膜領域に電子を トラップさせ、 2ビット記憶可能なことが示されて 、る。
[0009] 非特許文献 1: Y. Sasago, et al., 90- nm- node multi-level AG- AND type flash
memory with cell size of true 2 F 2/bit and programming throughput of 10 MB/s, Dec. 2003, Technical Digest, pp. 823—826.
特許文献 1:特開 2001— 156275号公報
発明の開示
発明が解決しょうとする課題
[0010] しかしながら、上記従来の AG— AND型のフラッシュメモリでは、ローカルビットとグ ローバルビット DLm-3— DLm+2を接続するために、選択ゲートラインに接続されたセ クタトランジスタ(ST Tr)が必要なため、回路面積が増大するという問題があった。ま た、特許文献 1の技術では、ソース、ドレインを拡散層で形成するためメモリアレイ領 域が増大すると 、う問題があった。
[0011] そこで、本発明は上記問題点に鑑みてなされたもので、回路面積の増大を抑えるこ とができる半導体装置及びその動作制御方法を提供することを目的とする。
課題を解決するための手段 [0012] 上記課題を解決するために、本発明は、半導体基板と、ワード線と、グローバルビッ ト線と、前記半導体基板にローカルビット線となる反転層を形成して該反転層を前記 グローバルビット線に電気的に接続する反転ゲートと、前記反転層をソース及びドレ インとして用いるメモリセルとを含む半導体装置である。本発明によれば、反転ゲート をセクタトランジスタのように働力せることができるため、セクタトランジスタを設ける必 要がない。このため、セクタトランジスタのための領域を縮小できる。よって、回路面積 の増大を抑えることができる。このようにして、アレイサイズを可能な限り小さくするた めのデコード回路を含むアレイ構造を提供できる。
[0013] 前記反転層は、金属配線を介して前記グローバルビット線に接続されるのが好まし い。前記メモリセルは、隣接する前記反転ゲート間に形成される。本発明は、前記反 転ゲートに所定の電圧を供給して書込み又は消去を行うメモリセルを選択する選択 回路を更に含む。前記反転ゲートは、前記ソースとなる反転層を形成する第 1の反転 ゲートと、前記ドレインとなる反転層を形成する第 2の反転ゲートと、該第 1の反転ゲ 一トと該第 2の反転ゲート間に設けられた第 3の反転ゲートとを含み、書込み時、前記 第 1乃至第 3の反転ゲートに所定の電圧を供給して書込みを行うメモリセルを選択す る選択回路を更に含む。
[0014] 前記選択回路は、書込み時、前記第 3の反転ゲートに、前記半導体基板中のソー ス及びドレイン間に形成されるチャネル領域のうち該第 3の反転ゲート下のチャネル 領域を小さく形成するための電圧を供給するのが好ましい。技術的には、反転ゲート 部のトランジスタを少しだけオンさせることにより、半導体基板中のソース及びドレイン 間に形成されるチャネル領域のうち第 3の反転ゲート下のチャネル領域を小さく形成 することができる。
[0015] 前記反転ゲートは更に、前記第 1の反転ゲートから見て第 3の反転ゲートとは反対 側の位置に設けられた第 4の反転ゲートを含み、前記選択回路は、書込み時、前記 第 4の反転ゲートに半導体基板中に形成されるチャネルをカットするための電圧を供 給するのが好ましい。技術的には、反転ゲートのトランジスタをオフさせることにより、 第 4の反転ゲートに半導体基板中に形成されるチャネルをカットすることができる。本 発明は、書込み時、前記反転層に書込み電圧を供給する書込電圧供給回路を更に 含む。本発明は、消去時、前記メモリセルに注入された電子を FNトンネル効果を用 Vヽて前記半導体基板側に引き抜くための電圧を前記ワード線に供給する電圧供給 回路を更に含む。このとき、半導体基板側に引き抜くための電圧は負電圧であるの が好ましい。
[0016] 本発明は、消去時、前記メモリセルに注入された電子を FNトンネル効果を用いてヮ ード線側に引き抜くための電圧を該ワード線に供給する電圧供給回路を更に含む。 本発明は、消去時、前記メモリセルに注入された電子を FNトンネル効果を用いて引 き抜くための電圧を前記反転ゲートに供給する電圧供給回路を更に含む。本発明は 、複数本の前記グローノ レビット線力 なるコラムセット (i)を複数有し、共通の選択 信号 (C)によって該コラムセット内の所定のグローバルビット線をそれぞれに対応す るページバッファ(60— i)に接続するデコーダを更に含む。
[0017] 前記反転層は、複数のメモリセルで共有される。前記メモリセルは、前記反転ゲート 間の絶縁膜の両端に 1ビットづっ記憶させることによって 1セル当たり 2ビットを記憶す る。前記メモリセルは、 SONOS型であるのが好ましい。前記半導体装置は半導体記 憶装置であるのが好まし 、。
[0018] 本発明は、反転ゲートに所定の電圧を供給してローカルビット線となる反転層を半 導体基板に形成することにより該反転層をグローバルビット線に電気的に接続する第 1のステップと、ワード線を選択する第 2のステップとを含む方法である。本発明によ れば、反転ゲートをセクタトランジスタのように働力せることができるため、セクタトラン ジスタを設ける必要がない。このため、セクタトランジスタのための領域を縮小できる。 よって、回路面積の増大を抑えることができる。このようにして、アレイサイズを可能な 限り小さくするためのデコード回路を含むアレイ構造を提供できる。
[0019] 前記反転ゲートは、ソースとなる反転層を形成する第 1の反転ゲートと、ドレインとな る反転層を形成する第 2の反転ゲートと、該第 1の反転ゲートと該第 2の反転ゲート間 に設けられた第 3の反転ゲートとを含み、前記第 1のステップは、書込み時、所定の 電圧を前記第 1乃至第 3の反転ゲートに供給する。前記第 1のステップは、前記第 3 の反転ゲートに、前記半導体基板中のソース及びドレイン間に形成されるチャネル領 域のうち該第 3の反転ゲート下のチャネル領域を小さく形成するための電圧を供給す るステップを含む。
[0020] 前記反転ゲートは更に、前記第 1の反転ゲートから見て第 3の反転ゲートとは反対 の位置に設けられた第 4の反転ゲートを含み、前記第 1のステップは、書込み時、前 記半導体基板に形成されるチャネルをカットするための電圧を前記第 4の反転ゲート に供給するステップを更に含む。前記反転ゲートは、ソースとなる反転層を形成する 第 1の反転ゲートと、ドレインとなる反転層を形成する第 2の反転ゲートと、該第 1の反 転ゲートと該第 2の反転ゲート間に設けられた第 3の反転ゲートとを含み、書込み時、 前記第 3の反転ゲートの両端の絶縁膜に 1ビットづっ記憶させるステップを含む。
[0021] 本発明は、書込み時、前記グローバルビット線を介して、書込み電圧を前記反転層 に供給するステップを更に含む。本発明は、消去時、メモリセルに注入された電子を FNトンネル効果を用いて前記半導体基板側に引き抜くための電圧を前記ワード線 に供給するステップを更に含む。このとき、半導体基板側に引き抜くための電圧は負 電圧であるのが好ましい。
発明の効果
[0022] 本発明によれば、回路面積の増大を抑えることができる半導体装置及び方法を提 供することができる。
図面の簡単な説明
[0023] [図 1]従来の AG— ANDフラッシュメモリのメモリアレイを示す図である。
[図 2] (a)はプログラム時の電圧条件を示す断面図、 (b)はリード時の電圧条件を示 す断面図である。
[図 3]AG-ANDのアレイ構成を示す図である。
[図 4]本実施形態の半導体記憶装置のメモリアレイの平面図である。
[図 5]図 4のワードラインに沿って切った断面図である。
[図 6]本実施形態の半導体記憶装置のプログラム動作状態を示す概略断面図である
[図 7]本実施形態の半導体記憶装置のリード動作状態を示す概略断面図である。
[図 8]本実施形態の半導体記憶装置のィレース動作状態を示す概略断面図である。
[図 9]本発明の実施形態おけるコアアレイのレイアウト図である。 [図 10]図 9中の A— A'断面図である。
[図 11]図 9に示したコアアレイの等価回路図である。
[図 12]本実施形態における半導体記憶装置のブロック図である。
[図 13]コラムデコーダ、ページバッファ、 BLデコーダ及びグローバルビット線 GBLの 拡大図である。
発明を実施するための最良の形態
[0024] 以下、添付の図面を参照して本発明の実施形態について説明する。図 4は、本発 明の実施形態の半導体記憶装置のメモリアレイの平面図である。図 5は、図 4のヮー ドラインに沿って切った断面図である。図 4に示すように、ワードライン WLは、反転ゲ 一 HG乃至 IGに対して垂直方向に延びている。反転ゲート IG乃至 IGは、半導体
0 3 0 3 基板にローカルビット線として機能する反転層(チャネル)を形成することによってこの 反転層をグローノ レビット線に電気的に接続するためのものである。すなわち、この I
Gゲート IG乃至 Gは従来のセクタトランジスタと同じ働きをする。
0 3
[0025] 図 5に示すように、メモリセルは、 SONOS (semiconductor— oxide— nitride— oxi de-semiconductor)構造である。半導体基板 11の表面の一部および反転ゲート I G乃至 IGは、酸化膜、窒化膜及び酸ィ匕膜を積層した構造の ONO膜 12により覆わ
0 3
れている。 ONO膜 12上にはワードライン Wとなるポリシリコンゲート電極 13が形成さ
3
れて 、る。メモリセルのソース及びドレインとして用いる反転層に所定の電圧をかけて ゲート電圧を上げることによってチャネルが形成される。この SONOS構造のメモリセ ルは、ゲート絶縁膜中への電荷の注入を、ソースまたはドレインとなる両電極に印加 するバイアス方向を入れ替えることで、両電極付近のゲート絶縁膜に独立に 2値情報 を書込むことにより 1メモリセル当たり 2ビットを記憶できる。すなわち、このメモリセル は、反転ゲート間の絶縁膜の両端に 1ビットづっ記憶させることによって 1セル当たり 2ビットを記憶できる。
[0026] 図 6は、本実施形態の半導体記憶装置のプログラム動作状態を示す概略断面図で ある。図 6に示す例では、ソースサイドインジェクションによってメモリセルに書込みを 行う。ソースサイドインジェクションとは、隣接する IG間のゲート絶縁膜のソース側に 位置する領域に電子を注入することをいう。図 6 (a)に示すように、レフトビットプロダラ ム動作では、 0、 5、 1及び 8Vの電圧力 反転ゲート IG
0、 IG
1、 IG及び IGにそれぞ 2 3 れ供給される。選択されたセルのワードライン WLには 10-15Vの電圧が供給される [0027] 反転ゲート(第 1の反転ゲート) IGに 5Vが印加されると、その下の半導体基板 11に
1
ソースとなる反転層(チャネル) 14が形成される。反転ゲート (第 2の反転ゲート) IG
3 に 8Vが印加されると、その下の半導体基板 11にドレインとなる反転層 15が形成され る。反転ゲート (第 3の反転ゲート) IGに IVを印加することにより、その反転ゲート IG
2 2 の下のチャネル領域を小さくし、境界の電界を強めると共に電流を抑えることができる 。反転ゲート(第 4の反転ゲート) IGに OVを印加してチャネルをカットすることによつ
0
て電流が流れないようにしている。反転層 14に OV、反転層 15に 4. 5Vを印加するこ とによって、電子がチャネル中をソースからドレインに向かって移動する。反転ゲート I G下のドレイン側が高電界となるため、このチャネル中を進む電子は、高いエネルギ
2
一を獲得してホットエレクトロンとなり、その一部がビット Αとして ΟΝΟ膜 12にトラップ される。
[0028] 図 6 (b)に示すように、ライトビットプログラム動作では、 0、 8、 1及び 5Vの電圧が、 反転ゲート IG、 IG、 IG及び IGにそれぞれ供給される。選択されたセルのワードラ
0 1 2 3
イン WLに 10— 15Vの電圧が供給される。反転ゲート IGに 5Vが印加されると、その
3
下の半導体基板 11にソースとなる反転層 17が形成される。反転ゲート IGに 8Vが印
1 加されると、その下の半導体基板 11にドレインとなる反転層 16が形成される。反転ゲ 一 HGに IVを印加することにより、その反転ゲート IGの下のチャネルを弱め、境界
2 2
の電界を強めると共に電流を抑えることができる。反転ゲート IGに OVを印加してチヤ
0
ネルをカットすることによって電流が流れないようにしている。反転層 17に OV、反転 層 16に 4. 5Vを印加することによって、電子がチャネル中をソースとなる反転層 17か らドレインとなる反転層 16に向力つて移動する。反転ゲート IG下のドレイン側が高電
2
界となるため、チャネル中を進む電子は高いエネルギーを獲得してホットエレクトロン となり、その一部がビット Βとして ΟΝΟ膜 12にトラップされる。
[0029] なお、反転ゲート IGに IVを印加することにより、その反転ゲート IGの下のチヤネ
2 2
ルを弱め、チャネルに流れる電流を抑えることができ、プログラム電流を例えば ΙΟΟη AZセル以下に抑えることができる。従来のフローティングゲートやミラービットでは、 プログラム電流を 100 AZセル程度流す必要があるのと比べると、プログラム電流 力 S1Z100以下になる。このため、従来と比べて 100倍のセルを一度に書込むことが でき、例えば lkビットを同時にプログラムできる。したがって高速書込みが可能になる
[0030] 図 7は、本実施形態の半導体記憶装置のリード動作状態を示す概略断面図である 。図 7に示すように、リード動作では、反転ゲート IG及び反転ゲート IGに 5Vの電圧
1 2
を印加することによって、反転ゲート IG及び反転ゲート IGの下の半導体基板 11に
1 2
反転層 18及び 19がそれぞれ形成される。反転層 18に 0V、反転層 19に 1. 5V、選 択されたセルのワードライン WLには 4 5Vの電圧が供給されると、注目しているセル のデータが読み出される。
[0031] 図 8は、本実施形態の半導体記憶装置のィレース動作状態を示す概略断面図であ る。図 8 (a)に示すように、ィレース時、注目しているメモリセルの両側の反転ゲート IG に 5Vの電圧を印加することによって、その下の半導体基板 11に反転層 20及び 21を 形成する。ワードライン WLには— 15乃至- 20Vの電圧が印加される。反転ゲート IG の下の反転層 20及び 21は、 0Vにバイアスされる。 ONO膜 12に注入された電子を F N (Fowler Nordheim)トンネル効果を用いて半導体基板 11側に引き抜くことができる
[0032] また、図 8 (b)に示すように、ィレース時、注目しているメモリセルの両側の反転ゲー HGに 0Vの電圧を、ワードライン WLには 15乃至 20Vの電圧を印加すると、チャネル 22は、例えば反転ゲート IGが 0Vで、フローティング状態となる。 ONO膜 12に注入さ れた電子を FNトンネル効果を用 Vヽてワードライン 13側に弓 Iき抜くことができる。
[0033] また、図 8 (c)に示すように、ィレース時、反転ゲート IGに 15— 20Vの電圧を、ワード ライン WLには 0Vの電圧を印加し、反転ゲート IGの角部へのフィールドェンハンスド FN(Field Enhanced FN)トンネリングにより、酸化膜 121、窒化膜 122及び酸化膜 12 3からなる ONO膜 12の窒化膜 122に注入されて 、る電子を引き抜 、てもよ!/、。
[0034] 図 9は、本発明の実施形態におけるコアアレイのレイアウト図である。図 10は図 9中 の A— A,である。図 9において、符号 Sはセクタ選択領域、 Mは例えば 4Mbのメモリ セルカゝらなるセクタ領域をそれぞれ示す。本発明に係る半導体装置は、このセクタ選 択領域とセクタ領域とを複数含む。 IG (0)乃至 IG (3)はメタル配線カゝらなる反転ゲー ト配線パターン、 GBL (0)乃至 GBL (9)はメタル配線力もなるグローバルビット線をそ れぞれ示す。ワードライン WLとグローバルビット線 GBL (0)乃至 GBL (9)とが直交す る領域にメモリセルが位置する。メモリセルは隣接する反転ゲート間に形成されてい る。点線で囲った部分が単位セルに対応する。
[0035] 半導体基板には、ローカルビット線として機能する反転層を形成する反転ゲート IG となるポリシリコン P1が、グローバルビット線 GBL (O)乃至 GBL (9)に対応して互いに 平行に形成されている。反転ゲート配線パターン IG (O)乃至 IG (3)は、コンタクト 30 を介してポリシリコン P1に接続されて 、る。反転ゲート配線パターン IG (0)乃至 IG (3 )に所定の電圧を印加することによってポリシリコン P1の下の半導体基板にローカル ビット線として機能する反転層 23が形成される。この反転層 23は n +拡散領域 SZD 、コンタクト 31を介して金属配線 Mlに接続される。この金属配線 Mlはコンタクト 32 を介して、グローバルビット線 GBL (O)乃至 GBL (9)に電気的に接続される。このグ ローバルビット線 GBL (O)乃至(9)、反転ゲート IG、およびワードライン WLに、図 6乃 至図 8で示した電圧を印加することによって、メモリセルに対して、書込み、読み出し 及び消去が可能となる。
[0036] このように、反転ゲート IGは、符号 IGTrで示すように、スイッチングトランジスタとし て機能するため、ローカルビット線 LBLとして機能する反転層をグローバルビット線 G BL (1)乃至 GBL (9)に電気的に接続することができる。このため、従来必要であった セクタトランジスタを設ける必要がない。したがって、セクタトランジスタのための領域 を縮小できる。これにより例えば高さ(図 9の符号 Sの幅)を 2 /z m以下にできる。また、 上述したように、反転ゲート IGに IVを印加することにより、その反転ゲート IGの下の チャネルを弱め、チャネルに流れる電流を抑えることができ、プログラム電流を例えば ΙΟΟηΑΖセル以下に抑えることができる。このため、ワードラインの幅 Wが狭くなつた 場合でも書込みに必要なプログラム電流を十分に流すことができる。よって、ワードラ インの幅 Wを 90nm以下にすることも可能である。なお、図 9に示す例ではワードライ ンは 8本であるが、例えば 128本、 256本であってもよい。 [0037] 図 11は、図 9に示したコアアレイの等価回路図である。図 11に示すように、メモリセ ルアレイ Mは、 ONO膜を有する複数のメモリセル Ml 1乃至 Mnmが行列状に配列さ れている。メモリセルアレイ M中において行方向に配列した一群のメモリセルは、各 々のゲート電極においてメモリセルアレイ M中を行方向に延在するワードライン WL のいずれかに共通に接続されている。さらに、列方向に配列した一群のメモリセルは 、ローカルビット線 LBLとして機能する反転層を共有している。すなわち、列方向に 配列した一群のメモリセルのソース及びドレインは、反転ゲート IGによって形成され口 一カルビット線 LBLとして機能する反転層を介してグローバルビット線 GBLのいずれ かに共通に接続されている。グローノ レビット線 GBL (l)乃至(9)、反転ゲート IG、 およびワードライン WLに、図 6乃至図 8で示した電圧を印加することによって、メモリ セルに対して、書込み、読み出し及び消去が可能となる。
[0038] 反転ゲート IGは、符号 IGTrで示すように、スイッチングトランジスタとして機能する ため、ローカルビット線 LBLとして機能する反転層をグローバルビット線 GBLに電気 的に接続することができる。このため、従来必要であったセクタトランジスタを設ける必 要がなぐセクタトランジスタのための領域を縮小できる。
[0039] 図 11は、本実施形態における半導体記憶装置のブロック図である。図 11に示すよ うに、半導体記憶装置 51は、メモリセルアレイ 52、 IZOレジスタ 'バッファ 53、ァドレ スレジスタ 54、ステータスレジスタ 55、コマンドレジスタ 56、ステートマシン 57、高電 圧発生回路 58、ロウデコーダ 59、ページバッファ 60及びコラムデコーダ 61、反転ゲ ートデコーダ 70、 BLデコーダ 71を含む。半導体記憶装置 51は半導体装置内に組 み込まれて 、るものであってもよ!/、。
[0040] メモリセルアレイ 52は、マトリクス状に配列された複数のワードライン WL及び複数の ビット線 BLに沿って書換え可能な不揮発性のメモリセルトランジスタが配設されてい る。
[0041] ΙΖΟレジスタ 'バッファ 53は、 ΙΖΟ端子に対応する各種信号又はデータを制御す るものである。アドレスレジスタ 54は、 I/Oレジスタ 'バッファ 53を通して入力されたァ ドレス信号を一時格納しておくためのものである。ステータスレジスタ 55は、ステータ ス情報を一時格納しておくためのものである。コマンドレジスタ 56は、 IZOレジスタ' ノ ッファを通して入力された動作コマンドを一時格納しておくためのものである。ステ 一トマシン 57は、各制御信号に応答してデバイス内部の各回路の動作を制御するも のであり、図 6乃至図 8に示したような電圧を各部に印加するよう制御を行う。
[0042] 高電圧発生回路 58は、デバイス内部で用いられる高電圧を発生するものである。
デバイス内部で用いられる高電圧には、データ書込み用の高電圧、データ消去用の 高電圧、データ読み出し用の高電圧、データ書込み時 Z消去時にメモリセルに対し て十分に書込み Z消去が行われているかどうかをチェックするのに用いられるベリフ アイ用の高電圧等が含まれる。したがって、高電圧発生回路 58は、書込み時、上記 反転層に書込み電圧を供給する。また、高電圧発生回路 58は、消去時、メモリセル に注入された電子を FNトンネル効果を用いて半導体基板 11側に引き抜くための電 圧をワード線に供給する。また、高電圧発生回路 58は、消去時、前記メモリセルに注 入された電子を FNトンネル効果を用いてワード線側に引き抜くための電圧をワード 線に供給する。高電圧発生回路 58は、消去時、前記メモリセルに注入された電子を FNトンネル効果を用いて引き抜くための電圧を反転ゲートに供給する。
[0043] ロウデコーダ 59は、アドレスレジスタ 54を通して入力されたロウアドレスをデコードし てワードライン WLを選択する。ページバッファ 60は、データラッチ回路とセンスアン プ回路などを含み、読み出し時は、同一のワードラインに接続された複数のメモリセ ルに格納されるデータを一括でセンスしてラッチする。また、書込み時は、 IZOレジ スタ&バッファ 53から入力される書込みデータを、コラムデコーダ 61を介してラッチ 回路に順次ラッチし、そのラッチデータに応じてメモリセルに書込み電圧を供給する 。ページバッファ 60は、例えば 512Β (1ページ)分設けられる。
[0044] コラムデコーダ 61は、アドレスレジスタ 54を通して入力されたコラムアドレスをデコ ードして、読み出し時にページバッファ 60にラッチされた複数のラッチデータを所定 単位毎に選択して ΙΖΟレジスタ &バッファ 53に転送する。また、書込み時には ΙΖΟ レジスタ &バッファ 53から入力される書込みデータを所定単位毎にページバッファ 6 0内のラッチ回路に順次転送する。なお、 IZOレジスタ 'バッファ 53、ロウデコーダ 59 、コラムデコーダ 61及び高電圧発生回路 58は、ステートマシン 57からの制御に基づ いて機能する。 [0045] 反転ゲートデコーダ 70は、反転ゲート IGに所定の電圧を供給して書込み又は消去 を行うメモリセルを選択するものである。この反転ゲートデコータ 70は、アドレスレジス タの制御によって、反転ゲート IGに所定の電圧信号を供給する。入力されたアドレス によって非選択とされたセクタにおいては、 IG乃至 IGには OVが与えられる。選択セ
0 3
クタにおいては、どのグローバルビット線 GBLが選択されたかにも応じて、書込み時 には OV、 IV、 5V及び 8Vが所定の反転ゲート IGに供給され、読み出し時には OV及 び 5Vが所定の反転ゲート IGに供給される。反転ゲートデコータ 70は、書込み時、反 転ゲート IGに半導体基板 11中のソース及びドレイン間に形成されるチャネルを弱め
2
るための電圧を供給する。また、反転ゲートデコーダ 70は、書込み時、反転ゲート IG 力 見て反転ゲート IGとは反対側の位置に設けられた反転ゲート IGに半導体基板
1 2 0
11中に形成されるチャネルをカットするための電圧を供給する。
[0046] 図 13は、コラムデコーダ 61、ページバッファ 60、 BLデコーダ 71及びグローバルビ ット線 GBLの拡大図である。 BLデコーダ 71は、アドレスレジスタ 54からの信号 CO、 /CO乃至 C3、 /C3によって制御される複数のパストランジスタ 711を含む。グロ一 バルビット線 GBLは i 0から i 3の 4本で 1セットとなっており、それぞれは共通の選 択信号 C0、 ZC0乃至 C3、 ZC3によって制御されて、それぞれのページバッファ 60 iに接続される。読み出し時は、図 7で説明したように、例えば、選択信号 C2を選択 レベル(High)にし、グローバルビット線 GBLi— 2をページバッファ 60に接続させて 読み出し電圧 1. 5Vを供給し、選択信号 ZC1を選択レベル (High)にしてグローバ ルビット線 GBLi— 1を 0Vにする。書込み時は、例えば、図 6 (a)で説明したように、選 択信号 C3を選択レベル(High)にし、グローバルビット線 GBLi— 3をページバッファ 60に接続させて書込み電圧 4. 5Vを供給し、選択信号, C1を選択レベル (High) にしてグローバルビット線 GBLi— 1を OVにする。
[0047] 以上本発明の好ましい実施例について詳述した力 本発明は係る特定の実施例に 限定されるものではなぐ請求の範囲に記載された本発明の要旨の範囲内において 、種々の変形、変更が可能である。なおメモリセルの構成は上記実施形態に限定さ れない。

Claims

請求の範囲
[1] 半導体基板と、
ワード線と、
グローバルビット線と、
前記半導体基板にローカルビット線となる反転層を形成して該反転層を前記グロ一 バルビット線に電気的に接続する反転ゲートと、
前記反転層をソース及びドレインとして用 、るメモリセルと
を含む半導体装置。
[2] 前記反転層は、金属配線を介して前記グローバルビット線に接続される請求項 1に 記載の半導体装置。
[3] 前記メモリセルは、隣接する前記反転ゲート間に形成される請求項 1に記載の半導 体装置。
[4] 前記反転ゲートに所定の電圧を供給して書込み又は消去を行うメモリセルを選択す る選択回路を更に含む請求項 1に記載の半導体装置。
[5] 前記反転ゲートは、前記ソースとなる反転層を形成する第 1の反転ゲートと、前記ドレ インとなる反転層を形成する第 2の反転ゲートと、該第 1の反転ゲートと該第 2の反転 ゲート間に設けられた第 3の反転ゲートとを含み、
書込み時、前記第 1乃至第 3の反転ゲートに所定の電圧を供給して書込みを行うメ モリセルを選択する選択回路を更に含む請求項 1に記載の半導体装置。
[6] 前記選択回路は、書込み時、前記第 3の反転ゲートに、前記半導体基板中のソース 及びドレイン間に形成されるチャネル領域のうち該第 3の反転ゲート下のチャネル領 域を小さく形成するための電圧を供給する請求項 5に記載の半導体装置。
[7] 前記反転ゲートは更に、前記第 1の反転ゲートから見て第 3の反転ゲートとは反対側 の位置に設けられた第 4の反転ゲートを含み、
前記選択回路は、書込み時、前記第 4の反転ゲートに半導体基板中に形成される チャネルをカットするための電圧を供給する請求項 5に記載の半導体装置。
[8] 書込み時、前記反転層に書込み電圧を供給する書込電圧供給回路を更に含む請 求項 1から請求項 7のいずれか一項に記載の半導体装置。
[9] 消去時、前記メモリセルに注入された電子を FNトンネル効果を用いて前記半導体基 板側に引き抜くための電圧を前記ワード線に供給する電圧供給回路を更に含む請 求項 1から請求項 4のいずれか一項に記載の半導体装置。
[10] 消去時、前記メモリセルに注入された電子を FNトンネル効果を用いてワード線側に 引き抜くための電圧を該ワード線に供給する電圧供給回路を更に含む請求項 1から 請求項 4の 、ずれか一項に記載の半導体装置。
[11] 消去時、前記メモリセルに注入された電子を FNトンネル効果を用いて引き抜くため の電圧を前記反転ゲートに供給する電圧供給回路を更に含む請求項 1から請求項 4 の!、ずれか一項に記載の半導体装置。
[12] 複数本の前記グローバルビット線力 なるコラムセットを複数有し、共通の選択信号 によって該コラムセット内の所定のグローバルビット線をそれぞれに対応するページ バッファに接続するデコーダを更に含む請求項 1に記載の半導体装置。
[13] 前記反転層は、複数のメモリセルで共有される請求項 1に記載の半導体装置。
[14] 前記メモリセルは、前記反転ゲート間の絶縁膜の両端に 1ビットづっ記憶させることに よって 1セル当たり 2ビットを記憶する請求項 1から 13のいずれか一項に記載の半導 体装置。
[15] 前記メモリセルは、 SONOS型である請求項 1から請求項 14のいずれか一項に記載 の半導体装置。
[16] 前記半導体装置は、半導体記憶装置である請求項 1から請求項 15のいずれか一項 に記載の半導体装置。
[17] 反転ゲートに所定の電圧を供給してローカルビット線となる反転層を半導体基板に 形成することにより該反転層をグローバルビット線に電気的に接続する第 1のステップ と、
ワード線を選択する第 2のステップとを含む方法。
[18] 前記反転ゲートは、ソースとなる反転層を形成する第 1の反転ゲートと、ドレインとなる 反転層を形成する第 2の反転ゲートと、該第 1の反転ゲートと該第 2の反転ゲート間に 設けられた第 3の反転ゲートとを含み、
前記第 1のステップは、書込み時、所定の電圧を前記第 1乃至第 3の反転ゲートに 供給する請求項 17に記載の方法。
[19] 前記第 1のステップは、前記第 3の反転ゲートに、前記半導体基板中のソース及びド レイン間に形成されるチャネル領域のうち該第 3の反転ゲート下のチャネル領域を小 さく形成するための電圧を供給するステップを含む請求項 18に記載の方法。
[20] 前記反転ゲートは更に、前記第 1の反転ゲートから見て第 3の反転ゲートとは反対の 位置に設けられた第 4の反転ゲートを含み、
前記第 1のステップは、書込み時、前記半導体基板に形成されるチャネルをカット するための電圧を前記第 4の反転ゲートに供給するステップを更に含む請求項 18に 記載の方法。
[21] 前記反転ゲートは、ソースとなる反転層を形成する第 1の反転ゲートと、ドレインとなる 反転層を形成する第 2の反転ゲートと、該第 1の反転ゲートと該第 2の反転ゲート間に 設けられた第 3の反転ゲートとを含み、
書込み時、前記第 3の反転ゲートの両端の絶縁膜に 1ビットづっ記憶させるステツ プを含む請求項 17に記載の方法。
[22] 書込み時、前記グローバルビット線を介して、書込み電圧を前記反転層に供給する ステップを更に含む請求項 17から請求項 21のいずれか一項に記載の方法。
[23] 消去時、メモリセルに注入された電子を FNトンネル効果を用いて前記半導体基板側 に引き抜くための電圧を前記ワード線に供給するステップを更に含む請求項 17に記 載の方法。
PCT/JP2004/019645 2004-12-28 2004-12-28 半導体装置及びその動作制御方法 WO2006070473A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP04808000A EP1833091A4 (en) 2004-12-28 2004-12-28 SEMICONDUCTOR DEVICE AND METHOD OF OPERATING CONTROL
JP2006550539A JP5392985B2 (ja) 2004-12-28 2004-12-28 半導体装置及びその動作制御方法
CN2004800447293A CN101091252B (zh) 2004-12-28 2004-12-28 半导体装置以及控制半导体装置操作的方法
PCT/JP2004/019645 WO2006070473A1 (ja) 2004-12-28 2004-12-28 半導体装置及びその動作制御方法
US11/316,800 US7321511B2 (en) 2004-12-28 2005-12-22 Semiconductor device and method for controlling operation thereof
TW094146638A TWI420649B (zh) 2004-12-28 2005-12-27 半導體裝置及控制其操作之方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/019645 WO2006070473A1 (ja) 2004-12-28 2004-12-28 半導体装置及びその動作制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/316,800 Continuation US7321511B2 (en) 2004-12-28 2005-12-22 Semiconductor device and method for controlling operation thereof

Publications (1)

Publication Number Publication Date
WO2006070473A1 true WO2006070473A1 (ja) 2006-07-06

Family

ID=36614600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019645 WO2006070473A1 (ja) 2004-12-28 2004-12-28 半導体装置及びその動作制御方法

Country Status (6)

Country Link
US (1) US7321511B2 (ja)
EP (1) EP1833091A4 (ja)
JP (1) JP5392985B2 (ja)
CN (1) CN101091252B (ja)
TW (1) TWI420649B (ja)
WO (1) WO2006070473A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281137A (ja) * 2006-04-05 2007-10-25 Sharp Corp 不揮発性半導体記憶装置およびその製造方法、前記不揮発性半導体記憶装置を備えてなる携帯電子機器

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8839175B2 (en) 2006-03-09 2014-09-16 Tela Innovations, Inc. Scalable meta-data objects
US7956421B2 (en) 2008-03-13 2011-06-07 Tela Innovations, Inc. Cross-coupled transistor layouts in restricted gate level layout architecture
US8653857B2 (en) 2006-03-09 2014-02-18 Tela Innovations, Inc. Circuitry and layouts for XOR and XNOR logic
US7763534B2 (en) 2007-10-26 2010-07-27 Tela Innovations, Inc. Methods, structures and designs for self-aligning local interconnects used in integrated circuits
US9035359B2 (en) 2006-03-09 2015-05-19 Tela Innovations, Inc. Semiconductor chip including region including linear-shaped conductive structures forming gate electrodes and having electrical connection areas arranged relative to inner region between transistors of different types and associated methods
US9009641B2 (en) 2006-03-09 2015-04-14 Tela Innovations, Inc. Circuits with linear finfet structures
US9230910B2 (en) 2006-03-09 2016-01-05 Tela Innovations, Inc. Oversized contacts and vias in layout defined by linearly constrained topology
US9563733B2 (en) 2009-05-06 2017-02-07 Tela Innovations, Inc. Cell circuit and layout with linear finfet structures
US8541879B2 (en) 2007-12-13 2013-09-24 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US7917879B2 (en) 2007-08-02 2011-03-29 Tela Innovations, Inc. Semiconductor device with dynamic array section
US7446352B2 (en) 2006-03-09 2008-11-04 Tela Innovations, Inc. Dynamic array architecture
US8448102B2 (en) 2006-03-09 2013-05-21 Tela Innovations, Inc. Optimizing layout of irregular structures in regular layout context
US8658542B2 (en) 2006-03-09 2014-02-25 Tela Innovations, Inc. Coarse grid design methods and structures
US7838920B2 (en) * 2006-12-04 2010-11-23 Micron Technology, Inc. Trench memory structures and operation
US8667443B2 (en) 2007-03-05 2014-03-04 Tela Innovations, Inc. Integrated circuit cell library for multiple patterning
US8453094B2 (en) 2008-01-31 2013-05-28 Tela Innovations, Inc. Enforcement of semiconductor structure regularity for localized transistors and interconnect
US7939443B2 (en) 2008-03-27 2011-05-10 Tela Innovations, Inc. Methods for multi-wire routing and apparatus implementing same
KR101761530B1 (ko) 2008-07-16 2017-07-25 텔라 이노베이션스, 인코포레이티드 동적 어레이 아키텍쳐에서의 셀 페이징과 배치를 위한 방법 및 그 구현
US9122832B2 (en) 2008-08-01 2015-09-01 Tela Innovations, Inc. Methods for controlling microloading variation in semiconductor wafer layout and fabrication
US8661392B2 (en) 2009-10-13 2014-02-25 Tela Innovations, Inc. Methods for cell boundary encroachment and layouts implementing the Same
US9159627B2 (en) 2010-11-12 2015-10-13 Tela Innovations, Inc. Methods for linewidth modification and apparatus implementing the same
US8363491B2 (en) * 2011-01-28 2013-01-29 Freescale Semiconductor, Inc. Programming a non-volatile memory
WO2017151628A1 (en) * 2016-02-29 2017-09-08 Washington University Self-powered sensors for long-term monitoring

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156275A (ja) * 1999-09-17 2001-06-08 Hitachi Ltd 半導体集積回路

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0167874B1 (ko) * 1993-06-29 1999-01-15 사토 후미오 반도체 기억장치
CN1252156A (zh) * 1997-04-11 2000-05-03 硅芯片公司 电擦除非易失性存储器
JPH11110967A (ja) * 1997-10-01 1999-04-23 Nec Corp 半導体メモリ装置
JPH11328957A (ja) * 1998-05-19 1999-11-30 Oki Micro Design:Kk 半導体記憶装置
US7190023B2 (en) * 1999-09-17 2007-03-13 Renesas Technology Corp. Semiconductor integrated circuit having discrete trap type memory cells
US6809949B2 (en) * 2002-05-06 2004-10-26 Symetrix Corporation Ferroelectric memory
JP2004152977A (ja) * 2002-10-30 2004-05-27 Renesas Technology Corp 半導体記憶装置
JP2005056889A (ja) * 2003-08-04 2005-03-03 Renesas Technology Corp 半導体記憶装置およびその製造方法
JP2005191542A (ja) * 2003-12-01 2005-07-14 Renesas Technology Corp 半導体記憶装置
JP2006060030A (ja) * 2004-08-20 2006-03-02 Renesas Technology Corp 半導体記憶装置
US7158420B2 (en) * 2005-04-29 2007-01-02 Macronix International Co., Ltd. Inversion bit line, charge trapping non-volatile memory and method of operating same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156275A (ja) * 1999-09-17 2001-06-08 Hitachi Ltd 半導体集積回路

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KURATA H. ET AL: "Self-Boosted Charge Injection for 90-nm-Node 4-Gb Multilevel AG-AND Flash Memories Programmable at 16MB/s", 2004 SYMPOSIUM ON VLSI CIRCUITS DIGEST OF TECHNICAL PAPERS, 17 June 2004 (2004-06-17), pages 72 - 73, XP002987709 *
SASAGO Y. ET AL: "90-nm-node multi-level AG-AND type flash memory with cell size of true 2F2/bit and programming throughput of 10MB/s", 2003 IEDM DIG.TECH.PAPERS, 8 December 2003 (2003-12-08), pages 823 - 826, XP010684202 *
See also references of EP1833091A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281137A (ja) * 2006-04-05 2007-10-25 Sharp Corp 不揮発性半導体記憶装置およびその製造方法、前記不揮発性半導体記憶装置を備えてなる携帯電子機器

Also Published As

Publication number Publication date
CN101091252A (zh) 2007-12-19
TW200636974A (en) 2006-10-16
TWI420649B (zh) 2013-12-21
EP1833091A1 (en) 2007-09-12
US7321511B2 (en) 2008-01-22
CN101091252B (zh) 2012-09-05
JPWO2006070473A1 (ja) 2008-06-12
US20060256617A1 (en) 2006-11-16
EP1833091A4 (en) 2008-08-13
JP5392985B2 (ja) 2014-01-22

Similar Documents

Publication Publication Date Title
TWI420649B (zh) 半導體裝置及控制其操作之方法
US7573742B2 (en) Nonvolatile semiconductor memory
JP3625383B2 (ja) 不揮発性半導体メモリ装置
KR20070097307A (ko) 핀 타입 메모리 셀
JPH06275087A (ja) 不揮発性半導体記憶装置
WO2008007730A1 (fr) Mémoire à semiconducteur non volatile et procédé d'entraînement associé
KR19990029125A (ko) 메모리 셀 및 이를 구비한 불휘발성 반도체 기억 장치
JPH08279566A (ja) 並列型不揮発性半導体記憶装置及び同装置の使用方法
JP2003151290A (ja) コントロール・ゲート及びワード線電圧の昇圧回路
JP4902196B2 (ja) 不揮発性半導体記憶装置
JP4091221B2 (ja) 不揮発性半導体記憶装置
JP2003037191A (ja) 不揮発性半導体記憶装置
JP2001216788A (ja) 不揮発性半導体メモリ装置の消去方式
KR100639827B1 (ko) Eeprom 응용을 위한 1 트랜지스터 셀
KR20130125711A (ko) 반도체 기억 장치 및 그 구동 방법
US7405972B1 (en) Non-volatile memory array
US6760254B2 (en) Semiconductor memory device
US6567314B1 (en) Data programming implementation for high efficiency CHE injection
US20020172075A1 (en) Integrated circuit having an EEPROM and flash EPROM using a memory cell with source-side programming
JP4545056B2 (ja) 不揮発性半導体記憶装置
JP3985689B2 (ja) 不揮発性半導体記憶装置
JPH06325582A (ja) 不揮発性記憶装置
US20230386574A1 (en) Flash memory
JP3540881B2 (ja) 不揮発性半導体記憶装置の書き込み方法
JP4382168B2 (ja) ベリファイ機能を有する不揮発性記憶装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11316800

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 11316800

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006550539

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004808000

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200480044729.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077014678

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2004808000

Country of ref document: EP