WO2006054628A1 - 磁性ガーネット単結晶及びそれを用いた光学素子並びに単結晶の製造方法 - Google Patents

磁性ガーネット単結晶及びそれを用いた光学素子並びに単結晶の製造方法 Download PDF

Info

Publication number
WO2006054628A1
WO2006054628A1 PCT/JP2005/021103 JP2005021103W WO2006054628A1 WO 2006054628 A1 WO2006054628 A1 WO 2006054628A1 JP 2005021103 W JP2005021103 W JP 2005021103W WO 2006054628 A1 WO2006054628 A1 WO 2006054628A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
garnet single
crucible
mol
melt
Prior art date
Application number
PCT/JP2005/021103
Other languages
English (en)
French (fr)
Inventor
Atsushi Ohido
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005286734A external-priority patent/JP3959099B2/ja
Priority claimed from JP2005303286A external-priority patent/JP4867281B2/ja
Priority claimed from JP2005311688A external-priority patent/JP4432875B2/ja
Priority claimed from JP2005311682A external-priority patent/JP4432874B2/ja
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to EP05806917A priority Critical patent/EP1820886A4/en
Priority to CN2005800396760A priority patent/CN101061263B/zh
Priority to US11/666,331 priority patent/US7811465B2/en
Publication of WO2006054628A1 publication Critical patent/WO2006054628A1/ja
Priority to US12/806,000 priority patent/US8815011B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0036Magneto-optical materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect

Definitions

  • the present invention relates to a magnetic garnet single crystal grown by a flux method, an optical element using the same, and a method for producing a single crystal.
  • a Faraday rotator is an optical element having a function of rotating the plane of polarization of transmitted light, and is used for optical devices such as communication optical isolators, optical attenuators, optical circulators, and optical magnetic field sensors.
  • a Faraday rotator is generally fabricated using a plate-like bismuth (Bi) -substituted rare earth iron garnet single crystal. Bi-substituted rare earth iron garnet single crystals are grown by the liquid phase epitaxy (LPE) method, which is a kind of flux method. Single crystal growth by the flux method is performed at atmospheric pressure.
  • LPE liquid phase epitaxy
  • the Faraday rotator used for optical devices for communications has the chemical formula Bi Ml Pb Fe M2 M3 O with Pb
  • a magnetic garnet single crystal whose amount y is about 0.03 to 0.06 is used.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-044026
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-044027
  • An object of the present invention is to provide a magnetic garnet single crystal with a reduced Pb content, an optical element using the same, and a method for producing the single crystal.
  • Fe M2 O (where Ml is Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb,
  • At least one element selected from Lu is at least one element selected from Ga, Al, In, Ti, Ge, Si, Pt force, 0.5 ⁇ x ⁇ 2.0 , 0 ⁇ y ⁇ 0.8, 0 ⁇ z ⁇ 0.01, 01.19 ⁇ 3-xyz ⁇ 2.5, 0 ⁇ w ⁇ l. 6) Achieved by:
  • the magnetic garnet single crystal of the present invention is characterized in that y is 0 ⁇ y ⁇ 0.05.
  • an optical element characterized by being formed of the magnetic garnet single crystal of the present invention.
  • the above object is achieved by a method for producing a magnetic garnet single crystal, characterized in that a melt containing Na is produced, and a magnetic garnet single crystal is grown by liquid phase epitaxy using the melt. .
  • the purpose is to include B, Na and Bi, the blending ratio of Na y (mol%) and the blending ratio of Bi z (mol%
  • the above object includes B, Na, and Bi, and the B content x (mol%) and the Na content y (mo
  • Bi content ratio z (mol%) satisfy 0 ⁇ y / (y + z) ⁇ 0.0143x + 0.24, and grow garnet single crystals using the solution This is achieved by a method for producing a garnet single crystal.
  • the above object includes B, Na and Bi, and the blending ratio x of B is 2. Omol% or more. 12.
  • the object is to dissolve at least one element containing Fe among Fe, Ga and A1 in a solvent containing Na, Bi and B at a blending ratio of 9. Omol% or more and 25.5 mol% or less.
  • a method for producing a magnetic garnet single crystal which comprises producing a solution and growing a magnetic garnet single crystal using the solution.
  • the above object is to form a solution by dissolving at least one element containing Fe among Fe, Ga, and A1 in a solvent containing Na, Bi, and B, and using the solution to form a solution at 600 ° C.
  • This is achieved by a method for producing a magnetic garnet single crystal characterized by growing a magnetic garnet single crystal at a growth temperature not lower than C and not higher than 900 ° C.
  • the above object is to form a solution by dissolving at least one element containing Fe among Fe, Ga and A1 in a solvent containing Na, Bi and B at a compounding ratio X (mol%). And producing a magnetic garnet single crystal at a growth temperature y (° C) satisfying 436 + 18.2x ⁇ y ⁇ 555 + 18.2x using the above solution. Achieved by
  • the growth temperature y is 900 ° C. or less.
  • the method for producing a magnetic garnet single crystal according to the present invention is characterized in that the solution is produced in a crucible made of Au.
  • the above object is characterized in that a material containing Na is filled in a crucible made of Au, the material is melted to produce a melt, and a single crystal is grown using the melt. This is achieved by the crystal manufacturing method.
  • the single crystal is grown in an atmospheric pressure.
  • the material further contains B.
  • the method for producing a single crystal according to the present invention is characterized in that the single crystal is a rare earth iron garnet single crystal.
  • the amount of Pb contained in a single crystal such as a magnetic garnet used in a Faraday rotator can be reduced, or can be completely removed.
  • a magnetic garnet single crystal according to a first embodiment of the present invention, an optical element using the same, and a method for producing the magnetic garnet single crystal will be described with reference to FIGS.
  • Bi is a magnetic gas used for Faraday rotators.
  • the main constituent element of a single net single crystal serves as both a solvent and a solute.
  • the main solutes include various rare earth oxides, Fe 2 O, and non-magnetic that can replace Fe.
  • Elemental acids are used.
  • the rare earth elements in this application are Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc., which can stably produce Fe and garnet single crystals independently.
  • Nonmagnetic elements that can replace Fe are Ga, Al, In, Ti, Ge, Si, Pt, and the like.
  • FIG. 1 shows the valence and ion radius of each element that can enter the magnetic garnet single crystal in the present embodiment.
  • Pb enters the magnetic garnet single crystal film during single crystal growth in the form of a divalent cation (cation).
  • Bi and rare earth element cations that make up a magnetic garnet single crystal are basically trivalent. Therefore, the balance of charge is lost when thione enters the garnet single crystal. become. Therefore, if a cation with a tetravalent charge that can enter the galnet single crystal is present in the melt, the force thione is incorporated into the garnet single crystal to compensate for the divalent charge of the Pb cation. Since Pb has a larger ionic radius than rare earth elements, only a small amount of Pb enters the rare earth iron garnet single crystal compared to the proportion in the solution.
  • the ionic radius of Na is larger than ordinary rare earth elements, but smaller than Pb. Therefore, Na is less likely to enter the magnetic garnet single crystal than rare earth elements, but more stable than Pb. Easy to enter.
  • Both Na and Pb are elements in the magnetic garnet single crystal that have a smaller charge valence and a larger ionic radius than rare earth elements.
  • the ionic radius of Na is closer to that of rare earth elements than Pb, when Pb and Na are simultaneously present in the melt for growing a single crystal, Na is more garnet than Pb. There is a tendency to easily enter crystals.
  • Na cation and Pb cations have the same characteristics in that the valence of the cation of the rare earth element is smaller than the valence of the rare earth cations Na prevents the entry of Pb into the garnet single crystal because Na enters preferentially Has the effect of Therefore, by adding Na to the magnetic garnet single crystal, the amount of Pb contained in the garnet single crystal can be reduced to less than 0.01 by the sigma equation.
  • the RoHS (Restriction on Hazardous Substances) Directive which regulates the use of hazardous substances in electrical and electronic equipment, will come into force in the EU (European Union).
  • the maximum allowable amount of Pb specified by the RoHS directive is ⁇ m in weight ratio.
  • the amount of Pb is less than 0.01 in the chemical formula, it is possible to make it not more than the above maximum allowable amount. Therefore, according to this embodiment, an optical element conforming to the RoHS directive can be obtained.
  • a magnetic garnet single crystal containing Na grown in a solvent containing Na OH can have excellent quality without defects or cracks. Therefore, remove the material strength of the solvent PbO and grow a magnetic garnet single crystal containing Na using a substance containing Na and BiO and B2O as the solvent.
  • the amount of Na entering the garnet single crystal is desirably 0.05 or less in the chemical formula.
  • Fig. 2 shows a part of the manufacturing process of a magnetic garnet single crystal.
  • the gold crucible 4 is filled with Gd 0, Yb O, Fe O, B 2 O, Bi 2 O, NaOH,
  • the furnace temperature was raised to 950 ° C., the material in the crucible 4 was dissolved, and the melt 8 was stirred using a gold stirring jig.
  • a substrate for growing a magnetic garnet single crystal film a single crystal wafer produced from an ingot of a galnet single crystal grown by a pulling method is used.
  • a CaMgZr-substituted GGG gadolinium 'gallium' garnet
  • a substrate ((GdCa) (GaMgZr) O) 10 is used.
  • CaGgZr-substituted GGG substrate 10 is attached to a metal fixture 2 and placed in the furnace. I went for 40 hours. A 500 m thick Bi-substituted rare earth iron garnet single crystal (magnetic garnet single crystal) film 12 was obtained. The composition of the grown single crystal was analyzed by X-ray fluorescence analysis. The composition was Bi Gd Yb Fe O and Na was detected but the composition was confirmed.
  • the grown single crystal film 12 was covered to produce a single crystal plate having a Faraday rotation angle of 45 deg (degrees) with respect to light having a wavelength of 1.55 / zm.
  • a non-reflective coating (antireflection film) was formed on the polished surface of the single crystal plate to form a Faraday rotator.
  • the grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 m. Polishing the single crystal plate A non-reflective coating was formed on the surface to form a Faraday rotator. When the optical characteristics of the fabricated rotor were evaluated by injecting light with a wavelength of 1.55 / zm, the characteristics were satisfactory as a Faraday rotator.
  • the furnace temperature was raised to 950 ° C to dissolve the material in the crucible 4, and the melt 8 was stirred using a gold stirring jig.
  • CaGgZr-substituted GGG substrate 10 is attached to gold fixture 2 and placed in the furnace. It was.
  • a magnetic garnet single crystal film 12 having a thickness of 510 m was obtained.
  • the composition of the grown single crystal was analyzed by X-ray fluorescence analysis. The composition was Bi Tb Ho Fe O and Na was detected but the composition was confirmed.
  • the single crystal film 12 was grown by mosquitoes ⁇ E, wavelength 1. to produce a single crystal plate with a rotation angle of 45 (16 8 to light of 55 111.
  • the non-reflective coating on the polished surface of the single crystal plate The film was formed into a Faraday rotator, and the optical characteristics of the fabricated rotator were evaluated when light with a wavelength of 1.55 m was incident.
  • the single crystal film 12 was grown by mosquitoes ⁇ E, to produce a rotation angle of 45 (16 8 to become a single crystal plate with respect to light having a wavelength of 1.31 111.
  • the non-reflective coating on the polished surface of the single crystal plate The film was formed into a Faraday rotator, and light with a wavelength of 1.31 m was incident to evaluate the optical characteristics of the manufactured rotor.
  • the furnace temperature was raised to 950 ° C to dissolve the material in the crucible 4, and the melt 8 was stirred using a gold stirring jig.
  • CaGgZr-substituted GGG substrate 10 is attached to the gold fixture 2 and placed in the furnace. It was.
  • a magnetic garnet single crystal film 12 having a thickness of 450 m was obtained.
  • the composition of the grown single crystal was analyzed by X-ray fluorescence analysis. The composition was Bi Dy Y Sm Fe O and Na was detected but the composition was
  • the grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 m.
  • a non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator.
  • the optical characteristics of the fabricated rotor were evaluated by making light with a wavelength of 1.55 / z m incident, the characteristics were satisfactory as a Faraday rotator.
  • Gold crucible 4 filled with Gd O, Er O, Tm O, Fe O, B O, Bi O, NaOH
  • the grown single crystal film 12 was covered to produce a single crystal plate having a rotation angle of 45 ° with respect to light having a wavelength of 1.31 / zm.
  • a non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator.
  • the optical characteristics of the fabricated rotor were evaluated by injecting light with a wavelength of 1.31 m, it was found to be usable as a Faraday rotator.
  • the furnace temperature was raised to 950 ° C to dissolve the material in the crucible 4, and the melt 8 was stirred using a gold stirring jig.
  • CaGgZr-substituted GGG substrate 10 is attached to a gold fixture 2 and placed in the furnace. It was.
  • a magnetic garnet single crystal film 12 having a thickness of 550 m was obtained.
  • the composition of the grown single crystal was analyzed by X-ray fluorescence analysis. The composition was Bi Gd Yb Fe Ga O and Na was detected, but the composition was
  • the grown single crystal film 12 was covered to produce a single crystal plate having a rotation angle of 45 ° with respect to light having a wavelength of 1.55 m.
  • a non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator.
  • the furnace temperature was raised to 950 ° C to dissolve the material in the crucible 4, and the melt 8 was stirred using a gold stirring jig.
  • CaGgZr-substituted GGG substrate 10 is attached to gold fixture 2 and placed in the furnace.
  • the furnace temperature is lowered to 772 ° C, and one side of substrate 10 is brought into contact with melt 8 for 40 hours of epitaxial growth. It was.
  • Magnetic garnet with a film thickness of 530 m A single crystal film 12 was obtained.
  • the composition of the grown single crystal was analyzed by X-ray fluorescence analysis.
  • the composition was Bi Gd Yb Fe Al O, and Na was detected but the composition was
  • the grown single crystal film 12 was covered to produce a single crystal plate having a rotation angle of 45 ° with respect to light having a wavelength of 1.55 m.
  • a non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator.
  • the furnace temperature was raised to 950 ° C to dissolve the material in the crucible 4, and the melt 8 was stirred using a gold stirring jig.
  • CaGgZr-substituted GGG substrate 10 is mounted on a gold fixture 2 and placed in the furnace, the furnace temperature is lowered to 805 ° C, and one side of the substrate 10 is brought into contact with the melt 8 for 45 hours of epitaxial growth. It was.
  • a magnetic garnet single crystal film 12 having a thickness of 500 m was obtained.
  • the composition of the grown single crystal was analyzed by X-ray fluorescence analysis. The composition was Bi Gd Yb Fe In O and Na was detected but the composition was
  • the grown single crystal film 12 was covered to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.31 m.
  • a non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator.
  • the furnace temperature was raised to 950 ° C to dissolve the material in the crucible 4, and the melt 8 was stirred using a gold stirring jig.
  • CaMgZr substitution GGG substrate 10 fixed in gold Attached to jig 2 and placed in the furnace, the furnace temperature was lowered to 790 ° C, and one side of the substrate 10 was also brought into contact with the melt 8 to perform epitaxial growth for 42 hours.
  • a magnetic garnet single crystal film 12 having a thickness of 570 m was obtained.
  • the composition of the grown single crystal was analyzed by X-ray fluorescence analysis, and the composition was Bi Gd Yb Na Fe Ge O. In this single crystal, Pb
  • the grown single crystal film 12 was covered to produce a single crystal plate having a rotation angle of 45 ° with respect to light having a wavelength of 1.55 ⁇ m.
  • a non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator.
  • the grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 m.
  • a non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator.
  • the furnace temperature was raised to 950 ° C to dissolve the material in the crucible 4, and the melt 8 was stirred using a gold stirring jig.
  • CaGgZr-substituted GGG substrate 10 is attached to the gold fixture 2 and placed in the furnace, the furnace temperature is lowered to 745 ° C, and the surface of the substrate 10 is also brought into contact with the melt 8 for 40 hours of epitaxial growth. It was. Magnetic garnet with a film thickness of 500 m A single crystal film 12 was obtained.
  • the composition of the grown single crystal was analyzed by X-ray fluorescence analysis. The composition was Bi Gd Yb Fe 2 O and Na was detected but the composition was confirmed.
  • the grown single crystal film 12 was processed to produce a single crystal plate having a Faraday rotation angle of 45 deg with respect to light having a wavelength of 1.55 m.
  • a non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator.
  • a method for producing a garnet single crystal according to the second embodiment of the present invention will be described with reference to FIGS.
  • Pb contained in a conventional solvent is replaced with sodium (Na), and Na, Bi and boron (B)
  • Na, Bi and boron (B) A Bi-substituted rare earth iron garnet single crystal is grown.
  • Na, Bi and B which are the components of the solvent, have not been divided. For this reason, depending on the growth conditions, there may be a problem that a garnet single crystal cannot be obtained, or a problem that a garnet single crystal having many defects and cracks cannot be obtained.
  • the “mixing ratio” used in the present specification is the total of elements that become cations (cations) in a solution such as Na, Bi, B, iron (Fe), and rare earth elements filled in the crucible. It is the ratio (mol%) of mol number of each element to mol number. For example, if the number of moles of blended B is a and the total number of moles of blended B, Bi, B, Fe and rare earth elements is b, the blending ratio X of B is (100 X aZb) mol% .
  • FIG. 3 is a graph showing the relationship between the B blending ratio x and the Na blending ratio (yZ (y + z)).
  • the horizontal axis of the graph represents the B compounding ratio X (mol%), and the vertical axis represents the Na compounding ratio (yZ (y + z)).
  • the compounding ratio X of B was less than 2.0 mol%, the supersaturated state could not be maintained, and when the temperature of the solution became lower than the saturation temperature, garnet precipitated in the solution, and it was not possible to grow a single crystal.
  • the supersaturated state could be maintained under the condition where the B content ratio X was 2. Omol% or more, and a garnet single crystal could be grown.
  • the B compounding ratio X was greater than 12. Omol%, the viscosity of the solution increased, and many cracks and defects occurred in the garnet single crystal. Therefore, when the blending ratio X of B is 2. Omol% or more and 12. Omol% or less (straight lines a and b in Fig. 3), garnet single crystals without cracks and defects can be grown stably. I was divided.
  • the value of the Na compounding ratio (yZ (y + z)) at which garnet can be precipitated increases.
  • the blending ratio X of B is 2. Omol% or more and 12. Omol% or less
  • the Na mixture ratio (yZ (y + z)) is greater than 0 and less than or equal to 0.41 (0 and yZ (y + z) ⁇ 0.41)
  • the Na mixture ratio (yZ (y + z)) is greater than 0. 0 0143x + 0. 24 or less
  • the Na blending ratio (y / (y + z)) is greater than 0 and not more than 0.0143x + 0.24 and the blending ratio X of B is 2. Omol% or more and 12. Omol% or less (0 ⁇ yZ (y + z) ⁇ 0. 0143x + 0.24, 2. O (mol%) ⁇ x ⁇ 12. O (mol%)), the ability to grow garnet single crystals more stably I got it.
  • a gold (Au) crucible 4 with a total weight of 2.3 kg Gd O, Yb O, Fe O
  • the blending ratio x, the Na blending ratio y, and the Bi blending ratio z were 7. Omol%, 25.4 mol%, and 51.6 mol%, respectively.
  • the Na mixture ratio (yZ (y + z)) was 0.33 ( ⁇ 0.014x + 0.24).
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C., and the material in the crucible 4 was melted and stirred to produce a uniform melt (solution) 8.
  • a CaMg Zr-substituted GGG (gadolinium 'gallium' garnet) substrate 10 having a diameter of 2 inches was attached to the fixed jig 2 and placed in the furnace.
  • the temperature of the melt 8 was lowered to 770 ° C, and the epitaxial growth was performed for 4 hours by bringing one side of the substrate 10 into contact with the melt 8 in terms of force. As a result, a single crystal film 12 having a film thickness of 80 / zm free from defects could be grown.
  • the composition of the single crystal was analyzed by X-ray fluorescence analysis. The composition was Bi Gd Yb Fe 2 O, and Na was detected but the composition could not be confirmed.
  • the Na blending ratio y and Bi blending ratio z were 7. Omol%, 15.4 mol%, and 61.6 mol%, respectively.
  • the Na blending ratio (yZ (y + z)) was 0.20 ( ⁇ 0.014x + 0.24).
  • a crucible 4 filled with materials was placed in the electric furnace. The furnace temperature was raised to 900 ° C, and the material in the crucible 4 was melted and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixed jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 790 ° C, one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 4 hours.
  • the mixing ratio x, Na blending ratio y, Bi blending ratio z, and K blending ratios were 7.0 mol%, 2.8 mo 1%, 53.9 mol%, and 20.3 mol%, respectively.
  • the Na mixture ratio (yZ (y + z)) was 0.05 ( ⁇ 0.01 43x + 0.24).
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C, and the material in the crucible 4 was melted and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. 77.
  • the temperature of the melt 8 was lowered to 0 ° C, and the surface of the substrate 10 was brought into contact with the melt 8 and the epitaxial growth was performed for 4 hours. As a result, a single crystal film 12 having a defect-free thickness of 80 m has been grown.
  • the composition was Bi Gd Yb
  • the mixing ratio y of Na and the mixing ratio z of Bi were 2. Omol%, 21.4 mol%, and 60.8 mol%, respectively.
  • the Na mixture ratio (yZ (y + z)) was 0.26 ( ⁇ 0.014x + 0.24).
  • a crucible 4 filled with materials was placed in the electric furnace. The furnace temperature was raised to 900 ° C, and the material in the crucible 4 was melted and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixed jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 770 ° C, one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 4 hours. As a result, a single crystal film 12 having a defect thickness of 50 m could be grown.
  • the composition of a single crystal was analyzed by X-ray fluorescence analysis, the composition was Bi Gd Yb Fe
  • the blending ratio x, Na blending ratio y, Bi blending ratio z, and K blending ratios were 2.0 mol%, 3. Omo 1%, 57.5 mol%, and 21.6 mol%, respectively.
  • the Na mixture ratio (yZ (y + z)) was 0.05 ( ⁇ 0.01 43x + 0.24).
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C, and the material in the crucible 4 was melted and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. 77.
  • the temperature of the melt 8 was lowered to 0 ° C, and the surface of the substrate 10 was brought into contact with the melt 8 and the epitaxial growth was performed for 4 hours. As a result, a single crystal film 12 having a defect-free film thickness of 50 m has been grown.
  • the composition was Bi Gd Yb
  • the compounding ratio y of Na and the compounding ratio z of Bi were 12. Omol%, 28.8 mol% and 43. lmol%, respectively.
  • the Na mixing ratio (y / (y + z)) was 0.40 ( ⁇ 0.014x + 0.24).
  • a crucible 4 filled with materials was placed in an electric furnace. The furnace temperature was raised to 900 ° C and the material in the crucible 4 was melted and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. The temperature of the melt 8 was lowered to 800 ° C, and the epitaxial growth was performed for 4 hours by bringing one side of the substrate 10 into contact with the melt 8. As a result, a single crystal film 12 having a film thickness of 80 / zm free from defects could be grown.
  • Composition analysis of single crystal by X-ray fluorescence analysis revealed that the composition was Bi Gd Yb
  • the composition could not be determined.
  • the chemical formula of the magnetic garnet single crystal was (BiGdYb) Na Fe O.
  • the compounding ratio y of Na and the compounding ratio z of Bi were 12.0 mol%, 14.4 mol%, and 57.5 mol%, respectively.
  • the Na blending ratio (y / (y + z)) was 0.20 ( ⁇ 0.0.143x + 0.24).
  • a crucible 4 filled with materials was placed in an electric furnace. The furnace temperature was raised to 900 ° C and the material in the crucible 4 was melted and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace.
  • the temperature of the melt 8 was lowered to 820 ° C., and the epitaxial growth was performed for 4 hours by bringing one side of the substrate 10 into contact with the melt 8. As a result, a single crystal film 12 having a film thickness of 80 / zm free from defects could be grown.
  • Single by fluorescence X-ray analysis When the composition of the crystal was analyzed, the composition was Bi Gd Yb Fe O and Na was detected
  • the composition could not be determined.
  • the chemical formula of the magnetic garnet single crystal was (BiGdYb) Na Fe O.
  • the blending ratio x, Na blending ratio y, Bi blending ratio z, and K blending ratios were 12.0 mol%, 2.6 mol%, 50.3 mol%, and 18.9 mol%, respectively.
  • the Na blending ratio (yZ (y + z)) was 0.05 ( ⁇ 0.0.143x + 0.24).
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C and the material in the crucible 4 was melted and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace.
  • the temperature of the melt 8 was lowered to 800 ° C., and the surface of the substrate 10 was brought into contact with the melt 8 and the epitaxial growth was performed for 4 hours. As a result, a single crystal film 12 having a film thickness of 50 / zm without any defects was grown.
  • the composition was Bi Gd Yb
  • the compounding ratio y of Na and the compounding ratio z of Bi were 13.0 mol%, 28.4 mol% and 42.5 mol%, respectively.
  • the Na mixing ratio (y / (y + z)) was 0.40 ( ⁇ 0.014x + 0.24).
  • a crucible 4 filled with materials was placed in an electric furnace. The furnace temperature was raised to 900 ° C and the material in the crucible 4 was melted and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. Reduce the temperature of melt 8 to 800 ° C As for the force, one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 4 hours. As a result, a single crystal film 12 having a thickness of 30 m could be grown, but a large number of crystal defects were generated in the single crystal film, and it was impossible to use it for a Faraday rotator.
  • the blending ratio x, Na blending ratio y, Bi blending ratio z, and K blending ratios were 13. Omol%, 2.5 mol%, 49.4 mol%, and 18.9 mol%, respectively.
  • the Na blending ratio (yZ (y + z)) was 0.05 ( ⁇ 0.0.143x + 0.24).
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C and the material in the crucible 4 was melted and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace.
  • the temperature of the melt 8 was lowered to 800 ° C., and the surface of the substrate 10 was brought into contact with the melt 8 and the epitaxial growth was performed for 4 hours.
  • a single crystal film 12 with a thickness of 30 m could be grown, but a large number of crystal defects occurred in the single crystal film, and it was impossible to use it for a Faraday rotator.
  • the compounding ratio y of Na and the compounding ratio z of Bi were 12. Omol%, 32.4 mol%, and 39.5 mol%, respectively.
  • the Na blending ratio (y / (y + z)) was 0.45 (> 0.0.143x + 0.24).
  • a crucible 4 filled with materials was placed in an electric furnace. The furnace temperature was raised to 900 ° C and the material in the crucible 4 was melted and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. When the temperature of the melt 8 was lowered to 800 ° C., the growth of the single crystal film was interrupted because solid matter precipitated in the melt 8. After the furnace was cooled to room temperature, it was deposited on the material surface in the crucible 4 and the solid matter was analyzed with an X-ray diffractometer. It was found that the solid was NaFeO.
  • the compounding ratio y of Na and the compounding ratio z of Bi were 7. Omol%, 30.8 mol%, and 46.2 mol%, respectively.
  • the Na blending ratio (yZ (y + z)) was 0.40 (> 0.0.143x + 0.24).
  • a crucible 4 filled with materials was placed in the electric furnace. The furnace temperature was raised to 900 ° C, and the material in the crucible 4 was melted and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixed jig 2 and placed in the furnace. When the temperature of the melt 8 was lowered to 770 ° C, solids precipitated in the melt 8 and the growth of the single crystal film was interrupted. After cooling the furnace to room temperature, it was deposited on the material surface in the crucible 4 and the solid matter was analyzed with an X-ray diffractometer. The solid was found to be NaFeO.
  • the compounding ratio y of Na and the compounding ratio z of Bi were 2. Omol%, 24.7 mol%, and 57.5 mol%, respectively.
  • the Na blending ratio (yZ (y + z)) was 0.30 (> 0.0.143x + 0.24).
  • a crucible 4 filled with materials was placed in the electric furnace. The furnace temperature was raised to 900 ° C, and the material in the crucible 4 was melted and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixed jig 2 and placed in the furnace. When the temperature of the melt 8 was lowered to 770 ° C, solids precipitated in the melt 8 and the growth of the single crystal film was interrupted. After cooling the furnace to room temperature, it was deposited on the material surface in the crucible 4 and the solid matter was analyzed with an X-ray diffractometer. The solid was found to be NaFeO.
  • the blending ratio y of Na and the blending ratio z of Bi were 1. Omol%, 21.6 mol%, and 61.6 mol%, respectively.
  • the Na blending ratio (yZ (y + z)) was 0.26 (> 0.0.143x + 0.24).
  • a crucible 4 filled with materials was placed in the electric furnace. The furnace temperature was raised to 900 ° C, and the material in the crucible 4 was melted and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixed jig 2 and placed in the furnace. The temperature of melt 8 was lowered to 770 ° C. Filtration of the single crystal film was interrupted because solids precipitated in the melt 8. After cooling the furnace to room temperature, it was deposited on the material surface in the crucible 4 and the solid matter was analyzed with an X-ray diffractometer. The solid material was garnet.
  • the mixing ratio x, Na mixing ratio y, Bi mixing ratio z, and K mixing ratio were 1. Omol%, 3. Omo 1%, 58.5 mol%, and 21.6 mol%, respectively.
  • the Na mixture ratio (yZ (y + z)) was 0.05 ( ⁇ 0.01 43x + 0.24).
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C, and the material in the crucible 4 was melted and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace.
  • FIG. 4 collectively shows the growth conditions and the like of the above-described examples and comparative examples.
  • the thumbprints (E 1 to E8) in FIG. 3 indicate the B blending ratio X and Na blending ratio (y / (y + z)) in Examples 2-1 to 2-8, respectively.
  • the ⁇ marks (C1 to C7) indicate the blending ratio X and Na blending ratio (yZ (y + z)) of B in Comparative Examples 2-1 to 2-7, respectively.
  • Faraday rotation occurs when the Na compound ratio (yZ (y + z)) is greater than 0 and less than 0.41 (0 and yZ (y + z) ⁇ 0.41).
  • Bi-substituted rare earth iron garnet single crystals that can be used for the child can be grown.
  • the Na compound ratio (yZ (y + z)) is greater than 0 and less than or equal to 0.0143x + 0.24 (0 ⁇ y / (y + z) ⁇ 0.0143x + 0.24)
  • Faraday Bi-substituted rare earth iron gannet single crystals that can be used for rotors can be grown.
  • it can be used for a Faraday rotator when the compounding ratio X of B is 2. Omol% or more and 12. Omol% or less (2.0 (mol%) ⁇ x ⁇ 12.0 (mol%)).
  • Bi-substituted rare earth iron garnet single crystals can be grown.
  • the Na compounding ratio (yZ (y + z)) force is greater than SO and 0.0143x + 0.24 or less
  • the B compounding ratio x is 2. Omol% or more 1 2. Omol% or less (0 and yZ (y + z) ⁇ 0. 0143x + 0. 24, 2. 0 (mol%) ⁇ x ⁇ 12.0 (mol%))
  • Bi-substituted rare earth iron garnet usable for Faraday rotator single Crystals can be grown more stably.
  • a method for producing a magnetic garnet single crystal according to a third embodiment of the present invention will be described with reference to FIGS.
  • Pb contained in a conventional solvent is replaced with sodium (Na) in order to completely remove Vb-containing Pb contained in a garnet single crystal, and Na, Bi, and boron (B).
  • Solvent power containing bismuth also grows Bi-substituted rare earth iron garnet single crystals.
  • the technology for growing a garnet single crystal from a solvent containing Na, Bi and B has just been developed, details of the growth conditions that allow stable growth of a garnet single crystal have not been clarified. In particular, the growth of Fe O, Ga O and Al O, which are the main components of solutes.
  • composition conditions are not divided. Therefore, depending on the growth conditions, a garnet single crystal cannot be obtained! There may be a problem that a garnet single crystal having many defects and cracks cannot be obtained.
  • mixing ratio used in the present specification is an element that becomes a cation (cation) in a solution such as Na, Bi, B, Fe, Ga, Al, or a rare earth element filled in a crucible. It is the ratio (mol%) of the mol number of each element in the total mol number.
  • the “Fe, Ga, and Al blending ratio x” is the sum of the Fe blending ratio, the Ga blending ratio, and the A1 blending ratio.
  • FIG. 5 is a graph showing the relationship between the Fe, Ga, and Al mixing ratio X and the temperature (growth temperature) y of the solution when growing the garnet single crystal.
  • the horizontal axis of the graph represents the compounding ratio x (mol%), and the vertical axis represents the growth temperature y (° C).
  • Solvent power containing Na, Bi and B When growing a garnet single crystal, a crucible made of gold (Au) is considered essential. Since Au is a relatively low, soft metal with a melting point (1064 ° C)! /, When the temperature of the solution exceeds 950 ° C, the Au crucible cannot maintain its shape. Therefore, the melting temperature for melting the material put in the crucible needs to be 950 ° C or less. Since the gannet single crystal is grown in a supersaturated state at a temperature lower than the melting temperature, the growth temperature y must be 900 ° C or less (line a in FIG. 5 and below).
  • the mixing ratio X of Fe, Ga and Al must be 25.5 mol% or less in order to reduce the growth temperature y to 900 ° C or lower. There was a component (straight line b in Fig. 5 and left).
  • the mixing ratio X of Fe, Ga and Al when the mixing ratio X of Fe, Ga and Al is lowered, the growth rate of the garnet single crystal is lowered. If the growth rate is remarkably reduced, crystal growth for a very long time is required to obtain a garnet single crystal large enough to be processed into a Faraday rotator, which is an obstacle to the production of a garnet single crystal. .
  • the mixing ratio X of Fe, Ga and Al is lower than 9. Omol%, the growth rate becomes too low and it becomes difficult to grow a garnet single crystal suitable for a Faraday rotator. Therefore, it is desirable that the mixing ratio X of Fe, Ga and Al is 9. Omol% or more (straight line c in FIG. 5 and right).
  • the growth temperature y in order to increase the Fe, Ga, and Al content ratio X to 9. Omol% or higher, the growth temperature y must be 600 ° C or higher (straight line d in Fig. 5 and above). ).
  • Bi-substituted rare earth iron garnet (Bi Re Fe 2 O; Re represents a rare earth element) single crystal z 3-z 5 12
  • z indicating the Bi content is preferably 0.5 or more.
  • the Bi amount z is preferably 1.5 or less. . Therefore, in order to use a Bi-substituted rare earth iron garnet single crystal for a Faraday rotator, it is desirable that the Bi content z is 0.5 or more and 1.5 or less.
  • the Bi amount z in the garnet single crystal tends to increase as the growth temperature y decreases. Therefore, when materials with the same compounding ratio X of Fe, Ga and Al are used, the growth temperature y when growing a garnet single crystal with a small amount of Bi is high, and a garnet single crystal with a large amount of Bi is grown. In this case, the growth temperature y tends to be low.
  • a Bi-substituted rare earth iron garnet single crystal having a Bi content z of 1.5 was grown by changing the compounding ratio X of Fe, Ga, and Al in the range of 9. Omol% to 25.5 mol%.
  • a linear relationship such as a straight line f having a growth gradient y lower than the straight line e in FIG.
  • the Bi amount z is 0.5 or more and 1.5 or less, and the Faraday It has become a component that Bi-substituted rare earth iron garnet single crystals suitable for rotors can be obtained.
  • Bi-substituted rare earth iron garnet single crystal preferable growth conditions for a Bi-substituted rare earth iron garnet single crystal. That is, when the mixing ratio X of Fe, Ga, and Al is 9. Omol% or more and 25.5 mol% or less (two straight lines c and b in Fig. 5 and between them), Bi suitable for Faraday rotator Substitution Rare earth iron garnet single crystal can be grown. Also, when the growth temperature y is 600 ° C or higher and 900 ° C or lower (two straight lines d and a in Fig. 5 and between them), a Bi-substituted rare earth iron garnet single crystal suitable for a Faraday rotator is grown. it can.
  • Bi-substituted rare earth iron garnet single crystals suitable for Faraday rotators can be grown on the straight lines f, e, and between them) The straight line a, c, e, f in Fig. 5 and the mixing ratio X in the range surrounded by them By satisfying all of these growth conditions such as the growth temperature y, a Bi-substituted rare earth iron garnet single crystal suitable for a Faraday rotator can be grown more stably.
  • the forces Ga and A1 using Fe, Ga and Al as the main components of the solute dissolved in the solvent are not necessarily used.
  • the mixing ratio X represents the sum of the mixing ratio of Fe and the mixing ratio of A1.
  • the compounding rate X represents the Fe compounding rate.
  • a method for producing a magnetic garnet single crystal with a reduced Pb content can be realized. Further, according to the present embodiment, it is possible to stably grow a Bi-substituted rare earth iron garnet single crystal suitable for a Faraday rotator using a solvent containing Na, Bi and B. become.
  • the crucible 4 made of Au has a total weight of 2.3 kg Gd O, Yb O, Fe O, Ga
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C, and the material in the crucible 4 was melted at a melting temperature of 900 ° C and stirred to produce a uniform melt (solution) 8.
  • a CaMgZr-substituted GGG (gadolinium 'gallium' garnet) substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace.
  • the temperature of the melt 8 was lowered to 750 ° C, and one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed at a growth temperature of 750 ° C for 4 hours.
  • yl 436 + 18.2x
  • y2 555 + 18.2x
  • the relationship between the growth temperature y and yl, y2 was yl ⁇ y ⁇ y2.
  • a single-crystal film 12 having a thickness of 80 m without defects could be grown.
  • the composition of a single crystal was analyzed by X-ray fluorescence analysis.
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C, and the material in the crucible 4 was melted at a melting temperature of 900 ° C and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. Lower the temperature of the melt 8 to 810 ° C and bring the force into contact with one side of the substrate 10 to the melt 8 Epitaxial growth was performed at 810 ° C for 4 hours.
  • the relationship between the growth temperature y and yl, y2 was yl ⁇ y y2.
  • a single-crystal film 12 having a thickness of 80 m without defects could be grown.
  • the composition of a single crystal was analyzed by X-ray fluorescence analysis.
  • the composition was Bi Gd Fe Ga
  • Bi (N) (FeGaAl) O which can be used for Faraday rotators
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C and the material in the crucible 4 was melted at a melting temperature of 900 ° C and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. The temperature of the melt was lowered to 690 ° C and one side of the substrate 10 was brought into contact with the melt 8 with a force, and epitaxial growth was carried out for 4 hours at a growth temperature of 690 ° C.
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C., and the material in the crucible 4 was melted at a melting temperature of 900 ° C. and stirred to produce a uniform melt 8. diameter A 2-inch CaMgZr-substituted GGG substrate 10 was attached to the fixture 2 and placed in the furnace. 7 The temperature of the melt 8 was lowered to 20 ° C and one side of the substrate 10 was brought into contact with the melt 8 with a force, and epitaxial growth was performed at a growth temperature of 7 20 ° C for 4 hours.
  • the relationship between the growth temperature y and yl, y2 was yl ⁇ y y2.
  • a single-crystal film 12 having a thickness of 80 m without defects could be grown.
  • the composition of the single crystal was analyzed by X-ray fluorescence analysis.
  • the composition was Bi Gd Fe Ga Al
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C and the material in the crucible 4 was melted at a melting temperature of 900 ° C and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. The temperature of the melt 8 was lowered to 660 ° C and one side of the substrate 10 was brought into contact with the melt 8 with a force, and epitaxial growth was performed at a growth temperature of 660 ° C for 4 hours.
  • the relationship between the growth temperature y and yl and y2 was yl ⁇ y and y2. As a result, a single crystal film 12 having a defect-free thickness of 80 m has been grown.
  • the composition was Bi Gd Yb
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C and the material in the crucible 4 was melted at a melting temperature of 900 ° C and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. The temperature of the melt 8 was lowered to 600 ° C and one side of the substrate 10 was brought into contact with the melt, and the epitaxial growth was performed for 4 hours at a growth temperature of 600 ° C.
  • the blending ratios of B, Bi, and Na were 8.0 mol%, 49.3 mol%, and 23.0 mol%, respectively.
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 950 ° C, and the material in the crucible 4 was melted at a melting temperature of 950 ° C and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. The temperature of the melt 8 was lowered to 900 ° C., and one side of the substrate 10 was brought into contact with the melt 8 with a force, and epitaxial growth was performed at a growth temperature of 900 ° C.
  • the relationship between the growth temperature y and yl, y2 was yl ⁇ y y2.
  • a single-crystal film 12 having a thickness of 80 m without defects could be grown.
  • the composition of a single crystal was analyzed by X-ray fluorescence analysis.
  • the composition was Bi Gd Fe Ga
  • Bi (N) (FeGaAl) O which can be used for Faraday rotators
  • the blending ratios of B, Bi, and Na were 8. Omol%, 49.4 mol%, and 23.0 mol%, respectively.
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 950 ° C, and the material in the crucible 4 was melted at a melting temperature of 950 ° C and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. The temperature of the melt 8 was lowered to 840 ° C, and the surface of the substrate 10 was brought into contact with the melt 8 with a force, and epitaxial growth was performed for 4 hours at a growth temperature of 840 ° C.
  • the relationship between the growth temperature y and yl and y2 was yl ⁇ y and y2. As a result, a single crystal film 12 having a defect-free thickness of 80 m has been grown.
  • the composition was Bi Gd Yb
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 950 ° C, and the material in the crucible 4 was melted at a melting temperature of 950 ° C and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. The temperature of the melt 8 was lowered to 780 ° C and one side of the substrate 10 was brought into contact with the melt 8 with a force, and epitaxial growth was performed at a growth temperature of 780 ° C for 4 hours.
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 950 ° C, and the material in the crucible 4 was melted at a melting temperature of 950 ° C and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. The temperature of the melt 8 was lowered to 900 ° C., and one side of the substrate 10 was brought into contact with the melt 8 with a force, and epitaxial growth was performed for 4 hours at a growth temperature of 900 ° C.
  • the relationship between the growth temperature y and yl and y2 was yl ⁇ y and y2. As a result, a single crystal film 12 having a defect-free thickness of 80 m has been grown.
  • the composition was Bi Gd Yb
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 950 ° C, and the material in the crucible 4 was melted at a melting temperature of 950 ° C and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. The temperature of the melt 8 was lowered to 900 ° C., and one side of the substrate 10 was brought into contact with the melt 8 with a force, and epitaxial growth was performed for 4 hours at a growth temperature of 900 ° C.
  • the blending ratios of B, Bi, and Na were 7.3 mol%, 45.5 mol%, and 21.2 mol%, respectively.
  • a crucible 4 filled with the material was placed in an electric furnace. The power to raise the furnace temperature to 980 ° C and attempt to melt and stir the material in the crucible 4 The crucible 4 was deformed because the furnace temperature was raised too much, and the single crystal could not be grown.
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 950 ° C, and the material in the crucible 4 was melted at a melting temperature of 950 ° C and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. The temperature of the melt 8 was lowered to 880 ° C. and one side of the substrate 10 was brought into contact with the melt 8 with a force, and epitaxial growth was performed at a growth temperature of 880 ° C. for 4 hours.
  • the relationship between the growth temperature y and yl, y2 was y yl ⁇ y2. During the growth, a large number of solids were precipitated in the melt 8, so that a large number of crystal defects occurred in the single crystal film, and it was impossible to use the grown single crystal for the Faraday rotator.
  • the blending ratios of B, Bi, and Na were 8. Omol%, 49.5 mol%, and 23.1 mol%, respectively.
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 950 ° C, and the material in the crucible 4 was melted at a melting temperature of 950 ° C and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. The temperature of the melt 8 was lowered to 750 ° C. and one side of the substrate 10 was brought into contact with the melt 8 with a force, and epitaxial growth was performed at a growth temperature of 750 ° C. for 4 hours.
  • the relationship between the growth temperature y and yl, y2 was y yl ⁇ y2. During the growth, a large number of solids were precipitated in the melt 8, so that a large number of crystal defects occurred in the single crystal film, and it was impossible to use the grown single crystal for the Faraday rotator.
  • GaO, AlO, B2O, Bi2O, and NaOH were charged.
  • Fe, Ga and Al content ratio x is 9.
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C, and the material in the crucible 4 was melted at a melting temperature of 900 ° C and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. The temperature of the melt 8 was lowered to 750 ° C. and one side of the substrate 10 was brought into contact with the melt 8 with a force, and epitaxial growth was performed at a growth temperature of 750 ° C.
  • GaO, AlO, B2O, Bi2O, and NaOH were charged.
  • Fe, Ga and Al content ratio x is 9.
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C, and the material in the crucible 4 was melted at a melting temperature of 900 ° C and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. The temperature of the melt 8 was lowered to 580 ° C and one side of the substrate 10 was brought into contact with the melt 8 with a force, and epitaxial growth was performed at a growth temperature of 580 ° C for 4 hours.
  • the relationship between the growth temperature y and yl and y2 was y yl ⁇ y2. During the growth, a large number of solids were precipitated in the melt 8, so that a large number of crystal defects occurred in the single crystal film, and it was impossible to use the grown single crystal for the Faraday rotator.
  • GaO, AlO, B2O, Bi2O, and NaOH were charged.
  • the mixing ratio x of Fe, Ga and Al is 8.
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C, and the material in the crucible 4 was melted at a melting temperature of 900 ° C and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace. The temperature of the melt 8 was lowered to 720 ° C and one side of the substrate 10 was brought into contact with the melt 8 with a force, and epitaxial growth was performed for 4 hours at a growth temperature of 720 ° C.
  • the relationship between the growth temperature y and yl, y2 was yl ⁇ y2 ⁇ y.
  • the growth rate was low, only a single crystal film with a thickness of 5 m was obtained.
  • the film thickness required for the Faraday rotator cannot be obtained. Therefore, the growth conditions of this comparative example are not suitable for growing a magnetic garnet single crystal for use in the Faraday rotator. There was something to do.
  • a crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C, and the material in the crucible 4 was melted at a melting temperature of 900 ° C and stirred to produce a uniform melt 8.
  • a CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixture 2 and placed in the furnace.
  • the temperature of the melt 8 was lowered to 600 ° C and one side of the substrate 10 was brought into contact with the melt 8 with a force, and epitaxial growth was performed at a growth temperature of 600 ° C for 4 hours.
  • the relationship between the growth temperature y and yl, y2 was yl ⁇ y and y2.
  • the growth rate was low, only a single crystal film with a thickness of 10 m was obtained. At this growth rate, even if the growth time is extended, the film thickness required for the Faraday rotator cannot be obtained. Therefore, the growth conditions of this comparative example are unsuitable for growing a magnetic garnet single crystal for use in the Faraday rotator. I was divided.
  • FIG. 6 collectively shows the growth conditions and the like of the above-described examples and comparative examples.
  • the marks (E 1 to E 11) in FIG. 5 show the blending ratio x and the growth temperature y in Examples 3-1 to 3-11, respectively, and ⁇ marks (C1 to C8) in FIG. Show the mixing ratio X and growth temperature y in Comparative Examples 3-1 to 3-8 (however, in Comparative Examples 3-1 and 3-3, the single crystals could not be grown, so instead of the growth temperature, melting was performed. Temperature).
  • Omol% or more and 25.5 mol% or less Can be nurtured.
  • the growth temperature y is less than 6 00 ° C or higher 900 ° C, it can foster Bi substituted rare earth Tetsuga one net single crystals suitable for Faraday rotator.
  • the Faraday rotator is satisfied when the relationship between the mixing ratio x (mol%) of Fe, Ga and A1, the growth temperature y (° C), and the force 36 + 18.2x ⁇ y ⁇ 555 + 18.2x is satisfied.
  • Suitable Bi-substituted rare earth iron garnet single crystals can be grown. By satisfying all of these growth conditions, Bi-substituted rare earth iron garnet single crystals suitable for Faraday rotators can be grown more stably.
  • a method for producing a single crystal according to the fourth embodiment of the present invention will be described with reference to FIGS.
  • Pb contained in a conventional solvent is replaced with sodium (Na), and a single crystal such as a solvent-powered Bi-substituted rare earth iron garnet containing Na, Bi and boron (B) is grown.
  • a single crystal such as a solvent-powered Bi-substituted rare earth iron garnet containing Na, Bi and boron (B) is grown.
  • Pt platinum
  • Fig. 7 shows an enlarged wall surface of a Pt crucible used for repeated growth of a solvent-powered garnet single crystal containing Na and in which a melt leak occurred.
  • a solvent-powered garnet single crystal containing Na and in which a melt leak occurred.
  • FIG. 7 shows that when the wall surface of the Pt crucible was visually observed, Pt crystal grains grew due to repeated single crystal growth. Further observation of the wall of the crucible with a microscope revealed that there was a hole penetrating to the outside of the crucible inner wall side force at the Pt grain boundary in the center of Fig. 7.
  • Various oxides such as Bi 2 O and B 2 O used as solvents when growing single crystals are
  • FIG. 8 shows an enlarged wall of the Au crucible. As shown in Fig. 8, it was confirmed that Au crystal grains were growing like a Pt crucible, but no holes were confirmed. [0105] Even when a garnet single crystal is grown using PbO, BiO and BO as solvents,
  • an Au crucible 4 having a cylindrical shape with an inner diameter of 75 mm and a height of 120 mm was produced.
  • This crucible 4 has a total weight of 2.3 kg Gd O, Yb O, Fe O, B O, Bi
  • a film (rare earth iron garnet single crystal film) 12 was grown on the substrate 10. Single crystal growth was performed at atmospheric pressure. The single crystal was cooled to room temperature and taken out, and a magnetic garnet single crystal film 12 was produced through a polishing process and the like. Then add Gd O, Yb O, Fe O in the crucible 4 Single crystal growth was repeated 20 times in the same procedure. During that time, the crucible 4 was pierced and the melt leaked.
  • a crucible 4 made of Pt having a cylindrical shape with an inner diameter of 75 mm and a height of 120 mm was produced.
  • This Norebo 4 [weight, 2.3 kg in total, this Gd O, Yb O, Fe O, B O, Bi O, Na
  • Single crystal growth was performed at atmospheric pressure. The single crystal was cooled to room temperature and taken out, and a magnetic garnet single crystal film 12 was produced through a polishing process and the like. After that, G d O, Yb O, Fe O are added in the crucible 4 and the single crystal is grown in the same procedure.
  • FIG. 1 is a diagram showing the valence and ionic radius of each element that can enter a magnetic garnet single crystal in a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a part of the manufacturing process of the magnetic garnet single crystal in the first embodiment of the present invention.
  • FIG. 3 is a graph showing the relationship between the B mixture ratio X and the Na compounding ratio (yZ (y + z)) in the method for producing a garnet single crystal according to the second embodiment of the present invention.
  • FIG. 4 A table summarizing the growth conditions of Examples 2-1 to 2-8 and Comparative Examples 2-1 to 2-7.
  • FIG. 5 shows an arrangement in a method for producing a magnetic garnet single crystal according to a third embodiment of the present invention. It is a graph which shows the relationship between the total rate x and the growth temperature y.
  • FIG. 6 A table summarizing the growth conditions and the like of Examples 3-1 to 3-11 and Comparative Examples 3-1 to 3-8.
  • FIG. 7 is an enlarged view showing the wall surface of a Pt crucible.
  • FIG. 8 is an enlarged view showing the wall of an Au crucible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】本発明は、液相エピタキシャル(LPE)法により育成した磁性ガーネット単結晶及びそれを用いた光学素子並びに単結晶の製造方法に関し、鉛の含有量を削減した磁性ガーネット単結晶及びそれを用いた光学素子並びに単結晶の製造方法を提供することを目的とする。 【解決手段】液相エピタキシャル成長法により育成され、化学式 BixNayPbzM13-x-y-zFe5-wM2wO12(式中のM1はY、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類以上の元素、M2はGa、Al、In、Ti、Ge、Si、Ptから選択される少なくとも1種類以上の元素であり、0.5<x≦2.0、0<y≦0.8、0≦z<0.01、0.19≦3-x-y-z<2.5、0≦w≦1.6)で示される磁性ガーネット単結晶である。

Description

明 細 書
磁性ガーネット単結晶及びそれを用いた光学素子並びに単結晶の製造 方法
技術分野
[0001] 本発明は、フラックス法により育成した磁性ガーネット単結晶及びそれを用いた光 学素子並びに単結晶の製造方法に関する。
背景技術
[0002] ファラデー回転子は、透過する光の偏光面を回転させる機能を有する光学素子で あり、通信用光アイソレータ、光アツテネータ、光サーキユレータ、光磁界センサ等の 光デバイスに使用される。ファラデー回転子は、一般に板状のビスマス (Bi)置換希 土類鉄ガーネット単結晶を用いて作製される。 Bi置換希土類鉄ガーネット単結晶は、 フラックス法の一種である液相ェピタキシャル (LPE)法により育成される。フラックス 法による単結晶育成は、大気圧中で行われる。
[0003] フラックス法等の溶液法により Bi置換希土類鉄ガーネット単結晶を育成する際には 、過飽和状態を保ちながらガーネット単結晶を安定に成長させるために、一般に Pb 0、 Bi O及び B Oが溶媒として用いられる。このため磁性ガーネット単結晶の育成
2 3 2 3
時には結晶中に少量の鉛 (Pb)が混入する。従来、通信用光デバイスに使用される ファラデー回転子には、化学式 Bi Ml Pb Fe M2 M3 O において Pbの
3— χ— x y 5— z— w z w 12
量 yが 0. 03〜0. 06程度である磁性ガーネット単結晶が用いられる。
特許文献 1:特開 2001— 044026号公報
特許文献 2:特開 2001— 044027号公報
発明の開示
発明が解決しょうとする課題
[0004] ところが近年の環境保護運動の高まりと共に、全ての工業製品で環境負荷物質で ある Pbの含有量を削減する努力がなされている。従って、 LPE法により育成する磁 性ガーネット単結晶においても、少量ではあるが混入する Pbが環境汚染の要因にな り得るとして問題になってきた。そこでファラデー回転子を構成する材料である磁性ガ 一ネット単結晶に含有する Pbの量を削減する必要が生じて 、る。
[0005] 本発明の目的は、 Pbの含有量を削減した磁性ガーネット単結晶及びそれを用いた 光学素子並びに単結晶の製造方法を提供することにある。
課題を解決するための手段
[0006] 上記目的は、液相ェピタキシャル成長法により育成され、化学式 Bi Na Pb Ml x y z 3
Fe M2 O (式中の Mlは Y、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、
— χ— — z 5— w w 12
Luから選択される少なくとも 1種類以上の元素、 M2は Ga、 Al、 In、 Ti、 Ge、 Si、 Pt 力ら選択される少なくとも 1種類以上の元素であり、 0. 5< x≤2. 0、 0<y≤0. 8、 0 ≤z< 0. 01、 0. 19≤3-x-y-z< 2. 5, 0≤w≤l . 6)で示されることを特徴とす る磁性ガーネット単結晶によって達成される。
上記本発明の磁'性ガーネット単結晶であって、前記 yは 0<y≤0. 05であることを 特徴とする。
[0007] また、上記目的は、上記本発明の磁性ガーネット単結晶で形成されることを特徴と する光学素子により達成される。
さらに上記目的は、 Naを含む融液を生成し、前記融液を用いて液相ェピタキシャ ル成長法により磁性ガーネット単結晶を育成することを特徴とする磁性ガーネット単 結晶の製造方法により達成される。
[0008] 上記目的は、 B、 Na及び Biを含み、 Naの配合率 y (mol%)と Biの配合率 z (mol%
)とが 0<yZ (y+z)≤0. 41を満たす溶液を生成し、前記溶液を用いてガーネット単 結晶を育成することを特徴とするガーネット単結晶の製造方法によって達成される。
[0009] また上記目的は、 B、 Na及び Biを含み、 Bの配合率 x (mol%)と Naの配合率 y (mo
1%)と Biの配合率 z (mol%)とが 0<y/ (y+z)≤0. 0143x+0. 24を満たす溶液 を生成し、前記溶液を用いてガーネット単結晶を育成することを特徴とするガーネット 単結晶の製造方法によって達成される。
[0010] 上記本発明のガーネット単結晶の製造方法であって、前記配合率 Xは 2. Omol% 以上 12. Omol%以下であることを特徴とする。
[0011] さらに上記目的は、 B、 Na及び Biを含み、 Bの配合率 xが 2. Omol%以上 12. Omo
1%以下である溶液を生成し、前記溶液を用いてガーネット単結晶を育成することを 特徴とするガーネット単結晶の製造方法によって達成される。
[0012] 上記目的は、 Na、 Bi及び Bを含む溶媒に、 Fe、 Ga及び A1のうち Feを含む少なくと も一種の元素を 9. Omol%以上 25. 5mol%以下の配合率で溶解して溶液を生成し 、前記溶液を用いて磁性ガーネット単結晶を育成することを特徴とする磁性ガーネッ ト単結晶の製造方法によって達成される。
[0013] また上記目的は、 Na、 Bi及び Bを含む溶媒に、 Fe、 Ga及び A1のうち Feを含む少 なくとも一種の元素を溶解して溶液を生成し、前記溶液を用いて 600°C以上 900°C 以下の育成温度で磁性ガーネット単結晶を育成することを特徴とする磁性ガーネット 単結晶の製造方法によって達成される。
[0014] さらに上記目的は、 Na、 Bi及び Bを含む溶媒に、 Fe、 Ga及び A1のうち Feを含む少 なくとも一種の元素を配合率 X (mol%)で溶解して溶液を生成し、前記溶液を用いて 、436 + 18. 2x≤y≤555 + 18. 2xを満たす育成温度 y(°C)で磁性ガーネット単結 晶を育成することを特徴とする磁性ガーネット単結晶の製造方法によって達成される
[0015] 上記本発明の磁性ガーネット単結晶の製造方法であって、前記配合率 Xは 9. Omo
1%以上であり、前記育成温度 yは 900°C以下であることを特徴とする。
[0016] 上記本発明の磁性ガーネット単結晶の製造方法であって、前記溶液は Au製のル ッボ内で生成することを特徴とする。
[0017] 上記目的は、 Naを含む材料を Au製のルツボ内に充填し、前記材料を融解して融 液を生成し、前記融液を用いて単結晶を育成することを特徴とする単結晶の製造方 法によって達成される。
[0018] 上記本発明の単結晶の製造方法であって、前記単結晶は大気圧中で育成するこ とを特徴とする。
[0019] 上記本発明の単結晶の製造方法であって、前記材料はさらに Bを含むことを特徴と する。
[0020] 上記本発明の単結晶の製造方法であって、前記単結晶は希土類鉄ガーネット単結 晶であることを特徴とする。
発明の効果 [0021] 本発明によれば、ファラデー回転子に用いられる磁性ガーネット等の単結晶に含ま れる Pb量を削減し、ある 、は完全に除去することができる。
発明を実施するための最良の形態
[0022] [第 1の実施の形態]
本発明の第 1の実施の形態による磁性ガーネット単結晶及びそれを用いた光学素 子並びに磁性ガーネット単結晶の製造方法について図 1及び図 2を用いて説明する 。液相ェピタキシャル法で磁性ガーネット単結晶膜の育成に使用する溶媒には通常
、 PbO及び、 B O、 Bi Oが用いられる。 Biはファラデー回転子に使用される磁性ガ
2 3 2 3
一ネット単結晶の主要な構成元素でもあり、溶媒と溶質の両方の役割を兼ねている。 そして主な溶質には各種希土類元素の酸ィ匕物、 Fe O、及び Feと置換できる非磁性
2 3
元素の酸ィ匕物が用いられる。本願における希土類元素は、単独で安定して Feとガー ネット単結晶を作ることができる Y、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Luな どである。また、 Feと置換できる非磁性元素は、 Ga、 Al、 In、 Ti、 Ge、 Si、 Ptなどで ある。
[0023] 図 1は、本実施の形態における磁性ガーネット単結晶に入り得る各元素の価数とィ オン半径とを示して ヽる。 Pbは 2価の電荷を持つカチオン(陽イオン)の状態で単結 晶育成中に磁性ガーネット単結晶膜に入る。磁性ガーネット単結晶を構成する Biや 希土類元素のカチオンの電荷は基本的に 3価であるため、 2価の電荷を持つ Pbの力 チオンがガーネット単結晶中に入ると、電荷のバランスが崩れることになる。そこでガ 一ネット単結晶に入り得る 4価の電荷を持つカチオンが融液中に存在すると、その力 チオンは Pbカチオンの 2価の電荷を補償するようにガーネット単結晶に取り込まれる 。なお Pbはイオン半径が希土類元素と比べて大きいため、溶液中に占める割合に比 ベてわずかな量が希土類鉄ガーネット単結晶に入るだけである。
[0024] Naは 1価の電荷を持つカチオンの状態で単結晶育成中に磁性ガーネット単結晶 膜に入る。 Pbと同様に、 4価の電荷を持つカチオンを当該磁性ガーネット単結晶に 取り込むことにより、磁性ガーネット単結晶に入った Naの 1価の電荷を補償することが 可能である。 Naのイオン半径は通常の希土類元素よりは大き 、が Pbよりは小さ 、。 そのため Naは、磁性ガーネット単結晶内に希土類元素よりは入り難いが Pbより安定 的に入り易い。
[0025] Naと Pbは両方とも、磁性ガーネット単結晶中で希土類元素と比べ電荷の価数が小 さぐまたイオン半径が大きな元素である。但し、 Naのイオン半径の方が Pbより希土 類元素のイオン半径に近いため、 Pbと Naが同時に単結晶育成用の融液中に存在 する場合には、 Naの方が Pbよりガーネット単結晶に入り易い傾向がある。 Naカチォ ンと Pbカチオンの価数は希土類元素のカチオンの価数より小さい点では同じ特性を 有している力 Naは優先的にガーネット単結晶に入るため Pbがガーネット単結晶に 入るのを妨害する効果を有する。従って、 Naを磁性ガーネット単結晶に加えることに より、ガーネット単結晶中に入る Pbの量をィ匕学式で 0. 01未満に削減させることがで きる。
2006年 7月には、電気電子機器における有害物質の使用を規制する RoHS (Res triction on Hazardous Substances ;有害物質使用制限)指令が EU (欧州連 合)で施行される。 RoHS指令で規定される Pbの最大許容量は、重量比で ΙΟΟΟρρ mである。本実施の形態による磁性ガーネット単結晶の組成においては、 Pbの量が 化学式で 0. 01未満であれば上記の最大許容量以下にすることも可能になる。従つ て本実施の形態によれば、 RoHS指令に適合した光学素子が得られる。
[0026] また Naと酸素とを含有する物質は他の酸化物と比べて低 ヽ温度で溶解するものが 多いため、磁性ガーネット単結晶を育成する際の溶媒としても有効である。例えば Na OHを含む溶媒で育成された Naが入った磁性ガーネット単結晶は、欠陥や割れのな い優れた品質が得られる。そのため溶媒の材料力 PbOを除外し、 Naを含む物質と Bi O及び B Oを溶媒に用いて、 Naの入った磁性ガーネット単結晶を育成すること
2 3 2 3
により、 Pbが完全に除かれた磁性ガーネット単結晶を得ることが可能である。
[0027] Naを含む溶媒で磁性ガーネット単結晶を育成する場合には、 Naを含まない溶媒 に比して溶液の過飽和状態をより安定に保つことができる。そのため Biは化学式で 2 . 0程度まで安定してガーネット単結晶に入ることができる。またファラデー回転子とし て十分な回転係数 (deg. Z w m)を得るためには、 Biは化学式で 0. 5以上は必要で ある。
[0028] 非磁性元素が化学式で 1. 6より多く Feと置換して磁性ガーネット単結晶に入ってく ると、磁性ガーネット単結晶のキュリー点が室温付近の温度値まで下がり、ファラデー 回転子として使えなくなる。そのため Feと置換される非磁性元素は化学式で 1. 6以 下とすることが必要となる。
[0029] Naがガーネット単結晶に多く入るには、ガーネット単結晶の電荷のバランスを取る ために、 Ti、 Ge、 Si、 Ptなどの 4価の電荷が安定なイオンと共にガーネット単結晶に 取り込まれる必要がある。 Naが化学式で 0. 8以上ガーネット単結晶に入るには、 4価 の電荷で安定なイオンが化学式で 1. 6以上ガーネット単結晶に入る必要がある。 Fe と置換可能な Ti、 Ge、 Si、 Ptなどの元素が化学式で 1. 6以上あると、磁性ガーネット 単結晶はそのキュリー点が室温以下になってしまいファラデー回転子として使えなく なる。そのため Naのガーネット単結晶に入る量は化学式で 0. 8までとすることが必要 である。
また別の観点として、ガーネット単結晶に入る Naが多くなると、当該ガーネット単結 晶を用いて作製されたファラデー回転子の挿入損失が増カロしてしまう。従って、挿入 損失の小さいファラデー回転子を得るためには、 Naのガーネット単結晶に入る量は 化学式で 0. 05以下であることが望ましい。
[0030] La、 Ce、 Pr、 Nd、 Pmなどの元素は単独では Feとガーネット単結晶を作ることは困 難である力 ガーネット単結晶の構成元素の一部として入ることは可能である。
[0031] 以下、本実施の形態による磁性ガーネット単結晶及びそれを用いた光学素子並び に磁性ガーネット単結晶の製造方法について、図 1を参照しつつ実施例 1 1乃至 1 12を用いて具体的に説明する。
(実施例 1 1)
図 2は、磁性ガーネット単結晶の製造工程の一部を示している。図 2に示すように、 金製のルツボ 4に Gd 0、Yb O、Fe O、B O、Bi O、 NaOHを充填して、電気
2 3 2 3 2 3 2 3 2 3
炉に配置した。 950°Cまで炉温を上げてルツボ 4内の材料を溶解し、金製の攪拌用 冶具を使用して融液 8を攪拌した。
[0032] 磁性ガーネット単結晶膜を育成するための基板には、引き上げ法により育成したガ 一ネット単結晶のインゴットから作製された単結晶ウェハを用いる。本実施例では、単 結晶育成用基板として CaMgZr置換 GGG (ガドリニウム 'ガリウム 'ガーネット)単結晶 基板((GdCa) (GaMgZr) O ) 10を用いている。
3 5 12
[0033] CaMgZr置換 GGG基板 10を金製の固定冶具 2に取り付けて炉内に投入し、 745 °Cまで炉温を下げて力も基板 10の片面を融液 8に接触させてェピタキシャル成長を 40時間行った。膜厚 500 mの Bi置換希土類鉄ガーネット単結晶(磁性ガーネット 単結晶)膜 12が得られた。育成した単結晶を蛍光 X線分析法により組成分析したとこ ろ、組成は Bi Gd Yb Fe O であり、 Naは検出できたが組成を確定する
1. 30 1. 20 0. 50 5. 00 12
ことはできなかった。また、 Pbは検出されなかった。次に ICP (Inductively Couple d Plasma;高周波誘導結合プラズマ)分析法で詳しく組成を評価したところ、 Naの 含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は、 (BiGdYb)
2. 99
Na Fe O であることが分かった。従ってこの単結晶に Pbは含有されてない
8 0. 002 5. 000 12
ことが確認された。育成した単結晶膜 12をカ卩ェして、波長 1. 55 /z mの光に対してフ ァラデー回転角 45deg (度)となる単結晶板を作製した。その単結晶板の研磨面に無 反射コート (反射防止膜)を成膜してファラデー回転子とした。波長 1. 55 mの光を 入射させて、作製した回転子の光学特性を評価したところ、ファラデー回転子として 問題のない特'性であった。
[0034] (実施例 1 2)
金製のルツボ 4に Gd O、 Yb O、 Fe O、 B O、 GeO、: Bi O、 PbO、 NaOHを
2 3 2 3 2 3 2 3 2 2 3
充填して、電気炉に配置した。 950°Cまで炉温を上げてルツボ 4内の材料を溶解し、 金製の攪拌用冶具を使用して融液 8を攪拌した。 CaMgZr置換 GGG基板 10を金製 の固定冶具 2に取り付けて炉内に投入し、 745°Cまで炉温を下げて力も基板 10の片 面を融液 8に接触させてェピタキシャル成長を 40時間行った。膜厚 500 mの磁性 ガーネット単結晶膜 12が得られた。育成した単結晶を蛍光 X線分析法により組成分 祈したところ、組成は Bi Gd Yb Na Fe Ge O であり、 Pbは検出さ
1. 30 1. 18 0. 50 0. 02 4. 95 0. 05 12
れたが組成を確定させることはできな力つた。次に ICP分析法で詳しく組成を評価し たところ、 Pbの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は( BiGdYbNa) Pb (FeGe) O であることが分かった。 Pbの含有量が非
2. 991 0. 009 5. 000 12
常に少なくなつていることが確認された。育成した単結晶膜 12を加工して、波長 1. 5 5 mの光に対して回転角 45degとなる単結晶板を作製した。その単結晶板の研磨 面に無反射コートを成膜してファラデー回転子とした。波長 1. 55 /z mの光を入射さ せて、作製した回転子の光学特性を評価したところ、ファラデー回転子として問題の ない特'性であった。
[0035] (実施例 1 3)
金製のルツボ 4に Tb O、 Ho O、 Fe O、 B O、 Bi O、 NaOHを充填して、電
4 7 2 3 2 3 2 3 2 3
気炉に配置した。 950°Cまで炉温を上げてルツボ 4内の材料を溶解し、金製の攪拌 用冶具を使用して融液 8を攪拌した。 CaMgZr置換 GGG基板 10を金製の固定冶具 2に取り付けて炉内に投入し、 775°Cまで炉温を下げて力も基板 10の片面を融液 8 に接触させてェピタキシャル成長を 40時間行った。膜厚 510 mの磁性ガーネット 単結晶膜 12が得られた。育成した単結晶を蛍光 X線分析法により組成分析したとこ ろ、組成は Bi Tb Ho Fe O であり、 Naは検出されたが組成を確定させ
1. 04 1. 67 0. 29 5. 00 12
ることはできなかった。次に ICP分析法で詳しく組成を評価したところ、 Naの含有量 を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiTbHo) Na
2. 998 0. 002
Fe O であることが分かった。この単結晶に Pbは含有されていないことが確認さ
5. 000 12
れた。育成した単結晶膜 12をカ卩ェして、波長 1. 55 111の光に対して回転角45(168 となる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜してファラ デ一回転子とした。波長 1. 55 mの光を入射させて、作製した回転子の光学特性 を評価したところ、ファラデー回転子として問題のな 、特性であった。
[0036] (実施例 1 4)
金製のルツボ 4に Eu O、 Lu O、 Fe O、 B O、 Bi O、 NaOHを充填して、電気
2 3 2 3 2 3 2 3 2 3
炉に配置した。 950°Cまで炉温を上げてルツボ 4内の材料を溶解し、金製の攪拌用 冶具を使用して融液 8を攪拌した。 CaMgZr置換 GGG基板 10を金製の固定冶具 2 に取り付けて炉内に投入し、 810°Cまで炉温を下げて力も基板 10の片面を融液 8に 接触させてェピタキシャル成長を 35時間行った。膜厚 450 mの磁性ガーネット単 結晶膜 12が得られた。育成した単結晶を蛍光 X線分析法により組成分析したところ、 組成は Bi Eu Lu Fe O であり、 Naは検出されたが組成を確定させるこ
0. 76 1. 70 0. 54 5. 00 12
とはできな力つた。次に ICP分析法で詳しく組成を評価したところ、 Naの含有量を確 定できた。その結果、磁性ガーネット単結晶の化学式は(BiEuLu) Na Fe
2. 998 0. 002 5. 0 O であることが分力つた。この単結晶に Pbは含有されていないことが確認された。
00 12
育成した単結晶膜 12をカ卩ェして、波長 1. 31 111の光に対して回転角45(168となる 単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜してファラデー 回転子とした。波長 1. 31 mの光を入射させて、作製した回転子の光学特性を評 価したところ、ファラデー回転子として問題のな 、特性であった。
[0037] (実施例 1 5)
金製のルツボ 4に Dy O、 Y O、 Sm O、 Fe O、 B O、 Bi O、 NaOHを充填し
2 3 2 3 2 3 2 3 2 3 2 3
て、電気炉に配置した。 950°Cまで炉温を上げてルツボ 4内の材料を溶解し、金製の 攪拌用冶具を使用して融液 8を攪拌した。 CaMgZr置換 GGG基板 10を金製の固定 冶具 2に取り付けて炉内に投入し、 745°Cまで炉温を下げて力も基板 10の片面を融 液 8に接触させてェピタキシャル成長を 40時間行った。膜厚 450 mの磁性ガーネ ット単結晶膜 12が得られた。育成した単結晶を蛍光 X線分析法により組成分析したと ころ、組成は Bi Dy Y Sm Fe O であり、 Naは検出されたが組成を
1. 29 1. 20 0. 41 0. 10 5. 00 12
確定させることはできな力つた。次に ICP分析法で詳しく組成を評価したところ、 Naの 含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiDyYSm)
2. 9
Na Fe O であることが分かった。この単結晶に Pbは含有されていないこと
98 0. 002 5. 000 12
が確認された。育成した単結晶膜 12を加工して、波長 1. 55 mの光に対して回転 角 45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜 してファラデー回転子とした。波長 1. 55 /z mの光を入射させて、作製した回転子の 光学特性を評価したところ、ファラデー回転子として問題のな 、特性であった。
[0038] (実施例 1 6)
金製のルツボ 4に Gd O、 Er O、 Tm O、 Fe O、 B O、 Bi O、 NaOHを充填
2 3 2 3 2 3 2 3 2 3 2 3
して、電気炉に配置した。 950°Cまで炉温を上げてルツボ 4内の材料を溶解し、金製 の攪拌用冶具を使用して融液 8を攪拌した。 CaMgZr置換 GGG基板 10を金製の固 定冶具 2に取り付けて炉内に投入し、 710°Cまで炉温を下げて力も基板 10の片面を 融液 8に接触させてェピタキシャル成長を 20時間行った。膜厚 300 mの磁性ガー ネット単結晶膜 12が得られた。育成した単結晶を蛍光 X線分析法により組成分析し たところ、組成は Bi Gd Er Tm Fe O であり、 Naは検出されたが組
1. 60 0. 27 0. 73 0. 40 5. 00 12 成を確定させることはできな力つた。次に ICP分析法で詳しく組成を評価したところ、 Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiGdErT m) Na Fe O であることが分かった。この単結晶に Pbは含有されていな
2. 998 0. 002 5. 000 12
いことが確認された。育成した単結晶膜 12をカ卩ェして、波長 1. 31 /z mの光に対して 回転角 45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを 成膜してファラデー回転子とした。波長 1. 31 mの光を入射させて、作製した回転 子の光学特性を評価したところ、ファラデー回転子として使用可能な特性であった。
[0039] (実施例 1 7)
金製のルツボ 4に Gd O、 Yb O、 Fe O、 Ga O、 B O、 Bi O、 NaOHを充填し
2 3 2 3 2 3 2 3 2 3 2 3
て、電気炉に配置した。 950°Cまで炉温を上げてルツボ 4内の材料を溶解し、金製の 攪拌用冶具を使用して融液 8を攪拌した。 CaMgZr置換 GGG基板 10を金製の固定 冶具 2に取り付けて炉内に投入し、 786°Cまで炉温を下げて力も基板 10の片面を融 液 8に接触させてェピタキシャル成長を 40時間行った。膜厚 550 mの磁性ガーネ ット単結晶膜 12が得られた。育成した単結晶を蛍光 X線分析法により組成分析したと ころ、組成は Bi Gd Yb Fe Ga O であり、 Naは検出されたが組成を
0. 95 1. 67 0. 38 4. 80 0. 20 12
確定させることはできな力つた。次に ICP分析法で詳しく組成を評価したところ、 Naの 含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiGdYb)
2. 998
Na (FeGa) O であることが分かった。この単結晶に Pbは含有されていない
0. 002 5. 000 12
ことが確認された。育成した単結晶膜 12をカ卩ェして、波長 1. 55 mの光に対して回 転角 45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成 膜してファラデー回転子とした。波長 1. 55 mの光を入射させて、作製した回転子 の光学特性を評価したところ、ファラデー回転子として問題のな 、特性であった。
[0040] (実施例 1 8)
金製のルツボ 4に Gd O、 Yb O、 Fe O、 Al O、 B O、 Bi O、 NaOHを充填し
2 3 2 3 2 3 2 3 2 3 2 3
て、電気炉に配置した。 950°Cまで炉温を上げてルツボ 4内の材料を溶解し、金製の 攪拌用冶具を使用して融液 8を攪拌した。 CaMgZr置換 GGG基板 10を金製の固定 冶具 2に取り付けて炉内に投入し、 772°Cまで炉温を下げて力も基板 10の片面を融 液 8に接触させてェピタキシャル成長を 40時間行った。膜厚 530 mの磁性ガーネ ット単結晶膜 12が得られた。育成した単結晶を蛍光 X線分析法により組成分析したと ころ、組成は Bi Gd Yb Fe Al O であり、 Naは検出されたが組成を
1. 07 1. 67 0. 26 4. 80 0. 20 12
確定させることはできな力つた。次に ICP分析法で詳しく組成を評価したところ、 Naの 含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiGdYb)
2. 998
Na (FeAl) O であることが分かった。この単結晶に Pbは含有されていない
0. 002 5. 000 12
ことが確認された。育成した単結晶膜 12をカ卩ェして、波長 1. 55 mの光に対して回 転角 45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成 膜してファラデー回転子とした。波長 1. 55 mの光を入射させて、作製した回転子 の光学特性を評価したところ、ファラデー回転子として問題のな 、特性であった。
[0041] (実施例 1 9)
金製のルツボ 4に Gd O、 Yb O、 Fe O、 In O、 B O、 Bi O、 NaOHを充填し
2 3 2 3 2 3 2 3 2 3 2 3
て、電気炉に配置した。 950°Cまで炉温を上げてルツボ 4内の材料を溶解し、金製の 攪拌用冶具を使用して融液 8を攪拌した。 CaMgZr置換 GGG基板 10を金製の固定 冶具 2に取り付けて炉内に投入し、 805°Cまで炉温を下げて力も基板 10の片面を融 液 8に接触させてェピタキシャル成長を 45時間行った。膜厚 500 mの磁性ガーネ ット単結晶膜 12が得られた。育成した単結晶を蛍光 X線分析法により組成分析したと ころ、組成は Bi Gd Yb Fe In O であり、 Naは検出されたが組成を
0. 79 1. 67 0. 54 4. 90 0. 10 12
確定させることはできな力つた。次に ICP分析法で詳しく組成を評価したところ、 Naの 含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiGdYb)
2. 998
Na (Fein) O であることが分かった。この単結晶に Pbは含有されていない
0. 002 5. 000 12
ことが確認された。育成した単結晶膜 12をカ卩ェして、波長 1. 31 mの光に対して回 転角 45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成 膜してファラデー回転子とした。波長 1. 31 mの光を入射させて、作製した回転子 の光学特性を評価したところ、ファラデー回転子として問題のな 、特性であった。
[0042] (実施例 1 10)
金製のルツボ 4に Gd O、 Yb O、 Fe O、 GeO、 B O、 Bi O、 NaOHを充填し
2 3 2 3 2 3 2 2 3 2 3
て、電気炉に配置した。 950°Cまで炉温を上げてルツボ 4内の材料を溶解し、金製の 攪拌用冶具を使用して融液 8を攪拌した。 CaMgZr置換 GGG基板 10を金製の固定 冶具 2に取り付けて炉内に投入し、 790°Cまで炉温を下げて力も基板 10の片面を融 液 8に接触させてェピタキシャル成長を 42時間行った。膜厚 570 mの磁性ガーネ ット単結晶膜 12が得られた。育成した単結晶を蛍光 X線分析法により組成分析したと ころ、組成は Bi Gd Yb Na Fe Ge O であった。この単結晶に Pb
0. 93 1. 67 0. 20 0. 20 4. 60 0. 40 12
は含有されていないことが確認された。育成した単結晶膜 12をカ卩ェして、波長 1. 55 μ mの光に対して回転角 45degとなる単結晶板を作製した。その単結晶板の研磨面 に無反射コートを成膜してファラデー回転子とした。波長 1. 55 /z mの光を入射させ て、作製した回転子の光学特性を評価したところ、ファラデー回転子として問題のな い特性であった。
[0043] (実施例 1 11)
白金製のルツボ 4に Gd O、 Yb O、 Fe O、 TiO、 SiO、 B O、 Bi O、 NaOH
2 3 2 3 2 3 2 2 2 3 2 3 を充填して、電気炉に配置した。 950°Cまで炉温を上げてルツボ 4内の材料を溶解し 、金製の攪拌用冶具を使用して融液 8を攪拌した。 CaMgZr置換 GGG基板 10を金 製の固定冶具 2に取り付けて炉内に投入し、 746°Cまで炉温を下げて力も基板 10の 片面を融液 8に接触させてェピタキシャル成長を 36時間行った。膜厚 480 mの磁 性ガーネット単結晶膜 12が得られた。育成した単結晶を蛍光 X線分析法により組成 分析したところ、組成は Bi Gd Yb Na Fe Ti Si Pt O であ
1. 28 1. 20 0. 50 0. 02 4. 96 0. 01 0. 01 0. 02 12 つた。この単結晶に Pbは含有されていないことが確認された。育成した単結晶膜 12 を加工して、波長 1. 55 mの光に対して回転角 45degとなる単結晶板を作製した。 その単結晶板の研磨面に無反射コートを成膜してファラデー回転子とした。波長 1. 55 mの光を入射させて、作製した回転子の光学特性を評価したところ、ファラデー 回転子として問題のな!、特性であった。
[0044] (実施例 1 12)
金製のルツボ 4に Gd O、 Yb O、 Fe O、 B O、 Bi O、 NaOH, KOHを充填し
2 3 2 3 2 3 2 3 2 3
て、電気炉に配置した。 950°Cまで炉温を上げてルツボ 4内の材料を溶解し、金製の 攪拌用冶具を使用して融液 8を攪拌した。 CaMgZr置換 GGG基板 10を金製の固定 冶具 2に取り付けて炉内に投入し、 745°Cまで炉温を下げて力も基板 10の片面を融 液 8に接触させてェピタキシャル成長を 40時間行った。膜厚 500 mの磁性ガーネ ット単結晶膜 12が得られた。育成した単結晶を蛍光 X線分析法により組成分析したと ころ、組成は Bi Gd Yb Fe O であり、 Naは検出できたが組成を確定す
1. 30 1. 20 0. 50 5. 00 12
ることはできなかった。また、 Pbと Kは検出されなカゝつた。次に ICP分析法で詳しく組 成を評価したところ、 Naの含有量を確定できた。その結果、磁性ガーネット単結晶の 化学式は、 (BiGdYb) Na Fe O であることが分かった。従ってこの単結
2. 998 0. 002 5. 000 12
晶に Pbは含有されていないことが確認された。育成した単結晶膜 12を加工して、波 長 1. 55 mの光に対してファラデー回転角 45degとなる単結晶板を作製した。その 単結晶板の研磨面に無反射コートを成膜してファラデー回転子とした。波長 1. 55 mの光を入射させて、作製した回転子の光学特性を評価したところ、ファラデー回転 子として問題のな!、特性であった。
[0045] [第 2の実施の形態]
本発明の第 2の実施の形態によるガーネット単結晶の製造方法について図 3及び 図 4を用いて説明する。本実施の形態では、ガーネット単結晶に微量含まれていた P bを完全に除去するために、従来の溶媒に含まれる Pbをナトリウム (Na)で代替し、 N a、 Bi及びホウ素 (B)を含む溶媒カゝら Bi置換希土類鉄ガーネット単結晶を育成する。 ところが、 Na、 Bi及び Bを含む溶媒力 ガーネット単結晶を育成する技術は開発され て間もないため、ガーネット単結晶を安定に育成できる育成条件の詳細は明らかに なっていない。特に、溶媒の成分である Na、 Bi及び Bに関する育成条件は分力つて いない。そのため、育成条件によってはガーネット単結晶が得られないという問題や 、欠陥や割れが多数あるガーネット単結晶し力得られな 、と 、う問題が生じ得る。
[0046] 本実施の形態では、 Naの配合率や Bの配合率を変えた種々の育成条件でガーネ ット単結晶の育成を試みた。ここで、本願明細書中で用いられる「配合率」とは、ルツ ボに充填される Na、 Bi、 B、鉄 (Fe)、希土類元素など溶液中でカチオン(陽イオン) となる元素の総 mol数に占める各元素の mol数の割合 (mol%)のことである。例えば 、配合した Bの mol数を aとして、同じく配合した B、 Bi、 B、 Fe及び希土類元素の総 m ol数を bとすると、 Bの配合率 Xは(100 X aZb) mol%となる。本実施の形態では、 B の配合率 X (mol%)と、 Na及び Biの配合率をそれぞれ y (mol%)及び z (mol%)とし たときの Na配合比 (y/ (y+z) )とを育成条件のパラメータとして用いた。 [0047] 図 3は、 Bの配合率 xと Na配合比 (yZ (y+z) )との関係を示すグラフである。グラフ の横軸は Bの配合率 X (mol%)を表し、縦軸は Na配合比 (yZ (y+z) )を表して ヽる 。まず、 Bの配合率 Xを変えてガーネット単結晶の育成を試みた。 Bの配合率 Xが 2. 0 mol%より小さいと過飽和状態を保つことができず、溶液の温度が飽和温度より低く なるとガーネットが溶液中に析出してしまい単結晶を育成できな力つた。一方、 Bの配 合率 Xが 2. Omol%以上の条件では過飽和状態を保つことができ、ガーネット単結晶 を育成できた。ただし、 Bの配合率 Xが 12. Omol%より大きくなると溶液の粘性が増し てしまうため、ガーネット単結晶に割れや欠陥が多数発生してしまった。したがって、 Bの配合率 Xが 2. Omol%以上 12. Omol%以下である場合(図 3の直線 a、 b及びそ の間)に、割れや欠陥のないガーネット単結晶を安定に育成できることが分力つた。
[0048] 次に、 Na配合比 (yZ (y+z) )を変えてガーネット単結晶が育成できる条件を検討 した。 Na配合比 (yZ (y+z) )が比較的小さ 、ときにはガーネットが溶液中に析出し た力 Na配合比 (yZ (y+z) )が大きくなるとナトリウムフェライト (NaFeO )が溶液中
2 に析出した。ガーネットが析出する条件とナトリウムフ ライトが析出する条件との境界 は、 Bの配合率 Xによって変化する。 Na配合比 (yZ (y+z) )と Bの配合率 x (mol%) が yZ (y+z)≤0. 0143x+0. 24を満たすとき(図 3の直線 c及びそれより下)にガ 一ネットが析出し、それ以外のときはナトリウムフ ライトが析出することが分力つた。
[0049] Bの配合率 Xが増加すると、ガーネットの析出が可能な Na配合比 (yZ (y+z) )の値 が大きくなる。 Bの配合率 Xが 2. Omol%以上 12. Omol%以下の範囲では、配合率 x 力 Omol%のときに、ガーネットの析出が可能な Na配合比 (yZ (y + z) )が最大 の約 0. 41 ( = 0. 0143 X 12. 0 + 0. 24)となる。した力 ^つて、 Na, Bi、 Bを含む溶液 力 ガーネット単結晶を育成するためには、 Na配合比 (yZ (y+z) )を 0. 41以下に すること(図 3の直線 d及びそれより下)が少なくとも必要である。
[0050] Naの配合率 yが少な 、溶媒であっても更にカリウム (K)を溶媒としてカ卩えることでガ 一ネットが析出した。これにより、 Na配合比 (yZ (y+z) )が 0より大きければ(図 3の 直線 eより上)ガーネット単結晶を育成できることが分力 た。
[0051] したがって、 Na配合比 (yZ (y+z) )が 0より大きく 0. 41以下である場合 (0く yZ ( y+z)≤0. 41)、特に Na配合比(yZ (y+z) )が 0より大きく 0. 0143x+0. 24以下 である場合 (0<yZ(y+z)≤0. 0143x+0. 24)にガーネット単結晶を育成できる ことが分力、つた。また、 Na配合比 (y/ (y+z) )が 0より大きく 0. 0143x + 0. 24以下 であって、かつ Bの配合率 Xが 2. Omol%以上 12. Omol%以下である場合(0<yZ (y+z)≤0. 0143x+0. 24, 2. O (mol%)≤x≤ 12. O (mol%) )に、ガーネット単 結晶をより安定に育成できることが分力つた。
[0052] 以上のように本実施の形態によれば、 Pbの含有量を削減したガーネット単結晶を 育成できる。また本実施の形態によれば、 Na、 Bi及び Bを含む溶媒を用いてファラデ 一回転子に適した Bi置換希土類鉄ガーネット単結晶を安定に育成することが可能に なる。
以下、本実施の形態によるガーネット単結晶の製造方法について、実施例及び比 較例を用いてより具体的に説明する。
[0053] (実施例 2— 1)
まず金(Au)製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O
2 3 2 3 2 3
、 B O、 Bi O、 NaOHを充填した。 Feの配合率は 15. 5mol%であった。また、 Bの
2 3 2 3
配合率 x、 Naの配合率 y、 Biの配合率 zは、それぞれ 7. Omol%、 25. 4mol%、 51. 6mol%であった。 Na配合比(yZ(y+z) )は 0. 33 (≤0. 0143x+0. 24)であった 。材料が充填されたルツボ 4を電気炉に配置した。 900°Cまで炉温を上げてルツボ 4 内の材料を融解して攪拌し、均一な融液 (溶液) 8を生成した。直径 2インチの CaMg Zr置換 GGG (ガドリニウム 'ガリウム 'ガーネット)基板 10を固定冶具 2に取り付けて炉 内に投入した。 770°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触 させてェピタキシャル成長を 4時間行った。その結果、欠陥のない膜厚 80 /z mの単 結晶膜 12が育成できた。蛍光 X線分析法により単結晶を組成分析したところ、組成 は Bi Gd Yb Fe O であり、 Naは検出できたが組成を確定することはで
1. 00 1. 70 0. 30 5. 00 12
きなかった。次に ICP (Inductively Coupled Plasma ;高周波誘導結合プラズマ) 分析法で詳しぐ袓成を評価したところ、磁性ガーネット単結晶の化学式は、 (BiGdYb ) Na Fe O であることが分かり、ファラデー回転子に使用可能な Bi置換
2. 998 0. 002 5. 000 12
希土類鉄ガーネット単結晶であることを確認した。
[0054] (実施例 2— 2) Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 B O、 B
2 3 2 3 2 3 2 3
1 O、 NaOHを充填した。 Feの配合率は 15. 5mol%であった。また、 Bの配合率 x、
2 3
Naの配合率 y、 Biの配合率 zは、それぞれ 7. Omol%、 15. 4mol%、 61. 6mol%で あった。 Na配合比(yZ (y+z) )は 0. 20 (≤0. 0143x+0. 24)であった。材料が充 填されたルツボ 4を電気炉に配置した。 900°Cまで炉温を上げてルツボ 4内の材料を 融解して攪拌し、均一な融液 8を生成した。直径 2インチの CaMgZr置換 GGG基板 1 0を固定冶具 2に取り付けて炉内に投入した。 790°Cまで融液 8の温度を下げてから 基板 10の片面を融液 8に接触させてェピタキシャル成長を 4時間行った。その結果、 欠陥のない膜厚 80 mの単結晶膜 12が育成できた。蛍光 X線分析法により単結晶 を組成分析したところ、組成は Bi Gd Yb Fe O であり、 Naは検出でき
1. 00 1. 70 0. 30 5. 00 12
たが組成を確定することはできな力つた。次に ICP分析法で詳しく組成を評価したと ころ、磁性ガーネット単結晶の化学式は、(BiGdYb) Na Fe O
2. 998 0. 002 5. 000 12であるこ とが分かり、ファラデー回転子に使用可能な Bi置換希土類鉄ガーネット単結晶である ことを確認した。
(実施例 2— 3)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 B O、 B
2 3 2 3 2 3 2 3
1 O、 NaOH, KOHを充填した。 Feの配合率は 15. 5mol%であった。また、 Bの配
2 3
合率 x、 Naの配合率 y、 Biの配合率 z、 Kの配合率は、それぞれ 7. 0mol%、 2. 8mo 1%、 53. 9mol%、 20. 3mol%であった。 Na配合比(yZ (y+z) )は 0. 05 (≤0. 01 43x+0. 24)であった。材料が充填されたルツボ 4を電気炉に配置した。 900°Cまで 炉温を上げてルツボ 4内の材料を融解して攪拌し、均一な融液 8を生成した。直径 2 インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉内に投入した。 77 0°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触させてェピタキシャ ル成長を 4時間行った。その結果、欠陥のない膜厚 80 mの単結晶膜 12が育成で きた。蛍光 X線分析法により単結晶を組成分析したところ、組成は Bi Gd Yb
1. 00 1. 70 0. 3
Fe O であり、 Naは検出できたが糸且成を確定することはできなかった。次に ICP
0 5. 00 12
分析法で詳しぐ袓成を評価したところ、磁性ガーネット単結晶の化学式は、 (BiGdYb ) Na Fe O であることが分かり、ファラデー回転子に使用可能な Bi置換
2. 998 0. 002 5. 000 12 希土類鉄ガーネット単結晶であることを確認した。
[0056] (実施例 2— 4)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 B O、 B
2 3 2 3 2 3 2 3
1 O、 NaOHを充填した。 Feの配合率は 15. 5mol%であった。また、 Bの配合率 x、
2 3
Naの配合率 y、 Biの配合率 zは、それぞれ 2. Omol%、 21. 4mol%、 60. 8mol%で あった。 Na配合比(yZ (y+z) )は 0. 26 (≤0. 0143x+0. 24)であった。材料が充 填されたルツボ 4を電気炉に配置した。 900°Cまで炉温を上げてルツボ 4内の材料を 融解して攪拌し、均一な融液 8を生成した。直径 2インチの CaMgZr置換 GGG基板 1 0を固定冶具 2に取り付けて炉内に投入した。 770°Cまで融液 8の温度を下げてから 基板 10の片面を融液 8に接触させてェピタキシャル成長を 4時間行った。その結果、 欠陥のない膜厚 50 mの単結晶膜 12が育成できた。蛍光 X線分析法により単結晶 を組成分析したところ、組成は Bi Gd Yb Fe O であり、 Naは検出でき
1. 00 1. 70 0. 30 5. 00 12
たが組成を確定することはできな力つた。次に ICP分析法で詳しく組成を評価したと ころ、磁性ガーネット単結晶の化学式は、(BiGdYb) Na Fe O
2. 998 0. 002 5. 000 12であるこ とが分かり、ファラデー回転子に使用可能な Bi置換希土類鉄ガーネット単結晶である ことを確認した。
[0057] (実施例 2— 5)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 B O、 B
2 3 2 3 2 3 2 3
1 O、 NaOH, KOHを充填した。 Feの配合率は 15. 5mol%であった。また、 Bの配
2 3
合率 x、 Naの配合率 y、 Biの配合率 z、 Kの配合率は、それぞれ 2. 0mol%、 3. Omo 1%、 57. 5mol%、 21. 6mol%であった。 Na配合比(yZ (y+z) )は 0. 05 (≤0. 01 43x+0. 24)であった。材料が充填されたルツボ 4を電気炉に配置した。 900°Cまで 炉温を上げてルツボ 4内の材料を融解して攪拌し、均一な融液 8を生成した。直径 2 インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉内に投入した。 77 0°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触させてェピタキシャ ル成長を 4時間行った。その結果、欠陥のない膜厚 50 mの単結晶膜 12が育成で きた。蛍光 X線分析法により単結晶を組成分析したところ、組成は Bi Gd Yb
1. 00 1. 70 0. 3
Fe O であり、 Naは検出できたが糸且成を確定することはできなかった。次に ICP
0 5. 00 12 分析法で詳しぐ袓成を評価したところ、磁性ガーネット単結晶の化学式は、 (BiGdYb ) Na Fe O であることが分かり、ファラデー回転子に使用可能な Bi置換
2. 998 0. 002 5. 000 12
希土類鉄ガーネット単結晶であることを確認した。
[0058] (実施例 2— 6)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 B O、 B
2 3 2 3 2 3 2 3
1 O、 NaOHを充填した。 Feの配合率は 15. 5mol%であった。また、 Bの配合率 x、
2 3
Naの配合率 y、 Biの配合率 zは、それぞれ 12. Omol%、 28. 8mol%、 43. lmol% であった。 Na配合比(y/ (y + z) )は 0. 40 (≤0. 0143x + 0. 24)であった。材料が 充填されたルツボ 4を電気炉に配置した。 900°Cまで炉温を上げてルツボ 4内の材料 を融解して攪拌し、均一な融液 8を生成した。直径 2インチの CaMgZr置換 GGG基 板 10を固定冶具 2に取り付けて炉内に投入した。 800°Cまで融液 8の温度を下げて 力も基板 10の片面を融液 8に接触させてェピタキシャル成長を 4時間行った。その結 果、欠陥のない膜厚 80 /z mの単結晶膜 12が育成できた。蛍光 X線分析法により単 結晶を組成分析したところ、組成は Bi Gd Yb Fe O であり、 Naは検出
1. 00 1. 70 0. 30 5. 00 12
できたが組成を確定することはできなかった。次に ICP分析法で詳しく組成を評価し たところ、磁性ガーネット単結晶の化学式は、(BiGdYb) Na Fe O であ
2. 998 0. 002 5. 000 12 ることが分かり、ファラデー回転子に使用可能な Bi置換希土類鉄ガーネット単結晶で あることを確認した。
[0059] (実施例 2— 7)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 B O、 B
2 3 2 3 2 3 2 3
1 O、 NaOHを充填した。 Feの配合率は 15. 5mol%であった。また、 Bの配合率 x、
2 3
Naの配合率 y、 Biの配合率 zは、それぞれ 12. 0mol%、 14. 4mol%、 57. 5mol% であった。 Na配合比(y/ (y + z) )は 0. 20 (≤0. 0143x + 0. 24)であった。材料が 充填されたルツボ 4を電気炉に配置した。 900°Cまで炉温を上げてルツボ 4内の材料 を融解して攪拌し、均一な融液 8を生成した。直径 2インチの CaMgZr置換 GGG基 板 10を固定冶具 2に取り付けて炉内に投入した。 820°Cまで融液 8の温度を下げて 力も基板 10の片面を融液 8に接触させてェピタキシャル成長を 4時間行った。その結 果、欠陥のない膜厚 80 /z mの単結晶膜 12が育成できた。蛍光 X線分析法により単 結晶を組成分析したところ、組成は Bi Gd Yb Fe O であり、 Naは検出
1. 00 1. 70 0. 30 5. 00 12
できたが組成を確定することはできなかった。次に ICP分析法で詳しく組成を評価し たところ、磁性ガーネット単結晶の化学式は、(BiGdYb) Na Fe O であ
2. 998 0. 002 5. 000 12 ることが分かり、ファラデー回転子に使用可能な Bi置換希土類鉄ガーネット単結晶で あることを確認した。
[0060] (実施例 2— 8)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 B O、 B
2 3 2 3 2 3 2 3
1 O、 NaOH、 KOHを充填した。 Feの配合率は 15. 5mol%であった。また、 Bの配
2 3
合率 x、 Naの配合率 y、 Biの配合率 z、 Kの配合率は、それぞれ 12. 0mol%、 2. 6m ol%、 50. 3mol%、 18. 9mol%であった。 Na配合比(yZ (y+z) )は 0. 05 (≤0. 0 143x+0. 24)であった。材料が充填されたルツボ 4を電気炉に配置した。 900°Cま で炉温を上げてルツボ 4内の材料を融解して攪拌し、均一な融液 8を生成した。直径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉内に投入した。 8 00°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触させてェピタキシ ャル成長を 4時間行った。その結果、欠陥のない膜厚 50 /z mの単結晶膜 12が育成 できた。蛍光 X線分析法により単結晶を組成分析したところ、組成は Bi Gd Yb
1. 00 1. 70 0
Fe O であり、 Naは検出できたが糸且成を確定することはできなかった。次に IC
. 30 5. 00 12
P分析法で詳しく組成を評価したところ、磁性ガーネット単結晶の化学式は、 (BiGd
Yb) Na Fe O であることが分かり、ファラデー回転子に使用可能な Bi
2. 998 0. 002 5. 000 12
置換希土類鉄ガーネット単結晶であることを確認した。
[0061] (比較例 2— 1)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 B O、 B
2 3 2 3 2 3 2 3
1 O、 NaOHを充填した。 Feの配合率は 15. 5mol%であった。また、 Bの配合率 x、
2 3
Naの配合率 y、 Biの配合率 zは、それぞれ 13. 0mol%、 28. 4mol%、 42. 5mol% であった。 Na配合比(y/ (y + z) )は 0. 40 (≤0. 0143x + 0. 24)であった。材料が 充填されたルツボ 4を電気炉に配置した。 900°Cまで炉温を上げてルツボ 4内の材料 を融解して攪拌し、均一な融液 8を生成した。直径 2インチの CaMgZr置換 GGG基 板 10を固定冶具 2に取り付けて炉内に投入した。 800°Cまで融液 8の温度を下げて 力も基板 10の片面を融液 8に接触させてェピタキシャル成長を 4時間行った。その結 果、膜厚 30 mの単結晶膜 12が育成できたが、単結晶膜に多数の結晶欠陥が発 生し、ファラデー回転子に使用することは不可能であった。
[0062] (比較例 2— 2)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 B O、 B
2 3 2 3 2 3 2 3
1 O、 NaOH、 KOHを充填した。 Feの配合率は 15. 5mol%であった。また、 Bの配
2 3
合率 x、 Naの配合率 y、 Biの配合率 z、 Kの配合率は、それぞれ 13. Omol%、 2. 5m ol%、49. 4mol%、 18. 9mol%であった。 Na配合比(yZ (y+z) )は 0. 05 (≤0. 0 143x+0. 24)であった。材料が充填されたルツボ 4を電気炉に配置した。 900°Cま で炉温を上げてルツボ 4内の材料を融解して攪拌し、均一な融液 8を生成した。直径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉内に投入した。 8 00°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触させてェピタキシ ャル成長を 4時間行った。その結果、膜厚 30 mの単結晶膜 12が育成できたが、単 結晶膜に多数の結晶欠陥が発生し、ファラデー回転子に使用することは不可能であ つた o
[0063] (比較例 2— 3)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 B O、 B
2 3 2 3 2 3 2 3
1 O、 NaOHを充填した。 Feの配合率は 15. 5mol%であった。また、 Bの配合率 x、
2 3
Naの配合率 y、 Biの配合率 zは、それぞれ 12. Omol%、 32. 4mol%、 39. 5mol% であった。 Na配合比(y/ (y + z) )は 0. 45 ( >0. 0143x + 0. 24)であった。材料が 充填されたルツボ 4を電気炉に配置した。 900°Cまで炉温を上げてルツボ 4内の材料 を融解して攪拌し、均一な融液 8を生成した。直径 2インチの CaMgZr置換 GGG基 板 10を固定冶具 2に取り付けて炉内に投入した。 800°Cまで融液 8の温度を下げた ところ、融液 8中に固形物が析出したため単結晶膜の育成を中断した。炉を室温まで 冷却した後、ルツボ 4中の材料表面に析出して 、た固形物を X線回折装置で分析し た。固形物は NaFeOであることが分力つた。
2
[0064] (比較例 2— 4)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 B O、 B 1 O、 NaOHを充填した。 Feの配合率は 15. 5mol%であった。また、 Bの配合率 x、
2 3
Naの配合率 y、 Biの配合率 zは、それぞれ 7. Omol%、 30. 8mol%、 46. 2mol%で あった。 Na配合比(yZ (y+z) )は 0. 40 ( >0. 0143x+0. 24)であった。材料が充 填されたルツボ 4を電気炉に配置した。 900°Cまで炉温を上げてルツボ 4内の材料を 融解して攪拌し、均一な融液 8を生成した。直径 2インチの CaMgZr置換 GGG基板 1 0を固定冶具 2に取り付けて炉内に投入した。 770°Cまで融液 8の温度を下げてとこ ろ、融液 8中に固形物が析出したため単結晶膜の育成を中断した。炉を室温まで冷 却した後、ルツボ 4中の材料表面に析出して 、た固形物を X線回折装置で分析した 。固形物は NaFeOであることが分かった。
2
[0065] (比較例 2— 5)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 B O、 B
2 3 2 3 2 3 2 3
1 O、 NaOHを充填した。 Feの配合率は 15. 5mol%であった。また、 Bの配合率 x、
2 3
Naの配合率 y、 Biの配合率 zは、それぞれ 2. Omol%、 24. 7mol%、 57. 5mol%で あった。 Na配合比(yZ (y+z) )は 0. 30 ( >0. 0143x+0. 24)であった。材料が充 填されたルツボ 4を電気炉に配置した。 900°Cまで炉温を上げてルツボ 4内の材料を 融解して攪拌し、均一な融液 8を生成した。直径 2インチの CaMgZr置換 GGG基板 1 0を固定冶具 2に取り付けて炉内に投入した。 770°Cまで融液 8の温度を下げたとこ ろ、融液 8中に固形物が析出したため単結晶膜の育成を中断した。炉を室温まで冷 却した後、ルツボ 4中の材料表面に析出して 、た固形物を X線回折装置で分析した 。固形物は NaFeOであることが分かった。
2
[0066] (比較例 2— 6)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 B O、 B
2 3 2 3 2 3 2 3
1 O、 NaOHを充填した。 Feの配合率は 15. 5mol%であった。また、 Bの配合率 x、
2 3
Naの配合率 y、 Biの配合率 zは、それぞれ 1. Omol%、 21. 6mol%、 61. 6mol%で あった。 Na配合比(yZ (y+z) )は 0. 26 ( >0. 0143x+0. 24)であった。材料が充 填されたルツボ 4を電気炉に配置した。 900°Cまで炉温を上げてルツボ 4内の材料を 融解して攪拌し、均一な融液 8を生成した。直径 2インチの CaMgZr置換 GGG基板 1 0を固定冶具 2に取り付けて炉内に投入した。 770°Cまで融液 8の温度を下げたとこ ろ、融液 8中に固形物が析出したため単結晶膜の育成を中断した。炉を室温まで冷 却した後、ルツボ 4中の材料表面に析出して 、た固形物を X線回折装置で分析した 。固形物はガーネットであることが分力つた。
[0067] (比較例 2— 7)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 B O、 B
2 3 2 3 2 3 2 3
1 O、 NaOH、 KOHを充填した。 Feの配合率は 15. 5mol%であった。また、 Bの配
2 3
合率 x、 Naの配合率 y、 Biの配合率 z、 Kの配合率は、それぞれ 1. Omol%、 3. Omo 1%、 58. 5mol%、 21. 6mol%であった。 Na配合比(yZ (y+z) )は 0. 05 (≤0. 01 43x+0. 24)であった。材料が充填されたルツボ 4を電気炉に配置した。 900°Cまで 炉温を上げてルツボ 4内の材料を融解して攪拌し、均一な融液 8を生成した。直径 2 インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉内に投入した。 77 0°Cまで融液 8の温度を下げたところ、融液 8中に固形物が析出したため単結晶膜の 育成を中断した。炉を室温まで冷却した後、ルツボ 4中の材料表面に析出していた 固形物を X線回折装置で分析した。固形物はガーネットであることが分力つた。
[0068] 図 4は、上記の実施例及び比較例の育成条件等をまとめて示している。また、図 3 の參印(E 1〜E8)は実施例 2— 1〜 2— 8での Bの配合率 X及び Na配合比(y/ (y + z) )をそれぞれ示し、図 3の△印(C1〜C7)は比較例 2— 1〜 2— 7での Bの配合率 X 及び Na配合比 (yZ (y+z) )をそれぞれ示している。図 3及び図 4に示すように、 Na 配合比 (yZ (y+z) )が 0より大きく 0. 41以下の場合 (0く yZ (y+z)≤0. 41)に、フ ァラデー回転子に使用可能な Bi置換希土類鉄ガーネット単結晶を育成できる。また 、Na配合比 (yZ (y+z) )が 0より大きく 0. 0143x + 0. 24以下である場合 (0<y/ ( y+z)≤0. 0143x+0. 24)に、ファラデー回転子に使用可能な Bi置換希土類鉄ガ 一ネット単結晶を育成できる。さらに、 Bの配合率 Xが 2. Omol%以上 12. Omol%以 下である場合(2. 0 (mol%)≤x≤12. 0 (mol%) )に、ファラデー回転子に使用可 能な Bi置換希土類鉄ガーネット単結晶を育成できる。また、 Na配合比 (yZ (y+z) ) 力 SOより大きく 0. 0143x+0. 24以下であって、かつ Bの配合率 xが 2. Omol%以上 1 2. Omol%以下である場合(0く yZ (y+z)≤0. 0143x+0. 24, 2. 0 (mol%)≤x ≤12. 0 (mol%) )に、ファラデー回転子に使用可能な Bi置換希土類鉄ガーネット単 結晶をより安定に育成できる。
[0069] [第 3の実施の形態]
本発明の第 3の実施の形態による磁性ガーネット単結晶の製造方法について図 5 及び図 6を用いて説明する。本実施の形態では、ガーネット単結晶に微量含まれて Vヽた Pbを完全に除去するために、従来の溶媒に含まれる Pbをナトリウム (Na)で代替 し、 Na、 Bi及びホウ素 (B)を含む溶媒力も Bi置換希土類鉄ガーネット単結晶を育成 する。ところが、 Na、 Bi及び Bを含む溶媒からガーネット単結晶を育成する技術は開 発されて間もないため、ガーネット単結晶を安定に育成できる育成条件の詳細は明ら かになつていない。特に、溶質の主成分である Fe O、 Ga O及び Al Oに関する育
2 3 2 3 2 3 成条件は分力つていない。そのため、育成条件によってはガーネット単結晶が得られ な!、と 、う問題や、欠陥や割れが多数あるガーネット単結晶し力得られな 、と 、う問 題が生じ得る。
[0070] 本実施の形態では、 Na、 Bi及び Bを含む溶媒を用い、溶質の主成分である鉄 (Fe )、ガリウム(Ga)及びアルミニウム (A1)の配合率 Xを変えた種々の育成条件で Bi置換 希土類鉄ガーネット単結晶 (磁性ガーネット単結晶)の育成を試みた。ここで、本願明 細書中で用いられる「配合率」とは、ルツボに充填される Na、 Bi、 B、 Fe、 Ga、 Al、希 土類元素など溶液中でカチオン(陽イオン)となる元素の総 mol数に占める各元素の mol数の割合(mol%)のことである。また、「Fe、 Ga及び Alの配合率 x」とは、 Feの配 合率、 Gaの配合率及び A1の配合率の和のことである。図 5は、 Fe、 Ga及び Alの配 合率 Xと、ガーネット単結晶を育成する際の溶液の温度 (育成温度) yとの関係を示す グラフである。グラフの横軸は配合率 x(mol%)を表し、縦軸は育成温度 y(°C)を表し ている。
[0071] Na、 Bi及び Bを含む溶媒力 ガーネット単結晶を育成する際には、金 (Au)製のル ッボが必須と考えられる。 Auは比較的低 、融点(1064°C)を持つ柔らか!/、金属であ るため、溶液の温度が 950°Cを超えると Au製ルツボは形状を保てなくなる。したがつ て、ルツボに投入した材料を融解する融解温度は 950°C以下にする必要がある。ガ 一ネット単結晶は融解温度より更に温度の低い過飽和状態で育成されることになる ので、育成温度 yは 900°C以下にする必要がある(図 5の直線 a及びそれより下)。 Fe 、 Ga及び Alの配合率 xを変えて単結晶育成を行ったところ、育成温度 yを 900°C以 下にするには Fe、 Ga及び Alの配合率 Xを 25. 5mol%以下にする必要があることが 分力つた(図 5の直線 b及びそれより左)。
[0072] 一方、 Fe、 Ga及び Alの配合率 Xを低くするとガーネット単結晶の成長速度が低下 する。成長速度が著しく低下すると、ファラデー回転子に加工し得る大きさのガーネッ ト単結晶を得るためには極めて長時間の結晶育成が必要となってしまい、ガーネット 単結晶を製造する上で障害となる。具体的には、 Fe、 Ga及び Alの配合率 Xが 9. Om ol%より低くなると、成長速度が低くなり過ぎてファラデー回転子に適したガーネット 単結晶の育成が困難になる。したがって、 Fe、 Ga及び Alの配合率 Xは 9. Omol%以 上であることが望ましい(図 5の直線 c及びそれより右)。また、 Fe、 Ga及び Alの配合 率 Xを 9. Omol%以上にするには、育成温度 yを 600°C以上にする必要があることが 分力つた(図 5の直線 d及びそれより上)。
[0073] Bi置換希土類鉄ガーネット(Bi Re Fe O ; Reは希土類元素を表す)単結晶に z 3-z 5 12
おいて十分に大きいファラデー回転角を得るためには、 Bi量を示す zが 0. 5以上で あることが望ましい。一方、 Bi量 zが 1. 5より大きくなると過飽和状態が不安定になり、 ガーネット単結晶に多数の割れや欠陥が発生してしまうため、 Bi量 zは 1. 5以下であ ることが望ましい。したがって、 Bi置換希土類鉄ガーネット単結晶をファラデー回転子 に用いるためには、 Bi量 zは 0. 5以上 1. 5以下であるのが望ましい。
[0074] Biは希土類元素と比較して温度が低くなるほど偏析係数が大きくなるため、育成温 度 yが低くなるほどガーネット単結晶中の Bi量 zは多くなる傾向がある。したがって、 F e、 Ga及び Alの配合率 Xが同じ材料を用いた場合、 Bi量 zの少ないガーネット単結晶 を育成する際の育成温度 yは高くなり、 Bi量 zの多いガーネット単結晶を育成する場 合の育成温度 yは低くなる傾向がある。
[0075] Fe、 Ga及び Alの配合率 Xを 9. Omol%から 19. Omol%までの範囲で変えて、 Bi 量 zが 0. 5の Bi置換希土類鉄ガーネット単結晶を育成した。配合率 Xと育成温度 yと の間には、図 5の直線 eのようなほぼ直線的な関係が認められた。配合率 x (mol%) 及び育成温度 y (°C)の関係は、単位の次元を無視すると y= 555 + 18. 2xと表され る。これは、 Fe、 Ga及び Alの配合率 Xが増加すると材料の融解温度が直線的に上昇 し、それに伴い育成温度 yも上昇するためと考えられる。
[0076] また、 Fe、 Ga及び Alの配合率 Xを 9. Omol%から 25. 5mol%までの範囲で変えて 、 Bi量 zが 1. 5の Bi置換希土類鉄ガーネット単結晶を育成した。配合率 Xと育成温度 yとの間には、図 5の直線 eよりも低い育成温度 yで直線 eとほぼ同一の傾きを持つ直 線 fのような直線的な関係が認められた。配合率 x(mol%)及び育成温度 y (°C)の関 係は、単位の次元を無視すると y=436 + 18. 2xと表される。したがって、 2本の直 線 e、f及びそれらで挟まれた範囲の配合率 X及び育成温度 yで単結晶を育成するこ とにより、 Bi量 zが 0. 5以上 1. 5以下でありファラデー回転子に適した Bi置換希土類 鉄ガーネット単結晶が得られることが分力つた。
[0077] 以上の結果より、 Bi置換希土類鉄ガーネット単結晶の好ましい育成条件が得られ た。すなわち、 Fe、 Ga及び Alの配合率 Xが 9. Omol%以上 25. 5mol%以下である 場合(図 5の 2本の直線 c、 b及びそれらの間)に、ファラデー回転子に適した Bi置換 希土類鉄ガーネット単結晶を育成できる。また、育成温度 yが 600°C以上 900°C以下 である場合(図 5の 2本の直線 d、 a及びそれらの間)に、ファラデー回転子に適した Bi 置換希土類鉄ガーネット単結晶を育成できる。さら〖こ、 Fe、 Ga及び Alの配合率 x(m 01%)と育成温度 (° とが436 + 18. 2x≤y≤555 + 18. 2xの関係を満たす場合 (図 5の 2本の直線 f、 e及びそれらの間)に、ファラデー回転子に適した Bi置換希土類 鉄ガーネット単結晶を育成できる。図 5の直線 a、 c、 e、 f及びそれらで囲まれた範囲 の配合率 X及び育成温度 yのようにこれらの育成条件を全て満たすことによって、ファ ラデー回転子に適した Bi置換希土類鉄ガーネット単結晶をより安定に育成できるよう になる。
[0078] なお本実施の形態では、溶媒に溶解する溶質の主成分として Fe、 Ga及び Alを用 いている力 Ga及び A1は必ずしも用いる必要はない。例えば Gaを用いない場合、配 合率 Xは Feの配合率と A1の配合率との和を表す。また Ga及び A1の双方を用いな!/ヽ 場合、配合率 Xは Feの配合率を表す。
[0079] 本実施の形態によれば、 Pbの含有量を削減した磁性ガーネット単結晶の製造方法 を実現できる。また本実施の形態によれば、 Na、 Bi及び Bを含む溶媒を用いてファラ デ一回転子に適した Bi置換希土類鉄ガーネット単結晶を安定に育成することが可能 になる。
以下、本実施の形態による磁性ガーネット単結晶の製造方法について、実施例及 び比較例を用いてより具体的に説明する。
[0080] (実施例 3— 1)
まず Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 Ga
2 3 2 3 2 3 2
O、 Al O、 B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 14. Om
3 2 3 2 3 2 3
ol%であった。また、 B、 Bi、 Naの配合率は、それぞれ 8. 5mol%、 52. 5mol%、 24 . 5mol%であった。材料が充填されたルツボ 4を電気炉に配置した。 900°Cまで炉 温を上げてルツボ 4内の材料を融解温度 900°Cで融解して攪拌し、均一な融液 (溶 液) 8を生成した。直径 2インチの CaMgZr置換 GGG (ガドリニウム 'ガリウム 'ガーネッ ト)基板 10を固定冶具 2に取り付けて炉内に投入した。 750°Cまで融液 8の温度を下 げてカゝら基板 10の片面を融液 8に接触させ、育成温度 750°Cでェピタキシャル成長 を 4時間行った。 yl =436 + 18. 2x, y2 = 555 + 18. 2xとすると、育成温度 yと yl、 y2との関係は yl <y<y2であった。その結果、欠陥のない膜厚 80 mの単結晶膜 12が育成できた。蛍光 X線分析法により単結晶を組成分析したところ、組成は Bi
1. 00
Gd Yb Fe Ga Al O であり、 Naは検出できたが組成を確定すること
1. 70 0. 30 4. 80 0. 10 0. 10 12
はできなかった。次に ICP (Inductively Coupled Plasma;高周波誘導結合プラ ズマ)分析法で詳しく組成を評価したところ、磁性ガーネット単結晶の化学式は、 (Bi GdYb) Na (FeGaAl) O であることが分かり、ファラデー回転子に使用
2. 998 0. 002 5. 000 12
可能な Bi置換希土類鉄ガーネット単結晶であることを確認した。
[0081] (実施例 3— 2)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Fe O、 Ga O、 Al O、
2 3 2 3 2 3 2 3
B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 14. 0mol%であつ
2 3 2 3
た。また、 B、 Bi、 Naの配合率は、それぞれ 8. 4mol%、 52. 4mol%、 24. 4mol% であった。材料が充填されたルツボ 4を電気炉に配置した。 900°Cまで炉温を上げて ルツボ 4内の材料を融解温度 900°Cで融解して攪拌し、均一な融液 8を生成した。直 径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉内に投入した。 810°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触させ、育成温度 810°Cでェピタキシャル成長を 4時間行った。育成温度 yと yl、 y2との関係は yl <y y2であった。その結果、欠陥のない膜厚 80 mの単結晶膜 12が育成できた。蛍 光 X線分析法により単結晶を組成分析したところ、組成は Bi Gd Fe Ga
0. 52 2. 48 4. 80 0. 10
Al O であり、 Naは検出できたが糸且成を確定することはできなかった。次に ICP
0. 10 12
分析法で詳しぐ袓成を評価したところ、磁性ガーネット単結晶の化学式は、 (BiGd)
2.
Na (FeGaAl) O であることが分かり、ファラデー回転子に使用可能な Bi
998 0. 002 5. 000 12
置換希土類鉄ガーネット単結晶であることを確認した。
[0082] (実施例 3— 3)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 Ga O、
2 3 2 3 2 3 2 3
Al O、 B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 14. 0mol%
2 3 2 3 2 3
であった。また、 B、 Bi、 Naの配合率は、それぞれ 8. 5mol%、 52. 6mol%、 24. 5 mol%であった。材料が充填されたルツボ 4を電気炉に配置した。 900°Cまで炉温を 上げてルツボ 4内の材料を融解温度 900°Cで融解して攪拌し、均一な融液 8を生成 した。直径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉内に投 入した。 690°Cまで融液の温度を下げて力も基板 10の片面を融液 8に接触させ、育 成温度 690°Cでェピタキシャル成長を 4時間行った。育成温度 yと yl、 y2との関係は yl ^yく y2であった。その結果、欠陥のない膜厚 80 mの単結晶膜 12が育成でき た。蛍光 X線分析法により単結晶を組成分析したところ、組成は Bi Gd Yb
1. 50 0. 87 0. 63
Fe Ga Al O であり、 Naは検出できたが組成を確定することはできなかつ
4. 80 0. 10 0. 10 12
た。次に ICP分析法で詳しぐ袓成を評価したところ、磁性ガーネット単結晶の化学式 は、 (BiGdYb) Na (FeGaAl) O であることが分かり、ファラデー回転
2. 998 0. 002 5. 000 12
子に使用可能な Bi置換希土類鉄ガーネット単結晶であることを確認した。
[0083] (実施例 3— 4)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Fe O、 Ga O、 Al O、
2 3 2 3 2 3 2 3
B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 9. 0mol%であった
2 3 2 3
。また、 B、 Bi、 Naの配合率は、それぞれ 8. 9mol%、 55. 4mol%、 25. 8mol%で あった。材料が充填されたルツボ 4を電気炉に配置した。 900°Cまで炉温を上げてル ッボ 4内の材料を融解温度 900°Cで融解して攪拌し、均一な融液 8を生成した。直径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉内に投入した。 7 20°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触させ、育成温度 7 20°Cでェピタキシャル成長を 4時間行った。育成温度 yと yl、 y2との関係は yl <y y2であった。その結果、欠陥のない膜厚 80 mの単結晶膜 12が育成できた。蛍光 X線分析法により単結晶を組成分析したところ、組成は Bi Gd Fe Ga Al
0. 52 2. 48 4. 80 0. 10 0
O であり、 Naは検出できたが組成を確定することはできな力つた。次に ICP分析
. 10 12
法で詳しぐ袓成を評価したところ、磁性ガーネット単結晶の化学式は、 (BiGd) N
2. 998 a (FeGaAl) O であることが分かり、ファラデー回転子に使用可能な Bi置換
0. 002 5. 000 12
希土類鉄ガーネット単結晶であることを確認した。
[0084] (実施例 3— 5)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 Ga O、
2 3 2 3 2 3 2 3
Al O、 B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 9. 0mol%
2 3 2 3 2 3
であった。また、 B、 Bi、 Naの配合率は、それぞれ 8. 9mol%、 55. 5mol%、 25. 9 mol%であった。材料が充填されたルツボ 4を電気炉に配置した。 900°Cまで炉温を 上げてルツボ 4内の材料を融解温度 900°Cで融解して攪拌し、均一な融液 8を生成 した。直径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉内に投 入した。 660°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触させ、 育成温度 660°Cでェピタキシャル成長を 4時間行った。育成温度 yと yl、 y2との関係 は yl <yく y2であった。その結果、欠陥のない膜厚 80 mの単結晶膜 12が育成で きた。蛍光 X線分析法により単結晶を組成分析したところ、組成は Bi Gd Yb
1. 00 1. 70 0. 3
Fe Ga Al O であり、 Naは検出できたが組成を確定することはできなかつ
0 4. 80 0. 10 0. 10 12
た。次に ICP分析法で詳しぐ袓成を評価したところ、磁性ガーネット単結晶の化学式 は、 (BiGdYb) Na (FeGaAl) O であることが分かり、ファラデー回転
2. 998 0. 002 5. 000 12
子に使用可能な Bi置換希土類鉄ガーネット単結晶であることを確認した。
[0085] (実施例 3— 6)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 Ga O、
2 3 2 3 2 3 2 3
Al O、 B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 9. 0mol%
2 3 2 3 2 3
であった。また、 B、 Bi、 Naの配合率は、それぞれ 9. 0mol%、 55. 6mol%、 25. 9 mol%であった。材料が充填されたルツボ 4を電気炉に配置した。 900°Cまで炉温を 上げてルツボ 4内の材料を融解温度 900°Cで融解して攪拌し、均一な融液 8を生成 した。直径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉内に投 入した。 600°Cまで融液 8の温度を下げて力も基板 10の片面を融液に接触させ、育 成温度 600°Cでェピタキシャル成長を 4時間行った。育成温度 yと yl、 y2との関係は yl ^yく y2であった。その結果、欠陥のない膜厚 80 mの単結晶膜 12が育成でき た。蛍光 X線分析法により単結晶を組成分析したところ、組成は Bi Gd Yb
1. 50 0. 87 0. 63
Fe Ga Al O であり、 Naは検出できたが組成を確定することはできなかつ
4. 80 0. 10 0. 10 12
た。次に ICP分析法で詳しぐ袓成を評価したところ、磁性ガーネット単結晶の化学式 は、 (BiGdYb) Na (FeGaAl) O であることが分かり、ファラデー回転
2. 998 0. 002 5. 000 12
子に使用可能な Bi置換希土類鉄ガーネット単結晶であることを確認した。
[0086] (実施例 3— 7)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Fe O、 Ga O、 Al O、
2 3 2 3 2 3 2 3
B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 19. 0mol%であつ
2 3 2 3
た。また、 B、 Bi、 Naの配合率は、それぞれ 8. 0mol%、 49. 3mol%、 23. 0mol% であった。材料が充填されたルツボ 4を電気炉に配置した。 950°Cまで炉温を上げて ルツボ 4内の材料を融解温度 950°Cで融解して攪拌し、均一な融液 8を生成した。直 径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉内に投入した。 900°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触させ、育成温度 900°Cでェピタキシャル成長を 4時間行った。育成温度 yと yl、 y2との関係は yl <y y2であった。その結果、欠陥のない膜厚 80 mの単結晶膜 12が育成できた。蛍 光 X線分析法により単結晶を組成分析したところ、組成は Bi Gd Fe Ga
0. 52 2. 48 4. 80 0. 10
Al O であり、 Naは検出できたが糸且成を確定することはできなかった。次に ICP
0. 10 12
分析法で詳しぐ袓成を評価したところ、磁性ガーネット単結晶の化学式は、 (BiGd)
2.
Na (FeGaAl) O であることが分かり、ファラデー回転子に使用可能な Bi
998 0. 002 5. 000 12
置換希土類鉄ガーネット単結晶であることを確認した。
[0087] (実施例 3— 8)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 Ga O、
2 3 2 3 2 3 2 3 Al O、 B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率は 19. Omol%
2 3 2 3 2 3
であった。また、 B、 Bi、 Naの配合率は、それぞれ 8. Omol%、 49. 4mol%、 23. 0 mol%であった。材料が充填されたルツボ 4を電気炉に配置した。 950°Cまで炉温を 上げてルツボ 4内の材料を融解温度 950°Cで融解して攪拌し、均一な融液 8を生成 した。直径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉内に投 入した。 840°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触させ、 育成温度 840°Cでェピタキシャル成長を 4時間行った。育成温度 yと yl、 y2との関係 は yl <yく y2であった。その結果、欠陥のない膜厚 80 mの単結晶膜 12が育成で きた。蛍光 X線分析法により単結晶を組成分析したところ、組成は Bi Gd Yb
1. 00 1. 70 0. 3
Fe Ga Al O であり、 Naは検出できたが組成を確定することはできなかつ
0 4. 80 0. 10 0. 10 12
た。次に ICP分析法で詳しぐ袓成を評価したところ、磁性ガーネット単結晶の化学式 は、 (BiGdYb) Na (FeGaAl) O であることが分かり、ファラデー回転
2. 998 0. 002 5. 000 12
子に使用可能な Bi置換希土類鉄ガーネット単結晶であることを確認した。
(実施例 3— 9)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 Ga O、
2 3 2 3 2 3 2 3
Al O、 B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 19. 0mol%
2 3 2 3 2 3
であった。また、 B、 Bi、 Naの配合率は、それぞれ 8. 0mol%、 49. 5mol%、 23. 1 mol%であった。材料が充填されたルツボ 4を電気炉に配置した。 950°Cまで炉温を 上げてルツボ 4内の材料を融解温度 950°Cで融解して攪拌し、均一な融液 8を生成 した。直径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉内に投 入した。 780°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触させ、 育成温度 780°Cでェピタキシャル成長を 4時間行った。育成温度 yと yl、 y2との関係 は yl ^yく y2であった。その結果、欠陥のない膜厚 80 mの単結晶膜 12が育成で きた。蛍光 X線分析法により単結晶を組成分析したところ、組成は Bi Gd Yb
1. 50 0. 87 0. 6
Fe Ga Al O であり、 Naは検出できたが組成を確定することはできなかつ
3 4. 80 0. 10 0. 10 12
た。次に ICP分析法で詳しぐ袓成を評価したところ、磁性ガーネット単結晶の化学式 は、(BiGdYb) Na (FeGaAl) O であることが分かり、ファラデー回転
2. 998 0. 002 5. 000 12
子に使用可能な Bi置換希土類鉄ガーネット単結晶であることを確認した。 [0089] (実施例 3— 10)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 Ga O、
2 3 2 3 2 3 2 3
Al O、 B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 22. Omol%
2 3 2 3 2 3
であった。また、 B、 Bi、 Naの配合率は、それぞれ 7. 7mol%、 47. 6mol%、 22. 2 mol%であった。材料が充填されたルツボ 4を電気炉に配置した。 950°Cまで炉温を 上げてルツボ 4内の材料を融解温度 950°Cで融解して攪拌し、均一な融液 8を生成 した。直径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉内に投 入した。 900°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触させ、 育成温度 900°Cでェピタキシャル成長を 4時間行った。育成温度 yと yl、 y2との関係 は yl <yく y2であった。その結果、欠陥のない膜厚 80 mの単結晶膜 12が育成で きた。蛍光 X線分析法により単結晶を組成分析したところ、組成は Bi Gd Yb
1. 50 0. 87 0. 6
Fe Ga Al O であり、 Naは検出できたが組成を確定することはできなかつ
3 4. 80 0. 10 0. 10 12
た。次に ICP分析法で詳しぐ袓成を評価したところ、磁性ガーネット単結晶の化学式 は、 (BiGdYb) Na (FeGaAl) O であることが分かり、ファラデー回転
2. 998 0. 002 5. 000 12
子に使用可能な Bi置換希土類鉄ガーネット単結晶であることを確認した。
[0090] (実施例 3— 11)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 Ga O、
2 3 2 3 2 3 2 3
Al O、 B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 25. 5mol%
2 3 2 3 2 3
であった。また、 B、 Bi、 Naの配合率は、それぞれ 7. 3mol%、 45. 5mol%、 21. 2 mol%であった。材料が充填されたルツボ 4を電気炉に配置した。 950°Cまで炉温を 上げてルツボ 4内の材料を融解温度 950°Cで融解して攪拌し、均一な融液 8を生成 した。直径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉内に投 入した。 900°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触させ、 育成温度 900°Cでェピタキシャル成長を 4時間行った。育成温度 yと yl、 y2との関係 は yl ^yく y2であった。その結果、欠陥のない膜厚 80 mの単結晶膜 12が育成で きた。蛍光 X線分析法により単結晶を組成分析したところ、組成は Bi Gd Yb
1. 50 0. 87 0. 6
Fe Ga Al O であり、 Naは検出できたが組成を確定することはできなかつ
3 4. 80 0. 10 0. 10 12
た。次に ICP分析法で詳しぐ袓成を評価したところ、磁性ガーネット単結晶の化学式 は、 (BiGdYb) Na (FeGaAl) O であることが分かり、ファラデー回転
2. 998 0. 002 5. 000 12
子に使用可能な Bi置換希土類鉄ガーネット単結晶であることを確認した。
[0091] (比較例 3— 1)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 Ga O、
2 3 2 3 2 3 2 3
Al O、 B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 25. 5mol%
2 3 2 3 2 3
であった。また、 B、 Bi、 Naの配合率は、それぞれ 7. 3mol%、 45. 5mol%、 21. 2 mol%であった。材料が充填されたルツボ 4を電気炉に配置した。 980°Cまで炉温を 上げてルツボ 4内の材料の融解及び攪拌を試みた力 炉温を上げすぎたためルツボ 4が変形し単結晶の育成はできな力つた。
[0092] (比較例 3— 2)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 Ga O、
2 3 2 3 2 3 2 3
Al O、 B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 25. 5mol%
2 3 2 3 2 3
であった。また、 B、 Bi、 Naの配合率は、それぞれ 7. 3mol%、 45. 5mol%、 21. 2 mol%であった。材料が充填されたルツボ 4を電気炉に配置した。 950°Cまで炉温を 上げてルツボ 4内の材料を融解温度 950°Cで融解して攪拌し、均一な融液 8を生成 した。直径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉内に投 入した。 880°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触させ、 育成温度 880°Cでェピタキシャル成長を 4時間行った。育成温度 yと yl、 y2との関係 は yく yl <y2であった。育成中、融液 8中に多数の固形物が析出したため単結晶膜 に多数の結晶欠陥が発生し、育成した単結晶をファラデー回転子に使用することは 不可能であった。
[0093] (比較例 3— 3)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Fe O、 Ga O、 Al O、
2 3 2 3 2 3 2 3
B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 19. Omol%であつ
2 3 2 3
た。また、 B、 Bi、 Naの配合率は、それぞれ 8. Omol%、 49. 3mol%、 23. Omol% であった。材料が充填されたルツボ 4を電気炉に配置した。 980°Cまで炉温を上げて ルツボ 4内の材料を融解して攪拌を試みた力 炉温を上げすぎたためルツボ 4が変 形し単結晶の育成はできな力つた。 [0094] (比較例 3— 4)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 Ga O、
2 3 2 3 2 3 2 3
Al O、 B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 19. Omol%
2 3 2 3 2 3
であった。また、 B、 Bi、 Naの配合率は、それぞれ 8. Omol%、 49. 5mol%、 23. 1 mol%であった。材料が充填されたルツボ 4を電気炉に配置した。 950°Cまで炉温を 上げてルツボ 4内の材料を融解温度 950°Cで融解して攪拌し、均一な融液 8を生成 した。直径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉内に投 入した。 750°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触させ、 育成温度 750°Cでェピタキシャル成長を 4時間行った。育成温度 yと yl、 y2との関係 は yく yl <y2であった。育成中、融液 8中に多数の固形物が析出したため単結晶膜 に多数の結晶欠陥が発生し、育成した単結晶をファラデー回転子に使用することは 不可能であった。
[0095] (比較例 3— 5)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 La O、 Fe O、
2 3 2 3 2 3 2 3
Ga O、 Al O、 B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 9.
2 3 2 3 2 3 2 3
Omol%であった。また、 B、 Bi、 Naの配合率は、それぞれ 8. 9mol%、 55. 5mol% 、 25. 9mol%であった。材料が充填されたルツボ 4を電気炉に配置した。 900°Cまで 炉温を上げてルツボ 4内の材料を融解温度 900°Cで融解して攪拌し、均一な融液 8 を生成した。直径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉 内に投入した。 750°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触 させ、育成温度 750°Cでェピタキシャル成長を 4時間行った。育成温度 yと yl、 y2と の関係は yl <y2く yであった。その結果、欠陥のない膜厚 80 mの単結晶膜が育 成できた。蛍光 X線分析法により単結晶を組成分析したところ、組成は Bi Gd L
0. 40 2. 54 a Fe Ga Al O であり、 Naは検出できたが組成を確定することはできな
0. 06 4. 80 0. 10 0. 10 12
かった。次に ICP分析法で詳しぐ袓成を評価したところ、磁性ガーネット単結晶の化 学式は、 (BiGdLa) Na (FeGaAl) O であることが分かった。しかしな
2. 998 0. 002 5. 000 12
がら、育成した単結晶は Bi量が少なぐファラデー回転係数が小さ過ぎるためファラ デ一回転子には使用できな!/、ことを確認した。 [0096] (比較例 3— 6)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 La O、 Fe O、
2 3 2 3 2 3 2 3
Ga O、 Al O、 B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 9.
2 3 2 3 2 3 2 3
Omol%であった。また、 B、 Bi、 Naの配合率はそれぞれ 8. 9mol%、 55. 5mol%、 25. 9mol%であった。材料が充填されたルツボ 4を電気炉に配置した。 900°Cまで 炉温を上げてルツボ 4内の材料を融解温度 900°Cで融解して攪拌し、均一な融液 8 を生成した。直径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉 内に投入した。 580°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触 させ、育成温度 580°Cでェピタキシャル成長を 4時間行った。育成温度 yと yl、 y2と の関係は yく yl <y2であった。育成中、融液 8中に多数の固形物が析出したため単 結晶膜に多数の結晶欠陥が発生し、育成した単結晶をファラデー回転子に使用する ことは不可能であった。
[0097] (比較例 3— 7)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 La O、 Fe O、
2 3 2 3 2 3 2 3
Ga O、 Al O、 B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 8.
2 3 2 3 2 3 2 3
Omol%であった。また、 B、 Bi、 Naの配合率は、それぞれ 9. Omol%、 56. lmol% 、 26. 2mol%であった。材料が充填されたルツボ 4を電気炉に配置した。 900°Cまで 炉温を上げてルツボ 4内の材料を融解温度 900°Cで融解して攪拌し、均一な融液 8 を生成した。直径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉 内に投入した。 720°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触 させ、育成温度 720°Cでェピタキシャル成長を 4時間行った。育成温度 yと yl、 y2と の関係は yl <y2く yであった。しかし、成長速度が低いため膜厚 5 mの単結晶膜 しか得られな力つた。この成長速度では育成時間を延ばしてもファラデー回転子に必 要な膜厚を得ることはできないため、本比較例の育成条件は、ファラデー回転子に 用いるための磁性ガーネット単結晶の育成に不適であることが分力つた。
[0098] (比較例 3— 8)
Au製のルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 La O、 Fe O、
2 3 2 3 2 3 2 3
Ga O、 Al O、 B O、 Bi O、 NaOHを充填した。 Fe、 Ga及び Alの配合率 xは 8. Omol%であった。また、 B、 Bi、 Naの配合率は、それぞれ 9. Omol%、 56. lmol% 、 26. 2mol%であった。材料が充填されたルツボ 4を電気炉に配置した。 900°Cまで 炉温を上げてルツボ 4内の材料を融解温度 900°Cで融解して攪拌し、均一な融液 8 を生成した。直径 2インチの CaMgZr置換 GGG基板 10を固定冶具 2に取り付けて炉 内に投入した。 600°Cまで融液 8の温度を下げて力も基板 10の片面を融液 8に接触 させ、育成温度 600°Cでェピタキシャル成長を 4時間行った。育成温度 yと yl、 y2と の関係は yl <yく y2であった。しかし、成長速度が低いため膜厚 10 mの単結晶 膜しか得られな力つた。この成長速度では育成時間を延ばしてもファラデー回転子に 必要な膜厚を得ることはできないため、本比較例の育成条件は、ファラデー回転子 に用いるための磁性ガーネット単結晶の育成に不適であることが分力つた。
[0099] 図 6は、上記の実施例及び比較例の育成条件等をまとめて示している。また、図 5 の參印(E 1〜E 11 )は実施例 3— 1〜 3— 11での配合率 x及び育成温度 yをそれぞ れ示し、図 5の△印(C1〜C8)は比較例 3— 1〜3— 8での配合率 X及び育成温度 y をそれぞれ示して ヽる(ただし、比較例 3— 1及び 3 - 3では単結晶を育成できなかつ たため育成温度に代えて融解温度を示している)。図 5及び図 6に示すように、 Fe、 G a及び A1の配合率 Xが 9. Omol%以上 25. 5mol%以下である場合に、ファラデー回 転子に適した Bi置換希土類鉄ガーネット単結晶を育成できる。また、育成温度 yが6 00°C以上 900°C以下である場合に、ファラデー回転子に適した Bi置換希土類鉄ガ 一ネット単結晶を育成できる。さらに、 Fe、 Ga及び A1の配合率 x (mol%)と育成温度 y (°C)と力 36 + 18. 2x≤y≤555 + 18. 2xの関係を満たす場合に、ファラデー回 転子に適した Bi置換希土類鉄ガーネット単結晶を育成できる。これらの育成条件を 全て満たすことによって、ファラデー回転子に適した Bi置換希土類鉄ガーネット単結 晶をより安定に育成できるようになる。
[0100] [第 4の実施の形態]
本発明の第 4の実施の形態による単結晶の製造方法について図 7及び図 8を用い て説明する。本実施の形態では、従来の溶媒に含まれる Pbをナトリウム (Na)で代替 し、 Na、 Bi及びホウ素(B)を含む溶媒力 Bi置換希土類鉄ガーネットなどの単結晶 を育成する。これにより、従来単結晶に微量含まれていた Pbをほぼ完全に除去でき る。
[0101] ところで、ガーネット単結晶を育成する際には一般に白金 (Pt)製のルツボが用いら れる。 Ptは、ガーネット単結晶の育成温度より融点が高ぐ溶媒として用いられる PbO の融液に対する耐食性も比較的高 、と 、う特徴を有して 、る。
[0102] し力しながら、 Pt製ルツボを用い、 Naを含む溶媒力もガーネット単結晶を繰り返し 育成すると、ルツボの壁に微少な穴などが形成されてルツボ内の融液が外側に漏れ てしまう場合がある。ルツボ内の融液が漏れるとガーネット単結晶の育成が中断して しまう上、単結晶育成炉のヒータ等が融液により破損してしまうという問題が発生し得 る。
[0103] 図 7は、 Naを含む溶媒力 ガーネット単結晶を繰り返し育成した際に用いられ、融 液の漏れが生じた Pt製ルツボの壁面を拡大して示している。図 7に示すように、 Pt製 ルツボの壁面を目視で観察したところ、単結晶育成を繰り返したことにより Ptの結晶 粒が成長していた。ルツボの壁面をさらに顕微鏡で観察したところ、図 7中央部の Pt の結晶粒界においてルツボ内壁面側力 外側に貫通する穴が空いていることが分か つた。単結晶を育成する際に溶媒として用いられる Bi Oや B O等の各種酸化物は
2 3 2 3
、ルツボの材質である Ptに拡散し、 Ptの結晶粒の成長と共にその粒界に集まる。 Pt の結晶粒界に集まった各種酸ィ匕物が Naを含む溶媒により溶解されることによって、 ルツボ壁に穴が空いたものと考えられる。
[0104] そこで、 Au製のルツボを用いたガーネット単結晶の育成を試みた。すなわち、 Na、 Bi及び Bを含む材料を Au製ルツボ内に充填し、充填した材料を融解する。これによ り、 Na、 Bi及び Bを溶媒として含む融液が生成される。当該融液を用いて、例えば L PE法により Bi置換希土類鉄ガーネット単結晶を育成する。ここで、融液が Bを溶媒と して含むことにより、過飽和状態を保ちながらガーネット単結晶を安定に育成できる。 Au製ルツボを用いた場合、 Naを含む溶媒カゝらガーネット単結晶を繰り返し育成して もルツボ内の融液が漏れることはなカゝつた。 Au製ルツボの壁面を目視と顕微鏡で観 察した。図 8は、 Au製ルツボの壁面を拡大して示している。図 8に示すように、 Pt製 ルツボと同様に Auの結晶粒が成長しているのを確認できたが穴などは確認できなか つた o [0105] PbO、 Bi O及び B Oを溶媒としてガーネット単結晶を育成した場合でも、 Pb等が
2 3 2 3
Ptの結晶粒界に集まる現象は生じていた。しかし、それを原因として Pt製ルツボ内の 融液が漏れてしまうことはな力つた。これに対し、 Naを含む溶媒を用いたときに上記 のように Pt製ルツボ内の融液に漏れが生じたのは、 Naを含む溶媒が Pbを含む従来 の溶媒に比べて材料を溶かす力が強 、ので、各種酸ィ匕物の集まった Ptの結晶粒界 を侵食したためと考えられる。
[0106] 一方、 Auは非常に酸ィ匕され難い金属であるため、各種酸ィ匕物が Auにほとんど拡 散せず、結晶粒界に集まることもない。そのため、 Naを含む溶媒から単結晶の育成 を繰り返して Auの粒成長が進行した場合でも、結晶粒界が侵食されることはない。し たがって、 Au製ルツボ内の融液が漏れてしまうことはな 、。
[0107] 以上の効果は、 Au製ルツボを用い、 Naを含む溶媒力 単結晶を育成する全ての 方法に有効である。従って、 Naを含む溶媒力もガーネット以外の単結晶を LPE法以 外のフラックス法により育成する場合であっても、 Au製ルツボを用いればルツボ内の 融液が漏れてしまうのを防止できる。
以下、本実施の形態による単結晶の製造方法について、実施例及び比較例を用 いてより具体的に説明する。
[0108] (実施例 4 1)
まず、内径 75mm、高さ 120mmの円筒形の形状を持つ Au製のルツボ 4を作製し た。このルツボ 4に、合計で 2. 3kgの重量になる Gd O、 Yb O、 Fe O、 B O、 Bi
2 3 2 3 2 3 2 3 2
O、 NaOHを充填した。これらの材料は、ルツボ 4の底面から高さ約 75mmの位置ま
3
で充填された。材料が充填されたルツボ 4を電気炉に配置し、 950°Cまで炉温を上げ てルツボ 4内の材料を融解して攪拌し、均一な融液 8を生成した。直径 2インチの Ca MgZr置換 GGG基板 10を固定治具 2に取り付けて炉内に投入し、 830°Cまで炉温 を下げて力も基板 10の片面を融液 8に接触させてェピタキシャル成長を 40時間行つ た。これにより、膜厚 500 mで組成が(BiGdYb) Fe O の磁性ガーネット単結晶
3 5 12
膜 (希土類鉄ガーネット単結晶膜) 12を基板 10上に育成した。単結晶育成は大気圧 中で行った。単結晶を室温まで冷却して取り出し、研磨工程等を経て磁性ガーネット 単結晶膜 12を作製した。その後、 Gd O、 Yb O、 Fe Oをルツボ 4内に追カ卩して、 同様の手順で単結晶の育成を 20回繰り返した。その間にルツボ 4に穴が空いて融液 が漏れてしまうことはな力つた。
[0109] (比較例 4 1)
内径 75mm、高さ 120mmの円筒形の形状を持つ Pt製のルツボ 4を作製した。この ノレッボ 4【こ、合計で 2. 3kgの重量【こなる Gd O、 Yb O、 Fe O、 B O、 Bi O、 Na
2 3 2 3 2 3 2 3 2 3
OHを充填した。これらの材料は、ルツボ 4の底面から高さ約 75mmの位置まで充填 された。材料が充填されたルツボ 4を電気炉に配置し、 950°Cまで炉温を上げてルツ ボ 4内の材料を融解して攪拌し、均一な融液 8を生成した。直径 2インチの CaMgZr 置換 GGG基板 10を固定治具 2に取り付けて炉内に投入し、 830°Cまで炉温を下げ てカゝら基板 10の片面を融液 8に接触させてェピタキシャル成長を 40時間行った。こ れにより、膜厚 500 mで組成が(BiGdYb) Fe O の磁性ガーネット単結晶膜 12
3 5 12
を基板 10上に育成した。単結晶育成は大気圧中で行った。単結晶を室温まで冷却 して取り出し、研磨工程等を経て磁性ガーネット単結晶膜 12を作製した。その後、 G d O、 Yb O、 Fe Oをルツボ 4内に追加して、同様の手順で単結晶の育成を繰り
2 3 2 3 2 3
返した。 10回目でルツボ 4に穴が空き、ルツボ 4内の融液が漏れてしまった。
[0110] 以上のように本実施の形態によれば、 Pbの含有量を削減した単結晶の製造方法を 実現できる。また本実施の形態によれば、フラックス法を用いて Naを含む溶媒から単 結晶を繰り返し育成する際、ルツボ内の融液が漏れるのを防止できる。
図面の簡単な説明
[0111] [図 1]本発明の第 1の実施の形態における磁性ガーネット単結晶に入り得る各元素の 価数とイオン半径とを示す図である。
[図 2]本発明の第 1の実施の形態における磁性ガーネット単結晶の製造工程の一部 を示す図である。
[図 3]本発明の第 2の実施の形態によるガーネット単結晶の製造方法における Bの配 合率 Xと Na配合比 (yZ (y+z) )との関係を示すグラフである。
[図 4]実施例 2— 1乃至 2— 8及び比較例 2— 1乃至 2— 7の育成条件等をまとめて示 す表である。
[図 5]本発明の第 3の実施の形態による磁性ガーネット単結晶の製造方法における配 合率 xと育成温度 yとの関係を示すグラフである。
[図 6]実施例 3— 1乃至 3— 11及び比較例 3— 1乃至 3— 8の育成条件等をまとめて示 す表である。
[図 7]Pt製ルツボの壁面を拡大して示す図である。
[図 8]Au製ルツボの壁面を拡大して示す図である。
符号の説明
2 固定冶具
4 ルツボ
8 融液
10 基板
12 単結晶膜

Claims

請求の範囲
[1] 液相ェピタキシャル成長法により育成され、
ィ匕学式 Bi Na Pb Ml Fe M2 O
x y z 3— x— — z 5— w w 12
(式中の Mlは Y、 Sm、 Euゝ Gdゝ Tb、 Dyゝ Ho、 Erゝ Tm、 Yb、 Luから選択される少 なくとも 1種類以上の元素、 M2は Ga、 Al、 In、 Ti、 Ge、 Si、 Ptから選択される少なく とも 1種類以上の元素であり、 0. 5< x≤2. 0、 0<y≤0. 8、 0≤z< 0. 01、 0. 19≤ 3-x-y-z< 2. 5, 0≤w≤l. 6)
で示されること
を特徴とする磁性ガーネット単結晶。
[2] 請求項 1記載の磁性ガーネット単結晶であって、
前記 yは 0<y≤0. 05であること
を特徴とする磁性ガーネット単結晶。
[3] 請求項 1又は 2に記載の磁性ガーネット単結晶で形成されることを特徴とする光学 素子。
[4] Naを含む融液を生成し、
前記融液を用いて液相ェピタキシャル成長法により磁性ガーネット単結晶を育成す ること
を特徴とする磁性ガーネット単結晶の製造方法。
[5] B、 Na及び Biを含み、 Naの配合率 y (mol%)と Biの配合率 z (mol%)とが 0<yZ ( y+z)≤0. 41を満たす溶液を生成し、
前記溶液を用いてガーネット単結晶を育成すること
を特徴とするガーネット単結晶の製造方法。
[6] B、 Na及び Biを含み、 Bの配合率 x (mol%)と Naの配合率 y (mol%)と Biの配合率 z (mol%)とが 0<y/ (y+z)≤0. 0143x+0. 24を満たす溶液を生成し、
前記溶液を用いてガーネット単結晶を育成すること
を特徴とするガーネット単結晶の製造方法。
[7] 請求項 6記載のガーネット単結晶の製造方法であって、
前記配合率 Xは 2. 0mol%以上 12. 0mol%以下であること を特徴とするガーネット単結晶の製造方法。
[8] B、 Na及び Biを含み、 Bの配合率 Xが 2. Omol%以上 12. Omol%以下である溶液 を生成し、
前記溶液を用いてガーネット単結晶を育成すること
を特徴とするガーネット単結晶の製造方法。
[9] Na、 Bi及び Bを含む溶媒に、 Fe、 Ga及び A1のうち Feを含む少なくとも一種の元素 を 9. Omol%以上 25. 5mol%以下の配合率で溶解して溶液を生成し、
前記溶液を用いて磁性ガーネット単結晶を育成すること
を特徴とする磁性ガーネット単結晶の製造方法。
[10] Na、 Bi及び Bを含む溶媒に、 Fe、 Ga及び A1のうち Feを含む少なくとも一種の元素 を溶解して溶液を生成し、
前記溶液を用いて 600°C以上 900°C以下の育成温度で磁性ガーネット単結晶を 育成すること
を特徴とする磁性ガーネット単結晶の製造方法。
[11] Na、 Bi及び Bを含む溶媒に、 Fe、 Ga及び A1のうち Feを含む少なくとも一種の元素 を配合率 X (mol%)で溶解して溶液を生成し、
前記溶液を用いて、 436 + 18. 2x≤y≤555 + 18. 2xを満たす育成温度 y (°C)で 磁性ガーネット単結晶を育成すること
を特徴とする磁性ガーネット単結晶の製造方法。
[12] 請求項 11記載の磁性ガーネット単結晶の製造方法であって、
前記配合率 Xは 9. Omol%以上であり、
前記育成温度 yは 900°C以下であること
を特徴とする磁性ガーネット単結晶の製造方法。
[13] 請求項 9乃至 12のいずれか 1項に記載の磁性ガーネット単結晶の製造方法であつ て、
前記溶液は Au製のルツボ内で生成すること
を特徴とする磁性ガーネット単結晶の製造方法。
[14] Naを含む材料を Au製のルツボ内に充填し、 前記材料を融解して融液を生成し、
前記融液を用いて単結晶を育成すること
を特徴とする単結晶の製造方法。
[15] 請求項 14記載の単結晶の製造方法であって、
前記単結晶は大気圧中で育成すること
を特徴とする単結晶の製造方法。
[16] 請求項 14又は 15に記載の単結晶の製造方法であって、
前記材料はさらに Bを含むこと
を特徴とする単結晶の製造方法。
[17] 請求項 14乃至 16のいずれか 1項に記載の単結晶の製造方法であって、 前記単結晶は希土類鉄ガーネット単結晶であること
を特徴とする単結晶の製造方法。
PCT/JP2005/021103 2004-11-19 2005-11-17 磁性ガーネット単結晶及びそれを用いた光学素子並びに単結晶の製造方法 WO2006054628A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05806917A EP1820886A4 (en) 2004-11-19 2005-11-17 MAGNETIC GRANATEINE CRYSTAL, OPTICAL DEVICE THEREWITH AND METHOD FOR CREATING THE CRYSTAL
CN2005800396760A CN101061263B (zh) 2004-11-19 2005-11-17 磁性石榴石单晶及使用其的光学元件和单晶的制造方法
US11/666,331 US7811465B2 (en) 2004-11-19 2005-11-17 Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
US12/806,000 US8815011B2 (en) 2004-11-19 2010-08-27 Magnetic garnet single crystal and optical element using same as well as method of producing single crystal

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2004-335457 2004-11-19
JP2004335457 2004-11-19
JP2005-286734 2005-09-30
JP2005286734A JP3959099B2 (ja) 2004-11-19 2005-09-30 磁性ガーネット単結晶の製造方法
JP2005-303286 2005-10-18
JP2005303286A JP4867281B2 (ja) 2005-10-18 2005-10-18 単結晶の製造方法
JP2005311688A JP4432875B2 (ja) 2005-10-26 2005-10-26 ガーネット単結晶の製造方法
JP2005-311688 2005-10-26
JP2005311682A JP4432874B2 (ja) 2005-10-26 2005-10-26 磁性ガーネット単結晶の製造方法
JP2005-311682 2005-10-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/666,331 A-371-Of-International US7811465B2 (en) 2004-11-19 2005-11-17 Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
US12/806,000 Division US8815011B2 (en) 2004-11-19 2010-08-27 Magnetic garnet single crystal and optical element using same as well as method of producing single crystal

Publications (1)

Publication Number Publication Date
WO2006054628A1 true WO2006054628A1 (ja) 2006-05-26

Family

ID=36407166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021103 WO2006054628A1 (ja) 2004-11-19 2005-11-17 磁性ガーネット単結晶及びそれを用いた光学素子並びに単結晶の製造方法

Country Status (5)

Country Link
US (2) US7811465B2 (ja)
EP (1) EP1820886A4 (ja)
CN (1) CN101061263B (ja)
TW (1) TWI300811B (ja)
WO (1) WO2006054628A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7695562B2 (en) 2006-01-10 2010-04-13 Tdk Corporation Magnetic garnet single crystal and method for producing the same as well as optical element using the same
US7758766B2 (en) 2007-09-17 2010-07-20 Tdk Corporation Magnetic garnet single crystal and Faraday rotator using the same
US7811465B2 (en) 2004-11-19 2010-10-12 Tdk Corporation Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
US7828895B2 (en) 2006-01-27 2010-11-09 Tdk Corporation Method of producing optical element
US8142676B2 (en) 2006-02-20 2012-03-27 Tdk Corporation Magnetic garnet single crystal and optical element using the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1391243B1 (it) * 2008-08-08 2011-12-01 Biofarmitalia Spa Cerotto adesivo per la protezione e la cura di lesioni cutanee virali
JP6555672B2 (ja) * 2015-07-22 2019-08-07 パナソニックIpマネジメント株式会社 ガーネット化合物及びその製造方法、当該ガーネット化合物を用いた発光装置及び装飾物、並びに当該ガーネット化合物の使用方法
JP7246341B2 (ja) * 2020-04-21 2023-03-27 信越化学工業株式会社 ビスマス置換希土類鉄ガーネット単結晶、ファラデー回転子、光アイソレータ、およびビスマス置換希土類鉄ガーネット単結晶の製造方法
JP7246340B2 (ja) * 2020-04-21 2023-03-27 信越化学工業株式会社 ビスマス置換希土類鉄ガーネット単結晶、ファラデー回転子、光アイソレータ、およびビスマス置換希土類鉄ガーネット単結晶の製造方法
CN114150365A (zh) * 2021-10-29 2022-03-08 中国科学院福建物质结构研究所 一种大尺寸钇铁石榴石单晶的制备方法
CN115418704B (zh) * 2022-08-30 2023-10-03 广东省科学院资源利用与稀土开发研究所 一种稀土铁硼永磁单晶的助熔剂生长方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083390A (ja) * 2002-07-05 2004-03-18 Tdk Corp 磁性ガーネット材料、ファラデー回転子、光デバイス、ビスマス置換型希土類鉄ガーネット単結晶膜の製造方法および単結晶膜
JP2004269305A (ja) * 2003-03-07 2004-09-30 Tdk Corp 磁性ガーネット単結晶膜形成用基板、その製造方法、光学素子およびその製造方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615125B2 (ja) 1972-04-14 1981-04-08
GB1520138A (en) 1975-10-07 1978-08-02 Philips Electronic Associated Growing single crystal garnets
US4402787A (en) * 1979-05-31 1983-09-06 Ngk Insulators, Ltd. Method for producing a single crystal
JPS5745719A (en) * 1980-09-01 1982-03-15 Comput Basic Mach Technol Res Assoc Readout circuit for magnetic disc device
JPS5792591A (en) * 1980-11-28 1982-06-09 Ngk Insulators Ltd Production of single crystal
JPS59164692A (ja) * 1983-03-10 1984-09-17 Nippon Hoso Kyokai <Nhk> 酸化物単結晶の製造方法
JPH0766044B2 (ja) 1985-06-29 1995-07-19 株式会社東芝 磁界センサ
JPS62143893A (ja) 1985-12-16 1987-06-27 Matsushita Electric Ind Co Ltd 磁気光学結晶の成長方法
US4698820A (en) * 1986-05-01 1987-10-06 American Telephone And Telegraph Company, At&T Bell Laboratories Magnetic device and method of manufacture
JPH0646604B2 (ja) 1987-04-01 1994-06-15 ティーディーケイ株式会社 ビスマス置換磁性ガーネット
US4799077A (en) 1987-11-23 1989-01-17 Polaroid Corporation Common drive for shutter blades and objective lens assembly
CN1020388C (zh) * 1990-02-28 1993-04-28 中国科学院物理研究所 一种含铋的石榴石磁光单晶材料的制造方法
JPH09202697A (ja) 1996-01-19 1997-08-05 Tokin Corp Bi置換型ガーネットの製造方法
JPH1048421A (ja) * 1996-08-05 1998-02-20 Mitsubishi Gas Chem Co Inc ファラデー回転子
JP3816591B2 (ja) 1996-08-30 2006-08-30 Tdk株式会社 ビスマス置換希土類鉄ガーネット単結晶膜の製造方法
JP2000086396A (ja) * 1997-12-27 2000-03-28 Tokin Corp ビスマス置換型ガーネット厚膜材料及びその製造方法
JPH11255600A (ja) * 1998-03-12 1999-09-21 Mitsubishi Gas Chem Co Inc ビスマス置換希土類鉄ガーネット単結晶厚膜の製造法
JP2001044027A (ja) * 1999-08-02 2001-02-16 Tdk Corp 磁性ガーネット単結晶およびそれを用いたファラデー回転子
JP2001044026A (ja) * 1999-08-02 2001-02-16 Tdk Corp 磁性ガーネット単結晶およびそれを用いたファラデー回転子
JP3699629B2 (ja) * 2000-02-22 2005-09-28 Tdk株式会社 磁性ガーネット材料及びそれを用いた磁気光学素子
JP3753920B2 (ja) * 2000-03-22 2006-03-08 Tdk株式会社 磁性ガーネット単結晶膜及びその製造方法、及びそれを用いたファラデー回転子
EP1403403A4 (en) * 2001-06-22 2007-07-11 Tdk Corp SUBSTRATE FOR MANUFACTURING A MAGNETIC GRANATE INKRISTAL FILM; OPTICAL DEVICE AND MANUFACTURING METHOD THEREFOR
CN1271454C (zh) * 2001-12-25 2006-08-23 Tdk株式会社 硬磁性柘榴石材料、其单晶体膜的制造方法、法拉第旋转子、其制造方法和用途
US6853473B2 (en) * 2002-01-24 2005-02-08 Tdk Corporation Faraday rotator and optical device comprising the same, and antireflection film and optical device comprising the same
US7133189B2 (en) 2002-02-22 2006-11-07 Tdk Corporation Magnetic garnet material, faraday rotator, optical device, bismuth-substituted rare earth-iron-garnet single-crystal film and method for producing the same and crucible for producing the same
US7187496B2 (en) * 2002-03-14 2007-03-06 Tdk Corporation Manufacturing method of optical device, optical device, manufacturing method of faraday rotator, and optical communication system
JP2003306397A (ja) 2002-04-16 2003-10-28 Sumitomo Special Metals Co Ltd 機能性膜とその製造方法及び装置
JP2004026305A (ja) * 2002-04-30 2004-01-29 Daiwa Can Co Ltd 飲料水収容容器
US7022303B2 (en) * 2002-05-13 2006-04-04 Rutgers, The State University Single-crystal-like materials
JPWO2004067813A1 (ja) * 2003-01-29 2006-05-18 Tdk株式会社 磁性ガーネット単結晶膜形成用基板、光学素子およびその製造方法
EP1659440B1 (en) * 2003-08-28 2015-06-24 Kohoku Kogyo Co., Ltd. Magneto-optical device
WO2005056887A1 (en) 2003-12-11 2005-06-23 Lee, Hun-Su Method for manufacturing garnet single crystal and garnet single crystal manufactured thereby
JP3959099B2 (ja) 2004-11-19 2007-08-15 Tdk株式会社 磁性ガーネット単結晶の製造方法
EP1820886A4 (en) 2004-11-19 2010-12-22 Tdk Corp MAGNETIC GRANATEINE CRYSTAL, OPTICAL DEVICE THEREWITH AND METHOD FOR CREATING THE CRYSTAL
US7695562B2 (en) * 2006-01-10 2010-04-13 Tdk Corporation Magnetic garnet single crystal and method for producing the same as well as optical element using the same
JP4702090B2 (ja) * 2006-02-20 2011-06-15 Tdk株式会社 磁性ガーネット単結晶及びそれを用いた光学素子
US8242454B2 (en) * 2008-05-30 2012-08-14 Saint-Gobain Ceramics & Plastics, Inc. Scintillator and methods of making and using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083390A (ja) * 2002-07-05 2004-03-18 Tdk Corp 磁性ガーネット材料、ファラデー回転子、光デバイス、ビスマス置換型希土類鉄ガーネット単結晶膜の製造方法および単結晶膜
JP2004269305A (ja) * 2003-03-07 2004-09-30 Tdk Corp 磁性ガーネット単結晶膜形成用基板、その製造方法、光学素子およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1820886A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7811465B2 (en) 2004-11-19 2010-10-12 Tdk Corporation Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
US8815011B2 (en) 2004-11-19 2014-08-26 Tdk Corporation Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
US7695562B2 (en) 2006-01-10 2010-04-13 Tdk Corporation Magnetic garnet single crystal and method for producing the same as well as optical element using the same
US7828895B2 (en) 2006-01-27 2010-11-09 Tdk Corporation Method of producing optical element
US8142676B2 (en) 2006-02-20 2012-03-27 Tdk Corporation Magnetic garnet single crystal and optical element using the same
US7758766B2 (en) 2007-09-17 2010-07-20 Tdk Corporation Magnetic garnet single crystal and Faraday rotator using the same

Also Published As

Publication number Publication date
CN101061263B (zh) 2011-03-23
US8815011B2 (en) 2014-08-26
US20080095686A1 (en) 2008-04-24
EP1820886A1 (en) 2007-08-22
TW200622045A (en) 2006-07-01
TWI300811B (en) 2008-09-11
EP1820886A4 (en) 2010-12-22
CN101061263A (zh) 2007-10-24
US7811465B2 (en) 2010-10-12
US20100326350A1 (en) 2010-12-30

Similar Documents

Publication Publication Date Title
WO2006054628A1 (ja) 磁性ガーネット単結晶及びそれを用いた光学素子並びに単結晶の製造方法
EP1821321B1 (en) Magnetic garnet single crystal and optical element using the same
JP3959099B2 (ja) 磁性ガーネット単結晶の製造方法
US20130071316A1 (en) Bi-SUBSTITUTED RARE EARTH IRON GARNET SINGLE CRYSTAL, METHOD OF MANUFACTURING THE SAME, AND OPTICAL DEVICE
US20140021418A1 (en) Bi-substituted rare earth iron garnet single crystal, method for producing same, and optical device
CN104073879B (zh) 铋置换稀土铁石榴石单晶以及其制造方法
US7695562B2 (en) Magnetic garnet single crystal and method for producing the same as well as optical element using the same
JP4650943B2 (ja) ビスマス置換希土類鉄ガーネット単結晶の製造方法
JP4802995B2 (ja) 磁性ガーネット単結晶及びそれを用いた光学素子
Qing-Hui et al. Magneto-optical and microwave properties of LuBiIG thin films prepared by liquid phase epitaxy method from lead-free flux
JP4720730B2 (ja) 光学素子の製造方法
JP4807288B2 (ja) 磁性ガーネット単結晶及びそれを用いた光学素子並びに磁性ガーネット単結晶の製造方法
JP2001044027A (ja) 磁性ガーネット単結晶およびそれを用いたファラデー回転子
JP5292543B2 (ja) Bi置換希土類鉄ガーネット単結晶とその製造方法及び光デバイス
JP4432896B2 (ja) ガーネット単結晶の製造方法
JP4821344B2 (ja) 磁性ガーネット単結晶及びそれを用いた光学素子
JP2009147184A (ja) ビスマス置換希土類鉄ガーネット単結晶の製造方法
JP4432874B2 (ja) 磁性ガーネット単結晶の製造方法
JP6887678B2 (ja) 磁性ガーネット単結晶の製造方法
JPH09175898A (ja) ビスマス置換希土類鉄ガーネット単結晶の製造法
JP2005247590A (ja) 磁性ガーネット単結晶及びそれを用いた光学素子
JP2007119279A (ja) ガーネット単結晶の製造方法
JP2008021691A (ja) ビスマス置換希土類鉄ガーネット単結晶の製造方法
JPH11322496A (ja) 白金坩堝及びビスマス置換希土類鉄ガーネット単結晶膜の製造法
JP2005247589A (ja) 磁性ガーネット単結晶及びそれを用いた光学素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005806917

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11666331

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580039676.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005806917

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11666331

Country of ref document: US