WO2006054604A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2006054604A1
WO2006054604A1 PCT/JP2005/021046 JP2005021046W WO2006054604A1 WO 2006054604 A1 WO2006054604 A1 WO 2006054604A1 JP 2005021046 W JP2005021046 W JP 2005021046W WO 2006054604 A1 WO2006054604 A1 WO 2006054604A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
nonaqueous electrolyte
battery
electrolyte secondary
active material
Prior art date
Application number
PCT/JP2005/021046
Other languages
English (en)
French (fr)
Inventor
Atsushi Ueda
Shoichiro Watanabe
Takeshi Yao
Takashi Takeuchi
Takayuki Shirane
Takaya Saito
Hiromi Nagata
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/667,110 priority Critical patent/US20080118833A1/en
Publication of WO2006054604A1 publication Critical patent/WO2006054604A1/ja
Priority to US13/191,148 priority patent/US20110281165A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery using lithium ions, and more particularly to a non-aqueous electrolyte secondary battery and a battery charge / discharge system that operate at a high voltage with a suitable positive electrode active material.
  • non-aqueous electrolyte secondary batteries that are used as a main power source for mobile communication devices and portable electronic devices have a feature of high electromotive force and high energy density.
  • the positive electrode active materials used here include lithium cobaltate (LiCoO) and lithium nickelate (LiNiO).
  • lithium spinel oxides containing manganese (Mn) are stable even at high potentials, so it has been proposed to set the upper limit of charging voltage in the range of 4.0 V to 4.5 V (for example, patent literature). 1).
  • the lithium composite cobalt oxide used mainly has a high capacity and is excellent in various characteristics such as cycle characteristics and storage characteristics. However, it is inferior in thermal stability and deteriorates due to repeated charging and discharging at a high voltage, so in the normal operating state, the end-of-charge voltage is at most 4.2 V (4.25 V including the error of the control circuit). It was. When operating at higher voltages, there was a particular safety problem.
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-307781
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-203553
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-319398
  • the present invention solves this problem, and even if the end-of-charge voltage in a normal operating state is set to 4.25 V or more, the battery has not only safety but also cycle characteristics, heat resistance, and storage characteristics.
  • the purpose is to provide a high-capacity non-aqueous electrolyte secondary battery in which the above-mentioned functions operate normally.
  • the present invention provides a positive electrode including a lithium composite oxide as an active material, and a non-aqueous electrolyte secondary battery in which a charge end voltage is set to 4.25 to 4.5 V.
  • the weight ratio R of the active material per unit area contained in each of the positive electrode and the negative electrode in the region facing the negative electrode is set to a specific value.
  • the nonaqueous electrolyte secondary battery of the present invention includes a negative electrode containing an active material capable of occluding and releasing lithium, a positive electrode containing a lithium composite oxide as an active material, a separator separating the negative electrode and the positive electrode, and lithium ions
  • a non-aqueous electrolyte secondary battery having a conductive non-aqueous electrolyte and having a charge end voltage of 4.25-4. 5 V, in the region where the positive electrode and the negative electrode face each other.
  • Ratio of weight Wp per unit area of active material contained and weight Wn per unit area of active material contained in negative electrode R Wp / Wn is in the range of 1.3-19.
  • FIG. 1 is a perspective view in which a main part of a nonaqueous electrolyte battery according to an embodiment of the present invention is cut away.
  • FIG. 2 is a block diagram showing a configuration of a charge / discharge control device incorporating the battery of the present invention.
  • a non-aqueous electrolyte secondary battery includes a negative electrode including an active material capable of inserting and extracting lithium, a positive electrode including a lithium composite oxide as an active material, a separator separating the negative electrode and the positive electrode, and It has a non-aqueous electrolyte with lithium ion conductivity and has an end-of-charge voltage of 4.2.
  • the nonaqueous electrolyte secondary battery of the present invention has an end-of-charge voltage of 4.2 in a normal operating state.
  • the normal operating state refers to a state in which the nonaqueous electrolyte secondary battery operates normally, and is also an operating state recommended by the battery manufacturer.
  • the end-of-charge voltage is a reference voltage for stopping the constant current charging of the battery.
  • the constant current charging of the battery is stopped.
  • constant voltage charging is performed with this reference voltage.
  • the constant voltage charging is stopped when the predetermined time is reached or when the current becomes lower than the predetermined current value.
  • the end-of-charge voltage is determined according to the design of the nonaqueous electrolyte secondary battery.
  • the end-of-charge voltage in a normal operating state is generally an upper limit voltage in the battery voltage range that is suitable or recommended for normal operation of the nonaqueous electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery of the present invention includes a weight Wp per unit area of the active material contained in the positive electrode and a unit area of the active material contained in the negative electrode in a region where the positive electrode and the negative electrode face each other.
  • the weight ratio R can be converted into a capacity ratio, but when actually manufacturing a battery, the active material is weighed and the electrode mixture is prepared. It is easier to split and clear.
  • the negative electrode active material is capable of occluding and releasing lithium.
  • the weight ratio R is in the range of 1.3 to 2.2, more preferably in the range of 1.7 to 2.0.
  • the negative electrode active material is mainly composed of an alloy or metal compound capable of occluding and releasing lithium, and the weight ratio R is in the range of 2.5 to 19.
  • the battery functions such as cycle characteristics, heat resistance, storage characteristics as well as safety are normal.
  • a high-capacity non-aqueous electrolyte secondary battery that operates can be obtained.
  • the weight ratio R when the weight ratio R is less than 1.3, or the anode active material can occlude and release lithium. If the weight ratio R is less than 2.5, the negative electrode weight is greater than the positive electrode, and the battery is stable when the battery is placed at a high temperature. Sex is reduced.
  • the weight ratio R is larger than 2.2, or in the battery in which the negative electrode active material is mainly composed of the alloy or the metal compound, If the ratio R is greater than 19, the load on the negative electrode is too large relative to the load on the positive electrode, so lithium metal may be deposited on the negative electrode over the cycle, reducing battery reliability. To do.
  • the positive electrode active material is a lithium complex oxide represented by the following formula (1).
  • M is from the group consisting of Mg ⁇ Al, Ti ⁇ Sr, Mn, Ni ⁇ Ca ⁇ V, Fe ⁇ Y ⁇ Zr ⁇ Mo, Tc ⁇ Ru ⁇ Ta ⁇ W ⁇ Re, Yb, Cu, Zn, and Ba At least one element selected: 1. 0 ⁇ x ⁇ l. 15, 0. 005 ⁇ y ⁇ 0.1.
  • the weight ratio R of the positive and negative electrode active materials is in the range of 1.5 to 2.2. Is preferred. Negative electrode active material Strength
  • the weight ratio R between the positive and negative electrode active materials is preferably in the range of 3.0 to 19! /.
  • the positive electrode active material is represented by the following formula (2). Lithium complex oxide.
  • M is at least one selected from the group consisting of Co, Mg, Al, Ti, Sr, Ca, V, Fe, Y, Zr, Mo, Tc, Ru, Ta, W, and Re force 1. 0 ⁇ 1.15, 0.l ⁇ y ⁇ 0.5, 0.l ⁇ z ⁇ 0.5, 0.9.9 ⁇ y / z ⁇ 3.0.
  • the weight ratio R of the positive and negative electrode active materials is in the range of 1.3 to 2.0. Is preferred. Negative electrode active material force
  • the weight ratio R of the positive and negative electrode active materials is preferably in the range of 2.5-18.
  • the positive electrode active material comprises a predetermined amount of the oxide A represented by the formula (1) and the oxide B represented by the formula (2). It is a mixture mixed at a ratio.
  • the weight ratio R of the positive and negative electrode active materials is preferably in the range of 1.3 to 2.2.
  • Negative electrode active material force When the main component is an alloy or metal compound capable of occluding and releasing lithium, the weight ratio R of the positive and negative electrode active materials is preferably in the range of 2.5-19.
  • the mixing ratio of the positive electrode active material A and the positive electrode active material B is preferably 9: 1 to L: 9 by weight. More preferably, it is 9: 1-5: 5.
  • the electron conductivity of the positive electrode active material A and the high capacity of the positive electrode active material B represent complementary effects, and a battery with higher capacity and excellent discharge characteristics at low temperatures can be realized.
  • the positive electrode active material of the present invention has Mg, Al, Ti, Sr, Mn, Ni, Ca, V, Fe, Y, Zr, Mo, Tc, Ru, Ta, W, Re, Sn on the surface. It is preferable that at least one metal selected from the group consisting of Bi, Cu, Si, Ga, and B, an intermetallic compound containing the metal, or an oxide of the metal is coated.
  • the gold from the positive electrode active material in the high-voltage charged state is This is because there is an effect of suppressing the genus elution, and as a result, the deterioration of the positive electrode active material accompanying the progress of the charge / discharge cycle is suppressed, and the capacity retention rate is improved.
  • the positive electrode includes an oxide represented by the formula (3) in addition to any of the positive electrode active materials described above.
  • M is at least selected from the group consisting of Li ⁇ Co, Mg, Al, Ti, Sr, Mn, Ni, Ca, V, Fe, Y, Zr, Mo, Tc, Ru, Ta, W, and Re.
  • Li ⁇ Co Li ⁇ Co, Mg, Al, Ti, Sr, Mn, Ni, Ca, V, Fe, Y, Zr, Mo, Tc, Ru, Ta, W, and Re.
  • Li ⁇ Co Li ⁇ Co, Mg, Al, Ti, Sr, Mn, Ni, Ca, V, Fe, Y, Zr, Mo, Tc, Ru, Ta, W, and Re.
  • the non-aqueous electrolyte includes a cyclic carbonate and an acyclic carbonate as a solvent.
  • Cyclic carbonates suppress electrolyte decomposition by forming a good-quality film on the negative electrode surface.
  • Acyclic carbonate reduces electrolyte viscosity and promotes electrolyte permeation into the electrode plate.
  • the proportion of cyclic carbonates in the electrolyte is preferably 10-50% by volume at 20 ° C. . If it is less than 10%, the formation of a good film on the negative electrode surface is reduced, the reactivity between the negative electrode and the electrolyte is increased, and the decomposition of the electrolyte is promoted. If it is greater than 50%, the viscosity of the electrolyte will increase, preventing the electrolyte from penetrating into the electrode plate.
  • the nonaqueous electrolyte contains Li PF as a lithium salt.
  • LiPF contains 0.5-2. OmolZl,
  • LiBF is contained in an amount of 0.01 to 0.3 mol / l. LiPF concentration is less than 0.5mol / U
  • LiBF concentration It suppresses the decomposition of electrolyte in the battery and is effective in improving cycle characteristics.
  • the nonaqueous electrolyte includes, as an additive, a group having a tertiary group or a quaternary carbon adjacent to the phenol group and the phenol group. At least one benzene derivative containing The additive has the effect of suppressing thermal runaway when the battery is overcharged.
  • the additive is preferably at least one selected from the group consisting of cyclohexylbenzene, biphenyl, and diphenyl ether.
  • the content of the additive is preferably 0.05 to 8.0% by weight, more preferably 0.1 to 6.0% by weight, based on the whole nonaqueous electrolyte.
  • the content of the additive is smaller than the above range, the effect of suppressing thermal runaway when overcharged is not observed. Further, when the content of the additive is larger than the above range, the excessive additive prevents the lithium ion from moving and causes the discharge characteristics to deteriorate.
  • the negative electrode active material used in the present invention is a carbonaceous material, alloy, and metal compound capable of occluding and releasing lithium, and conventionally known materials can be applied.
  • carbonaceous materials include pyrolytic carbons; pitches, needle coats, petroleum coats, and other coatings; graphites, glassy carbons; organic polymer compound fired bodies, such as phenolic resin
  • Carbonaceous materials such as carbon fiber and activated carbon can be raised by baking and carbonizing a polymer compound such as furan rosin at an appropriate temperature.
  • the alloy is preferably at least one of which a group force of Si, Sn, Al, Zn, Mg, Ti, and NU is also selected.
  • the metal compound includes at least one selected from the group consisting of the above-mentioned metal oxides and carbides. More preferably, at least one kind of force S selected from the group consisting of Si, Sn, S, an alloy containing Sn, and SiO. These materials can be used alone or in admixture of two or more.
  • the average particle diameter of these negative electrode active materials is not particularly limited, but is preferably 1 to 30 / ⁇ ⁇ .
  • thermoplastic resin thermosetting resin and the like are used.
  • styrene butadiene rubber polyvinylidene fluoride
  • ethylene monoacrylic acid copolymer or its (Na +) ion cross-linked product ethylene-methacrylic acid copolymer or its (Na +) ion
  • ethylene-methacrylic acid copolymer or its (Na +) ion are also used.
  • a crosslinked product, an ethylene-methyl acrylate copolymer or its (Na +) ion crosslinked product, an ethylene-methyl methacrylate copolymer or its (Na +) ionic crosslinked product is particularly preferred.
  • any electron conductive material can be used!
  • natural graphite such as flaky black lead, graphite such as artificial graphite and expanded graphite
  • carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black
  • carbon fiber metal Examples thereof include conductive fibers such as fibers; metal powders such as copper and nickel, and organic conductive materials such as polyphenylene derivatives, and these can be used alone or in combination.
  • conductive materials artificial graphite, acetylene black, and carbon fiber are particularly preferable.
  • the addition amount of the conductive material is not particularly limited, but 1 to 30 parts by weight is preferable with respect to 100 parts by weight of the negative electrode active material, and 1 to L0 parts by weight is particularly preferable.
  • the current collector for the negative electrode may be an electronic conductor that is substantially chemically stable in the battery.
  • stainless steel, nickel, copper, titanium, carbon, conductive materials In addition to the electrically conductive resin, a composite material obtained by treating the surface of copper or stainless steel with carbon, nickel or titanium can also be mentioned. Of these, copper and copper alloys are particularly preferred. The surface of these materials may be used after being oxidized. Further, it is preferable to make the current collector surface uneven by surface treatment. As the shape, oil, film, sheet, net, punched material, lath body, porous body, foamed body, molded body of fiber group, and the like are used. The thickness is not particularly limited, but is preferably 1 to 500 m.
  • the lithium ion conductive non-aqueous electrolyte is composed of a solvent, a lithium salt dissolved in the solvent, and an additive added as necessary.
  • Known materials can be used as the non-aqueous solvent. Among these, a mixture system of cyclic carbonates such as ethylene carbonate and propylene carbonate and acyclic carbonates such as dimethyl carbonate, jetyl carbonate, ethylmethyl carbonate, dipropyl carbonate, and dibutyl carbonate is preferred.
  • the volume ratio is preferably 10 to 50% of the whole solvent.
  • the lithium salt is not particularly limited in the present invention, and LiCIO, LiAsF, LiPF, LiBF, LiCF, which are usually used in nonaqueous electrolyte secondary batteries.
  • LiPF and LiBF are 0.5 and 0.5 respectively.
  • the nonaqueous electrolyte used in the present invention is not particularly limited, and any of those commonly used in nonaqueous electrolyte secondary batteries can be used. Two or more of these electrolytes can be mixed and used.
  • the additive include cyclic carbonates having an unsaturated bond such as known beylene carbonate, butyl ethylene carbonate, and dibutylene carbonate, and phenyl groups such as cyclohexyl benzene, biphenyl, and diphenyl ether.
  • i-type or two or more types of sulfur-containing organic compounds such as benzene derivatives and propane sultone containing a group having a tertiary or quaternary carbon adjacent to the above-mentioned phenyl group can be used.
  • the ratio of these additives is preferably 0.05 to 8.0% by weight and more preferably 0.1 to 6.0% of the whole nonaqueous electrolyte.
  • the separator used in the present invention has a large ion permeability and a predetermined mechanical strength.
  • An insulating microporous thin film having a degree is used.
  • the pore diameter of the separator is in a range in which the positive and negative electrode materials, the binder, and the conductive agent detached from the electrode do not permeate, for example, 0.01-1111.
  • a separator having a thickness of 10 to 300 m can be used.
  • the porosity is preferably a force determined according to the permeability of electrons and ions, the material, and the membrane pressure, and is generally 30 to 80%.
  • a polymer material in which an organic electrolyte composed of a solvent and a lithium salt dissolved in the solvent is absorbed and held can be used as a separator.
  • a polymer material holding an organic electrolyte may be included in the positive electrode mixture or the negative electrode mixture, and further integrated with the positive electrode and Z or the negative electrode.
  • any material that can absorb and retain an organic electrolyte may be used, but polyvinylidene fluoride is particularly preferable!
  • the positive electrode active material used in the present invention is a lithium composite oxide, and in particular, a part of its constituent metal elements is replaced with a third or fourth metal element (hereinafter referred to as a different metal element).
  • a different metal element such as lithium cobaltate
  • Lithium complex oxides not containing different metal elements such as lithium cobaltate
  • the battery voltage of around 4.2V positive electrode potential around 4.25V relative to metal Li
  • the phase transition from hexagonal to monoclinic When the battery is further charged, the complex oxide undergoes a phase transition to the hexagonal system, and the monoclinic system appears again from around 4.6V.
  • These monoclinic crystal structures appear when the entire crystal is distorted. Therefore, in the monoclinic complex oxide, the binding force between oxygen ions, which play a central role in maintaining the crystal structure, and the metal ions existing around them decreases, and the complex oxide is reduced. It is known that the heat resistance of objects is significantly reduced.
  • the stability of the crystal is increased by adding a small amount of a different metal to the lithium composite oxide, and the battery is set to operate normally even at a high voltage.
  • the lithium composite oxide to which a different metal is added is an oxide represented by the formula (1).
  • the value of X varies depending on the battery charge / discharge.
  • the yarn composition immediately after synthesis is 1.0 ⁇ ⁇ ⁇ 1.15 in the above formula. And are preferred. If x is 1.0 or more, the effect of suppressing the occurrence of lithium deficiency can be obtained. In order to further enhance the structural stability of the oxide as the active material, it is particularly preferable that X is 1.01 or more.
  • M in the above formula is an element necessary for crystal stability as described above.
  • the elements raised to formula (1) it is particularly preferable to use at least one selected from the group consisting of Mg, Al, Ti, Mn, Ni, Zr, Mo, and W.
  • the surface of the active material is stabilized by being covered with the above-mentioned particularly preferred element M oxide or a complex oxide of lithium and M, so that non-aqueous electrolysis is possible even at a high potential.
  • the decomposition reaction of the liquid and the crystal destruction of the positive electrode active material are suppressed.
  • the capacity reduction of the active material becomes a problem.
  • substitution of a part of Co with a suitable amount of Mg increases the stability of the crystal when Li is released by charging, and oxygen desorption is not observed.
  • the above oxides have high electronic conductivity, and as a result of the effect as a kind of conductive material, a uniform potential distribution is formed in the positive electrode. It is thought that the relative Co decreases, and as a result, the decrease in thermal stability is suppressed.
  • X is less than 1
  • a metal oxide such as Co is likely to be generated as an impurity, resulting in inconvenience of gas generation during the charge / discharge cycle.
  • the y force which is the Mg substitution amount, is less than 0.005
  • the above effect cannot be exhibited, and if it exceeds 0.1, the capacity decreases.
  • Mg improves the heat resistance by structural stability. Has the effect of further strengthening.
  • the lithium composite oxide to which a different metal is added is an oxide represented by the above formula (2).
  • the value of X varies depending on the battery charge / discharge.
  • the above-described acid oxide preferably has a composition immediately after synthesis of 1.0 ⁇ ⁇ ⁇ 1.15. If X is 1.0 or more, the effect of suppressing the occurrence of lithium deficiency can be obtained. In order to further improve the structural stability of the oxide as an active material, X is particularly preferably 1.01 or more. On the other hand, if X is less than 1, the lithium necessary for the synthesis of high-performance active materials is insufficient. In other words, the content of by-products contained in the active material increases, causing gas generation inside the battery and a decrease in capacity.
  • the lithium composite oxide represented by the formula (1) and formula (2) which is the positive electrode active material used in the present invention, is obtained by oxidizing the composite compound corresponding to the composition ratio of each metal element. It is obtained by mixing in an atmosphere and firing.
  • the raw material compound it is possible to use oxides, hydroxides, oxyhydroxides, carbonates, nitrates, organic complex salts, etc. of each metal element constituting the complex oxide alone or in combination of two or more. it can.
  • solid solutions such as oxides, hydroxides, oxyhydroxides, carbonates, nitrates, and organic complex salts of each metal element.
  • this lithium composite oxide should have a single phase, but a multiphase mixture containing some amount of other phases obtained in industrial mass production can be used as the lithium composite oxide. May be.
  • elements other than the above may be mixed as impurities as long as they are within the range of amounts normally contained in industrial raw materials.
  • the average particle diameter of the positive electrode active material is not particularly limited. However, it is preferably 1 to 30 / ⁇ ⁇ .
  • the conductive material for the positive electrode may be any electron conductive material that is substantially chemically stable in the constructed battery.
  • natural graphite such as flaky graphite, dullaphyte such as artificial graphite
  • carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black
  • conductive such as carbon fiber and metal fiber Conductive fibers
  • carbon fluoride such as aluminum
  • conductive whiskers such as acid zinc and potassium titanate
  • conductive metal oxides such as acid titanium and polyphenylene derivatives
  • Organic conductive materials such as These can be used alone or as a mixture.
  • artificial graphite and acetylene black are particularly preferable.
  • the amount of the conductive material added is not particularly limited, but 1 to 50 parts by weight is preferable with respect to 100 parts by weight of the positive electrode active material, and 1 to 30 parts by weight is particularly preferable. For carbon and graphite, 1 to 15 parts by weight is particularly preferred.
  • thermoplastic resin thermosetting resin and the like are used.
  • Ethylene-acrylic acid copolymer or its (Na +) ionic cross-linked product Ethylene-acrylic acid copolymer or its (Na +) ionic cross-linked product, ethylene-methacrylic acid copolymer or its (Na +) ionic cross-linked product, ethylene-methyl acrylate copolymer or its (Na +) ionic cross-linked product , Ethylene-methyl methacrylate copolymer or its (
  • Na + ionic cross-linked products and the like can be mentioned, and these materials can be used alone or as a mixture.
  • these materials polyvinylidene fluoride and polytetrafluorocarbon are also used.
  • Ethylene is particularly preferred.
  • the current collector for the positive electrode may be an electronic conductor that is substantially chemically stable in the battery.
  • composite materials obtained by coating the surface of aluminum or stainless steel with carbon or titanium can also be used.
  • aluminum and aluminum alloys are particularly preferred.
  • the surface of these materials may be oxidized and used.
  • a foam, a film, a sheet, a net, a punched lath body, a porous body, a foamed body, a molded body of a fiber group, or the like is used as the shape of the positive electrode current collector.
  • the thickness is not particularly limited, but is preferably 1 to 500 / ⁇ ⁇ .
  • a filler In addition to the conductive material and the binder, respectively, a filler, a dispersant, an ionic conductor, a pressure enhancer, and other various additives may be added to the positive electrode mixture and the negative electrode mixture.
  • the filler may be any fibrous material that is chemically stable in the constructed battery. Usually, polyolefin polymers such as polypropylene and polyethylene, glass fibers, and carbon fibers are used.
  • the addition amount of the filler is not particularly limited, but is preferably 0 to: LO parts by weight with respect to 100 parts by weight of the positive electrode mixture and the negative electrode mixture.
  • the non-aqueous electrolyte secondary battery of the present invention is combined with a charge control device that controls the end-of-charge voltage to a voltage set in the range of 4.25 to 4.5 V, and is combined with a mobile phone and a personal computer. It is used as a power source for such devices.
  • FIG. 2 is a block diagram showing the configuration of such a charge control device.
  • the control device shown here also includes a discharge control device.
  • the 10 represents a non-aqueous electrolyte secondary battery according to the present invention.
  • the current detector 11 is connected in series with the battery 10.
  • a voltage detector 12 is connected in parallel with the series circuit of the battery 10 and the current detector 11.
  • 16a and 16b are input terminals for charging the battery 10, and 17a and 17b are output terminals connected to the device.
  • a switching switch 15 is provided in series with the battery 10. The switch 15 is switched to the charge control unit 13 side during charging and to the discharge control unit 14 side during discharging.
  • Figure 1 shows the rectangular nonaqueous electrolyte secondary battery with a thickness of 5.2 mm, width of 34 mm, and height of 50 mm used in this example.
  • the electrode plate group 1 is configured by winding a belt-like positive electrode plate, a negative electrode plate, and a separator inserted between them in a spiral shape.
  • a positive electrode lead 2 made of aluminum and a negative electrode lead 3 made of nickel are welded to the positive electrode plate and the negative electrode plate, respectively.
  • Plate group 1 is
  • An insulating ring made of polyethylene resin is attached to the upper part of the battery case 4 and accommodated in the battery case 4 made of aluminum.
  • the end of the positive electrode lead 2 is spot welded to the aluminum sealing plate 5.
  • the end of the negative electrode lead 3 is spot welded to the lower part of the nickel negative electrode terminal 6 attached to the central part of the sealing plate 5 via the insulating gasket 7.
  • the opening of the battery case 4 and the sealing plate 5 are joined in an air-tight and liquid-tight manner by laser welding.
  • a predetermined amount of nonaqueous electrolyte is injected from the liquid injection port of the sealing plate, and then the liquid injection port is sealed by laser welding an aluminum plug 8.
  • the positive electrode was produced as follows.
  • LiCo Mg Al O was used as the positive electrode active material. 100 positive electrode active material
  • a mixture of 3 parts by weight of acetylene black as a conductive material and 5 parts by weight of polyvinylidene fluoride as a binder is mixed with an N-methylpyrrolidinone solution of polyvinylidene fluoride.
  • a paste-like positive electrode mixture was obtained.
  • the paste-like positive electrode mixture was applied to both sides of an aluminum foil current collector with a thickness of 20 m, dried, then rolled with a rolling roller, and cut into a predetermined size to obtain a positive electrode plate .
  • the amount of the active material contained in the positive electrode plate was 22.8 mgZcm 2 per unit area on one side of the current collector.
  • the negative electrode was produced as follows.
  • the negative electrode plate has a larger area than the positive electrode plate and is opposed to the positive electrode, and the negative electrode active material in a portion not opposed to the positive electrode does not participate in the charge / discharge reaction.
  • the amount of the positive electrode active material and the negative electrode active material per unit area on one side of the current collector in the portion involved in charge / discharge opposite to the counter electrode not in the portion not involved in charge / discharge is specified. It is.
  • a strip-shaped positive electrode plate and negative electrode plate prepared as described above, and a microporous polyethylene resin separator having a thickness of 25 ⁇ m inserted between the two electrodes were spirally wound.
  • the weight ratio R of the positive and negative electrode active materials was 2.0.
  • nonaqueous electrolyte a solution in which LiPF was dissolved in 1. OmolZl in a solvent in which ethylene carbonate and ethylmethyl carbonate were mixed at a volume ratio of 30:70 at 20 ° C was used.
  • batteries 1 to 5 and 7 to 9 were produced in the same manner as the battery 6 except that the weight ratio R was changed as shown in Table 1 by changing the weight of the active material of the positive electrode and the negative electrode.
  • the batteries 1 to 9 produced as described above and the battery A of the comparative example were subjected to 500 charge / discharge cycles at an ambient temperature of 20 ° C. Charging was performed at a constant current of 4.25V, 4.4V, or 4.5V for 2 hours with a maximum current of 600mA. Discharge is a constant current of 600 mA and a voltage of 3.
  • the critical temperature to thermal runaway (designated thermal runaway critical temperature) was measured.
  • Table 1 shows the weight ratio R of the positive and negative electrode active materials of the batteries of Examples and Comparative Examples
  • Table 2 shows 500 The capacity retention rate after cycling and the thermal runaway limit temperature in the heating temperature rise test are shown for each set end-of-charge voltage.
  • batteries 1 to 7 having a positive / negative active material weight ratio R in the range of 2.2 or less have a cycle characteristic that is the weight of the active materials of batteries 8 and 9 when the charging voltage is increased.
  • Ratio R is 2.2 It was even better than the larger battery.
  • the batteries 8 and 9 were analyzed by X-ray diffraction. As a result, there was no change in the crystal structure of the positive electrode active material, and no deterioration of the positive electrode was observed.
  • the weight ratio R of the positive and negative electrode active materials is as small as 2.3 or more and the weight of the negative electrode is small, the negative electrode potential during charging is large and the negative electrode potential is always low, and the reductive decomposition products of the electrolyte accumulate.
  • the charge / discharge reaction was hindered. For this reason, the migration resistance of lithium ions increased, and it was estimated that the capacity decreased with repeated cycles.
  • the battery according to the present invention exhibits high cycle characteristics even in the use region where the charge / discharge voltage is as high as 4.25V to 4.5V.
  • a battery having a positive / negative active material weight ratio R smaller than 2.2 can provide good cycle characteristics.
  • thermal runaway limit temperature is as high as 160 ° C at the charging voltage, it shows that the thermal runaway limit temperature significantly decreases as the charging voltage is increased, and the safety of the battery is reduced.
  • the thermal runaway limit temperature is maintained at 150 ° C or higher even though the charging voltage is as high as 4.5 V, and the effect of adding Mg and A1 to the positive electrode active material, which is extremely safe, clearly appears. It was confirmed that
  • batteries 4 to 7 in which the weight ratio R of the positive and negative electrode active materials is in the range of 1.5 or more and 2 or less are the thermal runaway limit temperature even when the charging voltage is increased to 4.5V. However, it was more stable at 170 ° C or higher, which was preferable.
  • the active material ratio of the negative electrode is extremely large compared to the positive electrode, so the heat generated by the decomposition reaction between the negative electrode and the electrolyte dominates the safety of the entire cell. Therefore, it is considered that the safety is slightly lowered.
  • the weight ratio R is 1.
  • the battery using the positive electrode active material of the present invention has a charge / discharge voltage of 4.25V.
  • the weight ratio R is 1
  • Batteries in the range of 5 to 2.2 have excellent cycle characteristics and safety even when the charging voltage is as high as 4.25 to 4.5 V.
  • additive element M was an element other than Mg and A1, such as Ti, Mn, Ni, Zr, Mo, and W.
  • Ponds 10 to 18 were prepared and evaluated in the same manner as in Example 1.
  • Table 3 shows the weight ratio R of the positive and negative electrode active materials.
  • Table 4 shows the capacity retention rate after 500 cycles and the thermal runaway limit temperature in the heating temperature rise test for each set end-of-charge voltage.
  • the batteries 11 to 16 using the positive electrode active material of the present invention exhibited excellent cycle characteristics and safety.
  • batteries 11 to 15 having a positive / negative active material weight ratio R in the range of 1.3 to 2.0 have cycle characteristics and safety even when the charging voltage is as high as 4.25 to 4.5 V.
  • the properties are excellent, and it was particularly preferable.
  • LiCo Mg Al O and LiNi Mn Co O as positive electrode active materials with a weight ratio of 70:30
  • Batteries 19 to 27 having the weight ratio R of the positive and negative electrode active materials shown in Table 5 were prepared in the same manner as in Example 1 except that those mixed at a ratio were used. An evaluation was conducted.
  • Table 6 shows the capacity retention rate after 500 cycles and the thermal runaway limit temperature in the heating temperature rise test. The degree is indicated for each set end-of-charge voltage.
  • the batteries 20 to 25 of the present invention showed excellent cycle characteristics and safety, and it was clear that the cycle characteristics and safety were excellent even when the charging voltage was as high as 4.25 to 4.5V. . Also, overall, the cycle characteristics at a high voltage were superior to Example 1.
  • Table 7 shows the weight of LiCo Mg Al O and LiNi Mn Co O as positive electrode active materials.
  • Batteries 28 to 37 were prepared in the same manner as in Example 1 except that the weight ratio R of the positive and negative electrode active materials was 2.0, and the discharge capacity and the low-temperature discharge characteristics were evaluated.
  • Discharge capacity is set to 600mA at an ambient temperature of 20 ° C, 4.25V, 4.4V, or 4.5V constant voltage charging is performed for 2 hours, then discharged at 600mA until the voltage drops to 3.0V. Then, each discharge capacity was measured. These discharge capacities were expressed as a ratio with respect to the discharge capacity after charging with 4.25 V of the battery 28 as 100.
  • the low-temperature discharge characteristics are measured by charging and discharging at the ambient temperatures of 20 ° C and 10 ° C under the same conditions as described above, and measuring the discharge capacity at -10 ° C to the discharge capacity at 20 ° C. expressed.
  • Table 8 shows the ratio of discharge capacity and the ratio of low-temperature discharge capacity for each battery for each set charge-off voltage.
  • the discharge capacity ratio increases as the ratio of LiNi Mn Co O in the mixed active material of the positive electrode increases.
  • the ratio of LiNi Mn Co O is especially high at 4.4V and 4.5V.
  • the increase in discharge capacity is large in batteries 29 to 37 and battery 24 in the range of 10% by weight or more. There are two possible causes for this. First, the unit weight of LiNi Mn Co O
  • the capacity per unit is large.
  • the second is LiCo, which has a relatively small irreversible capacity.
  • the weight ratio of LiCo Mg Al O and LiNi Mn Co O is 90ZlO ⁇
  • a battery 38 was produced in the same manner as the battery 6 of Example 1, except that 1.0 part by weight of cyclohexylbenzene was added to 100 parts by weight of the electrolyte. This battery 38 was subjected to an overcharge test together with battery 6. In the overcharge test, 10 discharged batteries were prepared, charged continuously for 5 hours at a maximum current of 600 mA, and the number of cells leading to thermal runaway was compared.
  • an electrolyte an electrolyte in which LiPF and LiBF were dissolved at the concentrations shown in Table 9 was used.
  • the batteries 39 to 50 were produced in the same manner as the battery 6 of Example 1 except that the cycle characteristics were evaluated.
  • Table 9 shows the capacity retention rate after 500 cycles for each set charge end voltage.
  • LiBF has a cycle power cycle.
  • Battery 45 with a concentration of 4 in the range of 0.005 molZl shows no LiBF effect and a concentration of 0.4 mol / l. In the battery 50, a decrease in cycle characteristics was observed.
  • Batteries 51 to 59 were produced in the same manner as the battery 6 of Example 1 except that the electrolyte prepared in Table 10 was used as the solvent, and the same evaluation as in Example 1 was performed.
  • Table 11 shows the capacity retention rate after 500 cycles and the thermal runaway limit temperature in the heating temperature rise test for each set charge end voltage.
  • Battery 51 using ethylene carbonate (EC) Z jetyl carbonate (DEC) with a volume mixing ratio of 30 70 as a solvent has a low thermal runaway temperature, although a slight decrease in cycle characteristics is observed. Good results were shown. Battery 52 using ECZ dimethyl carbonate (DMC) volume mixing ratio 30Z70 gave excellent results equivalent to battery 6. In addition, the battery 53 using EC / ethyl methyl carbonate (EMC) / DEC volume mixing ratio 30 Z40Z30 maintains the same excellent cycle characteristics as battery 6 and has the same excellent thermal runaway temperature as battery 51. showed that. Therefore, it became clear that better characteristics can be obtained by using EMC and DEC together.
  • EMC ethyl methyl carbonate
  • EC is a volume ratio of 10 to 50%
  • EMC is a volume ratio of 20 to 60%
  • DEC is a volume ratio of 10 to 50%.
  • excellent cycle characteristics similar to those of Battery 53 and excellent thermal runaway limit temperature were obtained.
  • batteries 55 to 58 with an EC volume ratio of 10 to 50% showed excellent characteristics equivalent to battery 6, while batteries 54 with a small EC ratio had both cycle characteristics and thermal runaway limit temperature. A decrease was observed, and the battery 59 with a large EC ratio showed a decrease in cycle characteristics. This is because the EC ratio is small, and the amount of good quality film that is formed on the negative electrode by partial decomposition of the EC. This is thought to be due to the fact that the reactivity between the negative electrode and the electrolyte is increased, and the amount of heat generated by the decomposition of the electrolyte during the cycle and the reaction between the negative electrode and the electrolyte in the heating temperature test is increased. On the other hand, when the EC ratio is large, the viscosity of the electrolyte increases, which is thought to be the result of hindering smooth electrolyte penetration into the electrode plate.
  • LiCo Mg Al O coated on the surface with the materials shown in Table 12 was used.
  • Batteries 60 to 79 were produced in the same manner as the battery 6 of Example 1 except that it was used, and the cycle characteristics were evaluated.
  • the active material surface is coated with 100 parts by weight of LiCo Mg Al O.
  • Table 12 shows the capacity retention rate after 500 cycles for each set charge end voltage.
  • the batteries 60 to 79 using the positive electrode active material whose surface was coated with each material showed an improvement in the cycle retention rate compared with the battery 6 using the active material V and the active material V. .
  • This By covering each material, the elution of metal from the positive electrode active material in a high-voltage charge state is suppressed, and as a result, the deterioration of the positive electrode active material with the progress of the cycle is suppressed, and the cycle maintenance rate is improved. It is thought that it was because it was done.
  • the metal oxide shown in Table 13 was mixed with LiCo Mg Al O.
  • Batteries 80 to 87 were produced in the same manner as the battery 6 of Example 1 except that the positive electrode plate was produced by combining them, and the cycle characteristics were evaluated. These metal oxides were mixed with 1 part by weight of each material with respect to 100 parts by weight of LiCo Mg Al O during the stirring and mixing of the positive electrode mixture.
  • Table 13 shows the capacity retention rate after 500 cycles for each set charge end voltage.
  • the negative electrode active material a mixture of SiO having an average particle diameter of 5 ⁇ m and scaly graphite at a weight ratio of 90:10 was used, and the weight ratio R of the positive and negative electrode active materials shown in Table 14 was used.
  • a battery 88 was made in the same manner as the battery 6 of Example 1, except for the above.
  • a battery B of Comparative Example was produced in the same manner as Battery A of Comparative Example of Example 1 except that the same negative electrode active material as that of Battery 88 was used and the weight ratio R shown in Table 14 was used.
  • the battery 88 and comparative batteries A and B were evaluated for discharge capacity density ratio, discharge average voltage, and cycle characteristics.
  • Each battery is charged at a constant current of 600mA at a constant current of 600mA at an ambient temperature of 20 ° C with a maximum current of 600mA and 4.V, 4.25V, 4.4V, or 4.5V.
  • the ratio of the discharge capacity density is the ratio where the discharge capacity is converted into the discharge capacity per unit weight of the total weight of the positive and negative electrode active materials, and the discharge capacity density at 4.2 V of battery A of the comparative example is 100.
  • the discharge average voltage was charged and discharged under the above conditions at an environmental temperature of 20 ° C, and the average voltage during discharge was measured.
  • Table 15 shows the discharge capacity density ratio and average discharge voltage at each set voltage
  • Table 16 shows the capacity maintenance rate after 500 cycles for each set charge end voltage.
  • battery 88 using a mixture of SiO and flaky graphite at a weight ratio of 90:10 as the negative electrode active material and battery B of the comparative example were flaky graphite as the negative electrode active material.
  • the discharge capacity per active material weight is improved for both positive and negative electrodes! Therefore, it can be seen that a high-capacity battery can be realized by using a metal compound or a negative electrode active material mainly composed of a metal compound.
  • a high voltage of 4.4V or 4.5V a higher capacity can be achieved.
  • the discharge average of the battery using the negative electrode active material mainly composed of the metal compound or metal compound is larger than that of the battery using the negative electrode active material mainly composed of the carbonaceous material.
  • the drawback is that the voltage drops.
  • a battery using a metal compound or a negative electrode active material mainly composed of a metal compound is incorporated in a conventional device having a charge end voltage of 4.2 V, the voltage drop of the battery is large when a large current flows. Therefore, there was a problem that the discharge capacity as designed could not be taken out.
  • a metal compound or a negative electrode active material mainly composed of a metal compound is used.
  • the average discharge voltage is equivalent to a battery using a negative electrode active material mainly composed of a conventional carbonaceous material.
  • 3.6 to 3.7 V Can be increased.
  • the battery B of Comparative Example using LiCoO as the positive electrode active material has 500 cycles.
  • LiCo Mg Al O is used as the positive electrode active material, while the capacity retention rate after cruising is low
  • the battery 88 has a good capacity maintenance rate. The reason for this is the same as described in Example 1.
  • the negative electrode active material As the negative electrode active material, a mixture of SiO having an average particle diameter of 5 ⁇ m and flaky graphite at a weight ratio of 90:10 was used. Except for the above, batteries 89 to 97 were produced in the same manner as in Example 1, and the same evaluation as in Example 1 was performed.
  • Table 18 shows the capacity retention rate after 500 cycles and the thermal runaway limit temperature in the heating temperature rise test for each set charge end voltage.
  • the batteries 90 to 96 using the positive electrode active material of the present invention have excellent cycle characteristics. It showed safety.
  • the batteries 91 to 96 having a positive / negative active material weight ratio R in the range of 3.0 to 19 have excellent cycle characteristics and safety even when the charging voltage is as high as 4.25 to 4.5 V. This is particularly desirable.
  • LiNi Mn Co O is used as the positive electrode active material
  • the additive element C In oxides using Mn and Ni, Zr and Mo, and LiNi Mn Co O, the additive element C
  • the non-aqueous electrolyte secondary battery according to the present invention has an end-of-charge voltage of 4.
  • the nonaqueous electrolyte secondary battery of the present invention is particularly useful as a main power source for mobile communication devices and portable electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

 リチウム複合酸化物を活物質として含む正極を備え、充電終止電圧が4.25~4.5Vに設定されている非水電解質二次電池である。正極と負極とが相対向する領域において、正極に含まれる活物質の単位面積当たりの重量Wpと負極に含まれる活物質の単位面積当たりの重量Wnとの比R=Wp/Wnが1.3~19の範囲にある。通常の作動状態での充電終止電圧を4.25V以上に設定しても、安全性、サイクル特性、および保存特性に優れている。

Description

明 細 書
非水電解質二次電池
技術分野
[0001] 本発明は、リチウムイオンを利用する非水電解質二次電池に関し、特に、好適な正 極活物質により高電圧で作動する非水電解質二次電池及び電池充放電システムに 関する。
背景技術
[0002] 近年、移動体通信機器、携帯電子機器の主電源として利用されている非水電解質 二次電池は、起電力が高ぐ高エネルギー密度である特長を有している。ここで用い られる正極活物質としてはコバルト酸リチウム(LiCoO )、ニッケル酸リチウム(LiNiO
2
)等がある。これらの活物質はリチウム (Li)に対し 4V以上の電位を有している。
2
[0003] これらの活物質を利用したリチウムイオン二次電池では、電池の充電電圧を上げる と、その分だけ容量があがるため、作動電圧の高電圧化が検討されている。
中でも、マンガン (Mn)を含むリチウムスピネル酸ィ匕物は、高電位においても安定 なため、充電上限電圧を 4. 0Vから 4. 5Vの範囲に設定する提案がされている(例え ば特許文献 1参照)。
また、主として使われているリチウム複合コバルト酸ィ匕物は、高容量で、サイクル特 性や保存特性などの諸特性に優れている。しかし、熱安定性に劣るとともに高電圧で の充放電の繰り返しにより劣化するため、通常の作動状態では、充電終止電圧は、 せいぜい 4. 2V (制御回路の誤差を含めると 4. 25V)であった。これ以上の電圧で 作動させた場合には、特に安全性に問題があった。
[0004] 充電終止電圧が 4. 2Vに設定されていても、事故等で過充電状態になると、電池 電圧が上昇することがある。そこで、過充電状態においても正極活物質の結晶構造 を安定に維持するために、複合酸ィ匕物に特定の元素を固溶させる技術が提案されて いる (例えば、特許文献 2参照)。また、特定の 2種の活物質を混合することにより、過 充電時の電池の熱安定性の向上を目指した提案もある (例えば、特許文献 3参照)。 特許文献 1:特開 2001— 307781号公報 特許文献 2:特開 2002— 203553号公報
特許文献 3 :特開 2002— 319398号公報
発明の開示
発明が解決しょうとする課題
[0005] 通常の作動状態における充電終止電圧を 4. 25V以上に設定した場合は、正極の 利用率、つまり容量が増加するが、負極の負荷は一定であるから、従来の 4. 2V基 準の電池設計をそのまま適用すると、電池容量のバランスが崩れてしまう。
[0006] 本発明はこの課題を解決し、通常の作動状態における充電終止電圧を 4. 25V以 上に設定しても、安全性はもとよりサイクル特性、耐熱性、および保存特性など電池と しての機能が正常に作動する、高容量の非水電解質二次電池を提供することを目的 とする。
課題を解決するための手段
[0007] 通常の作動状態における充電終止電圧を 4. 25V以上の様々な値に設定した場合 、正'負極の重量を従来のような一定値にすると、正極と負極の容量バランスが崩れ 、特性が悪くなる。電池の容量バランスを保っためには、正極の重量を減らし、負極 の重量を増カロさせるのが有効である。さらに、正'負極の活物質は、極板の位置によ り、対極と対向する部分とそうでない部分では、負荷 (重量あたりの容量)が異なる。
[0008] 本発明は、以上に鑑み、リチウム複合酸化物を活物質として含む正極を備え、充電 終止電圧が 4. 25-4. 5Vに設定されている非水電解質二次電池において、正極と 負極とが相対向する領域における正極および負極にそれぞれ含まれる単位面積当 たりの活物質の重量比 Rを特定の値に設定する。
すなわち、本発明の非水電解質二次電池は、リチウムを吸蔵'放出可能な活物質を 含む負極、リチウム複合酸化物を活物質として含む正極、前記負極と正極とを隔離 するセパレータ、およびリチウムイオン伝導性の非水電解質を具備し、充電終止電圧 が 4. 25-4. 5Vに設定されている非水電解質二次電池であって、前記正極と負極 とが相対向する領域において、正極に含まれる活物質の単位面積当たりの重量 Wp と負極に含まれる活物質の単位面積当たりの重量 Wnとの比 R=Wp/Wnが 1. 3〜 19の範囲にあることを特徴とする。 図面の簡単な説明
[0009] [図 1]本発明の実施例における非水電解質電池の要部を切り欠いた斜視図である。
[図 2]本発明の電池を組み込んだ充放電制御装置の構成を示すブロック図である。 発明を実施するための最良の形態
[0010] 本発明による非水電解質二次電池は、リチウムを吸蔵 ·放出可能な活物質を含む 負極、リチウム複合酸化物を活物質として含む正極、前記負極と正極とを隔離するセ パレータ、およびリチウムイオン伝導性の非水電解質を具備し、充電終止電圧が 4. 2
5〜4. 5Vに設定されている。
[0011] 本発明の非水電解質二次電池は、通常の作動状態における充電終止電圧を 4. 2
5〜4. 5Vの範囲に設定して用いても、十分な安全性を維持し、かつ正常に作動す る。
ここで、通常の作動状態とは、非水電解質二次電池が正常に作動する状態をいい 、その電池の製造者が推奨する作動状態でもある。
また、充電終止電圧とは、電池の定電流充電を停止する基準電圧をいい、充電中 の電池がその基準電圧に達すると、電池の定電流充電が停止される。通常は、その 後、この基準電圧で定電圧充電が行われる。所定の時間に達するか、所定の電流値 以下になった時点で定電圧充電が停止される。充電終止電圧は、非水電解質二次 電池の設計に応じて、あら力じめ定められる。
通常の作動状態における充電終止電圧は、一般に、非水電解質二次電池が正常 に作動する上で好適な、もしくは推奨される電池電圧領域の上限電圧である。
[0012] 本発明の非水電解質二次電池は、前記正極と負極とが相対向する領域において、 正極に含まれる活物質の単位面積当たりの重量 Wpと負極に含まれる活物質の単位 面積当たりの重量 Wnとの比 R=WpZWn (以下、単に正'負極活物質の重量比尺と いう)が 1. 3〜19の範囲にある。これによつて、正'負極の負荷のバランスが取れ、高 容量かつ信頼性に優れている。ここで、前記の重量比 Rは、容量比に換算することも できるが、電池を実際に製作する時は、活物質を重量で計り取り、電極合剤を調製 するので、重量比で規定する方が、分力りやすくて明確である。
[0013] 本発明の好ましい実施の形態において、負極の活物質は、リチウムを吸蔵 ·放出可 能な炭素質物質を主体とし、前記重量比 Rは 1. 3〜2. 2の範囲、より好ましくは 1. 7 〜2. 0の範囲にある。
本発明の他の好ましい実施の形態において、負極の活物質は、リチウムを吸蔵 ·放 出可能な合金もしくは金属化合物を主体とし、前記重量比 Rは 2. 5〜 19の範囲にあ る。
前記の実施の形態によれば、通常の作動状態における充電終止電圧を 4. 25V以 上に設定しても、安全性はもとよりサイクル特性、耐熱性、保存特性など、電池の機 能が正常に作動する、高容量な非水電解質二次電池を得ることができる。
[0014] ここで負極活物質がリチウムを吸蔵'放出可能な炭素質物質を主体とする電池にお いて、重量比 Rが 1. 3より小さい場合、または負極活物質がリチウムを吸蔵 ·放出可 能な合金もしくは金属化合物を主体とする電池において、重量比 Rが 2. 5より小さい 場合は、負極重量が正極に対して多くなり、電池が高温に置かれた場合に電池とし ての熱安定性が低下する。また、負極活物質が前記炭素質物質を主体とする電池に おいて、重量比 Rが 2. 2よりも大きい場合、または負極活物質が前記合金もしくは金 属化合物を主体とする電池において、重量比 Rが 19よりも大きい場合は、正極の負 荷に対して負極の負荷が大きすぎるため、サイクルを経過したときにリチウム金属が 負極上に析出する可能性があり、電池の信頼性が低下する。
[0015] 本発明の好ましい実施の形態において、正極活物質は下記の式(1)で表されるリ チウム複合酸ィ匕物である。
Li Co M O (1)
χ l-y y 2
式中 Mは Mgゝ Al、 Tiゝ Sr、 Mn、 Niゝ Caゝ V、 Feゝ Yゝ Zrゝ Mo、 Tcゝ Ruゝ Taゝ Wゝ Re 、 Yb、 Cu、 Zn、および Baからなる群より選ばれた少なくとも 1種の元素であり、 1. 0 ≤x≤l. 15、 0. 005≤y≤0. 1である。
[0016] ここで、負極活物質が、リチウムを吸蔵'放出可能な炭素質物質を主体とするときは 、正'負極活物質の重量比 Rは 1. 5〜2. 2の範囲であることが好ましい。負極活物質 力 リチウムを吸蔵,放出可能な合金もしくは金属化合物を主体とするときは、正 ·負 極活物質の重量比 Rは 3. 0〜 19の範囲にあることが好まし!/、。
[0017] 本発明の他の好ましい実施の形態において、正極活物質は下記の式(2)で表され るリチウム複合酸ィ匕物である。
Li Ni Mn M O (2)
x y z 1-y-z 2
式中 Mは Co、 Mg、 Al、 Ti、 Sr, Ca、 V、 Fe、 Y、 Zr、 Mo、 Tc、 Ru、 Ta、 W、およ び Re力らなる群より選ば、れた少なくとも 1種の元素であり、 1. 0≤χ≤1. 15、 0. l≤y ≤0. 5、0. l≤z≤0. 5、0. 9≤y/z≤3. 0である。
[0018] ここで、負極活物質が、リチウムを吸蔵'放出可能な炭素質物質を主体とするときは 、正'負極活物質の重量比 Rは 1. 3〜2. 0の範囲にあることが好ましい。負極活物質 力 リチウムを吸蔵,放出可能な合金もしくは金属化合物を主体とするときは、正 ·負 極活物質の重量比 Rは 2. 5〜18の範囲にあることが好ましい。
[0019] 本発明のさらに他の好ましい実施の形態においては、正極活物質は前記式(1)で 表される酸化物 Aと、前記式 (2)で表される酸化物 Bとを所定の比率で混合した混合 物である。
ここで、負極活物質が、リチウムを吸蔵'放出可能な炭素質物質を主体とするときは 、正'負極活物質の重量比 Rは 1. 3〜2. 2の範囲にあることが好ましい。負極活物質 力 リチウムを吸蔵,放出可能な合金もしくは金属化合物を主体とするときは、正 ·負 極活物質の重量比 Rは 2. 5〜 19の範囲にあることが好ましい。
[0020] リチウムを吸蔵 ·放出可能な合金もしくは金属化合物としては、 Si、 Sn、 Siまたは Sn を含む合金、および SiO力もなる群力も選ばれる少なくとも 1種力 高容量が望めるの で好ましい。
前記の正極活物質 Aと正極活物質 Bとの混合比率は、重量比で 9: 1〜: L: 9である のが好ましい。より好ましくは 9 : 1〜5: 5である。正極活物質 Aの電子伝導性と正極 活物質 Bの高容量性が相補的効果を表し、より高容量で、低温における放電特性に 優れた電池が実現できる。
[0021] 本発明の正極活物質は、その表面に、 Mg、 Al、 Ti、 Sr、 Mn、 Ni、 Ca、 V、 Fe、 Y、 Zr、 Mo、 Tc、 Ru、 Ta、 W、 Re、 Sn、 Bi、 Cu、 Si、 Ga、および Bからなる群より選ば れた少なくとも 1種の金属、その金属を含む金属間化合物、または前記金属の酸ィ匕 物を被覆されていることが好ましい。通常の作動状態での充電終止電圧が 4. 25〜4 . 5Vに設定された高電圧電池において、高電圧充電状態での正極活物質からの金 属溶出を抑制する効果があり、その結果、充放電サイクルの進行に伴う正極活物質 の劣化が抑制され、容量維持率が改善されるからである。
[0022] 本発明のさらに他の好ましい実施の形態においては、正極は、前記のいずれかの 正極活物質の他に、式(3)で表される酸ィ匕物を含んで 、る。
MO (3)
式中 Mは Liゝ Co、 Mg、 Al、 Ti、 Sr、 Mn、 Ni、 Ca、 V、 Fe、 Y、 Zr、 Mo、 Tc、 Ru、 Ta 、 W、および Reからなる群より選ばれた少なくとも 1種の元素であり、 0. 4≤x≤2. 0 である。
この実施の形態によれば、高電圧充電状態での正極活物質からの金属溶出を抑制 する効果があり、その結果、充放電サイクルの進行に伴う正極活物質の劣化が抑制 され、容量維持率が改善される。
[0023] 本発明のさらに他の好ましい実施の形態においては、非水電解質は、溶媒として 環状カーボネート類と非環状カーボネート類を含んで 、る。環状カーボネート類は、 負極表面に良質の被膜を形成することにより、電解質の分解を抑制する。また、非環 状カーボネートは、電解質の粘度を低減させて極板内への電解質の浸透を促進する 電解質中の環状カーボネート類の割合は、 20°Cにおける体積比で 10〜50%が好ま しい。 10%より小さいと、負極表面の良質な被膜形成が少なくなり、負極と電解質と の反応性が高まって、電解質の分解が促進される。 50%より大きいと、電解質の粘 度が上昇して極板内への電解質の浸透が妨げられる。
[0024] 本発明の他の好ましい実施の形態においては、非水電解質が、リチウム塩として Li PFを含んでいる。より好ましい実施の形態では、 LiPFを 0. 5〜2. OmolZl含み、
6 6
さらに LiBFを 0. 01〜0. 3mol/l含んでいる。 LiPFの濃度が 0. 5mol/Uり小さ
4 6
い場合は、サイクル経過に伴って LiPFの分解が進行し、リチウム塩の不足により正
6
常な放電が行えなくなる。 LiPF
6の濃度が 2. OmolZUりも大きい場合は、電解質の 粘度が上昇し、極板内へのスムーズな電解質の浸透が妨げられる。 LiBFは、サイク
4 ル中の電解質の分解を抑制し、サイクル特性の向上に効果がある。 LiBFの濃度が
4
0. OlmolZUり小さい場合は十分なサイクル特性の向上効果が認められず、 0. 3 molZUり大き 、場合は LiBFが分解された生成物がリチウムイオンの移動を阻害し
4
て放電特性の低下を引き起こす。
[0025] 本発明のさらに別の好ましい実施の形態においては、非水電解質は、添加剤とし て、フエ-ル基および前記フエ-ル基に隣接する第 3級もしくは第 4級炭素を有する 基を含むベンゼン誘導体の少なくとも一種を含んでいる。前記添加剤は、電池が過 充電された際の熱暴走を抑制する効果がある。
前記添加剤としては、シクロへキシルベンゼン、ビフエ-ル、およびジフエ-ルエーテ ルカ なる群より選ばれた少なくとも一種が好ましい。前記添加剤の含有量は、非水 電解質全体の 0. 05〜8. 0重量%であることが好ましぐより好ましくは 0. 1〜6. 0重 量%である。前記添加剤の含有量が前記の範囲より小さい場合は、過充電された際 の熱暴走を抑制する効果が認められない。また、前記添加剤の含有量が前記範囲よ り大きい場合は、過剰の添加剤がリチウムイオンの移動を妨げて放電特性の低下を 引き起こす。
[0026] 本発明に用いる負極活物質は、リチウムを吸蔵'放出可能な炭素質物質、合金、お よび金属化合物であり、従来より知られている公知のものを適用できる。炭素質物質 には、例えば、熱分解炭素類;ピッチコータス、ニードルコータス、石油コータス等のコ 一タス類;グラフアイト類、ガラス状炭素類;有機高分子化合物の焼成体、例えばフエ ノール榭脂、フラン榭脂等の高分子化合物を適当な温度で焼成し、炭素化したもの; 炭素繊維、活性炭素等の炭素材料が上げられる。合金は、 Si、 Sn、 Al、 Zn、 Mg、 Ti 、および NUりなる群力も選択される少なくとも一種が好ましい。金属化合物には前 記金属の酸ィ匕物および炭化物よりなる群力 選択される少なくとも一種が上げられる 。 Si、 Sn、 Sほたは Snを含む合金、および SiOからなる群から選ばれる少なくとも 1種 力 Sさらに好ましい。これらの材料は単独もしくは 2種以上を混合して用いることができ る。これらの負極活物質の平均粒径は、特に限定されないが、 1〜30 /ζ πιが好ましい
[0027] 負極用結着剤としては、熱可塑性榭脂、熱硬化性榭脂などが用いられる。例えば、 ポリエチレン、ポリプロピレン、ポリテトラフルォロエチレン、ポリフッ化ビ-リデン、スチ レンブタジエンゴム、テトラフルォロエチレン一へキサフルォロエチレン共重合体、テ トラフルォロエチレン一へキサフルォロプロピレン共重合体、テトラフルォロエチレン パーフルォロアルキルビュルエーテル共重合体、フッ化ビ-リデン一へキサフルォ 口プロピレン共重合体、フッ化ビ-リデン—クロ口トリフルォロエチレン共重合体、ェチ レンーテトラフルォロエチレン共重合体、ポリクロ口トリフルォロエチレン、フッ化ビ-リ デンーペンタフルォロプロピレン共重合体、プロピレンーテトラフルォロエチレン共重 合体、エチレン クロ口トリフルォロエチレン共重合体、フッ化ビ-リデン一へキサフ ルォロプロピレンーテトラフルォロエチレン共重合体、フッ化ビ-リデンーパーフルォ ロメチルビ-ルエーテルーテトラフルォロエチレン共重合体、エチレン アクリル酸共 重合体またはその(Na+)イオン架橋体、エチレン—メタクリル酸共重合体またはその( Na+)イオン架橋体、エチレン—アクリル酸メチル共重合体またはその(Na+)イオン架 橋体、エチレン—メタクリル酸メチル共重合体またはその (Na+)イオン架橋体が挙げ られる。これらの材料を単独または混合物として用いることができる。また、これらの材 料のなかでも、スチレンブタジエンゴム、ポリフッ化ビ-リデン、エチレン一アクリル酸 共重合体またはその(Na+)イオン架橋体、エチレン—メタクリル酸共重合体またはそ の(Na+)イオン架橋体、エチレン—アクリル酸メチル共重合体またはその(Na+)ィォ ン架橋体、エチレン—メタクリル酸メチル共重合体またはその (Na+)イオン架橋体が 特に好ましい。
[0028] 負極用導電材としては、電子伝導性材料であれば何でもよ!/ヽ。例えば、鱗片状黒 鉛などの天然黒鉛、人造黒鉛、膨張黒鉛などのグラフアイト類;アセチレンブラック、 ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマル ブラックなどのカーボンブラック類;炭素繊維、金属繊維などの導電性繊維類;銅、二 ッケルなどの金属粉末類およびポリフエ-レン誘導体などの有機導電性材料などが 挙げられ、これらを単独または混合して用いることができる。これらの導電材のなかで も、人造黒鉛、アセチレンブラック、炭素繊維が特に好ましい。導電材の添加量は、 特に限定されないが、負極活物質 100重量部に対して 1〜30重量部が好ましぐさら に 1〜: L0重量部が特に好ましい。
[0029] 負極用集電体としては、構成された電池において実質的に化学的に安定な電子伝 導体であればよい。例えば、材料としてステンレス鋼、ニッケル、銅、チタン、炭素、導 電性榭脂などの他に、銅またはステンレス鋼の表面をカーボン、ニッケルまたはチタ ンで処理して得られる複合材料も挙げられる。これらのなかでも、銅および銅合金が 特に好ましい。これらの材料の表面を酸ィ匕して用いてもよい。また、表面処理により集 電体表面に凹凸を付けることが好ましい。形状としては、フオイル、フィルム、シート、 ネット、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群の成形体などが用 いられる。厚みは、特に限定されないが、 1〜 500 mのものが好ましい。
[0030] リチウムイオン伝導性の非水電解質は、溶媒と、その溶媒に溶解するリチウム塩、及 び必要に応じて加える添加剤から構成される。非水溶媒としては、公知の材料を使 用することができる。なかでもエチレンカーボネート、プロピレンカーボネートなどの環 状カーボネート類とジメチルカーボネート、ジェチルカーボネート、ェチルメチルカ一 ボネート、ジプロピルカーボネート、ジブチルカーボネートなどの非環状カーボネート 類との混合系が好ましぐさらに環状カーボネート類が体積比で溶媒全体の 10〜50 %であることが好ましい。また、リチウム塩としては、本発明では特に限定されず、非 水電解質二次電池で通常用いられている LiCIO、 LiAsF、 LiPF、 LiBF、 LiCF
4 6 6 4 3
SO、 LiN (CF SO )、 LiN (C F SO ) F SO )、 LiB[C F (C
3 2 5 2 2、 LiN (CF SO ) (C
3 2 2 3 2 4 9 2 6 3
F ) ]などがいずれも使用できる。なかでも LiPFを 0. 5
3 2 4 6 〜2. OmolZlの範囲で用い ることが好ましぐさらには LiPFおよび LiBFをそれぞれ 0. 5
6 4 〜2. OmolZlおよび 0
. 01-0. 3molZlの範囲で用いるのが好ましい。このように本発明に用いる非水電 解質は、特に限定されず、非水電解質二次電池で通常用いられているものがいずれ も使用できる。また、これらの電解質を 2種類以上混合して用いることができる。添カロ 剤としては、公知のビ-レンカーボネート、ビュルエチレンカーボネート、ジビュルェ チレンカーボネート等の不飽和結合を有する環状カーボネート類や、シクロへキシル ベンゼン、ビフエ-ル、ジフエ-ルエーテル等のフエ-ル基および前記フエ-ル基に 隣接する第 3級もしくは第 4級炭素を有する基を含むベンゼン誘導体、プロパンサル トン等の含硫黄系有機化合物を i種または 2種以上を使用することができる。これら添 加剤の割合は、重量比で非水電解質全体の 0. 05〜8. 0%が好ましぐさらに 0. 1 〜6. 0%が好ましい。
[0031] 本発明に用いられるセパレータは、大きなイオン透過度をおよび所定の機械的強 度を有する、絶縁性の微多孔性薄膜が用いられる。また、一定温度以上で孔を閉塞 し、抵抗をあげる機能を持つことが好ましい。セパレータの孔径は、電極より脱離した 正'負極材料、結着剤、導電剤が透過しない範囲であることが望ましぐ例えば、 0. 0 1〜1 111であるのが望ましい。セパレータの厚みは、 10〜300 mのものを用いるこ とができる。また、空孔率は、電子やイオンの透過性と素材や膜圧に応じて決定され る力 一般的には 30〜80%であることが望ましい。また、ポリマー材料に、溶媒とそ の溶媒に溶解するリチウム塩とから構成される有機電解質を吸収、保持させたものを セパレータとして用いることができる。有機電解質を保持したポリマー材料を正極合 剤や負極合剤に含ませ、さらには正極および Zまたは負極と一体ィ匕することもできる 。このポリマー材料としては、有機電解質を吸収、保持できるものであればよいが、特 にポリフッ化ビニリデンが好まし!/、。
[0032] 本発明に用いる正極活物質は、リチウム複合酸化物であり、特に、その構成金属元 素の一部が第 3または第 4の金属元素(以下、異種金属元素と 、う)で置換されて 、 るものが好ましい。異種金属元素が添加されていないリチウム複合酸ィ匕物、たとえば コバルト酸リチウムは、電池電圧が 4. 2V付近 (正極電位が金属 Liに対して 4. 25V 付近)から 4. 45Vとなる充電状態では、六方晶系から単斜晶系へと相転移する。さら に電池を充電することにより、複合酸化物は六方晶系へ相転移し、 4. 6V付近から、 再度、単斜晶系が出現する。これらの単斜晶系の結晶構造は、結晶全体が歪むこと によって出現するものである。従って、単斜晶系の複合酸ィ匕物では、結晶構造を維 持する中心的役割を担っている酸素イオンと、その周囲に存在する金属イオンとの結 合力が低下し、複合酸ィ匕物の耐熱性は著しく低下することが知られている。
そこで本発明では、リチウム複合酸化物に対し、異種金属を少量添加することにより 結晶の安定性を増し、高電圧に設定された電池においても正常に作動するようにす る。
[0033] 本発明の好ましい実施の形態において、異種金属が添加されたリチウム複合酸ィ匕 物は、前記式(1)で表される酸化物である。式中 Xの値は電池の充放電により変化す る。
上記の酸ィ匕物は、合成直後の糸且成は、前記式において、 1. 0≤χ≤1. 15であるこ とが好ましい。 xが 1. 0以上であれば、リチウム欠損の発生を抑制する効果は得られ る。活物質としての前記酸ィ匕物の構造安定性をより高めるには、 Xが 1. 01以上であ ることが特に好ましい。
一方、 Xが 1未満では、高性能活物質の合成に必要なリチウムが不足する。すなわ ち、活物質に含まれる Co Oなどの副生成物の含有率が高くなり、電池内部で、 Co
3 4 3
Oに起因するガス発生、容量低下などが起こる。
4
[0034] 前記式における Mは、前述のように結晶の安定のために必要な元素である。式(1) に上げた元素のなかでは、特に、 Mg、 Al、 Ti, Mn、 Ni、 Zr、 Mo、および Wからなる 群より選んだ少なくとも 1種を用いることが好ましい。活物質の表面が、上記した特に 好ましい元素 Mの酸ィ匕物やリチウムと Mとの複合酸ィ匕物に覆われることによって安定 化され、高!ヽ電位にお!ヽても非水電解液の分解反応や正極活物質の結晶破壊が抑 制される。元素 Mの安定ィ匕の効果を得るには、少なくとも 0. 005≤yを満たす必要が あるが、 0. l <yになると、活物質の容量低下が問題になる。
[0035] 前述の正極活物質の中でも特に、式 Li Co Mg AI O (1. 0≤χ≤1. 02、 0. 00 x 1-y-z y z 2
5≤y≤0. 1、 0. 001≤z< 0. 05)で表される酸ィ匕物を用いるの力好ましい。この酸 化物を用いた正極は、リチウムに対して 4. 8Vの電位になっても熱安定性は 4. 2Vの ときとほとんど変わらない。
[0036] その詳細なメカニズムは明らかではないが、以下のように考えられる。
すなわち、 Coの一部を Mgの好適な量の置換により、充電により Liが抜けていったと きの結晶の安定性が増し、酸素の脱離などが見られなくなる。別の観点では、前記の 酸化物は、電子伝導性が高いため、ある種の導電材としての効果により、正極内に 均一な電位分布を形成し、その結果、局部的に周辺より高電圧状態となる Coが相対 的に減少し、その結果、熱安定性の低下を抑制するのではないかと考えられる。 ここで、 Xが 1未満になると、 Coなどの金属の酸ィ匕物が不純物として生成し易くなり、 充放電サイクル時のガス発生などが起こる不都合がある。また、 Mgの置換量である y 力 0. 005未満であると、上記の効果が発揮できなくなり、 0. 1を超えると、容量の低 下が見られるようになる。
[0037] 一方、 A1は、理由は定かではないが、構造安定ィ匕により、耐熱性を向上させる Mg の働きをさらに強固にする効果を有する。しかし、 A1の置換量は少量である方が好ま しぐ 0. 05以上では容量の低下が生じる。ただし、 0. 001以上であれば本発明の効 果がある。
[0038] 本発明の他の好ましい実施の形態において、異種金属が添加されたリチウム複合 酸化物は、前記式(2)で表される酸化物である。 Xの値は電池の充放電により変化す る。
上記の酸ィ匕物は、合成直後の組成は、 1. 0≤χ≤1. 15であることが好ましい。 Xが 1. 0以上であれば、リチウム欠損の発生を抑制する効果は得られる。活物質としての 前記酸ィ匕物の構造安定性をより高めるには、 Xが 1. 01以上であることが特に好まし い。一方、 Xが 1未満では、高性能活物質の合成に必要なリチウムが不足する。すな わち、活物質に含まれる副生成物の含有率が高くなり、電池内部でのガス発生、容 量低下などが起こる。
Ni量を示す yおよび Mn量を示す z力 0. l≤y≤0. 5、 0. 1≤ζ≤0. 5であり、力 つ 0. 9≤y/z≤3. 0の範囲における前記元素 Mの添カ卩により、高電圧においても 安定になる。
本発明にお 、て用いる正極活物質である式(1)および式(2)で表されるリチウム 複合酸化物は、その複合酸化物を各金属元素の組成比に相当する原料化合物を酸 化雰囲気中で混合し、焼成することにより得られる。原料化合物としては、複合酸ィ匕 物を構成する各金属元素の酸化物、水酸化物、ォキシ水酸化物、炭酸塩、硝酸塩、 有機錯塩などを単独又は 2種以上を混合して用いることができる。リチウム複合酸ィ匕 物の合成を容易にするために、各金属元素の酸化物、水酸化物、ォキシ水酸ィ匕物、 炭酸塩、硝酸塩、有機錯塩などの固溶体を用いるのが好ましい。
[0039] リチウム複合酸化物を合成する際の酸化雰囲気および焼成温度は、組成、合成量 および合成装置に依存するから、これらを考慮して決めることが好ましい。理想的に は、このリチウム複合酸ィ匕物は単一相を有するべきであるが、工業的な量産において 得られる、若干量の他相を含む複相混合物をリチウム複合酸ィ匕物として用いてもよい 。また、上記以外の元素が工業原料に通常に含まれる量の範囲内であれば、不純物 として混入していても構わない。前記正極活物質の平均粒径は、特に限定はされな いが、 1〜30 /ζ πιであることが好ましい。
[0040] 正極用導電材としては、構成された電池において実質的に化学的に安定な電子伝 導性材料であればよい。例えば、鱗片状黒鉛などの天然黒鉛、人造黒鉛などのダラ ファイト類;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブ ラック、ランプブラック、サーマルブラックなどのカーボンブラック類;炭素繊維、金属 繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類、酸ィ匕亜 鉛、チタン酸カリウムなどの導電性ウイスカ一類;酸ィ匕チタンなどの導電性金属酸ィ匕 物、あるいはポリフエ-レン誘導体などの有機導電性材料などが挙げられる。これら を単独または混合物として用いることができる。これらの導電材のなかでも、人造黒鉛 、アセチレンブラックが特に好ましい。導電材の添加量は、特に限定されないが、正 極活物質 100重量部に対して 1〜50重量部が好ましぐさらに 1〜30重量部が特に 好ましい。カーボンやグラフアイトでは、 1〜15重量部が特に好ましい。
[0041] 正極用結着剤としては、熱可塑性榭脂、熱硬化性榭脂などが用いられる。例えば、 ポリエチレン、ポリプロピレン、ポリテトラフルォロエチレン、ポリフッ化ビ-リデン、スチ レンブタジエンゴム、テトラフルォロエチレン一へキサフルォロエチレン共重合体、テ トラフルォロエチレン一へキサフルォロプロピレン共重合体、テトラフルォロエチレン パーフルォロアルキルビュルエーテル共重合体、フッ化ビ-リデン一へキサフルォ 口プロピレン共重合体、フッ化ビ-リデン—クロ口トリフルォロエチレン共重合体、ェチ レンーテトラフルォロエチレン共重合体(ETFE榭脂)、ポリクロ口トリフルォロエチレン (PCTFE)、フッ化ビ-リデン—ペンタフルォロプロピレン共重合体、プロピレンーテト ラフルォロエチレン共重合体、エチレン クロ口トリフルォロエチレン共重合体、フッ 化ビ-リデン一へキサフルォロプロピレンーテトラフルォロエチレン共重合体、フッ化 ビ-リデンーパーフルォロメチルビ-ルエーテルーテトラフルォロエチレン共重合体
、エチレン—アクリル酸共重合体またはその(Na+)イオン架橋体、エチレン—メタタリ ル酸共重合体またはその (Na+)イオン架橋体、エチレン—アクリル酸メチル共重合体 またはその(Na+)イオン架橋体、エチレン—メタクリル酸メチル共重合体またはその(
Na+)イオン架橋体などが挙げられ、これらの材料を単独または混合物として用いるこ とができる。また、これらの材料のなかでも、ポリフッ化ビ-リデン、ポリテトラフルォロ エチレンが特に好ましい。
[0042] 正極用集電体としては、構成された電池において実質的に化学的に安定な電子伝 導体であればよい。例えば、材料としてアルミニウム、ステンレス鋼、ニッケル、チタン 、炭素、導電性榭脂などの他に、アルミニウムまたはステンレス鋼の表面をカーボンま たはチタンで被覆して得られる複合材料も用いることができる。これらのなかでも、ァ ルミ-ゥムおよびアルミニウム合金が特に好まし ヽ。これらの材料の表面を酸化して 用いてもよい。また、表面処理により集電体表面に凹凸を付けることが好ましい。 正極集電体の形状としては、フオイル、フィルム、シート、ネット、パンチングされたも の、ラス体、多孔質体、発泡体、繊維群の成形体などが用いられる。厚みは、特に限 定されないが、 1〜500 /ζ πιのものが好ましい。
[0043] 正極合剤および負極合剤には、それぞれ導電材および結着剤の他に、フィラー、 分散剤、イオン伝導体、圧力増強剤およびその他の各種添加剤を加えてもよい。フィ ラーとしては、構成された電池において、化学的に安定な繊維状材料であればよい。 通常、ポリプロピレンおよびポリエチレンなどのォレフィン系ポリマー、ガラス繊維、炭 素繊維が用いられる。フィラーの添加量は特に限定されないが、正極合剤および負 極合剤 100重量部に対してそれぞれ 0〜: LO重量部が好ましい。
[0044] 本発明の非水電解質二次電池は、充電終止電圧を 4. 25〜4. 5Vの範囲で設定さ れた電圧に制御する充電制御装置と組み合わせて、携帯電話、パーソナルコンビュ ータなどの機器の電源として用いられる。
図 2は、そのような充電制御装置の構成を示すブロック図である。ここに示す制御装 置は、放電制御装置をも含んでいる。
10は本発明に係る非水電解質二次電池を表す。電池 10と直列に電流検出部 11 が接続されて 、る。電池 10と電流検出部 11との直列回路と並列に電圧検出部 12が 接続されている。 16aおよび 16bは、電池 10を充電するための入力端子であり、 17a および 17bは、機器に接続される出力端子である。電池 10と直列に切替スィッチ 15 が設けられている。スィッチ 15は、充電時には、充電制御部 13側に、また放電時に は、放電制御部 14側にそれぞれ切り替えられる。
以下、本発明の実施例を説明する。 [0045] 実施例 1
(電池の作製)
図 1に本実施例で用いた厚さ 5. 2mm、幅 34mm、高さ 50mmの角型の非水電解 質二次電池を示す。極板群 1は、帯状の正極板、負極板、および両者間に挿入した セパレータを渦巻状に卷回して構成されている。正極板と負極板には、そをれぞれァ ルミ-ゥム製正極リード 2およびニッケル製負極リード 3が溶接されている。極板群 1は
、その上部にポリエチレン榭脂製絶縁リングを装着して、アルミニウム製電池ケース 4 内に収容されている。正極リード 2の端部は、アルミニウム製封口板 5にスポット溶接さ れている。また、負極リード 3の端部は、封口板 5の中央部に絶縁ガスケット 7を介して 取り付けられたニッケル製負極端子 6の下部にスポット溶接されて 、る。電池ケース 4 の開口部と封口板 5とはレーザ溶接により気密かつ液密に接合されている。所定量 の非水電解質は、封口板の注液口から注入した後、注液口はアルミニウム製の栓 8 をレーザー溶接することにより密封される。
[0046] 正極は、次のようにして作製した。
まず、正極の活物質には LiCo Mg Al Oを用いた。この正極活物質 100重
0.94 0.05 0.01 2
量部に、導電材としてアセチレンブラックを 3重量部、および結着剤としてポリフッ化ビ ユリデンが 5重量部になるように調製されたポリフッ化ビ-リデンの N—メチルピロリジ ノン溶液を混合し、撹拌してペースト状の正極合剤を得た。次に、厚さ 20 mのアル ミニゥム箔の集電体の両面に、前記ペースト状正極合剤を塗布し、乾燥した後、圧延 ローラーで圧延し、所定寸法に裁断して正極板を得た。正極板に含まれる活物質の 量は、集電体の片面の単位面積あたり 22. 8mgZcm2であった。
[0047] 負極は以下のように作製した。
まず、平均粒径が約 20 mになるように粉砕、分級した鱗片状の黒鉛と、結着剤の スチレン一ブタジエンゴム 3重量部とを混合した後、黒鉛に対しカルボキシメチルセ ルロースが 1重量%となるようにカルボキシメチルセルロース水溶液をカ卩え、撹拌混 合してペースト状の負極合剤を得た。厚さ 15 mの銅箔の集電体の両面に、前記べ 一スト状の負極合剤を塗布し、乾燥した後、圧延ローラーで圧延し、所定寸法に裁断 して負極板を得た。負極板に含まれる活物質の量は、正極と対向する集電体の片面 の単位面積あたり 11. 4mgZcm2であった。
[0048] 負極板は正極板より面積を大きくして正極と対向させるのが一般的であり、正極と 対向しない部分の負極活物質は充放電反応に関与しない。本発明ではそのような充 放電に関与しない部分ではなぐ対極と対向して充放電に関与する部分における、 集電体の片面の単位面積あたりの正極活物質および負極活物質の量について規定 するものである。
次に、上述のように作製した帯状の正極板、負極板、および両電極間に挿入した、 厚さ 25 μ mの微多孔性ポリエチレン榭脂製セパレータを渦巻状に卷回した。正'負 極活物質の重量比 Rは 2. 0であった。
[0049] 非水電解質にはエチレンカーボネートとェチルメチルカーボネートを 20°Cにおいて 体積比 30 : 70の割合で混合した溶媒に、 LiPFを 1. OmolZl溶解したものを用いた
6 前記の捲回した極板群を電池ケースに挿入した後、電解液を注液し、密封した。この ようにして作製した電池を実施例 1の電池 6とした。
[0050] さらに、正極および負極の活物質の重量を変えることにより、重量比 Rを表 1のよう に変えた以外は電池 6と同様にして電池 1〜5および 7〜9を作製した。
比較のために、正極活物質として LiCoOのみを使用した以外は電池 6と同様にし
2
て比較例の電池 Aを作製した。
[0051] (電池の評価)
前述のように作製した電池 1から 9および比較例の電池 Aを、環境温度 20°Cで充放 電サイクルを 500回行った。充電は、最大電流を 600mAとして、 4. 25V、 4. 4V、ま たは 4. 5Vの定電圧充電を 2時間行った。放電は、 600mAの定電流で、電圧が 3.
0Vに低下するまで行った。 500サイクル経過後の放電容量を測定し、初期容量(2サ イタル目の容量)に対する比率で評価した。
[0052] また、初期容量の確認が終わった電池について、 4. 2V、 4. 25V、 4. 4V、または
4. 5Vの定電圧充電を 2時間行った後、電池を温度槽において 5°CZminで昇温し
、熱暴走に至る限界温度 (熱暴走限界温度と表記)を測定した。
表 1に実施例および比較例の電池の正'負極活物質の重量比 Rを示し、表 2に 500 サイクル後の容量維持率および加熱昇温テストにおける熱暴走限界温度を、設定さ れた充電終止電圧毎に示す。
[0053] [表 1]
Figure imgf000019_0001
[0054] [表 2]
容量維持率(%) 熱暴走限界温度(で)
4.25V 4.40V 4.50V 4.20V 4.25V 4.40V 4.50V 電池 1 76 73 70 160 154 152 150 電池 2 78 74 73 166 162 160 155 電池 3 79 76 74 170 166 164 160 電池 4 80 82 80 175 173 172 170 電池 5 81 81 80 174 172 172 170 電池 6 80 77 75 174 173 171 171 電池 7 79 74 73 173 172 172 172 電池 8 70 64 59 170 162 160 155 電池 9 65 50 40 168 158 150 150 比較 A 45 39 31 162 152 141 135
[0055] 表 2からわかるように、 LiCo Mg Al Oを正極活物質に用いた実施例の電池
0.94 0.05 0.01 2
1〜9は、 LiCoOを正極活物質に用いた比較例の電池 Aに比べて、サイクル特性が
2
良好で、特に充電電圧が高くなつた場合にお 、ても高 ヽ容量維持率を有して!/ヽる。
[0056] 劣化した電池を分解し、正極の X線回折分析を行った結果、比較例の電池におい ては、サイクル末期において、正極活物質の結晶構造が変化しており、高い電圧で 充放電を繰り返すことにより正極活物質が顕著に劣化していることがわ力つた。 一方、 LiCo Mg Al Oを用いた実施例の電池では、 500サイクルを経過した
0.94 0.05 0.01 2
後、正極の X線回折分析を行った結果、正極活物質の結晶構造は初期の構造を維 持しており、高い電圧で充放電を繰り返しても結晶構造が安定であることが確認され た。
[0057] また、正 ·負極活物質の重量比 Rが 2.2以下の範囲にある電池 1〜7は、充電電圧 を上げた場合にぉ 、てもサイクル特性は電池 8および 9の活物質の重量比 Rが 2.2 より大きい電池に比べて更に良好であった。同様に電池 8および 9の電池においては 、 X線回折による分析を行った結果、正極活物質の結晶構造に変化はなぐ正極の 劣化は認められな力つた。しかし、正'負極活物質の重量比 Rが 2. 3以上と負極重量 が小さいため、充電時における負極の負荷が大きぐ負極電位が常に低い状態にあ り、電解質の還元分解生成物が蓄積し、充放電反応を妨げていることが明らかとなつ た。このため、リチウムイオンの移動抵抗が上昇し、サイクルを重ねると容量が低下し たものと推定される。
[0058] 以上の結果より、本発明による電池は、充放電の電圧が 4. 25V〜4. 5Vと高い電 圧の使用領域においても、高いサイクル特性を示すことがわかった。特に、正'負極 活物質の重量比 Rが 2. 2より小さい電池では、良好なサイクル特性が得られることが わかった。
[0059] 次に、高い電圧に充電された電池の安全性について説明する。
表 2からわ力るように、正極活物質に LiCoOを用いた比較例の電池では、 4. 2Vの
2
充電電圧では熱暴走限界温度が 160°Cと高い安定性を示すが、充電電圧を上げて いくと顕著に熱暴走限界温度は低下し、電池としての安全性が低下していることがわ かる。これに対し本実施例の LiCo Mg Al Oを正極活物質に用いた電池 1〜9
0.94 0.05 0.01 2
では、充電電圧が 4. 5Vと非常に高くとも熱暴走限界温度は 150°C以上を維持して おり、極めて安全性が高ぐ正極活物質への Mgおよび A1の添加効果が明確に現れ ていることが確認された。
[0060] また、更に正'負極活物質の重量比 Rが 1. 5以上 2. 2以下の範囲にある電池 4〜7 は、充電電圧を 4. 5Vに上げた場合においても熱暴走限界温度が 170°C以上と更 に安定であり好まし 、ことがわ力つた。
正'負極活物質の重量比 Rが 1. 4以下の電池では、正極に比べ負極の活物質の 比率が極端に大きいため、負極と電解質との分解反応による発熱がセル全体の安全 性を支配したために、安全性がやや低下したものと考えられる。特に、重量比 Rが 1.
2の電池は良くな力つた。
[0061] 以上の結果より、本発明の正極活物質を用いた電池は、充放電の電圧が 4. 25V
〜4. 5Vと高い電圧の使用領域においても高い安全性を示すことがわ力つた。特に 、対向する単位面積における重量比 Rが 1. 5より大きい電池では、さらに高い安全性 が得られることがわ力つた。
[0062] 以上の 2つの試験結果力 総合的に考えると、正'負極活物質の重量比 Rを 1. 3〜
2. 2の範囲にすることにより、さらに高容量の電池が実現できる。特に、重量比 Rが 1
. 5〜2. 2の範囲にある電池は、充電電圧が 4. 25〜4. 5Vと高い電圧でもサイクル 特性と安全性が優れており、好ま ヽことがわ力つた。
なお、添加元素 Mが Mgおよび A1以外の元素、例えば、 Ti、 Mn、 Ni、 Zr、 Mo、お よび Wでも同様の結果が得られた。
[0063] 実施例 2
正極活物質として LiNi Mn Co Oを用いた以外は、実施例 1と同様にして、電
0.4 0.4 0.2 2
池 10〜18を作製し、実施例 1と同様の評価を行った。正'負極活物質の重量比 Rは 表 3に示す。
表 4に 500サイクル後の容量維持率および加熱昇温テストにおける熱暴走限界温 度を、設定された充電終止電圧毎に示す。
[0064] [表 3]
Figure imgf000022_0001
[0065] [表 4]
Figure imgf000023_0001
[0066] 実施例 1と同様に、本発明の正極活物質を使用した電池 11〜16は、優れたサイク ル特性と安全性を示した。特に、正'負極活物質の重量比 Rが 1. 3〜2. 0の範囲に ある電池 11〜15は、充電電圧が 4. 25〜4. 5Vと高い電圧であってもサイクル特性 と安全性が優れており、特に好ましいことがわ力つた。
なお、添カ卩元素 Mが Co以外の元素である Mg、 Al、 Ti、 Zr、 Mo、および Wでも同 様の結果が得られた。
[0067] 実施例 3
正極活物質として LiCo Mg Al Oと LiNi Mn Co Oを重量比 70 : 30の
0.94 0.05 0.01 2 0.4 0.4 0.2 2
割合で混合したものを用いた以外は、実施例 1と同様にして、表 5に示した正 '負極 活物質の重量比 Rを有する、電池 19から 27を作製し、実施例 1と同様の評価を行つ た。
表 6に 500サイクル後の容量維持率および加熱昇温テストにおける熱暴走限界温 度を、設定された充電終止電圧毎に示す。
[0068] [表 5]
Figure imgf000024_0001
[0069] [表 6] 容量;睢持率(%) 熱暴走限界温度(°C)
4.25V 4.40V 4.50V 4.20V 4.25V 4.40V 4.50V 電池 19 78 75 72 173 165 160 158 電池 20 78 77 75 172 171 172 169 電池 21 80 81 80 172 171 171 168 電池 22 81 80 80 173 172 172 169 電池 23 84 82 82 172 171 171 170 電池 24 83 82 82 171 172 172 171 電池 25 79 77 72 171 170 169 168 電池 26 67 67 63 166 157 148 147 電池 27 63 54 40 164 158 148 150 比較 A 45 39 31 162 152 141 135
[0070] 本発明の電池 20〜25は、優れたサイクル特性と安全性を示し、充電電圧が 4.25〜 4.5Vと高い電圧であってもサイクル特性と安全性が優れていることがわ力つた。また 、全体的に実施例 1に比べて高電圧でのサイクル特性が優れて 、た。
[0071] 実施例 4
正極活物質として LiCo Mg Al Oと LiNi Mn Co Oを表 7に示した重量
0.94 0.05 0.01 2 0.4 0.4 0.2 2
比により混合し、正'負極活物質の重量比 Rを 2.0としたこと以外は実施例 1と同様に して、電池 28から 37を作製し、放電容量及び低温放電特性を評価した。放電容量 は、環境温度 20°Cにおいて、最大電流を 600mAとし、 4.25V、 4.4V、または 4.5 Vの定電圧充電を 2時間行い、 600mAの電流で、電圧が 3.0Vに低下するまで放 電して、それぞれの放電容量を測定した。そして、それらの放電容量は、電池 28の 4 .25Vで充電後の放電容量を 100とし、これに対する比率で表した。低温放電特性 は、環境温度 20°Cと 10°Cにおいて、前記と同じ条件で充電と放電を行って放電 容量を測定し、 - 10°Cにおける放電容量の 20°Cにおける放電容量に対する比率で 表した。
表 8に各電池の放電容量の比率および低温放電容量の比率を、設定された充 終止電圧毎に示す。
[表 7]
Figure imgf000026_0001
[0073] [表 8]
Figure imgf000027_0001
[0074] 正極の混合活物質中、 LiNi Mn Co Oの比率が高くなるほど放電容量比率が
0.4 0.4 0.2 2
高くなつており、特に 4. 4Vおよび 4. 5Vの高電圧では LiNi Mn Co Oの比率が
0.4 0.4 0.2 2
10重量%以上の範囲にある電池 29〜37及び電池 24で放電容量の増加が大きい。 この原因には次の 2つが考えられる。その第 1は、 LiNi Mn Co Oの方が単位重
0.4 0.4 0.2 2
量あたりの容量が大きいことである。その第 2は、不可逆容量の比較的小さな LiCo
0.94
Mg Al Oと不可逆容量の比較的大きな LiNi Mn Co Oを混合することによ
0.05 0.01 2 0.4 0.4 0.2 2
り、正 ·負極間の不可逆容量差が小さくなつたことである。
[0075] 2種の正極活物質の重量比が 95Z5〜10Z90の電池 28〜36及び電池 24では、 低温放電特性の向上が認められた。また、 4. 40V、および 4. 50Vの高電圧におい ては、正極活物質の重量比が 95Z5〜50Z50の電池 28〜32及び電池 24で優れ た低温特性が認められた。これは LiCo Mg Al Oの電子伝導性が優れている
0.94 0.05 0.01 2
ためであると考えられる。
以上の結果より、 LiCo Mg Al Oと LiNi Mn Co Oを重量比 90ZlO〜
0.94 0.05 0.01 2 0.4 0.4 0.2 2
10Z90の範囲で、好ましくは 90Z10〜50Z50の範囲で混合して用いることによつ て、より高容量で、低温放電特性に優れた電池が実現できることが明ら力となった。
[0076] 実施例 5
前記電解質 100重量部にシクロへキシルベンゼンを 1. 0重量部添加した以外は実 施例 1の電池 6と同様にして、電池 38を作製した。この電池 38を電池 6と共に過充電 試験を行った。過充電試験は、放電状態の電池を 10セル準備し、最大電流 600mA で 5時間連続して充電を行 ヽ、熱暴走に至るセル数を比較した。
その結果、電池 6は 10セル中 3個が熱暴走に至った力 電池 38は 10セル全てが 熱暴走に至らな力つた。従来の 4. 2V基準で設計された電池において、過充電試験 に対する効果が報告されて ヽるシクロへキシルベンゼンは、より高電圧で設計された 電池においても過充電に対する効果を示すことがわかった。その他、ビフエニル、ジ フエ-ルエーテルにおいても電池 38と同様の結果が得られた。
[0077] 実施例 6
電解質として LiPFと LiBFを表 9に記載した濃度で溶解させた電解質を用いた以
6 4
外は実施例 1の電池 6と同様にして、電池 39から 50を作製し、サイクル特性を評価し た。
表 9には 500サイクル後の容量維持率を設定充電終止電圧毎に示す。
[0078] [表 9]
し iPF6/UBF4 容量維持率(%)
(単位: molZl) 4. 25V 4. 40V 4. 50V 電池 39 0. 4/0. 0 50 43 41 電池 40 0. 5/0. 0 71 70 70 電池 41 0. 6/0. 0 75 74 74 電池 42 1. 9/0. 0 77 75 74 電池 43 2. 0/0. 0 75 74 73 電池 44 2. 1/0. 0 61 58 55 電池 45 1. 0/0. 005 80 77 75 電池 46 1. 0/0. 01 85 84 84 電池 47 1. 0/0. 05 86 85 85 電池 48 1. 0/0. 2 85 85 84 電池 49 1. 0/0. 3 84 84 83 電池 50 1. 0/0. 4 80 78 73 LiPFの濃度が 0. 5〜2. OmolZlの電池 40〜43は、電池 6と同様の優れたサイク
6
ル特性を示した力 濃度が 0.4molZlの電池 39はサイクル維持率の低下が認めら れた。これはサイクル経過に伴って LiPFの分解が進行し、 500サイクル後にはリチ
6
ゥム塩の不足により正常な放電が行えなかったものと考えられる。また、濃度が 2. 1 molZlの電池 44でも低下が認められた力 これは濃度が高すぎることにより電解質 の粘度が上昇し、極板内へのスムーズな電解質の浸透が妨げられたことによると考え られる。
一方、 LiPFと LiBFを併用した電池 46〜49では、サイクル特性の更なる向上が認
6 4
められた。この作用機構についてはまだ明確ではないが、 LiBFにはサイクル中の電
4
解質の分解を抑制する作用があるためではないかと考えられる。ただし、 LiBF
4の濃 度が 0· 005molZlの電池 45では LiBFの効果は認められず、濃度が 0· 4mol/l の電池 50ではサイクル特性の低下が認められた。
[0080] これらの結果より、 LiPFの濃度が 0. 5〜2. OmolZlで良好なサイクル特性を得る
6
ことができ、さらに LiBFを 0. 01-0. 3molZlカ卩えることにより、更にサイクル特性が
4
向上することが明ら力となった。
[0081] 実施例 7
溶媒として表 10に記載したもので調製した電解質を用いた以外は実施例 1の電池 6と同様にして、電池 51から 59を作製し、実施例 1と同様の評価を行った。
表 11に 500サイクル後の容量維持率および加熱昇温テストにおける熱暴走限界温 度を、設定充電終止電圧毎に示す。
[0082] [表 10]
Figure imgf000030_0001
[0083] [表 11] 容量維持率(%) 熱暴走限界温度(で)
4.25V 4.40V 4.50V 4.20V 4.25V 4.40V 4.50V 電池 51 78 71 69 188 185 184 183 電池 52 80 78 75 173 172 170 170 電池 53 80 76 76 186 183 182 181 電池 54 60 51 45 168 166 164 164 電池 55 77 72 71 173 172 171 170 電池 56 80 75 73 174 172 171 171 電池 57 80 77 74 175 174 173 172 電池 58 79 76 75 175 173 173 172 電池 59 70 58 50 174 171 170 169
[0084] 溶媒としてエチレンカーボネート(EC) Zジェチルカーボネート (DEC)の体積混合 比 30 70のものを使用した電池 51は、サイクル特性の低下が若干認められるもの の、熱暴走限界温度が低いという良好な結果を示した。 ECZジメチルカーボネート( DMC)の体積混合比 30Z70を使用した電池 52は、電池 6と同等の優れた結果が 得られた。さらに、 EC/ェチルメチルカーボネート (EMC) /DECの体積混合比 30 Z40Z30を使用した電池 53は、電池 6と同等の優れたサイクル特性を維持し、電池 51と同等の優れた熱暴走限界温度を示した。したがって、 EMCと DECを併用するこ とでより優れた特性を得られることが明らカゝとなった。 また、 ECと EMCと DECを含 む電解質において、溶媒全体に対して ECが 10〜50%の体積比率であり、 EMCが 20〜60%の体積比率であり、 DECが 10〜50%の体積比率である場合に、電池 53 と同様の優れたサイクル特性と優れた熱暴走限界温度が得られた。
[0085] また、 ECの体積比率が 10〜50%の電池 55〜58は、電池 6と同等の優れた特性 を示したカ、 ECの比率が小さい電池 54ではサイクル特性、熱暴走限界温度共に低 下が認められ、 EC比率の大きい電池 59ではサイクル特性の低下が認められた。こ れは、 EC比率が小さレ、と ECの一部が分解して負極上に形成される良質な皮膜の量 が少なくなり、負極と電解質の反応性が高まるため、サイクル中の電解質の分解や、 加熱昇温テストにおける負極と電解質の反応による発熱量が大きくなつたためと考え られる。一方、 EC比率が大きいと、電解質の粘度が上昇し、極板内へのスムーズな 電解質の浸透が妨げられた結果と考えられる。
[0086] 実施例 8
正極活物質として、表 12に示した材料を表面に被覆した LiCo Mg Al Oを
0.94 0.05 0.01 2 用いた以外は、実施例 1の電池 6と同様にして電池 60から 79を作製し、サイクル特性 を評価した。
活物質表面への材料の被覆は、 LiCo Mg Al Oの 100重量部に対して、平
0.94 0.05 0.01 2
均粒径が 10 mの各被覆材料 3重量部を混合し、 Ar雰囲気下でボールミル攪拌を 20時間行うことにより実施した。
表 12には、 500サイクル後の容量維持率を設定充電終止電圧毎に示す。
[0087] [表 12]
容量維持率(%) 被覆材料
4. 25V 4. 40V 4. 50V 電池 60 Mg 83 82 82 電池 61 A1 83 83 82 電池 62 Ti 84 83 81 電池 63 Sr 83 82 81 電池 64 Mn 83 81 81 電池 65 Ni 84 80 80 電池 66 Ca 82 82 80 電池 67 Zr 83 83 81 電池 68 Mo 84 83 81 電池 69 W 83 81 80 電池 70 Sn 82 80 80 電池 71 Si 83 82 81 電池 72 MgOx(0. 4≤x≤2. 0) 83 83 81 電池 73 AlOx(0. 4≤x≤2. 0) 82 81 80 電池 74 TiOx(0. 4≤x≤2. 0) 83 82 81 電池 75 MnOx(0. 4≤x≤ 2. 0) 84 82 81 電池 76 NiOx(0. 4≤x≤2. 0) 83 82 82 電池 77 ZrOx(0. 4≤x≤2. 0) 84 83 81 電池 78 MoOx(0. 4≤x≤2. 0) 83 80 80 電池 79 WOx(0. 4≤x≤2. 0) 84 82 81
各材料で表面を被覆した正極活物質を用いた電池 60〜79は、そのような被覆をし て ヽな 、活物質を用 V、た電池 6に比べてサイクル維持率の向上が認められた。これ は、各材料で被覆を行うことにより、高電圧充電状態での正極活物質からの金属の 溶出が抑制され、その結果サイクル経過に伴う正極活物質の劣化が抑制され、サイ クル維持率が改善されたためと考えられる。
[0089] 実施例 9
正極活物質として、 LiCo Mg Al Oにカ卩えて表 13に示した金属酸ィ匕物を混
0.94 0.05 0.01 2
合させて正極板を作製した以外は、実施例 1の電池 6と同様にして電池 80から 87を 作製し、サイクル特性を評価した。これらの金属酸化物は、正極合剤の攪拌混合の 際に、 LiCo Mg Al Oの 100重量部に対して、各材料 1重量部を混合させた。
0.94 0.05 0.01 2
表 13に 500サイクル後の容量維持率を設定充電終止電圧毎に示す。
[0090] [表 13]
Figure imgf000034_0001
[0091] 正極に各種金属酸化物を混合した電池 80〜87は、これら金属酸化物を混合しな い正極板を用いた電池 6に比べてサイクル維持率の向上が認められた。これは、正 極板に各酸ィ匕物を含ませることにより、高電圧充電状態での正極活物質力 の金属 の溶出が抑制され、その結果サイクル経過に伴う正極活物質の劣化が抑制され、容 量維持率が改善されたためと考えられる。 [0092] 実施例 10
負極活物質として平均粒径が 5 μ mの SiOと鱗片状の黒鉛とを重量比 90 : 10で混 合させたものを用い、表 14に示した正 ·負極活物質の重量比 Rとした以外は、実施例 1の電池 6と同様にしで電池 88を作製した。また、電池 88と同じ負極活物質を用い、 表 14に示した重量比 Rとした以外は、実施例 1の比較例の電池 Aと同様にして比較 例の電池 Bを作製した。電池 88および比較例の電池 Aおよび Bについて、放電容量 密度比率、放電平均電圧、サイクル特性を評価した。
[0093] 各電池を環境温度 20°Cにおいて、最大電流を 600mAとして、 4. 20V、 4. 25V、 4. 4V、または 4. 5Vの定電圧充電を 2時間行い、 600mAの定電流で電圧が 3. 0V に低下するまで放電して、それぞれの放電容量を測定した。放電容量密度の比率は 、前記の放電容量を正 ·負極活物質の合計重量の単位重量あたりの放電容量に換 算し、比較例の電池 Aの 4. 2Vでの放電容量密度を 100として比率で表した。放電 平均電圧は、環境温度 20°Cにおいて、前記の条件で充電および放電を行い、放電 時の平均電圧を測定した。
表 15に放電容量密度比率および各設定電圧での放電平均電圧を、表 16に 500 サイクル後の容量維持率を、それぞれ設定充電終止電圧毎に示す。
[0094] [表 14]
Figure imgf000035_0001
[0095] [表 15] 放電容量密度比率 放電平均電圧(V)
4.20V 4.25V 4.40V 4.50V 4.20V 4.25V 4.40V 4.50V 電池 88 117 122 130 135 3. 58 3. 68 比較 A 100 104 111 115 3. 60 3. 75 3. 84 比較 B 117 122 130 135 3. 44 3. 68
[0096] [表 16]
〇 〇
Figure imgf000036_0001
o t
[0097] 表 14より、負極活物質として SiOと鱗片状の黒鉛とを重量比 90: 10で混合させたも のを用いた電池 88及び比較例の電池 Bは、負極活物質として鱗片状黒鉛を用いた 比較例の電池 Aに比べて正 '負極ともに活物質重量あたりの放電容量が向上して!/ヽ る。したがって、金属化合物もしくは金属化合物を主体とする負極活物質を用いるこ とにより、高容量の電池が実現できることがわかる。さらに 4.4Vや 4.5Vの高電圧と することで、より高容量ィ匕が可能となる。しかし、表 15から明らかなように、金属化合 物もしくは金属化合物を主体とする負極活物質を用いた電池では、従来の炭素質物 質を主体とする負極活物質を用いた電池に比べて放電平均電圧が低下するという欠 点がある。これにより、金属化合物もしくは金属化合物を主体とする負極活物質を用 いた電池を、従来の充電終止電圧が 4.2Vの機器に組み込んだ場合、大電流が流 れた際に電池の電圧降下が大きくなり、設計通りの放電容量が取り出せないという問 題があった。
[0098] 本発明によると、金属化合物もしくは金属化合物を主体とする負極活物質を用いた 電池を、 4. 4Vや 4. 5Vの高電圧で使用することにより、平均放電電圧を、従来の炭 素質物質を主体とする負極活物質を用いた電池と同等の 3. 6〜3. 7Vまで高めるこ とができる。また、この電池を機器に組み込んだ場合に、大電流が流れた際も電圧降 下による機器の停止が回避され、設計通りの放電容量を取り出すことができる。 また、表 16から明らかなように、負極活物質として金属化合物もしくは金属化合物を 主体として用いた場合、正極活物質に LiCoOを用いた比較例の電池 Bは、 500サイ
2
クル後の容量維持率が低いのに対して、正極活物質に LiCo Mg Al Oを用い
0.94 0.05 0.01 2 た電池 88は、容量維持率が良好である。この理由は実施例 1で述べた内容と同じで ある。
[0099] 実施例 11
負極活物質として平均粒径が 5 μ mの SiOと鱗片状の黒鉛とを重量比 90 : 10の割 合で混合したものを用い、表 17に示した正 ·負極活物質の重量比 Rとした以外は、実 施例 1と同様にして電池 89〜97を作製し、実施例 1と同様の評価を行った。
表 18に 500サイクル後の容量維持率および加熱昇温テストにおける熱暴走限界温 度を、設定充電終止電圧毎に示す。
[0100] [表 17]
活物質重量 負極活物質 重量
正極活物質 \ g/ cm2) 比 R
正極 負極
SiOZ鱗片状
電池 89 LiCo0 94Mg0. ο5Α1ο. οι°2 2. 0 18. 8 9. 4 黒鉛(90/10)
SiOZ鱗片状
電池 90 LiCo0 94Mg0. OS IQ. OI°2 2. 5 19. 3 7. 7 黒鉛(90 0)
SiOZ鱗片状
電池 91 LiCo0 94Mg0. osA1o. oi°2 3. 0 19. 8 6. 6 黒鉛(90 0)
SiO/鱗片状
電池 92 LiCo0.94Mg0.05A10.01O2 5. 0 20. 3 4. 1 黒鉛(90 0)
SiOZ鱗片状
電池 93 LiCo0.94Mg0.05Al0 01O2 8. 0 21. 5 2. 7 黒鉛(90 0)
SiOZ鱗片状
電池 94 LiCo0.94Mg0.05A10 oi02 14. 0 22. 8 1. 6 黒鉛(90/10)
SiO/鱗片状
電池 95 LiCo0 g4Mg0.05A10.0iO2 18. 0 23. 7 1. 3 黒鉛(90 0)
SiOZ鱗片状
電池 96 LiCo0 94Mg0.05A10.0i°2 19. 0 24. 3 1. 3 黒鉛(90/10)
SiO/鱗片状
電池 97 LiCo0.94MgQ 05A10.01O2 20. 0 24. 8 1. 2 黒鉛(90/ 10) 18」
容量維持率(%) 熱暴走限界温度(°C)
4.25V 4.40V 4.50V 4.20V 4.25V 4.40V 4.50V 電池 89 73 71 69 159 153 153 149 電池 90 77 72 72 167 163 160 156 電池 91 80 77 77 169 166 166 166 電池 92 79 79 78 174 172 170 170 電池 93 80 79 79 172 170 170 170 電池 94 79 77 76 174 173 171 170 電池 95 78 75 75 172 171 171 171 電池 96 78 75 74 171 168 168 167 電池 97 66 52 43 167 155 149 149
[0102] 実施例 1と同様に、金属化合物もしくは金属化合物を主体とする負極活物質を用い た電池においても、本発明の正極活物質を使用した電池 90〜 96は、優れたサイク ル特性と安全性を示した。
特に、正'負極活物質の重量比 Rが 3.0〜19の範囲にある電池 91から 96は、充電 電圧が 4.25〜4.5Vと高い電圧であってもサイクル特性と安全性が優れており、特 に好ましいことがわ力 た。また、正極活物質として LiNi Mn Co Oを用いた場
0.4 0.4 0.2 2
合も同様の結果が得られた。
正極活物質として LiCo Mg Al Oと LiNi Mn Co Oとを重量比 70 :30の
0.94 0.05 0.01 2 0.4 0.4 0.2 2
割合で混合したものを用いた場合も同様の結果が得られた。
[0103] LiCo Mg Al Oにおいて、添加元素 Mgと Alの代わりに、それぞれ Tiと W、
0.94 0.05 0.01 2
Mnと Ni、 Zrと Moを用いた酸化物、及び LiNi Mn Co Oにおいて、添カ卩元素 C
0.4 0.4 0.2 2
oの代わりに Mg、 Al、 Ti, Zr、 Moまたは Wを用いた酸ィ匕物でも同様の結果が得られ た。
また、正極の結着剤としてポリテトラフルォロエチレンを用いても同様の効果が得ら れた。
産業上の利用可能性
本発明にかかる非水電解質二次電池は、通常の作動状態での充電終止電圧を 4.
25V以上に設定しても、安全性やサイクル特性等に優れる。したがって、本発明の非 水電解質二次電池は、特に、移動体通信機器および携帯電子機器の主電源として 有用である。

Claims

請求の範囲
[1] リチウムを吸蔵'放出可能な活物質を含む負極、リチウム複合酸化物を活物質とし て含む正極、前記負極と正極とを隔離するセパレータ、およびリチウムイオン伝導性 の非水電解質を具備し、充電終止電圧が 4. 25〜4. 5Vに設定されている非水電解 質二次電池であって、前記正極と負極とが相対向する領域において、正極に含まれ る活物質の単位面積当たりの重量 Wpと負極に含まれる活物質の単位面積当たりの 重量 Wnとの比 R= WpZWnが 1. 3〜 19の範囲にあることを特徴とする非水電解質 二次電池。
[2] 前記負極の活物質が、炭素質物質を主体とし、前記比 Rが、 1. 3〜2. 2の範囲に ある請求項 1記載の非水電解質二次電池。
[3] 前記リチウム複合酸化物が、式 Li Co M O (Mは Mg、 Al、 Ti、 Sr、 Mn、 Ni、 Ca x l-y y 2
、 V、 Fe、 Y、 Zr、 Mo、 Tc、 Ru、 Ta、 W、 Re, Yb、 Cu、 Zn、および Baからなる群より 選ばれた少なくとも 1種であり、 1. 0≤χ≤1. 15、 0. 005≤y≤0. 1である。)で表さ れる酸ィヒ物であり、前記比 Rが 1. 5〜2. 2の範囲にある請求項 2記載の非水電解質 二次電池。
[4] 前記リチウム複合酸化物が、式 Li Ni Mn M O (Mは Co、 Mg、 Al、 Ti、 Sr、 Ca x y z 1-y-z 2
、 V、 Fe、 Y、 Zr、 Mo、 Tc、 Ru、 Ta、 W、および Reからなる群より選ばれた少なくとも 1種であり、 1. 0≤χ≤1. 15、 0. l≤y≤0. 5、 0. 1≤ζ≤0. 5であり、力つ 0. 9≤y Zz≤3. 0である。)で表される酸ィ匕物であり、前記比 Rが 1. 3〜2. 0の範囲にある請 求項 2記載の非水電解質二次電池。
[5] 前記リチウム複合酸化物が、式 Li Co M O (Mは Mg、 Al、 Ti、 Sr、 Mn、 Ni、 Ca x l-y y 2
、 V、 Fe、 Y、 Zr、 Mo、 Tc、 Ru、 Ta、 W、 Re, Yb、 Cu、 Zn、および Baからなる群より 選ばれた少なくとも 1種であり、 1. 0≤χ≤1. 15、 0. 005≤y≤0. 1である。)で表さ れる酸化物 Aと、式 Li Ni Mn M O (Mは Co、 Mgゝ Al、 Ti、 Srゝ Caゝ V、 Feゝ Y、 x y z 1-y-z 2
Zr、 Mo、 Tc、 Ru、 Ta、 W、および Reからなる群より選ばれた少なくとも 1種であり、 1 . 0≤χ≤1. 15、 0. l≤y≤0. 5、 0. 1≤ζ≤0. 5であり、力つ 0. 9≤y/z≤3. 0で ある。)で表される酸化物 Bとを含み、前記比 Rが 1. 3〜2. 2の範囲にある請求項 2記 載の非水電解質二次電池。
[6] 前記酸化物 Aと酸化物 Bとの重量比が 9: 1〜1: 9である請求項 5記載の非水電解 質二次電池。
[7] 前記酸化物 Aと酸化物 Bとの重量比が 9: 1〜5: 5である請求項 5記載の非水電解 質二次電池。
[8] 前記負極の活物質が、合金もしくは金属化合物を主体とし、前記比 Rが 2. 5〜19 の範囲にある請求項 1記載の非水電解質二次電池。
[9] 前記負極の活物質が、 Si、 Sn、 Sほたは Snを含む合金、および SiO力もなる群か ら選ばれる請求項 8記載の非水電解質二次電池。
[10] 前記リチウム複合酸化物が、式 Li Co M O (Mは Mg、 Al、 Ti、 Sr、 Mn、 Ni、 Ca x l-y y 2
、 V、 Fe、 Y、 Zr、 Mo、 Tc、 Ru、 Ta、 W、 Re, Yb、 Cu、 Zn、および Baからなる群より 選ばれた少なくとも 1種であり、 1. 0≤χ≤1. 15、 0. 005≤y≤0. 1である。)で表さ れる酸化物であり前記比 Rが 3. 0〜 19の範囲にある請求項 8記載の非水電解質二 次電池。
[11] 前記リチウム複合酸化物が、式 Li Ni Mn M O (Mは Co、 Mg、 Al、 Ti、 Sr、 Ca x y z 1-y-z 2
、 V、 Fe、 Y、 Zr、 Mo、 Tc、 Ru、 Ta、 W、および Reからなる群より選ばれた少なくとも 1種であり、 1. 0≤χ≤1. 15、 0. l≤y≤0. 5、 0. 1≤ζ≤0. 5であり、力つ 0. 9≤y Zz≤3. 0である。)で表される酸ィ匕物であり、前記比 Rが 2. 5〜18の範囲にある請 求項 8記載の非水電解質二次電池。
[12] 前記リチウム複合酸化物が、式 Li Co M O (Mは Mg、 Al、 Ti、 Sr、 Mn、 Ni、 Ca x l-y y 2
、 V、 Fe、 Y、 Zr、 Mo、 Tc、 Ru、 Ta、 W、 Re, Yb、 Cu、 Zn、および Baからなる群より 選ばれた少なくとも 1種であり、 1. 0≤χ≤1. 15、 0. 005≤y≤0. 1である。)で表さ れる酸化物 Aと、式 Li Ni Mn M O (Mは Co、 Mgゝ Al、 Ti、 Srゝ Caゝ V、 Feゝ Y、 x y z 1-y-z 2
Zr、 Mo、 Tc、 Ru、 Ta、 W、および Reからなる群より選ばれた少なくとも 1種であり、 1 . 0≤χ≤1. 15、 0. l≤y≤0. 5、 0. 1≤ζ≤0. 5であり、力つ 0. 9≤y/z≤3. 0で ある。)で表される酸化物 Bを含み、前記比 Rが 2. 5〜19の範囲にある請求項 8記載 の非水電解質二次電池。
[13] 前記酸ィ匕物 Aと酸ィ匕物 Bとの重量比が 9 : 1〜1: 9である請求項 12に記載の非水電 解質二次電池。
[14] 前記酸ィ匕物 Aと酸ィ匕物 Bとの重量比が 9 : 1〜5 : 5である請求項 12に記載の非水電 解質二次電池。
[15] 前記リチウム複合酸化物が、その表面に、 Mg、 Al、 Ti、 Sr、 Mn、 Ni、 Ca、 V、 Fe、 Y、 Zr、 Mo、 Tc、 Ru、 Ta、 W、 Re、 Sn、 Bi、 Cu、 Si、 Ga、および B力らなる群より選 ばれた少なくとも 1種の金属、その金属を含む金属間化合物、または前記金属の酸 化物を被覆している請求項 1〜14のいずれかに記載の非水電解質二次電池。
[16] 前記正極が、さらに式 MOx (Mは Li、 Co、 Mg、 Al、 Ti、 Sr、 Mn、 Ni、 Ca、 V、 Fe 、 Y、 Zr、 Mo、 Tc、 Ru、 Ta、 W、および Reからなる群より選ばれた少なくとも 1種であ り、 0. 4≤x≤2. 0である。)で表される酸ィ匕物を含む請求項 1〜 15のいずれか〖こ記 載の非水電解質二次電池。
[17] 前記非水電解質が、溶媒として環状カーボネート類と非環状カーボネート類を含む 請求項 1〜16のいずれかに記載の非水電解質二次電池。
[18] 前記非水電解質の溶媒成分中の環状カーボネート類の割合が、 20°Cにおける体 積比で 10〜50%である請求項 17に記載の非水電解質二次電池。
[19] 前記非水電解質が、リチウム塩として LiPFを含む請求項 1〜16のいずれかに記
6
載の非水電解質二次電池。
[20] 前記非水電解質が、リチウム塩として 0. 5〜2. OmolZlの LiPFと 0. 01〜0. 3mo
6
1Z1の LiBFとを含む請求項 19に記載の非水電解質二次電池。
4
[21] 前記非水電解質が、溶媒として環状カーボネート類と非環状カーボネート類を含み 、溶媒成分中の環状カーボネート類の割合が体積比で 10〜50%であり、リチウム塩 として 0. 5〜2. OmolZlの LiPFと 0. 01〜0. 3molZlの LiBFとを含む請求項 1〜
6 4
16の 、ずれかに記載の非水電解質二次電池。
[22] 前記非水電解質が、添加剤として、フ -ル基および前記フ -ル基に隣接する第
3級もしくは第 4級炭素を有する基を含むベンゼン誘導体の少なくとも一種を含む請 求項 1〜21のいずれかに記載の非水電解質二次電池。
[23] 前記添加剤が、シクロへキシルベンゼン、ビフエ-ル、およびジフエ-ルエーテルか らなる群より選ばれた少なくとも一種であり、その非水電解質中の含有割合が重量比 で 0. 05〜8. 0%である請求項 22に記載の非水電解質二次電池。 前記添加剤の非水電解質中の含有割合が重量比で 0. 1〜6. 0%である請求項 2 に記載の非水電解質二次電池。
PCT/JP2005/021046 2004-11-19 2005-11-16 非水電解質二次電池 WO2006054604A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/667,110 US20080118833A1 (en) 2004-11-19 2005-11-16 Non-Aqueous Electrolyte Secondary Battery
US13/191,148 US20110281165A1 (en) 2004-11-19 2011-07-26 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-335661 2004-11-19
JP2004335661 2004-11-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/191,148 Division US20110281165A1 (en) 2004-11-19 2011-07-26 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2006054604A1 true WO2006054604A1 (ja) 2006-05-26

Family

ID=36407144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021046 WO2006054604A1 (ja) 2004-11-19 2005-11-16 非水電解質二次電池

Country Status (4)

Country Link
US (2) US20080118833A1 (ja)
KR (1) KR100823816B1 (ja)
CN (1) CN100502137C (ja)
WO (1) WO2006054604A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207697A (ja) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd 扁平型非水電解液二次電池
JP2008041570A (ja) * 2006-08-09 2008-02-21 Sony Corp 非水電解質二次電池用正極活物質およびその製造方法、ならびに非水電解質二次電池
US8293406B2 (en) * 2007-09-26 2012-10-23 Sanyo Electric Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery, process for preparing the same, and positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US8911903B2 (en) 2006-07-03 2014-12-16 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
US9077024B2 (en) 2006-03-17 2015-07-07 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
WO2015136881A1 (ja) * 2014-03-11 2015-09-17 三洋電機株式会社 非水電解質二次電池
US9231276B2 (en) 2006-06-02 2016-01-05 Mitsubishi Chemical Corporation Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3510829B2 (ja) * 1999-12-14 2004-03-29 三洋電機株式会社 データ記録装置
KR101234965B1 (ko) 2007-11-06 2013-02-20 파나소닉 주식회사 비수전해질 이차전지용 양극 활물질 및 그것을 이용한 비수전해질 이차전지
MY156504A (en) * 2008-11-24 2016-02-26 Univ Singapore A cathode material for a battery with improved cycle performance at a high current density
JP5381330B2 (ja) * 2009-05-27 2014-01-08 住友化学株式会社 電極合剤、電極および非水電解質二次電池
US9893377B2 (en) 2009-09-25 2018-02-13 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
EP2958181B1 (en) * 2010-02-12 2017-06-14 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery
WO2012169030A1 (ja) * 2011-06-08 2012-12-13 トヨタ自動車株式会社 リチウムイオン二次電池
JP2013084566A (ja) * 2011-09-30 2013-05-09 Fuji Heavy Ind Ltd 非水電解質二次電池
US9263906B2 (en) * 2011-10-20 2016-02-16 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for lithium-ion secondary battery
US20130171524A1 (en) * 2011-12-30 2013-07-04 Sk Innovation Co., Ltd. Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
JP2013182836A (ja) * 2012-03-02 2013-09-12 Honda Motor Co Ltd リチウムイオン伝導性電解質及びそれを用いるリチウムイオン二次電池
CN104137320B (zh) * 2012-04-17 2017-08-29 株式会社Lg 化学 具有优异性能的锂二次电池
US20160056463A1 (en) * 2013-03-27 2016-02-25 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
CN106463715B (zh) * 2014-03-18 2020-08-04 株式会社Lg 化学 正极活性材料和包含其的锂二次电池
WO2015160773A1 (en) * 2014-04-15 2015-10-22 Wildcat Discovery Technologies Inc. Electrolyte formulations
KR102189550B1 (ko) 2014-06-11 2020-12-11 삼성에스디아이 주식회사 리튬 이차 전지
CN105990865A (zh) * 2015-02-06 2016-10-05 中兴通讯股份有限公司 一种蓄电池装置及其充放电监控方法、装置及相应的系统
JP6723074B2 (ja) * 2015-06-01 2020-07-15 マクセルホールディングス株式会社 リチウムイオン二次電池
US10128537B2 (en) 2016-08-30 2018-11-13 Wildcat Discovery Technologies, Inc. Electrolyte formulations for electrochemical cells containing a silicon electrode
WO2020017581A1 (ja) * 2018-07-19 2020-01-23 株式会社Gsユアサ 非水電解質蓄電素子、及び蓄電装置

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275321A (ja) * 1993-03-18 1994-09-30 Toshiba Corp リチウム二次電池
JPH0997611A (ja) * 1995-09-29 1997-04-08 Toray Ind Inc 電池用電極および二次電池
JPH09274934A (ja) * 1996-04-08 1997-10-21 Toray Ind Inc 非水電解液系二次電池
JPH09283115A (ja) * 1996-04-11 1997-10-31 Sumitomo Electric Ind Ltd 非水電解質二次電池およびその電極の製造方法
JP2002203553A (ja) * 2000-12-28 2002-07-19 Sony Corp 正極活物質及び非水電解質二次電池
JP2002260725A (ja) * 2001-03-06 2002-09-13 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2002319398A (ja) * 2001-04-20 2002-10-31 Matsushita Electric Ind Co Ltd 非水電解質二次電池
WO2003044882A1 (fr) * 2001-11-20 2003-05-30 Tdk Corporation Materiau actif d'electrode, electrode, element d'accumulateur au lithium-ion, procede de production de materiau actif d'electrode et procede de production d'element d'accumulateur au lithium-ion
JP2003249262A (ja) * 2001-01-29 2003-09-05 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2003272618A (ja) * 2002-03-12 2003-09-26 Mitsubishi Electric Corp 正極活物質およびその製造方法並びに上記正極活物質を用いたリチウムイオン二次電池
JP2003323893A (ja) * 2002-03-01 2003-11-14 Matsushita Electric Ind Co Ltd 正極活物質、その製造方法および非水電解質二次電池
JP2004134261A (ja) * 2002-10-11 2004-04-30 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2004134236A (ja) * 2002-10-10 2004-04-30 Japan Storage Battery Co Ltd 非水系二次電池
JP2004342500A (ja) * 2003-05-16 2004-12-02 Matsushita Electric Ind Co Ltd 非水電解質二次電池および電池充放電システム
JP2005032632A (ja) * 2003-07-08 2005-02-03 Hitachi Maxell Ltd 非水二次電池の製造方法
JP2005158285A (ja) * 2003-11-20 2005-06-16 Tdk Corp リチウムイオン二次電池の充電方法、充電装置および電力供給装置
JP2005259617A (ja) * 2004-03-15 2005-09-22 Shin Kobe Electric Mach Co Ltd リチウムイオン二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573266B1 (en) * 1992-06-01 1999-12-08 Kabushiki Kaisha Toshiba Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
US5401599A (en) * 1992-10-02 1995-03-28 Seiko Instruments Inc. Non-aqueous electrolyte secondary battery and method of producing the same
DE69637513T2 (de) * 1995-03-06 2009-06-04 Ube Industries, Ltd., Ube Nichtwässrige Lithium-Sekundärzelle
JP2000243396A (ja) * 1999-02-23 2000-09-08 Hitachi Ltd リチウム二次電池とその製造方法及びその負極材並びに電気機器
KR100632979B1 (ko) * 2000-11-16 2006-10-11 히다치 막셀 가부시키가이샤 리튬 함유 복합 산화물 및 이것을 이용한 비수 2차 전지,및 그 제조 방법
KR100444410B1 (ko) * 2001-01-29 2004-08-16 마쯔시다덴기산교 가부시키가이샤 비수전해액이차전지
JP4025995B2 (ja) * 2002-11-26 2007-12-26 信越化学工業株式会社 非水電解質二次電池負極材及びその製造方法並びにリチウムイオン二次電池
JP3844733B2 (ja) * 2002-12-26 2006-11-15 松下電器産業株式会社 非水電解質二次電池

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275321A (ja) * 1993-03-18 1994-09-30 Toshiba Corp リチウム二次電池
JPH0997611A (ja) * 1995-09-29 1997-04-08 Toray Ind Inc 電池用電極および二次電池
JPH09274934A (ja) * 1996-04-08 1997-10-21 Toray Ind Inc 非水電解液系二次電池
JPH09283115A (ja) * 1996-04-11 1997-10-31 Sumitomo Electric Ind Ltd 非水電解質二次電池およびその電極の製造方法
JP2002203553A (ja) * 2000-12-28 2002-07-19 Sony Corp 正極活物質及び非水電解質二次電池
JP2003249262A (ja) * 2001-01-29 2003-09-05 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2002260725A (ja) * 2001-03-06 2002-09-13 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2002319398A (ja) * 2001-04-20 2002-10-31 Matsushita Electric Ind Co Ltd 非水電解質二次電池
WO2003044882A1 (fr) * 2001-11-20 2003-05-30 Tdk Corporation Materiau actif d'electrode, electrode, element d'accumulateur au lithium-ion, procede de production de materiau actif d'electrode et procede de production d'element d'accumulateur au lithium-ion
JP2003323893A (ja) * 2002-03-01 2003-11-14 Matsushita Electric Ind Co Ltd 正極活物質、その製造方法および非水電解質二次電池
JP2003272618A (ja) * 2002-03-12 2003-09-26 Mitsubishi Electric Corp 正極活物質およびその製造方法並びに上記正極活物質を用いたリチウムイオン二次電池
JP2004134236A (ja) * 2002-10-10 2004-04-30 Japan Storage Battery Co Ltd 非水系二次電池
JP2004134261A (ja) * 2002-10-11 2004-04-30 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2004342500A (ja) * 2003-05-16 2004-12-02 Matsushita Electric Ind Co Ltd 非水電解質二次電池および電池充放電システム
JP2005032632A (ja) * 2003-07-08 2005-02-03 Hitachi Maxell Ltd 非水二次電池の製造方法
JP2005158285A (ja) * 2003-11-20 2005-06-16 Tdk Corp リチウムイオン二次電池の充電方法、充電装置および電力供給装置
JP2005259617A (ja) * 2004-03-15 2005-09-22 Shin Kobe Electric Mach Co Ltd リチウムイオン二次電池

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207697A (ja) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd 扁平型非水電解液二次電池
US9077024B2 (en) 2006-03-17 2015-07-07 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
US9761880B2 (en) 2006-03-17 2017-09-12 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
US10388960B2 (en) 2006-03-17 2019-08-20 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
US9231276B2 (en) 2006-06-02 2016-01-05 Mitsubishi Chemical Corporation Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries
US8911903B2 (en) 2006-07-03 2014-12-16 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
JP2008041570A (ja) * 2006-08-09 2008-02-21 Sony Corp 非水電解質二次電池用正極活物質およびその製造方法、ならびに非水電解質二次電池
US8293406B2 (en) * 2007-09-26 2012-10-23 Sanyo Electric Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery, process for preparing the same, and positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2015136881A1 (ja) * 2014-03-11 2015-09-17 三洋電機株式会社 非水電解質二次電池
JPWO2015136881A1 (ja) * 2014-03-11 2017-04-06 三洋電機株式会社 非水電解質二次電池
US9923244B2 (en) 2014-03-11 2018-03-20 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
US20110281165A1 (en) 2011-11-17
CN101061600A (zh) 2007-10-24
KR100823816B1 (ko) 2008-04-21
US20080118833A1 (en) 2008-05-22
CN100502137C (zh) 2009-06-17
KR20070085860A (ko) 2007-08-27

Similar Documents

Publication Publication Date Title
JP5095098B2 (ja) 非水電解質二次電池
WO2006054604A1 (ja) 非水電解質二次電池
US10833322B2 (en) Positive electrode active material containing lithium composite oxide and lithium composite oxyfluoride, and battery including positive electrode containing positive electrode active material
JP3844733B2 (ja) 非水電解質二次電池
JP5105393B2 (ja) 非水電解質二次電池
US10454138B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte comprising the same, and lithium secondary battery including non-aqueous electrolyte
JP4604460B2 (ja) 非水電解質二次電池および電池充放電システム
JP5061497B2 (ja) 非水電解質二次電池
JP2008288112A (ja) 非水電解質二次電池
KR20070065803A (ko) 정극 활물질과 리튬 이온 2차 전지
JP5066798B2 (ja) 二次電池
JP2007194202A (ja) リチウムイオン二次電池
KR102018756B1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR20120017671A (ko) 양극, 그 제조방법 및 이를 채용한 리튬전지
JP2007059379A (ja) 電池
KR102631720B1 (ko) 리튬 이차전지의 제조방법
KR20080034400A (ko) 2차 전지
JP6876955B2 (ja) 正極活物質、および、電池
KR20140001114A (ko) 비수 전해질 이차 전지 및 그 제조 방법
US20090169999A1 (en) Non-aqueous electrolyte secondary battery
JP2015195195A (ja) 非水電解質二次電池
WO2020202661A1 (ja) リチウムイオン二次電池
JP6119641B2 (ja) 円筒形非水電解液二次電池
JP2008021538A (ja) 非水電解質二次電池
JP2013137939A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 200580039610.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077012840

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11667110

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05806940

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11667110

Country of ref document: US