WO2006011425A1 - チップ抵抗器およびその製造方法 - Google Patents

チップ抵抗器およびその製造方法 Download PDF

Info

Publication number
WO2006011425A1
WO2006011425A1 PCT/JP2005/013488 JP2005013488W WO2006011425A1 WO 2006011425 A1 WO2006011425 A1 WO 2006011425A1 JP 2005013488 W JP2005013488 W JP 2005013488W WO 2006011425 A1 WO2006011425 A1 WO 2006011425A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrode
pair
electrodes
rectangular substrate
Prior art date
Application number
PCT/JP2005/013488
Other languages
English (en)
French (fr)
Inventor
Takeshi Iseki
Shuji Ariga
Mitsuaki Nakao
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/658,511 priority Critical patent/US7667569B2/en
Priority to CN2005800246547A priority patent/CN1989578B/zh
Priority to JP2006529297A priority patent/JPWO2006011425A1/ja
Publication of WO2006011425A1 publication Critical patent/WO2006011425A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/006Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/001Mass resistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making

Definitions

  • the present invention relates to a chip resistor used in various electronic devices and a method for manufacturing the same.
  • a rectangular substrate such as alumina as shown in FIG.
  • a pair of upper surface electrodes 2 are formed between the opposing sides of 1 so that one and the other are located opposite to each other with respect to the center line of the rectangular substrate 1 in the direction connecting the opposing sides.
  • the meandering resistor 3 is formed so as to be electrically connected to the pair of upper surface electrodes 2.
  • Resistor 3 can be formed using the area where electrode 2 is not present, which improves the load characteristics such as pulse resistance by expanding the area of resistor 3 and extending the length of resistor 3. It can be made to.
  • Patent Document 1 and Patent Document 2 are known.
  • the positional deviation occurs as shown in FIG.
  • the upper surface electrode 2 is separated from the primary dividing grooves 4a, that is, the side forces facing each other of the rectangular substrate 1, and in this state, the sheet-like substrate la is divided along the primary dividing grooves 4a.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-205004
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-203702
  • the present invention solves the above-described conventional problems, and even when a plurality of upper surface electrodes and resistors are formed by printing or sputtering, the upper surface electrode and the end surface electrode are reliably aligned. It is an object of the present invention to provide a chip resistor that can be electrically connected and a method for manufacturing the same.
  • a chip resistor according to the present invention is provided on both sides of a rectangular substrate opposite to each other with respect to the center line of the rectangular substrate extending in a direction connecting the both sides.
  • a pair of end surface electrodes that are formed on end surfaces of both sides and electrically connected to the pair of upper surface electrodes, and the pair of opposite side portions of the rectangular substrate are connected to each other in a direction connecting the both sides.
  • a dummy electrode is formed at a position corresponding to the upper surface electrode.
  • the opposite sides of the rectangular substrate are positioned symmetrically with the pair of upper surface electrodes with respect to the center line of the rectangular substrate extending in the direction orthogonal to the direction connecting the two sides. Since a pair of dummy electrodes are formed, in the state of the sheet-like substrate before dividing into a plurality of rectangular substrates, the upper surface electrodes formed on opposite sides of the rectangular substrate and the adjacent rectangular substrates are opposed to each other The dummy electrodes formed on both sides are continuously formed through the primary dividing grooves.
  • the upper surface electrode and the end face electrode can be reliably electrically connected via the dummy electrode.
  • the contact force between the end face electrode and the electrode is larger than the close contact force between the end face electrode and the substrate.
  • the adhesion force of the end face electrode can be improved as compared with the case where the electrode is applied.
  • another chip resistor includes a pair of upper surface electrodes formed on opposite sides of a rectangular substrate along a direction in which the both sides extend, and one of these upper surface electrodes. And a resistor formed on the rectangular substrate so as to be close to other parts of each upper surface electrode, and the rectangular substrate has a size straddling each upper surface electrode. A glass coat covering the resistor and a resin coat covering the glass coat are formed.
  • the chip resistor manufacturing method uses a sheet-like substrate having a plurality of rectangular substrates provided in a grid pattern through a primary division groove and a secondary division groove.
  • a pair of upper surface electrodes are positioned inside the primary dividing groove opposed to the rectangular substrate on the substrate and opposite to each other with respect to the center line of the rectangular substrate extending in the direction connecting the opposed primary dividing grooves.
  • a center line of the rectangular substrate extending in a direction perpendicular to a direction connecting the opposing primary dividing grooves inside the opposing primary dividing grooves of the rectangular substrate in the sheet-like substrate.
  • a pair of dummy electrodes at positions symmetrical to the pair of upper surface electrodes; forming a resistor on the rectangular substrate so as to be electrically connected to the pair of upper surface electrodes; and Split along the primary dividing groove Forming an end face electrode so as to be electrically connected to the upper face electrode on opposite end faces of the strip-shaped substrate obtained by the step, and forming the upper face electrode forming step and the dummy electrode forming step with the upper face electrode.
  • the dummy electrode is connected to the adjacent rectangular substrate through the primary dividing groove. It is characterized in that it is performed simultaneously so as to be electrically connected to the Mie electrode and the upper surface electrode, respectively.
  • the center line of the rectangular substrate extending in the direction orthogonal to the direction connecting the opposing primary divided grooves inside the opposing primary divided grooves of the rectangular substrate in the sheet-like substrate.
  • the upper electrode formed on the inner side and the dummy electrode formed on the inner side of the opposing primary divided grooves of the adjacent rectangular substrate are continuously formed through the primary divided grooves. From this, multiple pairs of upper surface electrodes, dummy electrodes, or multiple resistors are used by using a sheet-like substrate having a plurality of rectangular substrates provided in a grid pattern through the primary dividing grooves and the secondary dividing grooves.
  • the dummy electrode is formed continuously with the top electrode even if the top electrode is displaced and the top electrode is separated from the primary dividing groove.
  • the end face electrodes are formed on the opposite end surfaces of the strip-shaped substrate after dividing the strip-shaped substrate from the sheet-shaped substrate with the primary divided groove,
  • the upper surface electrode and the end surface electrode can be reliably electrically connected via the dummy electrode.
  • the contact force between the end face electrode and the electrode is larger than the close contact force between the end face electrode and the substrate.
  • the adhesion force of the end face electrode can be improved as compared with the case where the electrode is applied.
  • another chip resistor manufacturing method uses a sheet-like substrate having a plurality of rectangular substrates provided in a grid pattern via a primary division groove and a secondary division groove, A pair of upper surfaces extending along the primary division grooves are formed inside the primary division grooves opposed to the rectangular substrate in the sheet-like substrate by forming electrodes in a region extending over the primary division grooves in the sheet-like substrate.
  • the resistor having a size straddling each upper surface electrode is formed on the rectangular substrate.
  • FIG. 1 is a top view of a chip resistor according to Embodiment 1 of the present invention.
  • FIG. 2 is a top view of a sheet-like substrate used in the manufacturing process of the chip resistor.
  • FIG. 3 is a top view of the sheet-like substrate showing a state in which the printing displacement of the top electrode has occurred in the manufacturing process of the chip resistor.
  • FIG. 4 is a top view showing a state where the state force of FIG. 3 is also divided into individual pieces.
  • FIGS. 5 (a) and 5 (b) are top views showing other pattern examples of the resistor in the chip resistor.
  • FIG. 6 is a top view showing a modification of the chip resistor in the first embodiment of the present invention.
  • FIG. 7 is a top view of the chip resistor in the second embodiment of the present invention.
  • FIG. 8 is a top view of a sheet-like substrate used in the manufacturing process of the chip resistor.
  • FIG. 9 is a top view of the sheet-like substrate showing a state in which the printing displacement of the top electrode has occurred in the manufacturing process of the chip resistor.
  • FIG. 10 is a top view showing a state in which the state force of FIG. 9 is also divided into individual pieces.
  • FIGS. 11 (a) and 11 (b) are top views showing other pattern examples of the resistor in the chip resistor.
  • FIG. 12 is a top view showing a modification of the chip resistor in the second embodiment of the present invention.
  • FIG. 13 is a top view of the chip resistor in the third embodiment of the present invention.
  • FIG. 14 is a top view of a sheet-like substrate used in the manufacturing process of the chip resistor.
  • FIGS. 15 (a), 15 (b), and 15 (c) are top views showing a modification of the chip resistor according to Embodiment 3 of the present invention.
  • FIG. 16 is a top view showing a conventional chip resistor.
  • FIG. 17 is a top view of the sheet-like substrate showing a state in which the printing displacement of the top electrode has occurred in the manufacturing process of the chip resistor.
  • FIG. 18 is a top view showing a state in which the state force of FIG. 14 is also divided into individual pieces.
  • Embodiment 1 of the present invention will be described below.
  • FIG. 1 is a top view of the chip resistor in the first embodiment of the present invention.
  • reference numeral 11 denotes a rectangular substrate having an alumina force
  • the planar shape of the rectangular substrate 11 is a rectangle
  • 12 is a direction in which the opposite sides of the rectangular substrate 11 are connected to opposite sides of the upper surface of the rectangular substrate 11, that is, opposite to the longitudinal center line of the rectangular substrate 11.
  • the pair of upper surface electrodes 12 are formed by screen-printing an electrode paste mainly composed of silver and baking it at 850 ° C. 13 is the opposite side of the upper surface of the rectangular substrate 11 in the direction perpendicular to the direction connecting the opposite sides of the rectangular substrate 11, that is, the center line in the short direction of the rectangular substrate 11.
  • a pair of dummy electrodes formed symmetrically with the pair of upper surface electrodes 12, the pair of dummy electrodes 13 having the same width and length as the pair of upper surface electrodes 12, and the pair of dummy electrodes 13
  • an electrode paste containing silver as a main component is screen-printed and fired at 850 ° C.
  • 14 is a resistor formed on the upper surface of the rectangular substrate 11 so as to straddle between the pair of upper surface electrodes 12 and to be electrically connected.
  • the resistor 14 is a ruthenium oxide resistor. It is formed by screen printing an anti-paste and firing it at 850 ° C.
  • the resistor 14 has a meandering portion 15 and straddles the pair of upper surface electrodes 12 while undulating.
  • Reference numeral 16 denotes a pair of end surface electrodes formed so as to be electrically connected to the pair of upper surface electrodes 12 and the pair of dummy electrodes 13 on the end surfaces of opposite sides of the upper surface of the rectangular substrate 11.
  • the pair of end face electrodes 16 is formed by applying an end face electrode material made of silver and epoxy resin and curing it at 200 ° C.
  • FIG. 2 shows a top view of a sheet-like substrate used in the manufacturing process of the chip resistor in the first embodiment of the present invention.
  • the sheet-like substrate 11a shown in FIG. 2 has a primary divided groove l ib for dividing into strip-like substrates and a secondary divided groove 11c for dividing into individual piece substrates on one or both sides.
  • a plurality of rectangular substrates 11 provided in a grid pattern through the primary division grooves l ib and the secondary division grooves 11c are formed.
  • the direction in which the opposing primary dividing grooves l ib of the rectangular substrate 11 are connected inside the opposing primary dividing grooves 1 lb of the rectangular substrate 11 in the sheet substrate 11a that is,
  • the pair of upper surface electrodes 12 and the pair of dummy electrodes 13 are made of silver as a main component at a position symmetric with respect to the center line of the rectangular substrate 11 in the direction orthogonal to the longitudinal direction of the rectangular substrate 11, that is, the short direction of the rectangular substrate 11.
  • the electrode paste is formed by screen printing and baked at 850 ° C at the same time.
  • the pair of upper surface electrodes 12 are positioned opposite to each other with respect to the direction connecting the opposing primary division grooves 11 b of the rectangular substrate 11, that is, the center line in the longitudinal direction of the rectangular substrate 11.
  • the pair of dummy electrodes 13 are also located on opposite sides of the direction in which the opposing primary dividing grooves l ib of the rectangular substrate 11 are connected, that is, with respect to the longitudinal center line of the rectangular substrate 11. It is formed to do.
  • the upper electrode 12 formed on the inner side of the opposing primary division grooves l ib of the rectangular substrate 11 in the sheet-like substrate 11a is adjacent to
  • the dummy electrodes 13 formed inside the opposing primary division grooves l ib of the rectangular substrate 11 to be formed are continuously formed via the primary division grooves l ib and are electrically connected.
  • a ruthenium oxide-based resistance paste is screen-printed on the upper surface of the rectangular substrate 11 so as to straddle and be electrically connected to the pair of upper surface electrodes 12, and this is performed at 850 ° C.
  • the resistor 14 having a predetermined shape having the meandering portion 15 is formed.
  • the meandering portion 15 can be formed on the resistor 14 by forming the resistor 14 on the rectangular substrate 11 and then performing laser processing to form a trimming groove on the resistor 14. is there.
  • a first protective film (not shown) having a glass strength is formed so as to cover the entire resistor 14, and then the resistor is interposed via the first protective film (not shown).
  • the resistance value of the resistor 14 is corrected by applying a trimming groove to the 14 by laser processing. This resistance correction is performed by providing a trimming groove on the resistor 14 by laser processing while measuring the 4-terminal resistance value.
  • the pair of upper surface electrodes 12 and the pair of dummy electrodes 13 are formed at the same time, so that the primary divided grooves l of the rectangular substrate 11 facing each other in the sheet-like substrate 11a.
  • the upper surface electrode 12 formed on the inner side of the ib and the dummy electrode 13 formed on the inner side of the adjacent primary divided groove 1 lb of the adjacent rectangular substrate 11 are continuously formed via the primary divided groove l ib.
  • the resistance measurement can be performed by bringing the four-terminal resistance measurement terminals into contact with the pair of upper surface electrodes 12 and the pair of dummy electrodes 13 in the state of FIG. Therefore, the area where the 4-terminal resistance value measurement terminal is brought into contact with can be increased, and the effect that the 4-terminal resistance value measurement can be performed reliably is obtained.
  • a second protective film (not shown) made of epoxy resin is screen-printed so as to cover all of the first protective film (not shown) and a part of the upper surface electrode 12. To form.
  • the sheet-like substrate 11a is divided into a plurality of strip-shaped substrates l id by dividing the sheet-shaped substrate 11a along the primary dividing grooves l ib, and thereafter, silver and epoxy coatings are formed on the end surfaces of the strip-shaped substrates l id.
  • An end face electrode material made of grease is applied to form the end face electrode 16 electrically connected to the upper surface electrode 12 and the dummy electrode 13.
  • the strip-shaped substrate l id is divided along the secondary dividing groove 11c to be divided into individual substrates l ie shown in FIG.
  • nickel plating not shown
  • tin plating not shown
  • Embodiment 1 of the present invention the opposing primary divisions of the rectangular substrate 11 inside the opposing primary division grooves l ib of the rectangular substrate 11 in the sheet-like substrate 11a.
  • a pair of dummy electrodes 13 is formed at a position symmetrical to the pair of upper surface electrodes 12 with respect to the direction connecting the grooves l ib, that is, the direction orthogonal to the longitudinal direction of the rectangular substrate 11, that is, the center line in the short direction of the rectangular substrate 11.
  • the upper surface electrode 12 and the dummy electrode 13 are simultaneously formed so as to be electrically connected to the dummy electrode 13 and the upper surface electrode 12 in the adjacent rectangular substrate 11 through the primary dividing groove 1 lb.
  • the end face electrode 16 When the end face electrode 16 is formed on the opposite end faces of the strip-shaped board l id after being divided from the substrate 11a, the upper face electrode 12 and the end face electrode 16 are connected via the dummy electrode 13 as shown in FIG. If the can be securely connected electrically, the! / ⁇ ⁇ effect can be obtained.
  • FIGS. 5A and 5B show other pattern examples of the resistor 14 in the chip resistor shown in the first embodiment of the present invention.
  • the resistor 14 does not necessarily have to have the meandering part 15, and as shown in FIG. 5 (b), the shape of the meandering part 15 Various selections are also possible.
  • an electrode paste mainly composed of silver is screen-printed and fired at 850 ° C.
  • the resistor 14 is formed, the force formed by screen-printing a ruthenium oxide-based resistor paste and firing it at 850 ° C.
  • These upper electrodes 12, dummy The formation method of the electrode 13 and the resistor 14 is not limited to this.
  • the upper electrode 12, the dummy electrode 13, and the resistor 14 may be formed by a metal thin film formed by sputtering or the like. In this case, the same effect as in the first embodiment of the present invention can be obtained.
  • FIG. 6 is a top view showing a modification of the chip resistor in the first embodiment of the present invention.
  • FIG. 6 is different from FIG. 1 shown in the first embodiment of the present invention in that a pair of The top surface electrode 12 of the rectangular substrate 11 is opposed to the opposite side portions of the upper surface of the rectangular substrate 11 and the opposite side portions of the rectangular substrate 11 are connected to each other.
  • the pair of dummy electrodes 13 is formed on the opposite sides of the upper surface of the rectangular substrate 11 in a direction perpendicular to the direction connecting the opposite sides of the rectangular substrate 11, that is, the rectangular substrate 11
  • the resistor 14 is formed at a position symmetrical to the pair of upper surface electrodes 12 with respect to the center line in the longitudinal direction of the pair, and extends across the pair of upper surface electrodes 12 and is electrically connected.
  • a pair of end surface electrodes 16 are opposed to each other on the upper surface of the rectangular substrate 11.
  • the same effect as in the first embodiment of the present invention can be obtained.
  • FIG. 7 is a top view of the chip resistor in the second embodiment of the present invention.
  • reference numeral 21 denotes a rectangular substrate having an alumina force.
  • the planar shape of the rectangular substrate 21 is rectangular.
  • 22 is located on the opposite side of the square substrate 21 in the direction connecting the opposite sides of the rectangular substrate 21 to the opposite sides of the upper surface of the rectangular substrate 21, that is, the longitudinal center line of the rectangular substrate 21.
  • a pair of upper surface electrodes formed so as to The top electrode 22 is formed by screen-printing an electrode paste mainly composed of silver and baking it at 850 ° C.
  • 23 is a direction connecting the opposing sides of the rectangular substrate 21, that is, a direction orthogonal to the longitudinal direction of the rectangular substrate 21, that is, a short side of the rectangular substrate 21, at both opposing sides of the upper surface of the rectangular substrate 21.
  • a pair of dummy electrodes formed symmetrically with the pair of upper surface electrodes 22 with respect to the center line in the hand direction.
  • the pair of dummy electrodes 23 has the same width as that of the pair of upper surface electrodes 22.
  • the length is made shorter than the length of the pair of upper surface electrodes 22 to form a shape smaller than the pair of upper surface electrodes 22, and simultaneously with the pair of upper surface electrodes 22, an electrode paste mainly composed of silver is screen-printed However, it is formed by firing at 850 ° C. For this reason, each of the pair of upper surface electrodes 22 protrudes inward from the dummy electrodes 23 in the longitudinal direction of the rectangular substrate 21.
  • a resistor 24 is formed on the upper surface of the rectangular substrate 21 so as to straddle between the pair of upper surface electrodes 22 and to be electrically connected.
  • the resistor 24 is formed by screen-printing a ruthenium oxide-based resistor paste. This is formed by firing at 850 ° C.
  • the resistor 24 has a meandering portion 25 and straddles the pair of upper surface electrodes 22 while undulating.
  • Reference numeral 26 denotes a pair of end face electrodes formed on the end faces of opposite sides of the upper face of the rectangular substrate 21 so as to be electrically connected to the pair of upper face electrodes 22 and the pair of dummy electrodes 23.
  • the end face electrode 26 is formed by applying an end face electrode material made of silver and epoxy resin and curing it at 200 ° C.
  • the pair of end face electrodes 26 are formed so as to extend to both ends of the upper surface of the rectangular substrate 21 so as to cover the pair of dummy electrodes 23 having a shape smaller than that of the pair of upper face electrodes 22.
  • the end face electrode 26 preferably covers substantially the entire surface of the dummy electrode 23, for example, 90 to 100%.
  • FIG. 8 shows a top view of a sheet-like substrate used in the manufacturing process of the chip resistor in the second embodiment of the present invention.
  • the sheet-like substrate 21a shown in Fig. 8 has a lattice pattern in which a primary divided groove 21b for dividing into strip-like substrates and a secondary divided groove 21c for dividing into individual piece-like substrates are formed on one or both sides.
  • a plurality of rectangular substrates 21 provided in a grid pattern via the primary dividing grooves 21b and the secondary dividing grooves 21c are provided.
  • the direction in which the opposing primary dividing grooves 21b of the rectangular substrate 21 are connected inside the opposing primary dividing grooves 2lb of the rectangular substrate 21 in the sheet substrate 21a ie, the direction.
  • a pair of upper surface electrodes 22, a pair of dummy electrodes 23, and silver as a main component in a direction perpendicular to the longitudinal direction of the rectangular substrate 21, i.e., a center line in the short direction of the rectangular substrate 21.
  • the electrode paste to be formed is screen-printed and fired at 850 ° C to form simultaneously.
  • the pair of upper surface electrodes 22 are positioned opposite to each other with respect to the direction connecting the opposing primary division grooves 21 b of the rectangular substrate 21, that is, the center line in the longitudinal direction of the rectangular substrate 21.
  • the pair of dummy electrodes 23 is also located on the opposite side to the center line of the rectangular substrate 21 in the direction connecting the opposing primary dividing grooves 21b, that is, the longitudinal direction of the rectangular substrate 21. It is formed as follows. Thus, in the state of the sheet-like substrate 21a, as shown in FIG. 8, the sheet-like substrate 21a is adjacent to the upper surface electrode 22 formed inside the opposing primary division grooves 21b of the rectangular substrate 21.
  • the dummy electrodes 23 formed inside the opposing primary dividing grooves 21b of the rectangular substrate 21 are continuously formed via the primary dividing grooves 21b and are electrically connected.
  • a ruthenium oxide-based resistance paste is screen-printed on the upper surface of the rectangular substrate 21 so as to straddle and be electrically connected to the pair of upper surface electrodes 22, and this is performed at 850 ° C.
  • the resistor 24 having a predetermined shape having the meandering portion 25 is formed.
  • a first protective film (not shown) having glass strength is formed so as to cover the entire resistor 24, and then the resistor is interposed via the first protective film (not shown).
  • the resistance value of the resistor 24 is corrected by forming a trimming groove on the 24 by laser processing. This resistance value correction is performed by forming a trimming groove in the resistor 24 by laser processing while measuring the 4-terminal resistance value.
  • the pair of upper surface electrodes 22 and the pair of dummy electrodes 23 are formed at the same time, so that the primary divided grooves facing each other of the rectangular substrate 21 in the sheet-like substrate 21a.
  • the upper electrode 22 formed on the inner side of 21b and the dummy electrode 23 formed on the inner side of the opposing primary dividing groove 21b of the adjacent rectangular substrate 21 are continuously connected via the primary dividing groove 2 lb. Because it is formed and electrically connected, the area where the 4-terminal resistance measurement terminal is brought into contact can be increased in the state shown in FIG. As a result, it is possible to reliably perform 4-terminal resistance measurement.
  • a second protective film (not shown) made of epoxy resin is screen-printed so as to cover all of the first protective film (not shown) and a part of the upper surface electrode 22. To form.
  • the sheet-like substrate 21a is divided into a plurality of strip-shaped substrates 21d by dividing the sheet-like substrate 21a along the primary dividing grooves 21b, and thereafter, the end surface of the strip-shaped substrate 21d is made of silver and epoxy resin.
  • An end face electrode material is applied to form an end face electrode 26 that is electrically connected to the upper face electrode 22 and the dummy electrode 23.
  • the end face electrode 26 is formed so as to extend to both ends of the upper surface of the strip-shaped substrate 21d so as to cover substantially the entire dummy electrode 23 having a shape smaller than that of the upper face electrode 22.
  • the strip substrate 21d is divided along the secondary dividing grooves 21c to be divided into individual substrates 21e shown in FIG. 7, and then the end face electrodes 26 on the individual substrates 21e are separated.
  • nickel plating not shown
  • tin plating not shown
  • the primary divided grooves facing each other of the rectangular substrate 21 inside the opposed primary divided grooves 21b of the rectangular substrate 21 in the sheet-like substrate 21a A pair of dummy electrodes 23 is formed at a position symmetrical to the pair of upper surface electrodes 22 with respect to the direction connecting 21b, that is, the direction orthogonal to the longitudinal direction of the rectangular substrate 21, that is, the center line in the short direction of the rectangular substrate 21.
  • the upper surface electrode 22 and the dummy electrode 23 are formed simultaneously so as to be electrically connected to the dummy electrode 23 and the upper surface electrode 22 in the adjacent rectangular substrate 21 through the primary dividing groove 21b.
  • the plurality of resistors 24 are formed by screen printing, for example, as shown in FIG.
  • the upper surface electrode 22 and the dummy electrode 23 are continuously formed through the primary dividing groove 21b, so that the resistance value of the resistor 24 is measured.
  • the area where the 4-terminal resistance measurement terminal is brought into contact with can be increased, and this also has the effect of reliably performing 4-terminal resistance measurement.
  • the dummy electrode 23 has a shape smaller than that of the upper surface electrode 22, that is, the width of the dummy electrode 23 is the same as that of the upper surface electrode 22. Due to the shortened shape, the area of the resistor 24 and the length of the resistor 24 can be increased by the size of the dummy electrode 23, thereby improving the load characteristics such as pulse resistance. The effect that it can be also obtained.
  • the end surface electrode 26 is formed by wrapping substantially the entire surface of the dummy electrode 23 having a shape smaller than that of the upper surface electrode 22 to both ends of the upper surface of the strip-shaped substrate 21d. Since the cover is covered, the dummy electrode 23 is hidden, and this also provides an effect that the inspection apparatus does not mistakenly recognize the dummy electrode 23 as the upper surface electrode 22 at the time of inspection or the like.
  • FIGS. 11A and 11B show other pattern examples of the resistor 24 in the chip resistor shown in the second embodiment of the present invention.
  • the resistor 24 does not necessarily have the meandering portion 25.Also, as shown in Fig. 11 (b), various shapes of the meandering portion 25 are selected. Is possible.
  • the width is the same as the width of the upper surface electrode 22 and the length is the upper surface electrode 22.
  • the force of the dummy electrode 23 having a shape smaller than the length of the upper electrode 22 and smaller than that of the upper surface electrode 22 is not limited to this. Even when the dummy electrode 23 smaller than the width of the electrode 22 is adopted, The same effects as those of the second embodiment of the present invention can be obtained.
  • an electrode paste mainly composed of silver is screen-printed and fired at 850 ° C.
  • the resistor 24 is formed, the force formed by screen-printing a ruthenium oxide-based resistor paste and firing it at 850 ° C.
  • the formation method of the electrode 23 and the resistor 24 is not limited to this.
  • the upper electrode 22, the dummy electrode 23, and the resistor 24 may be formed by a metal thin film formed by sputtering or the like. In this case, the same effect as in the second embodiment of the present invention can be obtained.
  • FIG. 12 is a top view showing a modification of the chip resistor in the second embodiment of the present invention.
  • FIG. 12 is different from FIG. 7 shown in the second embodiment of the present invention in that a pair of The opposite sides of the top electrode 22 of the rectangular substrate 21 are opposite to the opposite sides of the upper surface of the rectangular substrate 21 and the opposite sides of the rectangular substrate 21, that is, the center line in the short direction of the rectangular substrate 21.
  • a pair of dummy electrodes 23 at opposite sides of the upper surface of the rectangular substrate 21 in a direction perpendicular to the direction connecting the opposite sides of the rectangular substrate 21, that is, the rectangular substrate.
  • a resistor 24 is formed at a position symmetrical to the pair of upper surface electrodes 22 with respect to the center line in the longitudinal direction of 21, and extends across and electrically connected to the pair of upper surface electrodes 22. Further, a pair of end face electrodes 26 are opposed to the upper face of the rectangular substrate 21. That is that formed as the the end surface of both sides portions are a pair of upper-surface electrode 22 and the pair of dummy electrodes 2 3 and electrically connected. Also in this modification, the same effect as that of the second embodiment of the present invention can be obtained.
  • Embodiment 3 of the present invention will be described below.
  • FIG. 13 is a top view of the chip resistor in the first embodiment of the present invention.
  • reference numeral 31 denotes a rectangular substrate having an alumina force.
  • the planar shape of the rectangular substrate 31 is a rectangle.
  • Reference numeral 32 denotes a pair of upper electrodes formed on opposite sides of the upper surface of the rectangular substrate 31 along the extending direction of the both sides, that is, along the short direction of the rectangular substrate 31.
  • 12 is screen paste of electrode paste mainly composed of silver It is formed by printing and firing at 850 ° C.
  • a resistor 34 is formed on the upper surface of the rectangular substrate 31 so as to straddle between the pair of upper surface electrodes 32 and be electrically connected.
  • the resistor 34 is formed by screen-printing a ruthenium oxide-based resistor paste. This is formed by firing at 850 ° C.
  • the resistor 34 has a meandering portion 35, and a wavy force straddles one portion of the pair of upper surface electrodes 12, that is, the portions located in the diagonal direction of the rectangular substrate 31, and the meandering portion 35 In addition, it has a potential difference and is close to the other part of the upper surface electrode 32, that is, the part excluding the part located in the diagonal direction.
  • 37 is a glass coat that covers the resistor 34 in a size that spans the pair of upper surface electrodes 32. This glass coat 37 is screen-printed with a lead borosilicate glass paste and fired at 600 to 850 ° C. It is formed by. That is, the glass coat 37 covers up to the inner ends of the pair of upper electrodes 12.
  • Reference numeral 36 denotes a pair of end face electrodes formed on the end faces of the opposite sides of the upper face of the rectangular substrate 31 so as to be electrically connected to the pair of upper face electrodes 32.
  • the pair of end face electrodes 36 are made of silver. It is formed by applying an end face electrode material made of epoxy resin and curing it at 200 ° C! /
  • FIG. 14 shows a top view of a sheet-like substrate used in the manufacturing process of the chip resistor in the third embodiment of the present invention.
  • the sheet-like substrate 31a shown in FIG. 14 has a lattice pattern in which a primary divided groove 31b for dividing into strip-shaped substrates and a secondary divided groove 31c for dividing into individual piece-like substrates are formed on one or both sides.
  • the plurality of rectangular substrates 31 provided in a grid pattern through the primary dividing grooves 31b and the secondary dividing grooves 31c are formed.
  • an electrode paste containing silver as a main component is screen-printed in a region straddling the primary dividing groove 31b in the sheet-like substrate 31a shown in FIG. 14, and this is baked at 850 ° C. to obtain a sheet.
  • a pair of upper surface electrodes 32 extending along the primary division groove 31b are formed inside the primary division groove 3lb that opposes the rectangular substrate 31 in the rectangular substrate 3la.
  • a ruthenium oxide resistance paste is screened on the upper surface of the rectangular substrate 31 so that the pair of upper surface electrodes 32 straddle the diagonal direction of the rectangular substrate 31 and are electrically connected.
  • the resistor 34 having a predetermined shape having the meandering portion 35 is formed.
  • lead borosilicate glass so as to cover all of the resistor 14 and cover the inner end of the rectangular substrate 31 of the pair of upper surface electrodes 32 over the entire width of the upper surface electrode 32.
  • a paste is screen-printed and baked at 600 to 850 ° C. to form a glass coat 37, and then a resin coat made of epoxy resin so as to cover the entire glass coat 37 ( (Not shown) is formed by screen printing.
  • the sheet-like substrate 31a is divided into a plurality of strip-like substrates 31d by dividing the sheet-like substrate 31a along the primary dividing grooves 31b. Thereafter, the end surface of the strip-like substrate 31d is made of silver and epoxy resin. An end face electrode material is applied to form an end face electrode 36 that is electrically connected to the upper face electrode 32.
  • the strip substrate 31d is divided along the secondary dividing grooves 31c to be divided into individual substrates 31e shown in FIG. 13, and then the end face electrodes 36 on the individual substrates 31e are separated.
  • nickel plating not shown
  • tin plating not shown
  • a pair of upper surface electrodes 32 are formed on opposite sides of the rectangular substrate 31 along the extending direction of the sides.
  • the upper surface electrodes 32 formed on opposite sides of the rectangular substrate 31 are continuously formed via the primary dividing groove 3 lb. Will be.
  • a plurality of pairs of upper surface electrodes 32 and a plurality of resistors are formed by using a sheet-like substrate 31a having a plurality of rectangular substrates 31 provided in a grid pattern via a primary dividing groove 31b and a secondary dividing groove 32b.
  • the upper surface electrode 32 is applied to the primary divided groove 31b. After the plurality of strip-shaped substrates 31d are separated from the sheet-shaped substrate 31a by 31b, when the end surface electrodes 36 are formed on the opposite end surfaces of the strip-shaped substrate 31d, the upper surface electrodes 32 and the end surface electrodes 36 are surely electrically connected. Can be connected. Further, since the end face electrode 36 is connected to the upper face electrode 32 in a wide area, the adhesion of the end face electrode 36 can be improved as compared with the conventional case.
  • the upper surface electrode 32 and the resistor 35 is completely covered with a glass coat 37, and moisture does not intervene. Therefore, when the pair of upper electrodes 32 is made of a general silver-based material in a chip resistor, the resin protective coat adheres closely. Even if the moisture resistance is insufficient, it is possible to suppress the occurrence of electrical migration between the silver on the upper electrode 32 and the resistor 34 when the load is used in a humidity atmosphere.
  • the glass coat 37 is coated with a resin coat, the resin coat can prevent the glass coat 37 from cracking during manufacturing and use, and it is more effective that electrical migration occurs. Can be suppressed.
  • FIGS. 15 (a) to 15 (c) show other pattern examples of the resistor antibody 24 in the chip resistor shown in the third embodiment of the present invention.
  • the resistor 24 is not necessarily required to straddle the diagonal portions of the rectangular substrate 31 in the pair of upper surface electrodes 32. You may straddle.
  • the third embodiment can be applied to the chip resistor in the first embodiment or the second embodiment of the present invention.
  • the glass coat 37 may be set to a size over the pair of dummy electrodes 33. That is, the glass coat 37 is rubbed so as to cover the portion of the dummy electrode 33 facing the resistor 34. Even in this way, it is possible to suppress the occurrence of electrical migration between the dummy electrode 33 and the resistor 34 as in the third embodiment of the present invention.
  • the chip resistor according to the present invention is formed on opposite sides of the rectangular substrate so as to be opposite to each other with respect to the center line of the rectangular substrate extending in the direction connecting the both sides.
  • the opposite sides of the rectangular substrate are symmetrical to the pair of upper surface electrodes with respect to the center line of the rectangular substrate extending in the direction perpendicular to the direction connecting the two sides. Since the pair of dummy electrodes are formed on the surface, in the state of the sheet-like substrate before dividing into a plurality of rectangular substrates, the upper surface electrodes formed on opposite sides of the rectangular substrate and the adjacent rectangular substrate The dummy electrodes formed on both sides facing each other are continuously formed through the primary dividing grooves.
  • the upper surface electrode and the end surface electrode can be reliably electrically connected via the dummy electrode.
  • the contact force between the end face electrode and the electrode is larger than the close contact force between the end face electrode and the substrate.
  • the adhesion force of the end face electrode can be improved as compared with the case where the electrode is applied.
  • each of the pair of upper surface electrodes extends inward from the dummy electrodes in a direction connecting opposite sides of the rectangular substrate. This is preferred.
  • the pair of dummy electrodes since the pair of dummy electrodes has a smaller shape than the pair of upper surface electrodes, the area of the resistor and the length of the resistor are ensured to be large due to the small shape of the dummy electrode. That's right.
  • the pair of end surface electrodes are formed on the end surfaces of the opposite side portions of the rectangular substrate so as to wrap around the upper surface of the rectangular substrate. It is preferable that substantially the entire surface of each dummy electrode is covered with the end face electrode.
  • a glass coat covering the resistor and a resin coat covering the glass coat are formed on the rectangular substrate so as to straddle the dummy electrodes. Is preferred.
  • the dummy electrode is made of a silver-based material, and the dummy electrode and the resistor are close to each other. In any case, electrical migration between them can be suppressed.
  • the glass coat is coated with a resin coat, this resin coat can prevent the glass coat from cracking during manufacturing and use, and more effectively suppress the occurrence of electrical migration. be able to.
  • another chip resistor according to the present invention includes a pair of upper surface electrodes formed on opposite sides of a rectangular substrate along a direction in which both sides extend, and one of these upper surface electrodes. And a resistor formed on the rectangular substrate so as to be close to other parts of each upper surface electrode, and the rectangular substrate has a size straddling each upper surface electrode. A glass coat covering the resistor and a resin coat covering the glass coat are formed.
  • the pair of upper surface electrodes are formed on opposite sides of the rectangular substrate along the extending direction of the sides! Therefore, in the state of the sheet-like substrate before being divided into a plurality of rectangular substrates, the upper surface electrodes formed on opposite sides of the rectangular substrate are continuously formed via the primary dividing grooves. It will be. From this, a plurality of pairs of upper surface electrodes and a plurality of resistors are printed or sputtered using a sheet-like substrate having a plurality of rectangular substrates provided in a grid pattern through the primary division grooves and the secondary division grooves.
  • the upper electrode Even if the formation position of the upper electrode is shifted from the normal position force, the upper electrode is applied to the primary dividing groove, so that a plurality of strip-shaped substrates are sheeted in the primary dividing groove.
  • the end face electrodes are formed on the opposite end faces of the strip-like board after being separated from the strip-like board, the upper face electrode and the end face electrode can be reliably electrically connected. Further, since the end face electrode is connected to the upper face electrode in a wide area, the adhesion of the end face electrode can be improved as compared with the conventional case.
  • the space between the top electrode and the resistor is covered with a glass coat, the top electrode Even if it is made of silver-based material, it is possible to suppress the occurrence of electrical migration between them.
  • the glass coat is coated with a resin coat, this resin coat can prevent the glass coat from cracking during manufacturing and use, and more effectively suppress the occurrence of electrical migration. be able to.
  • the chip resistor manufacturing method uses a sheet-like substrate having a plurality of rectangular substrates provided in a grid pattern via the primary division grooves and the secondary division grooves.
  • a pair of upper surface electrodes are positioned inside the primary dividing groove opposed to the rectangular substrate on the substrate and opposite to each other with respect to the center line of the rectangular substrate extending in the direction connecting the opposed primary dividing grooves.
  • a center line of the rectangular substrate extending in a direction perpendicular to a direction connecting the opposing primary dividing grooves inside the opposing primary dividing grooves of the rectangular substrate in the sheet-like substrate.
  • the dummy electrodes are simultaneously formed so as to be electrically connected to the dummy electrode and the upper surface electrode of the adjacent rectangular substrate through the primary dividing groove, respectively.
  • the center line of the rectangular substrate that extends in the direction orthogonal to the direction connecting the opposing primary divided grooves inside the opposing primary divided grooves of the rectangular substrate in the sheet-like substrate.
  • the upper electrode formed on the inner side and the dummy electrode formed on the inner side of the opposing primary divided grooves of the adjacent rectangular substrate are continuously formed through the primary divided grooves. From this, a sheet-like substrate having a plurality of rectangular substrates provided in a grid pattern through the primary dividing grooves and the secondary dividing grooves.
  • the upper electrode position is shifted and the upper surface electrode becomes the primary dividing groove card. Even if they are separated from each other, the dummy electrode formed continuously with the upper surface electrode exerts a force on the primary dividing groove.
  • the end face electrodes are formed on the opposite end faces of the strip-shaped substrate, the upper surface electrode and the end face electrode can be reliably electrically connected via the dummy electrode.
  • the contact force between the end face electrode and the electrode is larger than the close contact force between the end face electrode and the substrate. The adhesion force of the end face electrode can be improved as compared with the case where the electrode is applied.
  • the upper surface electrode and the dummy electrode are continuously formed through the primary dividing groove, when measuring the resistance value of the resistor, the area where the 4-terminal resistance value measurement terminal is brought into contact can be increased. As a result, 4-terminal resistance measurement can be performed reliably.
  • the dimension in the direction of connecting the primary division grooves to be opposed is set smaller than the dimension of the upper surface electrode in that direction.
  • the end face electrode is formed so as to wrap around the upper end face force of the strip-shaped substrate, so that substantially the entire surface of the dummy electrode can be covered with the end face electrode. I like it.
  • the dummy electrode since the dummy electrode has a shape smaller than that of the upper surface electrode, it is possible to secure a large shape force, a large amount, a resistor area, and a resistor length of the dummy electrode. In addition, load characteristics such as anti-pulse characteristics can be improved.
  • the dummy electrode having a shape smaller than that of the upper surface electrode is covered with end surface electrodes formed so as to wrap around the upper surface both ends of the strip-shaped substrate, the dummy electrode is hidden. As a result, it is possible to obtain an effect that the inspection apparatus does not mistakenly recognize the dummy electrode as the upper surface electrode at the time of inspection or the like.
  • a glass coat covering the resistor and a resin coat covering the glass coat are formed on the rectangular substrate in the sheet-like substrate so as to straddle the dummy electrodes. It is preferable to further include a step.
  • the space between the dummy electrode and the resistor is covered with the glass coat, the dummy Even when the electrode is made of a silver-based material and the dummy electrode and the resistor are close to each other, the occurrence of electrical migration between them can be suppressed.
  • the glass coat is coated with a resin coat, this resin coat can prevent the glass coat from cracking during manufacturing and use, and more effectively suppress the occurrence of electrical migration. be able to.
  • another chip resistor manufacturing method uses a sheet-like substrate having a plurality of rectangular substrates provided in a grid pattern via a primary division groove and a secondary division groove, A pair of upper surfaces extending along the primary division grooves are formed inside the primary division grooves opposed to the rectangular substrate in the sheet-like substrate by forming electrodes in a region extending over the primary division grooves in the sheet-like substrate.
  • Forming a resistor Forming a resistor, forming a resistor on the rectangular substrate so as to be electrically connected to a part of the pair of upper surface electrodes and close to the other part of each upper surface electrode, and the sheet
  • the pair of upper surface electrodes are formed on the opposite sides of the rectangular substrate along the extending direction of the sides, so that the substrate is divided into a plurality of rectangular substrates.
  • the upper surface electrodes formed on opposite sides of the rectangular substrate are continuously formed through the primary dividing grooves. From this, a plurality of pairs of upper surface electrodes and a plurality of resistors are printed or sputtered using a sheet-like substrate having a plurality of rectangular substrates provided in a grid pattern through the primary dividing grooves and the secondary dividing grooves. Even when the upper electrode is formed at a regular position when the upper electrode is formed, the upper electrode is applied to the primary dividing groove.
  • the end face electrodes When the end face electrodes are formed on the opposite end faces of the strip-like board after the sheet-like board force is also divided, the upper face electrodes and the end face electrodes can be reliably electrically connected. Further, since the end face electrode is connected to the upper face electrode in a wide area, the adhesion of the end face electrode can be improved as compared with the conventional case. Furthermore, since the space between the top electrode and the resistor is covered with a glass coat, Even when the electrodes are made of a silver-based material, it is possible to suppress the occurrence of electrical migration between them. In addition, since the glass coat is coated with a resin coat, this resin coat can prevent the glass coat from cracking during manufacturing and use, and more effectively suppress the occurrence of electrical migration. be able to.
  • the chip resistor according to the present invention can reliably electrically connect the upper surface electrode and the end surface electrode even when the formation position is shifted when a plurality of upper surface electrodes and resistors are formed by printing or sputtering.
  • the area where the 4-terminal resistance value measurement terminal is brought into contact can be made large. This is useful as a chip resistor configuration to improve load characteristics such as characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Details Of Resistors (AREA)

Abstract

 チップ抵抗器は、方形基板の相対向する両辺部に、当該両辺部を結ぶ方向に延びる方形基板の中心線に対して互いに反対側に位置するように形成された一対の上面電極と、この一対の上面電極と電気的に接続されるように前記方形基板に形成された抵抗体と、前記方形基板の相対向する両辺部の端面に形成され、かつ前記一対の上面電極と電気的に接続される一対の端面電極とを備えている。前記方形基板の相対向する両辺部には、当該両辺部を結ぶ方向で前記一対の上面電極に対応する位置にそれぞれダミー電極が形成されている。

Description

チップ抵抗器およびその製造方法
技術分野
[0001] 本発明は、各種電子機器に使用されるチップ抵抗器およびその製造方法に関する ものである。
背景技術
[0002] 従来のチップ抵抗器においては、抵抗体面積の拡大および抵抗体長さの延長によ り耐パルス特性などの負荷特性を向上させるために、図 16に示すように、アルミナ等 の方形基板 1の相対向する辺間に、この相対向する辺を結ぶ方向の方形基板 1の中 心線に対して一方と他方とが互いに反対側に位置するように一対の上面電極 2を形 成し、そしてこの一対の上面電極 2と電気的に接続されるように蛇行状の抵抗体 3を 形成していた。
[0003] 上記した従来のチップ抵抗器は、一対の上面電極 2の幅が相対向する辺の長さの 略半分以下となるように形成されているため、抵抗体 3を形成する場合、上面電極 2 が無い領域を利用して抵抗体 3を形成することができ、これにより、抵抗体 3の面積拡 大と抵抗体 3の長さの延長を図って耐パルス特性などの負荷特性を向上させることが できるものである。
[0004] なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献 1 や特許文献 2が知られて ヽる。
[0005] 上記した従来のチップ抵抗器においては、図 17に示すように、 1次分割溝 4aと 2次 分割溝 4bを介して碁盤目状に設けられた方形基板 1を複数有するシート状基板 la を用いて、上面電極 2や抵抗体 3を印刷またはスパッタ等により複数形成するようにし ている。し力しながら、このような一般的なチップ抵抗器の製造方法においては、上 面電極 2や抵抗体 3を印刷またはスパッタ等により形成した際に位置ずれが生じた場 合、図 17に示すように、上面電極 2が 1次分割溝 4a、すなわち方形基板 1の相対向 する辺力 離れることになり、このような状態で、シート状基板 laを 1次分割溝 4aに沿 つて分割することにより多数の短冊状基板 lbを得、そして図 18に示すように、方形基 板 1の相対向する端面に端面電極 5を形成した場合、上面電極 2と端面電極 5とを電 気的に接続できな 、場合があると 、う課題を有して 、た。
特許文献 1:特開平 9— 205004号公報
特許文献 2:特開 2002— 203702号公報
発明の開示
[0006] 本発明は上記従来の課題を解決するもので、上面電極や抵抗体を印刷またはスパ ッタ等で複数形成した際に形成位置がずれた場合でも、上面電極と端面電極とを確 実に電気的に接続することができるチップ抵抗器およびその製造方法を提供するこ とを目的とするものである。
[0007] 上記目的を達成するために、本発明に係るチップ抵抗器は、方形基板の相対向す る両辺部に、当該両辺部を結ぶ方向に延びる方形基板の中心線に対して互 、に反 対側に位置するように形成された一対の上面電極と、この一対の上面電極と電気的 に接続されるように前記方形基板に形成された抵抗体と、前記方形基板の相対向す る両辺部の端面に形成され、かつ前記一対の上面電極と電気的に接続される一対 の端面電極とを備え、前記方形基板の相対向する両辺部には、当該両辺部を結ぶ 方向で前記一対の上面電極に対応する位置にそれぞれダミー電極が形成されてい ることを特徴とするちのである。
[0008] この構成によれば、方形基板の相対向する両辺部において、当該両辺部を結ぶ方 向と直交する方向に延びる方形基板の中心線に対して一対の上面電極と対称の位 置に一対のダミー電極を形成しているため、複数の方形基板に分割する前のシート 状基板の状態では、方形基板の相対向する両辺部に形成された上面電極と、隣接 する方形基板の相対向する両辺部に形成されたダミー電極は 1次分割溝を介して連 続的に形成されることになる。これ〖こより、 1次分割溝と 2次分割溝を介して碁盤目状 に設けられた方形基板を複数有するシート状基板を用いて、複数対の上面電極ゃダ ミー電極、あるいは複数の抵抗体を印刷もしくはスパッタ等により形成した際に、上面 電極の形成位置がずれて上面電極が 1次分割溝、すなわち方形基板の相対向する 端部から離れたとしても、上面電極と連続的に形成されているダミー電極が 1次分割 溝に力かることになるため、この 1次分割溝で複数の短冊状基板をシート状基板から 分割した後、短冊状基板の相対向する端面に端面電極を形成した際には、ダミー電 極を介して上面電極と端面電極とを確実に電気的に接続することができることになる 。また、端面電極が上面電極上だけでなぐダミー電極上にも塗布されるため、端面 電極と電極との密着力が端面電極と基板との密着力よりも大きいことにより、上面電 極上にのみ端面電極を塗布するよりも端面電極の密着力を向上させることができる。
[0009] また、本発明に係る他のチップ抵抗器は、方形基板の相対向する両辺部に、当該 両辺部の延びる方向に沿って形成された一対の上面電極と、これらの上面電極の一 部に電気的に接続され、かつ各上面電極の他の部分に近接するように前記方形基 板に形成された抵抗体とを備え、前記方形基板には、前記各上面電極に跨る大きさ で前記抵抗体を覆うガラスコートとこのガラスコートを被覆する榭脂コートが形成され て ヽることを特徴とするものである。
[0010] この構成によれば、上面電極と抵抗体との間がガラスコートで覆われるため、上面 電極を銀系材料で構成した場合であっても、それらの間で電気マイグレーションが起 きることを抑制することができる。また、ガラスコートは榭脂コートで被覆されるため、こ の榭脂コートによって製造時や使用時にガラスコートにクラックが入るのを防ぐことが でき、電気マイグレーションが起きることをより効果的に抑制することができる。
[0011] また、本発明に係るチップ抵抗器の製造方法は、 1次分割溝と 2次分割溝を介して 碁盤目状に設けられた方形基板を複数有するシート状基板を用い、このシート状基 板における方形基板の相対抗する 1次分割溝の内側に、相対抗する 1次分割溝を結 ぶ方向に延びる方形基板の中心線に対して互いに反対側に位置するように一対の 上面電極を形成する工程と、前記シート状基板における方形基板の相対向する 1次 分割溝の内側において、相対向する 1次分割溝を結ぶ方向と直交する方向に延びる 方形基板の中心線に対して前記一対の上面電極と対称の位置に一対のダミー電極 を形成する工程と、前記一対の上面電極と電気的に接続されるように抵抗体を前記 方形基板に形成する工程と、前記シート状基板を 1次分割溝に沿って分割すること により得られる短冊状基板の相対向する端面に前記上面電極と電気的に接続される ように端面電極を形成する工程とを有し、前記上面電極形成工程とダミー電極形成 工程を、上面電極とダミー電極が、 1次分割溝を介して隣接する方形基板におけるダ ミー電極および上面電極にそれぞれ電気的に接続されるように同時に行うことを特徴 とするちのである。
[0012] この製造方法によれば、シート状基板における方形基板の相対向する 1次分割溝 の内側において、相対向する 1次分割溝を結ぶ方向と直交する方向に延びる方形基 板の中心線に対して一対の上面電極と対称の位置に一対のダミー電極を形成する 工程を備えるとともに、前記上面電極とダミー電極は、 1次分割溝を介して隣接する 方形基板におけるダミー電極および上面電極にそれぞれ電気的に接続されるよう〖こ 同時に形成するようにしているため、複数の方形基板に分割する前のシート状基板 の状態では、シート状基板における方形基板の相対向する 1次分割溝の内側に形成 された上面電極と、隣接する方形基板の相対向する 1次分割溝の内側に形成された ダミー電極は 1次分割溝を介して連続的に形成されることになる。これ〖こより、 1次分 割溝と 2次分割溝を介して碁盤目状に設けられた方形基板を複数有するシート状基 板を用いて、複数対の上面電極やダミー電極、あるいは複数の抵抗体を印刷もしく はスパッタ等により形成した際に、上面電極の形成位置がずれて上面電極が 1次分 割溝カゝら離れたとしても、上面電極と連続的に形成されているダミー電極が 1次分割 溝に力かることになるため、この 1次分割溝で複数の短冊状基板をシート状基板から 分割した後、短冊状基板の相対向する端面に端面電極を形成した際には、ダミー電 極を介して上面電極と端面電極とを確実に電気的に接続することができることになる 。また、端面電極が上面電極上だけでなぐダミー電極上にも塗布されるため、端面 電極と電極との密着力が端面電極と基板との密着力よりも大きいことにより、上面電 極上にのみ端面電極を塗布するよりも端面電極の密着力を向上させることができる。
[0013] また、本発明に係る他のチップ抵抗器の製造方法は、 1次分割溝と 2次分割溝を介 して碁盤目状に設けられた方形基板を複数有するシート状基板を用い、このシート 状基板における 1次分割溝を跨る領域に電極を形成することにより、シート状基板に おける方形基板の相対抗する 1次分割溝の内側に、 1次分割溝に沿って延びる一対 の上面電極を形成する工程と、前記一対の上面電極の一部と電気的に接続され、か つ各上面電極の他の部分に近接するように抵抗体を前記方形基板に形成する工程 と、前記シート状基板における方形基板に、前記各上面電極に跨る大きさで前記抵 抗体を覆うガラスコートとこのガラスコートを被覆する榭脂コートを形成する工程と、前 記シート状基板を 1次分割溝に沿って分割することにより得られる短冊状基板の相対 向する端面に前記上面電極と電気的に接続されるように端面電極を形成する工程と を有することを特徴とするものである。
[0014] この製造方法によれば、上面電極と抵抗体との間がガラスコートで覆われるため、 上面電極を銀系材料で構成した場合であっても、それらの間で電気マイグレーション が起きることを抑制することができる。また、ガラスコートは榭脂コートで被覆されるた め、この榭脂コートによって製造時や使用時にガラスコートにクラックが入るのを防ぐ ことができ、電気マイグレーションが起きることをより効果的に抑制することができる。 図面の簡単な説明
[0015] [図 1]図 1は、本発明の実施の形態 1におけるチップ抵抗器の上面図である。
[図 2]図 2は、同チップ抵抗器の製造過程で用いられるシート状基板の上面図である
[図 3]図 3は、同チップ抵抗器の製造過程で上面電極の印刷ずれが生じた状態を示 すシート状基板の上面図である。
[図 4]図 4は、図 3の状態力も個片状基板に分割した状態を示す上面図である。
[図 5]図 5 (a) (b)は、同チップ抵抗器における抵抗体の他のパターン例を示す上面 図である。
[図 6]図 6は、本発明の実施の形態 1におけるチップ抵抗器の変形例を示す上面図 である。
[図 7]図 7は、本発明の実施の形態 2におけるチップ抵抗器の上面図である。
[図 8]図 8は、同チップ抵抗器の製造過程で用いられるシート状基板の上面図である
[図 9]図 9は、同チップ抵抗器の製造過程で上面電極の印刷ずれが生じた状態を示 すシート状基板の上面図である。
[図 10]図 10は、図 9の状態力も個片状基板に分割した状態を示す上面図である。
[図 11]図 11 (a) (b)は、同チップ抵抗器における抵抗体の他のパターン例を示す上 面図である。 [図 12]図 12は、本発明の実施の形態 2におけるチップ抵抗器の変形例を示す上面 図である。
[図 13]図 13は、本発明の実施の形態 3におけるチップ抵抗器の上面図である。
[図 14]図 14は、同チップ抵抗器の製造過程で用いられるシート状基板の上面図であ る。
[図 15]図 15 (a) (b) (c)は、本発明の実施の形態 3におけるチップ抵抗器の変形例を 示す上面図である。
[図 16]図 16は、従来のチップ抵抗器を示す上面図である。
[図 17]図 17は、同チップ抵抗器の製造過程で上面電極の印刷ずれが生じた状態を 示すシート状基板の上面図である。
[図 18]図 18は、図 14の状態力も個片状基板に分割した状態を示す上面図である。 発明を実施するための最良の形態
[0016] (実施の形態 1)
以下、本発明の実施の形態 1について説明する。
[0017] 図 1は本発明の実施の形態 1におけるチップ抵抗器の上面図である。
[0018] 図 1において、 11はアルミナ力もなる方形基板で、この方形基板 11の平面形状は 長方形となっている。 12は前記方形基板 11の上面の相対向する両辺部に、方形基 板 11の相対向する両辺部を結ぶ方向、すなわち方形基板 11の長手方向の中心線 に対して互 ヽに反対側に位置するように形成された一対の上面電極で、この一対の 上面電極 12は銀を主成分とする電極ペーストをスクリーン印刷し、これを 850°Cで焼 成することにより形成している。 13は前記方形基板 11の上面の相対向する両辺部に おいて、前記方形基板 11の相対向する両辺部を結ぶ方向と直交する方向、すなわ ち方形基板 11の短手方向の中心線に対して前記一対の上面電極 12と対称の位置 に形成された一対のダミー電極で、この一対のダミー電極 13は前記一対の上面電 極 12と同一幅、同一長さに構成し、そして前記一対の上面電極 12と同時に、銀を主 成分とする電極ペーストをスクリーン印刷し、これを 850°Cで焼成することにより形成 している。 14は前記一対の上面電極 12間に跨がり、かつ電気的に接続されるように 方形基板 11の上面に形成された抵抗体で、この抵抗体 14は酸化ルテニウム系の抵 抗ペーストをスクリーン印刷し、これを 850°Cで焼成することにより形成している。前記 抵抗体 14は、蛇行部 15を有し、うねりながら前記一対の上面電極 12に跨っている。 16は前記方形基板 11の上面の相対向する両辺部の端面に前記一対の上面電極 1 2および一対のダミー電極 13と電気的に接続されるように形成された一対の端面電 極で、この一対の端面電極 16は銀とエポキシ榭脂からなる端面電極材料を塗布し、 これを 200°Cで硬化させることにより形成している。
[0019] 図 2は上記本発明の実施の形態 1におけるチップ抵抗器の製造過程で用いられる シート状基板の上面図を示したものである。
[0020] 図 2に示すシート状基板 11aは、片面または両面に、短冊状基板に分割するため の 1次分割溝 l ibと、個片状基板に分割するための 2次分割溝 11cを格子状に複数 形成することにより、この 1次分割溝 l ibと 2次分割溝 11cを介して碁盤目状に設けら れた方形基板 11を複数有して!/ヽる。
[0021] 次に、本発明の実施の形態 1におけるチップ抵抗器の製造方法について、図 2を 参照しながら説明する。
[0022] まず、図 2に示すシート状基板 11aにおける方形基板 11の相対向する 1次分割溝 1 lbの内側において、方形基板 11の相対向する 1次分割溝 l ibを結ぶ方向、すなわ ち方形基板 11の長手方向と直交する方向、すなわち方形基板 11の短手方向の中 心線に対して対称の位置に、一対の上面電極 12と、一対のダミー電極 13を、銀を主 成分とする電極ペーストをスクリーン印刷し、これを 850°Cで焼成することにより同時 に形成している。この場合、前記一対の上面電極 12は、方形基板 11の相対向する 1 次分割溝 11 bを結ぶ方向、すなわち方形基板 11の長手方向の中心線に対して互!、 に反対側に位置するように形成し、また、前記一対のダミー電極 13も、方形基板 11 の相対向する 1次分割溝 l ibを結ぶ方向、すなわち方形基板 11の長手方向の中心 線に対して互いに反対側に位置するように形成している。これにより、このシート状基 板 11aの状態では、図 2に示すように、シート状基板 11aにおける方形基板 11の相 対向する 1次分割溝 l ibの内側に形成された上面電極 12と、隣接する方形基板 11 の相対向する 1次分割溝 l ibの内側に形成されたダミー電極 13が 1次分割溝 l ibを 介して連続的に形成され、かつ電気的に接続されることになる。 [0023] 次に、前記一対の上面電極 12間に跨がり、かつ電気的に接続されるように方形基 板 11の上面に酸化ルテニウム系の抵抗ペーストをスクリーン印刷し、これを 850°Cで 焼成することにより蛇行部 15を有した所定の形状の抵抗体 14を形成する。
[0024] なお、抵抗体 14に蛇行部 15を形成するには、方形基板 11に抵抗体 14を形成した 後にレーザー加工を施し、抵抗体 14にトリミング溝を形成することによって行うことも 可能である。
[0025] 次に、前記抵抗体 14の全部を覆うようにガラス力もなる第 1の保護膜 (図示せず)を 形成し、その後、第 1の保護膜 (図示せず)を介して抵抗体 14にレーザー加工により トリミング溝を施すことにより抵抗体 14の抵抗値修正を行う。この抵抗値修正は、 4端 子抵抗値測定を行いながらレーザー加工により抵抗体 14にトリミング溝を施すことに より行う。この場合、上記発明の実施の形態 1においては、一対の上面電極 12と、一 対のダミー電極 13を同時に形成することにより、シート状基板 11aにおける方形基板 11の相対向する 1次分割溝 l ibの内側に形成された上面電極 12と、隣接する方形 基板 11の相対向する 1次分割溝 1 lbの内側に形成されたダミー電極 13が 1次分割 溝 l ibを介して連続的に形成され、かつ電気的に接続されるようにしているため、図 2の状態では 4端子抵抗値測定端子を一対の上面電極 12と一対のダミー電極 13に 接触させて抵抗値測定を行うことができるので、 4端子抵抗値測定端子を接触させる 面積も大きくとれ、これにより、 4端子抵抗値測定が確実に行えるという効果が得られ る。
[0026] 次に、前記第 1の保護膜(図示せず)の全部と上面電極 12の一部を覆うようにェポ キシ榭脂からなる第 2の保護膜 (図示せず)をスクリーン印刷により形成する。
[0027] 次に、シート状基板 11aを 1次分割溝 l ibに沿って分割することにより複数の短冊 状基板 l idに分割し、その後、この短冊状基板 l idの端面に銀とエポキシ榭脂から なる端面電極材料を塗布して前記上面電極 12およびダミー電極 13と電気的に接続 される端面電極 16を形成する。
[0028] 次に、前記短冊状基板 l idを 2次分割溝 11cに沿って分割することにより図 1に示 す個片状基板 l ieに分割し、その後、この個片状基板 l ieにおける端面電極 16の 上にニッケルめっき(図示せず)とすずめっき(図示せず)を施すことにより、図 1に示 すようなチップ抵抗器を製造することができる。
[0029] 上記したように本発明の実施の形態 1においては、シート状基板 11aにおける方形 基板 11の相対向する 1次分割溝 l ibの内側において、前記方形基板 11の相対向 する 1次分割溝 l ibを結ぶ方向、すなわち方形基板 11の長手方向と直交する方向、 すなわち方形基板 11の短手方向の中心線に対して前記一対の上面電極 12と対称 の位置に一対のダミー電極 13を形成するとともに、前記上面電極 12とダミー電極 13 は、 1次分割溝 1 lbを介して隣接する方形基板 11におけるダミー電極 13および上面 電極 12にそれぞれ電気的に接続されるように同時に形成するようにして ヽるため、複 数の方形基板 11に分割する前のシート状基板 1 laの状態では、シート状基板 1 laに おける方形基板 11の相対向する 1次分割溝 l ibの内側に形成された上面電極 12と 、隣接する方形基板 11の相対向する 1次分割溝 1 lbの内側に形成されたダミー電極 13は 1次分割溝 l ibを介して連続的に形成されることになる。これ〖こより、 1次分割溝 1 lbと 2次分割溝 1 lcを介して碁盤目状に設けられた方形基板 11を複数有するシー ト状基板 11aを用いて、複数対の上面電極 12やダミー電極 13、あるいは複数の抵抗 体 14をスクリーン印刷により形成した際に、例えば、図 3に示すように、上面電極 12 の印刷位置がずれて、上面電極 12が 1次分割溝 l ibから離れたとしても、上面電極 12と連続的に形成されているダミー電極 13が 1次分割溝 l ibにかかることになるた め、この 1次分割溝 l ibで複数の短冊状基板 l idをシート状基板 11aから分割した 後、短冊状基板 l idの相対向する端面に端面電極 16を形成した際には、図 4に示 すように、ダミー電極 13を介して上面電極 12と端面電極 16とを確実に電気的に接続 することができると!/ヽぅ効果が得られる。
[0030] また、上面電極 12とダミー電極 13が 1次分割溝 l ibを介して連続的に形成されて いるため、抵抗体 14の抵抗値測定を行う場合、 4端子抵抗値測定端子を接触させる 面積が大きくとれ、これにより、 4端子抵抗値測定が確実に行えるという効果も得られ る。
[0031] 図 5 (a) (b)は、上記本発明の実施の形態 1で示したチップ抵抗器における抵抗体 14の他のパターン例を示したものである。図 5 (a)に示すように、抵抗体 14は、必ず しも蛇行部 15を有している必要はなぐまた図 5 (b)に示すように、蛇行部 15の形状 も種々選定可能である。
[0032] なお、上記本発明の実施の形態 1においては、上面電極 12、ダミー電極 13を形成 する場合、銀を主成分とする電極ペーストをスクリーン印刷し、これを 850°Cで焼成す ること〖こより形成し、また抵抗体 14を形成する場合、酸化ルテニウム系の抵抗ペース トをスクリーン印刷し、これを 850°Cで焼成することにより形成している力 これらの上 面電極 12、ダミー電極 13、抵抗体 14の形成方法はこれに限定されるものではなぐ スパッタ等により構成される金属薄膜によって上面電極 12、ダミー電極 13、抵抗体 1 4を形成してもよいもので、この場合においても、上記本発明の実施の形態 1と同様 の効果を得ることができる。
[0033] 図 6は本発明の実施の形態 1におけるチップ抵抗器の変形例を示す上面図で、こ の図 6が上記本発明の実施の形態 1で示した図 1と異なる点は、一対の上面電極 12 を方形基板 11の上面の相対向する両辺部に、方形基板 11の相対向する両辺部を 結ぶ方向、すなわち方形基板 11の短手方向の中心線に対して互 、に反対側に位 置するように形成するとともに、一対のダミー電極 13を方形基板 11の上面の相対向 する両辺部において、方形基板 11の相対向する両辺部を結ぶ方向と直交する方向 、すなわち方形基板 11の長手方向の中心線に対して前記一対の上面電極 12と対 称の位置に形成し、そして前記一対の上面電極 12間に跨がり、かつ電気的に接続 されるように抵抗体 14を形成し、さらに一対の端面電極 16を前記方形基板 11の上 面の相対向する両辺部の端面に前記一対の上面電極 12および一対のダミー電極 1 3と電気的に接続されるように形成した点である。この変形例においても、上記本発 明の実施の形態 1と同様の効果を得ることができる。
[0034] (実施の形態 2)
以下、本発明の実施の形態 2について説明する。
[0035] 図 7は本発明の実施の形態 2におけるチップ抵抗器の上面図である。
[0036] 図 7において、 21はアルミナ力もなる方形基板で、この方形基板 21の平面形状は 長方形となっている。 22は前記方形基板 21の上面の相対向する両辺部に、方形基 板 21の相対向する両辺部を結ぶ方向、すなわち方形基板 21の長手方向の中心線 に対して互 ヽに反対側に位置するように形成された一対の上面電極で、この一対の 上面電極 22は銀を主成分とする電極ペーストをスクリーン印刷し、これを 850°Cで焼 成することにより形成している。 23は前記方形基板 21の上面の相対向する両辺部に おいて、前記方形基板 21の相対向する両辺部を結ぶ方向、すなわち方形基板 21 の長手方向と直交する方向、すなわち方形基板 21の短手方向の中心線に対して前 記一対の上面電極 22と対称の位置に形成された一対のダミー電極で、この一対の ダミー電極 23は、幅を前記一対の上面電極 22の幅と同じにし、かつ長さを前記一対 の上面電極 22の長さより短くして一対の上面電極 22より小さい形状に構成し、そして 前記一対の上面電極 22と同時に、銀を主成分とする電極ペーストをスクリーン印刷し 、これを 850°Cで焼成することにより形成している。このため、前記一対の上面電極 2 2の各々は、方形基板 21の長手方向において前記各ダミー電極 23よりも内側に張り 出している。 24は前記一対の上面電極 22間に跨がり、かつ電気的に接続されるよう に方形基板 21の上面に形成された抵抗体で、この抵抗体 24は酸化ルテニウム系の 抵抗ペーストをスクリーン印刷し、これを 850°Cで焼成することにより形成している。前 記抵抗体 24は、蛇行部 25を有し、うねりながら前記一対の上面電極 22に跨っている 。 26は前記方形基板 21の上面の相対向する両辺部の端面に前記一対の上面電極 22および一対のダミー電極 23と電気的に接続されるように形成された一対の端面電 極で、この一対の端面電極 26は銀とエポキシ榭脂からなる端面電極材料を塗布し、 これを 200°Cで硬化させることにより形成している。また、この一対の端面電極 26は、 方形基板 21の上面両端部まで回り込ませて形成することにより、一対の上面電極 22 より小さい形状の一対のダミー電極 23を被覆するようにしている。なお、端面電極 26 は、ダミー電極 23の略全面、例えば 90〜100%を被覆することが好ましい。
[0037] 図 8は上記本発明の実施の形態 2におけるチップ抵抗器の製造過程で用いられる シート状基板の上面図を示したものである。
[0038] 図 8に示すシート状基板 21aは、片面または両面に、短冊状基板に分割するため の 1次分割溝 21bと、個片状基板に分割するための 2次分割溝 21cを格子状に複数 形成することにより、この 1次分割溝 21bと 2次分割溝 21cを介して碁盤目状に設けら れた方形基板 21を複数有して ヽる。
[0039] 次に、本発明の実施の形態 2におけるチップ抵抗器の製造方法について、図 8を 参照しながら説明する。
[0040] まず、図 8に示すシート状基板 21aにおける方形基板 21の相対向する 1次分割溝 2 lbの内側において、方形基板 21の相対向する 1次分割溝 21bを結ぶ方向、すなわ ち方形基板 21の長手方向と直交する方向、すなわち方形基板 21の短手方向の中 心線に対して対称の位置に、一対の上面電極 22と、一対のダミー電極 23を、銀を主 成分とする電極ペーストをスクリーン印刷し、これを 850°Cで焼成することにより同時 に形成している。この場合、前記一対の上面電極 22は、方形基板 21の相対向する 1 次分割溝 21 bを結ぶ方向、すなわち方形基板 21の長手方向の中心線に対して互!、 に反対側に位置するように形成し、また、前記一対のダミー電極 23も、方形基板 21 の相対向する 1次分割溝 21bを結ぶ方向、すなわち方形基板 21の長手方向の中心 線に対して互いに反対側に位置するように形成している。これにより、このシート状基 板 21aの状態では、図 8に示すように、シート状基板 21aにおける方形基板 21の相 対向する 1次分割溝 21bの内側に形成された上面電極 22と、隣接する方形基板 21 の相対向する 1次分割溝 21bの内側に形成されたダミー電極 23が 1次分割溝 21bを 介して連続的に形成され、かつ電気的に接続されることになる。
[0041] 次に、前記一対の上面電極 22間に跨がり、かつ電気的に接続されるように方形基 板 21の上面に酸化ルテニウム系の抵抗ペーストをスクリーン印刷し、これを 850°Cで 焼成することにより蛇行部 25を有した所定の形状の抵抗体 24を形成する。
[0042] 次に、前記抵抗体 24の全部を覆うようにガラス力もなる第 1の保護膜 (図示せず)を 形成し、その後、第 1の保護膜 (図示せず)を介して抵抗体 24にレーザー加工により トリミング溝を施すことにより抵抗体 24の抵抗値修正を行う。この抵抗値修正は、 4端 子抵抗値測定を行いながらレーザー加工により抵抗体 24にトリミング溝を施すことに より行う。この場合、上記本発明の実施の形態 2においては、一対の上面電極 22と、 一対のダミー電極 23を同時に形成することにより、シート状基板 21aにおける方形基 板 21の相対向する 1次分割溝 21bの内側に形成された上面電極 22と、隣接する方 形基板 21の相対向する 1次分割溝 21bの内側に形成されたダミー電極 23が 1次分 割溝 2 lbを介して連続的に形成され、かつ電気的に接続されるようにして!/ヽるため、 図 8に示す状態では 4端子抵抗値測定端子を接触させる面積も大きくとれ、これによ り、 4端子抵抗値測定が確実に行えるという効果が得られる。
[0043] 次に、前記第 1の保護膜(図示せず)の全部と上面電極 22の一部を覆うようにェポ キシ榭脂からなる第 2の保護膜 (図示せず)をスクリーン印刷により形成する。
[0044] 次に、シート状基板 21aを 1次分割溝 21bに沿って分割することにより複数の短冊 状基板 21dに分割し、その後、この短冊状基板 21dの端面に銀とエポキシ榭脂から なる端面電極材料を塗布して前記上面電極 22およびダミー電極 23と電気的に接続 される端面電極 26を形成する。この場合、端面電極 26は、短冊状基板 21dの上面 両端部まで回り込ませて形成することにより、上面電極 22より小さい形状のダミー電 極 23の略全面を被覆するようにして ヽる。
[0045] 次に、前記短冊状基板 21dを 2次分割溝 21cに沿って分割することにより図 7に示 す個片状基板 21eに分割し、その後、この個片状基板 21eにおける端面電極 26の 上にニッケルめっき(図示せず)とすずめっき(図示せず)を施すことにより、図 7に示 すようなチップ抵抗器を製造することができる。
[0046] 上記したように本発明の実施の形態 2においては、シート状基板 21aにおける方形 基板 21の相対向する 1次分割溝 21bの内側において、前記方形基板 21の相対向 する 1次分割溝 21bを結ぶ方向、すなわち方形基板 21の長手方向と直交する方向、 すなわち方形基板 21の短手方向の中心線に対して一対の上面電極 22と対称の位 置に一対のダミー電極 23を形成するとともに、前記上面電極 22とダミー電極 23は、 1次分割溝 21bを介して隣接する方形基板 21におけるダミー電極 23および上面電 極 22にそれぞれ電気的に接続されるように同時に形成するようにして ヽるため、複数 の方形基板 21に分割する前のシート状基板 21aの状態では、シート状基板 21aにお ける方形基板 21の相対向する 1次分割溝 21bの内側に形成された上面電極 22と、 隣接する方形基板 21の相対向する 1次分割溝 21bの内側に形成されたダミー電極 2 3は 1次分割溝 21bを介して連続的に形成されることになる。これ〖こより、 1次分割溝 2 lbと 2次分割溝 21cを介して碁盤目状に設けられた方形基板 21を複数有するシート 状基板 21aを用いて、複数対の上面電極 22やダミー電極 23、あるいは複数の抵抗 体 24をスクリーン印刷により形成した際に、例えば、図 9に示すように、上面電極 22 の印刷位置がずれて、上面電極 22が 1次分割溝 21bから離れたとしても、上面電極 22と連続的に形成されているダミー電極 23が 1次分割溝 21bにかかることになるた め、この 1次分割溝 21bで複数の短冊状基板 21dをシート状基板 21aから分割した 後、短冊状基板 21dの相対向する端面に端面電極 26を形成した際には、図 10に示 すように、ダミー電極 23を介して上面電極 22と端面電極 26とを確実に電気的に接続 することができると!/ヽぅ効果が得られる。
[0047] また、上記本発明の実施の形態 2においては、上面電極 22とダミー電極 23が 1次 分割溝 21bを介して連続的に形成されて ヽるため、抵抗体 24の抵抗値測定を行う場 合、 4端子抵抗値測定端子を接触させる面積が大きくとれ、これにより、 4端子抵抗値 測定が確実に行えるという効果も得られる。
[0048] そしてまた、上記本発明の実施の形態 2においては、前記ダミー電極 23を上面電 極 22より小さい形状、すなわち、幅は上面電極 22と同じである力 長さを上面電極 2 2より短くした形状としているため、ダミー電極 23の形状が小さい分だけ、抵抗体 24 の面積と抵抗体 24の長さを大きく確保することができ、これにより、耐パルス特性など の負荷特性を向上させることができるという効果も得られる。
[0049] さらに、上記本発明の実施の形態 2においては、上面電極 22より小さい形状とした ダミー電極 23の略全面を、短冊状基板 21dの上面両端部まで回り込ませて形成した 端面電極 26で被覆するようにして ヽるため、前記ダミー電極 23は隠れることになり、 これにより、検査時などに検査装置がダミー電極 23を上面電極 22と誤認識すること もなくなるという効果も得られる。
[0050] 図 11 (a) (b)は、上記本発明の実施の形態 2で示したチップ抵抗器における抵抗 体 24の他のパターン例を示したものである。図 11 (a)に示すように、抵抗体 24は、必 ずしも蛇行部 25を有している必要はなぐまた図 11 (b)に示すように、蛇行部 25の形 状も種々選定可能である。
[0051] なお、上記本発明の実施の形態 2においては、ダミー電極 23を上面電極 22より小 さい形状とするために、幅は上面電極 22の幅と同じにし、かつ長さを上面電極 22の 長さより短くして上面電極 22より小さい形状のダミー電極 23としていた力 これに限 定されるものではなぐこれ以外の例えば、長さを上面電極 22の長さより短くするだけ でなぐ幅も上面電極 22の幅より小さくしたダミー電極 23を採用した場合でも、上記 した本発明の実施の形態 2と同様の効果を得ることができる。
[0052] また、上記本発明の実施の形態 2においては、上面電極 22、ダミー電極 23を形成 する場合、銀を主成分とする電極ペーストをスクリーン印刷し、これを 850°Cで焼成す ること〖こより形成し、また抵抗体 24を形成する場合、酸化ルテニウム系の抵抗ペース トをスクリーン印刷し、これを 850°Cで焼成することにより形成している力 これらの上 面電極 22、ダミー電極 23、抵抗体 24の形成方法はこれに限定されるものではなぐ スパッタ等により構成される金属薄膜によって上面電極 22、ダミー電極 23、抵抗体 2 4を形成してもよいもので、この場合においても、上記本発明の実施の形態 2と同様 の効果が得られるものである。
[0053] 図 12は本発明の実施の形態 2におけるチップ抵抗器の変形例を示す上面図で、こ の図 12が上記本発明の実施の形態 2で示した図 7と異なる点は、一対の上面電極 2 2を方形基板 21の上面の相対向する両辺部に、方形基板 21の相対向する両辺部を 結ぶ方向、すなわち方形基板 21の短手方向の中心線に対して互 、に反対側に位 置するように形成するとともに、一対のダミー電極 23を方形基板 21の上面の相対向 する両辺部において、方形基板 21の相対向する両辺部を結ぶ方向と直交する方向 、すなわち方形基板 21の長手方向の中心線に対して前記一対の上面電極 22と対 称の位置に形成し、そして前記一対の上面電極 22間に跨がり、かつ電気的に接続 されるように抵抗体 24を形成し、さらに一対の端面電極 26を前記方形基板 21の上 面の相対向する両辺部の端面に前記一対の上面電極 22および一対のダミー電極 2 3と電気的に接続されるように形成した点である。この変形例においても、上記本発 明の実施の形態 2と同様の効果を得ることができる。
[0054] (実施の形態 3)
以下、本発明の実施の形態 3について説明する。
[0055] 図 13は本発明の実施の形態 1におけるチップ抵抗器の上面図である。
[0056] 図 13において、 31はアルミナ力もなる方形基板で、この方形基板 31の平面形状は 長方形となっている。 32は前記方形基板 31の上面の相対向する両辺部に、当該両 辺部の延びる方向、すなわち方形基板 31の短手方向に沿って形成された一対の上 面電極で、この一対の上面電極 12は銀を主成分とする電極ペーストをスクリーン印 刷し、これを 850°Cで焼成することにより形成している。 34は前記一対の上面電極 32 間に跨がり、かつ電気的に接続されるように方形基板 31の上面に形成された抵抗体 で、この抵抗体 34は酸化ルテニウム系の抵抗ペーストをスクリーン印刷し、これを 85 0°Cで焼成することにより形成している。前記抵抗体 34は、蛇行部 35を有し、うねりな 力 前記一対の上面電極 12における一の部分同士、すなわち方形基板 31の対角 方向に位置する部分同士に跨っており、蛇行部 35は、電位差を有して前記上面電 極 32の他の部分、すなわち前記対角方向に位置する部分を除く部分に近接してい る。 37は前記一対の上面電極 32に跨る大きさで前記抵抗体 34を覆うガラスコートで 、このガラスコート 37はホウ珪酸鉛系のガラスペーストをスクリーン印刷し、これを 600 〜850°Cで焼成することにより形成している。すなわち、ガラスコート 37は、一対の上 面電極 12の内側の端部までを覆っている。 36は前記方形基板 31の上面の相対向 する両辺部の端面に前記一対の上面電極 32と電気的に接続されるように形成され た一対の端面電極で、この一対の端面電極 36は銀とエポキシ榭脂からなる端面電 極材料を塗布し、これを 200°Cで硬化させることにより形成して!/、る。
[0057] 図 14は上記本発明の実施の形態 3におけるチップ抵抗器の製造過程で用いられ るシート状基板の上面図を示したものである。
[0058] 図 14に示すシート状基板 31aは、片面または両面に、短冊状基板に分割するため の 1次分割溝 31bと、個片状基板に分割するための 2次分割溝 31cを格子状に複数 形成することにより、この 1次分割溝 31bと 2次分割溝 31cを介して碁盤目状に設けら れた方形基板 31を複数有して!/ヽる。
[0059] 次に、本発明の実施の形態 3におけるチップ抵抗器の製造方法について、図 14を 参照しながら説明する。
[0060] まず、図 14に示すシート状基板 31aにおける 1次分割溝 31bを跨る領域に、銀を主 成分とする電極ペーストをスクリーン印刷し、これを 850°Cで焼成することにより、シー ト状基板 3 laにおける方形基板 31の相対抗する 1次分割溝 3 lbの内側に、 1次分割 溝 31bに沿って延びる一対の上面電極 32を形成する。
[0061] 次に、前記一対の上面電極 32を方形基板 31の対角方向で跨がり、かつ電気的に 接続されるように方形基板 31の上面に酸化ルテニウム系の抵抗ペーストをスクリーン 印刷し、これを 850°Cで焼成することにより蛇行部 35を有した所定の形状の抵抗体 3 4を形成する。
[0062] 次に、前記抵抗体 14の全部を覆うとともに、前記一対の上面電極 32の方形基板 3 1の内側端部を上面電極 32の全幅に亘つて覆うように、ホウ珪酸鉛系のガラスペース トをスクリーン印刷し、これを 600〜850°Cで焼成することによりガラスコート 37を形成 し、その後に、前記ガラスコート 37の全部を覆うようにエポキシ榭脂からなる榭脂コ一 ト(図示せず)をスクリーン印刷により形成する。
[0063] 次に、シート状基板 31aを 1次分割溝 31bに沿って分割することにより複数の短冊 状基板 31dに分割し、その後、この短冊状基板 31dの端面に銀とエポキシ榭脂から なる端面電極材料を塗布して前記上面電極 32と電気的に接続される端面電極 36を 形成する。
[0064] 次に、前記短冊状基板 31dを 2次分割溝 31cに沿って分割することにより図 13に示 す個片状基板 31eに分割し、その後、この個片状基板 31eにおける端面電極 36の 上にニッケルめっき(図示せず)とすずめっき(図示せず)を施すことにより、図 13に示 すようなチップ抵抗器を製造することができる。
[0065] 上記したように本発明の実施の形態 3においては、方形基板 31の相対向する両辺 部に、当該両辺部の延びる方向に沿って一対の上面電極 32を形成しているため、 複数の方形基板 31に分割する前のシート状基板 31aの状態では、方形基板 31の相 対向する両辺部に形成された上面電極 32は、 1次分割溝 3 lbを介して連続的に形 成されることになる。これ〖こより、 1次分割溝 31bと 2次分割溝 32bを介して碁盤目状 に設けられた方形基板 31を複数有するシート状基板 31aを用いて、複数対の上面 電極 32や複数の抵抗体 34を印刷もしくはスパッタ等により形成した際に、上面電極 32の形成位置が正規の位置力もずれたとしても、上面電極 32が 1次分割溝 31bに 力かることになるため、この 1次分割溝 31bで複数の短冊状基板 31dをシート状基板 31aから分割した後、短冊状基板 31dの相対向する端面に端面電極 36を形成した 際には、上面電極 32と端面電極 36とを確実に電気的に接続することができることに なる。また、端面電極 36が上面電極 32と広い面積で接続されることになるため、従来 よりも端面電極 36の密着力を向上させることができる。さらに、上面電極 32と抵抗体 35との間がガラスコート 37で完全に被覆され湿気が介在しないため、前記一対の上 面電極 32をチップ抵抗器では一般的な銀系材料で構成した場合で、かつ榭脂保護 コートの密着性 ·耐湿性が不十分であっても、湿度雰囲気中での負荷使用で上面電 極 32の銀が抵抗体 34との間で電気マイグレーションを起こすことを抑制することがで きる。また、ガラスコート 37は榭脂コートで被覆されるため、この榭脂コートによって製 造時や使用時にガラスコート 37にクラックが入るのを防ぐことができ、電気マイグレー シヨンが起きることをより効果的に抑制することができる。
[0066] 図 15 (a)〜(c)は、上記本発明の実施の形態 3で示したチップ抵抗器における抵 抗体 24の他のパターン例を示したものである。図 15 (a)に示すように、抵抗体 24は、 必ずしも一対の上面電極 32における方形基板 31の対角方向の部分同士に跨って いる必要はなぐ方形基板 31の長手方向で対向する部分同士に跨っていてもよい。
[0067] また、図 15 (b) (c)に示すように、上記本発明の実施の形態 1または実施の形態 2 におけるチップ抵抗器にも実施の形態 3は適用可能である。この場合には、ガラスコ ート 37を一対のダミー電極 33に跨る大きさに設定すればよい。すなわち、ガラスコー ト 37でダミー電極 33の抵抗体 34と対向する部分を覆うよう〖こする。このようにしても 上記本発明の実施の形態 3と同様に、ダミー電極 33と抵抗体 34との間で電気マイグ レーシヨンが起きることを抑制することができる。
[0068] (まとめ)
以上のように、本発明に係るチップ抵抗器は、方形基板の相対向する両辺部に、 当該両辺部を結ぶ方向に延びる方形基板の中心線に対して互いに反対側に位置 するように形成された一対の上面電極と、この一対の上面電極と電気的に接続される ように前記方形基板に形成された抵抗体と、前記方形基板の相対向する両辺部の 端面に形成され、かつ前記一対の上面電極と電気的に接続される一対の端面電極 とを備え、前記方形基板の相対向する両辺部には、当該両辺部を結ぶ方向で前記 一対の上面電極に対応する位置にそれぞれダミー電極が形成されていることを特徴 とするちのである。
[0069] この構成によれば、方形基板の相対向する両辺部において、当該両辺部を結ぶ方 向と直交する方向に延びる方形基板の中心線に対して一対の上面電極と対称の位 置に一対のダミー電極を形成しているため、複数の方形基板に分割する前のシート 状基板の状態では、方形基板の相対向する両辺部に形成された上面電極と、隣接 する方形基板の相対向する両辺部に形成されたダミー電極は 1次分割溝を介して連 続的に形成されることになる。これ〖こより、 1次分割溝と 2次分割溝を介して碁盤目状 に設けられた方形基板を複数有するシート状基板を用いて、複数対の上面電極ゃダ ミー電極、あるいは複数の抵抗体を印刷もしくはスパッタ等により形成した際に、上面 電極の形成位置がずれて上面電極が 1次分割溝、すなわち方形基板の相対向する 端部から離れたとしても、上面電極と連続的に形成されているダミー電極が 1次分割 溝に力かることになるため、この 1次分割溝で複数の短冊状基板をシート状基板から 分割した後、短冊状基板の相対向する端面に端面電極を形成した際には、ダミー電 極を介して上面電極と端面電極とを確実に電気的に接続することができることになる 。また、端面電極が上面電極上だけでなぐダミー電極上にも塗布されるため、端面 電極と電極との密着力が端面電極と基板との密着力よりも大きいことにより、上面電 極上にのみ端面電極を塗布するよりも端面電極の密着力を向上させることができる。
[0070] 前記チップ抵抗器にお!、て、前記一対の上面電極の各々は、前記方形基板の相 対向する両辺部を結ぶ方向にぉ 、て前記各ダミー電極よりも内側に張り出して 、るこ とが好ましい。
[0071] この構成によれば、前記一対のダミー電極は前記一対の上面電極より小さい形状 となるため、ダミー電極の形状が小さい分、抵抗体の面積および抵抗体の長さを大き く確保することがでさる。
[0072] 前記チップ抵抗器にぉ 、て、前記一対の端面電極は、前記方形基板の相対向す る両辺部の端面に、当該端面力 方形基板の上面に回り込むように形成されており、 これらの端面電極によって前記各ダミー電極の略全面が被覆されていることが好まし い。
[0073] この構成によれば、一対の上面電極より小さい形状とした一対のダミー電極の略全 面を、短冊状基板の上面両辺部まで回り込ませて形成した端面電極で被覆するよう にしているため、前記一対のダミー電極は隠れることになり、これにより、検査時など に検査装置がダミー電極を上面電極と誤認識することもなくなるという効果を得ること ができる。
[0074] 前記チップ抵抗器にぉ 、て、前記方形基板には、前記各ダミー電極に跨る大きさ で前記抵抗体を覆うガラスコートとこのガラスコートを被覆する榭脂コートが形成され ていることが好ましい。
[0075] このようにすれば、ダミー電極と抵抗体との間がガラスコートで覆われるため、ダミー 電極が銀系材料で構成され、かつダミー電極と抵抗体とが近接して 、る場合であつ ても、それらの間で電気マイグレーションが起きることを抑制することができる。また、 ガラスコートは榭脂コートで被覆されるため、この榭脂コートによって製造時や使用時 にガラスコートにクラックが入るのを防ぐことができ、電気マイグレーションが起きること をより効果的に抑制することができる。
[0076] また、本発明に係る他のチップ抵抗器は、方形基板の相対向する両辺部に、当該 両辺部の延びる方向に沿って形成された一対の上面電極と、これらの上面電極の一 部に電気的に接続され、かつ各上面電極の他の部分に近接するように前記方形基 板に形成された抵抗体とを備え、前記方形基板には、前記各上面電極に跨る大きさ で前記抵抗体を覆うガラスコートとこのガラスコートを被覆する榭脂コートが形成され て ヽることを特徴とするものである。
[0077] この構成によれば、方形基板の相対向する両辺部に、当該両辺部の延びる方向に 沿って一対の上面電極を形成して!/、るため、複数の方形基板に分割する前のシート 状基板の状態では、方形基板の相対向する両辺部に形成された上面電極は、 1次 分割溝を介して連続的に形成されることになる。これ〖こより、 1次分割溝と 2次分割溝 を介して碁盤目状に設けられた方形基板を複数有するシート状基板を用いて、複数 対の上面電極や複数の抵抗体を印刷もしくはスパッタ等により形成した際に、上面電 極の形成位置が正規の位置力 ずれたとしても、上面電極が 1次分割溝に力かること になるため、この 1次分割溝で複数の短冊状基板をシート状基板から分割した後、短 冊状基板の相対向する端面に端面電極を形成した際には、上面電極と端面電極と を確実に電気的に接続することができることになる。また、端面電極が上面電極と広 い面積で接続されることになるため、従来よりも端面電極の密着力を向上させること ができる。さら〖こ、上面電極と抵抗体との間がガラスコートで覆われるため、上面電極 を銀系材料で構成した場合であっても、それらの間で電気マイグレーションが起きる ことを抑制することができる。また、ガラスコートは榭脂コートで被覆されるため、この 榭脂コートによって製造時や使用時にガラスコートにクラックが入るのを防ぐことがで き、電気マイグレーションが起きることをより効果的に抑制することができる。
[0078] また、本発明に係るチップ抵抗器の製造方法は、 1次分割溝と 2次分割溝を介して 碁盤目状に設けられた方形基板を複数有するシート状基板を用い、このシート状基 板における方形基板の相対抗する 1次分割溝の内側に、相対抗する 1次分割溝を結 ぶ方向に延びる方形基板の中心線に対して互いに反対側に位置するように一対の 上面電極を形成する工程と、前記シート状基板における方形基板の相対向する 1次 分割溝の内側において、相対向する 1次分割溝を結ぶ方向と直交する方向に延びる 方形基板の中心線に対して前記一対の上面電極と対称の位置に一対のダミー電極 を形成する工程と、前記一対の上面電極と電気的に接続されるように抵抗体を前記 方形基板に形成する工程と、前記シート状基板を 1次分割溝に沿って分割すること により得られる短冊状基板の相対向する端面に前記上面電極と電気的に接続される ように端面電極を形成する工程とを有し、前記上面電極形成工程とダミー電極形成 工程を、上面電極とダミー電極が、 1次分割溝を介して隣接する方形基板におけるダ ミー電極および上面電極にそれぞれ電気的に接続されるように同時に行うことを特徴 とするちのである。
[0079] この製造方法によれば、シート状基板における方形基板の相対向する 1次分割溝 の内側において、相対向する 1次分割溝を結ぶ方向と直交する方向に延びる方形基 板の中心線に対して一対の上面電極と対称の位置に一対のダミー電極を形成する 工程を備えるとともに、前記上面電極とダミー電極は、 1次分割溝を介して隣接する 方形基板におけるダミー電極および上面電極にそれぞれ電気的に接続されるよう〖こ 同時に形成するようにしているため、複数の方形基板に分割する前のシート状基板 の状態では、シート状基板における方形基板の相対向する 1次分割溝の内側に形成 された上面電極と、隣接する方形基板の相対向する 1次分割溝の内側に形成された ダミー電極は 1次分割溝を介して連続的に形成されることになる。これ〖こより、 1次分 割溝と 2次分割溝を介して碁盤目状に設けられた方形基板を複数有するシート状基 板を用いて、複数対の上面電極やダミー電極、あるいは複数の抵抗体を印刷もしく はスパッタ等により形成した際に、上面電極の形成位置がずれて上面電極が 1次分 割溝カゝら離れたとしても、上面電極と連続的に形成されているダミー電極が 1次分割 溝に力かることになるため、この 1次分割溝で複数の短冊状基板をシート状基板から 分割した後、短冊状基板の相対向する端面に端面電極を形成した際には、ダミー電 極を介して上面電極と端面電極とを確実に電気的に接続することができることになる 。また、端面電極が上面電極上だけでなぐダミー電極上にも塗布されるため、端面 電極と電極との密着力が端面電極と基板との密着力よりも大きいことにより、上面電 極上にのみ端面電極を塗布するよりも端面電極の密着力を向上させることができる。
[0080] また、上面電極とダミー電極が 1次分割溝を介して連続的に形成されているため、 抵抗体の抵抗値測定を行う場合、 4端子抵抗値測定端子を接触させる面積が大きく とれ、これにより、 4端子抵抗値測定が確実に行えるようになる。
[0081] 前記チップ抵抗器の製造方法にぉ ヽて、前記ダミー電極形成工程では、相対抗す る 1次分割溝を結ぶ方向における寸法が、その方向における前記上面電極の寸法よ りも小さく設定されたダミー電極を形成し、前記端面電極形成工程では、前記短冊状 基板の端面力 上面に回り込むように端面電極を形成することにより、前記ダミー電 極の略全面を端面電極で被覆することが好ま ヽ。
[0082] この構成によれば、前記ダミー電極は上面電極より小さい形状としているため、ダミ 一電極の形状力 、さい分、抵抗体の面積および抵抗体の長さを大きく確保でき、こ れにより、耐パルス特性などの負荷特性を向上させることができる。
[0083] さらに、上面電極より小さい形状としたダミー電極の略全面を、短冊状基板の上面 両端部まで回り込ませて形成した端面電極で被覆するようにして ヽるため、前記ダミ 一電極は隠れることになり、これにより、検査時などに検査装置がダミー電極を上面 電極と誤認識することもなくなるという効果を得ることができる。
[0084] 前記チップ抵抗器の製造方法において、前記シート状基板における方形基板に、 前記各ダミー電極に跨る大きさで前記抵抗体を覆うガラスコートとこのガラスコートを 被覆する榭脂コートを形成する工程をさらに有することが好ましい。
[0085] このようにすれば、ダミー電極と抵抗体との間がガラスコートで覆われるため、ダミー 電極が銀系材料で構成され、かつダミー電極と抵抗体とが近接して 、る場合であつ ても、それらの間で電気マイグレーションが起きることを抑制することができる。また、 ガラスコートは榭脂コートで被覆されるため、この榭脂コートによって製造時や使用時 にガラスコートにクラックが入るのを防ぐことができ、電気マイグレーションが起きること をより効果的に抑制することができる。
[0086] また、本発明に係る他のチップ抵抗器の製造方法は、 1次分割溝と 2次分割溝を介 して碁盤目状に設けられた方形基板を複数有するシート状基板を用い、このシート 状基板における 1次分割溝を跨る領域に電極を形成することにより、シート状基板に おける方形基板の相対抗する 1次分割溝の内側に、 1次分割溝に沿って延びる一対 の上面電極を形成する工程と、前記一対の上面電極の一部と電気的に接続され、か つ各上面電極の他の部分に近接するように抵抗体を前記方形基板に形成する工程 と、前記シート状基板における方形基板に、前記各上面電極に跨る大きさで前記抵 抗体を覆うガラスコートとこのガラスコートを被覆する榭脂コートを形成する工程と、前 記シート状基板を 1次分割溝に沿って分割することにより得られる短冊状基板の相対 向する端面に前記上面電極と電気的に接続されるように端面電極を形成する工程と を有することを特徴とするものである。
[0087] この製造方法によれば、方形基板の相対向する両辺部に、当該両辺部の延びる方 向に沿って一対の上面電極を形成して 、るため、複数の方形基板に分割する前の シート状基板の状態では、方形基板の相対向する両辺部に形成された上面電極は 、 1次分割溝を介して連続的に形成されることになる。これ〖こより、 1次分割溝と 2次分 割溝を介して碁盤目状に設けられた方形基板を複数有するシート状基板を用いて、 複数対の上面電極や複数の抵抗体を印刷もしくはスパッタ等により形成した際に、上 面電極の形成位置が正規の位置カゝらずれたとしても、上面電極が 1次分割溝にかか ることになるため、この 1次分割溝で複数の短冊状基板をシート状基板力も分割した 後、短冊状基板の相対向する端面に端面電極を形成した際には、上面電極と端面 電極とを確実に電気的に接続することができることになる。また、端面電極が上面電 極と広い面積で接続されることになるため、従来よりも端面電極の密着力を向上させ ることができる。さらに、上面電極と抵抗体との間がガラスコートで覆われるため、上面 電極を銀系材料で構成した場合であっても、それらの間で電気マイグレーションが起 きることを抑制することができる。また、ガラスコートは榭脂コートで被覆されるため、こ の榭脂コートによって製造時や使用時にガラスコートにクラックが入るのを防ぐことが でき、電気マイグレーションが起きることをより効果的に抑制することができる。
産業上の利用可能性
本発明にかかるチップ抵抗器は、上面電極や抵抗体を印刷またはスパッタ等で複 数形成した際に形成位置がずれた場合でも、上面電極と端面電極とを確実に電気 的に接続することができるとともに、抵抗体の抵抗値測定を行う場合も、 4端子抵抗値 測定端子を接触させる面積が大きくとれ、これにより、確実に 4端子抵抗値測定がで きると ヽぅ効果を有し、耐パルス特性などの負荷特性の向上を図るチップ抵抗器の構 成として有用である。

Claims

請求の範囲
[1] 方形基板の相対向する両辺部に、当該両辺部を結ぶ方向に延びる方形基板の中 心線に対して互いに反対側に位置するように形成された一対の上面電極と、この一 対の上面電極と電気的に接続されるように前記方形基板に形成された抵抗体と、前 記方形基板の相対向する両辺部の端面に形成され、かつ前記一対の上面電極と電 気的に接続される一対の端面電極とを備え、前記方形基板の相対向する両辺部に は、当該両辺部を結ぶ方向で前記一対の上面電極に対応する位置にそれぞれダミ 一電極が形成されて ヽることを特徴とするチップ抵抗器。
[2] 前記一対の上面電極の各々は、前記方形基板の相対向する両辺部を結ぶ方向に ぉ 、て前記各ダミー電極よりも内側に張り出して 、ることを特徴とする請求項 1に記載 のチップ抵抗器。
[3] 前記一対の端面電極は、前記方形基板の相対向する両辺部の端面に、当該端面 力 方形基板の上面に回り込むように形成されており、これらの端面電極によって前 記各ダミー電極の略全面が被覆されていることを特徴とする請求項 2に記載のチップ 抵抗器。
[4] 前記方形基板には、前記各ダミー電極に跨る大きさで前記抵抗体を覆うガラスコー トとこのガラスコートを被覆する榭脂コートが形成されていることを特徴とする請求項 1 〜3の 、ずれか 1項に記載のチップ抵抗器。
[5] 方形基板の相対向する両辺部に、当該両辺部の延びる方向に沿って形成された 一対の上面電極と、これらの上面電極の一部に電気的に接続され、かつ各上面電極 の他の部分に近接するように前記方形基板に形成された抵抗体とを備え、前記方形 基板には、前記各上面電極に跨る大きさで前記抵抗体を覆うガラスコートとこのガラ スコートを被覆する榭脂コートが形成されていることを特徴とするチップ抵抗器。
[6] 1次分割溝と 2次分割溝を介して碁盤目状に設けられた方形基板を複数有するシ ート状基板を用い、このシート状基板における方形基板の相対抗する 1次分割溝の 内側に、相対抗する 1次分割溝を結ぶ方向に延びる方形基板の中心線に対して互 いに反対側に位置するように一対の上面電極を形成する工程と、前記シート状基板 における方形基板の相対向する 1次分割溝の内側において、相対向する 1次分割溝 を結ぶ方向と直交する方向に延びる方形基板の中心線に対して前記一対の上面電 極と対称の位置に一対のダミー電極を形成する工程と、前記一対の上面電極と電気 的に接続されるように抵抗体を前記方形基板に形成する工程と、前記シート状基板 を 1次分割溝に沿って分割することにより得られる短冊状基板の相対向する端面に 前記上面電極と電気的に接続されるように端面電極を形成する工程とを有し、前記 上面電極形成工程とダミー電極形成工程を、上面電極とダミー電極が、 1次分割溝 を介して隣接する方形基板におけるダミー電極および上面電極にそれぞれ電気的 に接続されるように同時に行うことを特徴とするチップ抵抗器の製造方法。
[7] 前記ダミー電極形成工程では、相対抗する 1次分割溝を結ぶ方向における寸法が 、その方向における前記上面電極の寸法よりも小さく設定されたダミー電極を形成し 、前記端面電極形成工程では、前記短冊状基板の端面から上面に回り込むように端 面電極を形成することにより、前記ダミー電極の略全面を端面電極で被覆することを 特徴とする請求項 6に記載のチップ抵抗器の製造方法。
[8] 前記シート状基板における方形基板に、前記各ダミー電極に跨る大きさで前記抵 抗体を覆うガラスコートとこのガラスコートを被覆する榭脂コートを形成する工程をさら に有することを特徴とする請求項 6または 7に記載のチップ抵抗器の製造方法。
[9] 1次分割溝と 2次分割溝を介して碁盤目状に設けられた方形基板を複数有するシ ート状基板を用い、このシート状基板における 1次分割溝を跨る領域に電極を形成 することにより、シート状基板における方形基板の相対抗する 1次分割溝の内側に、 1次分割溝に沿って延びる一対の上面電極を形成する工程と、前記一対の上面電 極の一部と電気的に接続され、かつ各上面電極の他の部分に近接するように抵抗体 を前記方形基板に形成する工程と、前記シート状基板における方形基板に、前記各 上面電極に跨る大きさで前記抵抗体を覆うガラスコートとこのガラスコートを被覆する 榭脂コートを形成する工程と、前記シート状基板を 1次分割溝に沿って分割すること により得られる短冊状基板の相対向する端面に前記上面電極と電気的に接続される ように端面電極を形成する工程とを有することを特徴とするチップ抵抗器の製造方法
PCT/JP2005/013488 2004-07-27 2005-07-22 チップ抵抗器およびその製造方法 WO2006011425A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/658,511 US7667569B2 (en) 2004-07-27 2005-07-22 Chip resistor, and its manufacturing method
CN2005800246547A CN1989578B (zh) 2004-07-27 2005-07-22 芯片电阻器及其制造方法
JP2006529297A JPWO2006011425A1 (ja) 2004-07-27 2005-07-22 チップ抵抗器およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004218167 2004-07-27
JP2004-218167 2004-07-27

Publications (1)

Publication Number Publication Date
WO2006011425A1 true WO2006011425A1 (ja) 2006-02-02

Family

ID=35786174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013488 WO2006011425A1 (ja) 2004-07-27 2005-07-22 チップ抵抗器およびその製造方法

Country Status (4)

Country Link
US (1) US7667569B2 (ja)
JP (1) JPWO2006011425A1 (ja)
CN (1) CN1989578B (ja)
WO (1) WO2006011425A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047910A (ja) * 2018-09-17 2020-03-26 サムソン エレクトロ−メカニックス カンパニーリミテッド. 電子部品及びその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1950771A1 (en) * 2005-10-13 2008-07-30 Rohm Co., Ltd. Chip resistor and its manufacturing method
TWI417016B (zh) 2009-08-25 2013-11-21 Cyntec Co Ltd 表面黏著型電子元件
KR101064326B1 (ko) * 2009-10-29 2011-09-14 고려대학교 산학협력단 전자 소자, 메모리 소자 및 이들의 제조방법
KR101638562B1 (ko) * 2010-02-26 2016-07-11 삼성전자주식회사 반도체 저항 요소, 상기 반도체 저항 요소를 포함하는 반도체 모듈, 및 상기 반도체 모듈을 포함하는 프로세서 베이스드 시스템
JP5765318B2 (ja) * 2012-11-07 2015-08-19 株式会社村田製作所 セラミック電子部品
CN110070970B (zh) * 2013-04-04 2022-06-03 罗姆股份有限公司 芯片构件、电路组件及电子设备
DE102017108582A1 (de) * 2017-04-21 2018-10-25 Epcos Ag Schichtwiderstand und Dünnfilmsensor
KR102127806B1 (ko) * 2018-09-17 2020-06-29 삼성전기주식회사 전자 부품 및 이의 제작 방법
JP2022029649A (ja) * 2020-08-05 2022-02-18 Koa株式会社 回路基板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216001A (ja) * 1999-01-26 2000-08-04 Matsushita Electric Ind Co Ltd 角形チップ抵抗器
JP2002367818A (ja) * 2001-06-11 2002-12-20 Kamaya Denki Kk チップ形抵抗器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5379017A (en) * 1993-10-25 1995-01-03 Rohm Co., Ltd. Square chip resistor
JP3358070B2 (ja) * 1993-11-17 2002-12-16 ローム株式会社 チップ抵抗器およびその抵抗値調整方法
JP3637124B2 (ja) * 1996-01-10 2005-04-13 ローム株式会社 チップ型抵抗器の構造及びその製造方法
JP3138631B2 (ja) 1996-01-26 2001-02-26 太陽社電気株式会社 チップ抵抗器及びその製造方法
US5907274A (en) * 1996-09-11 1999-05-25 Matsushita Electric Industrial Co., Ltd. Chip resistor
JP4722318B2 (ja) * 2000-06-05 2011-07-13 ローム株式会社 チップ抵抗器
JP3948701B2 (ja) 2000-12-28 2007-07-25 太陽社電気株式会社 チップ抵抗器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216001A (ja) * 1999-01-26 2000-08-04 Matsushita Electric Ind Co Ltd 角形チップ抵抗器
JP2002367818A (ja) * 2001-06-11 2002-12-20 Kamaya Denki Kk チップ形抵抗器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047910A (ja) * 2018-09-17 2020-03-26 サムソン エレクトロ−メカニックス カンパニーリミテッド. 電子部品及びその製造方法
US10861625B2 (en) 2018-09-17 2020-12-08 Samsung Electro-Mechanics Co Ltd Electronic component and manufacturing method thereof

Also Published As

Publication number Publication date
CN1989578B (zh) 2010-12-08
US20080290460A1 (en) 2008-11-27
JPWO2006011425A1 (ja) 2008-05-01
CN1989578A (zh) 2007-06-27
US7667569B2 (en) 2010-02-23

Similar Documents

Publication Publication Date Title
WO2006011425A1 (ja) チップ抵抗器およびその製造方法
KR100335295B1 (ko) 저항기및그제조방법
WO2007029635A1 (ja) チップ抵抗器及びその製造方法
JP4061729B2 (ja) 抵抗器およびその製造方法
JP5115968B2 (ja) チップ抵抗器の製造方法およびチップ抵抗器
JPH10289803A (ja) 抵抗器およびその製造方法
WO2020153084A1 (ja) 硫化検出抵抗器およびその製造方法
JP2000306711A (ja) 多連チップ抵抗器およびその製造方法
JP4295145B2 (ja) チップ抵抗器の製造方法
JP4295035B2 (ja) チップ抵抗器の製造方法
JPH09260105A (ja) チップ型サーミスタ及びその製造方法
JP3111823B2 (ja) 回路検査端子付き角形チップ抵抗器
JP3058305B2 (ja) サーミスタ及びその製造方法
JP3708796B2 (ja) 厚膜抵抗器
JPH05135902A (ja) 角形チツプ抵抗器およびその製造方法
WO2020170750A1 (ja) 抵抗器
JP6417105B2 (ja) チップ型電子部品の端面電極形成方法
JPH11204306A (ja) 抵抗器およびその製造方法
JP3242247B2 (ja) 角形チップ抵抗器の製造方法
JPH07201539A (ja) 角形チップ抵抗器の製造方法
JP2022189028A (ja) チップ部品
JP2015095573A (ja) チップ状電子部品の製造方法
JP2000340413A5 (ja)
JPH0497501A (ja) 抵抗器及びその製造方法
JP2001176708A (ja) 抵抗器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006529297

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580024654.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11658511

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase