WO2006010316A1 - Catalyseur de craquage pour hydrocarbures et son procede de preparation - Google Patents

Catalyseur de craquage pour hydrocarbures et son procede de preparation Download PDF

Info

Publication number
WO2006010316A1
WO2006010316A1 PCT/CN2005/001042 CN2005001042W WO2006010316A1 WO 2006010316 A1 WO2006010316 A1 WO 2006010316A1 CN 2005001042 W CN2005001042 W CN 2005001042W WO 2006010316 A1 WO2006010316 A1 WO 2006010316A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
zeolite
weight
catalyst
content
Prior art date
Application number
PCT/CN2005/001042
Other languages
English (en)
French (fr)
Inventor
Jun Long
Zhonghong Qiu
Youbao Lu
Jiushun Zhang
Zhijian Da
Huiping Tian
Yuxia Zhu
Wanhong Zhang
Zhenbo Wang
Original Assignee
China Petroleum & Chemical Corporation
Research Institute Of Petroleum Processing, Sinopec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNB200410071118XA external-priority patent/CN1322924C/zh
Priority claimed from CNB2005100049610A external-priority patent/CN100389177C/zh
Application filed by China Petroleum & Chemical Corporation, Research Institute Of Petroleum Processing, Sinopec filed Critical China Petroleum & Chemical Corporation
Priority to JP2007522900A priority Critical patent/JP4828532B2/ja
Priority to US11/658,831 priority patent/US9175230B2/en
Priority to BRPI0512684-3A priority patent/BRPI0512684A/pt
Priority to KR1020077003466A priority patent/KR101183564B1/ko
Priority to EP05766932.7A priority patent/EP1795259B1/en
Publication of WO2006010316A1 publication Critical patent/WO2006010316A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • This invention relates to a hydrocarbon cracking catalyst and a process for its preparation.
  • olefins, aromatics and isoparaffins are major contributors to the octane number, and due to environmental requirements, the olefin content in FCC gasoline needs to be reduced.
  • the quality of catalytic cracking diesel oil needs to be improved.
  • the diesel amide point obtained by the existing cracking catalyst and process is lower, the density is larger, and the cetane number is lower.
  • the low-carbon olefins and isobutyl hydrazine contained in the liquefied gas obtained by catalytic cracking are basic organic chemical raw materials.
  • low-carbon olefins (especially propylene) and isobutane are in short supply, and existing cracking catalysts and process production are required.
  • the content of low-carbon olefins (especially propylene) and isobutane is low, so there is an urgent need to develop a higher-carbon olefin (especially propylene) and a different liquefied gas in a cracked product.
  • Butane cracking catalyst and cracking process are basic organic chemical raw materials.
  • CN1042201C discloses a cracking catalyst for producing C 3 -C 5 olefins, the catalyst comprising 10-50% by weight of a Y-type zeolite having a unit cell constant of 2.45 nm, and 2-40% by weight selected from the group consisting of P, RE, H A modified ZSM-5 zeolite consisting of a semi-synthetic carrier of 20-80% by weight of kaolin and an aluminum binder.
  • CN1055301C discloses a cracking catalyst for producing isomeric olefins and gasoline, which comprises from 5 to 70% by weight of a composite aluminum-based aluminum composed of pseudo-boehmite and aluminum sol in a weight ratio of 1:9 to 9:1.
  • a binder consisting of 5-65% by weight of clay and 23-50% by weight of molecular sieves, the molecular sieve being 15-82% by weight of Y-type zeolite and the balance of phosphorus content (with P 2 0 5 A mixture of 0 to 10% by weight of a rare earth-containing five-membered ring high silica zeolite and/or HZSM-5 zeolite.
  • CN1072201A discloses a hydrocarbon conversion catalyst for preparing high octane gasoline and olefins, the catalyst comprising 10-40% by weight of three zeolites of ZSM-5, REY and high silica Y and the balance of the total synthetic carrier or containing 10
  • a semi-synthetic carrier composition of -40% by weight of silicon and/or aluminum binder wherein the content of ZSM-5 zeolite is from 3 to 50% by weight, and the content of REY and high silica Y zeolite is each from 12 to 75% by weight.
  • CN1085825A discloses a hydrocarbon conversion catalyst for producing high octane gasoline, propylene, butylene, the catalyst being from 10 to 40 parts by weight. /. ZRP zeolite, REY and high silicon Y three kinds of zeolite and the balance of the total synthetic carrier or semi-synthetic carrier containing 10-40% by weight of silicon and / or aluminum binder, wherein the content of ZRP zeolite is 3-50 The contents of % by weight, REY and high silica Y zeolite are each 12-75% by weight.
  • CN1325940A discloses a phosphorus-containing hydrocarbon cracking catalyst comprising from 10 to 60% by weight of Y-type zeolite or Y-type zeolite with MFI structure zeolite and/or Beta zeolite, 0-75 wt. Clay, 10 to 60 wt% of two kinds of alumina, to P 2 0 5 basis, 0. 1- 7.0% by weight of the monument and in terms RE 2 0 3, 0-20% by weight of rare earth components.
  • the two aluminas are derived from pseudoboehmite and aluminum sol, respectively.
  • the catalyst has a high heavy oil conversion capacity, and the product gasoline has a low olefin content.
  • the use of the catalyst fails to improve the quality of the catalytic cracking diesel oil, and does not increase the content of low carbon olefins and isobutane in the liquefied gas.
  • CN1354224A discloses a catalytic cracking catalyst for producing isoparaffin-rich gasoline, propylene and isobutane, the catalyst comprising from 0 to 70% by weight of clay, from 5 to 90% by weight of inorganic oxide and from 1 to 50% by weight/ »consisting of molecular sieves, wherein the molecular sieve (1) 20-75 wt% of silica-alumina ratio of 5 to 15, in terms of RE 2 0 3 content of 8-20 wt% of rare earth high silica Y type zeolite (2) 20-75 wt% silica-alumina ratio 16-50, RE 2 0 3 rare earth content 2-7 wt% high silicon Y zeolite and (3) 1-50 wt% 0 zeolite or mordenite or A mixture of ZRP zeolites.
  • Alumina is a component usually contained in a cracking catalyst.
  • alumina is mostly derived from alumina monohydrate and aluminum sol.
  • alumina monohydrate includes boehmite and pseudoboehmite.
  • boehmite and pseudo-thin water Both the alumina and the aluminum sol are converted into ⁇ -alumina, and the alumina contained in the catalyst described in the above prior art is ⁇ -alumina.
  • Alumina can also be derived from alumina trihydrate.
  • the alumina trihydrate includes ⁇ -trihydrate alumina, ⁇ -trihydrate alumina (or yttrium aluminate) and noodod.
  • ⁇ -trihydrate alumina is converted into bismuth-alumina.
  • the ⁇ -trihydrate alumina is converted to ⁇ -alumina.
  • Nomite is only found in nature and cannot be obtained by artificial synthesis.
  • the method of preparing a fluidized cracking catalyst which comprises drying a mixture of a cracking catalyst component containing clay, alumina and molecular sieves, wherein the catalyst contains 1.5-55 wt% of ⁇ -trihydrate.
  • the catalyst has strong heavy oil cracking activity and good light oil selectivity, but it can not reduce the olefin content in gasoline, can not improve the quality of catalytic cracking diesel, and can not improve the low carbon olefin and isobutane in liquefied gas. content. Summary of invention
  • the object of the present invention is to provide a novel hydrocarbon cracking catalyst which has strong heavy oil cracking ability.
  • gasoline has a low olefin content, a high diesel shield, and a liquefied gas.
  • alumina and phosphorus formed by introducing alumina trihydrate in a cracking catalyst particularly alumina formed by ⁇ -trihydrate alumina, namely ⁇ -alumina and phosphorus, produce special The synergistic effect not only improves the cracking ability of the cracking catalyst, but also significantly improves the quality of gasoline, diesel and liquefied gas in cracked products.
  • the catalyst provided by the invention comprises alumina and molecular sieves, with or without clay, wherein the alumina is ⁇ -alumina or a mixture of ⁇ -alumina and ⁇ -alumina and/or bismuth-alumina. 5-50 ⁇ /.
  • the content of the ⁇ -alumina is 0. 5-50 ⁇ ° /.
  • the content of ⁇ - alumina / or ⁇ - 0-50 wt% alumina, molecular sieve content of 10 to 70% by weight, clay content is 0-75 wt%, based on the count ⁇ 2 0 5, of phosphorus 01 ⁇
  • the content is 0. 1-8 wt%.
  • the molecule is selected from one or more of zeolite and non-zeolitic molecular sieves used as active components of the cracking catalyst.
  • zeolite and non-zeolitic molecular sieves are well known to those skilled in the art.
  • the zeolite is preferably one or more of a large pore zeolite and a medium pore zeolite.
  • the large pore zeolite is a pore structure having at least 0.7 nanometer ring opening, such as one or more of faujasite, beta zeolite, mordenite, especially Y zeolite, including monument, iron, One or more of Y-type zeolite, ultra-stable Y zeolite, one or more of the stable Y zeolite containing one or more of rare earths, and one or more of Beta zeolite.
  • the medium pore zeolite is a zeolite having a pore structure of more than 0.56 nm and less than 0.7 nanometer ring opening, such as a zeolite having an MFI structure (such as ZSM-5 zeolite), one of phosphorus, iron and rare earth.
  • MFI structure such as ZSM-5 zeolite
  • One or more of one or more zeolites having an MFI structure such as a ZSM-5 zeolite containing lin, iron and/or rare earth, and a phosphorus-containing zeolite having an MFI structure disclosed in CN1194181A.
  • the non-zeolitic molecular sieve refers to a molecular sieve in which aluminum and/or silicon in the zeolite is partially or completely replaced by one or more of other elements such as phosphorus, titanium, gallium, and cerium.
  • molecular sieves include silicates having different Si/Al ratios (e.g., metal silicate metal los ic icate, titanium tantalate ti tanos il icate ), metal 45 acid metal loaluminates (such as citrate Germaniumaluminates), metal Metallophosphates, 45 calamate aluminophosphates ⁇ metal 45 palladium metalloaluminophosphates ⁇ metal-bound silicon 45 metallate si 1 icoaluminophosphates ( MeAPSO and ELAPS0 ), silicic acid si 1 icoaluminophosphates (SAP0 molecular sieve) One or more of gal logermanates. It is preferably SAP0 molecular sieve, such as one
  • the molecule is selected from Y-type zeolite, Y-type zeolite containing phosphorus, iron and/or rare earth, ultra-stable Y zeolite, ultra-stable Y zeolite containing phosphorus, iron and/or rare earth, Beta zeolite, with MFI One or more of the zeolite of the structure, the zeolite having the MFI structure containing phosphorus, iron and/or rare earth, and the SAP0 molecular sieve.
  • the molecular sieve contains a zeolite mixture of a Y-type zeolite and a zeolite having an MFI structure
  • the content of the Y-type zeolite is from 30 to 90% by weight based on the total amount of the zeolite mixture
  • the content of the zeolite having an MFI structure is 10- 70 weight. / 0 .
  • the preferred catalyst further comprises 0.1 to 1-2 by weight. /. Rare earth metal (based on oxides).
  • the preparation method of the catalyst provided by the invention comprises drying and calcining a slurry containing an aluminum compound, a molecular sieve and water, with or without a clay, wherein the aluminum compound is an aluminum compound capable of forming ⁇ -alumina, or can be formed a mixture of an aluminum compound of ⁇ -alumina and an aluminum compound capable of forming ⁇ -alumina and/or yttrium-alumina, further added with phosphorus before calcination
  • the amount of the compound, the amount of each component is such that, based on the total amount of the catalyst,
  • the catalyst provided by the invention not only has higher cracking activity, but also significantly improves the quality of gasoline, diesel and liquefied gas in cracked products, which is characterized by lower olefin content and higher aromatic hydrocarbons in gasoline.
  • Alkane content, diesel has a lower density and a higher hexadecene value, and liquefied gas has a higher content of lower olefins, especially propylene and isobutane.
  • the catalyst also has high heavy oil cracking ability and can produce light oil (steam and diesel) and liquefied gas.
  • the catalyst provided by the invention comprises alumina and molecular sieves, with or without clay, wherein the alumina is ⁇ -alumina or a mixture of ⁇ -alumina and ⁇ -alumina and/or bismuth-alumina. 5-50 ⁇ / ⁇
  • the catalyst, the content of the ⁇ -alumina is 0. 5-50 ⁇ /.
  • the content of ⁇ -alumina and/or cerium-alumina is from 0 to 50% by weight, preferably from 0 to 40% by weight, and the content of molecular sieve is from 10 to 70% by weight, preferably from 20 to 50% by weight, of clay in an amount of 0-75 wt%, preferably 0-60 wt%, based on the count ⁇ 2 0 5, the content of the tablet is preferably 0. 1-8 0. 5-6 wt% wt%.
  • the catalyst provided by the present invention may further contain 0. 1-2% by weight, preferably 0. 2-1. 8% by weight of rare earth metal (based on the oxide).
  • the molecules are screened from one or more of zeolite and non-zeolitic molecular sieves used as active components of the cracking catalyst. These zeolite and non-zeolitic molecular sieves are well known to those skilled in the art.
  • the zeolite is preferably one or more of a large pore zeolite and a medium pore zeolite.
  • the large pore zeolite is a pore structure having at least 0.7 nanometer ring opening, such as one or more of faujasite, beta zeolite, mordenite, especially Y zeolite, including monument, iron, One or more Y-type zeolites of rare earths, ultra-stable Y zeolite, ultra-stable Y zeolite containing one or more of phosphorus, iron and rare earth, HY zeolite, phosphorus, iron, rare earth One or more of the HY zeolites, one or more of the Beta zeolites.
  • the medium pore zeolite is a zeolite having a pore structure of more than 0.56 nm and less than 0.7 nanometer ring opening, such as a zeolite having an MFI structure (such as ZSM-5 zeolite), containing phosphorus, iron, One or more of the rare earths having a MFI structure (such as a ZSM-5 zeolite containing one or more of phosphorus, iron, rare earth, a phosphorus-containing zeolite having an MFI structure disclosed in CN1194181) One or several.
  • MFI structure such as ZSM-5 zeolite
  • the non-zeolitic molecular sieve refers to a molecular sieve in which aluminum and/or silicon in the zeolite is partially or completely replaced by one or more of other elements such as phosphorus, titanium, gallium, and cerium.
  • molecular sieves include silicates having different silicon-aluminum ratios (such as metal silicate metal los ic icate, titanium tantalate ti tanos il icate ), metal aluminate metal loaluminates (such as malaluminate).
  • Metallophosphates 4 & palladium aluminophosphates, metal 45, acid metalloaluminophosphates, metal-incorporated silicon 45, acid-producing metal integrated si l icoaluminophosphates (MeAPSO and ELAPSO), aluminosilicate silicos icoaluminophosphates (SAPO molecular sieves)
  • SAPO molecular sieves One or more of gal logermanates. It is preferably SAP0 molecular sieve, such as one or more of SAP0-11 molecular sieve, SAP0-34 molecular sieve and SAP0-37 molecular sieve.
  • the molecule is selected from Y-type zeolite, Y-type zeolite containing one or more of phosphorus, iron and rare earth, ultra-stable Y zeolite, one or several of phosphorus, iron and rare earth.
  • the molecular sieve contains a zeolite mixture of a Y-type zeolite and a zeolite having an MFI structure, and the content of the Y-type zeolite is from 30 to 90% by weight based on the total amount of the zeolite mixture. It is preferably 40 to 85% by weight, and the content of the zeolite having an MFI structure is from 10 to 70% by weight, preferably from 15 to 60% by weight.
  • the clay is selected from one or more of the clays used as active components of the cracking catalyst, such as kaolin, halloysite, montmorillonite, diatomaceous earth, halloysite, saponite, rector, sea blisters One or more of stone, attapulgite, hydrotalcite, and bentonite. More preferred clays are one or more of kaolin, montmorillonite, diatomaceous earth, rectorite, sepiolite, and attapulgite. These clays are well known to those skilled in the art.
  • the catalyst provided by the present invention may further contain a non-alumina heat-resistant inorganic oxide selected from one or more of non-alumina heat-resistant inorganic oxides used as a cracking catalyst substrate. , such as one or more of silicon oxide, amorphous silicon aluminum, zirconia, titanium oxide, boron oxide, alkaline earth metal oxide. Preferred silicon oxide, amorphous silicon aluminum, One or more of zirconia, titania, magnesia, and calcium oxide. These heat resistant inorganic oxides are well known to those skilled in the art.
  • the non-alumina heat-resistant inorganic oxide is contained in an amount of from 0 to 10% by weight, preferably from 0 to 5% by weight, based on the total amount of the catalyst.
  • the aluminum compound is an aluminum compound capable of forming ⁇ -alumina, or an aluminum compound capable of forming ⁇ -alumina and capable of forming ⁇ -alumina and/or yttrium-alumina. a mixture of aluminum compounds.
  • the aluminum compound capable of forming ⁇ -alumina may be any aluminum compound capable of forming ⁇ -alumina during the preparation of the catalyst, preferably alumina trihydrate; the aluminum compound capable of forming X-alumina may be any In the preparation of the catalyst, an aluminum compound capable of forming X-alumina, preferably ⁇ -trihydrate alumina.
  • the bismuth-alumina-forming aluminum compound may be any aluminum compound capable of forming bismuth-alumina during the preparation of the catalyst, preferably boehmite, pseudoboehmite and/or aluminum sol.
  • the phosphorus compound may be added at any step before calcination, for example, may be added to a slurry containing an aluminum compound, molecular sieve and water, with or without clay, or may be an aluminum-containing compound, molecular sieve and water, with or without
  • the slurry of the clay is dried, and the phosphorus compound is introduced by dipping, and then calcined.
  • the phosphorus content does not include scales originally contained in the molecular sieve.
  • the phosphorus compound includes various phosphorus compounds such as: phosphoric acid, phosphate, phosphorous acid, phosphite, pyrophosphoric acid, pyrophosphate, polymeric phosphoric acid, polymeric acid salt, metaphosphoric acid, metaphosphate Or several, preferably phosphoric acid, ammonium phosphate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, streptoic acid, ammonium phosphite, sodium pyrophosphate, potassium pyrophosphate, sodium tripolyphosphate, potassium trasilicate, six One or more of sodium metasilicate and potassium hexametaphosphate.
  • it is one or more of a solution of acid, ammonium phosphate, diammonium hydrogenate, ammonium dihydrogen phosphate, phosphorous acid, ammonium phosphite, sodium pyrosulfate, sodium tripolyphosphate, and sodium hexametaphosphate.
  • the amount of each component is included in the final catalyst, based on the total amount of the catalyst, 0. 5-
  • the amount of each component is such that the final catalyst contains 5 to 45 wt% of 71-alumina, 0-40 wt% of bismuth-alumina and/or X-alumina, and 20-50 wt% of molecular sieves. 0 ⁇ 0-60 ⁇ % of the clay, ⁇ 2 0 5 , 0.5-6% by weight of phosphorus.
  • the non-alumina inorganic oxide may be added to the slurry containing the aluminum compound, molecular sieve and water, with or without clay. And / or its precursors.
  • the precursor of the non-alumina inorganic oxide refers to a substance capable of forming the non-alumina inorganic oxide during the preparation of the catalyst, and the precursors of these non-alumina inorganic oxides are well known to those skilled in the art.
  • the precursor of silicon oxide may be silica sol, silicone gel and/or water glass
  • the precursor of amorphous silicon aluminum may be silica alumina sol and/or silica gel, zirconia, titania, boron fluoride
  • the precursor of the alkaline earth metal oxide may be its respective hydroxide.
  • the non-alumina inorganic oxide and/or its precursor are used in an amount such that the catalyst contains 0 to 10% by weight, preferably 0 to 5% by weight, of the non-alumina inorganic oxide.
  • the drying and calcining conditions are conditions for drying and calcining a conventional cracking catalyst, such as drying at a temperature of from room temperature to 200 ° C, preferably from 80 to 180 Torr, and calcination at a temperature of from more than 200 to 750 ° C, preferably 300 - 3-4 ⁇
  • the calcination time is at least 0.1 hours, more preferably 0. 1 to 10 hours, more preferably 0. 3-4 hours.
  • the drying method may be carried out by various existing drying methods such as drying, air drying, spray drying, preferably drying or spray drying.
  • the catalyst provided by the invention is suitable for catalytic cracking of petroleum and various fractions thereof, and is particularly suitable for petroleum and petroleum fractions having a boiling point of more than 330 , such as atmospheric residue, vacuum residue, vacuum wax, atmospheric wax oil
  • One or more of straight-run wax oil, propane light/heavy deoiling and coking wax oil are catalytically cracked to produce high quality gasoline, diesel and liquefied gas.
  • the catalyst comprises alumina and molecular sieves, with or without clay, the alumina being eta-alumina or a mixture of eta-alumina and gamma-alumina and/or cerium-alumina, the catalyst further comprising phosphorus
  • the content of ⁇ -alumina and/or cerium-alumina is 0.5 to 50% by weight, preferably 5 to 45% by weight, and the content of cerium-alumina is 0 to 50% by weight, preferably 0. 40% by weight, clay content of 0-75 wt.% preferably 0-60 wt%, based on the count ⁇ 2 0 5, the content of phosphorus is 0.5 wt%, preferably 0. 1-8 5-6 wt. /.
  • the molecular sieve content is 10 to 70% by weight, preferably 20 to 50% by weight, and the molecular sieve is a zeolite mixture containing a cerium type zeolite and a zeolite having an MFI structure, based on the total amount of the zeolite mixture, the content of the cerium type zeolite It is preferably from 30 to 90% by weight, preferably from 40 to 85 parts by weight. /.
  • the content of the zeolite having an MFI structure is from 10 to 70% by weight, preferably from 15 to 60% by weight.
  • the preferred catalyst preparation method is as follows:
  • the method comprises drying and calcining a slurry containing an aluminum compound, a molecular sieve and water, with or without a clay, the aluminum compound being an aluminum compound capable of forming eta-alumina, or an aluminum compound capable of forming ⁇ -alumina and Aluminum compound capable of forming ⁇ -alumina and/or bismuth-alumina a mixture of the compounds, a compound of phosphorus added before the calcination, the amount of each component is such that the final catalyst contains, based on the total amount of the catalyst, 0.5 to 50% by weight, preferably 5 to 45% by weight of ⁇ -alumina, 0-50 weight ° /.
  • ⁇ -alumina and/or ⁇ -alumina 0-75% by weight, preferably 0-60% by weight of clay, based on ⁇ 2 0 5 , 0. 1-8% by weight, preferably 0. 5 - 6 wt% phosphorus, 10-70 wt. /.
  • it is 20-50% by weight of a molecular sieve which is a zeolite mixture containing a cerium type zeolite and a zeolite having an MFI structure, and the content of the cerium type zeolite is 30 to 90% by weight based on the total amount of the zeolite mixture.
  • 40 to 85% by weight of the zeolite having an MFI structure is contained in an amount of 10 to 70% by weight, preferably 15 to 60% by weight.
  • the zeolite mixture further contains Beta zeolite, and the content of Beta zeolite is from 0 to 30% by weight, preferably from 0 to 20% by weight based on the total of the zeolite mixture. / 0 .
  • the catalyst significantly improves the quality of the gasoline and liquefied gas in the cracked product.
  • the catalyst comprises alumina and molecular sieves, with or without clay, the alumina being eta-alumina or a mixture of eta-alumina and gamma-alumina and/or cerium-alumina, the catalyst further comprising phosphorus And the content of ⁇ -alumina is 0. 5-50% by weight, preferably 5 to 45% by weight, and the content of ⁇ -alumina and/or X-alumina is 0-50 by weight, based on the total amount of the catalyst.
  • the molecular sieve is contained in an amount of from 10 to 70% by weight, preferably from 20 to 50% by weight, and the molecular sieve is a cerium type zeolite.
  • the preferred catalyst preparation method is as follows:
  • the method comprises drying and calcining a slurry containing aluminum compound, molecular sieve and water, with or without clay, the aluminum compound being an aluminum compound capable of forming eta-alumina or aluminum capable of forming ⁇ -alumina a mixture of a compound and an aluminum compound capable of forming ⁇ -alumina and/or yttrium-alumina, and a phosphorus compound and a rare earth metal compound are added before calcination, and the amount of each component is included in the final catalyst, based on the total amount of the catalyst. 0.
  • the rare earth metal compound is selected from one or more of rare earth chloride and rare earth nitrate.
  • the catalyst has high heavy oil cracking ability and can produce light oil (gasoline and diesel) and liquefied gas.
  • the catalyst provided by the present invention is used under the conditions of conventional cracking reaction.
  • the cracking conditions include a reaction temperature of 350-700 Torr, preferably 400-650 ° C, and a ratio of catalyst to hydrocarbon (weight ratio of catalyst to hydrocarbon oil). ) is 1-20, preferably 2-15.
  • the alumina content of the P-trihydrate alumina used is 64% by weight (produced by Shandong Aluminum Research Institute); the alumina content of the pseudo-boehmite is 62% by weight (produced by Shandong Aluminum Co., Ltd.);
  • the sol had an alumina content of 21.6 by weight. /» (produced by Qilu Catalyst); silica sol has a silica content of 12% by weight (produced by Beijing Changhong Chemical Plant); kaolin has a solid content of 76% by weight (produced by China Kaolin Company); montmorillonite has a solid content of 80% by weight. °/.
  • rare earth chloride solution (laboratory preparation, the concentration of rare earth oxide is 219 g / liter, wherein La 2 0 3 accounts for 53 of rare earth oxide 2%, Ce0 2 accounts for 13.0% of rare earth oxides, Pr 6 0 n accounts for 13.0% of rare earth oxides, Nd 2 0 3 accounts for 20.8% of rare earth oxides, solid rare earth oxides from Inner Mongolia Baotou Rare Earth Plant production).
  • the SAP0-11 molecular sieve used is prepared according to the method described in Example 1 of CN1098214C;
  • compositions of the various zeolites used are as follows:
  • HY zeolite Na 2 0 content is 1. 5 wt%, the ratio of silicon to aluminum is 5.3) is NaY zeolite (Na 2 0 content is 13. 5 wt%, silicon to aluminum ratio is 5.0., Qilu catalyst factory produced ), in water: NaY zeolite: solid ammonium chloride weight ratio of 10: 1 : 1 and 80 ° C for 1 hour, filtered, 550 ⁇ roasting for 2 hours, then exchanged according to the above steps, filtered and calcined ;
  • the REY zeolite is a rare earth oxide-containing Y-type zeolite (the content of the rare earth oxide is 18.5% by weight, wherein La 2 0 3 accounts for 53.2% by weight of the rare earth oxide, and Ce0 2 accounts for 13. 0% by weight, Pr 6 0 n representing 13.0 weight rare earth oxides. /., Nd 2 0 3 accounted for 20.8 wt% of rare earth oxide, Na 2 0 content of 1.6 wt% alumina ratio 5.4, the unit cell constant is 2. 468nm, produced by Qilu Catalyst);
  • REHY zeolite is a Y-type zeolite containing rare earth (as rare earth oxide content of 8.4 wt%, wherein the weight La203 accounted for 53.2 rare earth oxides. /., Ce0 2 accounted for 13.0 rare earth oxide % by weight, Pr 6 0 n accounts for 13.0% by weight of rare earth oxides, and Nd 2 0 3 accounts for rare earth oxidation.
  • La203 accounted for 53.2 rare earth oxides.
  • Ce0 2 accounted for 13.0 rare earth oxide % by weight
  • Pr 6 0 n accounts for 13.0% by weight of rare earth oxides
  • Nd 2 0 3 accounts for rare earth oxidation.
  • Na 2 0 content of 3.7 wt% silica to alumina ratio of 5.6 a unit cell constant of 2. 461nm, produced by Qilu Catalyst Factory
  • M0Y zeolite is a phosphorus and rare earth content of Y zeolite (a rare earth oxide is 8.0 wt%, wherein, La 2 0 3 accounted for 53.2 weight rare earth oxides. /., Ce0 2 representing a rare earth oxide was 13.0 wt%, Pr 6 0 n representing the rare earth oxide 13.0 wt%, Nd 2 0 3 accounted for 20.8 rare earth oxide by weight%, Na 2 0 content of 1.3 wt% to The elemental enthalpy, the phosphorus content is 1. 1% by weight, the silicon to aluminum ratio is 5.6, the unit cell constant is 2. 460nm, produced by Qilu Catalyst);
  • DASY. . Fl zeolite as a ultra stable Y zeolite (Na 2 0 content of 1.0 wt% silica to alumina ratio of 6.8, a unit cell constant of 2. 446nm, produced by Qilu Catalyst Factory);
  • Ultrastable zeolite Y DASY 2 Q zeolite containing rare earth (as rare earth oxide content of 1.8 wt%, wherein, La 2 0 3 accounted for 53.2 weight rare earth oxides. /., Ce0 2 representing rare oxide 13.0 wt. /., Pr 6 0 n representing 13.0 weight rare earth oxides. / » Nd 2 0 3 accounted for 20.8 rare earth oxide by weight%, Na 2 0 1 content. 2 ⁇ %, the ratio of silicon to aluminum is 6.8, the unit cell constant is 2. 447, produced by Qilu Catalyst);
  • ZSM-5 zeolite is a zeolite having an MFI structure (Na 2 0 content is 0.2% by weight, silicon to aluminum ratio is 60, produced by Qilu Catalyst);
  • ZRP-1 zeolites containing phosphorus and rare earth zeolite Na 2 0 content of 0.1% by weight having a MFI structure, silica to alumina ratio of 30, the content of the rare earth oxide is 1.7 wt%, wherein, La 2 03 representing the rare earth oxide 53.2 wt%, Ce0 2 accounted for 13.0 wt% of rare earth oxide, Pr 6 0 n accounts for 13.0 wt% of rare earth oxide, Nd 2 0 3 representing rare earth oxide 20 ⁇ %, based on the elemental phosphorus, the phosphorus content is 1. 9% by weight, produced by Qilu Catalyst);
  • ZSP-1 as a zeolite having a MFI structure containing phosphorus and iron (Na 2 0 content of 0.1 wt ° /., Silica to alumina ratio of 30, Fe 2 0 3 content of 1.5 wt% elemental
  • the billimeter, the phosphorus content is 1.2% by weight, produced by Qilu Catalyst Factory);
  • the content of Na 2 0 of the Beta zeolite was 3.2% by weight, and the ratio of silicon to aluminum was 28, which was produced by Qilu Catalyst Factory.
  • silicon to aluminum ratios refer to the molar ratio of silicon oxide to aluminum oxide. Examples 1 - 6
  • This comparative example illustrates a scale-free reference catalyst and a method for its preparation.
  • the catalyst was prepared as in Example 1, except that the phosphorus compound was not added and the amount of clay was different to obtain a reference catalyst CB1.
  • the amount of alumina trihydrate and pseudoboehmite, the type and amount of clay, and the type and amount of molecular sieve are listed in Table 4, respectively.
  • the spray drying temperature, calcination temperature and time are listed in Table 5.
  • the composition of the reference catalyst CB1 is listed in Table 6. Comparative example 2
  • This comparative example illustrates a reference catalyst that does not contain X or eta-alumina and a method for its preparation.
  • the catalyst was prepared as in Example 1, except that the pseudo-boehmite was used instead of yttrium-trihydrate alumina to obtain a reference catalyst CB2.
  • the amount of pseudoboehmite, the type and amount of clay, the type and amount of molecular sieve, and the type and amount of phosphorus compound are listed in Tables 1-4, respectively.
  • the spray drying temperature, calcination temperature and time are listed in Table 5.
  • the composition of the reference catalyst CB2 is listed in Table 6.
  • This example illustrates the catalyst provided by the present invention and a process for the preparation thereof.
  • Example 8 This example illustrates the catalyst provided by the present invention and a process for the preparation thereof.
  • the catalyst was prepared in the same manner as in Example 6 except that the pseudoboehmite was replaced with 69.4 kg of an aluminum sol to obtain a catalyst C8 provided by the present invention.
  • the composition of Catalyst C8 is listed in Table 6.
  • the catalyst CI-C6 was aged at 800 Torr for 8 hours with 100% steam.
  • the 1 # feedstock oil shown in Table 7 was subjected to catalytic cracking on the micro fluidized bed reactor using the above-mentioned aged catalyst CI-C6 to a catalyst loading of 9 g.
  • Gasoline is a fraction with a distillation range of C5-22rC, diesel is a fraction with a distillation range of 221-33 ,
  • liquefied gas is a fraction of C3-C4, and a gas is a fraction of H2-C2. Comparative example 3-4
  • the catalyst was aged according to the method of Example 9, and the same feedstock oil was subjected to catalytic cracking under the same conditions, except that the catalysts used were the reference catalysts CB1 and CB2 prepared in Comparative Example 1 and Comparative Example 1, respectively.
  • the conditions and reaction results are shown in Table 8.
  • Catalysts C7-C8 were aged at 800 ° C for 17 hours with 100% steam.
  • the 2 # feedstock oil shown in Table 9 was catalytically cracked in the small fluidized bed reactor using the above-mentioned aged catalysts C7-C8 to have a catalyst loading of 90 g.
  • the reaction conditions and reaction results are shown in Table 10.
  • Viscosity 80 ° C
  • glutinous rice V seconds 23.61
  • Example 22 Mixing ⁇ -trihydrate alumina or ⁇ -trihydrate alumina with pseudoboehmite, molecular sieves, phosphorus compounds and water (and sometimes clay), and spray-drying the resulting slurry into a diameter of 40-150 microns.
  • the pellets were calcined to obtain the catalysts C9-C14 provided by the present invention.
  • the catalyst was prepared in the same manner as in Example 22 except that the aluminum sol was used instead of the pseudoboehmite of Example 21 to obtain a catalyst C14.
  • the amount of P-trihydrate alumina and pseudoboehmite (or aluminum sol), the type and amount of clay, the type and amount of molecular sieve, and the type and amount of phosphorus compound are listed in Table 11-14, respectively.
  • the spray drying temperature, calcination temperature and time are listed in Table 15.
  • the composition of the catalysts C9-C14 is shown in Table 16. Comparative example 5
  • This comparative example illustrates a reference catalyst that does not contain phosphorus and a method for its preparation.
  • the catalyst was prepared as in Example 17, except that the phosphorus compound was not added and the amount of clay was different to obtain a reference catalyst CB3.
  • the amount of P-trihydrate alumina and pseudoboehmite, the type and amount of clay, and the type and amount of molecular sieve are listed in Table 11-14.
  • the spray drying temperature, calcination temperature and time are listed in Table 15.
  • the composition of the reference catalyst CB3 is shown in Table 16. Comparative example 6
  • This comparative example illustrates a reference catalyst that does not contain X or eta-alumina and a method for its preparation.
  • the catalyst was prepared as in Example 17, except that the pseudo-boehmite was used instead of alumina trihydrate to obtain a reference catalyst CB4.
  • the amount of pseudoboehmite, the type and amount of clay, the type and amount of molecular sieve, the type and amount of phosphorus compound are listed in the table.
  • the spray drying temperature, calcination temperature and time are listed in Table 15.
  • the composition of the reference catalyst CB4 is listed in Table 16. Table 11
  • the catalysts C9-C14 were respectively used at 800 Torr with 100 °/. Water vapor aging for 8 hours. On the micro-fluidized bed reactor, the 1 feedstock oil shown in Table 7 was catalytically cracked with the above-mentioned aged catalyst C9-C14, and the catalyst loading was 9 g. The reaction conditions and reaction results are shown in Table 17.
  • conversion rate dry gas yield + liquefied gas yield + gasoline yield + coke yield
  • total liquid yield liquefied gas yield + gasoline yield + diesel yield.
  • Gasoline is a distillation with a distillation range of C5-221 °C.
  • the diesel oil is a fraction having a distillation range of 221 to 343 ° C
  • the liquefied gas is a fraction of C3-C4
  • the dry gas is a fraction of H2-C2.
  • the catalyst was aged according to the method of Example 23, and the same feedstock oil was subjected to catalytic cracking under the same conditions, except that the catalysts used were Comparative Example 5 and Comparative Example.
  • the amount of P-trihydrate alumina and pseudo-boehmite, the type and amount of clay, the type and amount of molecular sieve, the type and amount of phosphorus compound, and the amount of rare earth chloride solution are listed in Table 18-22, respectively.
  • the spray drying temperature, calcination temperature and time are listed in Table 23.
  • the composition of the catalysts C15-C20 is shown in Table 24. Comparative example 9
  • This comparative example illustrates a reference catalyst that does not contain phosphorus and rare earth metals and a method for its preparation.
  • the catalyst was prepared in the same manner as in Example 29 except that the phosphorus compound and the rare earth metal solution were not added, and the amount of the clay was different, and the reference catalyst CB5 was obtained.
  • the amounts of P-trihydrate alumina and pseudoboehmite, the type and amount of clay, and the type and amount of molecular sieves are listed in Table 18-21, respectively.
  • the spray drying temperature, calcination temperature and time are listed in Table 23.
  • the composition of the reference catalyst CB5 is shown in Table 24. Comparative example 10
  • This comparative example illustrates a reference catalyst that does not contain X-alumina or eta-alumina and a method for its preparation.
  • the catalyst was prepared in the same manner as in Example 29 except that the pseudo-boehmite was used instead of lanthanum-trihydrate alumina to obtain a reference catalyst CB6.
  • the amount of pseudoboehmite, the type of clay and The amount, the type and amount of the molecular sieve, the type and amount of the phosphorus compound, and the amount of the rare earth chloride solution are listed in Table 18-22, respectively.
  • the spray drying temperature, calcination temperature and time are listed in Table 23.
  • the composition of the reference catalyst CB6 is listed in Table 24. Table 18
  • Catalysts C15-C20 were aged at 800 ° C for 8 hours with 100% steam.
  • the 3 # feedstock oil shown in Table 25 was catalytically cracked on the micro fluidized bed reactor by the above-mentioned aged catalysts C15-C20, and the catalyst loading was 9 g.
  • the reaction conditions and reaction results are listed in Table 26, D
  • conversion rate dry gas yield + liquefied gas yield + gasoline yield + coke yield
  • total liquid yield liquefied gas yield + gasoline yield + diesel yield.
  • a distillation range of gasoline C5- 22 1 ° C fraction a distillation range of diesel refers 221- 343 ° C fraction
  • LPG a C3-C4 fraction
  • dry gas is a fraction of H2- C2. Comparative Example 11-12
  • the catalyst was aged according to the method of Example 35, and the same feedstock oil was subjected to catalytic cracking under the same conditions, except that the catalysts used were the reference catalysts CB5 and CB6 prepared in Comparative Example 9 and Comparative Example 10, respectively.
  • the conditions and reaction results are listed in Table 26. Table 25

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

一种烃类裂化催化剂及其制备方法 技术领域
本发明是关于一种烃类裂化催化剂及其制备方法。 技术背景
催化裂化原料油的重质化倾向日益严重, 这就要求裂化催化剂和 裂化工艺具有较强的裂化能力, 以达到多产轻质油 (汽油和柴油) 和 液化气的目的。
对于催化裂化汽油来说, 烯烃、 芳烃和异构烷烃是辛烷值的主要 贡献者, 由于环保要求, 需要降低 FCC 汽油中的烯烃含量。 为了弥补 因烯烃含量下降而引起的汽油辛烷值的损失, 需要增加汽油中异构烷 烃、 芳烃的含量, 这就需要开发出能生产具有较低烯烃含量, 较高芳 烃和异构烷烃含量汽油的烃类裂化催化剂和裂化工艺。
与此同时, 催化裂化柴油的质量也需要改善, 而采用现有裂化催 化剂和工艺得到的柴油苯胺点较低, 密度偏大, 十六烷值偏低。 这就 需要开发出具有较强重油裂化能力, 并且, 能使柴油的密度降低, 苯 胺点和十六烷值提高的烃类裂化催化剂和裂化工艺。
再者, 催化裂化得到的液化气中所含的低碳烯烃和异丁垸是基本 有机化工原料, 目前, 低碳烯烃 (特别是丙烯)和异丁烷供不应求, 而现有裂化催化剂和工艺生产的液化气产品中, 低碳烯烃 (特别是丙 烯) 和异丁烷的含量较低, 因此, 市场也急需开发一种裂化产物中的 液化气中具有较高低碳烯烃 (特别是丙烯)和异丁烷的裂化催化剂和 裂化工艺。
CN1042201C公开了一种多产 C3- C5烯烃的裂化催化剂, 该催化剂 由 10-50重量%、 晶胞常数 2. 45纳米的 Y型沸石, 2- 40重量%选自 P、 RE、 H改性的 ZSM-5沸石, 20-80重量%的高岭土和铝粘结剂的半合成 载体组成。
CN1055301C公开了一种多产异构烯烃和汽油的裂化催化剂, 该催 化剂由 5-70重量%的由拟薄水铝石和铝溶胶按照 1: 9至 9: 1的重量比 组成的复合铝基铝粘结剂, 5-65重量%的粘土和 23-50重量%的分子筛 组成, 所述分子筛为 15-82重量%的 Y型沸石和余量的磷含量(以 P205 计) 为 0-10重量%的含稀土五元环高硅沸石和 /或 HZSM-5沸石的混合 物。
CN1072201A公开了一种制取高辛烷值汽油和烯烃的烃转化催化 剂, 该催化剂由 10-40重量%的 ZSM- 5、 REY和高硅 Y三种沸石和余量 的全合成载体或含有 10-40 重量%硅和 /或铝粘结剂的半合成载体组 成, 其中, ZSM- 5分沸石的含量为 3-50重量%, REY和高硅 Y沸石的 含量各自为 12-75重量%。
CN1085825A公开了一种制取高辛烷值汽油、 丙烯、 丁烯的烃转化 催化剂, 该催化剂由 10-40重量。 /。的 ZRP沸石, REY和高硅 Y三种沸石 和余量的全合成载体或含有 10-40 重量%硅和 /或铝粘结剂的半合成载 体组成, 其中, ZRP沸石的含量为 3-50重量%, REY和高硅 Y沸石的 含量各自为 12-75重量" /。。
CN1325940A公开了一种含磷的烃类裂化催化剂, 该催化剂由 10- 60重量%的 Y型沸石或 Y型沸石与 MFI结构沸石和 /或 Beta沸石, 0-75 重量 °/。的粘土, 10-60重量%的两种氧化铝, 以 P205计, 0. 1- 7. 0重量% 的碑和以 RE203计, 0-20重量%的稀土组成。 所述两种氧化铝分别来自 拟薄水铝石和铝溶胶。 该催化剂具有较高的重油转化能力, 产物汽油 中烯烃含量较低, 但是, 使用该催化剂未能改善催化裂化柴油的质量, 也不能提高液化气中低碳烯烃和异丁烷的含量。
CN1354224A公开了一种生产富含异构烷烃汽油、 丙烯及异丁烷的 催化裂化催化剂, 该催化剂由 0-70 重量%的粘土, 5-90 重量%的无机 氧化物和 1-50重量 °/»的分子筛组成, 其中的分子筛为 (1 ) 20-75重量 %的硅铝比为 5-15、 以 RE203计的稀土含量 8-20重量% 的高硅 Y型沸 石与 (2 ) 20-75重量%的硅铝比为 16-50、 以 RE203计的稀土含量 2-7 重量% 的高硅 Y型沸石和(3 ) 1-50重量%的0沸石或丝光沸石或 ZRP 沸石的混合物。
氧化铝是裂化催化剂通常含有的组分。 现有技术中, 氧化铝多来 自一水合氧化铝和铝溶胶, 其中, 一水合氧化铝包括薄水铝石和拟薄 水铝石, 在催化剂制备的焙烧过程中, 薄水铝石、 拟薄水铝石和铝溶 胶均转变为 γ-氧化铝, 上述现有技术所述催化剂所含的氧化铝均为 γ- 氧化铝。 氧化铝还可以来自三水合氧化铝。 三水氧化铝包括 α-三水氧化 铝, β-三水氧化铝(或称湃铝石)和诺水铝石, 在催化剂制备过程中, α-三水氧化铝转变成 χ-氧化铝, β-三水氧化铝则转变成 η-氧化铝。 诺 水铝石只是在自然界中存在, 尚无法通过人工合成得到。 CN1388214A 公开了一种流化裂化催化剂的制备方法, 该方法是将含有粘土、 氧化 铝和分子筛的裂化催化剂组分混合物干燥, 所述催化剂中含有 1. 5-55 重量%的来自 β-三水氧化铝的氧化铝。 该催化剂具有较强的重油裂化 活性和较好的轻质油选择性, 但是却不能降低汽油中的烯烃含量, 不 能改善催化裂化柴油质量, 也不能提高液化气中低碳烯烃和异丁烷的 含量。 发明概述
本发明的目的是提供一种新的烃类裂化催化剂, 该催化剂具有较 强的重油裂化能力, 使用该催化剂的裂化产品中, 汽油的烯烃含量较 低, 柴油盾量较高, 而且液化气中具有较高的低碳烯烃和异丁烷含量。
现有技术中, 虽然也有在裂化催化剂制备中引入三水氧化铝的例 子, 但是, 其目的只是提高裂化催化剂的裂化能力, 而对裂化产品中 的汽油, 柴油和液化气的质量没有影响。 本发明的发明人意外地发现, 同时在裂化催化剂中引入三水氧化铝形成的氧化铝和磷, 特别是 β -三 水氧化铝形成的氧化铝, 即 η-氧化铝和磷, 产生了特殊的协同效应, 不仅能提高裂化催化剂的裂化能力, 同时, 能显著改善裂化产品中的 汽油, 柴油和液化气的质量。
本发明提供的催化剂含有氧化铝和分子筛, 含有或不含有粘土, 其中, 所述氧化铝是 η-氧化铝, 或者是 η-氧化铝与 γ-氧化铝和 /或 χ- 氧化铝的混合物, 该催化剂还含有磷, 以催化剂总量为基准, η-氧化 铝的含量为 0. 5-50重量 °/。, γ-氧化铝和 /或 χ-氧化铝的含量为 0-50重 量%, 分子筛的含量为 10-70重量%, 粘土的含量为 0-75重量%, 以 Ρ205 计, 磷的含量为 0. 1-8重量%。
其中, 所述分子歸选自用作裂化催化剂活性组分的沸石和非沸石 分子筛中的一种或几种。 这些沸石和非沸石分子筛为本领域技术人员 所公知。
所述沸石优选为大孔沸石和中孔沸石中的一种或几种。 所述大孔沸石为具有至少 0. 7 纳米环开口的孔状结构的沸石, 如 八面沸石、 Beta沸石、 丝光沸石中的一种或几种, 特别是 Y型沸石、 含碑、 铁、 稀土之中的一种或几种的 Y型沸石、 超稳 Y沸石、 含碑、 铁、稀土之中的一种或几种的超稳 Y沸石, Beta沸石中的一种或几种。
所述中孔沸石为具有大于 0. 56 纳米小于 0. 7 纳米环开口的孔状 结构的沸石, 如具有 MFI结构的沸石 (如 ZSM-5沸石) , 含磷、 铁、 稀土之中的一种或几种的具有 MFI 结构的沸石 (如含麟、 铁和 /或稀 土的 ZSM-5沸石, CN1194181A公开的含磷的具有 MFI结构的沸石) 中 的一种或几种。
所述非沸石分子筛指沸石中的铝和 /或硅部分或全部被其它元素 如磷、 钛、 镓、 锗中的一种或几种取代的分子筛。 这些分子筛的实例 包括具有不同硅铝比的硅酸盐 (如金属硅酸盐 metal los i l icate、 钛 娃酸盐 t i tanos i l icate ) 、 金属 45酸盐 metal loaluminates (如锗 酸盐 Germaniumaluminates ) 、 金属碑酸盐 metal lophosphates、 45磚 酸盐 aluminophosphates ^ 金属 45祷酸盐 metal loaluminophosphates ^ 金属结合的娃 45碑酸盐 metal integrated si 1 icoaluminophosphates ( MeAPSO和 ELAPS0 ) 、 娃铝 酸盐 s i 1 icoaluminophosphates ( SAP0 分子筛)、镓错酸盐(gal logermanates )中的一种或几种。优选为 SAP0 分子筛, 如 SAP0-11分子筛、 SAP0-34分子筛和 SAP0- 37分子筛中的 一种或几种。
优选情况下, 所述分子筛选自 Y型沸石、 含磷、 铁和 /或稀土的 Y 型沸石、 超稳 Y沸石、 含磷、 铁和 /或稀土的超稳 Y沸石、 Beta沸石、 具有 MFI结构的沸石、含磷、铁和 /或稀土的具有 MFI结构的沸石、 SAP0 分子筛中的一种或几种。
更优选的分子筛含有 Y型沸石和具有 MFI结构的沸石的沸石混合 物, 以所述沸石混合物总量为基准, Y型沸石的含量为 30- 90重量%, 具有 MFI结构的沸石的含量为 10- 70重量。 /0
优选的催化剂还包括 0. 1-2重量。 /。稀土金属(以氧化物计) 。
本发明提供的催化剂的制备方法包括将含有铝化合物、 分子筛和 水, 含或不含粘土的浆液干燥并焙烧, 其中, 所述铝化合物是能形成 η-氧化铝的铝化合物, 或者是能形成 η-氧化铝的铝化合物与能形成 γ- 氧化铝和 /或 χ-氧化铝的铝化合物的混合物, 在焙烧之前还加入磷的 化合物, 各组分的用量使最终催化剂中含.有, 以催化剂总量为基准,
0. 5-50 重量%的11 -氧化铝、 0-50 重量%的丫 -氧化铝和 /或 X -氧化铝, 10-70重量%的分子筛, 0- 75重量%的粘土, 以 P205计, 0. 1- 8重量%的 磷。
本发明提供的催化剂不仅具有较高的裂化活性, 而且, 显著地提 高了裂化产品中的汽油、 柴油和液化气的质量, 表现在, 汽油中具有 较低的烯烃含量和较高的芳烃、 异构烷烃含量, 柴油具有较低的密度 和较高的十六炕值, 液化气中具有较高的低碳烯烃, 特别是丙烯和异 丁烷的含量。 该催化剂还具有高的重油裂化能力, 可多产轻质油 (汽 油和柴油)和液化气。 发明详述
本发明提供的催化剂含有氧化铝和分子筛, 含有或不含有粘土, 其中, 所述氧化铝是 η-氧化铝, 或者是 η-氧化铝与 γ-氧化铝和 /或 χ- 氧化铝的混合物, 该催化剂还含有磷, 以催化剂总量为基准, η-氧化 铝的含量为 0. 5-50重量/。优选 5-45重量%, γ-氧化铝和 /或 χ-氧化铝的 含量为 0-50重量%优选 0-40重量%, 分子筛的含量为 10-70重量%优选 20-50重量%, 粘土的含量为 0-75重量%优选 0-60重量%, 以 Ρ205计, 碑的含量为 0. 1-8重量%优选 0. 5-6重量%。
本发明提供的催化剂还可以含有 0. 1-2重量%优选 0. 2-1. 8重量% 的稀土金属(以氧化物计) 。
所述分子筛选自用作裂化催化剂活性组分的沸石和非沸石分子筛 中的一种或几种。 这些沸石和非沸石分子筛为本领域技术人员所公 知。
所述沸石优选为大孔沸石和中孔沸石中的一种或几种。
所述大孔沸石为具有至少 0. 7 纳米环开口的孔状结构的沸石, 如 八面沸石、 Beta沸石、 丝光沸石中的一种或几种, 特别是 Y型沸石, 含碑、 铁、 稀土之中的一种或几种的 Y型沸石, 超稳 Y沸石, 含磷、 铁、 稀土之中的一种或几种的超稳 Y沸石, HY型沸石, 含磷、 铁、 稀 土之中的一种或几种的 HY型沸石, Beta沸石中的一种或几种。
所述中孔沸石为具有大于 0. 56 纳米小于 0. 7 纳米环开口的孔状 结构的沸石, 如具有 MFI结构的沸石 (如 ZSM- 5沸石) , 含磷、 铁、 稀土之中的一种或几种的具有 MFI 结构的沸石 (如含磷、 铁、 稀土之 中的一种或几种的 ZSM- 5沸石, CN1194181A公开的含磷的具有 MFI结 构的沸石) 中的一种或几种。
所述非沸石分子筛指沸石中的铝和 /或硅部分或全部被其它元素 如磷、 钛、 镓、 锗中的一种或几种取代的分子筛。 这些分子筛的实例 包括具有不同硅铝比的硅酸盐 (如金属硅酸盐 metal los i l icate、 钛 娃酸盐 t i tanos i l icate ) 、 金属铝酸盐 metal loaluminates (如错铝 酸盐 Germaniumaluminates ) 、 金属碑酸盐 metal lophosphates、 4 &祷 酸盐 aluminophosphates 金属 45碑酸盐 metal loaluminophosphates 金属结合的娃 45祷酸盐 metal integrated si l icoaluminophosphates ( MeAPSO和 ELAPSO ) 、 破铝磚酸盐 s i l icoaluminophosphates ( SAPO 分子筛)、镓锗酸盐(gal logermanates )中的一种或几种。优选为 SAP0 分子筛, 如 SAP0-11分子筛、 SAP0- 34分子筛和 SAP0-37分子筛中的 一种或几种。
优选情况下, 所述分子筛选自 Y型沸石, 含磷、 铁、 稀土之中的 一种或几种的 Y型沸石, 超稳 Y沸石, 含磷、 铁、 稀土之中的一种或 几种的超稳 Y沸石, HY型沸石, 含磷、 铁、 稀土之中的一种或几种的 HY 型沸石, Beta 沸石, 具有 MFI 结构的沸石, 含磷、 铁、 稀土之中 的一种或几种的、具有 MFI结构的沸石, SAP0分子筛中的一种或几种。
更优选的分子筛含有 Y型沸石和具有 MFI结构的沸石的沸石混合 物, 以所述沸石混合物总量为基准, Y型沸石的含量为 30-90重量 y。优 选 40-85重量%,具有 MFI结构的沸石的含量为 10-70重量%优选 15-60 重量%。
所述粘土选自用作裂化催化剂活性组分的粘土中的一种或几种, 如高岭土、 多水高岭土、 蒙脱土、 硅藻土、 埃洛石、 皂石、 累托土、 海泡石、 凹凸棒石、 水滑石、 膨润土中的一种或几种。 更优选的粘土 为高岭土、 蒙脱土、 硅藻土、 累托土、 海泡石、 凹凸棒石中的一种或 几种。 这些粘土为本领域技术人负所公知。
本发明提供的催化剂还可以含有非氧化铝耐热无机氧化物, 所述 非氧化铝耐热无机氧化物选自用作裂化催化剂基质的非氧化铝耐热无 机氧化物中的一种或几种, 如氧化硅、 无定型硅铝、 氧化锆、 氧化钛、 氧化硼、 碱土金属氧化物中的一种或几种。 优选氧化硅、 无定型硅铝、 氧化锆、 氧化钛、 氧化镁、 氧化钙中的一种或几种。 这些耐热无机氧 化物为本领域技术人员所公知。 以催化剂总量为基准, 所述非氧化铝 耐热无机氧化物的含量为 0-10重量%优选 0-5重量%。
按照本发明提供的催化剂的制备方法, 所述铝化合物是能形成 η_ 氧化铝的铝化合物, 或者是能形成 η-氧化铝的铝化合物与能形成 γ -氧 化铝和 /或 χ-氧化铝的铝化合物的混合物。
所述能形成 η -氧化铝的铝化合物可以是任何在催化剂制备过程 中, 能形成 η -氧化铝的铝化合物, 优选为 三水氧化铝; 能形成 X -氧化铝的铝化合物可以是任何在催化剂制备过程中, 能形成 X -氧化 铝的铝化合物, 优选为 α -三水氧化铝。 所述能形成 Υ -氧化铝的铝化 合物可以是任何在催化剂制备过程中, 能形成 Υ -氧化铝的铝化合物, 优选为薄水铝石、 拟薄水铝石和 /或铝溶胶。
所述磷化合物可以在焙烧之前的任意步骤加入, 如可以加入到含 铝化合物、 分子筛和水, 含或不含粘土的浆液中, 也可以先将含铝化 合物、 分子筛和水, 含或不含粘土的浆液干燥, 再用浸溃法引入磷化 合物, 然后焙烧。 本发明催化剂中, 所述磷的含量不包括分子筛本来 含有的鱗。
所述磷化合物包括各种磷的化合物, 如: 磷酸、 磷酸盐、 亚磷酸、 亚磷酸盐、 焦磷酸、 焦磷酸盐、 聚合磷酸、 聚合碑酸盐、 偏磷酸、 偏 磷酸盐中的一种或几种, 优选为磷酸、 磷酸铵、 磷酸氢二铵、 磷酸二 氢铵、 亚碑酸、 亚磷酸铵、 焦鱗酸钠、 焦磷酸钾、 三聚磷酸钠、 三聚 碑酸钾、 六偏嶙酸钠、 六偏磷酸钾中的一种或几种。 更优选为碑酸、 磷酸铵、 碑酸氢二铵、 磷酸二氢铵、 亚磷酸、 亚磷酸铵、 焦碑酸钠、 三聚磷酸钠、 六偏磷酸钠中的一种或几种。
各组分的用量使最终催化剂中含有, 以催化剂总量为基准, 0. 5-
50重量%的11 -氧化铝、 0-50重量%的 γ -氧化铝和 /或 X -氧化铝, 10-70 重量%的分子筛, 0-75 重量%的粘土, 以 Ρ205计, 0. 1-8 重量%的磷。 优选情况下, 各组分的用量使最终催化剂中含有 5-45 重量%的71 -氧 化铝, 0-40重量%的 Υ -氧化铝和 /或 X -氧化铝, 20-50重量%的分子筛, 0- 60重量%的粘土, 以 Ρ205计, 0. 5-6重量%的磷。
如果催化剂中还含有非氧化铝无机氧化物, 可以在所述含铝化合 物、 分子筛和水, 含或不含粘土的浆液中加入所述非氧化铝无机氧化 物和 /或其前身物。 所述非氧化铝无机氧化物的前身物指在催化剂制 备过程中, 能形成所述非氧化铝无机氧化物的物质, 这些非氧化铝无 机氧化物的前身物为本领域技术人员所公知。 如氧化硅的前身物可以 是硅溶胶、 硅凝胶和 /或水玻璃, 无定型硅铝的前身物可以是硅铝溶 胶和 /或硅铝凝胶, 氧化锆、 氧化钛、 氟化硼、 碱土金属氧化物的前 身物可以是其各自的氢氧化物。 所述非氧化铝无机氧化物和 /或其前 身物的用量使催化剂中含有 0-10 重量%, 优选 0-5 重量%的非氧化 铝无机氧化物。
所述干燥和焙烧的条件为常规的裂化催化剂干燥和焙烧的条件, 如干燥的温度为室温 - 200°C,优选为 80-180Ό ,焙烧的温度为大于 200 至 750°C, 优选为 300-600°C, 焙烧的时间至少为 0. 1 小时, 优选为 0. 1- 10小时, 更优选为 0. 3-4小时。 所述干燥方法可以采用现有的各 种干燥方法, 如烘干, 晾干, 喷雾干燥, 优选烘干或喷雾干燥的方法。
本发明提供的催化剂适用于对石油及其各种馏分进行催化裂化, 特别适合对石油和沸点大于 330Ό的石油馏分, 如常压渣油、 减压渣 油、 减压蜡油, 常压蜡油, 直馏蜡油, 丙烷轻 /重脱油和焦化蜡油中 的一种或几种进行催化裂化, 以生产高质量汽油、 柴油和液化气。
本发明优选的催化剂之一
该催化剂含有氧化铝和分子筛, 含有或不含有粘土, 所述氧化铝 是 η-氧化铝, 或者是 η-氧化铝与 γ-氧化铝和 /或 χ-氧化铝的混合物, 该催化剂还含有磷, 以催化剂总量为基准, η -氧化铝和/或χ -氧化 铝的含量为 0. 5-50重量%优选 5-45重量%, Υ -氧化铝的含量为 0-50 重量%优选 0-40重量%, 粘土的含量为 0-75重量%优选 0-60重量%, 以 Ρ205计, 磷的含量为 0. 1-8重量%优选 0. 5-6 重量。 /。, 分子筛的含量为 10-70重量%优选 20-50重量%, 所述分子筛为含有 Υ型沸石和具有 MFI 结构的沸石的沸石混合物, 以所述沸石混合物总量为基准, Υ 型沸石 的含量为 30-90重量%优选 40-85重量。 /。, 具有 MFI结构的沸石的含量 为 10-70重量%优选 15-60重量%。
该优选的催化剂制备方法如下:
该方法包括将含有铝化合物、 分子筛和水, 含或不含粘土的浆液 干燥并焙烧, 所述铝化合物是能形成 η-氧化铝的铝化合物, 或者是能 形成 η-氧化铝的铝化合物与能形成 γ-氧化铝和 /或 χ-氧化铝的铝化合 物的混合物, 在焙烧之前还加入磷的化合物, 各组分的用量使最终催 化剂中含有, 以催化剂总量为基准, 0. 5-50 重量%优选 5-45 重量%的 η -氧化铝、 0-50重量 °/。优选 0-40重量%的 γ -氧化铝和 /或 χ-氧化铝, 0-75重量%优选 0-60重量%的粘土, 以 Ρ205计, 0. 1-8重量%优选 0. 5 - 6重量%的磷, 10-70重量。/。优选 20-50重量%的分子筛, 所述分子筛为 含有 Υ型沸石和具有 MFI结构的沸石的沸石混合物, 以所述沸石混合 物总量为基准, Υ型沸石的含量为 30-90重量 °/。优选 40-85重量%, 具 有 MFI结构的沸石的含量为 10-70重量%优选 15-60重量%。
所述沸石混合物中还含有 Beta 沸石, 以所述沸石混合物总量为 基准, Beta沸石的含量为 0-30重量%优选 0-20重量。 /0
该催化剂显著地提高了裂化产品中的汽油和液化气的质量。
本发明优选的催化剂之二
该催化剂含有氧化铝和分子筛, 含有或不含有粘土, 所述氧化铝 是 η-氧化铝, 或者是 η-氧化铝与 γ-氧化铝和 /或 χ-氧化铝的混合物, 该催化剂还含有磷和稀土金属, 以催化剂总量为基准, η -氧化铝的 含量为 0. 5-50重量%优选 5-45重量%, γ -氧化铝和 /或 X -氧化铝的含 量为 0-50重量%优选 0-40重量%, 粘土的含量为 0-75重量%优选 0-60 重量%, 以 Ρ205计, 磷的含量为 0. 1-8 重量%优选 0. 5-6 重量%, 以氧 化物计, 稀土金属的含量为 0. 1-2重量%优选 0. 2-1. 8重量。 /。, 分子筛 的含量为 1 0-70重量%优选 20-50重量%, 所述分子筛为 Υ型沸石。
该优选的催化剂制备方法如下:
该方法包括将含有铝^合物、 分子筛和水, 含或不含粘土的浆液 干燥并焙烧, 所述铝化合物是能形成 η-氧化铝的铝化合物, 或者是能 形成 η-氧化铝的铝化合物与能形成 γ-氧化铝和 /或 χ-氧化铝的铝化合 物的混合物, 在焙烧之前还加入磷化合物和稀土金属化合物, 各组分 的用量使最终催化剂中含有, 以催化剂总量为基准, 0. 5-50 重量%优 选 5-45重量%的 -氧化铝、 0-50重量%优选 0-40重量%的丫-氧化铝 和 /或 X -氧化铝, 0-75重量%优选 0- 6 0重量%的粘土, 以 Ρ205计, 0. 1-8 重量%优选 0. 5-6重量%的碑, 以氧化物计, 0. 1-2重量%优选 0. 2-1. 8 重量%的稀土金属, 10-70重量%优选 20-50重量%的分子筛, 所述分子 筛为 Υ型沸石。
所述稀土金属化合物选自氯化稀土、 硝酸稀土中的一种或几种。 该催化剂具有高的重油裂化能力, 可多产轻质油 (汽油和柴油) 和液化气。
本发明提供的催化剂的使用条件为常规的裂化反应条件, 一般来 说, 所述裂化条件包括反应温度为 350-700Ό , 优选为 400-650°C , 剂 油比(催化剂与烃油的重量比) 为 1-20, 优选为 2-15。
下面的实例将对本发明做进一步说明。
实例中, 所用 P -三水氧化铝的氧化铝含量为 64 重量% (山东铝 业公司研究院出品) ; 拟薄水铝石的氧化铝含量为 62 重量% (山东铝 业公司出品) ; 铝溶胶的氧化铝含量为 21. 6 重量。/» (齐鲁催化剂厂出 品) ; 硅溶胶的氧化硅含量为 12 重量% (北京长虹化工厂出品) ; 高 岭土的固含量 76 重量% (中国高岭土公司出品) ; 蒙脱土的固含量为 80 重量 °/。(湖北钟祥市铁矿厂出品) ; 含磷的化合物为化学纯; 氯化 稀土溶液(实验室制备, 稀土氧化物的浓度是 219克 /升, 其中, La203 占稀土氧化物的 53. 2%、 Ce02占稀土氧化物的 13. 0%、 Pr60n占稀土氧 化物的 13. 0%、 Nd203占稀土氧化物的 20. 8%, 固体氯化稀土由内蒙古 包头稀土厂生产)。
实例中, 所用 SAP0-11分子筛按 CN1098214C中实例 1所述方法制 备;
实例中, 所用各种沸石的组成分别如下:
HY沸石 ( Na20含量为 1. 5重量%, 硅铝比为 5· 3 )是将 NaY沸石 ( Na20含量为 13. 5重量%, 硅铝比为 5. 0, 齐鲁催化剂厂出品) , 在 水: NaY沸石: 固体氯化铵重量比为 10: 1 : 1和 80°C的温度下交换 1 小时, 过滤后在 550Ό焙烧 2 小时, 再按上述步骤交换一次, 过滤并 焙烧得到;
REY沸石为一种含稀土的 Y型沸石 (稀土氧化物的含量为 18. 5重 量%, 其中, La203占稀土氧化物的 53. 2重量%、 Ce02占稀土氧化物的 13. 0 重量%、 Pr60n占稀土氧化物的 13. 0 重量。 /。、 Nd203占稀土氧化物 的 20. 8重量%, Na20含量为 1. 6重量%, 硅铝比为 5. 4 , 晶胞常数为 2. 468nm, 齐鲁催化剂厂出品) ;
REHY沸石为一种含稀土的 Y型沸石 (稀土氧化物的含量为 8. 4重 量%, 其中, La203 占稀土氧化物的 53. 2 重量。 /。、 Ce02占稀土氧化物 的 13. 0重量%、 Pr60n占稀土氧化物的 13. 0重量。 /。、 Nd203占稀土氧化 物的 20. 8重量%, Na20含量为 3. 7重量%, 硅铝比为 5. 6, 晶胞常数 为 2. 461nm, 齐鲁催化剂厂出品) ;
M0Y沸石为一种含磷和稀土的 Y型沸石 (稀土氧化物的含量为 8. 0 重量%, 其中, La203占稀土氧化物的 53. 2重量。 /。、 Ce02占稀土氧化物 的 13. 0重量%、 Pr60n占稀土氧化物的 13. 0重量%、 Nd203占稀土氧化 物的 20. 8重量%, Na20含量为 1. 3重量%, 以元素嶙计, 磷含量为 1. 1 重量%, 硅铝比为 5. 6 , 晶胞常数为 2. 460nm, 齐鲁催化剂厂出品) ;
DASY。. fl沸石为一种超稳 Y沸石 (Na20含量为 1. 0重量%, 硅铝比 为 6. 8, 晶胞常数为 2. 446nm, 齐鲁催化剂厂出品) ;
DASY2 Q沸石为一种含稀土的超稳 Y沸石(稀土氧化物的含量为 1. 8 重量%, 其中, La203占稀土氧化物的 53. 2重量。 /。、 Ce02占稀土氧化物 的 13. 0重量。 /。、 Pr60n占稀土氧化物的 13. 0重量。 /»、 Nd203占稀土氧化 物的 20. 8重量%, Na20含量为 1. 2重量%, 硅铝比为 6. 8, 晶胞常数 为 2. 447皿, 齐鲁催化剂厂出品) ;
ZSM-5沸石为一种具有 MFI结构的沸石 (Na20含量为 0. 2重量%, 硅铝比为 60, 齐鲁催化剂厂出品) ;
ZRP-1 沸石为一种含磷和稀土的具有 MFI 结构的沸石 (Na20含量 0. 1重量%, 硅铝比为 30, 稀土氧化物的含量为 1. 7重量%, 其中, La203占稀土氧化物的 53. 2重量%、 Ce02占稀土氧化物的 13. 0重量%、 Pr60n占稀土氧化物的 13. 0重量%、 Nd203占稀土氧化物的 20. 8重量%, 以元素磷计, 磷含量为 1. 9重量%, 齐鲁催化剂厂出品) ;
ZSP-1 为一种含磷和铁的具有 MFI 结构的沸石 (Na20含量为 0. 1 重量 °/。, 硅铝比为 30, Fe203含量为 1. 5 重量%, 以元素碑计, 磷含 量为 1. 2重量%, 齐鲁催化剂厂出品) ;
Beta沸石的 Na20含量为 3. 2重量%, 硅铝比为 28 , 齐鲁催化剂 厂出品。
上述的硅铝比均指氧化硅与氧化铝的摩尔比。 实例 1 - 6
下面的实例说明本发明提供的催化剂及其制备方法。
将 三水氧化铝或 β -三水氧化铝和拟薄水铝石、 分子歸、 鱗化 合物和水(有时还有粘土) 混合打浆, 将得到的浆液喷雾干燥成直径 为 40-150微米的颗粒并焙烧, 得到本发明提供的催化剂 Cl-C6。
三水氧化铝和拟薄水铝石的用量, 粘土的种类和用量, 分子筛的种类 和用量、 磷化合物的种类和用量分别列于表 1-4中。 喷雾干燥的温度、 焙烧温度和时间列于表 5中。 催化剂 CI- C6的组成列于表 6中。 对比例 1
本对比例说明不含鱗的参比催化剂及其制备方法。
按实例 1 的方法制备催化剂, 不同的是不加入磷化合物, 粘土的 用量不同, 得参比催化剂 CB1。 三水氧化铝和拟薄水铝石的用量, 粘土的种类和用量, 分子筛的种类和用量分别列于表 卜 4 中。 喷雾干 燥的温度、 焙烧温度和时间列于表 5 中。 参比催化剂 CB1 的组成列于 表 6中。 对比例 2
本对比例说明不含 X或 η -氧化铝的参比催化剂及其制备方法。 按实例 1 的方法制备催化剂, 不同的是用拟薄水铝石代替 Ρ -三 水氧化铝, 得到参比催化剂 CB2。 拟薄水铝石的用量, 粘土的种类和 用量, 分子筛的种类和用量、 磷化合物的种类和用量分别列于表 1-4 中。 喷雾干燥的温度、 焙烧温度和时间列于表 5 中。 参比催化剂 CB2 的组成列于表 6中。 实例 7
本实例说明本发明提供的催化剂及其制备方法。
将 93. 8公斤 β -三水氧化铝, 72· 6公斤拟薄水铝石, 54公斤 DASY2.。 分子筛, 30公斤 ZRP-1分子筛, 6公斤 SAP0- 11分子筛, 126. 3公斤 高岭土, 50公斤硅溶胶和去离子水混合打浆, 将得到的浆液在 180Ό 的温度下喷雾干燥成直径为 40-150微米的颗粒, 用浓度为 1. 6重量 °/。 的磷酸二氢铵水溶液 303. 8 公斤浸渍干燥后的固体 300公斤 (干基 重) , 然后, 在 500TC的温度下焙烧 2 小时, 得到本发明提供的催化 剂 C7。 催化剂 C7的组成列于表 6中。 实例 8 本实例说明本发明提供的催化剂及其制备方法。
按实例 6 的方法制备催化剂, 不同的是用 69.4公斤铝溶胶代替 所述拟薄水铝石, 得到本发明提供的催化剂 C8。 催化剂 C8 的组成列 于表 6中。
表 1
β -三水氧化铝 拟薄水铝石 /铝溶胶 实例编号
用量, 公斤 用量, 公斤
1 61.7 ―
对比例 1 61.7 ―
对比例 2 ― 63.7
2 8.6 41.1
3 56.3 35.5
4 68.8 37.7
5 4.7 3.2
6 39.1 24.2
Figure imgf000015_0001
实例编号 粘土种类 粘土用量, 公斤
1 高岭土 42.1 对比例 1 高岭土 45.4 对比例 2 高呤土 42.1
2 高岭土 19.1
3 ― ―
4 蒙脱土 12.5
5 高岭土 67.1
6 高岭土 31.6 表 4
实例编号 磷化合物种类 磷化合物用量, 公斤
1 磷酸氢二铵 4.7 对比例 1 ― ―
对比例 2 磷酸氢二铵 4.7
2 六偏碑酸钠 7.9
3 磷酸铵 4.2
4 磷酸铵 1.3
5 磷酸二氢铵 4.9
6 磷酸二氢铵 1.6
实例编号 干燥温度, X 焙烧温度, " 焙烧时间, 小时
1 110 500 1 对比例 1 110 500 1
对比例 2 110 500 1
2 120 350 3. 5
3 120 600 0. 5
4 120 450 0. 8
5 160 550 1. 5
6 90 550 1. 5
Figure imgf000017_0001
*2. 0重量 °/。为氧化硅的含量 实例 9 - 14
下面的实例说明本发明提供的催化剂的催化性能。
分别将催化剂 CI- C6在 800·Ό, 用 100%水蒸气老化 8小时。 在微 型流化床反应装置上, 用上述老化后的催化剂 CI- C6对表 7所示的 1# 原料油进行催化裂化, 催化剂装量为 9 克。 反应奈件和反应结果列于 表 8中。 其中, 转化率 =干气收率 +液化气收率 +汽油收率 +焦炭收率; 总液 收=液化气收率 +汽油收率 +柴油收率。 汽油是指馏程为 C5-22rC的馏 分, 柴油是指馏程为 221- 343 Ό的馏分, 液化气是指 C3- C4 的馏分, 气体是 H2- C2的馏分。 对比例 3-4
下面的对比例说明参比催化剂的催化性能。
按实例 9 的方法对催化剂进行老化, 并在同样的条件下, 对同样 的原料油进行催化裂化, 不同的是所用催化剂分别为对比例 1 和对比 例 1制备的参比催化剂 CB1和 CB2 , 反应条件和反应结果列于表 8中。
Figure imgf000018_0001
实例编号 9 对比 对比 10 11 12 13 14
例 3 例 4
催化剂编号 C1 CB1 CB2 C2 C3 C4 C5 C6 反应温度, 。c 510 510 510 460 550 500 480 510 剂油比 4. 0 4. 0 4. 0 4. 5 3. 5 5 6 4 重时空速, 小时一1 16. 0 16. 0 16. 0 15. 5 18. 2 14. 3 12. 0 16. 2 转化率, 重量% 72. 6 70. 3 69. 8 78. 6 74. 8 72. 9 77. 6 75. 4 总液收, 重量% 79. 9 74. 0 70. 9 85. 6 80. 1 78. 9 84. 4 80. 9 产物组成, 重量%
干气 1. 7 2. 2 3. 4 1. 7 2. 2 1. 9 1. 9 1. 9 液化气 18. 4 17. 3 16. 6 25. 4 32. 0 23. 4 21. 1 23. 8 汽油 47. 1 42. 8 41. 0 45. 1 35. 5 41. 3 48. 3 43. 9 柴油 14. 4 13. 9 13. 3 15. 1 12. 6 14. 2 15. 0 13. 2 焦炭 5. 4 8. 0 8. 8 6. 4 5. 1 6. 3 6. 3 5. 8 未转化重油 13. 0 15. 8 16. 9 6. 3 13. 6 12. 9 7. 4 11. 4 汽油组成, 重量 ½
烯烃 34. 0 36. 1 37. 0 28. 8 31. 3 34. 8 29. 4 30. 0 芳烃 24. 8 23. 2 21. 1 28. 6 24. 3 26. 3 27. 9 27. 4 异构烷烃 25. 2 23. 5 22. 2 28. 9 26. 5 24. 1 28. 3 27. 6 柴油性质
密度(20°C ) , 公斤 /米 3 905 928 935 890 915 920 896 902 苯胺点, Ό 31. 2 25. 4 18. 0 41. 7 29. 2 28. 2 41. 0 32. 4 十六烷指数 33. 4 28. 0 27. 0 36. 0 33. 2 32. 2 35. 5 33. 9 液化气性质
丙烯舍量, 重量% 6. 5 5. 8 5. 4 9. 2 12. 8 8. 5 7. 3 7. 6 丁烯含量, 重量 54 6. 0 5. 6 5. 3 9. 6 13. 5 9. 1 7. 6 8. 0 异丁烷含量, 重量% 4. 4 4. 0 3. 9 5. 0 4. 2 4. 3 4. 2 4. 5 实例 15-16 下面的实例说明本发明提供的催化剂的催化性能。
分别将催化剂 C7- C8在 800°C, 用 100%水蒸气老化 17小时。 在小型流 化床反应装置上, 用上述老化后的催化剂 C7-C8对表 9所示的 2#原料油进 行催化裂化, 催化剂装量为 90克。 反应条件和反应结果列于表 10中。
表 9
2#原料油 常压渣油 密度(20TC) , 克 /厘米 3 0.8977
残炭, 重量% 5.14
折光(70Ό) 1.4884
粘度(80°C) , 亳米 V秒 23.61
粘度(100Ό ) , 亳米 V秒 13.72
凝点, °C 44
苯胺点, °C 97.7
元素组成, 重量%
C 86.89
H 12.77
S 0.13
N 0.21
四组分, 重量0 /o
饱和径 62.7
芳烃 23.0
胶质 12.7
1.6
馏程, V
初德点 283
5% 350
10% 374
30% 432
50% 477
60% 511
特性因数 12.3 表 10
Figure imgf000021_0001
从表 8 的结果可以看出, 与使用参比催化剂相比较, 使用本发明 提供的催化剂对同样的原料油进行催化裂化, 转化率和总液收显著提 高, 而且, 显著地降低了汽油中的烯烃含量, 提高了汽油中的芳烃和 异构烷烃含量, 降低了柴油密度, 提高了柴油的苯胺点和十六烷值, 液化气中低碳烯烃 (特别是丙烯)和异丁烷含量显著提高。 这说明, 本发明提供的催化剂不仅具有较高的裂化活性, 而且, 显著地提高了 裂化产品中的汽油, 柴油和液化气的质量。 表 10 的结杲同样表明, 本发明提供的催化剂具有较现有技术更高的裂化活性, 而且, 裂化产 品中的汽油, 柴油和液化气的质量较高。 实例 17-22
下面的实例说明本发明提供的第一种优选的催化剂及其制备方 法。
将 β -三水氧化铝或 β -三水氧化铝和拟薄水铝石、 分子筛、 磷化 合物和水(有时还有粘土) 混合打浆, 将得到的浆液喷雾干燥成直径 为 40-150微米的颗粒并焙烧, 得到本发明提供的催化剂 C9-C14。 其 中, 按实例 22的方法制备催化剂, 是用铝溶胶代替实例 21所述拟薄 水铝石, 得到催化剂 C14。 P -三水氧化铝和拟薄水铝石 (或铝溶胶) 的用量, 粘土的种类和用量, 分子筛的种类和用量、 磷化合物的种类 和用量分别列于表 11-14 中。 喷雾干燥的温度、 焙烧温度和时间列于 表 15中。 催化剂 C9-C14的组成列于表 16中。 对比例 5
本对比例说明不含磷的参比催化剂及其制备方法。
按实例 17 的方法制备催化剂, 不同的是不加入磷化合物, 粘土 的用量不同, 得参比催化剂 CB3。 P -三水氧化铝和拟薄水铝石的用量, 粘土的种类和用量, 分子筛的种类和用量分别列于表 11-14 中。 喷雾 干燥的温度、 焙烧温度和时间列于表 15 中。 参比催化剂 CB3 的组成 列于表 16中。 对比例 6
本对比例说明不含 X或 η -氧化铝的参比催化剂及其制备方法。 按实例 17 的方法制备催化剂, 不同的是用拟薄水铝石代替 三 水氧化铝, 得到参比催化剂 CB4。 拟薄水铝石的用量, 粘土的种类和 用量, 分子筛的种类和用量、磷化合物的种类和用量分别列于表 中。 喷雾干燥的温度、 焙烧温度和时间列于表 15中。 参比催化剂 CB4 的组成列于表 16中。 表 11
实例编号 β -三水氧化铝 拟薄水铝石 /铝溶胶
用量, 公斤 用量, 公斤
17 59. 4 - 对比例 5 59. 4 ―
对比例 6 - 61. 3/0
18 34. 4 25. 8/0
19 64. 1 38. 7/0
20 31. 3 9. 7/0
21 39. 1 24. 2/0
22 39. 1 0/69. 4 表 12
实例编号 分子筛种类 分子筛用量, 公斤
17 REHY+ ZRP-1 25+5
对比例 5 REHY+ ZRP-1 25+5
对比例 6 REHY+ ZRP-1 25+5
18 DASY2.0+Beta+ ZRP-1 30+8+10
19 M0Y+ ZSM-5+ ZRP-1 16+12+5
20 M0Y+ ZSM-5 14+9
21 REHY+ DASY0. o+ ZSM-5 10+18+7
22 REHY+ DASYo. o+ ZSM-5 10+18+7 表 13
实例编号 粘土种类 粘土用量, 公斤
17 高岭土 40.1 对比例 5 高岭土 42.1 对比例 6 高岭土 40.1
18 高岭土 12.5
19 ― ―
20 蒙脱土 63.0
21 高岭土 31.6
22 高岭土 31.6 表 14
实例编号 磷化合物种类 磷化合物用量, 公斤
17 磷酸氢二铵 2.8 对比例 5 ― 一
对比例 6 酸氢二铵 2.8
18 六偏磚酸钠 6.5
19 磷酸铵 4.2
20 磷酸铵 1.3
21 磷酸二氢铵 1.6
22 磷酸二氢铵 1.6
表 15
Figure imgf000025_0001
表 16
Figure imgf000025_0002
实例 23-28
下面的实例说明本发明提供的催化剂的催化性能。
分别将催化剂 C9-C14在 800Ό , 用 100°/。水蒸气老化 8小时。 在微 型流化床反应装置上, 用上述老化后的催化剂 C9-C14对表 7所示的 1 原料油进行催化裂化, 催化剂装量为 9 克。 反应条件和反应结果列于 表 17中。
其中, 转化率 =干气收率 +液化气收率 +汽油收率 +焦炭收率; 总液 收=液化气收率 +汽油收率 +柴油收率。 汽油是指馏程为 C5-221 °C的馏 分, 柴油是指馏程为 221- 343°C的馏分, 液化气是指 C3- C4 的馏分, 干气是 H2- C2的馏分。 对比例 7-8
下面的对比例说明参比催化剂的催化性能。
按实例 23 的方法对催化剂进行老化, 并在同样的条件下, 对同样 的原料油进行催化裂化, 不同的是所用催化剂分别为对比例 5和对比例
6制备的参比催化剂 CB3和 CB4, 反应条件和反应结果列于表 17中。
表 17
实例编号 23 对比 对比 24 25 26 27 28
例 7 例 8
催化剂编号 C9 CB3 CB4 C10 C11 C12 C13 C14 反应温度, 'C 510 510 510 465 520 530 500 500 剂油比 5. 0 5. 0 5. 0 4. 5 3. 5 6 4. 5 4. 5 重时空速, 小时一1 16. 0 16. 0 16. 0 15. 5 18. 2 14. 3 12. 0 16. 2 转化率, 重量% 76. 5 72. 2 71. 3 77. 4 75. 3 74. 2 75. 6 74. 7 产物組成, 重量。 /。
干气 2. 3 1. 6 2. 1 0. 9 2. 7 3. 3 1. 8 1. 1 液化气 22. 5 21. 3 20. 4 28. 8 28. 1 24. 7 23. 6 23. 1 汽油 43. 5 39. 0 37. 8 40. 3 36. 5 37. 7 42. 4 41. 9 柴油 14. 4 11. 9 12. 4 14. 1 14. 2 13. 0 13. g 13. 1 焦炭 8. 2 10. 3 11. 0 7. 4 8. 0 8. 5 7. 8 8. 6 未转化重油 9. 1 15. 9 16. 3 8. 5 10. 5 12. 8 10. 6 12. 2 汽油组成, 重量 ¾
烯烃 29. 0 34. 1 34. 9 30. 4 32. 2 32. 8 30. 8 31. 3 芳烃 28. 2 25. 5 24. 7 27. 5 26. 2 27. 0 28. 1 26. 5 异构烷烃 26. 5 24. 2 23. 3 28. 2 27. 2 25. 8 26. 5 26. 8 液化气性质
丙烯舍量, 重量% 7. 4 6. 5 5. 8 9. 1 10. 4 8. 7 7. 2 7. 0 丁烯含量, 重量 54 6. 7 5. 9 5. 6 9. 7 11. 7 8. 5 6. 8 7. 5 异丁烷含量, 重量% 4. 9 4. 6 4. 1 5. 5 4. 8 4. 8 5. 6 4. 8 从表 17 的结果可以看出, 与使用参比催化剂相比较, 使用本发 明提供的催化剂对同样的原料油进行催化裂化, 显著地降低了汽油中 的烯烃含量, 提高了汽油中的芳烃和异构烷烃含量, 液化气中低碳烯 烃 (特别是丙烯)和异丁烷含量显著提高。 这说明, 本发明提供的催 化剂显著地提高了裂化产品中的汽油和液化气的质量。 实例 29-34
下面的实例说明本发明提供的第二种优选的催化剂及其制备方 法。
将 β -三水氧化铝或 三水氧化铝和拟薄水铝石、 分子筛、 磷化 合物、 稀土金属化合物和水(有时还有粘土) 混合打浆, 将得到的浆 液喷雾干燥成直径为 40-150微米的颗粒并焙烧, 得到本发明提供的 催化剂 C15-C20。 其中, 按实例 34的方法制备催化剂, 是用铝溶胶代 替实例 33 所述拟薄水铝石, 得到催化剂 C20。 P -三水氧化铝和拟薄 水铝石的用量、 粘土的种类和用量、 分子筛的种类和用量、 磷化合物 的种类和用量、 氯化稀土溶液的用量分别列于表 18-22 中。 喷雾干燥 的温度、 焙烧温度和时间列于表 23 中。 催化剂 C15-C20 的组成列于 表 24中。 对比例 9
本对比例说明不含磷和稀土金属的参比催化剂及其制备方法。 按实例 29 的方法制备催化剂, 不同的是不加入磷化合物和稀土 金属溶液, 粘土的用量不同, 得参比催化剂 CB5。 P -三水氧化铝和拟 薄水铝石的用量、 粘土的种类和用量、 分子筛的种类和用量分别列于 表 18-21 中。 喷雾干燥的温度、 焙烧温度和时间列于表 23 中。 参比 催化剂 CB5的组成列于表 24中。 对比例 10
本对比例说明不含 X -氧化铝或 η -氧化铝的参比催化剂及其制备 方法。
按实例 29 的方法制备催化剂, 不同的是用拟薄水铝石代替 Ρ -三 水氧化铝, 得到参比催化剂 CB6。 拟薄水铝石的用量、 粘土的种类和 用量、 分子筛的种类和用量、 磷化合物的种类和用量、 氯化稀土溶液 的用量分别列于表 18-22 中。 喷雾干燥的温度、 焙烧温度和时间列于 表 23中。 参比催化剂 CB6的组成列于表 24中。 表 18
P -三水氧化铝用量, 拟薄水铝石 /铝溶胶用量, 实例编号
公斤 公斤
29 51.6 ―
对比例 9 51.6 ―
对比例 10 ― 53.2
30 34.4 30.6
31 64.1 36.8
32 31.3 9.7
33 46.9 24.2
34 46.9 /69.4
Figure imgf000028_0001
表 20
实例编号 粘土种类 粘土用量, 公斤
29 高呤土 51.3
对比例 9 高岭土 55.3
对比例 10 高岭土 51.3
30 高岭土 10.3
31 - ―
32 蒙脱土 62.5
33 高岭土 30.3
34 高岭土 30.3 表 21
实例编号 磷化合物种类 磷化合物用量, 公斤
29 磷酸氢二铵 2.8
对比例 9 ― - 对比例 10 磷酸氢二铵 2.8
30 六偏 酸钠 6.5
31 磷酸铵 4.2
32 磷酸铵 1.3
33 磷酸二氢铵 1.6
34 磷酸二氢铵 1.6
表 22
实例编号 氯化稀土溶液用量, 升
29 6 .8 对比例 9 ―
对比例 10 6.8
30 7.8
31 5 .5
32 1 • 8
33 4.6
34 4.6 表 23
实例编号 干燥温度, TC 焙烧温度, 焙烧时间, 小时
29 110 500 1 对比例 9 110 500 1 对比例 10 110 500 1
30 120 350 3.5
31 120 600 0.5
32 120 450 0.8
33 160 550 1.5
34 90 550 1.5
表 24
Figure imgf000031_0001
实例 35-40
下面的实例说明本发明提供的催化剂的催化性能。
分别将催化剂 C15-C20在 800°C , 用 100%水蒸气老化 8小时。 在 微型流化床反应装置上, 用上述老化后的催化剂 C15- C20对表 25 所 示的 3#原料油进行催化裂化, 催化剂装量为 9克。 反应条件和反应结 果列于表 26中 D
其中, 转化率 =干气收率 +液化气收率 +汽油收率 +焦炭收率; 总液 收=液化气收率 +汽油收率 +柴油收率。 汽油是指馏程为 C5-221 °C的馏 分, 柴油是指馏程为 221- 343°C的馏分, 液化气是指 C3-C4 的馏分, 干气是 H2- C2的馏分。 对比例 11-12
下面的对比例说明参比催化剂的催化性能。
按实例 35 的方法对催化剂进行老化, 并在同样的条件下, 对同 样的原料油进行催化裂化, 不同的是所用催化剂分别为对比例 9 和对 比例 10制备的参比催化剂 CB5和 CB6 , 反应条件和反应结果列于表 26 中。 表 25
3#原料油 减压蜡油与减压渣油的混合油 密度(201C ) , 克 /厘米 3 0.9334
折光(70Ό) 1.5129
粘度(100Ό) , 亳米 V秒 12.33
凝固点, Ό 35
元素组成, 重量%
C 86.89
H 11.80
S 1.3
N ― 四组分, 重量%
饱和烃 54.5
芳烃 33.4 胶质 11.4 历青质 0.7
残炭, 重量% 3.40
馏程, "C
初馏点 292
5% 373
10% 395
30% 430
50% 458
70% 502 表 26
Figure imgf000033_0001
从表 26 的结果可以看出, 与使用参比催化剂相比较, 使用本发 明提供的催化剂对同样的原料油进行催化裂化, 转化率显著提高, 而 且, 显著地降低了汽油中的烯烃含量, 提高了汽油中的芳烃和异构烷 烃含量。 这说明, 本发明提供的催化剂不仅具有较高的裂化活性即裂 化产品中轻质油和液化气的产率较高, 而且, 显著地提高了裂化产品 中的汽油质量。

Claims

权 利 要 求
1. 一种烃类裂化催化剂, 该催化剂含有氧化铝和分子筛, 含有 或不含有粘土, 其特征在于, 所述氧化铝是 η-氧化铝, 或者是 η-氧化 铝与 γ-氧化铝和 /或 χ-氧化铝的混合物, 该催化剂还含有磷, 以催化 剂总量为基准:
0. 5-50重量。 /。的 η-氧化铝、 0-50重量%的 γ-氧化铝和 /或 χ-氧化铝;
10 - 70重量%的分子筛;
0-75重量%的粘土;
以 Ρ205计, 0. 1-8重量%的磷。
2. 根据权利要求 1 所述的催化剂, 其特征在于, η-氧化铝的含 量为 5-45重量。 /。, γ-氧化铝和 /或 χ-氧化铝的含量为 0-40重量%, 分子 筛的含量为 20-50重量。 /», 粘土的含量为 0-60重量%, 以 Ρ205计, 碑 的含量为 0. 5-6重量? 4。
3. 根据权利要求 1 或 2 所述的催化剂, 其特征在于, 该催化剂 还含有稀土金属, 以氧化物计, 稀土金属的含量为 0. 1-2重量%。
4. 根据权利要求 3 所述的催化剂, 其特征在于, 该催化剂还含 有稀土金属, 以氧化物计, 稀土金属的含量为 0. 2-1. 8重量。 /。。
5. 根据权利要求 1 或 2 所述的催化剂, 其特征在于, 所述分子 筛选自用作裂化催化剂活性组分的沸石和非沸石分子筛中的一种或几 种。
6. 根据权利要求 5 所述的催化剂, 其特征在于, 所述沸石选自 大孔沸石和中孔沸石中的一种或几种。
7. 根据权利要求 6 所述的催化剂, 其特征在于, 所述大孔沸石 选自八面沸石、 Beta沸石、 丝光沸石中的一种或几种。
8. 根据权利要求 7 所述的催化剂, 其特征在于, 所述大孔沸石 选自 Y型沸石, 含磷、 铁、 稀土之中的一种或几种的 Y型沸石, 超稳 Y沸石, 含碑、 铁、 稀土之中的一种或几种的超稳 Y沸石, HY型沸石, 含磷、 铁、 稀土之中的一种或几种的 HY 型沸石, Beta 沸石中的一种 或几种。
9. 根据权利要求 6 所述的催化剂, 其特征在于, 所述中孔沸石 选自具有 MFI 结构的沸石, 含磷、 铁、 稀土之中的一种或几种的具有 MFI结构的沸石中的一种或几种。
10. 根据权利要求 1或 2所述的催化剂, 其特征在于, 所述分子 筛选自 Y型沸石, 含磷、 铁、 稀土之中的一种或几种的 Y型沸石, 超 稳 Y沸石, 含碑、 铁、 稀土之中的一种或几种的超稳 Y沸石, HY型沸 石, 含碑、 铁、 稀土之中的一种或几种的 HY 型沸石, Beta 沸石, 具 有 MFI结构的沸石, 含磷、 铁、 稀土之中的一种或几种的具有 MFI结 构的沸石, SAP0分子筛中的一种或几种。
11. 根据权利要求 1或 2所述的催化剂, 其特征在于, 所述分子 筛含有 Y型沸石和具有 MFI结构的沸石的沸石混合物, 以所述沸石混 合物总量为基准, Y型沸石的含量为 30- 90重量%, 具有 MFI结构的沸 石的含量为 10- 70重量 °/0
12. 根据权利要求 11 所述的催化剂, 其特征在于, 以所述沸石 混合物总量为基准, Y型沸石含量为 40- 85重量%, 具有 MFI结构的沸 石的含量为 15- 60重量%。
13. 根据权利要求 11 所述的催化剂, 其特征在于, 所述沸石混 合物中还含有 Beta 沸石, 以所述沸石混合物总量为基准, Beta 沸石 的含量为 0-30重量%。
14. 根据权利要求 12 所述的催化剂, 其特征在于, 以所述沸石 混合物总量为基准, Beta沸石的含量为 0-20重量%。
15. 根据权利要求 1或 2所述的催化剂, 其特征在于, 所述粘土 选自高岭土、 多水高岭土、 蒙脱土、 硅藻土、 埃洛石、 皂石、 累托土、 海泡石、 凹凸棒石、 水滑石、 膨润土中的一种或几种。
16. 权利要求 1催化剂的制备方法, 该方法包括将含有铝化合物、 分子筛和水, 含或不含粘土的浆液干燥并焙烧, 其特征在于, 所述铝 化合物是能形成 η-氧化铝的铝化合物, 或者是能形成 η-氧化铝的铝化 合物与能形成 γ-氧化铝和 /或 χ-氧化铝的铝化合物的混合物, 在焙烧 之前还加入磷化合物, 各组分的用量使最终催化剂中含有, 以催化剂 总量为基准:
0. 5-50重量%的7| -氧化铝、 0-50重量 °/。的 γ-氧化铝和 /或 χ-氧化铝; 10-70重量 °/。的分子筛; 0-75重量%的粘土;
以 P205计, 0. 1-8重量%的磷。
17. 权利要求 3催化剂的制备方法, 该方法包括将含有铝化合物、 分子筛和水, 含或不含粘土的浆液干燥并焙烧, 其特征在于, 所述铝 化合物是能形成 η-氧化铝的铝化合物, 或者是能形成 η-氧化铝的铝化 合物与能形成 γ-氧化铝和 /或 X-氧化铝的铝化合物的混合物, 在焙烧 之前还加入磷化合物和稀土金属化合物, 各组分的用量使最终催化剂 中含有, 以催化剂总量为基准:
0. 5-50重量%的11 -氧化铝、 0-50重量%的丫 -氧化铝和 /或 χ-氧化铝;
10-70重量%的分子筛;
0-75重量 °/。的粘土;
以 Ρ205计, 0· 1-8重量 °/。的碑;
以氧化物计, 0. 1- 2重量%的稀土金属。
18. 权利要求 11 催化剂的制备方法, 该方法包括将含有铝化合 物、 分子筛和水, 含或不含粘土的浆液干燥并焙烧, 其特征在于, 所 述铝化合物是能形成 η-氧化铝的铝化合物, 或者是能形成 η-氧化铝的 铝化合物与能形成 γ-氧化铝和 /或 χ-氧化铝的铝化合物的混合物, 在 焙烧之前还加入磷的化合物, 各组分的用量使最终催化剂中含有, 以 催化剂总量为基准,
0. 5-50重量%的11-氧化铝、 0-50重量%的丫 -氧化铝和 /或 χ-氧化铝;
0-75重量%的粘土;
以 Ρ205计, 0. 1-8重量%的磷;
10-70重量。/。的分子筛, 所述分子筛为含有 Υ型沸石和具有 MFI结 构的沸石的沸石混合物, 以所述沸石混合物总量为基准, Υ 型沸石的 含量为 30-90重量%, 具有 MFI结构的沸石的含量为 10-70重量。 /。。
19. 根据权利要求 16、 17或 18所述的方法, 其特征在于, 所述 能形成 η-氧化铝的铝化合物为 β-三水氧化铝, 能形成 χ-氧化铝的铝化 合物为 α-三水氧化铝, 所述能形成 γ-氧化铝的铝化合物为薄水铝石、 拟薄水铝石和 /或铝溶胶。
20. 根据权利要求 16、 17或 18所述的方法, 其特征在于, 所述 磷化合物选自碑酸、 鱗酸盐、 亚磷酸、 亚磷酸盐、 焦磷酸、 焦磷酸盐、 聚合碑酸、 聚合磷酸盐、 偏磷酸、 偏磷酸盐中的一种或几种。
21. 4艮据权利要求 20 所述的方法, 其特征在于, 所述磷化合物 选自磷酸、 磷酸铵、 磷酸氢二铵、 磷酸二氢铵、 亚磷酸、 亚磷酸铵、 焦磷酸钠、 三聚磷酸钠、 六偏磷酸钠中的一种或几种。
22. 根据权利要求 16 所述的方法, 其特征在于, 各组分的用量 使最终催化剂中含有, 以催化剂总量为基准, 5-45重量%的11-氧化铝,
0-40 重量%的丫 -氧化铝和 /或 χ-氧化铝, 20-50 重量%的分子歸, 0-60 重量%的粘土, 以 Ρ205计, 0. 5-6重量%的磷。
23. 根据权利要求 17 所述的方法, 其特征在于, 所述稀土金属 化合物选自氯化稀土、 硝酸稀土中的一种或几种。
PCT/CN2005/001042 2004-07-29 2005-07-14 Catalyseur de craquage pour hydrocarbures et son procede de preparation WO2006010316A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007522900A JP4828532B2 (ja) 2004-07-29 2005-07-14 クラッキング触媒およびその製造方法
US11/658,831 US9175230B2 (en) 2004-07-29 2005-07-14 Cracking catalyst and a process for preparing the same
BRPI0512684-3A BRPI0512684A (pt) 2004-07-29 2005-07-14 catalisador de craqueamento de processo para fabricar o mesmo
KR1020077003466A KR101183564B1 (ko) 2004-07-29 2005-07-14 탄화수소용 크래킹 촉매 및 그의 제조 방법
EP05766932.7A EP1795259B1 (en) 2004-07-29 2005-07-14 A cracking catalyst for hydrocarbons and its preparation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200410071118.X 2004-07-29
CNB200410071118XA CN1322924C (zh) 2004-07-29 2004-07-29 烃类裂化催化剂及其制备方法
CN200510004961.0 2005-01-31
CNB2005100049610A CN100389177C (zh) 2005-01-31 2005-01-31 一种重油催化裂化催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2006010316A1 true WO2006010316A1 (fr) 2006-02-02

Family

ID=35785895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/001042 WO2006010316A1 (fr) 2004-07-29 2005-07-14 Catalyseur de craquage pour hydrocarbures et son procede de preparation

Country Status (8)

Country Link
US (1) US9175230B2 (zh)
EP (1) EP1795259B1 (zh)
JP (1) JP4828532B2 (zh)
KR (1) KR101183564B1 (zh)
BR (1) BRPI0512684A (zh)
RU (1) RU2367518C2 (zh)
TW (1) TWI277648B (zh)
WO (1) WO2006010316A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008014920A2 (en) * 2006-08-01 2008-02-07 Universidad Politecnica De Valencia Catalytic cracking of organic compounds using zeolite itq-33
WO2008148684A1 (en) * 2007-06-08 2008-12-11 Albemarle Netherlands, B.V. Basic cracking compositions substantially free of large pore zeolites
WO2008148686A1 (en) * 2007-06-08 2008-12-11 Albemarle Netherlands, B.V. Catalytic cracking and hydroprocessing process for high diesel yield with low aromatic content and/or high propylene yield
WO2008148682A1 (en) * 2007-06-08 2008-12-11 Albemarle Netherlands, B.V. Catalytic cracking process for high diesel yield with low aromatic content and/or high propylene yield
JP2010501341A (ja) * 2006-08-31 2010-01-21 中国石油化工股▲ふん▼有限公司 炭化水素転換触媒
CN111036281A (zh) * 2018-10-11 2020-04-21 中国石油天然气股份有限公司 一种催化裂化助剂及其制备方法
CN111822043A (zh) * 2019-04-23 2020-10-27 中国石油化工股份有限公司 多产乙烯的含硼催化裂解催化剂、其制备方法和应用方法
CN112570017A (zh) * 2019-09-29 2021-03-30 中国石油化工股份有限公司 一种五元环沸石催化裂解催化剂
US11827853B2 (en) 2017-12-11 2023-11-28 Basf Corporation Reactive silica-alumina matrix component compositions for bottoms cracking catalysts

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184335B1 (en) * 2007-08-09 2021-03-31 China Petroleum & Chemical Corporation A process of catalytic conversion
JP2010538824A (ja) * 2007-09-17 2010-12-16 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー ガス流体に含有される硫黄化合物の接触還元において有用な触媒組成物ならびに当該組成物を製造および使用する方法
US8809216B2 (en) * 2008-01-09 2014-08-19 China Petroleum & Chemical Corporation Catalyst for converting acid-containing inferior crude oil and process for making and using the same
WO2009087576A2 (en) * 2008-01-09 2009-07-16 Albemarle Netherlands B.V. Fcc process employing basic cracking compositions
US8137534B2 (en) * 2009-04-23 2012-03-20 Uop Llc Catalyst compositions for improved fluid catalytic cracking (FCC) processes targeting propylene production
US20120184791A1 (en) * 2009-05-19 2012-07-19 Leslie Andrew Chewter Process for the manufacture of a formulated oxygenate conversion catalyst, formulated oxygenate conversion catalyst and process for the preparation of an olefinic product
KR20120029429A (ko) * 2009-05-19 2012-03-26 쉘 인터내셔날 리써취 마트샤피지 비.브이. 배합 산소화물 전환 촉매의 제조 방법, 배합 산소화물 전환 촉매 및 올레핀계 생성물의 제조 방법
BR112012018012A2 (pt) 2010-01-20 2016-05-03 Jx Nippon Oil & Energy Corp catalisador para produção de hidrocarbonetos aromáticos monocíclicos e processo de produção de hidrocarbonetos aromáticos monocíclicos
WO2011090124A1 (ja) * 2010-01-20 2011-07-28 Jx日鉱日石エネルギー株式会社 炭化水素製造用触媒および炭化水素の製造方法
JP2012139640A (ja) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
EP2659970A4 (en) * 2010-12-28 2014-09-24 Jx Nippon Oil & Energy Corp CATALYST FOR THE PRODUCTION OF MONOCYCLIC AROMATIC HYDROCARBONS AND METHOD FOR THE PRODUCTION OF MONOCYCLIC AROMATIC HYDROCARBONS
US8940156B2 (en) * 2011-03-08 2015-01-27 Basf Corporation Thermochemical structuring of matrix components for FCC catalysts
EP2780284A4 (en) * 2011-11-18 2015-08-26 Basf Se METHOD FOR ION EXCHANGE ON ZEOLITES
CN103447063B (zh) * 2012-06-01 2016-02-10 中国石油天然气股份有限公司 重油高效转化催化裂化催化剂及其制备方法
CN103449471B (zh) * 2012-06-01 2017-07-14 中国石油天然气股份有限公司 一种含磷的超稳稀土y型分子筛及制备方法
US9630171B2 (en) * 2012-06-27 2017-04-25 China Petroleum & Chemical Corporation Catalyst containing a modified Y-type zeolite and a preparation process thereof
BR112015014318B8 (pt) 2012-12-21 2020-07-14 Albemarle Europe Sprl catalisador de zeólito y/zsm-5 modificado para produção aumentada de propileno e processo para produção de propileno de uma matéria-prima do hidrocarboneto
WO2014129585A1 (ja) 2013-02-21 2014-08-28 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
JP2016534857A (ja) * 2013-10-15 2016-11-10 ビーエーエスエフ コーポレーション 優れた耐摩耗性を有するメソポーラスfcc触媒
US20150174559A1 (en) * 2013-12-19 2015-06-25 Basf Corporation Phosphorus-Modified FCC Catalysts
US9796932B2 (en) 2013-12-19 2017-10-24 Basf Corporation FCC catalyst compositions containing boron oxide and phosphorus
RU2547653C1 (ru) * 2014-01-29 2015-04-10 Открытое акционерное общество "Нефтяная компания "Роснефть" Способ приготовления катализатора для получения компонента буровых растворов, катализатор и способ получения компонента буровых растворов
IN2014MU01231A (zh) * 2014-03-31 2015-10-02 Hindustan Petroleum Corp Ltd
EP2926899A1 (en) * 2014-03-31 2015-10-07 Hindustan Petroleum Corporation Ltd. A catalyst composite for the reduction of olefins in the FCC naphtha stream
JP6650391B2 (ja) * 2014-04-04 2020-02-19 Jxtgエネルギー株式会社 アルミノシリケート触媒の製造方法、アルミノシリケート触媒、及び単環芳香族炭化水素の製造方法
RU2604884C1 (ru) * 2015-08-14 2016-12-20 федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН) Композитный нанокристаллический катализатор для крекинга пропана с целью получения олефинов и способ его получения
RU2604882C1 (ru) * 2015-08-14 2016-12-20 федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН) Нанокристаллический катализатор для крекинга пропана с целью получения олефинов и способ его получения
US10526546B2 (en) 2017-02-23 2020-01-07 Saudi Arabian Oil Company Systems and methods for cracking hydrocarbon streams utilizing cracking catalysts
US10494574B2 (en) 2017-02-23 2019-12-03 Saudi Arabian Oil Company Systems and methods for cracking hydrocarbon streams such as crude oils utilizing catalysts which include zeolite mixtures
US10744492B2 (en) 2017-11-03 2020-08-18 Uop Llc Adsorbent for contaminant removal from C4 hydrocarbons
CN109107362B (zh) * 2018-08-04 2021-07-23 山东迅达化工集团有限公司 一种制备大孔径硫/氧化铝脱汞剂的方法
CA3146274A1 (en) * 2019-07-10 2021-01-14 W.R. Grace & Co.-Conn. Fluidized cracking process for increasing olefin yield and catalyst composition for same
CN112473732B (zh) * 2019-09-12 2023-05-05 中国石油化工股份有限公司 一种生产丙烯的催化裂解催化剂及其制备方法和应用方法
RU2709521C1 (ru) * 2019-09-16 2019-12-18 Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть-ОНПЗ") Катализатор крекинга нефтяных фракций
US20230192573A1 (en) * 2020-07-31 2023-06-22 Basf Corporation Fluid catalytic cracking catalyst composition for enhanced butylene to propylene selectivity ratio
CN114425399B (zh) * 2020-09-24 2023-09-05 中国石油化工股份有限公司 一种催化裂化催化剂及其制备方法与应用
EP4237139A2 (en) * 2020-10-30 2023-09-06 Albemarle Corporation Essentially clay free fcc catalyst with increased contaminant resistivity, its preparation and use
KR20240054505A (ko) * 2022-10-19 2024-04-26 한국화학연구원 포화 탄화수소의 탈수소-크래킹 반응을 통한 올레핀 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB849184A (en) * 1959-01-26 1960-09-21 Socony Mobil Oil Co Inc Isomerisation of paraffin hydrocarbons
GB976941A (en) * 1961-04-13 1964-12-02 Texaco Development Corp Improvements in or relating to catalytic isomerization processes
US5306417A (en) * 1991-10-18 1994-04-26 W. R. Grace & Co.-Conn. Catalytic cracking process utilizing a silica modified bayerite and/or eta alumina-containing catalyst
CN1325940A (zh) * 2000-05-31 2001-12-12 中国石油化工集团公司 一种含磷的烃类裂化催化剂及制备
CN1388214A (zh) * 2001-05-30 2003-01-01 中国石油化工股份有限公司 一种流化裂化催化剂的制备方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2886513A (en) * 1954-10-05 1959-05-12 Exxon Research Engineering Co Titanium dioxide-calcium oxide catalyst for cracking hydrocarbons
US2988498A (en) * 1956-01-04 1961-06-13 Exxon Research Engineering Co Processes for producing alumina containing materials
US3764520A (en) * 1962-05-11 1973-10-09 Exxon Research Engineering Co Hydrocarbon conversion system
US3354096A (en) * 1965-04-06 1967-11-21 Union Oil Co Pelleted zeolite compositions possessing improved crushing strength
US4289606A (en) * 1979-05-31 1981-09-15 Exxon Research & Engineering Co. Hydrocarbon cracking with mixture of zeolites Y and ZSM-5
US4430199A (en) * 1981-05-20 1984-02-07 Engelhard Corporation Passivation of contaminant metals on cracking catalysts by phosphorus addition
US4588706A (en) * 1985-06-24 1986-05-13 Phillips Petroleum Company Phosphorus containing hydrofining catalysts
US4661239A (en) * 1985-07-02 1987-04-28 Uop Inc. Middle distillate producing hydrocracking process
US4664780A (en) * 1985-11-01 1987-05-12 Ashland Oil, Inc. Hydrocarbon cracking with yttrium exchanged zeolite Y catalyst
US5035868A (en) * 1986-12-22 1991-07-30 Union Oil Company Of California Catalyst composition containing a crystalline galliosilicate having the zeolite L type structure
CA2004511C (en) 1989-03-02 1999-11-02 Wu-Cheng Cheng Catalytic cracking
US5168086A (en) * 1989-03-02 1992-12-01 W. R. Grace & Co.-Conn. Catalytic cracking catalysis
FR2673550B1 (fr) * 1991-03-05 1994-04-29 Inst Francais Du Petrole Catalyseur de craquage de charges hydrocarbonees comprenant une zeolithe mfi, une zeolithe y et une matrice.
US5456821A (en) * 1991-03-12 1995-10-10 Mobil Oil Corp. Catalytic conversion with improved catalyst
CN1026242C (zh) 1991-11-05 1994-10-19 中国石油化工总公司 制取高质量汽油和烯烃的烃转化催化剂
CN1030287C (zh) 1992-10-22 1995-11-22 中国石油化工总公司 制取高质量汽油、丙烯、丁烯的烃转化催化剂
CN1042201C (zh) 1993-08-28 1999-02-24 中国石油化工总公司石油化工科学研究院 多产烯烃的裂化催化剂
US5624547A (en) * 1993-09-20 1997-04-29 Texaco Inc. Process for pretreatment of hydrocarbon oil prior to hydrocracking and fluid catalytic cracking
US5482521A (en) * 1994-05-18 1996-01-09 Mobil Oil Corporation Friction modifiers and antiwear additives for fuels and lubricants
JPH08173816A (ja) 1994-12-27 1996-07-09 Catalysts & Chem Ind Co Ltd 炭化水素の流動接触分解用触媒組成物および該組成物の製造方法
WO1997021785A1 (en) * 1995-12-08 1997-06-19 Engelhard Corporation Catalyst for cracking oil feedstocks contaminated with metal
CN1055301C (zh) 1996-02-08 2000-08-09 中国石油化工总公司 多产异构烯烃及汽油的裂化催化剂
CN1059133C (zh) 1997-03-24 2000-12-06 中国石油化工总公司 具有mfi结构的含磷分子筛
US5958818A (en) * 1997-04-14 1999-09-28 Bulldog Technologies U.S.A., Inc. Alkaline phosphate-activated clay/zeolite catalysts
US5932777A (en) * 1997-07-23 1999-08-03 Phillips Petroleum Company Hydrocarbon conversion
US20020049133A1 (en) * 1999-03-02 2002-04-25 Michael S. Ziebarth High zeolite content and attrition resistant catalyst, methods for preparing the same and catalyzed processes therewith
CN1098214C (zh) 1999-07-06 2003-01-08 中国石油化工集团公司 具有ael结构的磷酸硅铝分子筛及其合成方法
JP3489049B2 (ja) * 1999-07-15 2004-01-19 日産自動車株式会社 排気ガス浄化用触媒
CN1156555C (zh) * 2000-08-10 2004-07-07 中国石油化工集团公司 一种催化裂化助剂及其制备方法
CN1142252C (zh) 2000-09-07 2004-03-17 中国石油化工股份有限公司 一种抗钒的烃类裂化催化剂及制备
CN1124892C (zh) 2000-11-17 2003-10-22 中国石油化工股份有限公司 生产富含异构烷烃汽油、丙烯及异丁烷的催化裂化催化剂
CN1191124C (zh) 2001-04-28 2005-03-02 中国石油化工股份有限公司 一种用于石蜡基原料油的裂化催化剂
US6710008B2 (en) * 2002-01-17 2004-03-23 Exxonmobil Chemical Patents Inc. Method of making molecular sieve catalyst
CN1230496C (zh) * 2002-10-28 2005-12-07 中国石油化工股份有限公司 一种含稀土y型沸石的石油烃裂化催化剂及其制备方法
CN1323133C (zh) 2004-01-19 2007-06-27 中国石油化工股份有限公司 一种烃类裂化催化剂及其制备方法
CN100389177C (zh) 2005-01-31 2008-05-21 中国石油化工股份有限公司 一种重油催化裂化催化剂及其制备方法
CN1322924C (zh) 2004-07-29 2007-06-27 中国石油化工股份有限公司 烃类裂化催化剂及其制备方法
CN100510014C (zh) 2005-01-31 2009-07-08 中国石油化工股份有限公司 一种制取高品质汽油的裂化催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB849184A (en) * 1959-01-26 1960-09-21 Socony Mobil Oil Co Inc Isomerisation of paraffin hydrocarbons
GB976941A (en) * 1961-04-13 1964-12-02 Texaco Development Corp Improvements in or relating to catalytic isomerization processes
US5306417A (en) * 1991-10-18 1994-04-26 W. R. Grace & Co.-Conn. Catalytic cracking process utilizing a silica modified bayerite and/or eta alumina-containing catalyst
CN1325940A (zh) * 2000-05-31 2001-12-12 中国石油化工集团公司 一种含磷的烃类裂化催化剂及制备
CN1388214A (zh) * 2001-05-30 2003-01-01 中国石油化工股份有限公司 一种流化裂化催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1795259A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008014920A2 (en) * 2006-08-01 2008-02-07 Universidad Politecnica De Valencia Catalytic cracking of organic compounds using zeolite itq-33
WO2008014920A3 (en) * 2006-08-01 2008-04-10 Univ Valencia Politecnica Catalytic cracking of organic compounds using zeolite itq-33
JP2010501341A (ja) * 2006-08-31 2010-01-21 中国石油化工股▲ふん▼有限公司 炭化水素転換触媒
WO2008148684A1 (en) * 2007-06-08 2008-12-11 Albemarle Netherlands, B.V. Basic cracking compositions substantially free of large pore zeolites
WO2008148686A1 (en) * 2007-06-08 2008-12-11 Albemarle Netherlands, B.V. Catalytic cracking and hydroprocessing process for high diesel yield with low aromatic content and/or high propylene yield
WO2008148682A1 (en) * 2007-06-08 2008-12-11 Albemarle Netherlands, B.V. Catalytic cracking process for high diesel yield with low aromatic content and/or high propylene yield
US11827853B2 (en) 2017-12-11 2023-11-28 Basf Corporation Reactive silica-alumina matrix component compositions for bottoms cracking catalysts
CN111036281A (zh) * 2018-10-11 2020-04-21 中国石油天然气股份有限公司 一种催化裂化助剂及其制备方法
CN111822043A (zh) * 2019-04-23 2020-10-27 中国石油化工股份有限公司 多产乙烯的含硼催化裂解催化剂、其制备方法和应用方法
CN111822043B (zh) * 2019-04-23 2023-06-09 中国石油化工股份有限公司 多产乙烯的含硼催化裂解催化剂、其制备方法和应用方法
CN112570017A (zh) * 2019-09-29 2021-03-30 中国石油化工股份有限公司 一种五元环沸石催化裂解催化剂
CN112570017B (zh) * 2019-09-29 2023-06-09 中国石油化工股份有限公司 一种五元环沸石催化裂解催化剂

Also Published As

Publication number Publication date
TWI277648B (en) 2007-04-01
KR20070045251A (ko) 2007-05-02
RU2007107495A (ru) 2008-09-10
TW200702430A (en) 2007-01-16
KR101183564B1 (ko) 2012-09-17
JP2008508084A (ja) 2008-03-21
EP1795259B1 (en) 2013-06-12
RU2367518C2 (ru) 2009-09-20
EP1795259A4 (en) 2012-01-11
BRPI0512684A (pt) 2008-04-01
EP1795259A1 (en) 2007-06-13
US9175230B2 (en) 2015-11-03
US20080293561A1 (en) 2008-11-27
JP4828532B2 (ja) 2011-11-30

Similar Documents

Publication Publication Date Title
WO2006010316A1 (fr) Catalyseur de craquage pour hydrocarbures et son procede de preparation
RU2418842C2 (ru) Способ каталитической конверсии углеводородов
CA2688051C (en) A catalytic cracking catalyst and the preparation and use thereof
WO2005094992A1 (en) A catalyst containing zeolite for hydrocarbon converting and preparation thereof, and a hydrocarbon oil converting method using said catalyst
JP6461161B2 (ja) リン含有fcc触媒
JPH11253808A (ja) 重油接触熱分解プロセスのためのピラー状クレー触媒およびその調製方法
KR20100040724A (ko) 구조적으로 강화된 크래킹 촉매
TWI627269B (zh) 烴油之催化裂解觸媒及烴油之催化裂解方法
TW202216290A (zh) 一種催化裂解催化劑及其製備方法
JP6615097B2 (ja) Fcc法におけるホウ素酸化物
CN102430422B (zh) 生产低碳烯烃的催化裂解催化剂及其应用
CN101822998A (zh) 一种重油裂化催化剂及其制备方法
CN101773845B (zh) 一种重油裂化催化剂及其制备和应用方法
CN100389177C (zh) 一种重油催化裂化催化剂及其制备方法
US20230294083A1 (en) Fluid catalytic cracking catalyst composition for enhanced butylenes yields with metal passivation functionality
CN100510014C (zh) 一种制取高品质汽油的裂化催化剂及其制备方法
CN1323133C (zh) 一种烃类裂化催化剂及其制备方法
CN1313570C (zh) 一种烃油裂化方法
CN100478421C (zh) 催化裂化助剂及其制备方法
CN1224456C (zh) 一种烃类裂化催化剂及其制备方法
WO2012091099A1 (ja) 単環芳香族炭化水素の製造方法
CN1743421A (zh) 一种催化裂化助剂及其制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007522900

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077003466

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005766932

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007107495

Country of ref document: RU

Ref document number: 863/CHENP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11658831

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005766932

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0512684

Country of ref document: BR