WO2006009052A1 - 熱可塑性樹脂組成物 - Google Patents

熱可塑性樹脂組成物 Download PDF

Info

Publication number
WO2006009052A1
WO2006009052A1 PCT/JP2005/012986 JP2005012986W WO2006009052A1 WO 2006009052 A1 WO2006009052 A1 WO 2006009052A1 JP 2005012986 W JP2005012986 W JP 2005012986W WO 2006009052 A1 WO2006009052 A1 WO 2006009052A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
copolymer
parts
polymer
styrene
Prior art date
Application number
PCT/JP2005/012986
Other languages
English (en)
French (fr)
Inventor
Takuya Morishita
Akiyoshi Tamai
Akiko Tanaka
Makiko Saito
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to US11/632,127 priority Critical patent/US7964666B2/en
Priority to EP05759945.8A priority patent/EP1770125B1/en
Priority to JP2006529106A priority patent/JP5092401B2/ja
Publication of WO2006009052A1 publication Critical patent/WO2006009052A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene

Definitions

  • the present invention relates to a thermoplastic resin composition in which a specific modified bull copolymer is added to styrene resin and polyamide resin.
  • Styrenic resin is widely used as a general-purpose thermoplastic resin because it has the characteristics of high rigidity, good appearance, good dimensional stability and low water absorption.
  • styrene resin has been limited under severe conditions where chemical resistance, abrasion resistance and heat resistance are not sufficient.
  • Crystalline thermoplastic resin compositions, especially polyamide resin are widely used as engineering plastics because of their excellent chemical resistance, wear resistance, and heat resistance, but they have high water absorption. Rigidity and dimensional stability were not sufficient.
  • a monomer having a functional group having an affinity for polyamide resin is graft-copolymerized to a rubbery polymer.
  • a method of blending with polyamide rosin has been studied, and one of the methods is graft copolymerization by graft copolymerization of OC and ⁇ unsaturated carboxylic acid anhydrides with other monomers to rubbery polymers.
  • a blend composition of coalesced and polyamide resin is proposed.
  • the resin composition thus obtained has problems such as lack of surface appearance, fluidity and thermal stability.
  • a copolymer comprising an aromatic vinyl and a, ⁇ -unsaturated rubonic acid anhydride is used as a compatibilizing agent for styrene-based resin and polyamide resin.
  • a three-component resin composition used as the above has been proposed (see, for example, Patent Document 1).
  • this resin composition has low temperature impact resistance, fluidity and surface appearance, which are the characteristics required when considering application development around automobile interior and exterior materials and electrical 'electronic equipment housing' parts. Was insufficient.
  • styrene acrylonitrile anhydrous weight average molecular weight One or is about 40,000 to about 200,000 by adding maleic phosphate copolymer, ⁇ composition having further improved impact resistance has been proposed (e.g., see Patent Document 3.) while 0 tooth force, styrene one the molecular weight range
  • acrylonitrile / maleic anhydride copolymer a resin composition with sufficient balance between impact resistance at low temperature, fluidity and surface appearance could not be obtained.
  • a styrene-acrylonitrile-maleic anhydride copolymer with a weight average molecular weight in the range of 160,000 to 230,000 is added to ABS resin and polyamide resin to improve impact resistance at low temperatures.
  • ⁇ composition having further improved impact resistance has been proposed (e.g., see. Patent Document 4) with 0 Mr Kaka, also in this ⁇ composition, the molecular weight range
  • the fluidity and the surface appearance, especially the surface glossiness were not sufficient for the above applications.
  • a resin composition is disclosed in which a polyamide resin and a copolymer containing a, ⁇ -unsaturated carboxylic acid or a, ⁇ -unsaturated carboxylic acid anhydride are added to a rubber-containing styrene-based resin.
  • a polyamide resin and a copolymer containing a, ⁇ -unsaturated carboxylic acid or a, ⁇ -unsaturated carboxylic acid anhydride are added to a rubber-containing styrene-based resin.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 60-195157
  • Patent Document 2 European Patent Application Publication No. 0068132
  • Patent Document 3 US Patent No. 4713415
  • Patent Document 4 U.S. Pat.No. 5,756,576
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2000-17170
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2004-300354
  • the present invention provides a resin composition comprising a styrene-based resin and a polyamide resin, while maintaining good rigidity, heat resistance, chemical resistance, and impact resistance at room temperature and low temperature. It is an object of the present invention to provide a thermoplastic resin composition that has excellent mobility, and has a surface appearance that is greatly superior to conventional ones, and particularly has a surface glossiness.
  • a composition comprising a styrene-based resin and a polyamide resin containing a specific bull-based (co) polymer.
  • the addition of a modified bur copolymer containing ⁇ , ⁇ unsaturated carboxylic acid anhydride units and cyan bulb monomer units in the lower molecular weight range than conventional techniques is a powerful exercise.
  • a thermoplastic resin composition that solves the problem and maintains excellent rigidity, heat resistance, chemical resistance, and impact resistance at room temperature and low temperature, excellent fluidity, and has a surface appearance that is significantly better than before. It was found that a product was obtained.
  • the present invention relates to a monomer unit comprising a rubbery polymer and 100 to 40% by weight of an aromatic vinyl monomer and 0 to 60% by weight of at least one other monomer.
  • Graft (co) polymer (A-1) obtained by graft polymerization of aromatic vinyl monomer 100 to 50% by weight and at least one other monomer 0 to 50% by weight vinyl a system (co) polymer (A- 2) distribution combined styrene comprising ⁇ the (a) 1 to 99 weight 0/0,
  • Polyamide resin (B) 99 to 1% by weight of thermoplastic resin composition 100 parts by weight of a, j8-unsaturated carboxylic anhydride unit 1.5 to 10% by weight
  • a thermoplastic resin composition further comprising 5 to 80 parts by weight of a modified Bull copolymer (C) O. comprising 5 to 60% by weight of a monomer unit,
  • the intrinsic viscosity is in the range of 0.15 to 0.41 dlZg when dissolved in a methyl ethyl ketone solvent of the modified butyl copolymer (C) and measured at a temperature of 30 ° C. It is a plastic resin composition.
  • thermoplastic container having excellent surface appearance that is excellent in fluidity while maintaining rigidity, heat resistance, chemical resistance, and impact resistance at normal temperature and low temperature.
  • a fat composition is obtained.
  • the thermoplastic resin composition of the present invention can be used to obtain thin-walled molded products, large-sized molded products, and complex-shaped molded products having a good appearance. It is useful as a material for housings and parts of electronic equipment.
  • FIG. 1 is a schematic plan view of a 1Z4 elliptical jig used for a chemical resistance test.
  • FIG. 2 is a model diagram illustrating one of the preferred phase structures formed at the center of the molded body of the thermoplastic resin composition of the present invention.
  • thermoplastic resin composition of the present invention The best mode for carrying out the thermoplastic resin composition of the present invention will be described below.
  • the styrenic resin (A) used in the present invention comprises a graft (co) polymer (A-1) and a bull (co) polymer (A-2). .
  • the graft (co) polymer (A-1) of the present invention comprises 100 to 40% by weight of an aromatic vinyl-based monomer and at least one other monomer in a rubbery polymer.
  • Graft-polymerized monomer unit consisting of 15% by weight, that is, a rubbery polymer with 40% by weight or more of aromatic vinyl monomer or aromatic vinyl monomer and aromatic vinyl It is obtained by graft polymerization of a monomer mixture containing at least one monomer other than the monomer.
  • graft (co) polymer (A-1) include a high-impact polystyrene, a graft copolymer containing 40% by weight or more of an aromatic vinyl monomer, Examples thereof include ABS, AAS (acrylonitrile-acrylic rubber-styrene copolymer), AES (acrylonitrile-ethylenepropylene rubber-styrene copolymer), and MBS (methyl methacrylate-butadiene rubber-styrene copolymer).
  • ABS high-impact polystyrene
  • AES acrylonitrile-ethylenepropylene rubber-styrene copolymer
  • MBS methyl methacrylate-butadiene rubber-styrene copolymer
  • the rubbery polymer constituting the graft (co) polymer (A-1) preferably has a glass transition temperature of 0 ° C or lower.
  • poly-butadiene, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, gen-based block copolymer such as styrene-butadiene block copolymer, and gen-based rubber such as butyl acrylate-butadiene copolymer, poly Butyl acrylate, alkyl acrylate Aryl acrylate Acrylic rubber such as steal, polyisoprene, ethylene propylene terpolymer, ethylene propylene copolymer and ethylene propylene (non-conjugated gen) copolymer such as ethylene (X-olefin copolymer rubber, polyorgano Silicone rubber such as siloxane rubber polymer latex, hydrogenated butadiene polymer, hydrogenated block cop
  • polybutadiene or butadiene copolymer is preferred. These may be used alone or in combination of two or more, and 1,4 hexagen, 5 ethylidene 2 norbornene, 5 bur norbornene, dicyclopentagen, and the like can be preferably used as the non-conjugated gen component.
  • the rubber particle diameter of the strong rubber polymer is not particularly limited, but the weight average particle diameter of the rubber particles is 0.05 to 0.7 111, and particularly 0.1 to 0.55 m. Suspension '14 is excellent and pleasing! / ⁇ . Also, rubber having a weight average particle diameter of 0.20 to 0.25 ⁇ m and rubber having a weight average particle diameter of 0.50 to 0.65 ⁇ m were used in a weight ratio of 90:10 to 60:40. Those are also preferably employed since they are extremely excellent in impact resistance and drop weight impact in thin-walled molded products. Further, as the rubbery polymer, an agglomerated and enlarged one can also be used.
  • the weight average particle size of the rubber particles depends on the sodium alginate method described in "Rubber Age Vol. 88 p. 484-490 (1960) by E. Schmidt, PH Biddison", that is, the concentration of sodium alginate. Utilizing the fact that the diameter of the polybutadiene particles to be creamed is different, it can be measured by a method of obtaining a particle size of a cumulative weight fraction of 50% from the cream weight ratio and the cumulative weight fraction of sodium alginate concentration.
  • Aromatic bulle monomers used as monomer units for graft polymerization to graft (co) polymer (A-1) include styrene, a -methylstyrene, butyltoluene, and the like. Forces such as ethyl styrene, p-t butyl styrene, p-methylol styrene, chlorostyrene, and bromo styrene. Particularly preferred are styrene. These are used alone or in combination of two or more.
  • At least one other monomer used as a monomer unit to be graft polymerized to the graft (co) polymer (A-1) is a cyan vinyl monomer for the purpose of improving chemical resistance.
  • the body is particularly preferably used.
  • cyanobyl monomers include acrylonitrile, methacrylo-tolyl, and etaly mouth-tolyl. Particularly preferred is acrylonitrile.
  • a (meth) acrylic acid ester monomer is also preferably used.
  • the (meth) acrylic acid ester-based monomer is a force that includes esters of acrylic acid and methacrylic acid such as methyl, ethyl, propyl, n-butyl, and isobutyl.
  • methyl methacrylate is preferred.
  • Other monomers include unsaturated carboxylic acid monomer units such as (meth) acrylic acid and their metal salts, glycidyl (meth) acrylate, glycidyl itaconate, allyl glycidyl ether, Styrene-p glycidyl ether, p-glycidyl styrene, maleic acid, maleic anhydride, monomethyl maleate, monoethyl maleate, itaconic acid, itaconic anhydride, phthalic acid, 1,2-dimethylmaleic anhydride, maleic anhydride maleic Acid, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenolmaleimide, acrylamide, methacrylamide, N-methylacrylamide, butoxymethylacrylamide, N-propylmethacrylamide, (meth) atallylic acid Aminoethyl, (meth
  • the graft (co) polymer (A-1) in the present invention is preferably 10 to 80 parts by weight of a rubbery polymer, more preferably 40 to 80 parts by weight, and still more preferably 50 to 80 parts by weight.
  • the ratio of the rubber polymer is not particularly limited, but if it is less than 10 parts by weight, the impact strength tends to decrease, and if it exceeds 80 parts by weight, the surface appearance tends to decrease.
  • the amount of the aromatic vinyl monomer used in the graft (co) polymer (A-1) of the present invention is preferably in the range of 40 to 95% by weight, more preferably 50 to 80%. It is in the range of wt%, more preferably in the range of 60 wt% to 75 wt%.
  • the amount of at least one other monomer used in the graft (co) polymer (A-1) is preferably in the range of 60 to 5% by weight, more preferably 50% by weight. It is in the range of ⁇ 20% by weight, more preferably in the range of 40% by weight to 25% by weight.
  • Graft (co) polymer (A-1) is a monomer composed of 100 to 40% by weight of an aromatic vinyl monomer and other monomers copolymerizable with the rubber polymer.
  • the graft formed when grafting (co) polymerizing 0 to 60% by weight of the component may contain a (co) polymer. That is, it may contain a (co) polymer that is bonded to each other in the monomer mixture and is not grafted. Usually, it is grafted and mixed with the (co) polymer. Can be used.
  • the graft (co) polymer (A-1) in the present invention includes those obtained as a mixture with this monomer after grafting.
  • the draft rate is not particularly limited, but the graft rate is preferably 10 to 150% in terms of impact strength.
  • the graft ratio is calculated by the following formula.
  • Graft ratio (%) [Amount of vinyl (co) polymer graft-polymerized to rubbery polymer] Z [Rubber content of Draft (co) polymer] X 100
  • the intrinsic viscosity measured at 30 ° C after dissolving the graft (co) polymer (A-1) in a methyl ethyl ketone solvent is not particularly limited, but it is a key point in terms of the balance between impact resistance and moldability.
  • OdlZg is preferable, and a range of 0.15-0.70 dlZg is more preferable, and a range of 0.15-0.48 dl / g is particularly preferable.
  • graft (co) polymer (A-1) There are no particular restrictions on the method for producing the graft (co) polymer (A-1), and these polymerizations such as bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, precipitation polymerization, or bulk suspension polymerization are not particularly limited. A combination of modalities is used. It is also possible to blend and use two or more of the graft (co) polymers (A-1) separately (grafted).
  • the vinyl (co) polymer (A-2) of the present invention has a strength of 100 to 50% by weight of an aromatic vinyl monomer and 0 to 50% by weight of at least one other monomer. That is, a monomer comprising 50% by weight or more of an aromatic bulle monomer or an aromatic bulle monomer and at least one monomer other than an aromatic brew monomer. Mixture power
  • vinyl (co) polymer (A-2) include the following vinyl copolymers characterized by containing 50% by weight or more of polystyrene and aromatic vinyl monomers, AS (Atari mouth nitrile styrene copolymer), MS resin (methyl methacrylate-styrene copolymer), MAS resin (methyl methacrylate-acrylonitrile-styrene copolymer) and the like.
  • Examples of the aromatic bur monomer used in the bulle (co) polymer (A-2) include styrene, a-methylstyrene, and vinyl toluene. Examples include ethyl styrene, p-t-butyl styrene, p-methyl styrene, chlorostyrene, and bromostyrene. Styrene is particularly preferred! These can be used alone or in combination of two or more.
  • At least one other monomer used in the vinyl (co) polymer (A-2) is a cyanide bur based monomer such as acrylonitrile, metatalin-tolyl, and etatalin-tolyl.
  • the body is particularly preferably used from the viewpoint of improving chemical resistance, and acrylonitrile is the most preferable among them.
  • maleimide monomers such as N-phenylmaleimide, N-methylmaleimide, N-ethylmaleimide, N-butylmaleimide, and N-cyclohexylmaleimide are also preferable because of improved heat resistance and flame retardancy. Of these, N-phenylmaleimide is preferred.
  • monomers include (meth) acrylic acid esters such as methyl ester, acrylic acid and methacrylic acid methyl ester, ethyl pill, n-butyl and isobutyl.
  • Monomers, unsaturated carboxylic acid monomers such as (meth) acrylic acid and their metal salts, glycidyl (meth) acrylate, glycidyl itaconate, allyl glycidyl ether, styrene-p glycidyl ether, p glycidyl Styrene, maleic acid, maleic anhydride, monomethyl maleate, monoethyl maleate, itaconic acid, itaconic anhydride, phthalic acid,
  • the amount of the aromatic vinyl monomer used in the vinyl (co) polymer (A-2) depends on the impact resistance and surface appearance of the resin composition of the present invention, particularly the surface glossiness. Therefore, it should be at least 50 weight. Preferably it is 50 to 95% by weight, more preferably 50 to 80% by weight, still more preferably 60 to 75% by weight.
  • the amount of at least one other monomer used in the vinyl-based (co) polymer (A-2) is preferably 5 to 50% by weight, more preferably 20 to 50% by weight. More preferably, it is 25 to 40% by weight.
  • the intrinsic viscosity (B-2) (A-2) in the present invention is dissolved in a methyl ethyl ketone solvent and measured at 30 ° C, the intrinsic viscosity is not particularly limited. Is more preferably used from the viewpoint of the balance between impact resistance and molding cache, more preferably in the range of 0.15 to 0.70 dlZg, when considering the surface appearance, especially the surface glossiness. More preferably, it is in the range of 0.15 to 0.55 dlZg, and particularly preferably in the range of 0.15 to 0.50 dlZg.
  • the method for producing the vinyl (co) polymer (A-2) there are no particular restrictions on the method for producing the vinyl (co) polymer (A-2).
  • the method of (co) polymerizing the polymer mixture is particularly preferably used, and the vinyl (co) polymer obtained by the polymerization is further allowed to proceed in the reactor to obtain the desired vinyl (co) polymer. Examples thereof include a method for obtaining a polymer (A-2).
  • a block polymerization, a solution polymerization, a suspension polymerization, a precipitation polymerization, an emulsion polymerization, or a combination of these polymerization methods such as a block suspension polymerization is usually used.
  • the method is used.
  • the monomer charging method There are no particular restrictions on the monomer charging method, and it may be added all at once in the initial stage, or part or all of the charged monomer may be continuously charged or divided in order to prevent the formation of a copolymer composition distribution.
  • the power of charging may be polymerized. It is also preferred to use a blend of two or more of the separately polymerized (co) polymers (A-2)! /.
  • the fluidity and surface appearance of the resulting resin composition are improved. It can be greatly improved.
  • the content of the bur type (co) polymer (A-2) is preferably 5% by weight or more in the styrene type resin (A) from the viewpoint of surface appearance, particularly surface glossiness.
  • the blend ratio of the graft (co) polymer (A-1) and the bull (co) polymer (A-2) is more preferably 5 to 95% by weight with respect to the graft (co) polymer (A-1) vinyl.
  • the polyamide resin (B) used in the present invention is a polymer mainly composed of aminocarboxylic acid, ratatam, or diamine and dicarboxylic acid.
  • Typical examples of the raw material of lyamide resin (B) include aminocarboxylic acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, ⁇ -force prolatata, ⁇ -lauguchi, ratata such as ratata, or tetra Methylene diamine, hexamelen diamine, ethylene diamine, trimethylene diamine, pentamethylene diamine, 2-methylpentamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2, 2, 4 Trimethylhexamethylenediamine, 2, 4, 4 Trimethylhexamethylenediamine, Nonamethylenediamine, 5 Methylnonamethylenediamine, Metaxylylenediamine, Paraxylylenediamine, Paraxy
  • Polyamide rosin (wax) is obtained by these commonly known polycondensation, and in the present invention, polyamide homopolymers or copolymers each of which is also derived from these raw material abilities are used alone or as a mixture. Can be used.
  • examples of polyamide rosin include poly-strength prolatatam (nylon 6), polyhexamethylene adipamide (nylon 66), polydecane amide (nylon 11), polydodecane amide (Nylon 12), Polyhexamethylene sebacamide (Nylon 610), Nylon 6 ⁇ 66 copolymer, Nylon 6Z66Z610 copolymer, Nylon 6Z12 copolymer, Nylon 66 ⁇ Hexamethylene isophthalamide (61) ⁇ 6 copolymer, and Nylon 6Z66Z610Z1 2 copolymer Nylon 6, nylon 66 and copolymers based on these are preferred, particularly preferred are copolymers comprising nylon 6 and nylon 6 as the main component.
  • Nylon 6 is preferable.
  • the molecular weight of these polyamide rosins (B) is not particularly limited, but the relative viscosity of a solution dissolved in 98% concentrated sulfuric acid at a concentration of lgZdl is in the range of 1.8 to 7.5 at 25 ° C. Is preferred. More preferably, it is in the range of 1.8 to 4.0, more preferably in the range of 1.8 to 2.8, and particularly preferably in the range of 1.8 to 2 from the viewpoint of the fluidity of the obtained rosin composition. .4 range, most preferably 1.8 to 2.3. When the relative viscosity exceeds 7.5, the fluidity of the resin composition of the present invention tends to decrease.
  • the melting point of polyamide resin (B) is the top of the crystal melting peak measured with a differential scanning calorimeter (DSC-7, manufactured by Perkin Elmer) in a nitrogen stream at a heating rate of 20 ° CZmin.
  • the melting point is preferably 150 to 280 ° C.
  • the melt viscosity of the polyamide resin (B) used in the present invention is preferably 15 to 600 Pa's at a shear rate of 1000 seconds- 1 at a melt processing temperature. It is preferably 15 to 250 Pa's, more preferably 15 to 200 Pa's, particularly preferably 15 to 150 Pa ⁇ s, and most preferably 15 to 1 OOPa ⁇ s.
  • the modified vinyl copolymer (C) in the present invention (hereinafter sometimes simply referred to as copolymer (C)) is a, j8-unsaturated carboxylic anhydride unit 1.5 to 10 wt. % And cyanide bur monomer units of 0.5 to 60% by weight.
  • the a and ⁇ -unsaturated carboxylic anhydride units contained in the copolymer (C) are in the range of 1.5 to 10% by weight, preferably in the range of 2 to 10% by weight, and more. Preferably, it is in the range of 2.5 to 10% by weight. If the ⁇ , j8-unsaturated carboxylic acid anhydride unit is less than 1.5% by weight, the reactivity with the polyamide resin (B), or the reactivity and affinity will decrease. There is a tendency for the impact resistance of the object to decrease. If a, j8-unsaturated carboxylic acid anhydride unit or its derivative unit exceeds 10% by weight, the moldability and impact resistance of the final composition tend to decrease.
  • the amount of the vinyl cyanide monomer unit in the copolymer (C) is 0.5 to 60% by weight, preferably 0.5 to 50% by weight, more preferably 2 to 50%. % By weight.
  • the lower limit of the amount of cyanobyl monomer units is more preferably 20% by weight or more.
  • the upper limit is more preferably 50% by weight or less, particularly 40% by weight or less. Therefore, when these are taken into consideration, the amount of cyanide bule monomer unit is preferably in the range of 20 to 50% by weight, particularly preferably in the range of 20 to 40% by weight.
  • Examples of the type of a, ⁇ -unsaturated carboxylic anhydride units contained in the copolymer (C) include, but are not limited to, maleic anhydride, fumaric anhydride, itaconic anhydride, and crotonic anhydride.
  • Acid methyl maleic anhydride, methyl fumaric anhydride, mesaconic anhydride, citraconic anhydride, glutaconic anhydride, tetrahydrophthalic anhydride, 1,2-dimethylmaleic anhydride, phenol maleic anhydride, endobicyclo ( 2, 2, 1) — 5 Heptene 1, 2, 3 Dicarboxylic anhydride, methyl-1, 2, 3, 6—tetrahydrophthalic anhydride, 5 norbornene 2, 3 dicarboxylic anhydride, methyl-5 norbornene 2, 3 dicarboxylic An acid anhydride etc. are mentioned, Maleic anhydride is especially preferable. These can be used alone or in combination of two or more.
  • Copolymer (C) is an ⁇ , ⁇ -unsaturated carboxylic acid anhydride contained in copolymer (C).
  • ⁇ , ⁇ unsaturated carboxylic acid converted by a reaction such as hydrolysis.
  • An anhydride derivative unit may be contained. These derivative units have chemical structures that can be converted back to ⁇ , ⁇ unsaturated carboxylic acid anhydrides by appropriate vacuum drying treatment or heat treatment.
  • Derivative units of ⁇ , j8-unsaturated carboxylic acid anhydride include maleic acid, fumaric acid, itaconic acid, crotonic acid, methylmaleic acid, methyl fumaric acid, mesaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, Endobicyclo (2, 2, 1) -5 heptene-2,3 dicarboxylic acid, methyl-1,2,3,6-tetrahydrophthalic acid, 5 norbornene-2,3 dicarboxylic acid, methyl-5 norbornene 2,3 dicarboxylic acid ⁇ , ⁇ unsaturated dicarboxylic acids such as, metal salts of these ⁇ , ⁇ unsaturated dicarboxylic acids, monomethyl maleate, monoethyl maleate, monomethyl fumarate, monoethyl fumarate, monomethyl itaconate, monoethyl itaconate, monomethyl crotonic acid , Monoethyl
  • Examples of the cyanovinyl monomer unit in the copolymer (C) include acrylonitrile, meth- acrylate-tolyl, eta-tal-to-tolyl, and preferably acrylonitrile.
  • the copolymer (C) may contain an aromatic vinyl monomer unit! /.
  • the content is preferably 30 to 98% by weight, more preferably 30 to 97.5% by weight, and more preferably 30%.
  • Mashiku is 50 to 97 wt%, especially preferably 50 to 78. 5 wt% range, and most preferably rather is 50 to 78 weight 0/0 range, even 50 77. in the range of 5 weight 0/0.
  • Examples of the aromatic vinyl monomer unit preferably used as necessary in the copolymer (C) include styrene, a-methylstyrene, vinyltoluene. Examples thereof include monoethyl styrene, p-t-butyl styrene, p-methyl styrene, chlorostyrene, bromostyrene and the like, and styrene and ⁇ -methyl styrene are preferable, and styrene is more preferable. These can be used alone or in combination of two or more.
  • the copolymer (C) may contain at least one other monomer that can be used in combination with a cyanobyl monomer unit.
  • a cyanobyl monomer unit Specifically, (meth) acrylic acid, (meth) acrylic acid methyl, (meth) acrylic acid ethyl, (meth) acrylic acid ⁇ -propyl, (meth) acrylic acid ⁇ -butyl, (meth) acrylic acid ⁇ - Hexyl, cyclohexyl (meth) acrylate, chloromethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate , (Meth) acrylic acid 2, 3, 4, 5, 6-pentahydroxyhexyl and (meth) acrylic acid 2, 3, 4, 5-tetrahydroxypentyl, acrylic acid or its metal salt, methacrylic acid or its Metal salt, t-butyl (meth)
  • methacrylic acid, methyl methacrylate, N-methylmaleimide, and N-phenolmaleimide are preferably used, and methyl methacrylate and N-phenolmaleimide are more preferable. These can be used alone or in combination of two or more.
  • the intrinsic viscosity measured by dissolving the copolymer (C) of the present invention in a methyl ethyl ketone solvent at a temperature of 30 ° C is in the range of 0.15 to 0.41 dlZg.
  • the range is preferably 0.15 to 0.40 dl / g, more preferably 0.15 to 0.36 dlZg, still more preferably 0.15 to 0.30 dlZg, and particularly preferably 0. It is in the range of 15 to 0.25 dlZg, most preferably in the range of 0.15 to 0.20 dlZg.
  • the intrinsic viscosity is synonymous with the intrinsic viscosity, and is an extreme value at infinite dilution of the reduced viscosity, and can be calculated by measuring the reduced viscosity at a plurality of arbitrary concentrations.
  • the reduced viscosity is the ratio of the increase in relative viscosity 7 to r to the mass concentration c of the polymer substance 7 to rZc.
  • the intrinsic viscosity of a polymer substance has a certain correlation with the molecular weight
  • the copolymer (C) of the present invention characterized in that the intrinsic viscosity is in the above range, has a molecular weight It can also be characterized by range.
  • the molecular weight can be expressed by a number average molecular weight or a weight average molecular weight.
  • the copolymer (C) is dissolved in tetrahydrofuran and measured using a gel permeation chromatograph (GPC). Is obtained as
  • the number average molecular weight of the copolymer (C) of the present invention having an intrinsic viscosity of 0.15 to 0.41 dlZg at 30 ° C. in a methyl ethyl ketone solution is 4000 to 20000.
  • the weight average molecular weight is 12000-39000.
  • the same intrinsic viscosity is preferably 0.15 ⁇ 0.40dl / g! / ⁇
  • the copolymer (C) of the present invention has a number average molecular weight of 4000 to 19000 and a weight average molecular weight of 12000 to 38000. It is more preferable that the same intrinsic viscosity is 0.15 to 0.36 dl / g!
  • the number average molecular weight of the copolymer (C) of the present invention is 4000 to 17000, and the weight average molecular weight is 1 2000 to 36000. is there. It is more preferable that the intrinsic viscosity is 0.15 to 0.30 dl / g! /
  • the copolymer (C) of the invention of Enomoto has a number average molecular weight of 4000 to 16000 and a weight average molecular weight of 12 000 to 34000. It is. It is particularly preferable that the intrinsic viscosity is 0.15 to 0.25 dl / g!
  • the copolymer (C) of the present invention has a number average molecular weight of 4000 to 14000 and a weight average molecular weight of 1200 0 to 31000. is there.
  • the most preferred copolymer (C) of the present invention having the same intrinsic viscosity of 0.15 to 0.20 dlZg has a number average molecular weight of 4000 to 9000 and a weight average molecular weight of 12000 to 19000.
  • the method for producing the copolymer (C) having a desired intrinsic viscosity range of the present invention is not particularly limited, but in the polymerization, radical polymerization of an azo compound, a peroxide compound or the like is initiated. Decomposition temperature and addition amount of the agent, addition amount of chain transfer agent such as alkyl mercabtan, carbon tetrachloride, carbon tetrabromide, dimethylacetamide, dimethylformamide, triethylamine, or when a solvent is used in the polymerization, By using a known method such as controlling the amount of the solvent, a copolymer (C) having a desired intrinsic viscosity range can be obtained.
  • alkyl mercaptan is particularly preferably used. It is done.
  • alkyl mercaptan used here include n-octyl mercaptan, t-decyl mercaptan, n-dodecyl mercaptan, n-tetradecyl mercaptan, and n-octadecyl mercaptan, and more preferable.
  • n-octyl mercaptan, t-decyl mercaptan and n-dodecyl mercaptan are preferable.
  • the amount of the alkyl mercaptan added in the production of the copolymer (C) of the present invention depends on the decomposition temperature and the amount of the radical polymerization initiator depending on the desired intrinsic viscosity of the copolymer (C). It can be appropriately set according to the alkyl mercabtan species, polymerization temperature, monomer concentration and the like.
  • the copolymer (C) when the copolymer (C) is produced by solution polymerization, a single unit charged in the reaction system is used. Polymerization is carried out at 80 ° C using 120 parts by weight of methyl ethyl ketone and 0.3 part by weight of 2,2'-azobisisobutyryl-tolyl as an initiator for 100 parts by weight of the total amount of the monomer mixture.
  • a copolymer (C) having an intrinsic viscosity in the range of 0.15 to 0.3 dlZg by the same solution polymerization 0.2 to 0.8 parts by weight of t-dodecyl mercabtan is used. The range is controlled.
  • the copolymer (C) when the copolymer (C) is produced by performing bulk polymerization at 80 ° C using 0.3 part by weight of 2,2'-azobisisoptyl-tolyl as an initiator, In order to produce a copolymer (C) having an intrinsic viscosity at 30 ° C. in the range of 0.15 to 0.40 dlZg in methyl ethyl ketone, the amount of t-decyl mercabtan added is the same as that added to the reaction system. The total amount of the monomer mixture is controlled in the range of 0.35 to 2.5 parts by weight with respect to 100 parts by weight.
  • t-dodecyl mercaptan is controlled in the range of 0.5 to 2.5 parts by weight. Further, in order to produce a copolymer (C) having an intrinsic viscosity in the range of 0.15 to 0.30 dl / g, t-dodecyl mercabtan is controlled in the range of 0.75 to 2.5 parts by weight. .
  • a in the copolymer (C); ⁇ unsaturated carboxylic acid anhydride units and vinyl cyanide monomer units are preferably introduced into the main chain of the copolymer by random polymerization.
  • the polymerization method for example, a combination of polymerization methods such as bulk polymerization, solution polymerization, suspension polymerization, precipitation polymerization, emulsion polymerization, or bulk suspension polymerization by radical polymerization can be used. Polymerization, bulk suspension polymerization or precipitation polymerization can be more preferably used. Either a batch type or a continuous type can be preferably used.
  • the copolymer (C) may be in the form of a V containing no unsaturated carboxylic anhydride monomer unit, or a mixture containing the copolymer! /.
  • the particle size and shape of the polymer obtained by bulk suspension polymerization or precipitation polymerization are not particularly limited, but the obtained polymer particle size is 0. It is preferably in the range of 1 ⁇ m to 8 mm, more preferably in the range of 1 ⁇ m to 5 mm. When the particle size is smaller than 0 .: L m, for example, clogging occurs in the filtration step, and handling tends to be difficult in post-polymerization processing such as a drying step.
  • the particle size refers to the average diameter of the polymer particles obtained by precipitation polymerization.
  • each monomer at the time of polymerization there is no particular limitation, and it may be added all at an early stage, and in order to prevent formation of a copolymer composition distribution, Polymerization may be carried out while part or all is continuously charged or dividedly charged.
  • the copolymer (C) when the copolymer (C) is 0; a ⁇ -unsaturated carboxylic acid anhydride, a cyanide bur monomer, and an aromatic vinyl monomer are copolymerized,
  • the polymerization rate is less than 30%, the copolymer formed in the first half of the polymerization, and the latter half of the polymerization, for example, the polymerization rate is 60% or more.
  • the compositions of the copolymers to be produced differ greatly.
  • copolymer (C) In order to prevent the formation of this composition distribution, it is preferable to add an aromatic vinyl monomer and an ⁇ , ⁇ unsaturated carboxylic acid anhydride during the polymerization. Further, as the copolymer (C) to be blended, two or more kinds of the separately copolymerized copolymers (C) can be blended and used.
  • each component unit in the copolymer (C) of the present invention an infrared spectrophotometer, a proton nuclear magnetic resonance (1H-NMR) measuring instrument, gas chromatography, or the like can be used.
  • 8-unsaturated carboxylic anhydride unit in the copolymer (C) can be quantified as follows.
  • ⁇ , j8-unsaturated carboxylic acid anhydride showed a characteristic absorption peak due to stretching vibration of the carbonyl group, and a cyan-vinyl monomer single monomer.
  • the filler (D) is added in an amount of 0.1 to 150 with respect to 100 parts by weight of the styrene-based resin (A), the polyamide resin (B), and the copolymer (C). Part by weight can be included. More preferably, the content of the filler (D) is in the range of 1 to: LOO parts by weight. By including the filler (D), the rigidity and heat resistance of the obtained resin composition can be greatly improved.
  • the thermoplastic resin composition of the present invention containing the filler (D) has excellent paintability when it contains the copolymer (C).
  • the filler (D) may be fibrous or non-fibrous such as granular! /.
  • Examples of the fibrous filler include glass fiber, carbon fiber, metal fiber such as stainless steel fiber and aluminum fiber, aromatic polyamide fiber, polyphenylene sulfide fiber, organic fiber such as liquid crystal polyester fiber, and potassium titanate-wise.
  • Examples include whiskers such as car, aluminum borate whisker, and nitride nitride whisker, and fibrous minerals such as wollastonite, asbestos, and sepiolite, which may be hollow. Of these, chopped strand type glass fiber and carbon fiber are preferably used.
  • Examples of carbon fibers include PAN-based, pitch-based, and cellulose-based carbon fibers, and carbon fibers coated with a metal coat can also be used. Among these, PAN-based carbon fibers having high mechanical properties are preferable.
  • carbon fibers When carbon fibers are used as the filler (D), carbon fibers having a number average fiber diameter in the range of 1 to 20 m are preferred.
  • the fiber length of the carbon fiber is not particularly limited, but the weight average fiber length is preferably 0.2 to LOmm, more preferably 3 to 8 mm. If the weight average fiber length exceeds 1 Omm, the moldability tends to deteriorate.
  • any known glass fiber can be used, preferably E glass fiber.
  • Fiber diameter of glass fiber Although there is no particular limitation, the length that is preferably 5 to 15 / ⁇ ⁇ is not particularly limited, but it is preferably 1.5 to 5 mm, and is treated with a known coupling agent or sizing agent. It is especially preferred that U ⁇ .
  • the use of these fibrous fillers after pretreatment with a known coupling agent is also preferable from the viewpoint of obtaining better mechanical strength.
  • Non-fibrous fillers include silicates such as zeolite, sericite, kaolin, my strength, pyrophyllite, bentonite, talc, and alumina silicate, alumina, silicon oxide, acid magnesium, acid oxide.
  • silicates such as zeolite, sericite, kaolin, my strength, pyrophyllite, bentonite, talc, and alumina silicate, alumina, silicon oxide, acid magnesium, acid oxide.
  • Metal compounds such as zirconium, titanium oxide and iron oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate, aluminum sulfate and barium sulfate, magnesium hydroxide, calcium hydroxide and aluminum hydroxide -Hydroxides such as um, glass beads, ceramic beads, boron nitride, silicon carbide, zinc oxide, graphite, magnesia, wustrite or silica. Two or more of these non-fibrous fillers can be used in combination. Of these, talc, strength, and my strength are preferred, and talc is particularly preferred.
  • the average particle size of talc is not particularly limited, but is preferably 0.5 to 8 m.
  • the average aspect ratio of talc is preferably 4 or more, more preferably 5: LOO.
  • talc with an SiO and MgO ratio of 92% by weight or more in the component excluding the loss during combustion is more preferred.
  • the non-fibrous filler is subjected to surface treatment with a coupling agent and Z or other surface treatment agent, so that the physical properties balance and injection molding of the thermoplastic resin composition of the present invention are achieved. Workability can be further enhanced.
  • the coupling agent and Z or other surface treatment agent are not particularly limited, and conventionally known ones are preferably used.
  • the filler is dispersed in the filler (D) styrene-based resin (A) and Z or polyamide resin (B).
  • the filler is preferably dispersed in at least the polyamide resin (B).
  • the dispersion state of the filler (D) is preferably a uniform dispersion. This can be confirmed by cutting a piece from the thermoplastic rosin composition and observing it with an electron microscope.
  • the method of adding the filler (D) and dispersing it in the thermoplastic resin composition of the present invention is not particularly limited, but the filler (D) is dispersed in advance in the polyamide resin (B). It is also good to leave it.
  • the thermoplastic rosin composition of the present invention may contain a layered silicate (E). By containing the layered silicate (E), the rigidity and heat resistance of the resin composition obtained can be improved.
  • the thermoplastic resin composition of the present invention containing the layered silicate (E) has excellent paintability by containing the copolymer (C).
  • the layered silicate (E) used in the present invention is preferably a swellable layered silicate.
  • the swellable layered silicate is a 2: 1 type structure in which a silicic acid tetrahedral sheet is superimposed on top and bottom of an octahedral sheet containing metals such as aluminum, magnesium, and lithium to form a single plate crystal layer.
  • metals such as aluminum, magnesium, and lithium
  • it has exchangeable cations between the plate-like crystal layers.
  • the size of one plate crystal is usually 0.05 to 0.5 m wide and 6 to 15 angstroms thick.
  • the exchangeable cation has a cation exchange capacity of 0.2 to 3 meqZg.
  • layered silicate (E) examples include smectite clay minerals such as montmorillonite, piderite, nontronite, saponite, hectorite, and saconite, vermiculite, halloysite, kanemite, kenyanite, zirconium phosphate And various clay minerals such as titanium phosphate, swelling mica such as Li-type fluorine theolite, Na-type fluorine theolite, Na-type tetrasilicon fluorine mica, Li-type tetrasilicon fluorine mica, etc. Or may be synthesized.
  • smectite clay minerals such as montmorillonite, piderite, nontronite, saponite, hectorite, and saconite
  • vermiculite halloysite, kanemite
  • kenyanite kenyanite
  • various clay minerals such as titanium phosphate, swelling mica such as Li-type fluorine the
  • montmorillonite which is preferable to swellite mica such as smectite clay minerals such as montmorillonite and hectorite, Na-type tetrasilicon fluorine mica and Li-type fluorine theolite, is more preferable.
  • the layered silicate (E) in the present invention is preferably one in which exchangeable cations existing between the layers are exchanged with organic aluminum ions.
  • organic ion include ammonia ion, phosphor ion, and sulfo ion. Of these, ammonium ions and phosphonium ions are preferable, and ammonium ions are particularly preferable.
  • amorphous ion any of the first grade, the second grade, the third grade, and the fourth grade amorphous may be used.
  • ammonia ions quaternary ammonium ions are particularly preferred, and specifically, trioctylmethyl ammonium, trimethyloctadecyl ammonium, and benzyldimethyloctadecyl ammonium are preferred. Especially trioctylmethyl ammonium and benzyldimethyl. Lokta Decyl Ammo is preferred.
  • the layered silicate (E) in which the exchangeable cation existing between the layers is exchanged with organic ions is a layered silicate having an exchangeable cation between the layers and the organic particles. It can be produced by reacting um ion by a known method.
  • the amount of organic ion relative to the layered silicate is preferably in the range of 0.4 to 2.0 equivalents relative to the cation exchange capacity of the layered silicate.
  • the technique for dispersing the layered silicate (E) in the thermoplastic resin composition is not particularly limited. However, it is preferable that the layered silicate (E) is dispersed in advance in the polyamide resin (B).
  • the method for dispersing the layered silicate (E) in the polyamide resin (B) is not particularly limited, and a conventionally known method can be preferably used.
  • the layered silicate (E) can be used in the polyamide resin (B ) Or a layered silicate (E) and a polyamide resin in which exchangeable cations previously present between the layers of the layered silicate are exchanged with organic alum ions.
  • a method of melt kneading (B) is preferably used.
  • the exchangeable cation existing between the layers of the layered silicate is exchanged with organic age-um ions.
  • a method of treating with layered organic ions may be used when the layered silicate and polyamide resin (B) are melt-kneaded.
  • the order of the treatment of the layered silicate with the organic ion and the treatment with the coupling agent is not particularly limited, but the treatment with the coupling agent is first performed with the organic ion. I prefer to do that.
  • the content of the layered silicate (E) in the present invention is a styrenic ⁇ (A) 1 to 99 weight 0/0, polyamide ⁇ (B) thermoplastic ⁇ composition consisting of 1-99 wt% The amount is 0.05 to 40 parts by weight, preferably 0.05 to 20 parts by weight per 100 parts by weight of the product. When the content of layered silicate (E) is less than 0.05 parts by weight, the effect of improving the rigidity and heat resistance is small. When the content of layered silicate (E) exceeds 40 parts by weight, the surface appearance is deteriorated.
  • the layered silicate (E) is a styrenic resin ( In A) and Z or polyamide resin (B), it is preferably uniformly dispersed at a level of 10 layers or less, more preferably uniformly dispersed at a level of 6 layers or less. In particular, it is uniformly dispersed at a single layer level. Further, it is preferable that the layered silicate (E) is uniformly dispersed in at least the polyamide resin (B).
  • the state of being uniformly dispersed at the level of a single layer means that the layered silicate is in a state of about 1 to 5 layers and is dispersed in the resin without secondary aggregation. Say. This state can be confirmed by cutting a section from the rosin composition and observing it with an electron microscope.
  • thermoplastic resin composition of the present invention can have these characteristics as long as it is a resin that does not impair the effects of the present invention, particularly rigidity, heat resistance, fluidity, and surface appearance. It can be added in an additive amount range that does not cause damage.
  • Such a resin include polyester resin such as polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polybutylene terephthalate and polyarylate, polyphenylene ether, polyphenylene sulfide, polyether sulfone, polyoxy Examples include methylene, polytetrafluoroethylene, polylactic acid, novolac epoxy phenol resin, polysulfone, polyimide, polyether imide, polyether ether ketone, polyether amide, or polyamide imide.
  • polyester resin such as polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polybutylene terephthalate and polyarylate
  • polyphenylene ether polyphenylene sulfide
  • polyether sulfone polyoxy
  • polyoxy Examples include methylene, polytetrafluoroethylene, polylactic acid, novolac epoxy phenol resin, polysulfone, polyimide, polyether imide, polyether ether ketone, polyether amide
  • the thermoplastic resin composition of the present invention may contain a conductive filler and Z or a conductive polymer in order to impart conductivity.
  • the conductive filler is not particularly limited as long as it is a conductive filler usually used for a conductive resin, and specific examples thereof include metal powder, metal flake, metal ribbon, metal fiber, metal oxide, conductive material. Inorganic filler, carbon powder, graphite, carbon fiber, carbon flake, scaly force Monobon, carbon fibrils, carbon nanotubes, and the like, which may be hollow.
  • Specific examples of the conductive polymer include polyarine, polypyrrole, polyacetylene, poly (paraphenylene), polythiophene, and polyphenylene vinylene. These conductive fillers and Z or conductive polymer may be used in combination of two or more.
  • carbon black is particularly preferably used in terms of strength and economy.
  • the content of the conductive filler and Z or conductive polymer used in the present invention is appropriately determined by the type of the conductive filler and Z or conductive polymer used. From the point of balance with mechanical strength, etc., the range of 0.1 to 250 parts by weight per 100 parts by weight of the thermoplastic resin composition composed of styrene-based resin (A) and polyamide resin (B) Particularly preferred is 1 to: LOO parts by weight.
  • thermoplastic rosin composition of the present invention is a component that does not impair the effects of the present invention, such as other components such as sulfur-containing compounds, acrylates, phosphorus organic compounds, copper chloride, Acid inhibitors and heat stabilizers such as metal salt stabilizers such as cuprous oxalate, copper acetate, or cerium stearate may be added.
  • other components such as sulfur-containing compounds, acrylates, phosphorus organic compounds, copper chloride, Acid inhibitors and heat stabilizers such as metal salt stabilizers such as cuprous oxalate, copper acetate, or cerium stearate may be added.
  • Other components that can be added include weathering agents, ultraviolet absorbers, light stabilizers, release agents, lubricants, pigments, fluorescent pigments, dyes, fluorescent dyes, anti-coloring agents, plasticizers, and antistatic agents.
  • Agents ionic antistatic agents, nonionic antistatic agents such as polyoxyethylene sorbitan monostearate, betaine amphoteric antistatic agents, polyether ester amides, polyamide ethers, olefin ether ester amides or olefins
  • Random or block polymer of polyamide elastomer such as ether amide), flame retardant (red phosphorus, metal hydroxide flame retardant, phosphorus flame retardant, silicone flame retardant, halogen flame retardant, or these Combinations of halogenated flame retardants and antimony trioxide), calcium carbonate, glass beads, wood powder Chaff powder, walnut powder, waste paper, phosphorescent pigment, there Tan Dasuten powder, may be added such as antibacterial agents and antifungal
  • thermoplastic resin composition of the present invention the content of the copolymer (C) is styrene-based resin.
  • a resin composition comprising (A) and polyamide resin (B)
  • A polyamide resin
  • B polyamide resin
  • the range of 0.5 to 30 parts by weight more preferably in the range of 0.5 to 15 parts by weight, and still more preferably in the range of 0.5 to 10 parts by weight.
  • the range of 1-7 weight part Preferably it is the range of 1-7 weight part.
  • the copolymer (C) is less than 0.5 parts by weight, the impact resistance of the resulting composition, which is poorly added as a compatibilizer, tends to decrease, and if it exceeds 80 parts by weight, the final composition There exists a tendency for the moldability of this to fall.
  • the mixing ratio of the styrene-based ⁇ (A) and the polyamide ⁇ (B) is styrene ⁇ (A) 1 to 99 weight 0 / 0 and polyamide resin (B) in the range of 99 to 1% by weight are not particularly limited, but preferably styrene-based resin (A) 45 to 90% by weight and polyamide resin (B) 55 ⁇ 10% by weight. From the viewpoint of further improving the surface appearance of the resin composition of the present invention, particularly the surface glossiness, more preferably 55 to 85% by weight of styrene-based resin (A) and 45 to 15% by weight of polyamide resin (B).
  • the shape of the molded product obtained by melt molding the resin composition of the present invention and the phase structure of the molded product are not limited. Also preferred is the viewpoint power to further improve the non-stick, and the resin composition of the present invention has a surface when the thickness is the center of the molded product obtained by melt-molding it, ie, the direction perpendicular to the surface of the molded product. In the region where the force is 40-60% of the total thickness, the polyamide resin (B) forms a continuous phase.
  • the polyamide resin (B) is formed in a continuous phase portion of 10% by volume or more, and more preferably 20% by volume or more. What is preferably formed is 30% by volume or more.
  • compositions of the present invention when the polyamide ⁇ the (B) forms a continuous phase is preferred properly styrenic ⁇ (A) 55 to 85 weight 0/0 and polyamide ⁇ (B ) 45-15 weight 0/0, more preferably styrene ⁇ (A) 60-80 weight 0/0 and polyamide ⁇ (B) 40 to 20 weight 0/0, more preferably styrene ⁇ (A ) 65-80% by weight and the polyamide ⁇ (B) from 35 to 20 weight 0/0, and particularly preferably styrene ⁇ (A) sixty-seven to eighty percent by weight and the polyamide ⁇ (B) 33 to 20 weight 0/0, and most preferably include those which are styrene ⁇ (A) 70 to 80 wt% and the polyamide ⁇ (B) 30 to 20 weight 0/0.
  • the resin composition of the present invention has a total thickness from the surface when the thickness is the central portion of the molded product obtained by melt molding, that is, the direction perpendicular to the surface of the molded product.
  • the graft (co) polymer (A-1) and Z or vinyl-based (co) polymer (A-2) form a dispersed phase in the region of a depth of 40 to 60%.
  • the graft (co) polymer (A-1) and the Z or bulle (co) polymer (A-2) are dispersed in the phase structure at the center of the molded body. More preferably, the dispersed phase is 10% by volume or more, more preferably 30% by volume or more, particularly preferably 50% by volume or more, and most preferably 60% by volume or more. Is formed.
  • the polyamide resin (B) forms a continuous phase at the center of the molded body of the resin composition of the present invention, and the graft (co) polymer (A-1) and Z or vinyl type.
  • Fig. 2 shows an electron micrograph model of the phase structure in which the (co) polymer (A-2) forms a dispersed phase with respect to the polyamide resin (B)!
  • the part indicated by reference numeral 3 is a polyamide resin (B) that forms a continuous phase.
  • the portion indicated by reference numeral 4 is a vinyl (co) polymer (A-2) that forms a dispersed phase.
  • the part indicated by reference numeral 5 is a graft (co) polymer (A-1) forming a dispersed phase.
  • graft (co) polymer (A-1) is encapsulated in vinyl (co) polymer (A-2)
  • graft (co) polymer (A-1) and vinyl (co) polymer Both (A-2) are dispersed phases.
  • the dispersed phase formed by graft (co) polymer (A-1) and Z or vinyl (co) polymer (A-2) is graft (co) polymer (A-1) and Z or vinyl.
  • the polymer (A-2) When the (co) polymer (A-2) is observed in a specific range, the polymer (A-2) is surrounded by the polyamide resin (B).
  • the center of the molded article of the resin composition In the electron micrograph of the part, it is in a state surrounded by the polyamide resin (B) when observed in the range of 10 m ⁇ 10 m.
  • the preferred phase structure observed at the center of the molded body of the thermoplastic resin composition of the present invention is not limited to the form shown in Fig. 2, but is a graft (co) polymer (A- It does not matter if the shape of 1) and Z or vinyl (co) polymer (A-2) is non-circular such as streaks, polygons, and ellipses. Further, the dispersion state of the copolymer (C) is not particularly limited. It exists mainly at the interface between the polyamide resin (B) and the graft (co) polymer (A-1) and the Z or bull (co) polymer (A-2). In addition, when the phase structure as shown in FIG.
  • the impact resistance of the molded product tends to be improved when A-2) is uniformly dispersed rather than agglomerated in the continuous phase of the polyamide resin (B).
  • the phase structure of the resin composition of the present invention can be observed using an electron microscope.
  • electron microscopes include TEM (transmission electron microscope) and SEM (scanning electron microscope).
  • Volume of polyamide resin (B) in the continuous phase, or graft (co) polymer (A-1) and Z or vinyl (co) polymer (A-2) in the dispersed phase The ratio of is the part where the polyamide resin (B) becomes the continuous phase, or the graph (co) polymer (A-1) and the Z or vinyl (co) polymer (A— 2) can be calculated as the area ratio of the portion that becomes the dispersed phase.
  • each of the styrene resin (A) and the polyamide resin (B) at a shear rate of 1000 seconds- 1 is used.
  • a more preferable melt viscosity ratio is 2.2 or more, and further preferably 3.2 or more.
  • Copolymer respect styrenic ⁇ (A) and the polyamide ⁇ (B) (C) Do was added, also In no event, styrene ⁇ (A) a 65 to 80 weight 0 / 0 , polyamide resin (B) at a mixing ratio of 35 to 20% by weight, and styrene-based resin (A) melt viscosity> Z ⁇ melt viscosity of polyamide resin (B)> By controlling the ratio to 2.3 or more, it is possible to obtain a resin composition in which the polyamide resin (B) forms a continuous phase of 10% by volume or more at the center of the molded body.
  • a bule monomer unit such as (meth) acrylic acid, maleic anhydride, glycidyl (meth) acrylate having reactivity or affinity with polyamide rosin (B) is included.
  • a copolymer different from the copolymer (C) of the present invention a resin composition excellent in impact resistance and fluidity can be obtained as compared with a conventionally known resin composition. However, these are inferior in fluidity and surface appearance to the resin composition of the present invention.
  • thermoplastic resin composition of the present invention examples include styrene-based resin (A). , Polyamide resin (B), copolymer (C), and optionally fillers (D), layered silicates (E) and Z or other additives in pellets, powders or strips, etc. , A method of melt-kneading with a high-speed stirrer or the like, and then kneading with an extruder having a sufficient temperature of uniaxial or multi-axial 210-330 ° C with sufficient kneading ability, A melt kneading method using a rubber roll machine can be employed. There is no particular limitation on the screw arrangement of the extruder.
  • the mixing order and the state of these are not limited at all, and a method of mixing the components remaining after premixing two or more specific components can be exemplified.
  • the filler (D) can be used in combination with one or more kinds as required, and there is no limitation on the order of mixing and the state thereof.
  • the molded body obtained by melt-molding the thermoplastic resin composition of the present invention is a conventionally known molding method such as injection molding, extrusion molding, blow molding, press molding, compression molding or gas assist molding. It can be obtained by adopting. In this case, a temperature range force of 210 to 330 ° C. is usually selected as the molding temperature.
  • thermoplastic resin composition of the present invention is excellent in fluidity while maintaining rigidity, heat resistance, chemical resistance, and impact resistance at room temperature and low temperature, and is further greatly superior to the conventional surface. It can be used for various molded products that make use of these properties, and is particularly useful for automotive interior / exterior materials, electrical / electronic equipment housings, and molded products around parts. Monkey.
  • Notched Izod impact strength was measured according to ASTM D256 6 with a 1Z8 inch thick injection molded product. Impact strength measurement is performed at normal temperature (23 ° C) and low temperature (one 30 ° C). [0105] Flexural modulus
  • the deflection temperature under load (HDT) was measured at a load of 4.6 kgf Zcm 2 using an injection molded product having a thickness of 1Z4 inches according to ASTM D-648.
  • melt flow rate was measured with a load of 10 kgf.
  • the melting temperature at the time of measurement is shown below.
  • polyamide resin (B) when nylon 6 resin is used and when copolymer of nylon 6 component and nylon 66 component is used, melting temperature is 250 ° C, and when nylon 66 resin is used, melting temperature is 280 ° C. .
  • Judgment criteria were 1 to 5 points (5 is the best) according to the number of samples in which one or more of the force selected from the flow mark, silver streak, and bout were generated on the square plate surface during 50 shots. 5 points are 50 shots, and the force is also selected from one mark, silver streak, or bunch.
  • the number of samples with one or more types is 0, 4 points are 1 to 10 samples in 50 shots, 3 points are The number of samples in 50 shots is 11-40, 2 points are 41-49 samples in 50 shots, and 1 point is 50 samples in 50 shots.
  • polyamide resin (B) when using nylon 6 resin and a copolymer of nylon 6 component and nylon 66 component, the molding temperature is 250 ° C and the mold temperature is 70 ° C. When the resin was used, injection molding was performed at an injection molding temperature of 280 ° C and a mold temperature of 80 ° C.
  • Judgment criteria were 1 to 5 points (5 is the best) according to the number of samples in which one or more of the force selected from the flow mark, silver streak, and bout were generated on the square plate surface during 50 shots. 5 points are 50 shots, and the force is also selected from one mark, silver streak, and buzz. The number of samples that have one or more occurrences is 0, 4 points are 1 to 5 samples in 50 shots, 3 points are The number of samples in 50 shots is 6-30, 2 points are 31-49 samples in 50 shots, and 1 point is 50 samples in 50 shots. Injection molding was performed at a molding temperature of 250 ° C and a mold temperature of 70 ° C.
  • Phase structure 1 (polyamide resin (B) continuous phase)
  • an evaluation score of 4 when the part where the polyamide resin (B) is a continuous phase is formed is 30% or more, and an evaluation score is 4 when the continuous phase is 20% or more and less than 30% Score 3, when the continuous phase is 10% by volume or more and less than 20% by volume, the evaluation score 2, when the continuous phase is less than 10% by volume, the evaluation score 1, when the continuous phase is not formed at all Evaluation score was 0.
  • Phase structure 2 (Vinyl (co) polymer (A-2) dispersed phase)
  • three arbitrary locations were extracted, and each extracted location (range 10 m x 10 m) was stained with phosphotungstic acid.
  • the portion where the graft (co) polymer (A-1) and Z or vinyl (co) polymer (A-2) became the dispersed phase was cut off.
  • the proportion of the volume (volume%) of the portion in which the graft (co) polymer (A-1) and the Z- or bull (co) polymer (A-2) are dispersed phases was employed.
  • the proportion of the dispersed phase of the graft (co) polymer (A-1) and the Z- or vinyl-based (co) polymer (A-2) is 50% by volume or more
  • the evaluation score is 4
  • the dispersed phase is Evaluation score 3 when the volume is 30% or more and less than 50% by volume
  • evaluation score 2 when the dispersed phase is 10% or more and less than 30% by volume
  • a score of 1 was assigned when the dispersed phase was not formed at all.
  • ⁇ , ⁇ Unsaturated carboxylic acid anhydride and vinyl cyanide monomer are mixed in various molar ratios, and infrared absorption spectrum measurement is performed to obtain ⁇ , j8-unsaturated carboxylic acid anhydride and cyanide.
  • An infrared absorption vector calibration curve for the intensity ratio and molar ratio of the characteristic absorption peak with vinyl monomers was prepared.
  • infrared absorption spectrum measurement of the copolymer (C) is performed, and by using the prepared calibration curve, the reaction is added and a, ⁇ -unsaturated carboxylic acid contained in the copolymer (C) is added.
  • the molar ratio of the anhydride unit to the cyanide bule monomer was calculated.
  • the molar ratio with the cyanide bur monomer was calculated in the same manner, and ⁇ , ⁇ unsaturated carboxylic anhydrides were calculated based on these results.
  • the content of product units was calculated.
  • ⁇ , j8-unsaturated carboxylic acid anhydride has a characteristic absorption peak (about 1780 cm _1 ) due to the stretching vibration of the carbo group.
  • copolymer (C) 20 mg was dissolved in 10 ml of solvent tetrahydrofuran, and gel permeation chromatograph (pump: Model 515, Waters, column: TSKgel GMHHR—H (30) and TSKgel Multipore HXL—M were directly connected. Measured by Soichi Co., Ltd.).
  • the column temperature was 40 ° C, and an ultraviolet detector was used as the detector.
  • the weight average molecular weight was calculated in terms of polystyrene.
  • the following materials were charged into a polymerization vessel and heated to 65 ° C with stirring. When the internal temperature reached 65 ° C, the polymerization was started, and 40 parts by weight of a mixture comprising 71 parts by weight of styrene, 29 parts by weight of acrylonitrile and 0.3 part by weight of t-dodecyl mercaptan was continuously dropped over 5 hours.
  • Glucose 0.5 parts by weight
  • aqueous solution consisting of 0.25 parts by weight of tamennoide mouth peroxide, 2.5 parts by weight of potassium oleate and 25 parts by weight of pure water was continuously added dropwise over 7 hours to complete the reaction.
  • the obtained graft copolymer latex was coagulated with sulfuric acid, neutralized with caustic soda, washed, filtered and dried to obtain a graft copolymer (a-1).
  • Acetone is added to a predetermined amount (m) of the graft copolymer (a-1) and refluxed for 4 hours.
  • the solution is centrifuged at 8800 rpm (centrifugal force 10000G) for 40 minutes, and then the insoluble matter is removed. Filtered.
  • the following materials were charged into a polymerization vessel and heated to 65 ° C with stirring. When the internal temperature reached 65 ° C., the polymerization was started, and 58 parts by weight of a mixture comprising 71 parts by weight of styrene, 29 parts by weight of acrylonitrile and 0.3 part by weight of t-dodecyl mercaptan was continuously dropped over 5 hours.
  • Glucose 0.5 parts by weight
  • aqueous solution consisting of 0.25 parts by weight of tamennoide mouth peroxide, 2.5 parts by weight of potassium oleate and 25 parts by weight of pure water was continuously added dropwise over 7 hours to complete the reaction.
  • the obtained graft copolymer latex was coagulated with sulfuric acid, neutralized with caustic soda, washed, filtered, and dried to obtain a graft copolymer (a-2).
  • the graft ratio calculated by the same method as for the graft copolymer (a-1) was 48%, and the intrinsic viscosity was 0.43 dlZg.
  • a powdery graft copolymer (a 3) was prepared in the same manner as in the production method of the graft copolymer (a-1).
  • Methyl methacrylate 40 parts by weight
  • the infrared absorption spectrum measurement 64.8 weight composition styrene unit determined by an infrared absorption spectrum calibration curve 0/0, 32. Atari Roni Turin Les unit 7 wt 0/0, the maleic anhydride units 2. It contained 5% by weight.
  • the intrinsic viscosity of copolymer (C) (c-1) prepared as 0.4 g / l 00 ml (methylethylketone, 30 ° C) and measured at 30 ° C using an Ubbelohde viscometer is It was 0.3 dlZg.
  • the weight average molecular weight measured using a gel permeation chromatograph was 34,000.
  • copolymer (C) (ji-2) was prepared to 0.4 gZ 100 ml (methylethylketone, 30 ° C), and the intrinsic viscosity measured at 30 ° C using an Ubbelohde viscometer was 0.34 dlZg. there were. Moreover, the weight average molecular weight measured using a geno-repermeation chromatograph was 35000.
  • Copolymer (C) (Ji-3) was prepared to 0.4 gZ 100 ml (methylethyl ketone, 30 ° C), and the intrinsic viscosity measured at 30 ° C using an Ubbelohde viscometer was 0.41 dlZg. It was. Moreover, the weight average molecular weight measured using a geno-repermeation chromatograph was 39000.
  • composition determined by infrared absorption spectrum measurement using an infrared absorption spectrum calibration curve contains 67.0% by weight of styrene units, 30.0% by weight of acrylonitrile units, and 3.0% by weight of maleic anhydride units. It was something to do.
  • the intrinsic viscosity of copolymer (C) (c-4) prepared at 0.4 gZl00 ml (methylethylketone, 30 ° C) and measured at a temperature of 30 ° C using an Ubbelohde viscometer is It was 0.25 dlZg.
  • the weight average molecular weight measured using a gel permeation chromatograph was 31000.
  • Styrene 56 parts by weight, acrylonitrile 27.5 parts by weight, methyl methacrylate 15 parts by weight, hydrous maleic acid 1.5 parts by weight, tododecyl mercaptan 0.26 parts by weight, 2, 2'-azobis soft mouth-tolyl 0 Charge 3 parts by weight into a stainless steel autoclave equipped with a baffle containing 80 parts by weight of methyl ethyl ketone and a foudra-type stirring blade, and raise the temperature to 80 ° C while stirring the solution at 300 rpm. After warming, the temperature was kept at 80 ° C. for 7 hours to complete the polymerization.
  • Copolymer (C) (Ji-5) was prepared to 0.4gZl00ml (methylethylketone, 30 ° C) and the intrinsic viscosity measured at 30 ° C using an Ubbelohde viscometer was 0.34dlZg. Met. The weight average molecular weight measured using a gel permeation chromatograph was 3,500.
  • copolymer (C) (c 6) was prepared to 0.4 gZ 100 ml (methylethylketone, 30 ° C), and the intrinsic viscosity measured at 30 ° C using an Ubbelohde viscometer was 0.20 dl / g.
  • the weight average molecular weight measured using a gel permeation chromatograph was 19000.
  • copolymer (C) (c-7) was prepared to 0.4 g / 10 Oml (methyl ethyl ketone, 30 ° C), and the intrinsic viscosity measured at 30 ° C using an Ubbelohde viscometer was 0. It was 23dlZg. The weight average molecular weight measured using a gel permeation chromatograph V was 27000. [0142] (Reference Example 14) Preparation of copolymer (C) (c 8)
  • the infrared absorption spectrum measurement, infrared absorption spectrum calibration curve set formed was determined using the styrene units 63.4 wt 0/0, Atari Roni Turin les units 33.6 weight 0/0, anhydrous maleic phosphate The unit contained 2.8% by weight.
  • copolymer (C) (c 8) was prepared to 0.4 g / 100 ml (methyl ethyl ketone, 30 ° C), and the intrinsic viscosity measured at 30 ° C using an Ubbelohde viscometer was 0.30dlZg. Met.
  • the weight average molecular weight measured using a gel permeation chromatograph was 34,000.
  • the infrared absorption spectrum measurement the composition determined by an infrared absorption spectrum calibration curve, the styrene units 69.9 wt 0/0, acrylonitrile units 28.9 wt 0/0, the maleic anhydride units 1. It contained 2% by weight.
  • copolymer (c 9) was prepared to 0.4 gZl00ml (methylethylketone, 30 ° C), and the intrinsic viscosity measured at 30 ° C using an Ubbelohde viscometer was 0.58dl / g.
  • the copolymer (c 9) is different from the copolymer (C) of the present invention in terms of intrinsic viscosity and content of ⁇ , ⁇ unsaturated carboxylic anhydride units.
  • copolymer (c-10) was prepared to 0.4 gZ 100 ml (methyl ethyl ketone, 30 ° C.), and the intrinsic viscosity measured at 30 ° C.
  • the copolymer (c 10) is different from the copolymer (C) of the present invention in that the intrinsic viscosity is a; and the content of ⁇ unsaturated carboxylic anhydride units.
  • copolymer (c-11) was prepared to 0.4 gZl00 ml (methylethylketone, 30 ° C), and the intrinsic viscosity measured at 30 ° C using an Ubbelohde viscometer was 0.84 dlZg.
  • the copolymer (c 11) is different from the copolymer (C) of the present invention in terms of intrinsic viscosity and content of ex and ⁇ unsaturated carboxylic anhydride units.
  • Methyl methacrylate 5 parts by weight
  • the reaction system was cooled, the polymer was separated, washed, and dried to obtain a bead-shaped copolymer (c12).
  • the polymer yield was 96%.
  • the composition obtained by infrared absorption spectrum measurement using an infrared absorption spectrum calibration curve was 70% by weight of styrene units, 25% by weight of acrylonitrile units, and 5% by weight of methacrylic acid units.
  • copolymer (c-12) was prepared to 0.4gZl00ml (methylethylketone, 30 ° C), and the intrinsic viscosity measured at 30 ° C using an Ubbelohde viscometer was 0.59dlZg. there were.
  • the copolymer (c 12) is different from the copolymer (C) of the present invention in that it does not contain oc, j8-unsaturated carboxylic anhydride units and the intrinsic viscosity.
  • a polymerization vessel was charged with 120 parts of pure water and 0.3 part of potassium persulfate and heated to 65 ° C. with stirring. When the internal temperature reached 65 ° C, polymerization was started, and a mixture of 67 parts by weight of styrene, 30 parts by weight of acrylo-tolyl, 3 parts by weight of methacrylic acid and 1.5 parts by weight of tododecyl mercaptan and dodecylbenzene 30 parts of an aqueous emulsifier solution containing 2 parts of sodium sulfonate were continuously added over 5 hours each. Subsequently, the temperature of the polymerization system was raised to 70 ° C., and polymerization was performed for 3 hours to complete the polymerization.
  • copolymer (c13) was obtained by salting out using salty calcium and dehydrating and drying.
  • the polymer yield at this time was 95%.
  • the composition obtained by infrared absorption spectrum measurement using an infrared absorption spectrum calibration curve contained 67% by weight of styrene units, 30% by weight of acrylonitrile units, and 5% by weight of methacrylic acid units.
  • copolymer (c-13) was prepared to 0.4 gZ 100 ml (methyl ethyl ketone, 30 ° C.), and the intrinsic viscosity measured at 30 ° C. using an Ubbelohde viscometer was 0.31 dlZg.
  • the copolymer (c 13) is different from the copolymer (C) of the present invention in that it does not contain ⁇ , j8-unsaturated carboxylic anhydride unit.
  • copolymer (c 14) containing 90% by weight of methyl methacrylate units, 8% by weight of styrene units, and 2% by weight of maleic anhydride units. It was.
  • copolymer (c-14) was prepared to 0.4 g / 100 ml (methylethyl ketone, 30 ° C), and the intrinsic viscosity measured using an Ubbelohde viscometer was 0.38 dlZg.
  • the copolymer (c-14) is different from the copolymer (C) of the present invention in that it does not contain cyanobyl monomer units.
  • copolymer (c 15) containing 92% by weight of styrene units and 8% by weight of maleic anhydride units.
  • copolymer (c-15) was prepared to 0.4 gZl00 ml (methylethyl ketone, 30 ° C.), and the intrinsic viscosity measured using an Ubbelohde viscometer was 0.15 dlZg.
  • the copolymer (c 15) is different from the copolymer (C) of the present invention in that it does not contain a cyanide bur monomer unit.
  • Polyamide rosin (B) (b 1): Nylon 6 having a relative viscosity of 2.3 at 25 ° C in a solution of lgZdl dissolved in 98% concentrated sulfuric acid was used.
  • Polyamide rosin (B) (b-4): Nylon with a relative viscosity of 2.5 at 25 ° C in a solution dissolved in 98% concentrated sulfuric acid at a concentration of lgZdl A copolymer consisting of 6 components and nylon 66 component was used.
  • Na-type montmorillonite (Kunimine Industries: Kunipia F, cation exchange capacity 120m equivalent Zl 00g) 2 L of warm water in which the amount was dissolved was added and stirred for 1 hour. The resulting precipitate was filtered off and washed with warm water. This washing and filtering operation was performed three times, and the obtained solid was vacuum-dried at 80 ° C to obtain a swellable layered silicate (e-1). The amount of inorganic ash content of the obtained swellable layered silicate (e-1) was measured and found to be 68% by weight. The amount of inorganic ash was measured by ashing 0 lg of swellable layered silicate in an electric furnace at 600 ° C for 3 hours.
  • the obtained layered silicate-containing polyamide resin (b-6) was pelletized and then vacuum dried at 80 ° C. for 10 hours.
  • the obtained layered silicate-containing polyamide resin (b-7) was pelletized and then vacuum dried at 80 ° C. for 10 hours.
  • the styrenic resin (A), polyamide resin (B) and copolymer (C) prepared in the reference example were mixed in the mixing ratio shown in Table 1, and the screw diameter was 30 mm and the L / D was 25 in the same direction.
  • Pellets were produced by melt kneading and extrusion at a resin temperature of 250 ° C and a screw rotation speed of 150 rpm with a rotary twin screw extruder (Ikegai Iron Works PCM-30). Molding temperature for each pellet 25
  • Each sample was prepared by injection molding under the conditions of 0 ° C and mold temperature of 70 ° C, and the physical properties of the test pieces were evaluated. These results are shown in Table 1.
  • Styrenic resin (A), polyamide resin (B) prepared in Reference Example and copolymer for comparative example were mixed at the mixing ratio shown in Table 1, and the same production method as in Examples 1 to 5 was applied. Each test piece was prepared and the physical properties of these were evaluated. These results are shown in Table 1.
  • the graft copolymer (A-1), bulle copolymer (a-6), polyamide resin (B) and copolymer (C) prepared in the Reference Example were mixed at the mixing ratio shown in Table 1. Test pieces were produced by the same production method as in Examples 1 to 5, and the physical properties of these were evaluated. These results are shown in Table 1. Comparative Examples 5 and 6 differ from the resin composition of the present invention in that they do not contain the vinyl (co) polymer (A-2).
  • Styrenic resin (A), polyamide resin (B) prepared in Reference Example and copolymer for comparative example were mixed in the mixing ratio shown in Table 2, and the same production conditions as in Examples 1 to 5 were used. Test specimens were made and their physical properties were evaluated. These results are shown in Table 2.
  • the styrene-based resin (A), polyamide resin (B) and copolymer (C) prepared in Reference Example, or copolymer for Comparative Example were mixed at the blending ratio shown in Table 2, and screwed.
  • Pellets were produced by melt-kneading and extrusion at a resin temperature of 280 ° C and a screw rotation speed of 150 rpm with a 30-mm diameter, L / D 25 rotating in the same direction (PCM-30, manufactured by Ikekai Tekko Co., Ltd.) .
  • Each pellet was subjected to injection molding under the conditions of a molding temperature of 280 ° C and a mold temperature of 80 ° C to prepare each test piece, and the physical properties of these were evaluated. These results are shown in Table 2.
  • the styrenic resin (A), polyamide resin (B), and copolymer (C) prepared in the Reference Example were mixed in the mixing ratio shown in Table 3, and the screw diameter was 30 mm. LZD was 44.5 in the same direction. Introduced into the upstream side of the rotating twin-screw extruder (NEX TEX-30, manufactured by Nippon Steel Works). The filler (D) was introduced from the side feeder, and pellets were produced by melt kneading and extrusion at a resin temperature of 250 ° C. and a screw rotation speed of 150 rpm. Each pellet was subjected to injection molding under the conditions of a molding temperature of 250 ° C and a mold temperature of 70 ° C, and each test piece was prepared and the physical properties were evaluated. These results are shown in Table 3.
  • Styrenic resin (A), polyamide resin (B) prepared in the reference example, and copolymer for comparative example were mixed at the blending ratio shown in Table 3, and the same screw diameter 30 mm and LZD 44.5.
  • Rotating direction twin screw extruder TEX-30 manufactured by Nippon Steel Works
  • feed from the supply port from the supply port
  • fill material (D) of Reference Examples 27 and 28 from the side feeder Pellets were produced by melt-kneading and extrusion at 250 ° C. and a screw rotation speed of 15 Orpm.
  • Each pellet was subjected to injection molding under the conditions of a molding temperature of 250 ° C and a mold temperature of 70 ° C to prepare each test piece, and the physical properties of these were evaluated. These results are shown in Table 3.
  • the styrene-based resin (A) prepared in the reference example, the layered silicate-containing polyamide resin, and the copolymer for comparative example were mixed in the mixing ratio shown in Table 4, and the same as in Examples 13 to 16 Manufacturing method Each test piece was prepared by and the physical properties of these were evaluated. These results are shown in Table 4.
  • Styrenic resin (A), polyamide resin (B), and copolymer (C) prepared in the reference example were mixed in the mixing ratio shown in Table 5 and the screw diameter was 30 mm and the L / D was 25 in the same direction.
  • Pellets were produced by melt kneading and extrusion at a resin temperature of 250 ° C and a screw rotation speed of 150 rpm with a rotary twin screw extruder (Ikegai Iron Works PCM-30). Each pellet was subjected to injection molding under the conditions of a molding temperature of 250 ° C. and a mold temperature of 70 ° C. to prepare each test piece, and the physical properties of these were evaluated. These results are shown in Table 5.
  • Styrenic resin (A), polyamide resin (B) prepared in Reference Example and copolymer for comparative example were mixed at the blending ratio shown in Table 5, and the same production method as in Examples 17-23 was applied. Each test piece was prepared and the physical properties of these were evaluated. These results are shown in Table 5.
  • the resin compositions of Examples 10 to 12 to which the specific copolymer (C) of the present invention was added are more resistant to impact than the resin compositions of Comparative Examples 12 and 13. Excellent in heat resistance, heat resistance and paintability, and particularly excellent in fluidity and surface appearance.
  • the molded product was added even though the specific copolymer (C) of the present invention was added and the polyamide resin (B) was a smaller component than the styrene resin (A).
  • the resin composition of the present invention of Examples 17 to 23 having a unique phase structure in which the polyamide resin (B) forms a continuous phase in the central part of the polyamide resin in the central part of the polyamide resin.
  • the resin composition is excellent in rigidity, heat resistance and chemical resistance, particularly in impact resistance and fluidity. It was found that the surface appearance, especially the surface gloss, was extremely excellent.
  • thermoplastic resin composition of the present invention has the above-mentioned excellent properties, and can be usefully used particularly as an automobile interior / exterior material or an electric 'electronic device housing' as a material around parts. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、スチレン系樹脂とポリアミド樹脂とからなる組成物に対して、特定の極限粘度を有する特定の変性ビニル系共重合体を添加してなる熱可塑性樹脂組成物である。剛性、耐熱性、耐薬品性および常温、低温における耐衝撃性を良好に維持しつつ、流動性に優れ、更に従来よりも大きく優れた表面外観を有する熱可塑性樹脂組成物を提供する。

Description

熱可塑性樹脂組成物
技術分野
[0001] 本発明は、スチレン系榭脂とポリアミド榭脂とに対して、特定の変性ビュル系共重合 体を添加した熱可塑性榭脂組成物に関する。
背景技術
[0002] スチレン系榭脂は、高剛性かつ良外観で寸法安定性がよぐ吸水性が低いという特 徴を有していることから、汎用熱可塑性榭脂として広く使用されている。しかし、スチ レン系榭脂は、耐薬品性、耐摩耗性および耐熱性が十分ではなぐ苛酷な条件下で の使用が制限されていた。また、結晶性熱可塑性榭脂組成物、中でもポリアミド榭脂 は、耐薬品性、耐摩耗性および耐熱性に優れていることから、エンジニアリングプラス チックとして広く使用されているが、吸水性が高ぐ剛性と寸法安定性が十分ではな かった。
[0003] そこで、スチレン系榭脂とポリアミド榭脂のそれぞれの長所を兼備した榭脂組成物 の検討が従来力もなされており、例えば、代表的なスチレン系榭脂である ABS榭脂と ポリアミド榭脂のブレンド組成物が提案されている。し力しながら、 ABS榭脂とポリアミ ド榭脂との単なるブレンドでは、両者の相溶性が悪ぐ機械的物性も著しく低いという 問題があった。
[0004] そのため、 ABS榭脂とポリアミド榭脂との相溶性を改良する方法として、ポリアミド榭 脂と親和性のある官能基を有する単量体をゴム状重合体にグラフト共重合し、これを ポリアミド榭脂とブレンドするという手法が検討されており、その 1つの手法として、 OC , β 不飽和カルボン酸無水物を他の単量体と共にゴム状重合体にグラフト共重合し てなるグラフト共重合体とポリアミド榭脂とのブレンド組成物が提案されて 、る。しかし 、このようにして得られた榭脂組成物には、表面外観、流動性および熱安定性が不 足するなどの問題があった。
[0005] また、不飽和カルボン酸アミドを他の重合体と共にゴム状重合体にグラフト共重合し てなるグラフト共重合体とポリアミド榭脂とのブレンド組成物も提案されて 、る。しかし 、この榭脂組成物は耐衝撃性が不十分であり、また表面外観と吸水時の機械特性に 問題があった。
[0006] そこで、吸水時の機械特性の改良を目的として、芳香族ビニルと a , β 不飽和力 ルボン酸無水物とからなる共重合体をスチレン系榭脂とポリアミド榭脂との相溶化剤 として用いた三成分カゝらなる榭脂組成物が提案されている (例えば、特許文献 1参照 。;)。しかし、この榭脂組成物は、自動車内外装材料や電気'電子機器のハウジング' 部品周りへの用途展開を考えた場合に要求される特性である低温における耐衝撃 性と流動性および表面外観については不十分であった。
[0007] 耐衝撃性を改善することを目的として、例えば、スチレン系榭脂とポリアミド榭脂とに 対して、芳香族ビニルと a , β 不飽和カルボン酸および Ζまたは α , β 不飽和 カルボン酸無水物力 なる低分子量の共重合体を添加した榭脂組成物が提案され ている(例えば、特許文献 2参照。 )0しかしながら、前記共重合体にシアンィ匕ビュル 系単量体が含有されて ヽな ヽこの樹脂組成物では、低温での耐衝撃性と表面外観 が十分なものではなかった。
[0008] また、 ABS榭脂とポリアミド榭脂に、無水マレイン酸を 0. 3〜1. 5モル0 /0含有し、か つ重量平均分子量が約 4万〜約 20万にあるスチレン アクリロニトリル 無水マレイ ン酸共重合体を添加することにより、耐衝撃性をさらに向上させた榭脂組成物が提案 されている(例えば、特許文献 3参照。 )0し力しながら、この分子量範囲のスチレン一 アクリロニトリル 無水マレイン酸共重合体の添カ卩によっては、低温での耐衝撃性、 流動性および表面外観のバランスが十分とれた榭脂組成物は得られな力 た。
[0009] また、低温での耐衝撃性を改良するべぐ ABS榭脂とポリアミド榭脂に、重量平均 分子量が 16万〜 23万の範囲にあるスチレン—アクリロニトリル—無水マレイン酸共 重合体を添加することにより、耐衝撃性をさらに向上させた榭脂組成物が提案されて いる(例えば、特許文献 4参照。 )0しカゝしながら、この榭脂組成物においても、この分 子量範囲のスチレン—アクリロニトリル 無水マレイン酸共重合体の添加では、前記 用途に対して、流動性と表面外観、中でも表面光沢度が十分ではなかった。
[0010] 耐衝撃性と流動性のバランスに優れる榭脂組成物を得ることを目的として、特定の 還元粘度を有する α、 β 不飽和カルボン酸含有共重合体、例えばスチレンーァク リロ-トリル—メタクリル酸共重合体を配合し、特定粒子径の小粒子ゴムを凝集させて なる凝集肥大化ゴムを使用した榭脂組成物が報告されている (例えば、特許文献 5 参照。;)。しかし、この榭脂組成物においては、その流動性は向上するものの、耐衝 撃性および表面外観、中でも表面光沢度は前記用途に対しては未だ不十分なレべ ルであった。
[0011] ゴム含有スチレン系榭脂にポリアミド榭脂と a、 β 不飽和カルボン酸または a、 β 不飽和カルボン酸無水物を含有する共重合体とを添加した榭脂組成物が開示さ れている(例えば、特許文献 6参照。 ) 0しかし、この発明は透明性に優れる榭脂組成 物を得ることを目的としていることから、ゴム強化スチレン系榭脂中に含まれる芳香族 ビュル系単量体量が少量に抑えられており、常温、低温における耐衝撃性に劣るも のであった。
特許文献 1:特開昭 60 - 195157号公報
特許文献 2:欧州特許出願公開第 0068132号明細書
特許文献 3 :米国特許第 4713415号明細書
特許文献 4 :米国特許第 5756576号明細書
特許文献 5:特開 2000— 17170号公報
特許文献 6:特開 2004 - 300354号公報
発明の開示
発明が解決しょうとする課題
[0012] 本発明は、スチレン系榭脂とポリアミド榭脂とからなる樹脂組成物を得るに際し、剛 性、耐熱性、耐薬品性および常温、低温における耐衝撃性を良好に維持しつつ、流 動性に優れ、更に従来よりも大きく優れた表面外観、中でも表面光沢度を有する熱 可塑性榭脂組成物を提供するものである。
課題を解決するための手段
[0013] 本発明者らは、上記の課題を解決するべく鋭意検討した結果、特定のビュル系(共 )重合体を含んでなるスチレン系榭脂とポリアミド榭脂とからなる組成物に対して、従 来技術よりさらに低分子量範囲の α、 β 不飽和カルボン酸無水物単位とシアンィ匕 ビュル系単量体単位とを含む変性ビュル系共重合体を添加することにより、力かる課 題を解決し、剛性、耐熱性、耐薬品性および常温、低温における耐衝撃性を良好に 維持しつつ、流動性に優れ、更に従来よりも大きく優れた表面外観を有する熱可塑 性榭脂組成物が得られることを見出した。
[0014] すなわち、本発明は、ゴム質重合体に芳香族ビニル系単量体 100〜40重量%とそ の他の少なくとも 1種の単量体 0〜60重量%とからなる単量体単位をグラフト重合し てなるグラフト(共)重合体 (A— 1)と、芳香族ビニル系単量体 100〜50重量%とその 他の少なくとも 1種の単量体 0〜50重量%力 なるビニル系(共)重合体 (A— 2)を配 合してなるスチレン系榭脂 (A) 1〜99重量0 /0と、
ポリアミド榭脂(B) 99〜1重量%からなる熱可塑性榭脂組成物 100重量部に対して、 a、 j8—不飽和カルボン酸無水物単位 1. 5〜10重量%とシアン化ビュル系単量体 単位 0. 5〜60重量%を含んでなる変性ビュル系共重合体 (C) O. 5〜80重量部をさ らに含有してなる熱可塑性榭脂組成物であって、
かつ変性ビュル系共重合体 (C)のメチルェチルケトン溶媒に溶解させ 30°Cの温度 で測定したときの極限粘度が 0. 15〜0. 41dlZgの範囲にあることを特徴とする熱可 塑性榭脂組成物である。
発明の効果
[0015] 本発明によれば、剛性、耐熱性、耐薬品性および常温、低温における耐衝撃性を 維持しつつ、流動性に優れ、かつ従来よりも大きく優れた表面外観を有する熱可塑 性榭脂組成物が得られる。本発明の熱可塑性榭脂組成物は、これを用いることで良 好な外観を有した薄肉成形体、大型成形体、複雑形状成形体を得ることができること から、自動車内外装材料用途や電気 ·電子機器のハウジング,部品周り材料として有 用である。
図面の簡単な説明
[0016] [図 1]耐薬品性試験に用いる 1Z4楕円治具の概略平面図である。
[図 2]本発明の熱可塑性榭脂組成物の成形体中心部で形成される好ましい相構造 の 1つを例示するモデル図である。
符号の説明
[0017] 1 試験片 2 1Z4楕円治具
a 治具の長軸
b 治具の短軸
t 試験片の厚
X クラック発生点の長方向長さ
3 ポリアミド榭脂 (B)が連続相を形成した部分
4 ビニル系(共)重合体 (A— 2)が分散相を形成した部分
5 グラフト (共)重合体 (A— 1)が分散相を形成した部分
発明を実施するための最良の形態
[0018] 以下、本発明の熱可塑性榭脂組成物を実施するための最良の形態について説明 する。
[0019] 本発明で用いるスチレン系榭脂 (A)は、グラフト (共)重合体 (A—1)と、ビュル系( 共)重合体 (A— 2)とを配合してなるものである。
[0020] 本発明のグラフト (共)重合体 (A— 1)は、ゴム質重合体に芳香族ビニル系単量体 1 00〜40重量%とその他の少なくとも 1種の単量体 0〜60重量%とからなる単量体単 位をグラフト重合してなるもの、すなわち、ゴム質重合体に芳香族ビニル系単量体あ るいは芳香族ビニル系単量体 40重量%以上と芳香族ビニル単量体以外の少なくと も 1種の単量体を含む単量体混合物をグラフト重合してなるものである。
[0021] グラフト(共)重合体 (A— 1)の具体例としては、耐衝撃性ポリスチレン、芳香族ビ- ル系単量体を 40重量%以上含むことを特徴とするグラフト共重合体、例えば、 ABS 、 AAS (アクリロニトリル—アクリルゴム—スチレン共重合体)、 AES (アクリロニトリル —エチレンプロピレンゴム一スチレン共重合体)、および MBS (メタクリル酸メチルー ブタジエンゴム スチレン共重合体)などが挙げられる。
[0022] グラフト(共)重合体 (A— 1)を構成するゴム質重合体としては、ガラス転移温度が 0 °C以下のものが好適である。具体的にはポリブタジエン、スチレン ブタジエン共重 合体、アクリロニトリル ブタジエン共重合体、スチレン ブタジエンのブロック共重合 体のようなジェン系ブロック共重合体およびアクリル酸ブチルーブタジエン共重合体 などのジェン系ゴム、ポリアクリル酸ブチル、アクリル酸アルキル アクリル酸ァリルェ ステルなどのアクリル系ゴム、ポリイソプレン、エチレン プロピレン ジェン系三元共 重合体、エチレン プロピレン共重合体およびエチレン プロピレン (非共役ジェ ン)共重合体などのエチレン (Xーォレフイン系共重合ゴム、ポリオルガノシロキサン 系ゴム質重合体ラテックスなどのシリコーンゴム、ブタジエン系重合体の水素添加物 、共役ジェン重合体ブロックと芳香族ビ-ルイ匕合物重合体ブロックとのブロック共重 合体の水素添加物およびこれらを組み合わせたブロック共重合体などの水素添加ゴ ムなどが挙げられ、中でも、ジェン系ゴム、エチレン プロピレン (非共役ジェン) 共重合体、水素添加ジェン系重合体、シリコーンゴムまたはアクリル系ゴムが好ましく 用いられ、特にポリブタジエンまたはブタジエン共重合体が好ましい。これらは単独な いし 2種以上を用いることもできる。非共役ジェン成分としては、 1, 4 へキサジェン 、 5 ェチリデン 2 ノルボルネン、 5 ビュルノルボルネン、およびジシクロペンタ ジェン等を好ましく用いることができる。
[0023] 力かるゴム質重合体のゴム粒子径は特に制限されないが、ゴム粒子の重量平均粒 子径カ 0. 05〜0. 7 111、特に0. 10〜0. 55 mのもの力而す衝撃' 14に優れ好まし!/ヽ 。また、 0. 20〜0. 25 μ mの重量平均粒子径のゴムと 0. 50〜0. 65 μ mの重量平 均粒子径のゴムとを重量比 90 : 10〜60 :40として併用したものも、耐衝撃性と薄肉 成形品での落錘衝撃が著しく優れるので好ましく採用される。また、ゴム質重合体と しては、凝集肥大化させたものを用いることもできる。
[0024] なお、ゴム粒子の重量平均粒子径は、「Rubber Age Vol. 88 p. 484〜490 ( 1960) by E. Schmidt, P. H. Biddison」記載のアルギン酸ナトリウム法、すなわ ちアルギン酸ナトリウムの濃度によりクリーム化するポリブタジエン粒子径が異なること を利用して、クリーム化した重量割合とアルギン酸ナトリウム濃度の累積重量分率より 累積重量分率 50%の粒子径を求める方法により測定することができる。
[0025] グラフト(共)重合体 (A— 1)にグラフト重合する単量体単位として用いられる芳香族 ビュル系単量体としては、スチレン、 a—メチルスチレン、ビュルトルエン、。一ェチル スチレン、 p— t ブチルスチレン、 p—メチノレスチレン、クロロスチレン、およびブロモ スチレンなどが挙げられる力 特にスチレンが好ましぐこれらは単独ないし 2種以上 を用いることちでさる。 グラフト(共)重合体 (A— 1)にグラフト重合する単量体単位として用いられるその他 の少なくとも 1種の単量体としては、耐薬品性向上の目的で、シアンィ匕ビ二ル系単量 体が特に好ましく用いられる。シアンィ匕ビュル系単量体としては、アクリロニトリル、メタ クリロ-トリル、およびエタタリ口-トリルなどが挙げられる力 特にアクリロニトリルが好 ましい。また、(メタ)アクリル酸エステル系単量体も好ましく用いられる。(メタ)アクリル 酸エステル系単量体としては、アクリル酸およびメタクリル酸のメチル、ェチル、プロピ ル、 n—ブチル、イソブチルによるエステルイ匕物などが挙げられる力 特にメタクリル 酸メチルが好ましい。また、これら以外の単量体としては、(メタ)アクリル酸等の不飽 和カルボン酸単量体単位およびこれらの金属塩、(メタ)アクリル酸グリシジル、イタコ ン酸グリシジル、ァリルグリシジルエーテル、スチレン—p グリシジルエーテル、 p— グリシジルスチレン、マレイン酸、無水マレイン酸、マレイン酸モノメチル、マレイン酸 モノェチル、ィタコン酸、無水ィタコン酸、フタル酸、 1, 2—ジメチル無水マレイン酸、 フエ-ル無水マレイン酸、 N—メチルマレイミド、 N—ェチルマレイミド、 N—シクロへ キシルマレイミド、 N フエ-ルマレイミド、アクリルアミド、メタクリルアミド、 N メチル アクリルアミド、ブトキシメチルアクリルアミド、 N—プロピルメタクリルアミド、(メタ)アタリ ル酸アミノエチル、(メタ)アクリル酸プロピルアミノエチル、(メタ)アクリル酸 2—ジメチ ルアミノエチル、(メタ)アクリル酸 2 -ジェチルアミノエチル、(メタ)アクリル酸 2 -ジブ チルアミノエチル、(メタ)アクリル酸 3 -ジメチルァミノプロピル、(メタ)アクリル酸 3 - ジェチルァミノプロピル、(メタ)アクリル酸フエ-ルアミノエチル、(メタ)アクリル酸シク 口へキシルアミノエチル、 N ビ-ルジェチルァミン、 N ァセチルビ-ルァミン、ァリ ルァミン、メタァリルァミン、 N—メチルァリルァミン、 p アミノスチレン、 2—イソプロべ 二ルーォキサゾリン、 2—ビニルーォキサゾリン、 2—ァクロイルーォキサゾリン、 2—ス チリルーォキサゾリン、 3 ヒドロキシ 1 プロペン、 4ーヒドロキシ 1ーブテン、シ スー4ーヒドロキシ 2 ブテン、トランスー4ーヒドロキシ 2 ブテン、 3 ヒドロキシ — 2—メチル 1—プロペン、シス一 5 ヒドロキシ一 2 ペンテン、トランス一 5 ヒド 口キシ一 2 ペンテン、 4 ジヒドロキシ一 2 ブテン、エチレン、プロピレン、塩化ビ- ル、酢酸ビュル、酢酸イソプロぺ-ル、安息香酸ビュル、ポリエチレングリコール(メタ )アタリレート、ポリプロピレングリコール (メタ)アタリレートまたはポリテトラメチレンダリ コールメタタリレートなどを使用することもできる。これらは単独ないし 2種以上を用い ることちでさる。
[0027] 本発明におけるグラフト(共)重合体 (A—1)は、好ましくはゴム質重合体 10〜80重 量部、より好ましくは 40〜80重量部、さらに好ましくは 50〜80重量部の存在下に、 芳香族ビニル系単量体 100〜40重量%とその他の少なくとも 1種の単量体 0〜60重 量%と力もなる単量体単位を好ましくは 90〜20重量部、より好ましくは 60〜20重量 部、さらに好ましくは 50〜20重量部をグラフト(共)重合することによって得られる。ゴ ム質重合体の割合は特に制限はないが、 10重量部未満では衝撃強度が低下する 傾向にあり、 80重量部を超えると表面外観が低下する傾向にある。
[0028] 本発明のグラフト (共)重合体 (A—1)に用いられる芳香族ビニル系単量体量は、好 ましくは 40〜95重量%の範囲であり、より好ましくは 50〜80重量%の範囲であり、 更に好ましくは 60重量%〜75重量%の範囲である。
[0029] また、グラフト(共)重合体 (A— 1)に用いられるその他の少なくとも 1種の単量体の 量は、好ましくは 60〜5重量%の範囲であり、より好ましくは 50重量%〜20重量%の 範囲であり、更に好ましくは 40重量%〜25重量%の範囲である。
[0030] グラフト(共)重合体 (A— 1)は、ゴム質重合体に芳香族ビニル系単量体 100〜40 重量%とこれと共重合可能な他の単量体からなる単量体成分 0〜60重量%をグラフ ト(共)重合させる際に生成するグラフトイ匕して 、な ヽ(共)重合体を含んで 、てもよ 、 。すなわち、単量体混合物の単量体同士で結合し、グラフトイ匕していない (共)重合 体を含んで 、てもよく、通常はグラフトイ匕して 、な 、(共)重合体との混合物として得ら れたものを使用することができる。本発明におけるグラフト(共)重合体 (A—1)には、 このグラフトイ匕して 、な ヽ単量体との混合物として得られたものも含まれる。ここでダラ フト率については特に制限はないが、衝撃強度の観点力もグラフト率は 10〜150% であることが好ましい。グラフト率は次式により算出される。
[0031] グラフト率 (%) = [ゴム質重合体にグラフト重合したビニル系(共)重合体量] Z [ダラ フト(共)重合体のゴム含有量] X 100
グラフト(共)重合体 (A— 1)をメチルェチルケトン溶媒に溶解させ、 30°Cで測定し た極限粘度は特に制限はないが、耐衝撃性と成形加工性のバランスの観点カゝら 0. 1 0〜1. OdlZgの範囲であることが好ましぐより好ましくは 0. 15-0. 70dlZgの範囲 のものであり、特に好ましくは 0. 15-0. 48dl/gの範囲である。
[0032] グラフト (共)重合体 (A—1)の製造方法に関しては特に制限はなぐ塊状重合、溶 液重合、懸濁重合、乳化重合、沈殿重合、または塊状懸濁重合のようなこれら重合 法の組み合わせが用いられる。また、別々に (グラフト)共重合したグラフト(共)重合 体 (A— 1)の 2種以上をブレンドして用いることも可能である。
[0033] 本発明のビニル系(共)重合体 (A— 2)は、芳香族ビニル系単量体 100〜50重量 %とその他の少なくとも 1種の単量体 0〜50重量%力もなるものであり、すなわち、芳 香族ビュル系単量体あるいは芳香族ビュル系単量体を 50重量%以上と芳香族ビ- ル系単量体以外の少なくとも 1種の単量体よりなる単量体混合物力 なるものである
[0034] ビニル系(共)重合体 (A— 2)の具体例としては、ポリスチレン、芳香族ビニル系単 量体を 50重量%以上含むことを特徴とする以下のビニル系共重合体、 AS (アタリ口 二トリルースチレン共重合体)、 MS榭脂 (メタクリル酸メチルースチレン共重合体)、 MAS榭脂 (メタクリル酸メチル—アクリロニトリル—スチレン共重合体)などが挙げられ る。
[0035] ビュル系(共)重合体 (A— 2)で用いられる芳香族ビュル系単量体としては、スチレ ン、 a—メチルスチレン、ビニルトルエン、。一ェチルスチレン、 p— t—ブチルスチレ ン、 p—メチルスチレン、クロロスチレン、およびブロモスチレンなどが挙げられ、特に スチレンが好まし!/、。これらは単独な!/、し 2種以上を用いることができる。
[0036] ビニル系(共)重合体 (A— 2)で用いられるその他の少なくとも 1種の単量体として は、アクリロニトリル、メタタリ口-トリル、およびエタタリ口-トリルなどのシアン化ビュル 系単量体が耐薬品性向上の点から特に好ましく用いられ、中でもアクリロニトリルが最 も好ましい。また、 N—フエ-ルマレイミド、 N—メチルマレイミド、 N—ェチルマレイミド 、 N—ブチルマレイミド、および N—シクロへキシルマレイミドなどのマレイミド系単量 体も耐熱性と難燃性が向上するため好ましく、中でも N—フエニルマレイミドが好まし い。これら以外の単量体としては、アクリル酸およびメタクリル酸のメチル、ェチル、プ 口ピル、 n—ブチル、イソブチルによるエステル化物などの(メタ)アクリル酸エステル 系単量体、(メタ)アクリル酸等の不飽和カルボン酸単量体およびこれらの金属塩、( メタ)アクリル酸グリシジル、ィタコン酸グリシジル、ァリルグリシジルエーテル、スチレ ン— p グリシジルエーテル、 p グリシジルスチレン、マレイン酸、無水マレイン酸、 マレイン酸モノメチル、マレイン酸モノエチル、ィタコン酸、無水ィタコン酸、フタル酸、
1, 2—ジメチル無水マレイン酸、フエ-ル無水マレイン酸、アクリルアミド、メタクリルァ ミド、 N メチルアクリルアミド、ブトキシメチルアクリルアミド、 N プロピルメタクリルァ ミド、 (メタ)アクリル酸アミノエチル、 (メタ)アクリル酸プロピルアミノエチル、 (メタ)ァク リル酸 2 -ジメチルアミノエチル、 (メタ)アクリル酸 2 -ジェチルアミノエチル、 (メタ)ァ クリル酸 2 ジブチルアミノエチル、 (メタ)アクリル酸 3 ジメチルァミノプロピル、 (メタ )アクリル酸 3—ジェチルァミノプロピル、 (メタ)アクリル酸フエ-ルアミノエチル、 (メタ )アクリル酸シクロへキシルアミノエチル、 N ビ-ルジェチルァミン、 N ァセチルビ -ルァミン、ァリルァミン、メタァリルァミン、 N—メチルァリルァミン、 p—アミノスチレン 、 2—イソプロぺニルーォキサゾリン、 2—ビニルーォキサゾリン、 2—ァクロイルーォ キサゾリン、 2—スチリルーォキサゾリン、 3 ヒドロキシ 1 プロペン、 4ーヒドロキシ 1ーブテン、シスー4ーヒドロキシ 2 ブテン、トランスー4ーヒドロキシ 2 ブテ ン、 3 ヒドロキシ一 2—メチル 1—プロペン、シス一 5 ヒドロキシ一 2 ペンテン、 トランス 5 ヒドロキシ 2 ペンテン、 4ージヒドロキシ 2 ブテン、エチレン、プロ ピレン、塩化ビュル、酢酸ビュル、酢酸イソプロぺ -ル、安息香酸ビュル、ポリエチレ ングリコール (メタ)アタリレート、ポリプロピレングリコール (メタ)アタリレートまたはポリ テトラメチレングリコールメタタリレートなどを使用することもできる。これらは単独ない し 2種以上を用いることができる。
[0037] ビニル系(共)重合体 (A— 2)に用いられる芳香族ビニル系単量体の量は、本発明 の榭脂組成物の耐衝撃性と表面外観、中でも表面光沢度の観点から、少なくとも 50 重量であることが必要である。好ましくは 50〜95重量%であり、より好ましくは 50〜8 0重量%であり、更に好ましくは 60〜75重量%である。
[0038] また、ビニル系(共)重合体 (A— 2)に用いられるその他の少なくとも 1種の単量体 量は、好ましくは 5〜50重量%であり、より好ましくは 20〜50重量%であり、更に好ま しくは 25〜40重量%である。 [0039] 本発明におけるビュル系(共)重合体 (A— 2)をメチルェチルケトン溶媒に溶解させ 、 30°Cで測定した極限粘度は特に制限はないが、 0. 10〜: L 2dlZgの範囲が耐衝 撃性と成形カ卩ェ性のバランスの観点力もより好ましく用いられ、より好ましくは 0. 15〜 0. 70dlZgの範囲であり、表面外観、中でも表面光沢度を考慮した際に更に好まし くは 0. 15〜0. 55dlZgの範囲であり、特に好ましくは 0. 15〜0. 50dlZgの範囲で ある。
[0040] ビニル系(共)重合体 (A— 2)の製造法に関しては特に制限がなぐ例えば、芳香 族ビュル系単量体ある 、は芳香族ビュル系単量体を 50重量%以上含む単量体混 合物を (共)重合する方法が特に好ましく用いられるほか、重合で得たビニル系(共) 重合体にさらに反応器内で適切な反応を進行させ、所望のビニル系(共)重合体 (A —2)を得る方法等が挙げられる。ビニル系(共)重合体 (A— 2)の製造には、塊状重 合、溶液重合、懸濁重合、沈殿重合、乳化重合、または塊状懸濁重合等のこれら重 合法の組み合わせなどの通常の方法が用いられる。単量体の仕込み方法に関して も特に制限はなぐ初期に一括添加してもよぐまた共重合体の組成分布の生成を防 止するために仕込み単量体の一部または全部を連続仕込みまたは分割仕込みしな 力 重合してもよい。また、別々に重合したビュル系(共)重合体 (A— 2)の 2種以上 をブレンドして用いることも好まし!/、。
[0041] 本発明では、ビニル系(共)重合体 (A— 2)を共重合体 (C)と併用することにより、 得られる榭脂組成物の流動性と表面外観、中でも表面光沢度を大きく向上させること ができる。ビュル系(共)重合体 (A— 2)の含有量は、表面外観、中でも表面光沢度 の観点から、スチレン系榭脂 (A)中に 5重量%以上であることが好ましい。グラフト( 共)重合体 (A— 1)とビュル系(共)重合体 (A— 2)のより好ま 、混合比は、グラフト( 共)重合体 (A— 1) 5〜95重量%とビニル系(共)重合体 (A— 2) 5〜95重量%であ り、さらに好ましくはグラフト(共)重合体 (A— 1) 5〜80重量%とビニル系(共)重合体 (A- 2) 20〜95重量%であり、特に好ましくはグラフト(共)重合体 (A— 1) 40-80 重量%とビニル系(共)重合体 (A— 2) 20〜60重量%である。
[0042] 本発明で用いられるポリアミド榭脂(B)とは、アミノカルボン酸、ラタタム、あるいはジ ァミンとジカルボン酸とを主たる原料とするポリマーである。本発明にお 、て用いるポ リアミド榭脂(B)の原料の代表例としては、 6 アミノカプロン酸、 11 アミノウンデカ ン酸、 12—アミノドデカン酸などのアミノカルボン酸、 ε—力プロラタタム、 ω—ラウ口 ラタタムなどのラタタム、あるいはテトラメチレンジァミン、へキサメレンジァミン、ェチレ ンジァミン、トリメチレンジァミン、ペンタメチレンジァミン、 2—メチルペンタメチレンジ ァミン、ゥンデカメチレンジァミン、ドデカメチレンジァミン、 2, 2, 4 トリメチルへキサ メチレンジァミン、 2, 4, 4 トリメチルへキサメチレンジァミン、ノナメチレンジァミン、 5 メチルノナメチレンジァミン、メタキシリレンジァミン、パラキシリレンジァミン、 1, 3— ビス(アミノメチル)シクロへキサン、 1, 4 ビス(アミノメチル)シクロへキサン、 1 アミ ノ一 3—アミノメチル一 3, 5, 5—トリメチルシクロへキサン、ビス(4—アミノシクロへキ シル)メタン、ビス(3—メチル 4 アミノシクロへキシル)メタン、 2, 2 ビス(4 アミ ノシクロへキシル)プロパン、ビス(ァミノプロピル)ピぺラジン、アミノエチルピペラジン などの脂肪族、脂環族、芳香族のジァミンと、アジピン酸、スペリン酸、ァゼライン酸、 セバシン酸、ドデカン二酸、 1, 3 シクロへキサンジカルボン酸、 1, 4ーシクロへキサ ンジカルボン酸、テレフタル酸、イソフタル酸、 2—クロロテレフタル酸、 2—メチルテレ フタル酸、 5—メチルイソフタル酸、 5—ナトリウムスルホイソフタル酸、へキサヒドロテ レフタル酸、へキサヒドロイソフタル酸などの脂肪族、脂環族、芳香族のジカルボン酸 との任意の組合せが挙げられる。
[0043] ポリアミド榭脂(Β)は、これら原料力 通常公知の重縮合によって得られ、本発明に お!、ては、これらの原料力も誘導されるポリアミドホモポリマーまたはコポリマーを各 々単独または混合物の形で用いることができる。
[0044] 好まし 、ポリアミド榭脂(Β)の例としては、ポリ力プロラタタム(ナイロン 6)、ポリへキ サメチレンアジパミド (ナイロン 66)、ポリゥンデカンアミド (ナイロン 11)、ポリドデカン アミド(ナイロン 12)、ポリへキサメチレンセバカミド(ナイロン 610)、ナイロン 6Ζ66コ ポリマー、ナイロン 6Z66Z610コポリマー、ナイロン 6Z12コポリマー、ナイロン 66 Ζへキサメチレンイソフタラミド(61) Ζ6コポリマー、およびナイロン 6Z66Z610Z1 2コポリマーなどの共重合体を挙げることができ、ナイロン 6、ナイロン 66およびこれら を主成分とする共重合体が好ましぐ特に好ましくはナイロン 6およびナイロン 6を主 成分とする共重合体であり、最も好ましくはナイロン 6である。 [0045] これらポリアミド榭脂(B)の分子量は特に制限はないが、 98%濃硫酸中に lgZdl の濃度で溶解した溶液の相対粘度が、 25°Cで 1. 8〜7. 5の範囲であることが好まし い。得られる榭脂組成物の流動性の観点からより好ましくは 1. 8〜4. 0の範囲であり 、更に好ましくは 1. 8〜2. 8の範囲であり、特に好ましくは 1. 8〜2. 4の範囲であり、 最も好ましくは 1. 8〜2. 3の範囲である。相対粘度が 7. 5を超える場合、本発明の 榭脂組成物の流動性が低下する傾向にある。また、相対粘度が 1. 8未満の場合は、 本発明の榭脂組成物の機械特性が低下する傾向にある。ポリアミド榭脂 (B)の融点 は示差走査熱量測定器 (パーキンエルマ一(Perkin Elmer)社製 DSC— 7型)を用 いて、窒素気流中、昇温速度 20°CZminで測定した結晶融解ピークトップを測定す ることで求めることができ、該融点が 150〜280°Cであることが好ましい。また、本発 明で用いられるポリアミド榭脂(B)の溶融粘度は、溶融加工時の温度で、せん断速 度 1000秒—1のせん断速度において、 15〜600Pa ' sのもの力 S好ましく、より好ましく は 15〜250Pa ' sのものであり、さらに好ましく 15〜200Pa ' sのもの、特に好ましくは 15〜 150Pa · sのもの、最も好ましくは 15〜 1 OOPa · sのものである。
[0046] 本発明における変性ビニル系共重合体 (C) (以下、単に共重合体 (C)と呼ぶことが ある)は、 a、 j8—不飽和カルボン酸無水物単位 1. 5〜10重量%とシアン化ビュル 系単量体単位 0. 5〜60重量%を含んでなるものである。
[0047] 共重合体 (C)中に含有される a、 β 不飽和カルボン酸無水物単位は 1. 5〜10 重量%の範囲であり、好ましくは 2〜 10重量%の範囲であり、より好ましくは 2. 5〜1 0重量%の範囲である。 α、 j8—不飽和カルボン酸無水物単位が 1. 5重量%未満の 場合には、ポリアミド榭脂(B)との反応性、あるいは反応性および親和性が低下する ため、得られる榭脂組成物の耐衝撃性が低下する傾向にある。 a、 j8—不飽和カル ボン酸無水物単位またはその誘導体単位が 10重量%を超えると最終組成物の成形 加工性および耐衝撃性が低下する傾向にある。
[0048] 共重合体(C)中のシアン化ビニル系単量体単位の量は 0. 5〜60重量%であり、 好ましくは 0. 5〜50重量%であり、より好ましくは 2〜50重量%である。共重合体 (C )を添加して得られる榭脂組成物の耐衝撃性および耐薬品性の観点から、シアンィ匕 ビュル系単量体単位の量の下限は 20重量%以上であることがより好ましぐまた成形 加工性を考慮すればその上限は 50重量%以下、特に 40重量%以下であることがよ り好ましい。従って、これらを考慮した場合のシアン化ビュル系単量体単位の量は、 2 0〜50重量%の範囲が好ましぐ特に 20〜40重量%の範囲が好ましい。
[0049] 共重合体 (C)に含まれる a、 β 不飽和カルボン酸無水物単位の種類に特に制 限はなぐ例を挙げると、無水マレイン酸、無水フマル酸、無水ィタコン酸、無水クロト ン酸、メチル無水マレイン酸、メチル無水フマル酸、無水メサコン酸、無水シトラコン 酸、無水グルタコン酸、テトラヒドロ無水フタル酸、 1 , 2—ジメチル無水マレイン酸、フ ェ-ル無水マレイン酸、エンドビシクロ一(2, 2, 1)— 5 ヘプテン一 2, 3 ジカルボ ン酸無水物、メチルー 1 , 2, 3, 6—テトラヒドロ無水フタル酸、 5 ノルボルネンー 2, 3 ジカルボン酸無水物、メチルー 5 ノルボルネンー 2, 3 ジカルボン酸無水物等 が挙げられ、特に無水マレイン酸が好ましい。これらは単独ないし 2種以上を用いるこ とがでさる。
[0050] 共重合体 (C)は、共重合体 (C)中に含有される α、 β—不飽和カルボン酸無水物 力 例えば加水分解等の反応により変換された α、 β 不飽和カルボン酸無水物の 誘導体単位を含有してもよい。これらの誘導体単位は、適切な真空乾燥処理ゃ熱処 理により再び α、 β 不飽和カルボン酸無水物に変換可能な化学構造を有するもの である。 α、 j8—不飽和カルボン酸無水物の誘導体単位としては、マレイン酸、フマ ル酸、ィタコン酸、クロトン酸、メチルマレイン酸、メチルフマル酸、メサコン酸、シトラコ ン酸、グルタコン酸、テトラヒドロフタル酸、エンドビシクロ一(2, 2, 1)— 5 ヘプテン - 2, 3 ジカルボン酸、メチルー 1 , 2, 3, 6—テトラヒドロフタル酸、 5 ノルボルネン - 2, 3 ジカルボン酸、メチルー 5 ノルボルネン 2, 3 ジカルボン酸等の α、 β 不飽和ジカルボン酸、これら α、 β 不飽和ジカルボン酸の金属塩、マレイン酸モ ノメチル、マレイン酸モノエチル、フマル酸モノメチル、フマル酸モノエチル、ィタコン 酸モノメチル、ィタコン酸モノエチル、クロトン酸モノメチル、クロトン酸モノエチル、メ チルマレイン酸モノメチル、メチルフマル酸モノメチル、メサコン酸モノメチル、シトラコ ン酸モノメチル、グルタコン酸モノメチル、テトラヒドロフタル酸モノメチル等の α、 β— 不飽和ジカルボン酸モノアルキルエステルまたはこれらの金属塩、 α、 j8—不飽和ジ カルボン酸モノアルケ-ルエステルまたはこれらの金属塩、 a、 j8—不飽和ジカルボ ン酸モノアリールエステルまたはこれらの金属塩、 a、 j8—不飽和ジカルボン酸ジァ ルキルエステルなどを挙げることができる。
[0051] 共重合体 (C)中のシアンィ匕ビ二ル系単量体単位としては、アクリロニトリル、メタタリ 口-トリル、エタタリ口-トリルなどが挙げられ、好ましくはアクリロニトリルである。
[0052] 共重合体 (C)は、芳香族ビニル系単量体単位を含んで!/、てもよ 、。共重合体 (C) に芳香族ビニル系単量体単位が含有される場合の含量は、 30〜98重量%の範囲 が好ましぐより好ましくは 30〜97. 5重量%、より好ましくは 30〜97重量%、更に好 ましくは 50〜97重量%、特に好ましくは 50〜78. 5重量%の範囲であり、最も好まし くは 50〜78重量0 /0の範囲、更には 50〜77. 5重量0 /0の範囲である。
[0053] 共重合体 (C)で必要に応じ好ましく用いられる芳香族ビニル系単量体単位としては スチレン、 a—メチルスチレン、ビニルトルエン、。一ェチルスチレン、 p— t—ブチル スチレン、 p—メチルスチレン、クロロスチレン、ブロモスチレンなどが挙げられ、スチレ ンおよび α—メチルスチレンが好ましぐより好ましくはスチレンである。これらは単独 な!、し 2種以上を用いることができる。
[0054] また、共重合体 (C)は、シアンィ匕ビュル系単量体単位と併用できるその他の少なく とも 1種の単量体を含んでいてもよい。具体的には、(メタ)アクリル酸、(メタ)アクリル 酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル酸 η—プロピル、(メタ)アクリル酸 η —ブチル、(メタ)アクリル酸 η—へキシル、(メタ)アクリル酸シクロへキシル、(メタ)ァク リル酸クロロメチル、(メタ)アクリル酸 2—クロロェチル、(メタ)アクリル酸 2—ヒドロキシ ェチル、(メタ)アクリル酸 3—ヒドロキシプロピル、(メタ)アクリル酸 2, 3, 4, 5, 6—ぺ ンタヒドロキシへキシルおよび (メタ)アクリル酸 2, 3, 4, 5—テトラヒドロキシペンチル 、アクリル酸またはその金属塩、メタクリル酸またはその金属塩、(メタ)アクリル酸 t— ブチル、(メタ)アクリル酸アミノエチル、(メタ)アクリル酸プロピルアミノエチル、(メタ) アクリル酸 2—ジメチルアミノエチル、(メタ)アクリル酸 2—ジェチルアミノエチル、(メタ )アクリル酸 2 -ジブチルアミノエチル、(メタ)アクリル酸 3 -ジメチルァミノプロピル、 ( メタ)アクリル酸 3—ジェチルァミノプロピル、(メタ)アクリル酸フエ-ルアミノエチル、( メタ)アクリル酸シクロへキシルアミノエチル、ァリルグリシジルエーテル、スチレン一 p —グリシジルエーテル、マレイン酸モノェチルエステル、 N—メチルマレイミド、 N—ェ チルマレイミド、 N—シクロへキシルマレイミド、 N—フエ-ルマレイミド、アクリルアミド 、メタクリルアミド、 N—メチルアクリルアミド、ブトキシメチルアクリルアミド、 N—プロピ ルメタクリルアミド、 N—ビ-ルジェチルァミン、 N—ァセチルビ-ルァミン、ァリルアミ ン、メタァリルァミン、 N—メチルァリルァミン、 p—アミノスチレン、 2—イソプロべ-ル ーォキサゾリン、 2—ビュルーォキサゾリン、 2—ァクロイルーォキサゾリンおよび 2— スチリルーォキサゾリンなどを挙げることができる。これらの中でもメタクリル酸、メタタリ ル酸メチル、 N—メチルマレイミド、 N—フエ-ルマレイミドが好ましく用いられ、より好 ましくはメタクリル酸メチル、 N—フエ-ルマレイミドである。これらは単独ないし 2種以 上を用いることちできる。
[0055] 本発明の共重合体 (C)をメチルェチルケトン溶媒に溶解させ、 30°Cの温度で測定 した極限粘度は、 0. 15〜0. 41dlZgの範囲である。好ましくは 0. 15〜0. 40dl/g の範囲であり、より好ましくは 0. 15〜0. 36dlZgの範囲であり、更に好ましくは 0. 15 〜0. 30dlZgの範囲であり、特に好ましくは 0. 15〜0. 25dlZgの範囲であり、最も 好ましくは 0. 15〜0. 20dlZgの範囲である。極限粘度が 0. 41dlZgを超える場合 は、榭脂組成物の流動性および表面外観が低下する。一方、極限粘度が 0. 15dl/ gより低い場合には榭脂組成物の耐衝撃性および表面外観が低下する。ここで、極 限粘度は固有粘度と同義であり、還元粘度の無限希釈における極限値であり、複数 の任意の濃度での還元粘度を測定することにより算出することができる。還元粘度と は、高分子物質の質量濃度 cに対する相対粘度の増加分 7? rの比 7? rZcである。
[0056] 一般に、高分子物質の極限粘度は分子量と一定の相関があることが知られており、 極限粘度が上記範囲であることを特徴とする本発明の共重合体 (C)は、分子量範囲 によっても特徴づけることができる。分子量としては数平均分子量または重量平均分 子量で表現できるが、いずれも共重合体 (C)をテトラヒドロフランに溶解し、ゲルパー ミエーシヨンクロマトグラフ(GPC)を用いて測定し、ポリスチレン換算の値として得られ る。
[0057] 具体的には、メチルェチルケトン溶液中 30°Cでの極限粘度が 0. 15〜0. 41dlZg である本発明の共重合体(C)の数平均分子量は 4000〜20000であり、重量平均分 子量 ίま 12000〜39000である。同極限粘度力 0. 15〜0. 40dl/gである好まし!/ヽ 本発明の共重合体(C)の数平均分子量は 4000〜 19000であり、重量平均分子量 ίま 12000〜38000である。同極限粘度力 0. 15〜0. 36dl/gであるより好まし!/ヽ本 発明の共重合体(C)の数平均分子量は 4000〜 17000であり、重量平均分子量は 1 2000〜36000である。同極限粘度力 0. 15〜0. 30dl/gである更に好まし!/ヽ本発 明の共重合体(C)の数平均分子量は 4000〜 16000であり、重量平均分子量は 12 000〜34000である。同極限粘度力 0. 15〜0. 25dl/gである特に好まし!/ヽ本発明 の共重合体(C)の数平均分子量は 4000〜 14000であり、重量平均分子量は 1200 0〜31000である。同極限粘度が 0. 15〜0. 20dlZgである最も好ましい本発明の 共重合体(C)の数平均分子量は 4000〜9000であり、重量平均分子量は 12000〜 19000である。
[0058] 本発明の所望の極限粘度範囲を有する共重合体 (C)を製造する方法については 、特に制限はないが、重合において、ァゾィ匕合物、過酸ィ匕物等のラジカル重合開始 剤の分解温度および添加量、アルキルメルカブタン、四塩化炭素、四臭化炭素、ジメ チルァセトアミド、ジメチルホルムアミド、トリェチルァミン等の連鎖移動剤の添カロ量、 または、重合で溶媒を使用する場合にぉ 、てはその溶媒量を制御すること等の公知 の方法を用いることにより、所望の極限粘度範囲を有する共重合体 (C)を得ることが できる。中でも、重合の安定性と重合速度の維持の観点から、連鎖移動剤の添加量 を制御する方法がより好ましく使用することができ、この際の連鎖移動剤としては、特 にアルキルメルカプタンが好ましく用いられる。ここで使用されるアルキルメルカプタ ンとしては、例えば、 n—ォクチルメルカプタン、 tードデシルメルカプタン、 n—ドデシ ルメルカプタン、 n—テトラデシルメルカプタンまたは n ォクタデシルメルカプタンな どが挙げられ、より好ましくは n—ォクチルメルカプタン、 tードデシルメルカプタン、 n ドデシルメルカプタンである。
[0059] 本発明の共重合体 (C)を製造する際のアルキルメルカブタンの添加量は、共重合 体 (C)の所望の極限粘度に応じて、ラジカル重合開始剤の分解温度および添加量、 アルキルメルカブタン種、重合温度、モノマー濃度等に合わせて適宜設定することが できる。
[0060] 例えば、共重合体 (C)を溶液重合により製造する場合には、反応系に仕込んだ単 量体混合物の全量 100重量部に対して、 120重量部のメチルェチルケトンを使用し 、開始剤として 2, 2'—ァゾビスイソブチ口-トリルを 0. 3重量部使用し、 80°Cで重合 を実施した場合に、メチルェチルケトン中、 30°Cにおける極限粘度が 0. 15〜0. 4dl Zgの範囲にある共重合体 (C)を製造するには、 tードデシルメルカブタンの添加量 は反応系に仕込んだ単量体混合物の全量 100重量部に対して、 0. 1〜0. 8重量部 の範囲に制御する。また、極限粘度が 0. 15〜0. 36dlZgの範囲にある共重合体( C)を製造するには、 t—ドデシルメルカブタンを 0. 15〜0. 8重量部の範囲に制御す る。さらに、同様の溶液重合にて、極限粘度が 0. 15〜0. 3dlZgの範囲にある共重 合体 (C)を製造するには、 t—ドデシルメルカブタンを 0. 2〜0. 8重量部の範囲に制 御する。
[0061] また、例えば、共重合体 (C)を、開始剤として 2, 2'—ァゾビスイソプチ口-トリルを 0 . 3重量部使用し、 80°Cで塊状重合を行い製造する場合には、メチルェチルケトン中 、 30°Cにおける極限粘度が 0. 15〜0. 40dlZgの範囲にある共重合体 (C)を製造 するには、 tードデシルメルカブタン添加量は反応系に仕込んだ単量体混合物の全 量 100重量部に対して、 0. 35〜2. 5重量部の範囲に制御する。また、極限粘度が 0 . 15〜0. 36dlZgの範囲にある共重合体 (C)を製造するには、 t—ドデシルメルカプ タンを 0. 5〜2. 5重量部の範囲に制御する。さらに、極限粘度が 0. 15〜0. 30dl/ gの範囲にある共重合体 (C)を製造するには、 t—ドデシルメルカブタンを 0. 75〜2. 5重量部の範囲に制御する。
[0062] 共重合体(C)中の a;、 β 不飽和カルボン酸無水物単位とシアン化ビニル系単量 体単位は、ランダム重合により共重合体の主鎖中に導入されることが好ましい。この 場合の重合方法については、例えばラジカル重合による、塊状重合、溶液重合、懸 濁重合、沈殿重合、乳化重合、または塊状懸濁重合などの重合法の組み合わせを 用いることができ、塊状重合、溶液重合、塊状懸濁重合または沈殿重合をより好まし く用いることができる。また、回分式、連続式のいずれも好ましく用いることができる。 重合法によっては、共重合体 (C)は、不飽和カルボン酸無水物単量体単位を含まな V、共重合体を含んだ混合物の形でもよ!/、。塊状懸濁重合または沈殿重合により得ら れるポリマーの粒度および形状には特に制限はないが、得られるポリマーの粒度が 0 . 1 μ m〜8mmの範囲であることが好ましぐより好ましくは 1 μ m〜5mmの範囲であ る。粒度が 0.: L mより小さい場合には、例えばろ過工程において目詰まりが生じた り、乾燥工程等の重合後の処理において取り扱いが困難になる傾向にある。一方で 粒度が 8mmを超える場合には、ポリマーの乾燥工程における乾燥効率が低下したり 、洗浄を実施する場合には洗浄効率についても低下する傾向にある。なお、ここでい う粒度とは沈殿重合により得られたポリマー粒体の平均直径のことを示す。
[0063] また、重合時の各単量体の仕込み方法に関しては、特に制限はなぐ初期に一括 添加してもよぐまた共重合体の組成分布の生成を防止するために仕込み単量体の 一部または全部を連続仕込みまたは分割仕込みしながら重合してもよ 、。例えば、 共重合体(C)が 0;、 β 不飽和カルボン酸無水物、シアン化ビュル系単量体および 芳香族ビニル系単量体とが共重合されてなる共重合体である場合に、その重合にお V、て仕込み単量体混合物の初期一括添加を行えば、例えば重合率 30%未満と 、つ た重合前半で生成した共重合体と、例えば重合率 60%以上といった重合後半で生 成する共重合体の各々の組成が大きく異なる傾向にある。この組成分布の生成を防 ぐためには、芳香族ビニル系単量体および α、 β 不飽和カルボン酸無水物を重合 中に追添加して行うことが好ましい。また、配合する共重合体 (C)としては、別々に重 合した共重合体 (C)の 2種以上をブレンドして用いることも可能である。
[0064] 本発明の共重合体 (C)における各成分単位の定量には、赤外分光光度計ゃプロト ン核磁気共鳴(1H— NMR)測定機、ガスクロマトグラフィーなどを用いることができる 。共重合体 (C)中の α、 |8—不飽和カルボン酸無水物単位の定量は次のように行う ことができる。
(i) α、 β 不飽和カルボン酸無水物とシアン化ビュル系単量体を様々なモル比で 混合し、赤外吸収スペクトル測定することにより、 α、 j8—不飽和カルボン酸無水物と シアンィ匕ビ二ル系単量体との特性吸収のピークの強度比とモル比に関する赤外吸収 スペクトル検量線を作成する。
(ii)次に共重合体 (C)の赤外吸収スペクトル測定を行 ヽ、作成した検量線を用いるこ とで、反応付加し、共重合体 (C)中に含まれる a、 β 不飽和カルボン酸無水物単 位とシアンィ匕ビ二ル系単量体のモル比を算出する。 (iii)次 、で共重合体 (C)の他の成分単位にっ 、ても同様の方法で、シアンィ匕ビュル 系単量体とのモル比を算出し、これらの結果を基に α、 β 不飽和カルボン酸無水 物単位の含有量を算出する。
[0065] ここで、赤外吸収スペクトル検量線の作成には、 α、 j8—不飽和カルボン酸無水物 はカルボニル基の伸縮振動による特性吸収のピークを、シアンィ匕ビ二ル系単量体単 位では CN基の伸縮振動による特性吸収のピークを、芳香族ビニル系単量体を含む 場合は芳香族の C = C面内振動による特性吸収のピークを用 、ることができる。
[0066] 本発明では、スチレン系榭脂 (A)、ポリアミド榭脂 (B)および共重合体 (C)のあわ せて 100重量部に対して、充填材 (D)を 0. 1〜150重量部含むことができる。充填 材 (D)のより好ま 、含有量は 1〜: LOO重量部の範囲である。充填材 (D)を含むこと により、得られる榭脂組成物の剛性、耐熱性などを大幅に向上させることができる。充 填材 (D)を含有した本発明の熱可塑性榭脂組成物は共重合体 (C)を含有すること により、優れた塗装性を有する。
[0067] 充填材 (D)は繊維状であっても粒状などの非繊維状であってもよ!/、。
[0068] 繊維状充填材としては、ガラス繊維、炭素繊維、ステンレス繊維やアルミニウム繊維 などの金属繊維、芳香族ポリアミド繊維、ポリフエ-レンスルフイド繊維、液晶ポリエス テル繊維などの有機繊維、チタン酸カリウムゥイスカー、ホウ酸アルミニウムゥイスカー 、窒化ケィ素ゥイスカーなどのウイスカー、ワラステナイト、アスベスト、およびセピオラ イトなどの繊維状鉱物が挙げられ、これらは中空であってもよい。中でもチョップドスト ランドタイプのガラス繊維や炭素繊維などが好ましく用いられる。炭素繊維は、 PAN 系、ピッチ系、およびセルロース系等が挙げられ、また、金属コートを施した炭素繊維 も使用できる。その中でも、機械特性が高い PAN系炭素繊維が好ましい。
[0069] 充填材 (D)として炭素繊維が使用される場合には、数平均繊維径が 1〜20 mの 範囲の炭素繊維が好ましい。炭素繊維の繊維長については特に制限はないが、重 量平均繊維長で 0. 2〜: LOmmであることが好ましぐより好ましくは 3〜8mmである。 重量平均繊維長が 1 Ommを超えると成形性が悪くなる傾向にある。
[0070] また、充填材 (D)としてガラス繊維が用いられる場合には、通常公知のガラス繊維 は何でも用いることができる力 好ましくは Eガラス繊維である。ガラス繊維の繊維径 は特に制限は無いが 5〜15 /ζ πιであることが好ましぐ長さは特に制限は無いが 1. 5 〜5mmであることが好ましぐ公知のカップリング剤、収束剤等で処理されていること が特に好ま Uヽ。これら繊維状充填材を公知のカップリング剤で予備処理して使用す ることは、より優れた機械的強度を得る観点力も好ましい。
[0071] 非繊維状充填材としては、ゼォライト、セリサイト、カオリン、マイ力、パイロフイライト、 ベントナイト、タルク、アルミナシリケートなどの珪酸塩、アルミナ、酸化珪素、酸ィ匕マ グネシゥム、酸ィ匕ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシ ゥム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸アルミニウム 、硫酸バリウムなどの硫酸塩、水酸化マグネシウム、水酸化カルシウム、水酸化アルミ -ゥムなどの水酸ィ匕物、ガラスビーズ、セラミックビーズ、窒化ホウ素、炭化珪素、酸 化亜鉛、グラフアイト、マグネシア、ワクストライトまたはシリカなどが挙げられる。これら 非繊維状充填材を 2種類以上併用することも可能である。これらの中では、タルク、力 ォリン、およびマイ力が好ましぐ特に好ましくはタルクである。タルクの平均粒径には 特に制限はないが、 0. 5〜8 mであることが好ましい。また、タルクの平均アスペクト 比は 4以上であることが好ましぐより好ましくは 5〜: LOOのものである。また、燃焼時の 損失分を除いた成分中の SiOと MgOの割合が 92重量%以上のタルクがより好まし
2
い。また、本発明では、非繊維状充填材をカップリング剤および Zまたはその他の表 面処理剤で表面処理を施して用いることにより、本発明の熱可塑性榭脂組成物の物 性バランスや射出成形加工性などを、より高度化できる。カップリング剤および Zまた はその他の表面処理剤は、特に制限はなく従来公知のものが好ましく用いられる。
[0072] 本発明の熱可塑性榭脂組成物にお!、ては、充填材 (D)力スチレン系榭脂 (A)およ び Zまたはポリアミド榭脂 (B)中に分散していることが好ましぐまた、充填材 ( が 少なくともポリアミド榭脂 (B)中に分散していることが好ましい。さらに充填材 (D)の分 散状態は均一分散であることが好ましい。この状態は、熱可塑性榭脂組成物から切 片を切削しこれを電子顕微鏡で観察することによって確認することができる。
[0073] 充填材 (D)を添加し、本発明の熱可塑性榭脂組成物中に分散させる手法としては 特に制限はないが、充填材 (D)をポリアミド榭脂 (B)中に予め分散させておくことも好 適である。 [0074] 本発明の熱可塑性榭脂組成物には、層状珪酸塩 (E)を含むことができる。層状珪 酸塩 (E)を含むことにより得られる榭脂組成物の剛性および耐熱性を向上させること ができる。層状珪酸塩 (E)を含有した本発明の熱可塑性榭脂組成物は共重合体 (C )を含有することにより、優れた塗装性を有する。
[0075] 本発明で使用される層状珪酸塩 (E)としては膨潤性層状珪酸塩が好ましい。膨潤 性層状珪酸塩とは、アルミニウム、マグネシウム、リチウム等の金属を含む 8面体シー トの上下に珪酸 4面体シートが重なって 1枚の板状結晶層を形成している 2: 1型の構 造を持つものであり、通常、その板状結晶層の層間に交換性の陽イオンを有している 。その 1枚の板状結晶の大きさは、通常幅 0. 05〜0. 5 m、厚さ 6〜15オングスト口 ームである。また、その交換性陽イオンのカチオン交換容量は 0. 2〜3meqZgのも のが挙げられる。
[0076] 層状珪酸塩 (E)の具体例としてはモンモリロナイト、パイデライト、ノントロナイト、サ ポナイト、ヘクトライト、ソーコナイトなどのスメクタイト系粘土鉱物、バーミキユライト、ハ ロイサイト、カネマイト、ケニヤイト、燐酸ジルコニウム、燐酸チタニウムなどの各種粘 土鉱物、 Li型フッ素テ-オライト、 Na型フッ素テ-オライト、 Na型四珪素フッ素雲母、 Li型四珪素フッ素雲母等の膨潤性雲母等が挙げられ、天然のものであっても合成さ れたものであってもよい。これらのなかでもモンモリロナイト、ヘクトライトなどのスメクタ イト系粘土鉱物や Na型四珪素フッ素雲母、 Li型フッ素テ-オライトなどの膨潤性雲 母が好ましぐモンモリロナイトがより好ましい。
[0077] また、本発明における層状珪酸塩 (E)としては、層間に存在する交換性陽イオンが 有機ォ-ゥムイオンで交換されたものであることが好まし 、。有機ォ-ゥムイオンとし てはアンモ-ゥムイオンやホスホ-ゥムイオン、スルホ -ゥムイオンなどが挙げられる。 これらのなかではアンモ-ゥムイオンとホスホ-ゥムイオンが好ましく、特にアンモ-ゥ ムイオンが好んで用いられる。アンモ-ゥムイオンとしては、 1級アンモ-ゥム、 2級ァ ンモ-ゥム、 3級アンモ-ゥム、 4級アンモ-ゥムのいずれでも良い。これらのアンモ- ゥムイオンの中でも、 4級アンモ-ゥムイオンが特に好ましぐ具体的には、トリオクチ ルメチルアンモ-ゥム、トリメチルォクタデシルアンモ-ゥム、ベンジルジメチルォクタ デシルアンモ-ゥムが好ましぐ特にトリオクチルメチルアンモ-ゥム、ベンジルジメチ ルォクタデシルアンモ-ゥムが好まし 、。
[0078] 本発明にお ヽて層間に存在する交換性陽イオンが有機才-ゥムイオンで交換され た層状珪酸塩 (E)は、交換性の陽イオンを層間に有する層状珪酸塩と有機才-ゥム イオンを公知の方法で反応させることにより製造することができる。本発明において、 層状珪酸塩に対する有機ォニゥムイオンの量は、層状珪酸塩の陽イオン交換容量に 対し通常、 0. 4〜2. 0当量の範囲であることが好ましい。
[0079] また、これら層状珪酸塩に対し、上記の有機ォニゥム塩を加え、更に反応性官能基 を有するカップリング剤で予備処理して使用することは、より優れた機械的強度を得 るために好まし 、。力かるカップリング剤としては従来公知のものを好ましく用いること ができる力 特に好ましいのは、有機シラン系化合物である。これらカップリング剤で の層状珪酸塩の処理方法としては、従来公知の方法を好ましく用いることができ、こ のようなカップリング剤で処理した層状珪酸塩を熱処理することによってさらに反応を 促進させることも可能である。
[0080] 本発明の層状珪酸塩 (E)を含有した熱可塑性榭脂組成物を製造するにおいて、 層状珪酸塩 (E)を熱可塑性榭脂組成物中に分散させる手法としては特に制限はな いが、層状珪酸塩 (E)をポリアミド榭脂 (B)中に予め分散させておくことが好ましい。 このように層状珪酸塩 (E)をポリアミド榭脂 (B)に分散させる手法としては特に制限は なく従来公知の方法を好ましく用いることができるが、層状珪酸塩 (E)をポリアミド榭 脂 (B)の原料となるモノマー中に分散させた後、重合する方法、または予め層状珪 酸塩の層間に存在する交換性陽イオンが有機才-ゥムイオンで交換した層状珪酸塩 (E)とポリアミド榭脂 (B)を溶融混練する方法が好ましく用いられる。層状珪酸塩 (E) とポリアミド榭脂 (B)を溶融混練して製造する方法につ!ヽては、予め層状珪酸塩の層 間に存在する交換性陽イオンの有機才-ゥムイオンによる交換を行わずに、層状珪 酸塩とポリアミド榭脂 (B)を溶融混練する際に、これら有機才-ゥムイオンで処理を行 う方法を用いてもよい。
[0081] カップリング剤を使用する場合、層状珪酸塩の有機ォニゥムイオンによる処理とカツ プリング剤による処理の順序にも特に制限はな 、が、まず有機ォ-ゥムイオンで処理 した後、カップリング剤処理をすることが好まし 、。 [0082] 本発明において層状珪酸塩 (E)の含有量はスチレン系榭脂 (A) 1〜99重量0 /0と、 ポリアミド榭脂(B) 1〜99重量%からなる熱可塑性榭脂組成物 100重量部に対し、 0 . 05〜40重量部であり、好ましくは 0. 05〜20重量部である。層状珪酸塩 (E)の含 有量が 0. 05重量部未満では剛性と耐熱性の改良効果が小さぐ層状珪酸塩 (E)の 含有量が 40重量部を超えると表面外観が低下する。
[0083] 本発明では、得られる熱可塑性榭脂組成物の耐衝撃性と表面外観を維持したまま 、剛性および耐熱性を向上させるといった観点から、層状珪酸塩 (E)がスチレン系榭 脂 (A)および Zまたはポリアミド榭脂(B)中に 10層以下のレベルで均一分散してい ることが好ましぐより好ましくは 6層以下のレベルで均一に分散していることであり、さ らに好ましくは単層のレベルで均一に分散していることである。また、少なくともポリア ミド榭脂 (B)中に層状珪酸塩 (E)が均一に分散していることが好ましい。本発明にお いて単層のレベルで均一に分散している状態とは、層状珪酸塩が単層〜 5層程度の 状態で、二次凝集することなく榭脂中に分散していることをいう。この状態は榭脂組 成物から切片を切削しこれを電子顕微鏡で観察することによって確認できる。
[0084] 本発明の熱可塑性榭脂組成物は、必要に応じて、本発明の効果、中でも特に剛性 、耐熱性、流動性および表面外観を損なうことのない榭脂であれば、これら特性を損 なうことのない添カ卩量範囲において添加することができる。このような榭脂の具体例と しては、ポリメタクリル酸メチル、ポリカーボネート、ポリエチレンテレフタレートゃポリブ チレンテレフタレートおよびポリアリレート等のポリエステル榭脂、ポリフエ-レンエー テル、ポリフエ-レンスルフイド、ポリエーテルスルフォン、ポリオキシメチレン、ポリテト ラフルォロエチレン、ポリ乳酸、ノボラックエポキシフエノール榭脂、ポリスルフォン、ポ リイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルアミド、または ポリアミドイミドなどを挙げることができる。
[0085] また、本発明の熱可塑性榭脂組成物には、導電性を付与するために、導電性フィ ラーおよび Zまたは導電性ポリマーを含有することができる。導電性フイラ一は、通常 榭脂の導電ィ匕に用いられる導電性フィラーであれば特に制限はなぐその具体例とし ては、金属粉、金属フレーク、金属リボン、金属繊維、金属酸化物、導電性物質で被 覆された無機フィラー、カーボン粉末、黒鉛、炭素繊維、カーボンフレーク、鱗片状力 一ボン、炭素フィブリルおよびカーボンナノチューブなどが挙げられ、これらは中空状 物であってもよい。導電性ポリマーの具体例としては、ポリア-リン、ポリピロール、ポリ アセチレン、ポリ(パラフエ-レン)、ポリチォフェン、およびポリフエ-レンビ-レンなど を例示することができる。これら導電性フィラーおよび Zまたは導電性ポリマーは、 2 種以上を併用して用いても良い。力かる導電性フィラーと導電性ポリマーの中で、特 にカーボンブラックが強度と経済性の点で特に好適に用いられる。
[0086] 本発明で用いられる導電性フィラーおよび Zまたは導電性ポリマーの含有量は、用 いられる導電性フィラーおよび Zまたは導電性ポリマーの種類により適宜規定される 力 導電性と流動性、および機械的強度などとのバランスの点から、スチレン系榭脂( A)とポリアミド榭脂(B)からなる熱可塑性榭脂組成物 100重量部に対して、 0. 1〜2 50重量部の範囲が好ましぐ特に好ましくは 1〜: LOO重量部の範囲である。
[0087] また、本発明の熱可塑性榭脂組成物は、本発明の効果を損なわない範囲で、更に 他の成分、例えば、含硫黄化合物系、アタリレート系、リン系有機化合物、塩化銅、ョ ゥ化第 1銅、酢酸銅、またはステアリン酸セリウムなどの金属塩安定剤などの酸ィ匕防 止剤や耐熱安定剤が添加されてもょ ヽ。
[0088] また、その他の添加可能な成分としては、耐候剤や紫外線吸収剤、光安定剤、離 型剤、滑剤、顔料、蛍光顔料、染料、蛍光染料、着色防止剤、可塑剤、帯電防止剤( イオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートのような非イオン 系帯電防止剤、ベタイン系両性帯電防止剤や、ポリエーテルエステルアミド、ポリアミ ドエ一テル、ォレフィン系エーテルエステルアミドまたはォレフィン系エーテルエステ ルアミド等のポリアミドエラストマ一のランダムまたはブロックポリマーなど)、難燃剤 ( 赤燐、金属水酸化物系難燃剤、リン系難燃剤、シリコーン系難燃剤、ハロゲン系難燃 剤、あるいはこれらのハロゲン系難燃剤と三酸ィ匕アンチモンとの組み合わせなど)、 炭酸カルシウム、ガラスビーズ、木材粉、もみがら粉、くるみ粉、古紙、蓄光顔料、タン ダステン粉末ある 、はタングステン合金粉末、ホウ酸ガラスや銀系抗菌剤などの抗菌 剤や抗カビ剤などを添加することができる。
[0089] 本発明の熱可塑性榭脂組成物において、共重合体 (C)の含量は、スチレン系榭脂
(A)と、ポリアミド榭脂(B)からなる榭脂組成物 100重量部に対して 0. 5〜80重量部 の範囲であれば特に制限はないが、好ましくは 0. 5〜30重量部の範囲、より好ましく は 0. 5〜15重量部の範囲、さらに好ましくは 0. 5〜10重量部の範囲、特に好ましく は 1〜7重量部の範囲である。共重合体 (C)が 0. 5重量部未満では、相溶化剤とし ての添加効果に乏しぐ得られる組成物の耐衝撃性が低下する傾向にあり、 80重量 部を超えると最終組成物の成形加工性が低下する傾向にある。
[0090] 本発明の熱可塑性榭脂組成物にお!、て、スチレン系榭脂 (A)とポリアミド榭脂 (B) との混合比率は、スチレン系榭脂 (A) 1〜99重量0 /0と、ポリアミド榭脂(B) 99〜1重 量%の範囲であれば特に制限はないが、好ましくはスチレン系榭脂 (A) 45〜90重 量%およびポリアミド榭脂(B) 55〜10重量%である。本発明の榭脂組成物の表面外 観、中でも表面光沢度を一層向上させる観点から、より好ましくはスチレン系榭脂 (A ) 55〜85重量%およびポリアミド榭脂(B) 45〜15重量%であり、更に好ましくはスチ レン系榭脂 (A) 60〜80重量0 /0およびポリアミド榭脂 ^) 40〜20重量%でぁり、特に 好ましくはスチレン系榭脂 (A) 65〜80重量0 /0およびポリアミド榭脂(B) 35〜20重量 %であり、最も好ましくはスチレン系榭脂 (A) 67〜80重量0 /0およびポリアミド榭脂(B ) 33〜20重量%である。
[0091] 本発明の榭脂組成物を溶融成形して得られる成形体の形状と成形体の相構造に は特に制限はないが、榭脂組成物の耐衝撃性と流動性および表面外観のノ ンス を更に向上させる観点力も好ま 、本発明の榭脂組成物は、これを溶融成形加工し て得られる成形体中心部、すなわち成形体の表面に垂直な方向を厚みとした時、表 面力も全厚みに対し 40〜60%の深さの領域において、ポリアミド榭脂(B)が連続相 を形成するものである。具体的には、成形体中心部の相構造において、ポリアミド榭 脂(B)が連続相となる部分が 10容量%以上形成されることが好ましぐ 20容量%以 上形成されるものが更に好ましぐ 30容量%以上形成されるものが最も好ましい。
[0092] ポリアミド榭脂 (B)が連続相を形成する場合の本発明の榭脂組成物としては、好ま しくはスチレン系榭脂 (A) 55〜85重量0 /0およびポリアミド榭脂(B) 45〜15重量0 /0、 より好ましくはスチレン系榭脂 (A) 60〜80重量0 /0およびポリアミド榭脂(B) 40〜20 重量0 /0、更に好ましくはスチレン系榭脂 (A) 65〜80重量%およびポリアミド榭脂(B) 35〜20重量0 /0、特に好ましくはスチレン系榭脂 (A) 67〜80重量%およびポリアミド 榭脂(B) 33〜20重量0 /0、最も好ましくはスチレン系榭脂 (A) 70〜80重量%および ポリアミド榭脂(B) 30〜20重量0 /0であるものを挙げられる。
[0093] また、好ま U、本発明の榭脂組成物は、これを溶融成形加工して得られる成形体 中心部、すなわち成形体の表面に垂直な方向を厚みとした時、表面から全厚みに対 し 40〜60%の深さの領域にぉ 、て、グラフト(共)重合体 (A— 1)および Zまたはビ ニル系(共)重合体 (A— 2)が分散相を形成するものである。具体的には、成形体中 心部の相構造にぉ 、て、グラフト(共)重合体 (A— 1)および Zまたはビュル系(共) 重合体 (A— 2)が分散相である部分が 5容量%以上形成されるものであり、より好まし くは該分散相は 10容量%以上、更に好ましくは 30容量%以上、特に好ましくは 50容 量%以上、最も好ましくは 60容量%以上形成されるものである。
[0094] 本発明の榭脂組成物の成形体中心部にお!ヽてポリアミド榭脂(B)が連続相を形成 し、またグラフト(共)重合体 (A— 1)および Zまたはビニル系(共)重合体 (A— 2)が ポリアミド榭脂 (B)に対する分散相を形成して!/ヽる相構造の電子顕微鏡写真モデル 図を図 2に示す。
[0095] 図 2において、符号 3が示す部分は、連続相を形成するポリアミド榭脂(B)である。
符号 4が示す部分は、分散相を形成するビニル系(共)重合体 (A— 2)である。符号 5 が示す部分は、分散相を形成するグラフト (共)重合体 (A—1)である。グラフト(共) 重合体 (A— 1)がビニル系(共)重合体 (A— 2)に内包される場合は、グラフト (共)重 合体 (A— 1)とビニル系(共)重合体 (A— 2)の両方が分散相である。グラフト (共)重 合体 (A— 1)および Zまたはビニル系(共)重合体 (A— 2)が形成する分散相とは、 グラフト(共)重合体 (A— 1)および Zまたはビニル系(共)重合体 (A— 2)が、特定の 範囲で観察した場合にポリアミド榭脂 (B)に囲まれた状態にあるものを指し、特に本 発明では、榭脂組成物の成形体中心部の電子顕微鏡写真において 10 m X 10 mの範囲で観察した場合にポリアミド榭脂(B)に囲まれた状態にあるものをいう。
[0096] 本発明の熱可塑性榭脂組成物の成形体中心部で観察される好ましい相構造は、 図 2の形態に限定されるものではなぐ分散相となるグラフト (共)重合体 (A— 1)およ び Zまたはビニル系(共)重合体 (A— 2)の形状が筋状、多角形状、楕円形などの非 円形であっても力まわない。また、共重合体 (C)の分散状態には特に制限はないが 、主に、ポリアミド榭脂 (B)とグラフト (共)重合体 (A— 1)および Zまたはビュル系(共 )重合体 (A— 2)との界面に存在する。また、図 2のような相構造を成形体の中心部 の少なくとも一部に形成するとき、分散相となるグラフト (共)重合体 (A— 1)および Z またはビニル系(共)重合体 (A— 2)が、ポリアミド榭脂 (B)の連続相中に凝集するこ となぐより均一に分散する方が成形体の耐衝撃性が向上する傾向にある。
[0097] 本発明の榭脂組成物の相構造は電子顕微鏡を用いて観察することができる。電子 顕微鏡としては TEM (透過形電子顕微鏡)または SEM (走査電子顕微鏡)が挙げら れる。ポリアミド榭脂 (B)が連続相となる部分、またはグラフト(共)重合体 (A— 1)およ び Zまたはビニル系(共)重合体 (A— 2)が分散相となる部分の容量の割合は電子 顕微鏡写真の全体面積に対する、ポリアミド榭脂 (B)が連続相となる部分、またはグ ラフト (共)重合体 (A— 1)および Zまたはビニル系(共)重合体 (A— 2)が分散相とな る部分の面積比として算出することができる。
[0098] 本発明の榭脂組成物において、このような特異な相構造を形成させるには、スチレ ン系榭脂 (A)とポリアミド榭脂(B)のせん断速度 1000秒—1における各々の溶融粘度 に関し、溶融成形加工時の温度における、くスチレン系榭脂 (A)の溶融粘度〉 Zく ポリアミド榭脂 (B)の溶融粘度 >で定義される溶融粘度比を 1. 5以上とすることが好 ましい。より好ましい溶融粘度比は 2. 2以上、さらに好ましくは 3. 2以上である。
[0099] スチレン系榭脂 (A)とポリアミド榭脂 (B)に対して共重合体 (C)を添加しな 、場合に おいても、スチレン系榭脂 (A)を 65〜80重量0 /0、ポリアミド榭脂(B)を 35〜20重量 %の混合比とし、くスチレン系榭脂 (A)の溶融粘度〉 Z〈ポリアミド榭脂 (B)の溶融 粘度 >で定義される溶融粘度比を 2. 3以上に制御することにより、成形体中心部で ポリアミド榭脂 (B)が連続相を 10容量%以上形成した榭脂組成物を得ることが可能 である。このような榭脂組成物に、ポリアミド榭脂 (B)と反応性または親和性を有する( メタ)アクリル酸、無水マレイン酸、 (メタ)アクリル酸グリシジルなどのビュル系単量体 単位を含む、本発明の共重合体 (C)とは異なる共重合体を添加することにより、従来 公知の榭脂組成物と比較して、耐衝撃性および流動性に優れる榭脂組成物が得ら れる。しかし、これらは本発明の榭脂組成物より流動性および表面外観が劣る。
[0100] 本発明の熱可塑性榭脂組成物の製造方法としては、例えば、スチレン系榭脂 (A) 、ポリアミド榭脂 (B)、共重合体 (C)、また必要に応じて充填材 (D)、層状珪酸塩 (E) および Zまたはそのほか添加剤を、ペレット、粉末、あるいは細片状態などで、高速 攪拌機などを用いて均一混合した後、十分な混練能力のある一軸または多軸の 210 〜330°Cの温度に昇温したベントを有する押出機で溶融混練する方法、またはバン ノリーミキサーやゴムロール機を用いて溶融混練する方法などを採用することができ る。押出機のスクリューアレンジにも特に制限はない。また、スチレン系榭脂 (A)、ポリ アミド榭脂 (B)、共重合体 (C)、また必要に応じて充填材 (D)、層状珪酸塩 (E)およ び Zまたはそのほか添加剤の混合順序ならびにその状態には何ら制限はなぐこれ らの一括同時混合や、特定の二種以上の成分を予備混合した後に残る成分を混合 する方法を例示することができる。また、充填材 (D)は、必要に応じて 1種以上のもの を併用することもでき、これらの混合順序ならびにその状態にも何ら制限はない。
[0101] 本発明の熱可塑性榭脂組成物を溶融成形加工してなる成形体とは、射出成形、押 出成形、ブロー成形、プレス成形、圧縮成形またはガスアシスト成形等の従来公知の 成形方法を採用することによって得ることができるものである。この場合の成形温度に ついては、通常、 210〜330°Cの温度範囲力も選択される。
[0102] 本発明の熱可塑性榭脂組成物は、剛性、耐熱性、耐薬品性および常温、低温に おける耐衝撃性を維持しつつ、流動性に優れ、更に従来よりも大きく優れた表面外 観を有するため、それらの性質を生力した種々の成形品に用いることができ、特に自 動車内外装材料や電気 ·電子機器のハウジング ·部品周り成形品に有用に用 、るこ とがでさる。
実施例
[0103] 以下、実施例により本発明の構成、効果をさらに具体的に説明する。もっとも、本発 明は下記実施例に限定されるものではない。各実施例の記述に先立ち、実施例で 採用した各種物性の測定方法を記載する。
[0104] アイゾット衝撃強度
厚さ 1Z8インチの射出成形品によりノッチ付きアイゾット衝撃強度を ASTM D25 6に従って測定した。衝撃強度測定は、常温 (23°C)と低温(一 30°C)でそれぞれ行 つ 7こ。 [0105] 曲げ弾性率
ASTM D— 790に従って測定した。
[0106] 耐熱性
ASTM D— 648に従って、厚さ 1Z4インチの射出成形品を用いて、荷重 4. 6kgf Zcm2で荷重たわみ温度 (HDT)を測定した。
[0107] 流動性
JIS K7210 B法に従って、荷重 lOkgfでメルトフローレートを測定した。測定時の 溶融温度を次に示す。ポリアミド榭脂(B)のうちナイロン 6榭脂使用時およびナイロン 6成分とナイロン 66成分の共重合体使用時は溶融温度 250°C、ナイロン 66榭脂使 用時は溶融温度 280°Cとした。
[0108] 耐薬品性
図 1に示した射出成形した短冊状の試験片 l (129mm X 12. 6mm ;厚み t= l . 5 mm)を、図 1に示した 1Z4楕円治具 2に沿わして固定後、試験片表面に薬液を塗布 し、 23°C環境下で 24時間放置後、クレーズおよびクラックの発生有無を確認し、図 1 に示した a、 b、 tおよび Xに基づいて、式 1により臨界歪み ε (%)を算出した。薬液に は、メタノールとガソリンを用いた。なお、図 1および式 1中の a、 b、 tおよび Xは、それ ぞれ次の意味を表す。治具は長軸 a= 123mm、短軸 b = 47mmのものを使用した。
[0109] ε:臨界歪み(%)
a :治具の長軸(mm)
b :治具の短軸(mm)
t :試験片の厚み(mm)
X:クラック発生点の長方向長さ(mm)
[0110] [数 1]
Figure imgf000032_0001
[0111] 表面外観 1
射出成形を 50ショット行 、、縦 80mm X横 80mm X厚さ 3mmの角板を 50サンプ ル得た。これら角板の表面外観を目視により判定した。判定基準は、 50ショット中、角 板表面にフローマーク、シルバーストリーク、ブッのうち力 選ばれる 1種以上が発生 したサンプルの数により、 1〜5点の 5段階(5が最良)とした。 5点は 50ショット中、フロ 一マーク、シルバーストリーク、ブッのうち力も選ばれる 1種以上が発生したサンプル の数が 0、 4点は 50ショット中の該サンプル数が 1〜10、 3点は 50ショット中の該サン プル数が 11〜40、 2点は 50ショット中該サンプル数は 41〜49、 1点は 50ショット中 の該サンプル数が 50である。ポリアミド榭脂(B)の場合、ナイロン 6榭脂使用時およ びナイロン 6成分とナイロン 66成分の共重合体使用時においては、成形温度 250°C 、金型温度 70°Cで、ナイロン 66榭脂使用時は射出成形温度 280°C、金型温度 80°C で各々射出成形を行った。
[0112] 表面光沢度
上記記載の射出成形により得た縦 80mm X横 80mm X厚さ 3mmの角板につ!ヽて 、デジタル変角光沢計 (スガ試験機社製、型式: UGV - 5D)を使用し、 ASTM D2 56Aに準拠し、入射角 60度で表面光沢度を測定した。表面光沢度(%)は、数値が 高 、ほど鏡面の光沢が優れており、本発明にお 、て表面外観に優れることを意味す る。
[0113] 表面外観 2
射出成形を 50ショット行 、、縦 80mm X横 80mm X厚さ 3mmの角板を 50サンプ ル得た。これら角板の表面外観を目視により判定した。判定基準は、 50ショット中、角 板表面にフローマーク、シルバーストリーク、ブッのうち力 選ばれる 1種以上が発生 したサンプルの数により、 1〜5点の 5段階(5が最良)とした。 5点は 50ショット中、フロ 一マーク、シルバーストリーク、ブッのうち力も選ばれる 1種以上が発生したサンプル の数が 0、 4点は 50ショット中の該サンプル数が 1〜5、 3点は 50ショット中の該サンプ ル数が 6〜30、 2点は 50ショット中の該サンプル数が 31〜49、 1点は 50ショット中の 該サンプル数が 50である。射出成形は、成形温度 250°C、金型温度 70°Cで行った
[0114] 塗装性
縦 80mm X横 80mm X厚さ 2mmの角板にアクリル ウレタン 2液塗料(ウレタン P G60Zハードナー、関西ペイント (株)製)を塗布した後、 80°C、 2時間の条件下で乾 燥させた。次いで、 JIS K5400— 1990規格に規定されている碁盤目テープ法によ つて、 1mm方形の碁盤目(10 X 10個)をつけ、セロハンテープ剥離試験を行い塗膜 の残数によりその塗装性の評価を行った。評価基準は以下とした。塗膜の残数 95以 上:〇、塗膜の残数 80〜94 : Δ、塗膜の残数 79以下: X。
[0115] 溶融粘度比
プランジャー式キヤビラリ一レオメーター (東洋精機製作所製 キヤピログラフ タイ プ 1C)を用いて、溶融成形カ卩ェ時の温度でのせん断速度 1000秒—1におけるスチレ ン系榭脂 (Α)とポリアミド榭脂 (Β)のそれぞれの溶融粘度 (Pa · s)を測定し、 <スチレ ン系榭脂 (A)の溶融粘度 >Z<ポリアミド榭脂 (B)の溶融粘度 >で定義される溶融 粘度比を算出した。
[0116] 相構造 1 (ポリアミド榭脂 (B)連続相)
ASTM 1号ダンベルの(厚さ 3mm)の厚さ方向に表面より 1. 2〜1. 8mmの部分 (中心部)をリンタングステン酸で染色し、ポリアミド榭脂(B)を染色した。次に TEM ( 日立製作所製 H— 7100形透過形電子顕微鏡)を用いて成形体の中心部を観察し た。こうして得られる成形体の中心部の電子顕微鏡写真 (写真の厚みが均一)におい て、任意の 3箇所(10 m X 10 mの範囲)を抽出し、抽出した各々の箇所(10 μ m X mの範囲)において、染色され、かつ連続相となる部分を切り取り、その総重 量を測定し、該部分を切り取る前の全体(10 m X 10 mの範囲)の重量に対する 割合を算出した。この重量の割合は、該電子顕微鏡写真の厚みが均一であるために 容量の割合と見なすことができるため、本作業を任意の 3箇所で行った平均値を、成 形体の中心部にお!、てポリアミド榭脂(B)が連続相となる部分の容量の割合 (容量% )として採用した。中心部の相構造において、ポリアミド榭脂(B)が連続相となる部分 が 30容量%以上形成される場合を評価スコア 4、該連続相が 20容量%以上 30容量 %未満である場合を評価スコア 3、該連続相が 10容量%以上 20容量%未満である 場合を評価スコア 2、該連続相が 10容量%未満である場合を評価スコア 1、該連続 相が全く形成されな 、場合を評価スコア 0とした。
[0117] 相構造 2 (ビニル系(共)重合体 (A— 2)分散相) 相構造 1の分析で用いたものと同様の電子顕微鏡写真において、任意の 3箇所を 抽出し、抽出した各々の箇所(10 m X 10 mの範囲)にお 、て、リンタングステン 酸で染色されず、かつグラフト (共)重合体 (A— 1)および Zまたはビニル系(共)重 合体 (A— 2)が分散相となる部分を切り取った。ここで、グラフト(共)重合体 (A— 1) および Zまたはビュル系(共)重合体 (A— 2)が抽出した 10 m X 10 mの範囲外 へ渡って伸びて 、る場合は、任意の 10 ^ m X lO ^ mの範囲に収まるときにはこれを 分散相とし、該範囲内に存在する部分を切り取った。これら切り取った部分の総重量 を測定し、該部分を切り取る前の全体(10 m X 10 mの範囲)の重量に対する割 合を算出した。この重量の割合は、該電子顕微鏡写真の厚みが均一であるために容 量の割合と見なすことができるため、本作業を任意の 3箇所で行った平均値を、成形 体の中心部にぉ 、て、グラフト(共)重合体 (A— 1)および Zまたはビュル系(共)重 合体 (A— 2)が分散相である部分の容量の割合 (容量%)として採用した。グラフト( 共)重合体 (A— 1)および Zまたはビニル系(共)重合体 (A— 2)が分散相である部 分が 50容量%以上である場合を評価スコア 4、該分散相が 30容量%以上 50容量% 未満である場合を評価スコア 3、該分散相が 10容量%以上 30容量%未満である場 合を評価スコア 2、該分散相が 10容量%未満である場合を評価スコア 1、該分散相 が全く形成されな 、場合を評価スコア 0とした。
共重合体 (C)の α、 β 不飽和カルボン酸無水物単位の定量
α、 β 不飽和カルボン酸無水物とシアン化ビニル系単量体を様々なモル比で混 合し、赤外吸収スペクトル測定することにより、 α、 j8—不飽和カルボン酸無水物とシ アンィ匕ビ二ル系単量体との特性吸収のピークの強度比とモル比に関する赤外吸収ス ベクトル検量線を作成した。次に共重合体 (C)の赤外吸収スペクトル測定を行い、作 成した検量線を用いることで、反応付加し、共重合体 (C)中に含まれる a、 βー不飽 和カルボン酸無水物単位とシアン化ビュル系単量体のモル比を算出した。次 、で共 重合体 (C)の他の成分単位についても同様の方法で、シアン化ビュル系単量体との モル比を算出し、これらの結果を基に α、 β 不飽和カルボン酸無水物単位の含有 量を算出した。なお、赤外吸収スペクトル検量線の作成には、 α、 j8—不飽和カルボ ン酸無水物はカルボ-ル基の伸縮振動による特性吸収のピーク (約 1780cm_1)を、 シアンィ匕ビ二ル系単量体単位では CN基の伸縮振動による特性吸収のピーク (約 22 28cm"1)を、芳香族ビニル系単量体を含む場合は芳香族の C = C面内振動による 特性吸収のピーク (約 1495cm_ 1)を用いた。これらの特性吸収のピークは共重合体 (C)中では、 a、 j8—不飽和カルボン酸無水物単位については約 1780cm_ 1に、シ アン化ビュル系単量体単位では約 2238cm_ 1に、芳香族ビニル系単量体単位につ いては約 1495cm_ 1に確認された。
[0119] 重量平均分子量
共重合体(C) 20mgを溶媒テトラヒドロフラン 10mlに溶解させ、ゲルパーミエーショ ンクロマトグラフ(ポンプ: 515型, Waters社製、カラム: TSKgel GMHHR— H (30 )及び TSKgel Multipore HXL— Mを直結、東ソ一社製)を用いて測定した。カラ ム温度 40°Cであり、検出器は紫外線検出器を用いた。重量平均分子量はポリスチレ ン換算で求めた。
[0120] <スチレン系榭 S旨 (A) >
(参考例 1)グラフト共重合体 (A— 1) (a— 1)の調製
以下の物質を重合容器に仕込み、撹拌しながら 65°Cに昇温した。内温が 65°Cに 達した時点を重合開始として、スチレン 71重量部、アクリロニトリル 29重量部および t ドデシルメルカブタン 0. 3重量部からなる混合物 40重量部を 5時間かけて連続滴 下した。
[0121] ポリブタジエンラテックス(重量平均粒子径 0. 2 μ ηι) : 60重量部(固形分換算) ォレイン酸カリウム: 0. 5重量部
ブドウ糖: 0. 5重量部
ピロリン酸ナトリウム: 0. 5重量部
硫酸第一鉄: 0. 005重量部
脱イオン水: 120重量部
並行してタメンノヽイド口パーオキサイド 0. 25重量部、ォレイン酸カリウム 2. 5重量部 および純水 25重量部からなる水溶液を、 7時間で連続滴下し反応を完結させた。得 られたグラフト共重合体ラテックスを硫酸で凝固し、苛性ソーダで中和した後、洗浄、 濾過、乾燥してグラフト共重合体 (a— 1)を得た。 [0122] このグラフト共重合体 (a— 1)の所定量 (m)にアセトンをカ卩えて 4時間還流し、この 溶液を 8800rpm (遠心力 10000G)で 40分遠心分離した後、不溶分を濾過した。こ の不溶分を 70°Cで 5時間減圧乾燥後、重量 (n)を測定し、グラフト率 = [ (n)— (m) X L] / [ (m) X L] X 100の計算式で算出したグラフト率は 37%であった。ここで、 L はグラフト共重合体のゴム含有率である。
[0123] 上記アセトン溶液の濾液をロータリーエバポレーターで濃縮し、析出物(アセトン可 溶分)を得た。この可溶分を、 70°Cで 5時間減圧乾燥後、 0. 4gZl00ml (メチルェ チルケトン、 30°C)に調製し、ウベローデ粘度計を用いて 30°Cで測定した極限粘度 は 0. 39dlZgであった。
[0124] (参考例 2)グラフト共重合体 (A— 1) (a— 2)の調製
以下の物質を重合容器に仕込み、撹拌しながら 65°Cに昇温した。内温が 65°Cに 達した時点を重合開始として、スチレン 71重量部、アクリロニトリル 29重量部および t ドデシルメルカブタン 0. 3重量部からなる混合物 58重量部を 5時間かけて連続滴 下した。
[0125] ポリブタジエンラテックス(重量平均粒子径 0. 2 μ ηι) : 42重量部(固形分換算) ォレイン酸カリウム: 0. 5重量部
ブドウ糖: 0. 5重量部
ピロリン酸ナトリウム: 0. 5重量部
硫酸第一鉄: 0. 005重量部
脱イオン水: 120重量部
並行してタメンノヽイド口パーオキサイド 0. 25重量部、ォレイン酸カリウム 2. 5重量部 および純水 25重量部からなる水溶液を、 7時間で連続滴下し反応を完結させた。得 られたグラフト共重合体ラテックスを硫酸で凝固し、苛性ソーダで中和した後、洗浄、 濾過、乾燥してグラフト共重合体 (a— 2)を得た。得られたグラフト共重合体 (a— 2)に ついて、グラフト共重合体 (a— 1)と同様の方法により算出したグラフト率は 48%、極 限粘度は 0. 43dlZgであった。
[0126] (参考例 3)グラフト共重合体 (A— 1) (a— 3)の調製
仕込みモノマーをスチレン 67重量部、アクリロニトリル 33重量部に変更した以外は 、グラフト共重合体 (a— 1)の製造方法と同様にしてパウダー状のグラフト共重合体 (a 3)を調製した。
[0127] 得られたグラフト共重合体 (a— 3)について、グラフト共重合体 (a— 1)と同様の方法 により算出したグラフト率は 37%、極限粘度は 0. 39dlZgであった。
[0128] (参考例 4)ビニル系共重合体 (A— 2) (a— 4)の調製
アクリルアミド 80重量部、メタクリル酸メチル 20重量部、過硫酸カリ 0. 3重量部、ィ オン交換水 1500重量部を反応器中に仕込み、反応器中の気相を窒素ガスで置換 しょくかき混ぜながら 70°Cに保った。反応は単量体が完全に、重合体に転化するま で続けアクリルアミドとメタクリル酸メチル二元共重合体の水溶液として得た。イオン交 換水で希釈して、メタクリル酸メチル /アクリルアミド共重合体 0. 05部をイオン交換 水 165部に溶解した溶液を得た。
[0129] 容量が 20リットルで、ノ ッフルおよびファゥドラ型撹拌翼を備えたステンレス製ォー トクレーブに、得られたメタクリル酸メチル Zアクリルアミド共重合体 0. 05部をイオン 交換水 165部に溶解した溶液を 400rpmで撹拌し、系内を窒素ガスで置換した。次 に、下記混合物質を反応系を撹拌しながら添加し、 60°Cに昇温し懸濁重合を開始し た。
[0130] スチレン: 71重量部
アクリロニトリル: 29重量部
tードデシルメルカプタン: 0. 2重量部
2, 2,—ァゾビスイソブチロニトリル: 0. 4重量部
15分かけて反応温度を 65°Cまで昇温したのち、 2時間かけて 90°Cまで昇温し 90 °Cを 2時間保ち重合を終了した。反応系の冷却、ポリマーの分離、洗浄、乾燥を行な い、スチレン単位を 71重量0 /0、アクリロニトリル単位を 29重量0 /0含有するビーズ状の ビュル系共重合体 (a— 4)を得た。ポリマー収率は 96%であった。この共重合体を 0 . 4gZl00ml (メチルェチルケトン、 30°C)に調製し、ウベローデ粘度計を用いて測 定した極限粘度は 0. 51dlZgであった。
[0131] (参考例 5)ビニル系共重合体 (A— 2) (a— 5)の調製
容量が 20リットルで、ノ ッフルおよびファゥドラ型撹拌翼を備えたステンレス製ォー トクレーブに、ビュル系共重合体 (a— 4)の調製で用いたのと同様のメタクリル酸メチ ル Zアクリルアミド共重合体 0. 05部をイオン交換水 165部に溶解した溶液を 400rp mで撹拌し、系内を窒素ガスで置換した。次に、下記混合物質を反応系を撹拌しな 力 添加し、 60°Cに昇温し懸濁重合を開始した。
[0132] スチレン: 67重量部
アクリロニトリル: 33重量部
tードデシルメルカプタン: 0. 34重量部
2, 2,—ァゾビスイソブチロニトリル: 0. 4重量部
15分かけて反応温度を 65°Cまで昇温したのち、 3時間かけて 90°Cまで昇温し 90 °Cを 3時間保ち重合を終了した。反応系の冷却、ポリマーの分離、洗浄、乾燥を行な い、スチレン単位を 67重量0 /0、アクリロニトリル単位を 33重量0 /0含有するビーズ状の ビュル系共重合体 (a— 5)を得た。ポリマー収率は 97%であった。この共重合体を 0 . 4gZl00ml (メチルェチルケトン、 30°C)に調製し、ウベローデ粘度計を用いて測 定した極限粘度は 0. 34dlZgであった。
[0133] (参考例 6)ビニル系共重合体 (a— 6) (比較例用)の調製
容量が 20リットルで、ノ ッフルおよびファゥドラ型撹拌翼を備えたステンレス製ォー トクレーブに、ビュル系共重合体 (a— 4)の調製で用いたのと同様のメタクリル酸メチ ル Zアクリルアミド共重合体 0. 05部をイオン交換水 165部に溶解した溶液を 400rp mで撹拌し、系内を窒素ガスで置換した。次に、下記混合物質を反応系を撹拌しな 力 添加し、 60°Cに昇温し懸濁重合を開始した。
[0134] スチレン: 30重量部
メタクリル酸メチル: 40重量部
アクリロニトリル: 30重量部
tードデシルメルカプタン: 0. 34重量部
2, 2,—ァゾビスイソブチロニトリル: 0. 4重量部
15分かけて反応温度を 65°Cまで昇温したのち、 3時間かけて 90°Cまで昇温し 90 °Cを 5時間保ち重合を終了した。反応系の冷却、ポリマーの分離、洗浄、乾燥を行な い、スチレンを 30重量%、メタクリル酸メチルを 40重量%、アクリロニトリルを 30重量 %含有するビーズ状のビニル系共重合体 (a— 6)を得た。ポリマー収率は 97%であ つた。この共重合体を 0. 4gZl00ml (メチルェチルケトン、 30°C)に調製し、ウベ口 ーデ粘度計を用いて測定した極限粘度は 0. 35dlZgであった。
[0135] <共重合体 (C) >
(参考例 7)共重合体 (C) (c 1)の調製
スチレン 30重量部、アクリロニトリル 32. 9重量部、無水マレイン酸 0. 2重量部、 t ドデシルメルカプタン 0. 3重量部、 2, 2'—ァゾビスイソブチ口-トリル 0. 3重量部を、 メチルェチルケトン 60重量部を入れたバッフルおよびファゥドラ型撹拌翼を備えたス テンレス製オートクレーブに仕込み、この溶液を 300rpmで攪拌しながら温度を 80°C まで昇温した。次いで、スチレン 34. 6重量部と無水マレイン酸 2. 3重量部、 2, 2'— ァゾビスイソブチ口-トリル 0. 2重量部をメチルェチルケトン 60重量部に溶解した溶 液を 5時間で連続的に添加した。添加後さらに 80°Cで 3時間保ち、重合を終了した。 冷却後、溶液を 5倍当量のメタノールに注ぎ込み、再沈殿により精製を行い、乾燥に より溶媒を完全に留去し、共重合体 (C) (c— 1)を得た。ポリマー収率は 93%であつ た。赤外吸収スペクトル測定により、赤外吸収スペクトル検量線を用いて求めた組成 はスチレン単位を 64. 8重量0 /0、アタリロニトリノレ単位を 32. 7重量0 /0、無水マレイン 酸単位を 2. 5重量%含有するものであった。また、共重合体 (C) (c— 1)を 0. 4g/l 00ml (メチルェチルケトン、 30°C)に調製し、ウベローデ粘度計を用いて 30°Cで測 定した極限粘度は 0. 30dlZgであった。また、ゲルパーミエーシヨンクロマトグラフを 用いて測定した重量平均分子量は 34000であった。
[0136] (参考例 8)共重合体 (C) (c 2)の調製
スチレン 70. 0重量部、アクリロニトリル 28. 5重量部、無水マレイン酸 1. 5重量部、 tードデシルメルカプタン 0. 35重量部、 2, 2'—ァゾビスイソブチ口-トリル 0. 3重量 部を、メチルェチルケトン 80重量部を入れたバッフルおよびファゥドラ型撹拌翼を備 えたステンレス製オートクレープに仕込み、この溶液を 300rpmで攪拌しながら温度 を 80°Cまで昇温した後、 80°Cで 5時間保ち、重合を終了した。冷却後、溶液を 5倍当 量のメタノールに注ぎ込み、再沈殿により精製を行い、乾燥により溶媒を完全に留去 し、共重合体 (C) (c— 2)を得た。ポリマー収率は 94%であった。赤外吸収スペクトル 測定により、赤外吸収スペクトル検量線を用いて求めた組成は、スチレン単位を 70. 7重量0 /0、アクリロニトリル単位を 27. 8重量0 /0、無水マレイン酸単位を 1. 5重量%含 有するものであった。また、共重合体(C) (じー2)を0. 4gZ 100ml (メチルェチルケト ン、 30°C)に調製し、ウベローデ粘度計を用いて 30°Cで測定した極限粘度は 0. 34d lZgであった。また、ゲノレパーミエーシヨンクロマトグラフを用いて測定した重量平均 分子量は 35000であった。
[0137] (参考例 9)共重合体 (C) (c 3)の調製
スチレン 66. 0重量部、アクリロニトリル 32. 4重量部、無水マレイン酸 1. 6重量部、 tードデシルメルカプタン 0. 16重量部、 2, 2'—ァゾビスイソブチ口-トリル 0. 3重量 部を、メチルェチルケトン 140重量部を入れたバッフルおよびファゥドラ型撹拌翼を 備えたステンレス製オートクレープに仕込み、この溶液を 300rpmで攪拌しながら温 度を 80°Cまで昇温した後、 80°Cで 5時間保ち、重合を終了した。冷却後、溶液を 5倍 当量のメタノールに注ぎ込み、再沈殿により精製を行い、乾燥により溶媒を完全に留 去し、共重合体 (C) (c— 3)を得た。ポリマー収率は 87%であった。赤外吸収スぺタト ル測定により、赤外吸収スペクトル検量線を用いて求めた組成は、スチレン単位を 68 . 8重量0 /0、アクリロニトリル単位を 29. 7重量0 /0、無水マレイン酸単位を 1. 5重量% 含有するものであった。また、共重合体(C) (じー3)を0. 4gZ 100ml (メチルェチル ケトン、 30°C)に調製し、ウベローデ粘度計を用いて 30°Cで測定した極限粘度は 0. 41dlZgであった。また、ゲノレパーミエーシヨンクロマトグラフを用いて測定した重量 平均分子量は 39000であった。
[0138] (参考例 10)共重合体 (C) (c 4)の調製
スチレン 30重量部、アクリロニトリル 30重量部、無水マレイン酸 0. 3重量部、 tード デシルメルカプタン 0. 6重量部、 2, 2'—ァゾビスイソブチ口-トリル 0. 3重量部を、メ チルェチルケトン 60重量部を入れたバッフルおよびファゥドラ型撹拌翼を備えたステ ンレス製オートクレーブに仕込み、この溶液を 300rpmで攪拌しながら温度を 80°Cま で昇温した。次いで、スチレン 37重量部と無水マレイン酸 2. 7重量部、 2, 2'ーァゾ ビスイソブチ口-トリル 0. 2重量部をメチルェチルケトン 60重量部に溶解した溶液を 5 時間で連続的に添加した。添加後さらに 80°Cの温度で 4時間保ち、重合を終了した 。冷却後、溶液を 5倍当量のメタノールに注ぎ込み、再沈殿により精製を行い、 80°C にて 15時間真空乾燥を行い溶媒を完全に留去し、共重合体 (C) (c— 4)を得た。ポ リマー収率は 93%であった。赤外吸収スペクトル測定により、赤外吸収スペクトル検 量線を用いて求めた組成はスチレン単位を 67. 0重量%、アクリロニトリル単位を 30. 0重量%、無水マレイン酸単位を 3. 0重量%含有するものであった。また、共重合体 (C) (c— 4)を 0. 4gZl00ml (メチルェチルケトン、 30°C)に調製し、ウベローデ粘 度計を用いて 30°Cの温度で測定した極限粘度は、 0. 25dlZgであった。また、ゲル パーミエーシヨンクロマトグラフを用いて測定した重量平均分子量は 31000であった
[0139] (参考例 11)共重合体 (C) (c 5)の調製
スチレン 56重量部、アクリロニトリル 27. 5重量部、メタクリル酸メチル 15重量部、無 水マレイン酸 1. 5重量部、 tードデシルメルカプタン 0. 26重量部、 2, 2'—ァゾビスィ ソブチ口-トリル 0. 3重量部を、メチルェチルケトン 80重量部を入れたバッフルおよ びファゥドラ型撹拌翼を備えたステンレス製オートクレープに仕込み、この溶液を 300 rpmで攪拌しながら温度を 80°Cまで昇温した後、 80°Cで 7時間保ち、重合を終了し た。冷却後、溶液を 5倍当量のメタノールに注ぎ込み、再沈殿により精製を行い、乾 燥により溶媒を完全に留去し、共重合体 (C) (c— 5)を得た。ポリマー収率は 98%で あった。赤外吸収スペクトル測定により、赤外吸収スペクトル検量線を用いて求めた 組成はスチレン単位を 56. 5重量0 /0、アクリロニトリル単位を 26. 6重量0 /0、メタクリル 酸メチル単位を 15. 4重量%、無水マレイン酸単位を 1. 5重量%含有するものであ つた。また、共重合体(C) (じー5)を0. 4gZl00ml (メチルェチルケトン、 30°C)に調 製し、ウベローデ粘度計を用いて 30°Cで測定した極限粘度は 0. 34dlZgであった。 また、ゲルパーミエーシヨンクロマトグラフを用いて測定した重量平均分子量は 3500 0であった。
[0140] (参考例 12)共重合体 (C) (c 6)の調製
スチレン 38. 5重量部、アクリロニトリル 28. 0重量部、無水マレイン酸 1. 0重量部、 tードデシルメルカプタン 0. 7重量部、 2, 2'—ァゾビスイソブチ口-トリル 0. 3重量部 を、メチルェチルケトン 60重量部を入れたバッフルおよびファゥドラ型撹拌翼を備え たステンレス製オートクレープに仕込み、この溶液を 300rpmで攪拌しながら温度を 8 0°Cまで昇温した。次いで、スチレン 30重量部と無水マレイン酸 2. 5重量部、 2, 2, ーァゾビスイソブチ口-トリル 0. 2重量部をメチルェチルケトン 60重量部に溶解した 溶液を 5時間で連続的に添加した。 80°Cで 9時間保ち、重合を終了した。冷却後、溶 液を 5倍当量のメタノールに注ぎ込み、再沈殿により精製を行い、 80°Cにて 12時間 真空乾燥を行い溶媒を完全に留去し、共重合体 (C) (c 6)を得た。ポリマー収率は 87%であった。赤外吸収スペクトル測定により、赤外吸収スペクトル検量線を用いて 求めた組成は、スチレン単位を 68. 5重量0 /0、アタリロニトリノレ単位を 28. 0重量0 /0、 無水マレイン酸単位を 3. 5重量%含有するものであった。また、共重合体 (C) (c 6 )を 0. 4gZ 100ml (メチルェチルケトン、 30°C)に調製し、ウベローデ粘度計を用い て 30°Cで測定した極限粘度は 0. 20dl/gであった。また、ゲルパーミエーシヨンクロ マトグラフを用いて測定した重量平均分子量は 19000であった。
(参考例 13)共重合体 (C) (c 7)の調製
スチレン 38重量部、アクリロニトリル 29重量部、無水マレイン酸 0. 5重量部、 tード デシルメルカプタン 0. 65重量部、 2, 2,—ァゾビスイソブチ口-トリル 0. 1重量部を、 メチルェチルケトン 60重量部を入れたバッフルおよびファゥドラ型撹拌翼を備えたス テンレス製オートクレーブに仕込み、この溶液を 300rpmで攪拌しながら温度を 80°C まで昇温した。次いで、スチレン 30重量部と無水マレイン酸 2. 5重量部、 2, 2' ァ ゾビスイソブチ口-トリル 0. 3重量部をメチルェチルケトン 60重量部に溶解した溶液 を 6時間で連続的に添加した。添加後更に 80°Cで 3時間保ち、重合を終了した。冷 却後、溶液を 5倍当量のメタノールに注ぎ込み、再沈殿により精製を行い、乾燥により 溶媒を完全に留去し、共重合体 (C) (c 7)を得た。ポリマー収率は 91%であった。 赤外吸収スペクトル測定により、赤外吸収スペクトル検量線を用いて求めた組成は、 スチレン単位を 68. 1重量0 /0、アクリロニトリル単位を 28. 9重量0 /0、無水マレイン酸 単位を 3. 0重量%含有するものであった。また、共重合体 (C) (c— 7)を 0. 4g/10 Oml (メチルェチルケトン、 30°C)に調製し、ウベローデ粘度計を用いて 30°Cで測定 した極限粘度は 0. 23dlZgであった。また、ゲルパーミエーシヨンクロマトグラフを用 V、て測定した重量平均分子量は 27000であった。 [0142] (参考例 14)共重合体 (C) (c 8)の調製
スチレン 30重量部、アクリロニトリル 33. 5重量部、無水マレイン酸 0. 3重量部、 t ドデシルメルカプタン 0. 28重量部、 2, 2'—ァゾビスイソブチ口-トリル 0. 3重量部を 、メチルェチルケトン 60重量部を入れたバッフルおよびファゥドラ型撹拌翼を備えた ステンレス製オートクレーブに仕込み、この溶液を 300rpmで攪拌しながら温度を 80 °Cまで昇温した。次いで、スチレン 33. 5重量部と無水マレイン酸 2. 5重量部、 2, 2' ーァゾビスイソブチ口-トリル 0. 2重量部をメチルェチルケトン 60重量部に溶解した 溶液を 5時間で連続的に添加した。添加後さらに 80°Cで 3時間保ち、重合を終了し た。冷却後、溶液を 5倍当量のへキサンに注ぎ込み、再沈殿により精製を行い、乾燥 により溶媒を完全に留去し、共重合体 (C) (c— 8)を得た。ポリマー収率は 93%であ つた。赤外吸収スペクトル測定により、赤外吸収スペクトル検量線を用いて求めた組 成はスチレン単位を 63. 4重量0 /0、アタリロニトリノレ単位を 33. 6重量0 /0、無水マレイ ン酸単位を 2. 8重量%含有するものであった。また、共重合体 (C) (c 8)を 0. 4g /100ml (メチルェチルケトン、 30°C)に調製し、ウベローデ粘度計を用いて 30°Cで 測定した極限粘度は 0. 30dlZgであった。また、ゲルパーミエーシヨンクロマトグラフ を用いて測定した重量平均分子量は 34000であった。
[0143] (参考例 15)共重合体 (c 9) (比較例用)の調製
スチレン 66. 9重量部、アクリロニトリル 31. 9重量部、無水マレイン酸 1. 2重量部、 tードデシルメルカプタン 0. 02重量部、 2, 2'—ァゾビスイソブチ口-トリル 0. 3重量 部を、メチルェチルケトン 120重量部を入れたバッフルおよびファゥドラ型撹拌翼を 備えたステンレス製オートクレープに仕込み、この溶液を 300rpmで攪拌しながら温 度を 80°Cまで昇温した後、 80°Cで 8時間保ち、重合を終了した。冷却後、溶液を 5倍 当量のメタノールに注ぎ込み、再沈殿により精製を行い、乾燥により溶媒を完全に留 去し、共重合体 (c— 9)を得た。ポリマー収率は 94%であった。赤外吸収スペクトル 測定により、赤外吸収スペクトル検量線を用いて求めた組成は、スチレン単位を 69. 9重量0 /0、アクリロニトリル単位を 28. 9重量0 /0、無水マレイン酸単位を 1. 2重量%含 有するものであった。また、共重合体(c 9)を 0. 4gZl00ml (メチルェチルケトン、 30°C)に調製し、ウベローデ粘度計を用いて 30°Cで測定した極限粘度は 0. 58dl/ gであった。共重合体 (c 9)は、極限粘度と α、 β 不飽和カルボン酸無水物単位 の含有量が本発明の共重合体 (C)と異なる。
[0144] (参考例 16)共重合体 (c 10) (比較例用)の調製
スチレン 70. 0重量部、アクリロニトリル 28. 8重量部、無水マレイン酸 1. 2重量部、 tードデシルメルカプタン 0. 02重量部、 2, 2'—ァゾビスイソブチ口-トリル 0. 3重量 部を、メチルェチルケトン 80重量部を入れたバッフルおよびファゥドラ型撹拌翼を備 えたステンレス製オートクレープに仕込み、この溶液を 300rpmで攪拌しながら温度 を 80°Cまで昇温した。そのまま 80°Cで 9時間保ち、重合を終了した。冷却後、溶液を 5倍当量のメタノールに注ぎ込み、再沈殿により精製を行い、乾燥により溶媒を完全 に留去し、共重合体 (c— 10)を得た。ポリマー収率は 97%であった。赤外吸収スぺ タトル測定により、赤外吸収スペクトル検量線を用いて求めた組成は、スチレン単位 を 70. 7重量0 /0、アクリロニトリル単位を 28. 1重量0 /0、無水マレイン酸単位を 1. 2重 量%含有するものであった。また、共重合体 (c— 10)を 0. 4gZ 100ml (メチルェチ ルケトン、 30°C)に調製し、ウベローデ粘度計を用いて 30°Cで測定した極限粘度は 0 . 69dlZgであった。共重合体 (c 10)は、極限粘度と a;、 β 不飽和カルボン酸 無水物単位の含有量が本発明の共重合体 (C)と異なる。
[0145] (参考例 17)共重合体 (c 11) (比較例用)の調製
スチレン 30重量部、アクリロニトリル 31. 3重量部、無水マレイン酸 0. 2重量部、 2, 2'ーァゾビスイソブチ口-トリル 0. 3重量部を、メチルェチルケトン 60重量部を入れ たバッフルおよびファゥドラ型撹拌翼を備えたステンレス製オートクレープに仕込み、 この溶液を 300rpmで攪拌しながら温度を 80°Cまで昇温した。次いで、スチレン 37. 5重量部と無水マレイン酸 1. 0重量部、 2, 2'—ァゾビスイソブチ口-トリル 0. 2重量 部をメチルェチルケトン 60重量部に溶解した溶液を 5時間で連続的に添加した。添 加後さらに 80°Cで 3時間保ち、重合を終了した。冷却後、溶液を 5倍当量のメタノー ルに注ぎ込み、再沈殿により精製を行い、乾燥により溶媒を完全に留去し、共重合体 (c 11)を得た。ポリマー収率は 93%であった。赤外吸収スペクトル測定により、赤 外吸収スペクトル検量線を用いて求めた組成はスチレン単位を 67. 9重量%、アタリ ロニトリル単位を 30. 8重量0 /0、無水マレイン酸単位を 1. 3重量%含有するものであ つた。また、共重合体 (c— 11)を 0. 4gZl00ml (メチルェチルケトン、 30°C)に調製 し、ウベローデ粘度計を用いて 30°Cで測定した極限粘度は 0. 84dlZgであった。共 重合体 (c 11)は、極限粘度と ex、 β 不飽和カルボン酸無水物単位の含有量が 本発明の共重合体 (C)と異なる。
[0146] (参考例 18)共重合体 (c 12) (比較例用)の調製
アクリルアミド 80重量部、メタクリル酸メチル 20重量部、過硫酸カリ 0. 3重量部、ィ オン交換水 1500重量部を反応器中に仕込み反応器中の気相を窒素ガスで置換し よくかき混ぜながら 70°Cに保った。反応は単量体が完全に、重合体に転化するまで 続けアクリルアミドとメタクリル酸メチル二元共重合体の水溶液として得た。イオン交換 水で希釈して、メタクリル酸メチル Zアクリルアミド共重合体 0. 05部をイオン交換水 1 65部に溶解した溶液を得た。
[0147] 容量が 20リットルで、ノ ッフルおよびファゥドラ型撹拌翼を備えたステンレス製ォー トクレーブに、得られたメタクリル酸メチル Zアクリルアミド共重合体 0. 05部をイオン 交換水 165部に溶解した溶液を 400rpmで撹拌し、系内を窒素ガスで置換した。次 に、下記混合物質を反応系を撹拌しながら添加し、 60°Cに昇温し懸濁重合を開始し た。
[0148] スチレン: 70重量部
アクリロニトリル: 25重量部
メタクリル酸メチル: 5重量部
tードデシルメルカプタン: 0. 4重量部
2, 2,—ァゾビスイソブチロニトリル: 0. 2重量部
15分かけて反応温度を 65°Cまで昇温したのち、 2時間かけて 90°Cまで昇温し 90 °Cを 2時間保ち重合を終了した。反応系の冷却、ポリマーの分離、洗浄、乾燥を行な い、ビーズ状の共重合体 (c 12)を得た。ポリマー収率は 96%であった。赤外吸収 スペクトル測定により、赤外吸収スペクトル検量線を用いて求めた組成はスチレン単 位を 70重量%、アクリロニトリル単位を 25重量%、メタクリル酸単位を 5重量%含有す るものであった。また、共重合体(c— 12)を 0. 4gZl00ml (メチルェチルケトン、 30 °C)に調製し、ウベローデ粘度計を用いて 30°Cで測定した極限粘度は 0. 59dlZgで あった。共重合体 (c 12)は、 oc、 j8—不飽和カルボン酸無水物単位を含まない点 と極限粘度が本発明の共重合体 (C)と異なる。
[0149] (参考例 19)共重合体 (c 13) (比較例用)の調製
重合容器に、純水 120部および過硫酸カリウム 0. 3部を仕込み、撹拌しながら 65 °Cに昇温した。内温が 65°Cに達した時点を重合開始として、スチレン 67重量部、ァ クリロ-トリル 30重量部、メタクリル酸 3重量部および tードデシルメルカプタン 1. 5重 量部からなる混合物およびドデシルベンゼンスルホン酸ナトリウム 2部を含む乳化剤 水溶液 30部を各々 5時間に亘つて連続添加した。続いて重合系を 70°Cに昇温し、 3 時間重合を行い、重合を完結した。その後、塩ィ匕カルシウムを用いて塩析 '脱水 ·乾 燥することにより、共重合体 (c 13)を得た。このときのポリマー収率は 95%であった 。赤外吸収スペクトル測定により、赤外吸収スペクトル検量線を用いて求めた組成は スチレン単位を 67重量%、アクリロニトリル単位を 30重量%、メタクリル酸単位を 5重 量%含有するものであった。また、共重合体 (c— 13)を 0. 4gZ 100ml (メチルェチ ルケトン、 30°C)に調製し、ウベローデ粘度計を用いて 30°Cで測定した極限粘度は 0 . 31dlZgであった。共重合体 (c 13)は、 《、 j8—不飽和カルボン酸無水物単位 を含まな ヽ点で本発明の共重合体 (C)と異なる。
[0150] (参考例 20)共重合体 (c 14) (比較例用)の調製
メタクリル酸メチル 90重量部、スチレン 8重量部、無水マレイン酸 2重量部をメチル ェチルケトン 150重量部に溶解させ、 tードデシルメルカプタン 0. 14重量部、 2, 2, ーァゾビスイソブチ口-トリル 0. 3重量部をカ卩え、 80°Cで 6時間溶液重合を行った。 冷却後、 5倍当量のメタノールに注ぎ込み、再沈殿を行って共重合体を得た。この共 重合体を 80°Cで 12時間熱風乾燥させ、メタクリル酸メチル単位を 90重量%、スチレ ン単位を 8重量%、無水マレイン酸単位を 2重量%含む共重合体 (c 14)を得た。ま た、共重合体(c— 14)を 0. 4g/100ml (メチルェチルケトン、 30°C)に調製し、ウベ ローデ粘度計を用いて測定した極限粘度は 0. 38dlZgであった。共重合体 (c— 14 )は、シアンィ匕ビュル系単量体単位を含まない点で本発明の共重合体 (C)と異なる。
[0151] (参考例 21)共重合体 (c 15) (比較例用)の調製
スチレン 92重量部、無水マレイン酸 8重量部をメチルェチルケトン 130重量部に溶 解させ、 tードデシルメルカプタン 0. 8重量部、 2, 2'—ァゾビスイソブチ口-トリル 0. 3重量部をカ卩え、 80°Cで 6時間溶液重合を行った。冷却後、 5倍当量のメタノールに 注ぎ込み、再沈殿を行って共重合体を得た。この共重合体を 80°Cで 12時間熱風乾 燥させ、スチレン単位を 92重量%、無水マレイン酸単位を 8重量%含む共重合体 (c 15)を得た。また、共重合体(c— 15)を 0. 4gZl00ml (メチルェチルケトン、 30°C )に調製し、ウベローデ粘度計を用いて測定した極限粘度は 0. 15dlZgであった。 共重合体 (c 15)は、シアン化ビュル系単量体単位を含まない点で本発明の共重 合体 (C)と異なる。
[0152] くポリアミド榭脂(B) >
(参考例 22)ポリアミド榭脂 (B) (b 1) : 98%濃硫酸中に lgZdlの濃度で溶解した 溶液の相対粘度が、 25°Cで 2. 3のナイロン 6を使用した。
[0153] (参考例 23)ポリアミド榭脂(B) (b— 2) : 98%濃硫酸中に lgZdlの濃度で溶解した 溶液の相対粘度が、 25°Cで 2. 9のナイロン 6を使用した。
[0154] (参考例 24)ポリアミド榭脂(B) (b— 3) : 98%濃硫酸中に lgZdlの濃度で溶解した 溶液の相対粘度が、 25°Cで 3. 8のナイロン 6を使用した。
[0155] (参考例 25)ポリアミド榭脂(B) (b— 4) : 98%濃硫酸中に lgZdlの濃度で溶解した 溶液の相対粘度が、 25°Cで相対粘度 2. 5の、ナイロン 6成分とナイロン 66成分とか らなる共重合体を使用した。
[0156] (参考例 26)ポリアミド榭脂(B) (b— 5) : 98%濃硫酸中に lgZdlの濃度で溶解した 溶液の相対粘度が、 25°Cで 2. 4のナイロン 66を使用した。
[0157] <充填材 (D) >
(参考例 27)充填材 (D) (d— 1):重量平均繊維長 6mm、数平均繊維径 10 /z mの 炭素繊維を使用した。
[0158] (参考例 28)充填材 (D) (d- 2):繊維径 13 mのガラス繊維のチョップドストランド
(日本電気硝子社製、製品名: ECS03T— 351)を使用した。
[0159] (参考例 29)充填材(D) (d- 3):平均粒径 4. 5 m、 SiOと MgOの割合 98%、白
2
色度 95%のタルク(富士タルク工業社製、製品名: LMS 300)を使用した。
[0160] く層状珪酸塩 (E) > (参考例 30)膨潤性層状珪酸塩 (E) (e— 1)の調製
Na型モンモリロナイト (クニミネ工業:クニピア F、陽イオン交換容量 120m当量 Zl 00g) 100gを温水 10リットルに攪拌分散し、ここにべンジルジメチルォクタデシルアン モ -ゥムクロライド 51g (陽イオン交換容量と等量)を溶解させた温水 2Lを添加して 1 時間攪拌した。生じた沈殿を濾別した後、温水で洗浄した。この洗浄と濾別の操作を 3回行い、得られた固体を 80°Cで真空乾燥して乾燥した膨潤性層状珪酸塩 (e—1) を得た。得られた膨潤性層状珪酸塩 (e—1)の無機灰分量を測定したところ、 68重量 %であった。なお、無機灰分量の測定は膨潤性層状珪酸塩 0. lgを 600°Cの電気炉 で 3時間灰化して求めた値である。
[0161] (参考例 31)層状珪酸塩含有ポリアミド榭脂 (b— 6)の調製
前記ポリアミド榭脂 (b 1)の 100重量部に対して前記膨潤性層状珪酸塩 (e— 1) 8 重量部を混合した後、スクリュウ径 30mm、 LZD力 4. 5の同方向回転 2軸押出機( 日本製鋼所製 TEX- 30)の上流側の供給口カゝら投入し、榭脂温度 250°C、スクリ ユウ回転数 150rpmで溶融混練することにより、層状珪酸塩含有ポリアミド榭脂 (b—
6)を得た。得られた層状珪酸塩含有ポリアミド榭脂 (b— 6)はペレタイズした後、 80 °Cで 10時間真空乾燥した。
[0162] (参考例 32)層状珪酸塩含有ポリアミド榭脂 (b 7)の調製
前記ポリアミド榭脂 (b 1)の 100重量部に対して前記膨潤性層状珪酸塩 (e— 1) 3 重量部を混合した後、スクリュウ径 30mm、 LZD力 4. 5の同方向回転 2軸押出機( 日本製鋼所製 TEX- 30)の上流側の供給口カゝら投入し、榭脂温度 250°C、スクリ ユウ回転数 150rpmで溶融混練することにより、層状珪酸塩含有ポリアミド榭脂 (b—
7)を得た。得られた層状珪酸塩含有ポリアミド榭脂 (b— 7)はペレタイズした後、 80 °Cで 10時間真空乾燥した。
[0163] (実施例 1〜5)
参考例で調製したスチレン系榭脂 (A)、ポリアミド榭脂 (B)および共重合体 (C)を 表 1に示した配合比で混合し、スクリュウ径 30mm、 L/Dが 25の同方向回転 2軸押 出機 (池貝鉄工製 PCM— 30)で榭脂温度 250°C、スクリュウ回転数 150rpmで溶 融混練、押出を行うことによってペレットを製造した。各ペレットについて成形温度 25 0°C、金型温度 70°Cの条件で射出成形に供し、各試験片を作製しそれについて物 性の評価を行なった。これらの結果を表 1に示す。
[0164] (比較例 1〜4)
参考例で調製したスチレン系榭脂 (A)、ポリアミド榭脂 (B)および比較例用の共重 合体を表 1に示した配合比で混合し、実施例 1〜5と同様の製造方法にて各試験片 を作製し、これらについて物性の評価を行なった。これらの結果を表 1に示す。
[0165] (比較例 5、 6)
参考例で調製したグラフト共重合体 (A— 1)、ビュル系共重合体 (a— 6)、ポリアミド 榭脂 (B)および共重合体 (C)を表 1に示した配合比で混合し、実施例 1〜5と同様の 製造法にて試験片を作製し、これらについて物性の評価を行った。これらの結果を 表 1に示す。比較例 5、 6は、ビニル系(共)重合体 (A— 2)を含んでいない点で本発 明の榭脂組成物と異なる。
[0166] [表 1]
Figure imgf000051_0001
(実施例 6〜8)
参考例で調製したスチレン系榭脂 (A)、ポリアミド榭脂 (B)および共重合体 (C)を 表 2に示した配合比で混合し、実施例 1〜5と同様の製造法にて試験片を作製し、そ れにつ!/、て物性の評価を行った。これらの結果を表 2に示す。 [0168] (比較例 7〜: LO)
参考例で調製したスチレン系榭脂 (A)、ポリアミド榭脂 (B)および比較例用の共重 合体を表 2に示した配合比で混合し、実施例 1〜5と同様の製造条件で試験片を作 製し、それについて物性の評価を行った。これらの結果を表 2に示す。
[0169] (実施例 9、比較例 11)
参考例で調製したスチレン系榭脂 (A)、ポリアミド榭脂 (B)および共重合体 (C)、ま たは比較例用の共重合体を表 2に示した配合比で混合し、スクリュウ径 30mm、 L/ Dが 25の同方向回転 2軸押出機 (池貝鉄工製 PCM— 30)で榭脂温度 280°C、スク リュウ回転数 150rpmで溶融混練、押出を行うことによってペレットを製造した。各ぺ レットについて成形温度 280°C、金型温度 80°Cの条件で射出成形に供し、各試験 片を作製し、これらについて物性の評価を行なった。これらの結果を表 2に示す。
[0170] [表 2]
Figure imgf000053_0001
(実施例 10 12)
参考例で調製したスチレン系榭脂 (A)、ポリアミド榭脂 (B)、および共重合体 (C)を 表 3に示した配合比で混合し、スクリュウ径 30mm LZDが 44. 5の同方向回転 2軸 押出機(日本製鋼所製 TEX— 30)の上流側の供給ロカゝら投入し、参考例 27 29 の充填材 (D)をサイドフィーダ一から投入し、榭脂温度 250°C、スクリュウ回転数 150 rpmで溶融混練、押出を行うことにより、ペレットを製造した。各ペレットについて成形 温度 250°C、金型温度 70°Cの条件で射出成形に供し、各試験片を作製しそれにつ V、て物性の評価を行なった。これらの結果を表 3に示す。
[0172] (比較例 12、 13)
参考例で調製したスチレン系榭脂 (A)、ポリアミド榭脂 (B)、比較例用の共重合体 を表 3に示した配合比で混合し、スクリュウ径 30mm、 LZDが 44. 5の同方向回転 2 軸押出機(日本製鋼所製 TEX- 30)の上流側の供給口カゝら投入し、参考例 27、 2 8の充填材 (D)をサイドフィーダ一から投入し、榭脂温度 250°C、スクリュウ回転数 15 Orpmで溶融混練、押出を行うことにより、ペレットを製造した。各ペレットについて成 形温度 250°C、金型温度 70°Cの条件で射出成形に供し、各試験片を作製し、これら について物性の評価を行なった。これらの結果を表 3に示す。
[0173] [表 3]
表 3
Figure imgf000055_0001
[0174] (実施例 13〜16)
参考例で調製したスチレン系榭脂 (A)、ポリアミド榭脂 (B)、層状珪酸塩含有ポリア ミド榭脂、共重合体 (C)、層状珪酸塩 (E)を表 4に示した配合比で混合し、スクリュウ 径 30mm、 LZDが 25の同方向回転 2軸押出機 (池貝鉄工製 PCM— 30)で榭脂 温度 250°C、スクリュウ回転数 150rpmで溶融混練、押出を行うことによってペレット を製造した。各ペレットについて成形温度 250°C、金型温度 70°Cの条件で射出成形 に供し、各試験片を作製し、これらについて物性の評価を行なった。これらの結果を 表 4に示す。
[0175] (比較例 14〜16)
参考例で調製したスチレン系榭脂 (A)、層状珪酸塩含有ポリアミド榭脂、および比 較例用の共重合体を表 4に示した配合比で混合し、実施例 13〜16と同様の製造法 にて各試験片を作製し、これらについて物性の評価を行なった。これらの結果を表 4 に示す。
[表 4]
Figure imgf000056_0001
(実施例 17〜23) 参考例で調製したスチレン系榭脂 (A)、ポリアミド榭脂 (B)および共重合体 (C)を 表 5に示した配合比で混合し、スクリュウ径 30mm、 L/Dが 25の同方向回転 2軸押 出機 (池貝鉄工製 PCM— 30)で榭脂温度 250°C、スクリュウ回転数 150rpmで溶 融混練、押出を行うことによってペレットを製造した。各ペレットについて成形温度 25 0°C、金型温度 70°Cの条件で射出成形に供し、各試験片を作製し、これらについて 物性の評価を行なった。これらの結果を表 5に示す。
[0178] (比較例 17〜19)
参考例で調製したスチレン系榭脂 (A)、ポリアミド榭脂 (B)および比較例用の共重 合体を表 5に示した配合比で混合し、実施例 17〜23と同様の製造法にて各試験片 を作製し、これらについて物性の評価を行なった。これらの結果を表 5に示す。
[0179] [表 5]
Figure imgf000058_0001
[0180] 実施例および比較例より、次のことが明らかになった。
[0181] 表 1および表 2より、特定の極限粘度を有する特定の共重合体 (C)を添加した実施 例 1〜9の榭脂組成物は、比較例 1〜4、 7〜11の榭脂組成物と比較して、同等以上 の剛性、耐熱性および耐薬品性を有しながら、耐衝撃性、流動性に優れ、さらに、と りわけ優れた表面外観をも有していることがわ力つた。また、実施例 1〜5と比較例 5 および 6との比較から、共重合体 (C)と特定のビニル系(共)重合体 (A— 2)とを併用 すること〖こよって、耐衝撃性と流動性に優れ、かつ表面外観、中でも表面光沢度に優 れた榭脂組成物が得られることがゎカゝつた。
[0182] 表 3より、本発明の特定の共重合体 (C)を添加した実施例 10〜12の榭脂組成物 は、比較例 12、 13の榭脂組成物と比較して、耐衝撃性、耐熱性および塗装性に優 れ、流動性と表面外観にぉ 、て特に優れることがわ力つた。
[0183] 表 4より、本発明の特定の共重合体 (C)を添加した実施例 13〜16の榭脂組成物 は、比較例 14〜16の榭脂組成物と比較して、耐衝撃性、剛性、耐熱性および塗装 性に優れ、特に流動性と表面外観にぉ 、て優れることがわ力つた。
[0184] 表 5より、本発明の特定の共重合体 (C)を添加し、かつポリアミド榭脂(B)がスチレ ン系榭脂 (A)より少量成分であるにもかかわらず、成形体の中心部においてポリアミ ド榭脂 (B)が連続相となる部分を形成する特異な相構造を有する実施例 17〜23の 本発明の榭脂組成物は、成形体の中心部においてポリアミド榭脂 (B)が連続相とな る部分を形成しない比較例 17〜 19の榭脂組成物と比較して、剛性、耐熱性および 耐薬品性に優れ、特に耐衝撃性と流動性に優れる上、表面外観、中でも表面光沢に お 、て極めて優れることがわかった。
産業上の利用可能性
[0185] 本発明の熱可塑性榭脂組成物は、上記した優れた特性を生カゝして、特に自動車内 外装材料や電気'電子機器のハウジング '部品周り材料として有用に用いることがで きる。

Claims

請求の範囲
[1] ゴム質重合体に芳香族ビニル系単量体 100〜40重量%とその他の少なくとも 1種の 単量体 0〜60重量%とからなる単量体単位をグラフト重合してなるグラフト(共)重合 体 (A— 1)と、芳香族ビニル系単量体 100〜50重量%とその他の少なくとも 1種の単 量体 0〜50重量%力 なるビュル系(共)重合体 (A— 2)を配合してなるスチレン系 榭脂 (A) l〜99重量%と、
ポリアミド榭脂(B) 99〜1重量%からなる熱可塑性榭脂組成物 100重量部に対して、 a、 j8—不飽和カルボン酸無水物単位 1. 5〜10重量%とシアン化ビュル系単量体 単位 0. 5〜60重量%を含んでなる変性ビュル系共重合体 (C) 0. 5〜80重量部をさ らに含有してなる熱可塑性榭脂組成物であって、かつ
変性ビュル系共重合体 (C)のメチルェチルケトン溶媒に溶解させ 30°Cの温度で測 定したときの極限粘度が 0. 15〜0. 41dlZgの範囲にあることを特徴とする熱可塑性 榭脂組成物。
[2] 変性ビュル系共重合体 (C)のメチルェチルケトン溶媒に溶解させ 30°Cの温度で測 定したときの極限粘度が 0. 15〜0. 30dlZgの範囲にある、請求項 1に記載の熱可 塑性榭脂組成物。
[3] スチレン系榭脂 (A)、ポリアミド榭脂 (B)および変性ビュル系共重合体 (C)の合わせ て 100重量部に対して、充填材 (D) 0. 1〜150重量部を更に含んでなる請求項 1に 記載の熱可塑性榭脂組成物。
[4] スチレン系榭脂 (A)、ポリアミド榭脂 (B)の合わせて 100重量部に対して、層状珪酸 塩 (E) 0. 05〜40重量部を更に含有してなる請求項 1に記載の熱可塑性榭脂組成 物。
[5] 層状珪酸塩 (E)力 Sスチレン系榭脂 (A)および Zまたはポリアミド榭脂 (B)中に 10層 以下のレベルで均一分散していることを特徴とする請求項 4に記載の熱可塑性榭脂 組成物。
[6] 該榭脂組成物を溶融成形加工して得られる成形体にお!ヽて、成形体の表面に垂直 な方向を厚みとした時、表面力 全厚みに対し 40〜60%の深さの領域で、電子顕 微鏡で観察される相構造として、ポリアミド榭脂 (B)が連続相となる部分が 10容量% 以上形成されることを特徴とする請求項 1に記載の熱可塑性榭脂組成物。
[7] ポリアミド榭脂 (B)が連続相となる部分が 30容量%以上形成されることを特徴とする 請求項 6に記載の熱可塑性榭脂組成物。
[8] 該榭脂組成物を溶融成形加工して得られる成形体にお!ヽて、成形体の表面に垂直 な方向を厚みとした時、表面力 全厚みに対し 40〜60%の深さの領域で、電子顕 微鏡で観察される相構造として、グラフト(共)重合体 (A— 1)および Zまたはビニル 系(共)重合体 (A— 2)が分散相となる部分が 5容量%以上形成されることを特徴とす る請求項 1に記載の熱可塑性榭脂組成物。
[9] 請求項 1に記載の熱可塑性榭脂組成物を溶融成形加工してなる成形体。
PCT/JP2005/012986 2004-07-15 2005-07-14 熱可塑性樹脂組成物 WO2006009052A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/632,127 US7964666B2 (en) 2004-07-15 2005-07-14 Thermoplastic resin composition
EP05759945.8A EP1770125B1 (en) 2004-07-15 2005-07-14 Thermoplastic resin composition
JP2006529106A JP5092401B2 (ja) 2004-07-15 2005-07-14 熱可塑性樹脂組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-208195 2004-07-15
JP2004208195 2004-07-15
JP2004-286521 2004-09-30
JP2004286521 2004-09-30

Publications (1)

Publication Number Publication Date
WO2006009052A1 true WO2006009052A1 (ja) 2006-01-26

Family

ID=35785165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012986 WO2006009052A1 (ja) 2004-07-15 2005-07-14 熱可塑性樹脂組成物

Country Status (4)

Country Link
US (1) US7964666B2 (ja)
EP (1) EP1770125B1 (ja)
JP (1) JP5092401B2 (ja)
WO (1) WO2006009052A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214585A (ja) * 2007-03-07 2008-09-18 Nippon A & L Kk 環境対応型熱可塑性樹脂組成物
JP2009255562A (ja) * 2008-03-21 2009-11-05 Techno Polymer Co Ltd 面材
JP2010202675A (ja) * 2008-02-28 2010-09-16 Techno Polymer Co Ltd 印刷用フィルム
US20110039080A1 (en) * 2008-02-28 2011-02-17 Masanori Hashimoto Printing film and face material
CN102627855A (zh) * 2012-04-27 2012-08-08 常熟市发东塑业有限公司 耐寒的高阻燃尼龙复合材料
CN106349584A (zh) * 2016-08-27 2017-01-25 赵碧华 一种纤维增强复合建筑板材及其制备方法
CN115161102A (zh) * 2022-02-22 2022-10-11 江苏中晟高科环境股份有限公司 一种无乙醇胺的环保型全合成切削液

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007040927A1 (de) * 2007-08-30 2009-03-05 Bayer Materialscience Ag Verfahren zur Herstellung schlagzähmodifizierter gefüllter Polycarbonat-Zusammensetzungen
TW200940639A (en) * 2008-01-30 2009-10-01 Showa Denko Kk Transparent composite material
JP2011057725A (ja) * 2009-09-04 2011-03-24 Ube Industries Ltd 導電性熱可塑性樹脂組成物
FR2967604B1 (fr) * 2010-11-22 2012-12-14 Michelin Soc Tech Renfort composite auto-adherent
US10808047B2 (en) 2015-08-21 2020-10-20 G&P Holding, Inc. Silver and copper itaconates and poly itaconates
JP6801455B2 (ja) * 2015-10-16 2020-12-16 三菱ケミカル株式会社 熱可塑性樹脂組成物、熱可塑性樹脂組成物の製造方法及び成形体
CN110114405B (zh) * 2016-12-28 2022-06-17 乐天尖端材料株式会社 热塑性树脂组合物及由其制造的模制品
JP7249478B2 (ja) * 2017-10-30 2023-03-31 ダイセルミライズ株式会社 電磁波遮蔽性成形体
KR102161339B1 (ko) 2017-11-08 2020-09-29 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 제조된 성형품
CN114479496B (zh) * 2022-02-15 2023-03-31 天津城建大学 一种脱硫橡胶改性沥青的制备方法
CN115403921B (zh) * 2022-09-16 2023-12-22 上海金发科技发展有限公司 一种耐溶剂高模量pa/abs合金材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241945A (ja) * 1986-04-14 1987-10-22 Toray Ind Inc 熱可塑性樹脂組成物
JPH0238441A (ja) * 1988-07-28 1990-02-07 Nippon Oil & Fats Co Ltd 熱可塑性樹脂組成物
JPH1025414A (ja) * 1996-07-11 1998-01-27 Nippon Steel Chem Co Ltd 樹脂改質剤及び樹脂組成物
JP2000230092A (ja) * 1999-02-10 2000-08-22 Daicel Chem Ind Ltd 難燃性樹脂組成物
JP2001152011A (ja) * 1999-11-22 2001-06-05 Daicel Chem Ind Ltd 熱可塑性樹脂組成物
JP2004067753A (ja) * 2002-08-02 2004-03-04 Toray Ind Inc 熱可塑性樹脂組成物およびそれからなる成形品
JP2004300354A (ja) * 2003-03-31 2004-10-28 Toray Ind Inc 熱可塑性樹脂組成物およびそれからなる成形品

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3120803A1 (de) 1981-05-25 1982-12-16 Basf Ag, 6700 Ludwigshafen Schlagzaehne thermoplastische formmassen
JPS60195157A (ja) 1984-03-16 1985-10-03 Mitsubishi Chem Ind Ltd ポリアミド樹脂組成物
US4713415A (en) * 1985-05-10 1987-12-15 Monsanto Company Rubber modified nylon composition
EP0242158B1 (en) 1986-04-14 1994-01-19 Toray Industries, Inc. Intrinsically antistatic thermoplastic resin compositions
DE19501998A1 (de) * 1995-01-24 1996-07-25 Basf Ag Thermoplastische Polyamidformmassen
DE19509514A1 (de) * 1995-03-16 1996-09-19 Basf Ag Mattierte thermoplastische Formmassen
JPH09176414A (ja) * 1995-12-25 1997-07-08 Toray Ind Inc 制電性樹脂組成物
BE1009903A3 (nl) * 1995-12-29 1997-10-07 Dsm Nv Rubber gemodificeerde polymeersamenstelling.
JPH1067902A (ja) * 1996-08-29 1998-03-10 Toray Ind Inc 耐薬品性熱可塑性樹脂組成物およびそれからなる成形品
JP4166331B2 (ja) 1998-06-30 2008-10-15 日本エイアンドエル株式会社 熱可塑性樹脂組成物
RU2004112216A (ru) * 2001-09-21 2005-10-10 Байер Акциенгезельшафт (De) Модифицированные ударопрочные полимерные композиции
WO2004026960A1 (ja) * 2002-09-17 2004-04-01 Umg Abs, Ltd. 熱可塑性樹脂組成物及びその成形体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241945A (ja) * 1986-04-14 1987-10-22 Toray Ind Inc 熱可塑性樹脂組成物
JPH0238441A (ja) * 1988-07-28 1990-02-07 Nippon Oil & Fats Co Ltd 熱可塑性樹脂組成物
JPH1025414A (ja) * 1996-07-11 1998-01-27 Nippon Steel Chem Co Ltd 樹脂改質剤及び樹脂組成物
JP2000230092A (ja) * 1999-02-10 2000-08-22 Daicel Chem Ind Ltd 難燃性樹脂組成物
JP2001152011A (ja) * 1999-11-22 2001-06-05 Daicel Chem Ind Ltd 熱可塑性樹脂組成物
JP2004067753A (ja) * 2002-08-02 2004-03-04 Toray Ind Inc 熱可塑性樹脂組成物およびそれからなる成形品
JP2004300354A (ja) * 2003-03-31 2004-10-28 Toray Ind Inc 熱可塑性樹脂組成物およびそれからなる成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1770125A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214585A (ja) * 2007-03-07 2008-09-18 Nippon A & L Kk 環境対応型熱可塑性樹脂組成物
JP2010202675A (ja) * 2008-02-28 2010-09-16 Techno Polymer Co Ltd 印刷用フィルム
US20110039080A1 (en) * 2008-02-28 2011-02-17 Masanori Hashimoto Printing film and face material
US9074057B2 (en) * 2008-02-28 2015-07-07 Techno Polymer Co., Ltd. Printing film and face material
JP2009255562A (ja) * 2008-03-21 2009-11-05 Techno Polymer Co Ltd 面材
CN102627855A (zh) * 2012-04-27 2012-08-08 常熟市发东塑业有限公司 耐寒的高阻燃尼龙复合材料
CN106349584A (zh) * 2016-08-27 2017-01-25 赵碧华 一种纤维增强复合建筑板材及其制备方法
CN115161102A (zh) * 2022-02-22 2022-10-11 江苏中晟高科环境股份有限公司 一种无乙醇胺的环保型全合成切削液
CN115161102B (zh) * 2022-02-22 2023-05-16 江苏中晟高科环境股份有限公司 一种无乙醇胺的环保型全合成切削液

Also Published As

Publication number Publication date
EP1770125A1 (en) 2007-04-04
EP1770125B1 (en) 2014-07-02
JP5092401B2 (ja) 2012-12-05
US20080071024A1 (en) 2008-03-20
US7964666B2 (en) 2011-06-21
EP1770125A4 (en) 2007-10-03
JPWO2006009052A1 (ja) 2008-05-01

Similar Documents

Publication Publication Date Title
WO2006009052A1 (ja) 熱可塑性樹脂組成物
JP2007224287A (ja) 熱可塑性樹脂組成物
US8889767B2 (en) Thermoplastic molding compounds based on styrene copolymers and polyamides having improved weathering resistance
JP2007161940A (ja) メッキおよび塗装用樹脂組成物およびその成形体
US20030181582A1 (en) Weather-resistant polymer blends
JP5028873B2 (ja) 高熱伝導性熱可塑性樹脂組成物
JP2007146157A (ja) 熱可塑性樹脂組成物
US20040235999A1 (en) Modified shock-resistant polymer compositions
US20120172515A1 (en) Polyphenylene Ether Thermoplastic Resin Composition
JP5466108B2 (ja) 強化熱可塑性樹脂組成物
JP2011132519A (ja) ポリアミド樹脂組成物およびそれからなる成形品
JP2006233132A (ja) 熱可塑性樹脂組成物
JP2006137929A (ja) 熱可塑性樹脂組成物
JPH11240995A (ja) 熱可塑性樹脂組成物
JP2000178392A (ja) スチレン系樹脂組成物
JP2000017170A (ja) 熱可塑性樹脂組成物
JP4834991B2 (ja) 熱可塑性樹脂組成物
JP5475537B2 (ja) 熱可塑性樹脂組成物及び熱可塑性樹脂組成物の製造方法
JP2009007533A (ja) スチレン系樹脂組成物およびそれからなる成形品
JP4109399B2 (ja) 熱可塑性樹脂構造体およびその製造法
JP2005194497A (ja) 熱可塑性樹脂組成物
JP2005194369A (ja) 熱可塑性樹脂組成物
JP2002212383A (ja) 熱可塑性樹脂組成物
JP2001348473A (ja) 熱可塑性樹脂組成物
JP3385103B2 (ja) 樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006529106

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005759945

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580023404.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 11632127

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005759945

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11632127

Country of ref document: US