WO2005120703A1 - 金属触媒とその製造方法 - Google Patents

金属触媒とその製造方法 Download PDF

Info

Publication number
WO2005120703A1
WO2005120703A1 PCT/JP2005/009271 JP2005009271W WO2005120703A1 WO 2005120703 A1 WO2005120703 A1 WO 2005120703A1 JP 2005009271 W JP2005009271 W JP 2005009271W WO 2005120703 A1 WO2005120703 A1 WO 2005120703A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
fine particles
particles
platinum
metal fine
Prior art date
Application number
PCT/JP2005/009271
Other languages
English (en)
French (fr)
Inventor
Masatoshi Majima
Kohei Shimoda
Kouji Yamaguchi
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to US11/628,874 priority Critical patent/US7803734B2/en
Priority to JP2006514439A priority patent/JPWO2005120703A1/ja
Priority to CA002565113A priority patent/CA2565113A1/en
Priority to CN2005800191455A priority patent/CN1968746B/zh
Priority to EP05741651A priority patent/EP1769846A4/en
Publication of WO2005120703A1 publication Critical patent/WO2005120703A1/ja
Priority to US12/686,265 priority patent/US7915190B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • B01J35/23
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • B01J35/393
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a metal catalyst suitably used as, for example, a fuel cell catalyst or an automobile exhaust gas catalyst, and a method for producing the same.
  • a metal catalyst particularly a metal catalyst using a noble metal such as platinum is used.
  • a metal catalyst having a structure in which fine particles of a metal such as platinum are supported on the surface of carrier particles made of carbon black, an inorganic compound or the like is used.
  • the catalytic action is mainly exerted on the surface of the metal, in the metal catalyst having the above structure, in order to maintain the good catalytic action and reduce the amount of the metal used as much as possible, it is necessary to use a carrier. It is effective that the metal fine particles supported on the surface of the particles have as small a particle size as possible and have a large specific surface area.
  • Methods for supporting metal fine particles on the surface of carrier particles include a high-temperature treatment method called an impregnation method, a liquid-phase reduction method, a gas-phase method, and the like.
  • An easy liquid-phase reduction method that is, reduction of metal ions to be precipitated by the action of a reducing agent in a liquid-phase reaction system in which carrier particles are dispersed, allows fine particles to be added to the surface of the carrier particles. The method of precipitating in the form of particles is becoming widespread.
  • a catalyst for a fuel cell such as a direct methanol type or a solid polymer type, whose operating temperature is relatively low, such as 100 ° C or less
  • metal particles such as platinum particles are coated on the surface of carbon particles.
  • a supported metal catalyst is used as a catalyst for a fuel cell.
  • the supported amount of the metal fine particles is as large as possible. However, if the supported amount is too large and the distance between the adjacent metal fine particles is too short, Since a plurality of metal fine particles also act as one catalyst particle against hydrogen gas or oxygen gas, there is a problem that catalytic activity is rather lowered.
  • a region called a territory exists around the individual metal fine particles supported on the surface of the carrier particles, exceeding its substantial size.
  • oxygen gas reaches the surface of the metal fine particles through a thin film constituting the territory and undergoes a reduction reaction.
  • the territories overlap, resulting in a single oxygen molecule being used by a plurality of territories, resulting in reduced catalytic activity.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 4-298238 (Claim 1, Columns 0003 to 0005)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-107606 (Columns 0012 to 0013)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-279811 (Claims 1, 2, Columns 0013 to 0015)
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2-65064 (Claims, No. 14 Line to the same page, lower left column, line 18)
  • the particle diameter is 3 nm or less, which is sufficiently large in theory of catalyst activity. It is possible to form metal particles which are small and have a large specific surface area. However, the actual catalytic activity of the metal catalyst containing such fine metal fine particles has sufficiently reached the range in which the particle size of the metal fine particles, the specific surface area, and the force are also expected.
  • the range of the distance between the centers of adjacent metal fine particles of 15 nm or more defined in Patent Document 4 is larger than that of metal fine particles having a particle size of more than 3 nm and large metal particles. It is only a range suitable for obtaining the highest catalytic efficiency by balancing the carrying amount of the metal fine particles and the distance between the metal fine particles, which are in a trade-off relationship.
  • the present invention provides a metal catalyst containing metal fine particles having a small particle size and a large specific surface area, and having high catalytic activity commensurate with the particle size and the specific surface area of the metal fine particles, and a method for producing the same. Is to provide.
  • the mechanism of the catalytic activity on the surface of the metal fine particles differs depending on the intended catalytic reaction.
  • the catalytic activity of the oxygen reduction reaction by platinum depends on the crystal plane orientation of platinum. .
  • a catalytic reaction is more likely to occur at a singular point in a crystal such as a kink or a step than a plane formed of a metal crystal.
  • the catalyst reaction of V ⁇ deviation While energetically, the catalyst reaction of V ⁇ deviation! However, first, considering that the activated species undergoes a process of adsorbing on the catalytically active site, the metal element is exposed in a metal state, particularly at the active site on the surface of the metal fine particles. Is desirable for improving the catalytic activity.
  • the catalyst activity of a conventional metal catalyst including fine metal particles formed by a liquid phase reduction method or the like does not reach a range commensurate with the particle size and specific surface area of the metal particles. This is considered to be because the metal element is not sufficiently exposed in the metal state on the surface of the fine particles, and most of the metal elements of the metal fine particles, particularly on the surface, are oxidized. It is presumed that this is due to the shading being made into an acid shading.
  • the metal fine particles are liable to be oxidized.Particularly, when using a reducing agent having a weak reducing power to reduce the deposition rate as much as possible and to form the metal fine particles over a long period of time, It is easily oxidized. Not only that, the fine metal particles on the order of nm obtained in this way have a high surface activity due to an increase in their surface energy, as typified by the melting point depression phenomenon known as the Kubo effect. Therefore, the metal fine particles are more easily oxidized.
  • the present inventor has argued that if the metal element is exposed in a metal state on the surface of fine metal fine particles having a particle size of 3 nm or less, a high value commensurate with the particle size is obtained. It was examined whether a metal catalyst having catalytic activity could be obtained. As a result, if the ratio of the metal bonding state of the metal fine particles, which is measured by the X-ray photoelectron analyzer and attributed by separating the binding energy peak specific to the metal, is specified to be 40% or more, finer The catalytic activity of a metal catalyst containing fine metal particles is determined by the particle size and specific surface area of the fine metal particles. And found that it can be improved to a high level commensurate with that.
  • the metal catalyst of the present invention is measured by using an X-ray photoelectron analyzer with a particle diameter of the metal fine particles of 3 nm or less, and is attributed to a metal-specific binding energy peak by waveform separation.
  • the ratio of the metal bonding state of the metal fine particles is 40% or more.
  • the ratio of the metal bonding state of the metal fine particles exceeds 90%, the catalytic activity becomes too high, and the catalytic action of the metal fine particles is easily inhibited by the catalyst poison. There is a possibility that the catalyst activity may be reduced.
  • the ratio of the metal binding state of the metal fine particles is preferably 90% or less even within the above range.
  • the ratio of the metal bonding state of the metal fine particles is particularly within the above range. , Preferably 50-80%.
  • the metal fine particles may have platinum, palladium, gold, silver, rhodium, iridium, ruthenium, osmium, cobalt, manganese, nickel, iron, chromium, molybdenum, and titanium. Fine particles having at least one selected metal force are also preferred.
  • the platinum fine particles that are preferred by the platinum fine particles are measured by using an X-ray photoelectron analyzer and assigned by separating the Pt4d5 peak, which is a binding energy peak inherent to platinum, by waveform separation. It is preferable that the ratio of the metal binding state of the platinum fine particles is 40% or more.
  • the metal catalyst of the present invention preferably has a structure in which a large number of fine metal particles are supported on the surface of carrier particles larger than that, in consideration of the productivity and handleability.
  • a large number of fine metal particles in a metal catalyst having a strong structure are preferably supported on the surface of the carrier particles by a liquid phase reduction method capable of reducing the particle size.
  • the ion of a metal to be precipitated is reduced by the action of a reducing agent to precipitate fine particles on the surface of the carrier particles. Accordingly, a large number of metal fine particles are preferably supported on the surface of the carrier particles.
  • the fine metal particles having a particle size of 3 nm or less have a high surface activity, if the distance between the closest surfaces between adjacent ones is less than 0.3 nm, Even at a relatively low temperature of about 100 ° C. or less, there is a problem in that the catalytic activity is reduced when clustering occurs and the particles become coarse particles or when the metal fine particles become coarse particles immediately.
  • the distance between the centers of the metal fine particles adjacent to each other on the surface of the carrier particle is less than 15 nm, and the distance between the nearest surfaces is less than 15 nm. It is preferably at least 0.3 nm.
  • the percentage of the weight of the metal fine particles with respect to the weight of the metal catalyst is considered. Is preferably 10 to 60% by weight.
  • a metal catalyst having a structure in which a large number of metal fine particles are supported on the surface of carrier particles, and which is used for a positive electrode of a fuel cell to cause a reduction reaction of oxygen gas is used. It is preferable that the exposed crystal plane orientation of each metal fine particle be oriented to the (111) plane having excellent catalytic activity for the above-mentioned reduction reaction!
  • a conductive carbon black is preferably used as the carrier particles.
  • the metal ion is reduced by the liquid phase reduction method.
  • the distance between the precipitated metal fine particles becomes short, so that a plurality of adjacent metal fine particles are fused in the growth process and the metal fine particles The diameter tends to increase.
  • a BET ratio table of carbon black is required.
  • the area is preferably more than 500m 2 / g! / ,.
  • carbon black having a BET specific surface area of more than 1500 m 2 / g has low conductivity, so that catalyst efficiency may be reduced particularly when a metal catalyst is used as a fuel cell catalyst. . Therefore, taking into account the fact that the metal particles having the smallest possible particle size are supported on the surface of the carbon black as the carrier particles by the liquid phase reduction method and that the conductivity of the carbon black is increased, the The BET specific surface area is preferably between 500 and 1500 m 2 / g! /.
  • the bulk density of the carbon black is preferably 10 to 50 g / liter.
  • the carbon black in order to adjust the BET specific surface area of the carbon black within the above range and to prevent a plurality of metal fine particles from causing clustering and lowering the catalytic activity, the carbon black must be used as the carbon black. It is preferable to use a raw material carbon black having a chain structure that has been pulverized so as to cut the chain structure.
  • the metal catalyst of the present invention is suitably used as a catalyst for a fuel cell or a catalyst for automobile exhaust gas by utilizing its high catalytic efficiency.
  • the formed metal fine particles may be subjected to a reduction treatment. That is, in the method for producing a metal catalyst of the present invention, the metal fine particles are reduced to reduce the oxidation state, whereby the waveform is measured using an X-ray photoelectron analyzer, and the binding energy peak inherent to the metal is separated into waveforms. And a step of adjusting the ratio of the metal bonding state of the metal fine particles to 40% or more.
  • a method for reducing metal fine particles there is a liquid phase method in which metal fine particles are reduced in a liquid phase by the action of a reducing agent.
  • a reducing agent having a lower oxidation potential than the metal to be reduced is selected as the reducing agent. It is preferable to use it.
  • examples of the reducing agent having a lower oxidation-reduction potential than platinum include trivalent titanium ion, sodium hypophosphite, hydrazine, and divalent to tetravalent vanadium ion. Or sodium borohydride.
  • Another method for reducing metal fine particles is to reduce the action of a reducing agent in a gas phase.
  • FIG. 1 is a schematic diagram illustrating a configuration of an X-ray photoelectron analyzer used for measuring a ratio of a metal binding state of metal fine particles in a metal catalyst of the present invention.
  • Example 1 of the present invention the binding energy of electrons obtained when the platinum fine particles supported on the surface of carrier particles were measured using the X-ray photoelectron analyzer
  • 3 is a graph showing a spectrum representing a relationship with the signal intensity of the present invention.
  • FIG. 3 is a graph showing a spectrum obtained by waveform-separating a Pt4d5 peak, which is a specific binding energy peak of platinum, from the spectrum of FIG.
  • FIG. 4 is a transmission electron micrograph showing a state in which platinum fine particles are supported on a platinum catalyst of Example 22 of the present invention.
  • FIG. 5 is a transmission electron micrograph showing an enlarged state of one platinum fine particle in the platinum catalyst of Example 22 of the present invention.
  • FIG. 6 is a graph showing a relationship between a metal binding state of platinum fine particles and an oxygen reduction current in Examples 21 to 25 of the present invention and Comparative Example 1.
  • the metal catalyst of the present invention contains metal fine particles having a particle size of 3 nm or less, and the binding energies of the metal fine particles measured by using an X-ray photoelectron analyzer are specific to the metal.
  • the feature is that the ratio of the metal bond state attributed to the waveform separation of the peaks is 40% or more.
  • the reason why the particle size of the metal fine particles is limited to 3 nm or less is that the metal fine particles having a particle size of more than 3 nm have a small specific surface area. In any case, the effect of improving the catalytic efficiency of the metal catalyst cannot be obtained. In addition, metal particles with a large particle size have a strong metal state in the first place.If the ratio of the metal bonding state on the surface is 40% or more, the catalytic action of the metal particles tends to be inhibited by the catalyst poison. Problems arise. Therefore, the particle size of the metal fine particles is limited to 3 nm or less.
  • the particle diameter of the metal fine particles is preferably 2 nm or less even within the above range. More preferably, it is 1 nm or less.
  • the lower limit of the particle size of the metal fine particles is not particularly limited, and a particle having a minimum particle size that can be precipitated by the liquid phase reduction method described above and that can function as a catalyst can be used. .
  • An X-ray photoelectron analyzer (XPS or ESCA) is one of the representative surface analyzers, and analyzes the types of elements in the region up to a depth of several nanometers and the chemical bonding state of solids. Used for Etching by irradiating with Ar ions enables analysis of the surface from which contaminants on the outermost surface have been removed, and depth analysis down to the submicron order.
  • photoelectrons are also emitted from the depth and region of a solid sample, they lose kinetic energy due to inelastic scattering until they reach the sample surface. Is not detected and becomes the background of the spectrum. Therefore, only photoelectrons in a depth region of several nm, which can escape the surface force of the sample without inelastic scattering, are detected as peaks and used for analysis.
  • the horizontal axis of the spectrum is represented by the binding energy of electrons, and the vertical axis is represented by the appearance frequency of the electrons, ie, the signal intensity.
  • the detectable elements are from U to U. The detection limit varies depending on the element, but is about 0.1%.
  • the metal fine particles of the metal catalyst are analyzed using the above-mentioned X-ray photoelectron analyzer, by separating the waveform of the binding energy peak unique to the metal forming the metal fine particles in the obtained spectrum. It is possible to determine the ratio of the metal bonding state on the surface of the metal fine particles that is attributed.
  • the horizontal axis represents the electron binding energy and the vertical axis represents the electron signal intensity, as shown in Fig. 2. Spectrum can be obtained.
  • the spectrum of FIG. 2 is the result of measurement of the platinum fine particles of Example 1 described later.
  • the Pt4d5 peak is waveform-separated as a unique binding energy peak.
  • FIG. 3 is a diagram illustrating a spectrum obtained by waveform-separating the Pt4d5 peak.
  • a curve having a fine waveform at the top indicates an actually measured spectrum.
  • the smooth curve superimposed on the tatto is an approximation curve approximating it, and the lower three curves are those with strong signal intensity (high peak height) with the above approximation curve force also separated in waveform.
  • the peak indicating the metal bonding state of platinum elements in order from A peak indicating a metastable bond between elemental and oxygen elements, and a peak indicating a stable bond state between platinum and oxygen elements.
  • the area of each peak is measured, and the ratio of the area of the peak indicating the metal-bonded state to the total is calculated.
  • the ratio of the metal binding state on the surface of the metal fine particles is limited to 40% or more. If the ratio of the metal-bonded state is less than 40%, a metal catalyst having high catalytic activity corresponding to the particle size and specific surface area of the metal fine particles cannot be obtained! / ⁇
  • the ratio of the metal bond state is preferably 90% or less even within the above range, considering that the catalytic activity of the metal catalyst is improved as much as possible while eliminating the influence of the catalyst poison. Among them, it is preferably 50 to 80%.
  • the metal fine particles include at least one kind of fine particles selected from platinum, palladium, gold, silver, rhodium, iridium, ruthenium, osmium, conoreto, manganese, nickel, iron, chromium, molybdenum, and titanium. And particularly preferred are platinum fine particles.
  • the specific binding energy peak that is waveform-separated to determine the ratio of the metal binding state is the Pt4d5 peak as described above.
  • the metal catalyst of the present invention may be composed of a single metal fine particle satisfying the above-described characteristics. However, in consideration of the productivity and the handleability, a large number of fine metal fine particles are used. ⁇ ⁇ Has a structure supported on the surface of carrier particles! / Pull is preferred. Examples of the carrier particles include inorganic compound and carbon particles.
  • the particles of the inorganic compound include alumina such as ⁇ -alumina, titanium oxide, silicon oxide, cerium oxide, zirconium oxide, iron oxide, and metal oxides such as composite oxides thereof. Particles, metal nitride particles such as titanium nitride, iron nitride, and silicon nitride, or particles of silver sulfate.
  • the particle size of the particles of the inorganic compound is preferably 50 to 500 m 2 Zg in terms of a specific surface area that can be set in an appropriate range according to the use of the catalyst.
  • a force capable of using various carbon blacks particularly a force having a BET specific surface area of 500 to 1500 m 2 Zg is suitably used.
  • the BET specific surface area of the carbon black is less than 500 m 2 Zg, metal ions are When reduced and deposited on the surface of carbon black in the form of fine particles, the distance between the precipitated metal fine particles becomes short, so that a plurality of adjacent metal fine particles fuse during the growth process and become Even if the particle size is within the above range of 3 nm or less, there is a tendency to be large.
  • carbon black having a BET specific surface area of more than 1500 m 2 / g has low conductivity, so that the catalyst efficiency may be reduced particularly when a metal catalyst is used as a fuel cell catalyst. .
  • the BET ratio of carbon black is considered. surface area, 700 ⁇ 1300m 2 / g also in the above within the limits, in particular, there is the power of ⁇ preferably in 900 ⁇ 1200m 2 / g! / ⁇ .
  • the bulk density of the carbon black is 10 to 50 g / liter, especially 15 to 40 gZl, particularly 22 to 35 gZl. It is preferred that If the bulk density of the carbon black is less than this range, the BET specific surface area will be less than the above range, and the particle size of the metal fine particles to be supported tends to be large. Conversely, if the bulk density exceeds the above range, In this case, since the BET specific surface area exceeds the above range and the conductivity is reduced, there is a possibility that the catalyst efficiency is reduced when the metal catalyst is used as a fuel cell catalyst.
  • the carbon black in order to adjust the BET specific surface area of the carbon black within the above-mentioned range and to prevent a plurality of metal fine particles from clustering and lowering the catalytic activity, the carbon black must be used as the carbon black. It is preferable to use a raw material carbon black having a chain structure that has been pulverized so as to cut the chain structure.
  • carbon black is supplied in a state in which a large number of unit particles made of amorphous carbon are linked in a chain to form a chain structure called a structure. Since there are a large number of joints between the unit particles, the surface area of a region where the metal fine particles can be supported on the surface of each unit particle is limited. Therefore, when the specific surface area force as a whole is smaller than the above range, the particle size force of the metal fine particles supported on the surface by the liquid phase reduction method tends to increase due to the fusion in the growth process described above. In addition, the distance between the supported metal fine particles is too small. Therefore, even at a relatively low temperature of about 100 ° C. or less, a large number of metal fine particles may be clustered and become coarse particles, or if the metal fine particles become coarse particles immediately, the catalytic activity may be reduced.
  • carbon black obtained by pulverizing a raw material carbon black having a chain structure so as to cut the chain structure has a reduced joint portion between the unit particles and a surface of the unit particle.
  • the specific surface area as a whole increases as the surface area of the region capable of supporting the metal fine particles increases. Therefore, by adjusting the BET ratio surface area of the carbon black within the above range to prevent fusion of the supported metal fine particles, the particle size can be made as small as possible, and a plurality of metal fine particles can be obtained. Can be prevented from causing clustering and reducing the catalytic activity.
  • Examples of a method of pulverizing so as to cut the chain structure of the raw material carbon black include a method of high-speed rotation pulverization using a sirocco fan, a pulverization method using a ball mill, a roll mill, and the like. .
  • the distance between centers of adjacent metal fine particles is less than 15 ⁇ m. Is preferred. If the distance between the centers is 15 nm or more, the carrying capacity of the metal fine particles S is too small, and the catalytic activity of the metal catalyst may be reduced. Further, the distance between the nearest surfaces of adjacent metal fine particles is preferably 0.3 nm or more. If the distance between the surfaces is less than 0.3 nm, even at a relatively low temperature of about 100 ° C. or less, there is a problem that the catalytic activity is reduced when clustering occurs and the metal fine particles immediately become coarse.
  • the distance between adjacent metal fine particles is determined by the distance between the closest surfaces. More preferably, it is 1.0 to 5. Onm. The distance between the centers and the distance between the closest surfaces of the adjacent metal fine particles are all values measured using a transmission electron microscope. Further, in order to keep the distance between the adjacent metal fine particles within the above range, the specific surface area of the carrier particles or the carrying amount of the metal fine particles may be adjusted. In consideration of further improving the catalytic activity of the metal catalyst, the loading amount of the metal fine particles expressed as a percentage of the weight of the metal fine particles with respect to the weight of the metal catalyst is 10 to 60% by weight. Is preferred.
  • the supported amount is less than 10% by weight, the distance between adjacent metal fine particles exceeds the above range, and the surface of the exposed carbon widely exists in the path of diffusion of oxygen gas and hydrogen gas between metal fine particles. As a result, gas diffusion may be hindered and catalytic activity may be reduced.
  • the supported amount exceeds 60% by weight, the distance between adjacent metal fine particles is less than the above range, and even at a relatively low temperature of about 100 ° C or less, clustering occurs and coarse particles are easily formed. If the particles become coarse, the catalytic activity may be reduced.
  • the loading amount of the metal fine particles is more preferably 15 to 50% by weight.
  • the metal fine particles are oriented on the (111) plane which is excellent in the catalytic activity of the above-mentioned reduction reaction. Thereby, the catalytic activity at the time of performing the reduction reaction of the oxygen gas can be further improved.
  • the type of the carrier particles and the metal fine particles to be combined and the method of depositing the metal fine particles are selected.
  • the surface state of the carrier particles may be adjusted. For example, when carbon particles such as carbon black are used as the carrier particles, and platinum is deposited on the surface of the carbon particles by a liquid phase reduction method to carry platinum particles, the particles are automatically treated.
  • the exposed crystal plane can be oriented to the (111) plane.
  • the metal fine particles In order to make the particle size of the metal fine particles supported on the surface of the carrier particles 3 nm or less, it is preferable to form the metal fine particles by a liquid phase reduction method. Specifically, a predetermined amount of carrier particles are dispersed, and at the same time, a liquid phase reaction system containing a reducing agent and a metal compound serving as a metal ion source at a predetermined concentration is prepared, and the reaction system is prepared. Under given temperature conditions The reduced metal can be precipitated in the form of fine particles on the surface of the carrier particles dispersed in the liquid phase.
  • the particle size of the metal fine particles to be formed can be adjusted by changing the temperature and viscosity of the liquid, the presence or absence of vigorous stirring, and the stirring speed when vigorously stirring. That is, the lower the temperature of the liquid, the higher the viscosity, and the lower the vibrating speed in the case of vigorous stirring, the smaller the particle size of the formed metal fine particles tends to be. Therefore, it is preferable to set the temperature, viscosity, and stirring conditions of the liquid while considering the type and particle size of the metal fine particles to be formed, the type of the reducing agent to be used, and other conditions.
  • metal ion source serving as a source of metal fine particles
  • any of various kinds of metal compound containing a metal element and soluble in a liquid phase reaction system can be used.
  • metal compounds do not contain impurity elements such as halogen elements (chlorine, etc.), sulfur, phosphorus, boron, etc., which may be the starting point of nuclear growth and cause abnormal nuclear growth. Is preferred.
  • impurity elements such as halogen elements (chlorine, etc.), sulfur, phosphorus, boron, etc.
  • the fine metal particles having a small particle diameter can be supported on the surface of the carrier particles. It is possible.
  • Examples of the metal compound suitable as a metal ion source include, but are not limited to, for example, in the case of platinum, dinitrodiammineplatinum (II) (Pt (NO) (NH2)), hexachloroplatinum (IV)
  • Oxmium (VIII) (OsO), etc. are listed for the ummium ( ⁇ ) solution (Ru (NO)) and osmium.
  • Acetone nickel (II) Ni [CH (COCH)]
  • basic nickel carbonate IlaNiCO -bNi
  • a reducing agent having a weak reducing power is preferably used as described above.
  • the reducing agent having a low reducing power include alcohols such as methanol, ethanol, and isopropyl alcohol, ascorbic acid, and the like, as well as ethylendalcol, daltathione, and organic acids (taenoic acid, malic acid, Tartaric acid, etc.), reducing sugars (eg, gnorecose, galactose, mannose, funolectose, sucrose, manoletose, raffinose, stachyose), and sugar alcohols (eg, sorbitol).
  • alcohols such as methanol, ethanol, and isopropyl alcohol, ascorbic acid, and the like, as well as ethylendalcol, daltathione, and organic acids (taenoic acid, malic acid, Tartaric acid, etc.)
  • reducing sugars eg,
  • reducing sugars, Sugar alcohols or alcohols as derivatives thereof are preferred.
  • alcohols and other reducing agents are used in combination as the reducing agent, the loading ratio of the metal fine particles loaded on the surface of the carrier particles can be increased.
  • Various additives such as a viscosity adjuster for adjusting the viscosity of the mixture may be added.
  • the pH adjuster various acids and alkalis can be used, and in particular, the pH adjuster includes an impurity element which may be a starting point of nuclear growth and cause abnormal nuclear growth.
  • an impurity element which may be a starting point of nuclear growth and cause abnormal nuclear growth.
  • the acid containing no impurity element include nitric acid and the like
  • examples of the alkali include ammonia water and the like.
  • the preferable range of the pH of the liquid phase varies depending on the type of the metal to be precipitated, the type of the metal compound as an ion source of the base metal, and the like, and within the preferable range.
  • the smaller the pH the smaller the particle size of the formed fine metal particles tends to be. Therefore, considering the type and particle size of the metal fine particles to be formed, the type of reducing agent to be used, and other conditions, whether or not to add a pH adjuster, and if so, how much should be added Or is preferably selected.
  • the dispersant and the viscosity adjuster various conventionally known compounds can be used. However, it is preferable to use a polymer dispersant having both functions.
  • the polymer dispersant include amine polymer dispersants such as polyethyleneimine and polyvinylpyrrolidone, and hydrocarbon polymer dispersants having a carboxylic acid group in the molecule such as carboxymethyl cellulose, or And a copolymer having a polyethyleneimine moiety and a polyethylene oxide moiety in one molecule (hereinafter referred to as ⁇ -PO copolymer).
  • the amount of the polymer dispersant to be added is not particularly limited, but as the amount of the polymer dispersant increases, the viscosity of the liquid phase increases, and the particle size of the formed metal fine particles tends to decrease. It is preferable to set a suitable range of the addition amount in consideration of the particle size of the metal fine particles to be produced, the type of the reducing agent to be used, and other conditions.
  • the metal catalyst of the present invention In order to manufacture the metal catalyst of the present invention by adjusting the ratio of the metal bonding state of the metal fine particles formed in the above steps to 40% or more as described above, as described above, it is preferable to perform a reduction treatment for reducing the oxidation state by reducing the fine particles.
  • the method of reduction treatment include a liquid phase method in which metal fine particles are reduced in the liquid phase by the action of a reducing agent, a gas phase method in which the metal fine particles are reduced in the gas phase by the action of a reducing agent, and a microwave.
  • Examples include a microwave heating method of reducing by heating, and an electrochemical method of electrochemically reducing by flowing a current in an electrolytic solution.
  • metal particles are reduced by treating carrier particles supporting metal particles with a liquid-phase treatment liquid containing a reducing agent at a predetermined concentration.
  • a reducing agent in order to improve the efficiency of the reduction treatment and improve the productivity of the metal catalyst, it is preferable to select and use a reducing agent whose oxidation potential is lower than that of the metal to be reduced.
  • the metal fine particles are platinum fine particles, trivalent titanium ion, sodium hypophosphite, hydrazine, divalent to tetravalent vanadium ion, sodium borohydride and the like.
  • sodium hypophosphite and sodium borohydride are excellent in reducing power, and reduce the surface of metal fine particles efficiently to reduce the ratio of the metal bonding state to the above 40% or more. Can be adjusted to the highest possible value.
  • trivalent titanium ion when trivalent titanium ion is oxidized to tetravalent, it reduces the surface of the fine metal particles present in the same reaction system and adjusts the ratio of the metal bonding state to 40% or more. Work for.
  • the solution which has been oxidized to the titanium ion titer is electrolytically treated to reduce the titanium ions to trivalent, so that the solution can be used for the reduction treatment any number of times.
  • the treatment temperature is preferably 40 to 70 ° C when sodium borohydride or the like is used as a reducing agent, and 30 to 50 ° C when trivalent titanium ions are used. I like it! /.
  • carrier particles carrying metal fine particles are heated to 100 to 300 ° C in a reducing atmosphere such as hydrogen gas for about 5 to 60 minutes to be treated. Metal particles are reduced.
  • a reducing atmosphere such as hydrogen gas
  • the reducing agent include, in addition to the hydrogen gas, ammonia gas and the like.
  • a horizontal annular furnace or the like is used.
  • the carrier particles carrying the metal fine particles for example, are placed in a quartz glass boat or the like and are accommodated in the above-mentioned horizontal annular furnace or the like and subjected to reduction treatment.
  • microwave heating method carrier particles supporting fine metal particles are placed in an inert gas atmosphere. Heating by microwaves in a medium or in a reducing gas atmosphere reduces metal particles.
  • the processing conditions are an output of 300 to 600 W and a processing time of about 20 to 60 seconds.
  • a microwave oven can be used for microwave heating.
  • the heat source is microscopically and uniformly dispersed, so that the metal fine particles can be instantaneously heated and heated, as compared to a long time heating at a high temperature using a normal electric furnace.
  • the reduction treatment can be performed while avoiding aggregation and sintering of the metal fine particles as much as possible.
  • the carrier particles carrying the metal fine particles are loaded, for example, by filling the porous holes of a cathode having a porous surface with the carrier particles.
  • the metal fine particles are reduced by being immersed in an electrolytic solution and flowing a direct current between the anode and a material made of a material insoluble in the electrolytic solution, such as titanium or platinum.
  • This method has an advantage that the ratio of the metal bonding state of the metal fine particles can be adjusted to an arbitrary value within a range of 40% or more by changing conditions such as a current value flowing between the two electrodes.
  • the metal catalyst of the present invention produced by force contains fine metal particles having a small particle size and a large specific surface area, and has a high catalytic activity commensurate with the particle size and the specific surface area of the fine metal particles. As described above, it can be suitably used as a catalyst for a fuel cell, a catalyst for automobile exhaust gas, and the like.
  • the concentration of carbon black was 2 gZ liter
  • the concentration of ethanol was 10 ml ZL
  • the concentration of fructose was 0.1 M (mol Z liter)
  • the concentration of nitric acid solution of di-tromianamine platinum ( ⁇ ) platinum ion Concentration
  • reaction system was reacted with a magnetic stirrer under reflux at a stirring speed of 400 rpm for 240 hours under reflux while maintaining the reaction temperature at 40 ° C.
  • Platinum fine particles are deposited on the surface of carbon black, and after solid-liquid separation, the resulting solid is hydrogenated.
  • a platinum catalyst was produced by washing with an aqueous sodium borohydride solution (concentration: 10 gZ liter) at 40 ° C. to reduce the platinum fine particles.
  • a platinum catalyst was produced in the same manner as in Example 1, except that the concentration of fructose as a reducing agent was 0.20M.
  • a platinum catalyst was produced in the same manner as in Example 1, except that the concentration of fructose as a reducing agent was 0.20 M and the pH of the reaction system was adjusted to 5.
  • a platinum catalyst was produced in the same manner as in Example 1, except that the concentration of fructose as a reducing agent was 0.20 M and the pH of the reaction system was adjusted to 9.
  • the solid content after solid-liquid separation was carried out except that the platinum fine particles were reduced by washing at 40 ° C using an aqueous solution of titanium trichloride (concentration of titanium ions: 0.5 mol Z liter).
  • a platinum catalyst was produced in the same manner as in Examples 1-4.
  • the solid content after solid-liquid separation is placed in a quartz glass boat and housed in a horizontal ring furnace, and heated to 100 ° C for 60 minutes in a reducing atmosphere filled with hydrogen gas inside the furnace.
  • the solid content after solid-liquid separation was placed in a microwave oven and heated in a microwave atmosphere of 300 W for 20 seconds in an inert gas atmosphere filled with inert gas to reduce platinum particles. Except that, in the same manner as in Examples 1 to 4, a platinum catalyst was produced.
  • the solid content after solid-liquid separation is filled in the porous pores of the porous carbon cathode and supported, and is immersed in a 0.1 M aqueous solution of perchloric acid as an electrolytic solution.
  • a 0.1 M aqueous solution of perchloric acid as an electrolytic solution.
  • platinum fine particles were electrochemically reduced by applying a DC current having a current density of 10 / z AZg to the platinum black electrode as an anode under the conditions for 20 minutes.
  • a platinum catalyst was produced in the same manner as in Examples 1 to 4, except that the solid content after the solid-liquid separation was not subjected to a reduction treatment and was washed only with water.
  • a platinum catalyst was prepared in the same manner as in Examples 1 to 4 except that the solid content after solid-liquid separation was heated in an electric furnace under an inert gas atmosphere at 250 ° C for 24 hours to reduce platinum fine particles.
  • a platinum catalyst was produced in the same manner as in Example 1 except that the same amount of mannose was used instead of fructose as the reducing agent, and the reaction temperature was 20 ° C.
  • the particle size of the platinum fine particles was determined by the following procedure. That is, by the CO adsorption method, the produced platinum catalyst was treated under the conditions of a pretreatment temperature of 120 ° C and an adsorption temperature of 50 ° C, and the amount of CO adsorbed was determined. The surface area of the platinum particles was calculated. In addition, the amount of platinum particles supported on the manufactured platinum catalyst was measured by ICP dnductively coupled plasma (ICP) spectroscopy, and the amount of platinum particles supported on the surface of the carbon black was determined based on the supported amount and the surface area. The particle diameter of the obtained platinum fine particles was calculated.
  • ICP ICP dnductively coupled plasma
  • the manufactured platinum catalyst is analyzed using an X-ray photoelectron analyzer to obtain a spectrum showing the relationship between the electron binding energy and the signal intensity of the electron.
  • the Pt4d5 peak which is the energy peak, is the peak that indicates the metal bonding state between platinum elements, and the peak that indicates the metastable bonding state between platinum element and oxygen element.
  • the peaks indicating the stable bonding state of the platinum element and the oxygen element are separated into waveforms, and the areas of the respective peaks are measured. It was determined as the ratio of the metal bonding state on the surface of the platinum fine particles.
  • the analysis was performed using MONO A1 ⁇ ⁇ as the X-ray source and setting the transmitted energy to 17.90 eV.
  • FIG. 2 shows a spectrum indicating the relationship between the electron binding energy and the signal intensity of the electron in Example 1.
  • FIG. 3 shows a spectrum obtained by separating the Pt4d5 peak, which is a specific binding energy peak of platinum, from the spectrum of FIG.
  • the amount of the supported platinum particles was measured by ICP (Inductively Coupled Plazma) spectroscopy as described above.
  • FIG. 5 shows a transmission electron micrograph of one platinum fine particle in Example 22 in an enlarged scale.
  • FIG. 5 shows a state in which the crystal plane orientation of the platinum fine particles is oriented to the (111) plane. 0113
  • the platinum catalyst of Comparative Example 14 in which the platinum fine particles were not subjected to the reduction treatment had a metal bonding state ratio of less than 40% on the surface of the platinum fine particles and an electrochemical surface area of the initial stage. , The catalyst activity was insufficient.
  • the platinum catalyst of Comparative Example 58 in which platinum fine particles were reduced by heating in an electric furnace the ratio of the metal bonding state on the surface of the platinum fine particles exceeded 40%.
  • the electrochemical surface area was high in the initial stage, it was greatly reduced after the endurance, so it was clear that aggregation and sintering of the platinum particles occurred.
  • Comparative Example 9 since the particle size of the metal fine particles exceeded 3 nm by using mannose as a reducing agent at the time of metal ion precipitation, the catalytic activity was insufficient as described above. However, Comparative Example 9 does not mean that mannose was excluded as a reducing agent. It is possible to use mannose as a reducing agent and adjust other conditions to reduce the particle size of the metal fine particles to 3 nm or less. It is also possible to increase the percentage of metal-bound state on the surface to 40% or more, thereby improving the catalytic activity.
  • the concentration of carbon black is 2 gZl
  • the concentration of ethanol is 10 mlZl
  • the concentration of fructose is 0.01 M (mol Zl)
  • the concentration of nitric acid solution of di-trodiammine platinum ( ⁇ ) was set to 0.02M.
  • this reaction system was reacted with a magnetic stirrer under reflux at a stirring speed of 400 rpm for 6 hours under reflux while maintaining the reaction temperature at 90 ° C.
  • Platinum fine particles were deposited on the surface of the carbon black.
  • the obtained solid content was subjected to reduction treatment by the following methods to reduce platinum fine particles, thereby producing a platinum catalyst.
  • Example 21 A solid content after solid-liquid separation was accommodated in a microwave oven and heated for 20 seconds by a 300 W microwave in an inert gas atmosphere filled with an inert gas in the microwave oven. Then, the platinum fine particles were reduced.
  • Example 22 The solid content after solid-liquid separation was washed with an aqueous sodium borohydride solution (concentration: 10 gZ liter) at 40 ° C. to reduce platinum fine particles.
  • Example 23 The solid content after solid-liquid separation was put in a quartz glass boat and stored in a horizontal annular furnace, and heated to 100 ° C. in a reducing atmosphere filled with hydrogen gas in the furnace. Heat 6
  • Example 24 The solid content after solid-liquid separation was treated with an aqueous solution of titanium trichloride [concentration of titanium ion: 0.1.
  • Example 25 In a state in which the solid content after solid-liquid separation was filled in a porous hole of a porous carbon cathode and supported, a 0.1 M aqueous solution of perchloric acid was used as an electrolytic solution. At a liquid temperature of 30 ° C and a DC current of 10 AZg in current density for 20 minutes between the platinum black electrode as the anode, thereby electrochemically reducing the platinum fine particles. Was.
  • Comparative Example 10 A platinum catalyst was produced in the same manner as in Examples 21 to 25, except that the solid content after the solid-liquid separation was not subjected to the reduction treatment and was washed only with water.
  • Examples 21 to 25 except that methanol and galactose were used as the reducing agents, and the methanol concentration in the reaction system was set to lOmlZ liter and the galactose concentration was set to 0.10M (mol Z liter).
  • a platinum catalyst was produced in the same manner as in Comparative Example 10.
  • Isopropyl alcohol and fructose are used as reducing agents, and the concentration of isopropyl alcohol and the concentration of fructose in the reaction system are reduced to 10 ml and 0.1 ml, respectively.
  • Platinum catalysts were produced in the same manner as in Examples 21 to 25 and Comparative Example 10 except that OM (mol Z liter) was used.
  • Methanol and galactose were used as reducing agents, and PEI-PO copolymer [Epomin (registered trademark) PAO306 manufactured by Nippon Shokubai Co., Ltd.) as a polymer dispersant was added as an additive.
  • PEI-PO copolymer [Epomin (registered trademark) PAO306 manufactured by Nippon Shokubai Co., Ltd.) as a polymer dispersant was added as an additive.
  • Examples 21 to 25 and Comparative Example 10 except that the concentration of methanol in the reaction system was lOmlZl, the concentration of galactose was 0.10M (mol Zl), and the concentration of the PEI-PO copolymer was 2gZl. Similarly, a platinum catalyst was produced.
  • Methanol and galactose are used as reducing agents, and polybulpyrrolidone (molecular weight: about 10,000), which is a polymer dispersant, is added as an additive, and the concentration of methanol in the reaction system is reduced to 10 ml of galactose.
  • a platinum catalyst was produced in the same manner as in Examples 21 to 25 and Comparative Example 10, except that the concentration of 0.1 M (mol Z liter) and the concentration of polypyrrolidone were 2 gZ liter.
  • Titanium trichloride is used as a reducing agent, and a poly (vinylpyrrolidone) (molecular weight: about 10,000) is added as an additive, and the concentration of titanium trichloride in the reaction system is set to 0.20M ( Mol Z liter) and a platinum catalyst was produced in the same manner as in Examples 21 to 25 and Comparative Example 10 except that the concentration of polybutylpyrrolidone was 2 gZ liter.
  • Vanadium sulfate was used as a reducing agent, and a polymer dispersant, polylpyrrolidone (molecular weight: about 10,000) was added as an additive, and the concentration of vanadium sulfate in the reaction system was reduced to 0.20M (molar).
  • Z liter) and a platinum catalyst were produced in the same manner as in Examples 21 to 25 and Comparative Example 10 except that the concentration of polybutylpyrrolidone was 2 gZ liter.
  • a rotating disk electrode made of carbon and a potentiostat were used.
  • a predetermined amount of a platinum catalyst was dispersed in a mixed solvent of water and ethanol (volume ratio 1: 1), and then rotated using a micro syringe.
  • 0.1 parts by weight of perfluorosulfonate-polytetrafluoroethylene copolymer resin (H + type) [Naphion (registered trademark) manufactured by DuPont] was added.
  • % Ethanol solution was dropped on a platinum catalyst on a rotating disk electrode and dried to prepare a sample electrode as a working electrode.
  • a three-electrode cell was configured by combining the above working electrode, a platinum electrode as a counter electrode, and a standard hydrogen electrode as a reference electrode, and a 0.1 M aqueous solution of perchloric acid was used as an electrolyte.
  • the oxygen reduction current of the platinum catalyst on the sample electrode was measured.
  • remove dissolved oxygen in the electrolyte by publishing nitrogen beforehand.
  • the electrochemical surface area was measured by cyclic voltammetry.
  • oxygen gas having a purity of 99.99% was bubbled for 10 minutes or more to saturate the electrolyte with oxygen, and then the rotating disk electrode was rotated at a predetermined rotational speed within a range of 400 to 2000 rpm.
  • the oxygen reduction current of the catalyst was determined by measuring the average value of the reduction current value at 0.9 V when polarized from 1.l to OV while rotating at a degree.
  • FIG. 6 shows the relationship between the metal binding state and the oxygen reduction current in Examples 21 to 25 and Comparative Example 10.
  • Example 23 Eye 0.6 73.8 3.4 2.8 20 (111) 220 0.1
  • Example 24 Liquid phase B 0.6 60.8 3.5 2.9 20 (111) 210 0.09
  • Example 25 Electrochemical 0.6 48 4.5 3.9 20 (111) 60 0.04 Comparative example 1 ⁇ None 0.6 28.2 6.2 5.6 20 ⁇ 110 0.01
  • Example 26 Microphone 0-wave heating 0.8 84 6.2 5.4 31 (11) 130 0.018
  • Example 27 Liquid phase A 0.8 76 4.5 3.7 31 (1 1) 190 0.04
  • Example 28 0.8 Complete 4.3 3.5 31 (111) 200 0.08
  • Example 29 Liquid phase B 0.8 55 4.5 3.7 31 (111) 190 0.07
  • Example 3 Electrochemistry 0.8 45 5.6 4.8 31 (111) 1 5 0.03 Comparative example 11 None 0.8 18.0 8.6 7.8 31 ⁇ 90 0.007
  • Example 31 Microphone D-wave heating 0.9 88 6.5 5.6 40 (111) 115 0.015
  • Example 32 Liquid phase A
  • the metal binding state of the platinum fine particles needs to be 40% or more. Among them, it was confirmed that it is preferably 90% or less, particularly preferably 50 to 80%.
  • Example 66 Vulcan XC72-R, manufactured by Cabot: BET specific surface area: 222 m 2 Zg, bulk density: 95 gZ liter
  • Example 67 Ketjen Black EC manufactured by Lion Corporation, surface-treated with H 2 O, BE
  • Example 68 Ketjen Black EC manufactured by Lion Corporation, BET specific surface area: 804 m 2 / g, bulk density: 15 gZl
  • Example 69 Ketjen Black ECP manufactured by Lion Corporation, BET specific surface area: 820 m 2 / g, bulk density: 32 gZ liter
  • Example 70 Ketjen Black EC600JD manufactured by Lion Corporation, BET specific surface area: 1270 m
  • Example 71 Ketchen Black ECP600JD manufactured by Lion Corporation, BET specific surface area: 13 Olm g, bulk density: 42 gZ liter
  • Example 72 Activated carbon obtained by pulverizing steam-activated carbon of phenol resin with a sirocco fan, BET specific surface area: 2015 m 2 Zg, bulk density: 100 gZ l
  • the reaction system was reacted with a magnetic stirrer under reflux at a stirring speed of 400 rpm for 6 hours under reflux while maintaining the reaction temperature at 90 ° C.
  • Platinum fine particles were deposited on the surface of the carbon black.
  • the solid content after solid-liquid separation is placed in a quartz glass boat and housed in a horizontal ring furnace, and heated to 100 ° C for 30 minutes in a reducing atmosphere filled with hydrogen gas in the furnace. The treatment was performed to reduce the platinum fine particles to produce a platinum catalyst.
  • Measurement of oxygen reduction current II Measurement of oxygen reduction current The working electrode prepared in the same manner as in I, a platinum electrode as a counter electrode, and a standard hydrogen electrode as a reference electrode were combined to form a three-electrode cell, and 0.1 M was used as an electrolyte.
  • the oxygen reduction current of the platinum catalyst on the sample electrode was measured by a polarization measurement method using a concentrated aqueous solution of perchloric acid.
  • the carrier particles in order to carry the metal particles having the smallest possible particle size as much as possible on the surface of the carpump rack as the carrier particles by the liquid phase reduction method and to enhance the conductivity of the carbon black, the carrier particles must be used as carrier particles.
  • BET specific surface area power of carbon black 500-1500m 2 It was confirmed that Zg and bulk density are preferably 10 to 50 gZl.

Abstract

 本発明は、粒径が3nm以下であると共に、X線光電子分析装置を用いて測定され、金属固有の結合エネルギーピークを波形分離することで帰属される、金属結合状態の割合が40%以上である金属微粒子を含む金属触媒である。金属微粒子としては、白金微粒子が好ましい。また、金属微粒子は、担体粒子を分散させた液相の反応系中で、当該金属微粒子のもとになる金属のイオンを、還元剤の作用によって還元して、担体粒子の表面に微粒子状に析出させることによって、担体粒子の表面に担持されるのが好ましい。また、上記金属微粒子は、析出後に還元して酸化状態を低下させることによって、金属結合状態の割合が上記の範囲に調整される。

Description

明 細 書
金属触媒とその製造方法
技術分野
[0001] 本発明は、例えば、燃料電池用触媒や、自動車排ガス用触媒として好適に用いら れる金属触媒と、その製造方法とに関するものである。
背景技術
[0002] 燃料電池用触媒や自動車排ガス用触媒としては、金属、特に、白金等の貴金属を 用いた金属触媒が使用されるが、貴金属元素は地球上に限られた量しか存在しない ことから、その使用量を極力減らし、し力も、触媒としての作用はできるだけ向上する ことが求められる。そこで、金属触媒としては、例えば、カーボンブラックや無機化合 物等からなる担体粒子の表面に、白金等の金属の微粒子を担持させた構造を有す るものが用いられる。
[0003] 触媒作用は、主に、金属の表面において発揮されることから、上記構造の金属触 媒において、良好な触媒作用を維持しつつ、金属の使用量をできるだけ少なくする ためには、担体粒子の表面に担持させる金属微粒子を、できるだけ小粒径で、かつ 、比表面積の大きいものとすることが有効である。
[0004] 担体粒子の表面に、金属微粒子を担持させる方法としては、含浸法と呼ばれる高 温処理法や、液相還元法、気相法等があり、特に、近年、製造設備の簡易化が容易 な液相還元法、すなわち、担体粒子を分散させた液相の反応系中で、析出対象であ る金属のイオンを、還元剤の作用によって還元することで、担体粒子の表面に、微粒 子状に析出させる方法が、広く普及しつつある。
[0005] 液相還元法によって形成する金属微粒子の粒径を小さくするためには、金属のィ オンの還元、析出速度を遅くするのが有効であり、そのためには、できるだけ還元力 の弱い還元剤を選択して使用することが肝要である。そこで、エタノール等のアルコ ール、アルカノールァミン、ァスコルビン酸等の還元力の弱い還元剤を用いることで、 担体粒子の表面に、できるだけ粒径の小さい金属微粒子を還元、析出させて金属触 媒を製造することが提案されている (例えば、特許文献 1〜3参照)。 [0006] また、担体粒子の表面に金属微粒子を担持させた構造を有する金属触媒にお!ヽて は、金属微粒子の担持量と、担体粒子の表面における、隣り合う金属微粒子間の距 離も、触媒活性を左右する重要な因子であると考えられている。例えば、ダイレクトメ タノール型や固体高分子型等の、動作温度が 100°C以下といった比較的低い温度 である燃料電池用の触媒としては、カーボンの粒子の表面に、白金微粒子等の金属 微粒子を担持させた金属触媒が用いられる。
[0007] しかし、力かる金属触媒にぉ 、て、カーボンの粒子の表面に担持された、隣り合う 金属微粒子間の距離が遠すぎて、担持量が小さい場合には、十分な触媒活性が得 られないという問題がある。すなわち、金属微粒子間の、酸素ガスや水素ガスが拡散 する経路に、露出したカーボンの表面が広く存在することにより、ガスの拡散が阻害 されて、触媒活性が低下する。
[0008] そのため、触媒活性を高めることを考慮すると、金属微粒子の担持量は、できるだ け大きいことが望ましいが、担持量が大きくなりすぎて、隣り合う金属微粒子間の距離 が近づきすぎると、複数の金属微粒子が、水素ガスや酸素ガスに対して、あた力も、 1 つの触媒粒子として挙動するため、触媒活性が却って低下するという問題がある。
[0009] 詳しく説明すると、担体粒子の表面に担持された、個々の金属微粒子の周囲には、 その実質的な大きさを超えて、テリトリ (縛張り)と呼ばれる領域が存在し、例えば、燃 料電池の正極の場合には、酸素ガスが、このテリトリを構成する薄い膜を通って金属 微粒子の表面に達して還元反応される。ところが、隣り合う金属微粒子間の距離が近 すぎると、このテリトリが重なり合うため、 1つの酸素分子を、複数のテリトリが取り合う 結果になり、触媒活性が低下する。
[0010] つまり、金属微粒子の担持量と、担体粒子表面における、隣り合う金属微粒子間の 距離とは、二律背反の関係にある。そこで、特許文献 4においては、テリトリが重なり 合わない最小の、金属微粒子間の距離を規定することにより、金属微粒子の担持量 と、金属微粒子間の距離とのバランスをとつて、金属触媒の触媒活性を向上すること が提案されている。
特許文献 1 :特開平 4— 298238号公報 (請求項 1、第 0003欄〜第 0005欄) 特許文献 2:特開 2000— 107606号公報 (第 0012欄〜第 0013欄) 特許文献 3 :特開 2000— 279811号公報 (請求項 1、 2、第 0013欄〜第 0015欄) 特許文献 4:特開平 2— 65064号公報 (特許請求の範囲、第 2頁右上欄第 14行〜同 頁左下欄第 18行)
発明の開示
発明が解決しょうとする課題
[0011] 特許文献 1〜3に記載された、還元力の弱い還元剤を用いた液相還元法によれば 、例えば、粒径が 3nm以下という、触媒活性の理論上、十分に粒径が小さぐかつ比 表面積が大きい金属微粒子を形成することが可能である。しかし、かかる微細な金属 微粒子を含む金属触媒の、実際の触媒活性は、金属微粒子の粒径と、比表面積と 力も予測される範囲に、十分に到達して 、な 、のが現状である。
[0012] また、特許文献 4において規定された、 15nm以上という、隣り合う金属微粒子の中 心間の距離の範囲は、金属微粒子の粒径が 3nmを超える、粒径の大きい金属微粒 子において、二律背反の関係にある、金属微粒子の担持量と、金属微粒子間の距 離とのバランスをとつて、最も高い触媒効率を得るのに適した範囲に過ぎない。
[0013] 発明者の検討によると、金属微粒子の粒径が 3nm以下である金属触媒において、 この距離の規定を適用すると、金属微粒子の担持量が著しく低下するため、たとえ、 力かる微細な金属微粒子を含む金属触媒の、実際の触媒活性が、金属微粒子の粒 径および比表面積力 予測される範囲に到達したとしても、触媒活性が低下するお それがある。
[0014] 本発明は、粒径が小さぐかつ比表面積が大きい金属微粒子を含み、なおかつ、そ の金属微粒子の粒径と比表面積とに見合う高い触媒活性を有する金属触媒と、その 製造方法とを提供することにある。
課題を解決するための手段
[0015] 金属微粒子の表面における触媒活性のメカニズムは、その目的とする触媒反応に よって異なり、例えば、白金による酸素還元反応の触媒活性は、白金の結晶面方位 に依存することが知られている。また、一般に、触媒反応は、金属結晶で構成される 平面よりも、キンク、ステップといった結晶中の特異点で起こりやすいとも言われてい る。 [0016] し力しながら、 Vヽずれの触媒反応にお!、ても、先ずは、被活性化種が触媒活性サイ トに吸着する過程を経ることを考えると、金属微粒子の表面のうち、特に、活性サイト において、金属元素が、金属の状態で露出していることが、触媒活性を向上する上 で望ましい。
[0017] そのため、液相還元法等によって形成される微小な金属微粒子を含む、従来の金 属触媒の触媒活性が、金属微粒子の粒径と比表面積とに見合う範囲に達しないの は、金属微粒子の表面において、金属元素が、金属の状態で十分に露出していな いためであると考えられ、その原因としては、当該金属微粒子の、特に、表面におい て、大部分の金属元素が酸ィ匕されて、酸ィ匕物になっているためであると推測される。
[0018] すなわち、先に説明した液相還元法では、低酸化状態で金属微粒子が形成される 気相法や、あるいは、金属微粒子の形成過程で高温状態を経る含浸法と違って、生 成される金属微粒子が酸化されやすい傾向にあり、特に、還元力の弱い還元剤を用 いて、できるだけ析出速度を遅くして、長い時間をかけて金属微粒子を形成する場 合には、金属微粒子が酸化されやすくなる。のみならず、このようにして得られる nm オーダーの微細な金属微粒子においては、久保効果として知られる融点降下現象 に代表されるように、その表面エネルギーが増大することで、表面活性が高くなること から、金属微粒子は、より一層、酸化されやすくなる。
[0019] そのため、金属微粒子の、特に、表面近傍の金属元素の大部分は、金属の種類に よる程度の差こそあれ、室温の大気中で酸ィ匕されて、酸ィ匕物になっていると考えられ る。そして、金属元素が酸ィ匕される度合いは、その種類によってほぼ一定であるため 、金属微粒子が微細化すればするほど、その全容積に占める酸ィ匕物の割合が高くな つて、触媒活性が低下するのである。
[0020] そこで、発明者は、粒径が 3nm以下という微細な金属微粒子の表面において、ど の程度の割合で、金属元素が金属の状態で露出していれば、その粒径に見合う高 い触媒活性を有する金属触媒が得られるかについて検討した。その結果、 X線光電 子分析装置によって測定され、金属固有の結合エネルギーピークを波形分離するこ とで帰属される、金属微粒子の金属結合状態の割合を 40%以上に規定すれば、微 細な金属微粒子を含む金属触媒の触媒活性を、その金属微粒子の粒径と比表面積 とに見合う高いレベルに向上できることを見出した。
[0021] したがって、本発明の金属触媒は、金属微粒子の粒径が 3nm以下で、かつ、 X線 光電子分析装置を用いて測定され、金属固有の結合エネルギーピークを波形分離 することで帰属される、金属微粒子の金属結合状態の割合が 40%以上であることを 特徴とするものである。
[0022] ただし、金属微粒子の金属結合状態の割合が 90%を超える場合には、触媒活性 が高くなりすぎて、金属微粒子による触媒作用が、触媒毒によって阻害されやすくな るため、金属触媒の触媒活性が却って低下するおそれがある。触媒毒による影響を 排除しつつ、金属触媒の触媒活性を向上するためには、金属微粒子の金属結合状 態の割合は、上記の範囲内でも、特に、 90%以下であるの好ましい。
[0023] また、触媒毒による影響を排除しつつ、金属触媒の触媒活性を向上する効果をさら に向上することを考慮すると、金属微粒子の金属結合状態の割合は、上記の範囲内 でも、特に、 50〜80%であるのが好ましい。
[0024] 金属微粒子としては、良好な触媒活性を得ることを考慮すると、白金、パラジウム、 金、銀、ロジウム、イリジウム、ルテニウム、オスミウム、コバルト、マンガン、ニッケル、 鉄、クロム、モリブデン、およびチタン力も選ばれる少なくとも 1種の金属力もなる微粒 子が好ましい。
[0025] 中でも、特に、白金微粒子が好ましぐかかる白金微粒子は、 X線光電子分析装置 を用いて測定され、白金固有の結合エネルギーピークである Pt4d5ピークを波形分 離することで帰属される、白金微粒子の金属結合状態の割合が 40%以上であるの が好ましい。
[0026] 本発明の金属触媒は、その生産性や取り扱い性等を考慮すると、微細な金属微粒 子力 多数、それよりも大きい担体粒子の表面に担持された構造を有しているのが好 ましぐ力かる構造を有する金属触媒における、多数の金属微粒子は、その粒径を小 さくすることが可能な液相還元法によって、担体粒子の表面に担持されるのが好まし い。
[0027] すなわち、担体粒子を分散させた液相の反応系中で、析出対象である金属のィォ ンを、還元剤の作用によって還元して、担体粒子の表面に微粒子状に析出させるこ とによって、多数の金属微粒子が、担体粒子の表面に担持されるのが好ましい。
[0028] また、発明者の検討によると、上記のように、多数の金属微粒子が担体粒子の表面 に担持された構造を有し、なおかつ、担持される金属微粒子の粒径が 3nm以下であ る金属触媒においては、いわゆる「縛張り効果」による触媒活性の低下は生じない。 そのため、隣り合う金属微粒子の、中心間の距離を、特許文献 4において規定された 15nm未満として、その担持量を大きくして、金属触媒の触媒活性を向上することが 可能である。
[0029] しかし、粒径が 3nm以下と 、う微小な金属微粒子は、表面活性が高 、ことから、隣 り合うもの同士の、最接近する表面間の距離が 0. 3nm未満であると、 100°C以下程 度の比較的低温でも、クラスタリングを起こして粗大粒子化しやすぐ金属微粒子が 粗大粒子化すると、触媒活性が低下するという問題がある。
[0030] そのため、金属触媒の触媒活性をさらに向上することを考慮すると、担体粒子の表 面で隣り合う金属微粒子は、その中心間の距離が 15nm未満で、かつ、最近接する 表面間の距離が 0. 3nm以上であるのが好ましい。
[0031] また、隣り合う金属微粒子の距離が上記の範囲内に規定された金属触媒の触媒活 性を、さらに向上することを考慮すると、金属微粒子の重量の、金属触媒の重量に対 する百分率で表される金属微粒子の担持量は 10〜60重量%であるのが好ましい。
[0032] また、多数の金属微粒子が担体粒子の表面に担持された構造を有し、なおかつ、 燃料電池の正極にお!、て、酸素ガスを還元反応させるために用いる金属触媒にお いては、各金属微粒子の、露出している結晶面方位が、上記還元反応の触媒活性 に優れた( 111 )面に配向して 、るのが好まし!/、。
[0033] また、燃料電池用触媒の場合は、担体粒子として、導電性を有するカーボンブラッ クが好適に使用されるが、カーボンブラックの BET比表面積が小さいほど、液相還元 法によって金属のイオンを還元して、カーボンブラックの表面に微粒子状に析出させ た際に、析出した金属微粒子間の距離が近くなるため、隣り合う複数の金属微粒子 力 その成長過程で融合して、金属微粒子の粒径が大きくなる傾向がある。
[0034] 発明者の検討によると、上記融合が発生するのを防止して、 3nm以下の範囲内で 、できるだけ金属微粒子の粒径を小さくするためには、カーボンブラックの BET比表 面積は 500m2/g以上であるのが好まし!/、。
[0035] 一方、 BET比表面積が 1500m2/gを超えるカーボンブラックは、導電性が低いた め、特に、金属触媒を燃料電池用触媒として使用する際に、触媒効率が低下するお それがある。そのため、液相還元法によって、担体粒子としてのカーボンブラックの表 面に、できるだけ粒径の小さい金属微粒子を担持させることと、カーボンブラックの導 電性を高めることとを併せ考慮すると、当該カーボンブラックの BET比表面積は 500 〜 1500m2/gであるのが好まし!/、。
[0036] また、カーボンブラックの BET比表面積を、上記の範囲内に調整するためには、当 該カーボンブラックの嵩密度が 10〜50g/リットルであるのが好ましい。
[0037] さらに、カーボンブラックの BET比表面積を、上記の範囲内に調整すると共に、複 数の金属微粒子がクラスタリングを起こして、触媒活性が低下するのを防止するため には、当該カーボンブラックとして、鎖状構造を有する原料カーボンブラックを、鎖状 構造を切断するように、粉砕処理したものを用いるのが好ま ヽ。
[0038] 上記本発明の金属触媒は、その高い触媒効率を利用して、燃料電池用触媒また は自動車排ガス用触媒として好適に使用される。
[0039] また、上記本発明の金属触媒を製造するためには、形成した金属微粒子を還元処 理すればよい。すなわち、本発明の金属触媒の製造方法は、金属微粒子を還元して 酸ィ匕状態を低下させることによって、 X線光電子分析装置を用いて測定され、金属固 有の結合エネルギーピークを波形分離することで帰属される、金属微粒子の金属結 合状態の割合を 40%以上に調整する工程を含むことを特徴とするものである。
[0040] 金属微粒子を還元する方法としては、金属微粒子を、液相中で、還元剤の作用に よって還元する液相法が挙げられる。また、液相法においては、還元処理の効率を 向上して、金属触媒の生産性を向上させるために、還元剤として、還元する金属より も酸ィ匕還元電位が卑であるものを選択して用いることが好まし 、。
[0041] 金属微粒子が白金微粒子である場合に、白金よりも酸化還元電位が卑である還元 剤としては、 3価のチタンイオン、次亜リン酸ナトリウム、ヒドラジン、 2価〜 4価のバナ ジゥムイオン、または水素化ホウ素ナトリウムが挙げられる。
[0042] 金属微粒子を還元する他の方法としは、金属微粒子を、気相中で、還元剤の作用 によって還元する気相法、金属微粒子を、マイクロ波によって加熱して還元するマイ クロ波加熱法、または、金属微粒子を、電解液中で電流を流すことによって電気化学 的に還元する電気化学法が挙げられる。
[0043] 多数の金属微粒子が担体粒子の表面に担持された構造を有する金属触媒を製造 するためには、上記の、金属微粒子の金属結合状態の割合を調整する工程を行うに 先立って、担体粒子を分散させた液相の反応系中で、析出対象である金属のイオン を、還元剤の作用によって還元して、担体粒子の表面に微粒子状に析出させる工程 を行うのが好ましぐその際の還元剤としては、析出させる金属微粒子の粒径をでき るだけ小さくすることを考慮すると、アルコール類、糖アルコール類、および還元性糖 類力もなる群より選ばれる少なくとも 1種を用いるのが好ま U、。
図面の簡単な説明
[0044] [図 1]本発明の金属触媒における、金属微粒子の金属結合状態の割合を測定するた めに用いる、 X線光電子分析装置の構成を説明する概略図である。
[図 2]本発明の実施例 1において、担体粒子の表面に担持させた白金微粒子を、上 記 X線光電子分析装置を用いて測定した際に得られた、電子の結合エネルギーと、 その電子のシグナル強度との関係を表すスペクトルを示すグラフである。
[図 3]図 2のスペクトルのうち、白金の固有の結合エネルギーピークである Pt4d5ピー クを波形分離したスペクトルを示すグラフである。
[図 4]本発明の実施例 22の白金触媒における、白金微粒子の担持状態を示す透過 型電子顕微鏡写真である。
[図 5]本発明の実施例 22の白金触媒において、 1つの白金微粒子を拡大した状態を 示す透過型電子顕微鏡写真である。
[図 6]本発明の実施例 21〜25、および比較例 1における、白金微粒子の金属結合状 態と、酸素還元電流との関係を示すグラフである。
発明を実施するための最良の形態
[0045] 《金属触媒》
本発明の金属触媒は、粒径が 3nm以下の金属微粒子を含み、なおかつ、この金 属微粒子の、 X線光電子分析装置を用いて測定され、金属固有の結合エネルギー ピークを波形分離することで帰属される金属結合状態の割合が 40%以上であること を特徴とするものである。
[0046] 本発明において、金属微粒子の粒径が 3nm以下に限定されるのは、粒径が 3nm を超える金属微粒子は、比表面積が小さいため、たとえ、その金属結合状態の割合 を 40%以上にしても、金属触媒の触媒効率を向上する効果が得られないためである 。また、力かる粒径の大きな金属微粒子は、そもそも金属状態が強いことから、その 表面における、金属結合状態の割合を 40%以上にすると、金属微粒子による触媒 作用が触媒毒によって阻害されやすくなるという問題も生じる。したがって、金属微粒 子の粒径は 3nm以下に限定される。
[0047] また、触媒毒による影響を排除しつつ、金属触媒の触媒活性をできる限り向上する ことを考慮すると、金属微粒子の粒径は、上記の範囲内でも、特に、 2nm以下である のが好ましぐ lnm以下であるのがさらに好ましい。なお、金属微粒子の粒径の下限 値については、特に、限定されず、前述した液相還元法によって析出可能で、なお かつ、触媒として機能しうる最小限の粒径のものまで使用可能である。
[0048] X線光電子分析装置 (XPSまたは ESCA)は、代表的な表面分析装置の 1つで、固 体の表面力 数 nmの深さまでの領域における元素の種類と、その化学結合状態の 分析とに用いられる。また、 Arイオンを照射してエッチングすることにより、最表面の 汚染物を除去した面や、サブミクロンオーダーまでの深さ方向の分析も可能である。
[0049] 上記 X線光電子分析装置を用いた測定では、高真空中において、図 1に一点鎖線 の矢印で示すように、固体試料 1の表面に、照射 X線源 2から特定エネルギーの軟 X 線 (Α1Κ α線または MgK a線)を照射する。そうすると、その光電効果によって、固 体試料 1から、図中に二点鎖線で示すように電子 (光電子)が放出されるので、この 電子を、マグネッテイツクレンズ 3、アパーチャ一 4、静電レンズ 5等を介してアナライザ 一 6に導き、電子の運動エネルギーによって分離させて、検出器 7によって検出する ことで、固体試料 1の表面状態が、運動エネルギーの異なる電子のスペクトルとして 検出される。
[0050] なお、光電子は、固体試料の深!、領域からも放出されるが、試料表面に到達するま でに、非弾性散乱によって運動エネルギーを失うため、スペクトルにおいて、ピークと しては検出されず、スペクトルのバックグラウンドとなる。したがって、非弾性散乱せず に試料表面力も脱出し得る、数 nmの深さ領域の光電子のみがピークとして検出され 、分析に用いられる。
[0051] スペクトルの横軸は、電子の結合エネルギー、縦軸は、その電子の出現頻度、すな わちシグナル強度で表示される。結合エネルギー(Eb)は、照射した軟 X線のエネル ギー(EO)から、光電子の運動エネルギー(Ek)を引いた差として求められる(Eb = E 0— Ek)。各種原子の内殻電子は、固有の結合エネルギーを持っているので、検出 された電子の結合エネルギーから、元素の種類を、また、シグナル強度から、元素の 比率を調べることができる。検出可能な元素は Uから Uまでである。また、検出限界 は、元素によって異なるが 0. 1%程度である。
[0052] また、各種元素の化学結合状態が異なると、結合エネルギーがわずかに変化する ため、スペクトルが区別されて検出される。これにより、有機物の官能基分析 (C— O, c=oの定量等)や、無機物の酸ィ匕状態の分析 (メタルと酸ィ匕状態の定量)等が可能 となる。なお、 Arイオンエッチングによる深さ方向の分析は、イオン照射による状態変 化が起こりにく 、無機物に有効である。
[0053] 上記の X線光電子分析装置を用いて、金属触媒の金属微粒子を分析すると、得ら れるスぺクトル中の、当該金属微粒子を形成する金属固有の結合エネルギーピーク を波形分離することで帰属される、金属微粒子表面の金属結合状態の割合を求める ことができる。すなわち、 X線光電子分析装置を用いて、金属微粒子に特定エネルギ 一の軟 X線を照射すると、横軸が電子の結合エネルギー、縦軸がその電子のシグナ ル強度を表す、図 2に示すようなスペクトルが得られる。図 2のスペクトルは、後述する 実施例 1の白金微粒子について、測定した結果である。白金の場合は、固有の結合 エネルギーピークとして、 Pt4d5ピークが波形分離される。
[0054] 図 3は、 Pt4d5ピークを波形分離したスペクトルを表す図であって、この図 3におい て、最上部の細かな波形を有する曲線が、実際に測定されたスペクトルを示し、この スぺタトに重ね合わされている滑らかな曲線は、それを近似させた近似曲線、その下 の 3つの曲線は、上記近似曲線力も波形分離された、シグナル強度が強いもの(ピー ク高さの高いもの)から順に、白金元素同士の金属結合状態を示すピーク、白金元 素と酸素元素の準安定な結合状態を示すピーク、そして、白金元素と酸素元素の安 定な結合状態を示すピークである。これら波形分離されたスペクトルから金属結合状 態の割合を求めるには、各ピークの面積を計測し、その総計に占める、金属結合状 態を示すピークの面積の割合を求める等すればょ 、。
[0055] 本発明にお 、ては、上記のようにして求められる、金属微粒子表面の金属結合状 態の割合が 40%以上に限定される。金属結合状態の割合が 40%未満では、金属 微粒子の粒径と比表面積とに見合う、高 ヽ触媒活性を有する金属触媒が得られな!/ヽ ためである。また、金属結合状態の割合は、触媒毒による影響を排除しつつ、金属触 媒の触媒活性を、できる限り向上することを考慮すると、上記の範囲内でも 90%以下 であるのが好ましぐその中でも 50〜80%であるのが好ましい。
[0056] 金属微粒子としては、白金、パラジウム、金、銀、ロジウム、イリジウム、ルテニウム、 オスミウム、コノ レト、マンガン、ニッケル、鉄、クロム、モリブデン、およびチタンから 選ばれる少なくとも 1種の金属力 なる微粒子が挙げられ、特に、白金微粒子が好ま しい。白金微粒子において、金属結合状態の割合を求めるために波形分離される固 有の結合エネルギーピークは、前記のように Pt4d5ピークである。
[0057] 本発明の金属触媒は、上で説明した特性を満足する金属微粒子単体で構成しても よいが、その生産性や取り扱い性等を考慮すると、微細な金属微粒子が、多数、それ よりも大き ヽ担体粒子の表面に担持された構造を有して!/ヽるのが好ま ヽ。担体粒子 としては、無機化合物や、カーボンの粒子が挙げられる。
[0058] このうち、無機化合物の粒子としては、 γ —アルミナ等のアルミナ、酸化チタン、シリ 力、酸ィ匕セリウム、酸ィ匕ジルコニウム、酸化鉄、および、これらの複合酸化物等の金属 酸化物の粒子や、窒化チタン、窒化鉄、窒化ケィ素等の金属窒化物の粒子、あるい は、硫ィ匕銀の粒子等が挙げられる。無機化合物の粒子の粒径は、触媒の用途等に 応じて、適宜の範囲に設定することができる力 比表面積で表して 50〜500m2Zg であるのが好ましい。
[0059] また、カーボンの粒子としては、種々のカーボンブラックが使用できる力 特に、そ の BET比表面積が 500〜1500m2Zgであるもの力 好適に使用される。カーボンブ ラックの BET比表面積が 500m2Zg未満では、液相還元法によって金属のイオンを 還元して、カーボンブラックの表面に、微粒子状に析出させた際に、析出した金属微 粒子間の距離が近くなるため、隣り合う複数の金属微粒子が、その成長過程で融合 して、金属微粒子の粒径が、前記 3nm以下の範囲内でも、大きめになる傾向がある
[0060] 一方、 BET比表面積が 1500m2/gを超えるカーボンブラックは、導電性が低いた め、特に、金属触媒を燃料電池用触媒として使用する際に、触媒効率が低下するお それがある。なお、液相還元法によって、担体粒子としてのカーボンブラックの表面 に、できるだけ粒径の小さい金属微粒子を担持させることと、カーボンブラックの導電 性を高めることとを併せ考慮すると、カーボンブラックの BET比表面積は、上記の範 囲内でも 700〜1300m2/g、特に、 900〜1200m2/gであるの力 ^好まし!/ヽ。
[0061] また、カーボンブラックの BET比表面積を、上記の範囲内に調整するためには、当 該カーボンブラックの嵩密度が 10〜50g/リットル、中でも 15〜40gZリットル、特に 、 22〜35gZリットルであるのが好ましい。カーボンブラックの嵩密度がこの範囲未満 では、 BET比表面積が先の範囲未満となって、担持させる金属微粒子の粒径が大き くなる傾向があり、逆に、嵩密度が上記の範囲を超える場合には、 BET比表面積が 先の範囲を超えて、導電性が低下するため、金属触媒を燃料電池用触媒として使用 する際に、触媒効率が低下するおそれがある。
[0062] さらに、カーボンブラックの BET比表面積を、前記の範囲内に調整すると共に、複 数の金属微粒子がクラスタリングを起こして、触媒活性が低下するのを防止するため には、当該カーボンブラックとして、鎖状構造を有する原料カーボンブラックを、鎖状 構造を切断するように、粉砕処理したものを用いるのが好ま ヽ。
[0063] カーボンブラックは、周知のように、無定形炭素からなる単位粒子が、多数、鎖状に 連携して、ストラクチャーと呼ばれる鎖状構造を形成した状態で供給され、この原料 の状態では、単位粒子同士の接合部分が多数存在することから、各単位粒子の表 面において、金属微粒子を担持させることができる領域の表面積が制限される。その ため、全体としての比表面積力 前記の範囲より小さくなつて、その表面に、液相還 元法によって担持させる金属微粒子の粒径力 前述した成長過程での融合によって 、大きくなる傾向がある。また、担持させた、隣り合う金属微粒子同士の間隔が近すぎ るため、多数の金属微粒子が、 100°C以下程度の比較的低温でも、クラスタリングを 起こして粗大粒子化しやすぐ金属微粒子が粗大粒子化すると、触媒活性が低下す るおそれがある。
[0064] これに対し、鎖状構造を有する原料カーボンブラックを、当該鎖状構造を切断する ように、粉砕処理したカーボンブラックは、単位粒子同士の接合部分が減少して、単 位粒子の表面における、金属微粒子を担持させることができる領域の表面積が増加 する分、全体としての比表面積が増加する。そのため、カーボンブラックの BET比表 面積を、前記の範囲内に調整して、担持される金属微粒子の融合を防止することで、 その粒径を、できるだけ小さくすることができると共に、複数の金属微粒子がクラスタリ ングを起こして、触媒活性が低下するのを防止することができる。
[0065] 原料カーボンブラックの鎖状構造を切断するように粉砕処理する方法としては、例 えば、シロッコファンを用いて高速回転粉砕する方法や、ボールミル、ロールミル等を 用いた粉砕方法等が挙げられる。
[0066] 担体粒子の表面に、多数の、粒径が 3nm以下という微小な金属微粒子が担持され た構造を有する金属触媒においては、隣り合う金属微粒子の、中心間の距離が 15η m未満であるのが好ましい。中心間の距離が 15nm以上では、金属微粒子の担持量 力 S小さすぎるため、金属触媒の触媒活性が低下するおそれがある。また、隣り合う金 属微粒子の、最近接する表面間の距離は 0. 3nm以上であるのが好ましい。表面間 の距離が 0. 3nm未満では、 100°C以下程度の比較的低温でも、クラスタリングを起 こして粗大粒子化しやすぐ金属微粒子が粗大粒子化すると、触媒活性が低下する という問題がある。
[0067] なお、クラスタリングの発生を防止しながら、金属粒子の担持量をできるだけ大きく して、触媒活性をさらに向上することを考慮すると、隣り合う金属微粒子間の距離は、 最近接する表面間の距離で表して 1. 0〜5. Onmであるのがさらに好ましい。隣り合 う金属微粒子の、中心間の距離、および最接近する表面間の距離は、いずれも、透 過型電子顕微鏡を用いて実測した値とする。また、隣り合う金属微粒子間の距離を 上記の範囲内とするためには、担体粒子の比表面積を調整したり、金属微粒子の担 持量を調整したりすればょ 、。 [0068] また、金属触媒の触媒活性を、さらに向上することを考慮すると、金属微粒子の重 量の、金属触媒の重量に対する百分率で表される金属微粒子の担持量は 10〜60 重量%であるのが好ましい。担持量が 10重量%未満では、隣り合う金属微粒子間の 距離が前記の範囲を上回って、金属微粒子間の、酸素ガスや水素ガスが拡散する 経路に、露出したカーボンの表面が広く存在することにより、ガスの拡散が阻害され て、触媒活性が低下するおそれがある。
[0069] また、担持量が 60重量%を超える場合には、隣り合う金属微粒子間の距離が前記 の範囲を下回って、 100°C以下程度の比較的低温でもクラスタリングを起こして粗大 粒子化しやすくなり、粗大粒子化すると触媒活性が低下するおそれがある。なお、ク ラスタリングの発生を防止しながら、触媒活性をさらに向上することを考慮すると、金 属微粒子の担持量は 15〜50重量%であるのがさらに好ましい。
[0070] また、特に、担体の表面に多数の金属微粒子が担持された構造を有し、なおかつ、 前述した燃料電池の正極にぉ 、て酸素ガスを還元反応させるために用いる金属触 媒においては、金属微粒子の、露出している結晶面方位力 上記還元反応の触媒 活性に優れた(111)面に配向しているのが好ましい。これにより、酸素ガスを還元反 応させる際の触媒活性を、さらに向上させることができる。
[0071] 金属微粒子の、露出している結晶面方位を(111)面に配向させるためには、組み 合わせる担体粒子と金属微粒子の種類を選択したり、金属微粒子の析出方法を選 択したり、担体粒子の表面状態を調整したりすればよい。例えば、担体粒子として、 カーボンブラック等の、カーボンの粒子を使用すると共に、このカーボンの粒子の表 面に、液相還元法によって白金を析出させて白金微粒子を担持させると、自動的に 、その露出して 、る結晶面方位を(111)面に配向させることができる。
[0072] 《金属触媒の製造方法》
(金属微粒子の形成)
担体粒子の表面に担持させる金属微粒子の粒径を 3nm以下とするためには、当該 金属微粒子を、液相還元法によって形成するのが好ましい。具体的には、所定量の 担体粒子を分散させると共に、還元剤と、金属のイオン源となる金属化合物とをそれ ぞれ所定の濃度で含む液相の反応系を調製し、この反応系を、所定の温度条件下 で一定時間、反応させることにより、液相中に分散した担体粒子の表面に、還元され た金属を、微粒子状に析出させることができる。
[0073] この際、液の温度や粘度、力べ拌の有無、力べ拌する場合はかく拌速度等を変更す ることにより、形成される金属微粒子の粒径を調整することができる。すなわち、液の 温度が低いほど、また粘度が高いほど、さらに、力べ拌する場合は力べ拌速度が低い ほど、形成される金属微粒子の粒径が小さくなる傾向がある。したがって、形成する 金属微粒子の種類や粒径、使用する還元剤の種類、その他の条件を考慮しながら、 液の温度、粘度、力べ拌条件等を設定するのが好ましい。
[0074] 金属微粒子のもとになる金属のイオン源としては、金属元素を含む種々の、液相の 反応系に可溶の金属化合物力 いずれも使用可能である。また、金属化合物は、可 能であれば、核成長の起点となって異常な核成長を生じさせるおそれのある、ハロゲ ン元素 (塩素等)、硫黄、リン、ホウ素等の不純物元素を含まないのが好ましい。ただ し、不純物元素を含む金属化合物を使用する場合でも、反応条件等を調整すること により、異常な核成長を抑えて、担体粒子の表面に、小粒径の金属微粒子を担持さ せることは可會である。
[0075] 金属のイオン源として好適な金属化合物としては、これに限定されないが、例えば、 白金の場合、ジニトロジアンミン白金 (II) (Pt (NO ) (NH ) )、へキサクロロ白金 (IV)
2 2 3 2
酸六水和物(H [PtCl〕 · 6Η Ο)等が挙げられ、特に、ジニトロジアンミン白金 (II)が
2 6 2
好ましい。
[0076] ノ《ラジウムの場合は、塩化パラジウム (Π)溶液 (PdCl )、金の場合は、テトラクロ口金
2
(III)酸四水和物 (HAuCl ·4Η Ο)等が挙げられる。銀の場合は、硝酸銀 (I) (AgNO
4 2 3
)、メタンスルホン酸銀 (CH SO Ag)等が挙げられ、特に、硝酸銀 (I)が好ましい。口
3 3
ジゥムの場合は、塩ィ匕ロジウム (III)溶液 (RhCl · 3Η 0)、イリジウムの場合は、へキサ
3 2
クロ口イリジウム (III)酸六水和物(2(IrCl )· 6Η Ο)、ルテニウムの場合は、硝酸ルテニ
6 2
ゥム(ΙΠ)溶液 (Ru(NO ) )、オスミウムの場合は、酸化オスミウム (VIII) (OsO )等が挙
3 3 4 げられる。
[0077] コバルトの場合は、硝酸コバルト (Π)六水和物(Co (NO ) · 6H O)、硫酸コバルト
3 2 2
(Π)七水和物(CoSO · 7Η O)、塩基性炭酸コバルト (Il xCoCO -yCo (OH) ·ζΗ 0、 x、 y、 zは製法により異なる、通常は x = 2、 y= 3、 z= 1)、塩ィ匕コバルト (II)六水和 物(CoCl · 6Η 0)、ァセチルアセトンコバルト (II) (Co〔CH (COCH ) 〕 ;)、酢酸コバ
2 2 3 2 2
ル ΚΠ)四水和物(Co (CH COO) ·4Η Ο)等が挙げられる。マンガンの場合は、硝
3 2 2
酸マンガン (II)水和物(Mn (NO ) ·ηΗ 0、 η=4〜6)、塩化マンガン (II)四水和物(
3 2 2
MnCl ·4Η O)、硫酸アンモ-ゥムマンガン (II)六水和物(Mn(NH ) (SO ) · 6Η
2 2 4 2 4 2 2 ο)等が挙げられる。
[0078] ニッケルの場合は、硝酸ニッケル (Π)六水和物(Ni (NO ) · 6H O)、塩化ニッケル
3 2 2
(Π)六水和物(NiCl · 6Η Ο)、硫酸ニッケル (II)七水和物(NiSO · 7Η 0)、ァセチル
2 2 4 2
アセトンニッケル (II) (Ni〔CH (COCH ) 〕 )、塩基性炭酸ニッケル (Il aNiCO -bNi
3 2 2 3
(OH) -cH 0、 a、 b、 cは製法により異なる、通常は a = 2、 b = 3、 c = 4)、酢酸-ッケ
2 2
ル (II)四水和物 (Ni(CH COO) ·4Η Ο)等が挙げられる。鉄の場合は、硝酸鉄 (III)
3 2 2
六水和物、九水和物(Fe (NO ) · 6Η 0、 9Η Ο)、塩化鉄 (II)四水和物(FeCl ·4Η
3 3 2 2 2
Ο)、硫酸鉄 (II)七水和物(FeSO · 7H O)、ァセチルアセトン鉄 (III) (Fe [CH (COC
2 4 2
H ) 〕 )等が挙げられる。
3 2 3
[0079] クロムの場合は、ァセチルァセトンクロム(111) (0〔( 11 (( 0( 11 ) 〕 ;)、塩化クロム (Π)
3 2 3
(CrCl )、硝酸クロム (III)九水和物(Cr(NO ) · 9Η Ο)等が挙げられる。モリブデン
2 3 3 2
の場合は、塩ィ匕モリブデン (V) (MoCl )、チタンの場合は塩ィ匕チタン (IV)溶液 (TiCl
5 4
)等が挙げられる。
[0080] 還元剤としては、先に述べたように、できるだけ還元力の弱い還元剤力 好適に使 用される。還元力の弱い還元剤としては、例えば、メタノール、エタノール、イソプロピ ルアルコール等のアルコール類や、ァスコルビン酸等を挙げることができる他、ェチ レンダリコール、ダルタチオン、有機酸類 (タエン酸、リンゴ酸、酒石酸等)、還元性糖 類(グノレコース、ガラクトース、マンノース、フノレクトース、スクロース、マノレトース、ラフィ ノース、スタキオース等)、および糖アルコール類 (ソルビトール等)等を挙げることが でき、特に、還元性糖類や、その誘導体としての糖アルコール類、あるいは、アルコ ール類が好ましい。また、還元剤として、アルコール類と、その他の還元剤とを併用 すると、担体粒子の表面に担持させる金属微粒子の担持率を増加させることができる [0081] また、液相の反応系中には、例えば、その pHを、金属イオンの還元析出に適した 範囲に調整するための pH調整剤、担体粒子を分散させるための分散剤、液相の粘 度を調整するための粘度調整剤等の、各種の添加剤を添加してもよ ヽ。
[0082] このうち、 pH調整剤としては、各種の酸やアルカリが何れも使用可能である力 特 に、核成長の起点となって異常な核成長を生じさせるおそれのある不純物元素を含 まない、酸やアルカリを使用するのが好ましい。かかる、不純物元素を含まない酸とし ては、硝酸等を挙げることができ、アルカリとしては、アンモニア水等を挙げることがで きる。
[0083] 液相の pHの好適な範囲は、析出させる金属の種類や、そのもとになる金属のィォ ン源としての、金属化合物の種類等によって異なり、また、その好適な範囲内で pHを 小さくするほど、形成される金属微粒子の粒径が小さくなる傾向がある。よって、形成 する金属微粒子の種類や粒径、使用する還元剤の種類、その他の条件を考慮しな がら、 pH調整剤を添加するか否か、添加する場合は、どの程度の量を添加するか、 を選択するのが好ましい。
[0084] また、分散剤や粘度調整剤としては、従来公知の種々の化合物を用いることができ るが、この両者の機能を兼ね備えた高分子分散剤を使用するのが好ましい。かかる 高分子分散剤としては、例えば、ポリエチレンィミン、ポリビニルピロリドン等のアミン 系の高分子分散剤や、カルボキシメチルセルロース等の、分子中にカルボン酸基を 有する炭化水素系の高分子分散剤、あるいは、 1分子中にポリエチレンィミン部分と ポリエチレンオキサイド部分とを有する共重合体 (以下 ΓΡΕΙ— PO共重合体」とする) 等を挙げることができる。
[0085] 高分子分散剤の添加量は、特に、限定されないが、添加量を多くするほど液相の 粘度が上昇して、形成される金属微粒子の粒径が小さくなる傾向があることから、製 造する金属微粒子の粒径や、使用する還元剤の種類、その他の条件を考慮しながら 、好適な添加量の範囲を設定するのが好ましい。
[0086] (金属微粒子の還元処理)
上記の工程で形成した金属微粒子の、金属結合状態の割合を、前述した 40%以 上に調整して、本発明の金属触媒を製造するためには、先に説明したように、金属 微粒子を還元して酸化状態を低下させる還元処理を行うのが好ま ヽ。還元処理の 方法としては、例えば、金属微粒子を、液相中で、還元剤の作用によって還元する液 相法、気相中で、還元剤の作用によって還元する気相法、マイクロ波を用いて加熱し て還元するマイクロ波加熱法、電解液中で電流を流すことによって電気化学的に還 元する電気化学法等が挙げられる。
[0087] このうち液相法にぉ ヽては、金属微粒子を担持させた担体粒子を、還元剤を所定 の濃度で含む液相の処理液で処理することによって、金属微粒子が還元される。還 元剤としては、還元処理の効率を向上して、金属触媒の生産性を向上させるために 、還元する金属よりも酸ィ匕還元電位が卑であるものを選択して用いることが好ましぐ その具体例としては、例えば、金属微粒子が白金微粒子である場合、 3価のチタンィ オン、次亜リン酸ナトリウム、ヒドラジン、 2価〜 4価のバナジウムイオン、水素化ホウ素 ナトリウム等が挙げられる。
[0088] 上記のうち、次亜リン酸ナトリウム、水素化ホウ素ナトリウムは還元力に優れており、 金属微粒子の表面を効率的に還元して、その金属結合状態の割合を、前記 40%以 上の範囲内でもできる限り高い値に調整することができる。また、 3価のチタンイオン は、自身が 4価に酸化される際に、同じ反応系中に存在する金属微粒子の表面を還 元して、その金属結合状態の割合を 40%以上に調整するために機能する。また、チ タンイオン力 価に酸ィ匕された液を電解処理してチタンイオンを 3価に還元することで 、何度でも、繰り返して還元処理に使用できるという利点がある。処理の温度は、例え ば、還元剤として水素化ホウ素ナトリウム等を用いる場合は 40〜70°Cであるのが好ま しく、 3価のチタンイオンを用いる場合は 30〜50°Cであるのが好まし!/、。
[0089] 気相法では、金属微粒子を担持させた担体粒子を、例えば、水素ガス等の還元性 雰囲気中で、 100〜300°Cに加熱して 5〜60分間程度、処理することによって、金属 微粒子が還元される。還元剤としては、上記水素ガスの他に、例えば、アンモニアガ ス等が挙げられる。また、還元処理には、例えば、横型環状炉等が使用される。金属 微粒子を担持させた担体粒子は、例えば、石英ガラスボート等に入れた状態で、上 記横型環状炉等に収容されて還元処理される。
[0090] マイクロ波加熱法では、金属微粒子を担持させた担体粒子を、不活性ガス雰囲気 中、あるいは還元性ガス雰囲気中で、マイクロ波によって加熱することで、金属微粒 子が還元される。処理の条件は、出力 300〜600W、処理時間 20〜60秒間程度で ある。マイクロ波加熱には、電子レンジを使用することができる。この方法では、通常 の電気炉を使用する高温で長時間の加熱に比べて、熱源が、ミクロに、かつ均一に 分散しているため、金属微粒子を瞬間的に昇温、加熱することができ、金属微粒子の 凝集や焼結を極力、回避しながら還元処理することができる。
[0091] 電気化学法にお!ヽては、金属微粒子を担持させた担体粒子を、例えば、多孔質の 表面を有する陰極の、多孔質の孔に充てんする等して担持させた状態で、電解液中 に浸漬して、例えば、チタン、白金等の、電解液に不溶性の材料からなる陽極との間 に直流電流を流すことによって、金属微粒子が還元される。この方法では、両極間に 流す電流値等の条件を変化させることで、金属微粒子の金属結合状態の割合を、 4 0%以上の範囲内の任意の値に調整できるという利点がある。
[0092] 力べして製造される本発明の金属触媒は、粒径が小さぐかつ、比表面積が大きい 金属微粒子を含み、し力も、その金属微粒子の粒径と比表面積とに見合う高い触媒 活性を有することから、先に述べたように、燃料電池用触媒や、自動車排ガス用触媒 等として好適に使用することができる。
実施例
[0093] 実施例 1 :
純水に、担体粒子としてのカーボンブラック〔Cabot社製の Vulcan XC- 72R C arbon、 BET比表面積: 222m2/g、嵩密度: 95g/リットル〕と、還元剤としてのエタ ノールおよびフルクトースと、ジニトロジアンミン白金 (II)の硝酸溶液〔白金濃度 50gZ リットル〕とを添カロし、さら〖こ、アンモニア水を添加して pHを 1. 5に調整して、液相の 反応系を調製した。反応系における、カーボンブラックの濃度は 2gZリットル、ェタノ ールの濃度は lOmlZリットル、フルクトースの濃度は 0. 10M (モル Zリットル)、ジ- トロジアンミン白金 (Π)の硝酸溶液の濃度(白金イオン濃度)は 0. 02Mとした。
[0094] 次に、この反応系を、マグネチックスターラを用いて、力べ拌速度 400rpmで力べ拌 しながら、反応温度を 40°Cに維持しつつ還流下で 240時間、反応させて、カーボン ブラックの表面に白金微粒子を析出させ、固液分離後、得られた固形分を、水素化 ホウ素ナトリウム水溶液〔濃度 10gZリットル〕を用いて、 40°Cで洗浄処理して白金微 粒子を還元させて、白金触媒を製造した。
[0095] 実施例 2 :
還元剤としてのフルクトースの濃度を 0. 20Mとしたこと以外は実施例 1と同様にし て、白金触媒を製造した。
[0096] 実施例 3 :
還元剤としてのフルクトースの濃度を 0. 20Mとし、かつ、反応系の pHを 5に調整し たこと以外は実施例 1と同様にして、白金触媒を製造した。
[0097] 実施例 4 :
還元剤としてのフルクトースの濃度を 0. 20Mとし、かつ、反応系の pHを 9に調整し たこと以外は実施例 1と同様にして、白金触媒を製造した。
[0098] 実施例 5〜8:
固液分離後の固形分を、三塩ィ匕チタン水溶液〔チタンイオンの濃度 0. 5モル Zリツ トル〕を用いて、 40°Cで洗浄処理して白金微粒子を還元させたこと以外は実施例 1〜 4と同様にして、白金触媒を製造した。
[0099] 実施例 9〜12:
固液分離後の固形分を、石英ガラスボートに入れて横型環状炉内に収容すると共 に、炉内に水素ガスを充てんした還元性雰囲気中で、 100°Cに加熱して 60分間の 処理を行って白金微粒子を還元させたこと以外は実施例 1〜4と同様にして、白金触 媒を製造した。
[0100] 実施例 13〜16:
固液分離後の固形分を、電子レンジ内に収容すると共に、レンジ内に不活性ガスを 充てんした不活性ガス雰囲気中で、 300Wのマイクロ波によって 20秒間、加熱して 白金微粒子を還元させたこと以外は実施例 1〜4と同様にして、白金触媒を製造した
[0101] 実施例 17〜20:
固液分離後の固形分を、多孔質のカーボン陰極の、多孔質の孔に充てんして担持 させた状態で、電解液としての 0. 1M過塩素酸水溶液中に浸漬して、液温 30°Cの 条件下、陽極としての白金黒電極との間に電流密度 10 /z AZgの直流電流を 20分 間、流すことによって、白金微粒子を電気化学的に還元させたこと以外は実施例 1〜
4と同様にして、白金触媒を製造した。
[0102] 比較例 1〜4:
固液分離後の固形分を還元処理せず、水洗のみを行ったこと以外は実施例 1〜4 と同様にして、白金触媒を製造した。
[0103] 比較例 5〜8:
固液分離後の固形分を、不活性ガス雰囲気下、電気炉中で、 250°C X 24時間、加 熱して白金微粒子を還元させたこと以外は実施例 1〜4と同様にして、白金触媒を製
•laし 7こ。
[0104] 比較例 9 :
還元剤として、フルクトースに代えて、同量のマンノースを使用すると共に、反応温 度を 20°Cとしたこと以外は実施例 1と同様にして、白金触媒を製造した。
[0105] 上記各実施例、比較例の白金触媒につ!、て、下記の各試験を行って、その特性を 評価した。
[0106] 白金微粒子の粒径測定:
白金微粒子の粒径は、下記の手順で求めた。すなわち、 CO吸着法により、製造し た白金触媒を前処理温度 120°C、吸着温度 50°Cの条件で処理して CO吸着量を求 め、その結果から、カーボンブラックの表面に担持された白金微粒子の表面積を算 出した。また、製造した白金触媒における白金微粒子の担持量を、 ICP dnductivel y Coupled Plazma、誘導結合プラズマ)分光分析法によって測定して、この担持 量と、先の表面積とから、カーボンブラックの表面に担持された白金微粒子の粒径を 算出した。
[0107] 金属結合状態の割合測定:
製造した白金触媒を、 X線光電子分析装置を用いて分析して、電子の結合エネル ギ一と、その電子のシグナル強度との関係を示すスペクトルを求め、このスペクトルの うち、白金の固有の結合エネルギーピークである Pt4d5ピークを、白金元素同士の 金属結合状態を示すピーク、白金元素と酸素元素の準安定な結合状態を示すピー ク、および白金元素と酸素元素の安定な結合状態を示すピークに波形分離して、そ れぞれの面積を計測し、その総計に占める、金属結合状態を示すピークの面積の割 合を、白金微粒子の表面における、金属結合状態の割合として求めた。分析は、 X 線源としては MONO A1 Κ αを用い、透過エネルギーを 17. 90eVに設定して行 つた o
[0108] なお、測定結果の例として、実施例 1における、電子の結合エネルギーと、その電 子のシグナル強度との関係を示すスペクトルを図 2に示す。また、図 2のスペクトルの うち、白金の固有の結合エネルギーピークである Pt4d5ピークを波形分離したスぺク トルを図 3に示す。
[0109] 電気化学表面積の測定:
製造した白金触媒の触媒活性 (電気化学活性)を示す、水素吸着波から求められ る電気化学表面積 (m2Zg-Pt)を、触媒の製造直後 (初期)、および触媒を 0. 01M の塩酸中に 100時間、浸漬した後(耐久後)の 2回にわたって測定した。測定は、 3極 式セルを用いた分極測定法によって行った。この際、参照極としては標準水素電極、 対極としては白金電極、そして作用極としては、後述する酸素還元電流の測定 Iと同 様にして作製した、測定試料である白金触媒を担持させたカーボン電極を用いた。
[0110] 白金微粒子の担持量測定:
白金微粒子の担持量は、前記のように、 ICP (Inductively Coupled Plazma、 誘導結合プラズマ)分光分析法によって測定した。
[0111] 隣り合う金属微粒子間の距離測定および結晶面方位の確認:
製造した白金触媒における、カーボンブラックの表面に担持された、隣り合う金属 微粒子の、中心間の距離と、最接近する表面間の距離を、透過型電子顕微鏡を用 いて実測した。また、製造した白金触媒における、各白金微粒子の、露出している結 晶面方位を、透過型電子顕微鏡を用いて確認した。なお、透過型電子顕微鏡写真 の例として、後述する実施例 22における、透過型電子顕微鏡写真を図 4に示す。ま た、実施例 22における、 1つの白金微粒子を拡大した透過型電子顕微鏡写真を図 5 に示す。図 5は、白金微粒子の、露出している結晶面方位が(111)面に配向してい る状態を示している。 0113
Figure imgf000024_0001
0112
Figure imgf000025_0001
表より、白金微粒子を還元処理しな力つた比較例 1 4の白金触媒は、白金微粒子 の表面における、金属結合状態の割合が 40%を下回っていると共に、電気化学表 面積が、初期の段階において小さいことから、触媒活性が不十分であることがわかつ た。また、白金微粒子を電気炉での加熱によって還元処理した比較例 5 8の白金 触媒は、白金微粒子の表面における、金属結合状態の割合が 40%を上回っている と共に、電気化学表面積が、初期においては高いものの、耐久後に大きく低下して いることから、白金微粒子の凝集や焼結が発生していることがわ力つた。
[0115] さらに、白金微粒子の粒径が 3nmを超える比較例 9の白金触媒は、白金微粒子の 表面における、金属結合状態の割合が 40%を上回っているものの、電気化学表面 積力 初期の段階において小さいことから、触媒活性が不十分であることがわ力つた 。これに対し、実施例 1〜20の白金触媒は、いずれも、白金微粒子の表面における、 金属結合状態の割合が 40%を上回っていると共に、電気化学表面積が、初期にお いて高い値を示し、し力も、耐久後の低下量も少ないことから、長期間にわたって、触 媒活性に優れることが確認された。
[0116] なお、比較例 9では、金属イオン析出の際の還元剤として、マンノースを使用するこ とで、金属微粒子の粒径が 3nmを上回ったため、前記のように、触媒活性が不十分 になってしまったが、この比較例 9は、還元剤としてマンノースを排除することを意味 するものではない。還元剤としてマンノースを使用すると共に、その他の条件を調整 して、金属微粒子の粒径を 3nm以下とすることは可能であり、その場合には、形成し た白金微粒子を還元処理して、その表面における、金属結合状態の割合を 40%以 上とし、それによつて、触媒活性を向上することも可能である。
[0117] 実施例 21〜25:
純水に、担体粒子としてのカーボンブラック〔Cabot社製の Vulcan XC- 72R C arbon、 BET比表面積: 222m2/g、嵩密度: 95g/リットル〕と、還元剤としてのエタ ノールおよびフルクトースと、ジニトロジアンミン白金 (II)の硝酸溶液〔白金濃度 50gZ リットル〕とを添カロし、さらにアンモニア水を添カロして pHを 2に調整して、液相の反応 系を調製した。反応系における、カーボンブラックの濃度は 2gZリットル、エタノール の濃度は lOmlZリットル、フルクトースの濃度は 0. 01M (モル Zリットル)、ジ-トロジ アンミン白金 (Π)の硝酸溶液の濃度(白金イオン濃度)は 0. 02Mとした。
[0118] 次に、この反応系を、マグネチックスターラを用いて、力べ拌速度 400rpmで力べ拌 しながら、反応温度を 90°Cに維持しつつ還流下で 6時間、反応させて、カーボンブラ ックの表面に白金微粒子を析出させた。そして、固液分離後、得られた固形分を、下 記の各方法で還元処理して白金微粒子を還元させて、白金触媒を製造した。 [0119] 実施例 21:固液分離後の固形分を、電子レンジ内に収容すると共に、レンジ内に 不活性ガスを充てんした不活性ガス雰囲気中で、 300Wのマイクロ波によって 20秒 間、加熱して白金微粒子を還元させた。
[0120] 実施例 22:固液分離後の固形分を、水素化ホウ素ナトリウム水溶液〔濃度 10gZリ ットル〕を用いて、 40°Cで洗浄処理して白金微粒子を還元させた。
[0121] 実施例 23 :固液分離後の固形分を、石英ガラスボートに入れて横型環状炉内に収 容すると共に、炉内に水素ガスを充てんした還元性雰囲気中で、 100°Cに加熱して 6
0分間の処理を行って白金微粒子を還元させた。
[0122] 実施例 24:固液分離後の固形分を、三塩ィ匕チタン水溶液〔チタンイオンの濃度 0.
5モル Zリットル〕を用いて、 40°Cで洗浄処理して白金微粒子を還元させた。
[0123] 実施例 25 :固液分離後の固形分を、多孔質のカーボン陰極の、多孔質の孔に充て んして担持させた状態で、電解液としての 0. 1M過塩素酸水溶液中に浸漬して、液 温 30°Cの条件下、陽極としての白金黒電極との間に電流密度 10 AZgの直流電 流を 20分間、流すこと〖こよって、白金微粒子を電気化学的に還元させた。
[0124] 比較例 10:固液分離後の固形分を還元処理せず、水洗のみを行ったこと以外は実 施例 21〜25と同様にして、白金触媒を製造した。
[0125] 実施例 26〜30、比較例 11 :
還元剤として、メタノールとガラクトースとを使用すると共に、反応系における、メタノ ールの濃度を lOmlZリットル、ガラクトースの濃度を 0. 10M (モル Zリットル)としたこ と以外は実施例 21〜25、比較例 10と同様にして、白金触媒を製造した。
[0126] 実施例 31〜35、比較例 12:
還元剤として、イソプロピルアルコールとフルクトースとを使用すると共に、反応系に おける、イソプロピルアルコールの濃度を lOmlZリットル、フルクトースの濃度を 0. 1
OM (モル Zリットル)としたこと以外は実施例 21〜25、比較例 10と同様にして、白金 触媒を製造した。
[0127] 実施例 36〜40、比較例 13 :
還元剤としてエチレングリコールを使用すると共に、反応系における、エチレンダリ コールの濃度を 500mlZリットルとし、かつアンモニア水を添カ卩しなかったこと以外は 実施例 21〜25、比較例 10と同様にして、白金触媒を製造した。
[0128] 実施例 41〜45、比較例 14 :
還元剤として、メタノールとガラクトースとを使用し、かつ添加剤として、高分子分散 剤である PEI— PO共重合体〔(株)日本触媒製のェポミン (登録商標) PAO306]を添 加すると共に、反応系における、メタノールの濃度を lOmlZリットル、ガラクトースの 濃度を 0. 10M (モル Zリットル)、 PEI— PO共重合体の濃度を 2gZリットルとしたこと 以外は実施例 21〜25、比較例 10と同様にして、白金触媒を製造した。
[0129] 実施例 46〜50、比較例 15 :
還元剤として、メタノールとガラクトースとを使用し、かつ添加剤として、高分子分散 剤であるポリビュルピロリドン (分子量約 1万)を添加すると共に、反応系における、メ タノールの濃度を lOmlZリットル、ガラクトースの濃度を 0. 10M (モル Zリットル)、ポ リビュルピロリドンの濃度を 2gZリットルとしたこと以外は実施例 21〜25、比較例 10と 同様にして、白金触媒を製造した。
[0130] 実施例 51〜55、比較例 16 :
還元剤としてプロピレングリコールを使用すると共に、反応系における、プロピレン グリコールの濃度を 500mlZリットルとし、かつアンモニア水を添カ卩しなかったこと以 外は実施例 21〜25、比較例 10と同様にして、白金触媒を製造した。
[0131] 実施例 56〜60、比較例 17 :
還元剤として三塩化チタンを使用し、かつ添加剤として、高分子分散剤であるポリビ -ルピロリドン (分子量約 1万)を添加すると共に、反応系における、三塩化チタンの 濃度を 0. 20M (モル Zリットル)、ポリビュルピロリドンの濃度を 2gZリットルとしたこと 以外は実施例 21〜25、比較例 10と同様にして、白金触媒を製造した。
[0132] 実施例 61〜65、比較例 18 :
還元剤として硫酸バナジウムを使用し、かつ添加剤として、高分子分散剤であるポ リビュルピロリドン (分子量約 1万)を添加すると共に、反応系における、硫酸バナジゥ ムの濃度を 0. 20M (モル Zリットル)、ポリビュルピロリドンの濃度を 2gZリットルとし たこと以外は実施例 21〜25、比較例 10と同様にして、白金触媒を製造した。
[0133] 上記各実施例、比較例の白金触媒について、前記の各試験を行うと共に、下記の 試験を行って、その特性を評価した。
[0134] 酸素還元電流の測定 I:
測定には、カーボン製の回転ディスク電極と、ポテンションスタツトとを用い、まず、 所定量の白金触媒を、水 +エタノール混合溶媒 (体積比 1: 1)に分散させ、マイクロ シリンジを用いて回転ディスク電極上に滴下して乾燥させた後、パーフルォロスルホ ン酸—ポリテトラフルォロエチレン共重合榭脂 (H+型)〔デュポン社製のナフイオン( 登録商標)〕を 0. 1重量%の濃度で含有するエタノール溶液を、回転ディスク電極上 の白金触媒上に滴下して乾燥させて、作用極としての試料電極を作製した。
[0135] 次に、上記作用極と、対極としての白金電極と、参照極としての標準水素電極とを 組み合わせて 3極式セルを構成し、電解液として 0. 1M濃度の過塩素酸水溶液を用 いて、分極測定法によって、上記試料電極上の、白金触媒の酸素還元電流を測定し た。測定に際しては、あらかじめ、窒素をパブリングして、電解液中の溶存酸素を除 去し、次いで、 0. 01→1. 4Vの範囲で、プラス側に、走査速度 5〜: LOmVZ秒の条 件で、サイクリックボルタンメトリーによって、電気化学表面積を測定した。
[0136] 次に、純度 99. 99%の酸素ガスを 10分間以上、パブリングして、電解液中に酸素 を飽和させた後、回転ディスク電極を、 400〜2000rpmの範囲内の所定の回転速 度で回転させながら、 1. l→OVまで分極させた際の、 0. 9Vの時点での還元電流値 の平均値を測定することで、触媒の酸素還元電流を求めた。
[0137] 以上の結果を表 3〜5に示す。また、実施例 21〜25、比較例 10における、金属結 合状態と、酸素還元電流との関係を図 6に示す。
[0138] [表 3]
ι61禹 α□ 微粒子間距離 初期の電気 酸素還元 粒径 担持量 [kJ
状態 (nm) 化学表面積
(nm) (wt%) 方位
(%) 中心間 表面間 (m2/g-Pt) (A/mg-Pt) 実施例 21 マイク□波加熱 0.6 95 5.0 4.4 20 (11 ) 140 0.02 実施例 22 液相 A 0.6 80 3.6 3.0 20 (111) 205 0.05 S 〔¾」0134
実施例 23 目 0.6 73.8 3.4 2.8 20 (111) 220 0.1 実施例 24 液相 B 0.6 60.8 3.5 2.9 20 (111) 210 0.09 実施例 25 電気化学 0.6 48 4.5 3.9 20 (111) 60 0.04 比較例 1〇 なし 0.6 28.2 6.2 5.6 20 ― 110 0.01 実施例 26 マイク 0波加熱 0.8 84 6.2 5.4 31 (11 ) 130 0.018 実施例 27 液相 A 0.8 76 4.5 3.7 31 (1 1) 190 0.04 実施例 28 0.8 了〇 4.3 3.5 31 (111) 200 0.08 実施例 29 液相 B 0.8 55 4.5 3.7 31 (111) 190 0.07 実施例 3〇 電気化学 0.8 45 5.6 4.8 31 (111) 1 5 0.03 比較例 11 なし 0.8 18.0 8.6 7.8 31 ― 90 0.007 実施例 31 マイク D波加熱 0.9 88 6.5 5.6 40 (111) 115 0.015 実施例 32 液相 A 0.9 了 8 4.6 3.7 40 (1 1) 1了5 0.035 実施例 33 5¾相 0.9 了 3 4.5 3.6 40 (111) 180 0.07 実施例 34 液相曰 0.9 58 4.8 3.9 40 (111) 165 0.06 実施例 35 電気化学 0.9 46 5.9 5.0 40 (111) 130 0.025 比較例 12 なし 0.9 20.5 8.5 7.6 40 ― 85 0.006
金属結合 微粒子間距離 初期の電気
粒径 担持量 。 曰 L¾
兀 ¾S 状態 inm) 化学表面積
(nm) (wt%) 方位
(%) 中心間 表面間 (m2/g-Pt) 実施例 36 マイク D波加熱 2 91 1 .6 12.6 40 (111) 51 0.001^ 〔〕〔a0140 実施例 37 液相 A 2 81 2.3 10.3 40 ( 11) 58 0.0015 実施例 38 3¾t'B 2 74 12.7 10.7 40 (111) 60 0.002 実施例 39 液相 B 2 61 13.3 11.3 40 (111) 57 0.0015 実施例 4〇 電気化学 2 49 14.3 12.3 40 (111) 52 0.0017 比較例 13 なし 2 30 15.4 13.4 40 48 0.0001 実施例 41 マイク 0波加熱 1.2 89 8.4 7.2 30 | | | 52 0.008 実施例 42 液相 A 1.2 75 7.7 6.5 30 (111) 57 0.007 実施例 43 気相 1.2 69 7.4 6.2 30 (111) 60 0.009 実施例 44 液相 B 1.2 57 7.6 6.4 30 (111) 58 0.008 実施例 45 電気化学 1.2 43 8.4 7.2 30 ( 1) 52 0.006 比較例 14 なし 1.2 12 9.1 7.9 30 ― 47 0.002 実施例 46 マイク D波加熱 1.6 87 14.5 12.9 20 (111) 29 0.002 実施例 4了 液相 A 1.6 73 14.5 12.9 20 (111) 29 0.003 実施例 48 1.6 66 14.1 12.5 20 (111) 30 0.003 実施例 49 液相 B 1.6 54 15.0 3.4 20 (111) 28 0.002 実施例 50 電気化学 1.6 44 14.5 12.9 20 (111) 29 0.002 比較例 15 なし 1.6 13 15.5 13.9 20 ― 27 0.001
m m
Figure imgf000032_0002
Figure imgf000032_0003
Figure imgf000032_0004
Figure imgf000032_0005
Figure imgf000032_0006
Figure imgf000032_0007
Figure imgf000032_0001
[0141] これらの表および図より、触媒毒による影響を排除しつつ、金属触媒の触媒活性を 向上するためには、白金微粒子の金属結合状態が、 40%以上である必要があり、そ の中でも 90%以下、特に 50〜80%であるのが好ましいことが確認された。
[0142] 実施例 66〜72:
純水に、担体粒子としての、下記のいずれかのカーボンブラックと、還元剤としての エタノールおよびフルクトースと、ジニトロジアンミン白金 (II)の硝酸溶液〔白金濃度 50 g/リットル〕とを添カロし、さらにアンモニア水を添カロして pHを 1. 5に調整して、液相の 反応系を調製した。反応系における、カーボンブラックの濃度は 2gZリットル、ェタノ ールの濃度は 50mlZリットル、フルクトースの濃度は 0. 10M (モル Zリットル)、ジ- トロジアンミン白金 (Π)の硝酸溶液の濃度(白金イオン濃度)は 0. 02Mとした。
[0143] 実施例 66 : Cabot社製の Vulcan XC72— R、: BET比表面積: 222m2Zg、嵩密 度: 95gZリットル
[0144] 実施例 67:ライオン (株)製のケッチェンブラック ECを H Oで表面処理したもの、 BE
2 2
T比表面積: 513m2Zg、嵩密度: 17gZリットル
[0145] 実施例 68:ライオン (株)製のケッチェンブラック EC、 BET比表面積: 804m2/g、嵩 密度: 15gZリットル
[0146] 実施例 69:ライオン (株)社製のケッチェンブラック ECP、 BET比表面積: 820m2/g 、嵩密度: 32gZリットル
[0147] 実施例 70 :ライオン (株)製のケッチェンブラック EC600JD、 BET比表面積: 1270m
2Zg、嵩密度: 20gZリットル
[0148] 実施例 71:ライオン (株)社製のケッチェンブラック ECP600JD、 BET比表面積: 13 Olm g,嵩密度: 42gZリットル
[0149] 実施例 72:フエノール榭脂の水蒸気賦活炭をシロッコファンで粉砕した活性炭、 BE T比表面積: 2015m2Zg、嵩密度: lOOgZリットル
[0150] 次に、この反応系を、マグネチックスターラを用いて、力べ拌速度 400rpmで力べ拌 しながら、反応温度を 90°Cに維持しつつ還流下で 6時間、反応させて、カーボンブラ ックの表面に白金微粒子を析出させた。そして、固液分離後の固形分を、石英ガラス ボートに入れて横型環状炉内に収容すると共に、炉内に水素ガスを充てんした還元 性雰囲気中で、 100°Cに加熱して 30分間の処理を行って白金微粒子を還元させて 、白金触媒を製造した。
[0151] 上記各実施例の白金触媒について、前記の各試験を行うと共に、下記の試験を行 つて、その特性を評価した。
[0152] 酸素還元電流の測定 II: 前記酸素還元電流の測定 Iと同様にして作製した作用極と、対極としての白金電極 と、参照極としての標準水素電極とを組み合わせて 3極式セルを構成し、電解液とし て 0. 1M濃度の過塩素酸水溶液を用いて、分極測定法によって、上記試料電極上 の、白金触媒の酸素還元電流を測定した。
[0153] 測定に際しては、まず、継続的に窒素をパブリングして、電解液中の溶存酸素を除 去しながら、 0. 01→1. 4Vの範囲で、プラス側に、走査速度 0. 1VZ秒の条件で電 圧を変化させる操作を 1000回、繰り返し行った。次に、純度 99. 99%の酸素ガスを 、継続的にパブリングしながら、 1. 1→0. 2Vの範囲で、マイナス側に、走査速度 0. 01VZ秒の条件で電圧を変化させた際の、 0. 9Vの時点での還元電流値を、触媒 の、単位白金あたりの酸素還元電流とした。
結果を表 6に示す。
[0154] [表 6]
Figure imgf000035_0001
表より、液相還元法によって、担体粒子としてのカーポンプラックの表面に、できる だけ粒径の小さ 、金属微粒子を担持させると共に、カーボンブラックの導電性を高め るためには、担体粒子としてのカーボンブラックの BET比表面積力 500〜1500m2 Zg、嵩密度が 10〜50gZリットルであるのが好ましいことが確認された。

Claims

請求の範囲
[1] 金属微粒子を含む金属触媒であって、金属微粒子の粒径が 3nm以下で、かつ、 X 線光電子分析装置を用いて測定され、金属固有の結合エネルギーピークを波形分 離することで帰属される、金属微粒子の金属結合状態の割合が 40%以上であること を特徴とする。
[2] 請求項 1記載の金属触媒であって、金属微粒子の金属結合状態の割合が 90%以 下であることを特徴とする。
[3] 請求項 1記載の金属触媒であって、金属微粒子の金属結合状態の割合が 50〜80
%であることを特徴とする。
[4] 請求項 1記載の金属触媒であって、金属微粒子が、白金、ノ ジウム、金、銀、ロジ ゥム、イリジウム、ルテニウム、オスミウム、コノルト、マンガン、ニッケル、鉄、クロム、モ リブデン、およびチタン力も選ばれる少なくとも 1種の金属力もなる微粒子であることを 特徴とする。
[5] 請求項 1記載の金属触媒であって、金属微粒子が白金微粒子であると共に、 X線 光電子分析装置を用いて測定され、白金固有の結合エネルギーピークである Pt4d5 ピークを波形分離することで帰属される、白金微粒子の金属結合状態の割合が 40% 以上であることを特徴とする。
[6] 請求項 1記載の金属触媒であって、担体粒子を分散させた液相の反応系中で、析 出対象である金属のイオンを、還元剤の作用によって還元して、担体粒子の表面に 微粒子状に析出させることによって、多数の金属微粒子が、担体粒子の表面に担持 されることを特徴とする。
[7] 請求項 1記載の金属触媒であって、多数の金属微粒子が、担体粒子の表面に担持 されると共に、隣り合う金属微粒子の、中心間の距離が 15nm未満で、かつ、最近接 する表面間の距離が 0. 3nm以上であることを特徴とする。
[8] 請求項 7記載の金属触媒であって、金属微粒子の担持量が 10〜60重量%である ことを特徴とする。
[9] 請求項 1記載の金属触媒であって、多数の金属微粒子が、担体粒子の表面に担持 されると共に、各金属微粒子の、露出している結晶面方位が(111)面に配向してい ることを特徴とする。
[10] 請求項 1記載の金属触媒であって、多数の金属微粒子が、担体粒子としてのカー ボンブラックの表面に担持されると共に、カーボンブラックの BET比表面積が 500〜
1500m2Zgであることを特徴とする。
[11] 請求項 10記載の金属触媒であって、カーボンブラックの嵩密度が 10〜50gZリット ルであることを特徴とする。
[12] 請求項 10記載の金属触媒であって、カーボンブラックとして、鎖状構造を有する原 料カーボンブラックを、鎖状構造を切断するように粉砕処理したものを用いることを特 徴とする。
[13] 請求項 1記載の金属触媒であって、燃料電池用触媒または自動車排ガス用触媒と して用いられることを特徴とする。
[14] 請求項 1〜13のいずれかに記載の金属触媒を製造するための、金属触媒の製造 方法であって、金属微粒子を還元して酸ィ匕状態を低下させることによって、 X線光電 子分析装置を用いて測定され、金属固有の結合エネルギーピークを波形分離するこ とで帰属される、金属微粒子の金属結合状態の割合を 40%以上に調整する工程を 含むことを特徴とする。
[15] 請求項 14記載の金属触媒の製造方法であって、金属微粒子を、液相中で、還元 剤の作用によって還元することを特徴とする。
[16] 請求項 15記載の金属触媒の製造方法であって、還元剤として、還元する金属より も酸化還元電位が卑である還元剤を用いることを特徴とする。
[17] 請求項 16記載の金属触媒の製造方法であって、金属微粒子が白金微粒子である と共に、還元剤として 3価のチタンイオン、次亜リン酸ナトリウム、ヒドラジン、 2価〜 4価 のバナジウムイオン、または水素化ホウ素ナトリウムを用いることを特徴とする。
[18] 請求項 14記載の金属触媒の製造方法であって、金属微粒子を、気相中で、還元 剤の作用によって還元することを特徴とする。
[19] 請求項 14記載の金属触媒の製造方法であって、金属微粒子を、マイクロ波によつ て加熱して還元することを特徴とする。
[20] 請求項 14記載の金属触媒の製造方法であって、金属微粒子を、電解液中で電流 を流すことによって電気化学的に還元することを特徴とする。
請求項 14記載の金属触媒の製造方法であって、金属微粒子の金属結合状態の割 合を調整する工程に先立って、担体粒子を分散させた液相の反応系中で、析出対 象である金属のイオンを、還元剤の作用によって還元して、担体粒子の表面に微粒 子状に析出させることで、多数の金属微粒子を、担体粒子の表面に担持させる工程 を含むと共に、金属のイオンを還元して析出させる還元剤として、アルコール類、糖 アルコール類、および還元性糖類力 なる群より選ばれる少なくとも 1種を用いること を特徴とする。
PCT/JP2005/009271 2004-06-10 2005-05-20 金属触媒とその製造方法 WO2005120703A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/628,874 US7803734B2 (en) 2004-06-10 2005-05-20 Metal catalyst and method for production thereof
JP2006514439A JPWO2005120703A1 (ja) 2004-06-10 2005-05-20 金属触媒とその製造方法
CA002565113A CA2565113A1 (en) 2004-06-10 2005-05-20 Metal catalyst and method for preparation thereof
CN2005800191455A CN1968746B (zh) 2004-06-10 2005-05-20 金属催化剂及其制造方法
EP05741651A EP1769846A4 (en) 2004-06-10 2005-05-20 METAL CATALYST AND PROCESS FOR PREPARING THE SAME
US12/686,265 US7915190B2 (en) 2004-06-10 2010-01-12 Metal catalyst and method for production thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-172874 2004-06-10
JP2004172874 2004-06-10
JP2004247229 2004-08-26
JP2004-247229 2004-08-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US62887406A Continuation 2004-06-10 2006-12-08

Publications (1)

Publication Number Publication Date
WO2005120703A1 true WO2005120703A1 (ja) 2005-12-22

Family

ID=35502872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009271 WO2005120703A1 (ja) 2004-06-10 2005-05-20 金属触媒とその製造方法

Country Status (7)

Country Link
US (2) US7803734B2 (ja)
EP (1) EP1769846A4 (ja)
JP (1) JPWO2005120703A1 (ja)
KR (1) KR100831143B1 (ja)
CN (1) CN1968746B (ja)
CA (1) CA2565113A1 (ja)
WO (1) WO2005120703A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222732A (ja) * 2006-02-22 2007-09-06 Nissan Motor Co Ltd 電極触媒
JP2007313423A (ja) * 2006-05-25 2007-12-06 Sumitomo Electric Ind Ltd 金属触媒とその製造方法および燃料電池
US20070298293A1 (en) * 2006-03-31 2007-12-27 In-Hyuk Son Electrode for fuel cell and, membrane-electrode assembly and fuel cell system including the same
JP2008080322A (ja) * 2006-09-25 2008-04-10 Hyundai Motor Co Ltd 白金担持触媒の製造方法
JP2008114217A (ja) * 2006-10-12 2008-05-22 Sharp Corp カーボン基体上に担持された貴金属粒子を含む触媒とその製造方法
JP2009218196A (ja) * 2008-03-07 2009-09-24 Hyundai Motor Co Ltd 燃料電池電極素材用白金系合金触媒の製造方法
JP2009302015A (ja) * 2008-06-17 2009-12-24 Toyota Motor Corp 燃料電池用金微粒子担持担体触媒の製造方法及び該方法で製造された金微粒子を含む固体高分子型燃料電池用触媒
JP2010021060A (ja) * 2008-07-11 2010-01-28 Nissan Motor Co Ltd 燃料電池用保水層およびその製造方法並びに電解質膜−電極接合体
JP2010092604A (ja) * 2008-10-03 2010-04-22 Sharp Corp 貴金属粒子担持電極触媒およびその製造方法
JP2010253408A (ja) * 2009-04-27 2010-11-11 Aisin Seiki Co Ltd 貴金属触媒担持方法
JP2012120981A (ja) * 2010-12-08 2012-06-28 Honda Motor Co Ltd 酸化還元反応用合金触媒の製造方法
JP2013173623A (ja) * 2012-01-25 2013-09-05 Nissan Motor Co Ltd 金属担持炭素材料およびその製造方法
JP2013535579A (ja) * 2010-08-06 2013-09-12 シャーメン ユニバーシティー 金属ナノ触媒の表面構造制御及び製造方法
JP2014507254A (ja) * 2011-07-07 2014-03-27 トヨタ自動車株式会社 Nox浄化触媒およびその製造方法
JP2014214290A (ja) * 2013-04-30 2014-11-17 電気化学工業株式会社 カーボンブラックおよびそれを用いた電池用電極
JP2017202430A (ja) * 2016-05-09 2017-11-16 公益財団法人神奈川科学技術アカデミー 金属触媒、ガス拡散電極用触媒層、及び燃料電池
JP2018118877A (ja) * 2017-01-25 2018-08-02 飯田グループホールディングス株式会社 水素供給システムおよび水素供給方法
JP2018118876A (ja) * 2017-01-25 2018-08-02 飯田グループホールディングス株式会社 ギ酸分解方法及びギ酸分解装置
JP2020093258A (ja) * 2020-03-03 2020-06-18 株式会社フルヤ金属 担持触媒
JP2021500223A (ja) * 2017-10-23 2021-01-07 ヘレウス アムロイ テクノロジーズ ゲーエムベーハー 担持された白金粒子の製造方法
WO2023120992A1 (ko) * 2021-12-22 2023-06-29 희성촉매 주식회사 활성 귀금속 성분 소결 억제를 위한 배기가스 정화용 촉매 제조방법
JP7397309B2 (ja) 2019-04-12 2023-12-13 日本製鉄株式会社 合金触媒の製造方法及び合金触媒

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100601984B1 (ko) * 2005-01-20 2006-07-18 삼성에스디아이 주식회사 담지 촉매 및 그 제조방법
US7563742B2 (en) * 2006-09-22 2009-07-21 Headwaters Technology Innovation, Llc Supported nickel catalysts having high nickel loading and high metal dispersion and methods of making same
DE102007018170B4 (de) * 2007-04-18 2010-09-23 S & B Industrial Minerals Gmbh Verfahren zur Ausrüstung eines vorzugsweise porösen keramischen Trägermaterials mit einem Wirkstoff
EP3284540A1 (en) * 2007-07-06 2018-02-21 M. Technique Co., Ltd. Method for producing crystals consisting of fullerene molecules and fullerene nanowhisker/nanofiber nanotubes, and apparatus for producing the same
WO2009011133A1 (ja) * 2007-07-19 2009-01-22 Toda Kogyo Corporation 炭化水素を分解する触媒
WO2009078815A1 (en) * 2007-12-14 2009-06-25 Nanyang Technological University A nanostructured material loaded with noble metal particles
JP5921808B2 (ja) * 2008-04-30 2016-05-24 日立化成株式会社 接続材料及び半導体装置
KR100941148B1 (ko) 2008-05-29 2010-02-10 연세대학교 산학협력단 금속 산화물의 탄소 코팅 방법
US8231704B2 (en) * 2009-05-01 2012-07-31 E I Du Pont De Nemours And Company Silver particles and processes for making them
KR101084952B1 (ko) 2009-07-08 2011-11-17 재단법인 송도테크노파크 나노 금속 카본 촉매 및 그 제조 방법
US8114807B2 (en) * 2010-03-05 2012-02-14 Cem Corporation Synthesis and use of intermetallic iron palladium nanoparticle compositions
TWI412404B (zh) * 2010-12-08 2013-10-21 Ind Tech Res Inst 觸媒與其形成方法
EP2684239A4 (en) 2011-03-11 2014-10-08 Utc Power Corp UNIFORMED ELECTRODE ARRANGEMENT WITH IONOMER WITH HIGH EQUIVALENT WEIGHT
KR101352794B1 (ko) * 2011-07-20 2014-01-23 현대자동차주식회사 마이크로파를 이용한 리튬-공기 전지 양극 물질용 백금-이산화망간/탄소 복합체의 제조 방법
US20140323292A1 (en) * 2011-11-25 2014-10-30 Stc.Unm Supported metal catalyst and method of making the catalyst
CN104081567B (zh) * 2012-01-11 2017-09-15 三菱化学株式会社 二次电池电极用粘合剂树脂组合物、二次电池电极用浆料、二次电池用电极、锂离子二次电池
US9550170B2 (en) * 2012-04-10 2017-01-24 Brookhaven Sciecne Associates, LLC Synthesis of nanoparticles using ethanol
WO2014033202A1 (en) 2012-08-29 2014-03-06 University Of Copenhagen Catalyst material with improved specific activity
CN103272589A (zh) * 2013-06-13 2013-09-04 苏州诺信创新能源有限公司 空气电池电极催化剂的制备方法
JP6512911B2 (ja) * 2015-04-10 2019-05-15 新日本電工株式会社 排ガス浄化用貴金属担持触媒の製造方法
EP3536401A1 (en) * 2015-12-28 2019-09-11 Toyota Jidosha Kabushiki Kaisha Cluster supported catalyst and production method therefor
CN107102042A (zh) * 2017-04-11 2017-08-29 中国农业大学 一种丝网印刷型溶解氧电极制作方法及溶解氧电极
US10760005B2 (en) * 2017-07-19 2020-09-01 Korea Advanced Institute Of Science And Technology Particle including atomic-scale channel, method of preparing the same, and catalyst including the same
CN108899558B (zh) * 2018-06-07 2022-07-12 同济大学 一种PtCo/C电催化剂及其制备方法
CN109499566B (zh) * 2018-06-11 2020-06-09 太原氦舶新材料有限责任公司 一种贵金属载体催化剂及其制备方法和应用
CN109546168B (zh) * 2018-11-22 2021-12-03 龙岩学院 一种碳材料负载的银铂纳米合金复合材料及其制备方法
US11631876B2 (en) * 2019-03-29 2023-04-18 University Of South Carolina Co-electroless deposition methods for formation of methanol fuel cell catalysts
CN112382769B (zh) * 2020-11-04 2021-10-15 江苏科技大学 一种高性能金属-空气电池正极催化剂及其制备方法
KR102549883B1 (ko) * 2021-03-30 2023-07-03 부산대학교 산학협력단 금속-유기 골격체 기반의 촉매 및 이를 이용한 산소 검출용 전극

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153760A (ja) * 2000-11-16 2002-05-28 Toyota Central Res & Dev Lab Inc 複合触媒、その製造方法、並びにそれを用いた水素発生方法及びガス浄化方法
WO2003064037A1 (en) * 2002-01-31 2003-08-07 Hydrocarbon Technology, Inc. Catalysts having controlled (111) crystal face exposure

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2935394A (en) 1956-04-16 1960-05-03 Commw Engineering Corp Method and apparatus for producing micron and sub-micron metals
US3167525A (en) * 1960-03-31 1965-01-26 California Research Corp Metal dispersions in polymers
US3520723A (en) 1968-01-25 1970-07-14 Eastman Kodak Co Process for forming a metallic layer on a substrate
US3849343A (en) 1973-02-05 1974-11-19 Universal Oil Prod Co Method of catalyst manufacture
US4192907A (en) * 1978-07-03 1980-03-11 United Technologies Corporation Electrochemical cell electrodes incorporating noble metal-base metal alloy catalysts
US4186110A (en) * 1978-07-03 1980-01-29 United Technologies Corporation Noble metal-refractory metal alloys as catalysts and method for making
JPS56124447A (en) * 1980-03-05 1981-09-30 Hitachi Ltd Manufacture of catalyst
NL8201396A (nl) 1982-04-01 1983-11-01 Dow Chemical Nederland Zilver katalysator en een werkwijze voor de bereiding daarvan.
JPS58177153A (ja) 1982-04-12 1983-10-17 Nissan Motor Co Ltd メタノ−ル改質用触媒
US4757045A (en) 1983-02-14 1988-07-12 Engelhard Corporation Catalysts with support coatings having increased macroporosity and method for producing the catalysts
US4572813A (en) * 1983-09-06 1986-02-25 Nikkiso Co., Ltd. Process for preparing fine carbon fibers in a gaseous phase reaction
JP2977199B2 (ja) 1988-01-22 1999-11-10 田中貴金属工業株式会社 電極触媒
EP0325557B1 (de) 1988-01-22 1992-09-02 Goymann, Volkmar, Prof. Dr. med. Endoprothese
JPH01210036A (ja) * 1988-02-18 1989-08-23 Tanaka Kikinzoku Kogyo Kk 高表面積金属担持触媒の製造方法
US5209976A (en) * 1988-07-04 1993-05-11 Matsushita Electric Industrial Co., Ltd. Structure having a surface covered with a monomolecular film
JPH0697614B2 (ja) * 1988-08-26 1994-11-30 エヌ・イーケムキャット株式会社 担持白金合金電極触媒
JPH04298238A (ja) 1991-03-25 1992-10-22 Tanaka Kikinzoku Kogyo Kk 燃料電池用白金触媒の製法
JPH06114274A (ja) 1991-12-04 1994-04-26 Stonehard Assoc Inc 高分散金属微粒子担持触媒の製造方法
DE69517687T2 (de) 1994-06-01 2000-12-28 Asec Mfg Co Verfahren zur herstellung von legierten metallkatalysatoren zur nox-entfernung aus verbrennungsmotorabgasen mit sauerstoffüberschuss
JP3587884B2 (ja) * 1994-07-21 2004-11-10 富士通株式会社 多層回路基板の製造方法
CN1077806C (zh) * 1996-10-04 2002-01-16 中国科学院大连化学物理研究所 负载贵金属微粒的大气净化催化剂及制法
DE19756880A1 (de) * 1997-12-19 1999-07-01 Degussa Anodenkatalysator für Brennstoffzellen mit Polymerelektrolyt-Membranen
US6339038B1 (en) 1998-06-16 2002-01-15 Tanaka Kikinzoku Kogyo K. K. Catalyst for a fuel cell containing polymer solid electrolyte and method for producing catalyst thereof
FR2782280B1 (fr) * 1998-08-12 2000-09-22 Inst Francais Du Petrole Catalyseurs supportes utilisables dans des reactions de transformation de composes organiques
JP4082800B2 (ja) 1998-09-30 2008-04-30 石福金属興業株式会社 触媒の製造方法
US6498121B1 (en) * 1999-02-26 2002-12-24 Symyx Technologies, Inc. Platinum-ruthenium-palladium alloys for use as a fuel cell catalyst
JP3916197B2 (ja) 1999-03-29 2007-05-16 田中貴金属工業株式会社 排ガス浄化触媒の製造方法
US6471929B1 (en) * 1999-06-25 2002-10-29 Sony Corporation Photocatalyst, manufacturing method therefor, and gas decomposition method
JP2001141183A (ja) * 1999-11-12 2001-05-25 Ebara Corp 摺動部材及びその製造方法
AU2001241186A1 (en) * 2000-03-16 2001-09-24 Matsushita Electric Industrial Co., Ltd. Method for precisely machining microstructure
JP2002055226A (ja) * 2000-08-07 2002-02-20 Nippon Sheet Glass Co Ltd 偏光素子及びその製造方法
JP3911557B2 (ja) 2001-12-07 2007-05-09 独立行政法人産業技術総合研究所 金属超微粒子を担持した多孔質材料の作製方法
WO2003057367A2 (en) * 2001-12-27 2003-07-17 Aerogel Composite, Llc Aerogel and metallic compositions
CN1165092C (zh) * 2002-04-30 2004-09-01 中国科学院长春应用化学研究所 聚合物电解质膜燃料电池阴极纳米铂/炭电催化剂的制备方法
JP2004082007A (ja) * 2002-08-27 2004-03-18 Honda Motor Co Ltd 触媒粒子及びアルコールの脱水素触媒粒子
JP2004185874A (ja) * 2002-11-29 2004-07-02 Honda Motor Co Ltd 固体高分子形燃料電池用電極触媒層
US20060134318A1 (en) 2003-01-28 2006-06-22 Alan Hudd Method of forming a conductive metal region on a substrate
JPWO2004096436A1 (ja) 2003-05-02 2006-07-13 独立行政法人産業技術総合研究所 遷移金属の酸化物からなる触媒材料
US7662740B2 (en) * 2003-06-03 2010-02-16 Symyx Technologies, Inc. Platinum-chromium-copper/nickel fuel cell catalyst
JP4463522B2 (ja) * 2003-10-16 2010-05-19 日揮触媒化成株式会社 電極の触媒用微粒子および該電極触媒用微粒子分散液、該電極触媒用微粒子分散液の製造方法
TWI289488B (en) * 2003-10-20 2007-11-11 Harima Chemicals Inc Fine metal particles, fine metal oxide particles in the form of dried-up powder, and use of the same
US6958308B2 (en) * 2004-03-16 2005-10-25 Columbian Chemicals Company Deposition of dispersed metal particles onto substrates using supercritical fluids
EP2216113A1 (en) * 2004-04-30 2010-08-11 Sumitomo Electric Industries, Ltd. Process for production of chain metal poweders, chain metal powders produced thereby, and anisotropic conductive film formed by using the powders
US7510621B2 (en) * 2004-09-22 2009-03-31 General Motors Corporation Conductive adhesive bonding
US20060090597A1 (en) 2004-10-29 2006-05-04 Goia Dan V Polyol-based method for producing ultra-fine metal powders

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153760A (ja) * 2000-11-16 2002-05-28 Toyota Central Res & Dev Lab Inc 複合触媒、その製造方法、並びにそれを用いた水素発生方法及びガス浄化方法
WO2003064037A1 (en) * 2002-01-31 2003-08-07 Hydrocarbon Technology, Inc. Catalysts having controlled (111) crystal face exposure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1769846A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222732A (ja) * 2006-02-22 2007-09-06 Nissan Motor Co Ltd 電極触媒
US20070298293A1 (en) * 2006-03-31 2007-12-27 In-Hyuk Son Electrode for fuel cell and, membrane-electrode assembly and fuel cell system including the same
JP2007313423A (ja) * 2006-05-25 2007-12-06 Sumitomo Electric Ind Ltd 金属触媒とその製造方法および燃料電池
JP2008080322A (ja) * 2006-09-25 2008-04-10 Hyundai Motor Co Ltd 白金担持触媒の製造方法
JP2008114217A (ja) * 2006-10-12 2008-05-22 Sharp Corp カーボン基体上に担持された貴金属粒子を含む触媒とその製造方法
JP2009218196A (ja) * 2008-03-07 2009-09-24 Hyundai Motor Co Ltd 燃料電池電極素材用白金系合金触媒の製造方法
JP2009302015A (ja) * 2008-06-17 2009-12-24 Toyota Motor Corp 燃料電池用金微粒子担持担体触媒の製造方法及び該方法で製造された金微粒子を含む固体高分子型燃料電池用触媒
JP2010021060A (ja) * 2008-07-11 2010-01-28 Nissan Motor Co Ltd 燃料電池用保水層およびその製造方法並びに電解質膜−電極接合体
JP2010092604A (ja) * 2008-10-03 2010-04-22 Sharp Corp 貴金属粒子担持電極触媒およびその製造方法
JP2010253408A (ja) * 2009-04-27 2010-11-11 Aisin Seiki Co Ltd 貴金属触媒担持方法
JP2013535579A (ja) * 2010-08-06 2013-09-12 シャーメン ユニバーシティー 金属ナノ触媒の表面構造制御及び製造方法
JP2012120981A (ja) * 2010-12-08 2012-06-28 Honda Motor Co Ltd 酸化還元反応用合金触媒の製造方法
JP2014507254A (ja) * 2011-07-07 2014-03-27 トヨタ自動車株式会社 Nox浄化触媒およびその製造方法
JP2013173623A (ja) * 2012-01-25 2013-09-05 Nissan Motor Co Ltd 金属担持炭素材料およびその製造方法
JP2014214290A (ja) * 2013-04-30 2014-11-17 電気化学工業株式会社 カーボンブラックおよびそれを用いた電池用電極
JP2017202430A (ja) * 2016-05-09 2017-11-16 公益財団法人神奈川科学技術アカデミー 金属触媒、ガス拡散電極用触媒層、及び燃料電池
JP2018118877A (ja) * 2017-01-25 2018-08-02 飯田グループホールディングス株式会社 水素供給システムおよび水素供給方法
JP2018118876A (ja) * 2017-01-25 2018-08-02 飯田グループホールディングス株式会社 ギ酸分解方法及びギ酸分解装置
JP2021500223A (ja) * 2017-10-23 2021-01-07 ヘレウス アムロイ テクノロジーズ ゲーエムベーハー 担持された白金粒子の製造方法
JP7397309B2 (ja) 2019-04-12 2023-12-13 日本製鉄株式会社 合金触媒の製造方法及び合金触媒
JP2020093258A (ja) * 2020-03-03 2020-06-18 株式会社フルヤ金属 担持触媒
WO2023120992A1 (ko) * 2021-12-22 2023-06-29 희성촉매 주식회사 활성 귀금속 성분 소결 억제를 위한 배기가스 정화용 촉매 제조방법

Also Published As

Publication number Publication date
EP1769846A1 (en) 2007-04-04
KR100831143B1 (ko) 2008-05-20
US7803734B2 (en) 2010-09-28
CN1968746B (zh) 2011-07-27
EP1769846A4 (en) 2012-05-09
JPWO2005120703A1 (ja) 2008-04-03
US7915190B2 (en) 2011-03-29
CA2565113A1 (en) 2005-12-22
KR20070028523A (ko) 2007-03-12
CN1968746A (zh) 2007-05-23
US20070244003A1 (en) 2007-10-18
US20100184586A1 (en) 2010-07-22

Similar Documents

Publication Publication Date Title
WO2005120703A1 (ja) 金属触媒とその製造方法
KR100837396B1 (ko) 담지 촉매, 그 제조방법, 이를 포함하는 캐소드 전극 및상기 캐소드 전극을 포함하는 연료전지
Chen et al. Effects of Pt shell thicknesses on the atomic structure of Ru–Pt core–shell nanoparticles for methanol electrooxidation applications
Pajić et al. Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method
KR100868756B1 (ko) 백금/루테늄 합금 담지 촉매, 그 제조방법 및 이를 이용한연료전지
Calderón et al. Palladium–nickel catalysts supported on different chemically-treated carbon blacks for methanol oxidation in alkaline media
Nouralishahi et al. Enhanced methanol electro-oxidation activity of Pt/MWCNTs electro-catalyst using manganese oxide deposited on MWCNTs
CN110537277B (zh) 固体高分子型燃料电池用催化剂及其制造方法
Dembinska et al. Electrocatalytic oxygen reduction in alkaline medium at graphene-supported silver-iron carbon nitride sites generated during thermal decomposition of silver hexacyanoferrate
JP6161239B2 (ja) コアシェルナノ粒子担持触媒体とその製造方法ならびに該触媒体を用いた燃料電池
Sharma et al. Graphene-manganite-Pd hybrids as highly active and stable electrocatalysts for methanol oxidation and oxygen reduction
Wang et al. Ethanol oxidation activity and structure of carbon-supported Pt-modified PdSn-SnO2 influenced by different stabilizers
Feng et al. Morphology effect of MnO2 promoter to the catalytic performance of Pt toward methanol electrooxidation reaction
JP2020145154A (ja) 白金コアシェル触媒の製造方法及びそれを用いた燃料電池
KR20200029522A (ko) 탄소 촉매, 전지 전극 및 전지
US11239473B2 (en) Catalyst for solid polymer fuel cells and method for manufacturing the same
JP2007313423A (ja) 金属触媒とその製造方法および燃料電池
US11596926B2 (en) Method for preparing ternary alloy catalyst with polydopamine coating and ternary alloy catalyst prepared thereby
Feng et al. Preparation and catalytic activity of CO-resistant catalyst core-shell Au@ Pt/C for methanol oxidation
JP2002231255A (ja) 高分子固体電解質型燃料電池用触媒の製造方法
EP3942636A1 (en) Method for preparation of a supported noble metal-metal alloy composite, and the obtained supported noble metal-metal alloy composite
JP2007111635A (ja) 金属触媒とその製造方法
JP6433319B2 (ja) 固体高分子形燃料電池用の金属触媒粒子及びその製造方法、並びに触媒及び固体高分子形燃料電池
CN117500595A (zh) 水电解用还原催化剂及其制备方法
CN116072896A (zh) 铂碳催化剂及其制备方法和应用以及氢燃料电池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514439

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2565113

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005741651

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11628874

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580019145.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077000398

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020077000398

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005741651

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11628874

Country of ref document: US