WO2005116092A1 - 架橋ポリ(メタ)アクリル酸化合物の製造方法 - Google Patents

架橋ポリ(メタ)アクリル酸化合物の製造方法 Download PDF

Info

Publication number
WO2005116092A1
WO2005116092A1 PCT/JP2005/009893 JP2005009893W WO2005116092A1 WO 2005116092 A1 WO2005116092 A1 WO 2005116092A1 JP 2005009893 W JP2005009893 W JP 2005009893W WO 2005116092 A1 WO2005116092 A1 WO 2005116092A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylic acid
compound
poly
general formula
Prior art date
Application number
PCT/JP2005/009893
Other languages
English (en)
French (fr)
Inventor
Nobutaka Fujimoto
Koji Ueda
Masato Fujikake
Original Assignee
Sumitomo Seika Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co., Ltd. filed Critical Sumitomo Seika Chemicals Co., Ltd.
Priority to EP05743720.4A priority Critical patent/EP1752474B1/en
Priority to CN2005800176489A priority patent/CN1961006B/zh
Priority to JP2006513990A priority patent/JP5124139B2/ja
Priority to US11/569,819 priority patent/US7816457B2/en
Publication of WO2005116092A1 publication Critical patent/WO2005116092A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a crosslinked poly (meth) acrylic acid compound and a method for producing an electrode of a secondary battery using the compound. More particularly, the present invention relates to a method for producing a crosslinked poly (meth) acrylic acid-troxide conjugate having excellent solvent stability, which is used as an electrode material for a secondary battery having a high energy density and a large capacity.
  • lithium ion secondary batteries are used in various electronic devices as high-capacity secondary batteries with high energy density and excellent stability.
  • Such a lithium ion secondary battery generally uses a lithium-containing transition metal oxide for the positive electrode and carbon for the negative electrode as active materials, and utilizes the insertion and desorption reactions of lithium ions into and from these active materials. Charging and discharging.
  • a solvent constituting an electrolytic solution for transporting charge carriers between the negative electrode and the positive electrode for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, jetinole carbonate, etino Organic solvents such as remethinole carbonate, y-butyrolataton, tetrahydrofuran, dioxofuran, sulfolane, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, alone or as a mixture of two or more Used.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-151084
  • the present invention relates to a method for producing a crosslinked poly (meth) acrylic acid conjugate, in particular, a crosslinked poly (meth) acrylic acid-troxide conjugate which is a radical conjugate excellent in solvent stability. And a method for producing an electrode of a secondary battery using the compound.
  • the present invention provides a compound represented by the general formula (1):
  • n Z 1 represents a hydrogen atom and Z or an oxygen atom having one unpaired electron
  • R represents a hydrogen atom or a methyl group
  • n represents 5 to:
  • a polymerization step of polymerizing a (meth) acrylic acid compound represented by the formula (1) in the presence of a crosslinking agent A method for producing a crosslinked poly (meth) acrylic acid compound, characterized in that:
  • the present invention is a method for producing an electrode of a secondary battery, comprising: a coating step of forming a crosslinked poly (meth) acrylic acid compound into a coating; and an application step of applying the coating to a current collector.
  • the cross-linked poly (meth) acrylic acid compound is a cross-linked poly (meth) acrylic acid-troxide conjugate produced by the method for producing the cross-linked poly (meth) acrylic acid compound. This is a method for manufacturing a battery electrode.
  • the method for producing a crosslinked poly (meth) acrylic acid compound of the present invention is represented by the general formula (2).
  • the crosslinked poly (meth) acrylic acid conjugate is obtained by cross-linking the poly (meth) acrylic acid conjugate represented by the general formula (1).
  • N Z 1 in the general formula (1) represents a hydrogen atom and Z or an oxygen atom having one unpaired electron.
  • n Z 1 in the general formula (1) represents a hydrogen atom and Z or an oxygen atom having one unpaired electron”.
  • Z 1 is a all n a hydrogen atom
  • a case Z 1 is an oxygen atom having one every n unpaired electrons
  • repeating units Z 1 is a hydrogen atom ( a) and a repeating unit (b) in which Z 1 is an oxygen atom having one unpaired electron, and the total number of both repeating units is n.
  • the repeating unit (a) and the repeating unit (b) may be bonded alternately or may constitute a block copolymer.
  • the “oxygen atom having one unpaired electron” means oxygen having an unpaired electron which a free radical has on an atom.
  • R represents a hydrogen atom or a methyl group
  • n represents an integer of 5 to 1000000
  • N is preferably an integer of 10 to 500,000.
  • the polymerization step comprises polymerizing the (meth) acrylic acid compound represented by the general formula (2) in the presence of a crosslinking agent.
  • the polymerization step is considered to be capable of performing both the polymerization reaction and the cross-linking reaction by performing the polymerization in the presence of the cross-linking agent. Can be obtained.
  • the crosslinking agent and the polymerization step will be described later.
  • R in the general formula (2) represents the same group as R in the general formula (1).
  • Z 2 in the general formula (2) represents a hydrogen atom when Z 1 in the general formula (1) is a hydrogen atom, and represents hydrogen when Z 1 is an oxygen atom having one unpaired electron. Indicates an oxygen atom having one atom or one unpaired electron.
  • the method for producing a crosslinked poly (meth) acrylic acid compound of the present invention includes the above-mentioned polymerization step.
  • the method for producing a crosslinked poly (meth) acrylic acid conjugate of the present invention is characterized in that, when Z 1 in the general formula (1) is the same as Z 2 in the general formula (2), By polymerizing the (meth) acrylic acid compound represented by the general formula (2) in the presence of a crosslinking agent, the poly (meth) acrylic acid conjugate represented by the general formula (1) is crosslinked. To produce a crosslinked poly (meth) acrylic acid conjugate.
  • a (meth) atalylic acid compound represented by the general formula (2) (wherein Z 2 is an oxygen atom having one unpaired electron) (hereinafter referred to as “(meth) acrylic acid-troxide conjugated compound”) Is not particularly limited, and includes, for example, 2,2,6,6-tetramethyl-14-piberidyl (meth) acrylic acid.
  • the one obtained by a known method such as -troxidani-dori can be used.
  • the method for producing a crosslinked poly (meth) acrylic acid compound of the present invention further comprises an oxygen atom or a hydrogen atom in which n Z 1 in the general formula (1) has one unpaired electron. And when oxygen is an oxygen atom having one unpaired electron and Z 2 in the general formula (2) is a hydrogen atom, represented by the general formula (2) (where Z 2 is a hydrogen atom) ( After the polymerization step of polymerizing a (meth) acrylic acid conjugate (hereinafter sometimes referred to as “(meth) acrylic acid imino compound”) in the presence of a cross-linking agent, a nitroxide-toloxide is further added.
  • poly (meth) acrylic acid conjugate (hereinafter referred to as "poly (meth) acrylic acid-troxide compound") In which there) to produce a formed by crosslinked crosslinked poly (meth) ⁇ click Lil Sani ⁇ thereof.
  • the -troxidation step it is preferable that the -troxidation of a hydrogen atom is completely performed.However, it is preferable that the -troxidation step has both a hydrogen atom incompletely subjected to nitroxidation and an oxygen atom having one unpaired electron. May be as follows. N pieces of Z 1 in the general formula (1) is - when subjected to complete the door opening Kishido reduction, will only oxygen atoms having one unpaired electron, when performing the incomplete Nitoroki Shidi spoon, hydrogen It becomes an oxygen atom having one atom and one unpaired electron.
  • the conjugate obtained through the -troxidation step is referred to with the term ⁇ nitroxide compound '' for convenience, and indicates only that it has an oxygen atom having one unpaired electron and also has a hydrogen atom. Power that may be omitted in some cases Unless otherwise specified, this is a concept that may include hydrogen atoms remaining due to incomplete nitroxidation.
  • the poly (meth) acrylic acid conjugate represented by the general formula (1) is combined with a poly (meth) acrylic acid imino compound represented by the following general formula (la) and a compound represented by the general formula ( lb), and is a concept composed of a poly (meth) atalylic acid nitroxide compound represented by lb).
  • the (meth) acrylic acid conjugate represented by the general formula (2) is represented by a (meth) acrylic acid imino compound represented by the following general formula (2a) and a general formula (2b) This is a concept composed of (meth) acrylic acid-troxide conjugate.
  • the method for producing a crosslinked poly (meth) acrylic acid compound of the present invention comprises the following reaction It is represented in the figure.
  • the poly (meth) acrylic acid conjugate comprises n units of the general formula (1) Is a poly (meth) acrylic acid imino compound in which Z 1 is a hydrogen atom, and the (meth) acrylic acid conjugated compound is a (meth) acrylic acid in which Z 2 in the general formula (2) is a hydrogen atom. It is an imino compound.
  • a method for producing a crosslinked poly (meth) acrylic acid imino conjugate comprising producing a crosslinked poly (meth) acrylic acid imino compound.
  • the poly (meth) acrylic acid conjugate comprises an oxygen atom in which n Z 1 in the general formula (1) has one unpaired electron, or an oxygen atom having a hydrogen atom and one unpaired electron.
  • the (meth) acrylic acid conjugate is a (meth) acrylic acid imino compound wherein Z 2 in the general formula (2) is a hydrogen atom,
  • the polymerization step is for producing a cross-linked poly (meth) acrylic acid imino conjugate obtained by crosslinking the poly (meth) acrylic acid imino compound represented by the general formula (la),
  • the method for producing a cross-linked poly (meth) acrylic acid compound further includes a -troxidation step of -troxidizing the cross-linked poly (meth) acrylic acid compound.
  • the first embodiment which also includes the -troxidation step, comprises: (I) polymerizing the (meth) acrylic acid imino compound represented by the general formula (2a) in the presence of a crosslinking agent.
  • the method comprises the step of producing a (meth) acrylic acid-troxide conjugate, wherein the crosslinked poly (meth) acrylic acid-troxide conjugate is represented by the general formula (lb):
  • a poly (meth) acrylic acid nitroxide conjugate is represented by a general formula (lb) for convenience, but since it has undergone a nitroxide sulfide step, the nitroxide conversion is incomplete as described above. May also have a hydrogen atom remaining after the reaction.
  • the crosslinked poly (meth) acrylic acid nitroxide conjugate is obtained by cross-linking the poly (meth) acrylic acid-troxide compound. May also have a hydrogen atom remaining.
  • R represents a hydrogen atom or a methyl group.
  • the (meth) acrylic acid imino compound represented by the general formula (2a) includes 2, 2, 6 , 6-Tetramethyl-4-piberidyl (meth) acrylate, a commercially available product can be used.
  • acrylic acid and methacrylic acid are referred to as (meth) acrylic acid, and acrylate and methacrylate are referred to as (meth) atalylate.
  • the crosslinking agent used in the present invention is not particularly limited as long as it has a plurality of polymerizable unsaturated groups in the molecule.
  • a (meth) acrylic acid-based polyfunctional compound and an aryl ether-based polyfunctional compound are used.
  • Functional compounds and vinyl-based polyfunctional compounds are used.
  • (Meth) acrylic acid-based polyfunctional compounds include, for example, ethylene glycol di (meth) atalylate, ethylene glycol di (meth) atalylate, polyethylene glycol di (meth) atalylate, 1,3-propanediol di ( 1,2-butanediol di (meth) atalylate, 1,4-butanediol di (meth) atalylate, 1,5 pentanediol di (meth) atalylate, 1,6 hexanediol di ( (Meta) acrylate, 1,7 heptanediol di (meth) acrylate, 1,8 octanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1, 10-decane diol ( (Meta) acrylate, trimethylolpropanetri (meth) acrylate, glycerin di (meth)
  • Examples of the aryl ether polyfunctional compound include diethylene glycol diaryl ether and dibutylene glycol diaryl ether.
  • Examples of the bur polyfunctional compound include dibutyl benzene.
  • (meth) acrylic acid-based polyfunctional compounds are preferably used, and in particular, ethylene glycol di (meth) atarylate, 1,3 butanediol di (meth) ataryl Rate and 1,4 butanediol di (meth) acrylate are preferably used.
  • These cross-linking agents can be used alone or in combination.
  • the amount of the cross-linking agent used is in accordance with the viewpoint and the amount of the cross-linked poly (meth) acrylic acid-troxide conjugate finally obtained exhibiting sufficient solvent stability by appropriate cross-linking. From the viewpoint of obtaining the effect, the ratio of 0.0001 to 0.25 mol per 1 mol of the (meth) acrylic acid imino compound is more preferable, and the ratio is more preferably 0.0005-0.1 mol, More preferably, it is 0.0001-0.05 mol.
  • the method of polymerizing the imino (meth) acrylate compound in the presence of the crosslinking agent is not particularly limited, and examples thereof include a stirrer, a thermometer, and a nitrogen gas.
  • a predetermined amount of a (meth) acrylic acid imino compound, a cross-linking agent, and an inert solvent are charged into a reactor equipped with an inlet pipe and a cooling pipe, and the mixture is deoxygenated with nitrogen gas.
  • a method of adding a polymerization initiator is exemplified.
  • inert solvent examples include aromatic hydrocarbon solvents such as benzene, toluene, and xylene, and ether solvents such as getyl ether and tetrahydrofuran.
  • the amount of the inert solvent used is from 50 to 2,000 parts by weight based on 100 parts by weight of the (meth) acrylic acid imino compound from the viewpoint of smoothly proceeding the reaction and obtaining an effect commensurate with the used amount. Parts are preferred.
  • the polymerization initiator is not particularly limited, and for example, polymerization initiators such as benzoyl peroxide, lauroyl baroxide, peroxide of tamenodide, peroxide of tertiary butylhydride, and potassium persulfate.
  • polymerization initiators such as benzoyl peroxide, lauroyl baroxide, peroxide of tamenodide, peroxide of tertiary butylhydride, and potassium persulfate.
  • Azo-based polymerization initiators such as ⁇ , a'-azobisisobutyl mouth-tolyl, 2,2'-azobis-2,4-dimethylvaleronitrile, dimethyl-2,2'-azobisisobutyrate Ammox-ferrous sulfate Z-ammonium persulfate, ethanolanolamine Z potassium persulfate, sodium bromate Z sulfur dioxide, etc .; a redox polymerization initiator; Grignard reagent (n-butylmagnesium bromide, isobutylmagnesium bromide) , T-butynolemagnesium bromide, n-butynolemagnesium chloride, isobutylmagnesium chloride, t-butylmer Neshi um chloride and the like), Arukirurichi ⁇ beam (n- butyl lithium, t chromatography butyl lithium, 1, 1 Jifue - Anion type polymerization initi
  • the amount of the polymerization initiator used varies depending on the type of the polymerization initiator used and the reaction temperature. Usually, the amount is 0.005 to 5 parts by weight based on 100 parts by weight of the imino (meth) acrylate compound.
  • additives such as a chain transfer agent such as isopropyl alcohol and a polymerization terminator such as methanol may be appropriately added.
  • the reaction temperature is preferably 20 to 100 ° C, more preferably -10 to 80 ° C.
  • the reaction time varies depending on the reaction temperature and cannot be specified unconditionally, but is usually 2 to: LO time
  • the crosslinked poly (meth) acrylic acid compound which is a reaction product obtained by the above-mentioned molding, is prepared by mixing the reaction solution with a solvent such as an aliphatic hydrocarbon such as hexane and the like. Imino acrylate After the compound is precipitated, it can be isolated by filtration or the like. Furthermore, unreacted substances and the like can be removed using hexane, methanol, and the like, washed, and dried to be purified.
  • the above-mentioned method of polymerizing the imino (meth) acrylate compound in the presence of the crosslinking agent can be usually carried out by a solution polymerization method.
  • the solution polymerization method uses a solvent having a relatively high solubility of the imino (meth) acrylate compound as the inert solvent.
  • a suspension polymerization method and an emulsion polymerization method can be suitably used as the polymerization method because of the ease of separation of the reaction product.
  • suspension polymerization method for example, a predetermined amount of an imino (meth) acrylate compound, a crosslinking agent, and an oil
  • a radical polymerization initiator mixed with an inert hydrocarbon solvent and a surfactant are mixed and dispersed in inert water, then deoxygenated with nitrogen gas, and heated with stirring.
  • Examples of the inert hydrocarbon solvent used in the suspension polymerization method include aromatic hydrocarbon solvents such as benzene, toluene, and xylene; n-hexane, n-heptane, and rig-mouth. And acyclic saturated hydrocarbon solvents such as cyclopentane, methylcyclopentane, cyclohexane and methylcyclohexane, and halogenated hydrocarbon solvents such as dichloromethane, chloroform and dichloroethane. And the like.
  • aromatic hydrocarbon solvents such as benzene, toluene, and xylene
  • n-hexane n-heptane
  • rig-mouth rig-mouth
  • acyclic saturated hydrocarbon solvents such as cyclopentane, methylcyclopentane, cyclohexane and methylcyclohexane
  • halogenated hydrocarbon solvents such as dichloromethane, chlor
  • the amount of the inert hydrocarbon-based solvent used is not only from the viewpoint of sufficiently dissolving the (meth) acrylic acid imino compound to allow the polymerization reaction to proceed smoothly, and also from the viewpoint of obtaining the effect corresponding to the amount used, by (meth) 50 to 300 parts by weight, preferably 100 to 200 parts by weight, per 100 parts by weight of the imino acrylate compound! / ⁇ .
  • the amount of the water used is 200 to 1500 parts by weight per 100 parts by weight of the imino (meth) acrylate compound. 300 to 1000 parts by weight are more preferred.
  • the oil-soluble radical polymerization initiator in the suspension polymerization method is not particularly limited, and examples thereof include benzoyl peroxide, di-tert-butyl peroxide, lauroyl peroxide, diisopropyl propyl peroxide carbonate, and the like.
  • Peroxide polymerization initiators such as dicyclohexylperoxydicarbonate; ⁇ , ⁇ '-azobisisobutymouth-tolyl, 2,2, -azobis-2,4-dimethylvale-tolyl, dimethyl-2,2 Azo-based polymerization initiators such as, -azobisisobutyrate; redox-based polymerization initiators such as benzoyl peroxide-dimethylayurin, di-tert-butyl Z-dimethylayurin, lauroyl baroxide Z-dimethyla-line, etc.
  • azo-based polymerization initiators such as ⁇ , ⁇ , -azobisisobutyl-tolyl which are inexpensive and easy to handle are preferably used.
  • the amount of the oil-soluble radical polymerization initiator used varies depending on the type of the oil-soluble radical polymerization initiator used and the reaction temperature, but is usually 0.005 to 5 parts by weight based on 100 parts by weight of the (meth) acrylic acid imino compound. Department.
  • additives such as a chain transfer agent such as isopropyl alcohol and a polymerization terminator such as methanol may be appropriately added.
  • any of an aionic surfactant, a cationic surfactant, a non-ionic surfactant, and an amphoteric surfactant may be used. Can be.
  • anionic surfactants include sodium fatty acid, potassium fatty acid, sodium alkyl sulfate, sodium alkyl benzene sulfonate, sodium alkane sulfonate, sodium alkyl phosphate, acyloyl methyl taurate, sodium ⁇ -methyl-pyramidopropionate, Sodium monoalkyl biphenyl ether disulfonate, sodium naphthalene sulfonate Formalin condensate, sodium acyl glutamate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl ether ether alkyl benzene sulfonate, polyoxyethylene alkyl ether methyl carboxylate And sodium polyoxyethylene alkyl ether ethanesulfonate.
  • cationic surfactant monoalkyltrimethylammonium-dimethylmethosulfate Cationized cellulose, alkyltrimethylammonium-dimethyl chloride, distearyldimethylammonium-dimethylchloride, dialkyldimethylammonium-dimethylchloride, dialkyldimethylbenzylammonium-dimethylchloride, alkylpyridyl-dimethylchloride and the like.
  • non-ionic surfactant examples include fatty acid monodaliseride, sorbitan fatty acid partial ester, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene fatty acid monodaliseride, and polyoxyethylene sorbitol fatty acid moiety.
  • Ester polyoxyethylene sorbitan fatty acid partial ester, polyoxyethylene lanolin alcohol ether, polyethylene glycol fatty acid monoester, polyethylene glycol fatty acid diester, polyoxyethylene fatty amine, polyglycerin fatty acid partial ester, bis (2-hydroxyethyl) alkylamine, Alkyl dimethyl amine oxide, fatty acid alkylolamide, ⁇ -methoxy polyoxyethylene ⁇ -alkyl ether, polyoxy Polyoxypropylene Proc copolymers, poly O alkoxy polyoxypropylene alkyl ethers, polyoxyethylene ⁇ isethionate les glycol, sugar fatty acid partial esters, and the like.
  • amphoteric surfactants include ⁇ acylamidopropyl- ⁇ , ⁇ ⁇ ⁇ ⁇ dimethylammoniobetaine, ⁇ acylamidopropyl ⁇ ,, ⁇ , monodimethyl ⁇ , - ⁇ -hydroxypropylammo-sulfobetaine, ⁇
  • Examples of the amphoteric surfactants include ⁇ acylamidopropyl- ⁇ , ⁇ ⁇ ⁇ ⁇ dimethylammoniobetaine, ⁇ acylamidopropyl ⁇ ,, ⁇ , monodimethyl ⁇ , - ⁇ -hydroxypropylammo-sulfobetaine, ⁇
  • Examples of the amphoteric surfactants include ⁇ acylamidopropyl- ⁇ , ⁇ ⁇ ⁇ ⁇ dimethylammoniobetaine, ⁇ acylamidopropyl ⁇ ,, ⁇ , monodimethyl ⁇ , - ⁇ -hydroxypropylammo-sulfobetaine, ⁇
  • Examples include acylamidoe
  • sodium alkylbenzenesulfonate and sodium polyoxyethylenealkylphenyletheralkylbenzenebenzenesulfonate are preferred from the viewpoint of industrial availability, low cost, and stability of the quality of the obtained compound. It is preferably used, and among them, sodium dodecylbenzenesulfonate and sodium polyoxyethylen-nor-ether ether dodecylbenzenesulfonate are preferably used.
  • the amount of the surfactant used is commensurate with the viewpoint and the amount used in which the reaction proceeds smoothly.
  • the amount of the water is preferably 0.05 to 1 part by weight with respect to 100 parts by weight of the water, and more preferably 0.1 to 0.4 part by weight.
  • the reaction temperature is preferably from 30 to 100 ° C, more preferably from 40 to 80 ° C.
  • the reaction time varies depending on the reaction temperature, it cannot be unconditionally determined, but is usually 0.5 to: L0 hour.
  • the crosslinked poly (meth) acrylic acid compound which is a reaction product obtained by force, exists in the form of particles in the reaction solution, and thus can be isolated by filtering the reaction solution. Further, it can be purified by removing unreacted substances and the like using water, hexane and the like, washing and drying.
  • emulsion polymerization method which is another polymerization method according to the first embodiment of the present invention
  • a predetermined amount is measured by using a reactor equipped with a stirrer, a thermometer, a nitrogen gas introduction pipe, and a cooling pipe.
  • the imino (meth) acrylate compound, cross-linking agent, and surfactant are mixed and dispersed in water, which is an inert solvent, and then deoxygenated with nitrogen gas, and a water-soluble radical polymerization initiator is added. And heating under stirring.
  • the water-soluble radical polymerization initiator in the emulsion polymerization method is not particularly limited, and examples thereof include peroxide-based polymerization initiators such as ammonium persulfate, sodium persulfate, and potassium persulfate, and ferrous sulfate.
  • peroxide-based polymerization initiators such as ammonium persulfate, sodium persulfate, and potassium persulfate, and ferrous sulfate.
  • Redox-based polymerization initiators such as ammonium Zammonium persulfate, ethanolamine Z potassium persulfate, and the like.
  • a peroxide initiator such as potassium persulfate which is inexpensive and easy to handle is preferably used.
  • the type and amount of the surfactant, the amount of the polymerization initiator, the amount of water used as the inert solvent, the reaction temperature and the reaction time are the same as those in the suspension polymerization method. You can apply Chino.
  • an inert hydrocarbon solvent similar to that used in the suspension polymerization method may be appropriately added in order to dissolve the imino (meth) acrylate compound.
  • An additive such as a chain transfer agent or a polymerization terminator such as methanol may be appropriately added.
  • the crosslinked poly (meth) acrylic acid compound which is a reaction product obtained by force, is prepared, for example, by mixing the reaction solution with a large amount of cold water to precipitate the crosslinked poly (meth) acrylic acid compound. After that, it can be isolated by filtration or the like. In addition, water, hexane, methanol, etc. It can be purified by removing unreacted substances and the like, washing and drying.
  • the crosslinked poly (meth) acrylic acid-troxide conjugate is obtained by subjecting the crosslinked poly (meth) acrylic acid imino compound obtained as described above to -troxidation. Can be manufactured.
  • the method for subjecting the crosslinked poly (meth) acrylic acid compound to -troxidation is not particularly limited.
  • a secondary amine having steric hindrance may be converted to an oxidizing agent using an oxidizing agent.
  • a known method of producing a compound having a corresponding nitroxide free radical by oxidation and the like can be used. Examples of the operation of this method include the above-mentioned cross-linking poly (meth) acrylic acid imino compound After mixing with an active solvent, a method of reacting under stirring without adding an oxidizing agent may be used.
  • Examples of the inert solvent used for the -troxidation include halogenated hydrocarbons such as dichloromethane, chloroform and dichloroethane; and aliphatic -tolyls such as acetonitrile, propio-tolyl, and butyl-tolyl. , Benzonitrile, aromatic-tolyls such as tol-tolyl, alcohols such as methanol, ethanol, n-prononore, iso-prononole, n-butanol, sec-butanol, iso-butanol, tert-butanol and benzene And aromatic hydrocarbons such as toluene and xylene. Of these, halogenated hydrocarbons such as dichloromethane, chloroform and dichloroethane, and alcohols such as methanol and ethanol are preferably used.
  • the amount of the inert solvent used in the -troxidation is determined from the viewpoint of smoothly proceeding the reaction and obtaining an effect commensurate with the amount used, from the viewpoint of obtaining an effect commensurate with the amount used. Desirable is 50 to 5000 weight% per 100 weight% of the product, more preferably 100 to 3000 weight%.
  • oxidizing agent examples include peroxides such as hydrogen peroxide, formic acid, peracetic acid, perbenzoic acid and perphthalic acid, and halides thereof, silver oxide, lead tetraacetate, hexacyano iron ( III) Oxidation products such as potassium acid and potassium permanganate, and air.
  • peroxides such as hydrogen peroxide, formic acid, peracetic acid, perbenzoic acid and perphthalic acid, and halides thereof, silver oxide, lead tetraacetate, hexacyano iron ( III) Oxidation products such as potassium acid and potassium permanganate, and air.
  • the amount of the oxidizing agent used is (meth) acrylic acid used in the production of the cross-linked poly (meth) acrylic acid imino compound from the viewpoint of smoothly proceeding the reaction and obtaining an effect commensurate with the amount used.
  • the ratio is preferably 1 to 40 mol per 1 mol of the imino compound.
  • the polymerization method of the polymerization step in the first embodiment of the present invention which is more preferably 1.5 to 15 mol, is a solution polymerization method, the ratio is 1.5 to 5.0 mol. It is desirable that the ratio be more preferably 1.6 to 3.0 mol.
  • a catalyst can be used.
  • the catalyst include a catalyst used in a usual -oxidation reaction.
  • the catalyst include a compound containing a metal element selected from Group 6 of the Group 18 element periodic table, such as tungsten and molybdenum.
  • a metal element selected from Group 6 of the Group 18 element periodic table such as tungsten and molybdenum.
  • the catalyst include tungstic acid, phosphorous tungstate, and tungsten.
  • the amount of the catalyst to be used is preferably from 0.01 to 100 parts by weight of the cross-linked poly (meth) acrylate imino compound from the viewpoint of smoothly proceeding the reaction and obtaining an effect commensurate with the amount used.
  • the polymerization method of the polymerization step in the first embodiment of the present invention is a solution polymerization method, preferably 20 parts by weight is more preferably 0.01 to 10 parts by weight, the crosslinked poly (meth)
  • the amount is preferably 0.001 to 0.1 part by weight, more preferably 0.01 to 0.05 part by weight, per 100 parts by weight of the imino acrylate compound.
  • the reaction temperature is preferably from 0 to 75 ° C, more preferably from 20 to 50 ° C.
  • the reaction after mixing the cross-linked poly (meth) acrylic acid imino compound, the inert solvent and the oxidizing agent, the mixture can be reacted at the above temperature under stirring, but the oxidizing agent is added as described above. It is preferable because the reaction can be easily performed with high yield.
  • the reaction time while the oxidizing agent is added is not particularly limited, but is usually 1 to 10 hours, preferably 3 to 6 hours. Further, usually, after the addition of the oxidizing agent, Hold for ⁇ 10 hours to complete the reaction.
  • the crosslinked poly (meth) acrylic acid-troxide compound obtained by force can be isolated from the reaction solution by a combination of filtration, drying and the like.
  • the crosslinked poly (meth) acrylic acid compound does not necessarily need to be dissolved in an inert solvent, for example, the reaction proceeds easily even in a swollen state.
  • the poly (meth) acrylic acid conjugate comprises the general formula (1) in the n Z 1 is an oxygen atom having one unpaired electron, or an oxygen atom having one hydrogen atom and unpaired electrons poly (meth) acrylic acid - a Torokishidi ⁇ product, the ( meth) acrylic Sani ⁇ product, the Z 2 in the general formula (2) is a hydrogen atom (meth) acrylic acid Imino compounds Dressings containing, which may be the general formula (2) in the Z 2 is not It is a (meth) acrylic acid-troxide compound which is an oxygen atom having one counter electron.
  • (meth) acrylic acid conjugate may be a compound containing a (meth) acrylic acid imino compound and is a (meth) acrylic acid-troxide compound”
  • the (meth) acrylic acid compound may be an aggregate of (meth) acrylic acid-troxide conjugate compound molecules and may also contain a (meth) acrylic acid imino compound molecule.
  • the second embodiment has the following general formula (2b):
  • a method for producing a cross-linked poly (meth) acrylic acid-troxide conjugate comprising producing a cross-linked poly (meth) acrylic acid-troxide conjugate comprising:
  • the (meth) acrylic acid-troxidide conjugate is represented by the general formula (2b) for convenience, but since it has been subjected to the nitroxide ligating step, the nitroxide conversion is not performed as described above. It may have a hydrogen atom that remains after the completion.
  • the (meth) acrylic acid-troxide conjugate is not particularly limited, but may be represented by the following general formula (2a):
  • R represents the same group as R in the general formula (2b)
  • R is preferably obtained by subjecting a (meth) acrylic acid imino compound represented by the formula to -troxidation.
  • R in the general formula (2b) and R in the general formula (2a) represent the same group.
  • the (meth) acrylic acid-troxidide conjugate represented by the general formula (2b) is 2,2,6,6-tetramethyl 4-piberidi-loxy (meth) acrylate. .
  • the crosslinked poly (meth) acrylate imino compound is -troxidized to form a bridge poly ( A method similar to the above-described method for producing a nitroxydide methacrylate acrylate can be used.
  • the method of polymerizing the (meth) acrylic acid-troxide compound represented by the general formula (2b) in the presence of a crosslinking agent is not particularly limited.
  • the cross-linked poly (meth) The same method as the above-described solution polymerization method for producing an imino acrylate compound can be used.
  • the (meth) acrylic acid-troxide conjugate and a cross-linking agent such as ethylene glycol dimethacrylate, 1,3 butanediol dimethacrylate and 1,4 butanediol dimethacrylate are used.
  • aromatic hydrocarbon solvents such as benzene, toluene, and xylene
  • acyclic saturated hydrocarbon solvents such as n-hexane, n-heptane, and lignin
  • cyclopentane, methylcyclopentane Cyclohexane, methylcyclohexane, and other cyclic saturated hydrocarbon solvents, and inert solvents such as ethyl ether, tetrahydrofuran, and other ether solvents, and then deoxygenate with nitrogen gas.
  • Anion-based heavy such as lithium (n-butyllithium, t-butyllithium, 1,1-diphenylhexyllithium, etc.) More method of adding a polymerization initiator of the initiator, etc., cross-linked poly (meth) acrylic acid - it is possible to obtain a Torokishidi ⁇ thereof.
  • the amount of the crosslinking agent used is such that the obtained cross-linked poly (meth) acrylate nitroxide compound exhibits sufficient solvent stability by appropriate crosslinking and an effect commensurate with the amount used.
  • the mole of 0.00001 to 0.25 harmful to one mole of the conjugate is preferable, and this harmful ij compound is more preferable.
  • the thickness be 0.1 monol, more preferably 0.0001 to 0.05 monol.
  • the crosslinked poly (meth) acrylic acid-troxide compound obtained by force can be isolated from the reaction solution by a combination of unit operations such as filtration and drying.
  • the electrode of a secondary battery can be manufactured by binding the crosslinked poly (meth) acrylic acid-troxide conjugate obtained in the present invention to a current collector.
  • the current collector is an electrode component that collects electric charges generated from the electrodes of the secondary battery, and is made of a conductor.
  • the member used for the current collector include metal foils such as nickel, aluminum, copper, gold, silver, aluminum alloys and stainless steel, metal plates and meshes, and carbon rods. .
  • the method for producing an electrode of a secondary battery of the present invention includes a step of forming a coating of the crosslinked poly (meth) acrylic acid-troxide compound and a coating step of applying the coating to a current collector.
  • the coating method and the coating method can be performed by using known methods and apparatuses, which are not particularly limited.
  • An example of the method of coating is to mix a cross-linked poly (meth) acrylic acid-troxide compound with a binder and then add a solvent to form a slurry.
  • the binder include, for example, polyvinylidene fluoride, bilidenefluoride-hexafluoropropylene copolymer, bilidenefluoride-tetrafluoroethylene copolymer, styrene′butadiene copolymer rubber, Examples include resin binders such as polypropylene, polyethylene, polyimide, and various polyurethanes.
  • Specific examples of the solvent include dimethylformamide and N-methylpyrrolidone.
  • the slurry obtained by the above-mentioned coating is dropped on the surface of the current collector, developed by a wire bar so as to have a uniform thickness as a whole, and then dried to remove the solvent. There is a method of removing.
  • an auxiliary conductive material and an ion conductive auxiliary material may be appropriately added to the crosslinked poly (meth) acrylic acid-troxide conjugate for the purpose of lowering impedance.
  • the auxiliary conductive material include carbonaceous fine particles such as graphite, carbon black and acetylene black, and conductive polymers such as polyaline, polypyrrole, polythiophene, polyacetylene and polyacene.
  • the ion conduction aid include a polymer gel electrolyte and a polymer solid electrolyte.
  • the thickness of the coating film obtained by applying the crosslinked poly (meth) acrylic acid-troxide compound formed into the paint is preferably from 10 to 1000 ⁇ m, more preferably from 50 to 300 ⁇ m. .
  • the electrode obtained by the production method of the present invention can be suitably used as a material for a secondary battery having a high energy density and a large capacity, such as a lithium ion secondary battery.
  • a crosslinked poly (meth) acrylic acid conjugate especially a crosslinked poly (meth) acrylic acid-troxide compound having excellent solvent stability, which is used as an electrode active material for a secondary battery.
  • a manufacturing method and a method for manufacturing an electrode of a secondary battery using the compound are provided.
  • Example 1 was repeated in the same manner as in Example 1 except that 2.50 g (12.5 mmol) of ethylene glycol dimethacrylate was used in place of 1.23 g (6.2 mmol) of ethylene glycol dimethacrylate. 17.2 g of a crosslinked polymethacrylic acid-troxidide conjugate of red powder was obtained.
  • Example 3
  • Example 1 was repeated except that 1.23 g (6.2 mmol) of ethylene glycol dimetharate was replaced by 1.40 g (6.2 mmol) of 1,3-butanediol dimetharate. Similarly, 17.2 g of a crosslinked polymethacrylic acid-troxide conjugate of red powder was obtained.
  • reaction solution was filtered to separate a white precipitate, and the filtrate was washed with 600 ml of a 10% by weight aqueous solution of potassium carbonate and 600 ml of a saturated saline solution. After dehydration with magnesium sulfate, removal of magnesium sulfate, and drying under reduced pressure, 70.2 g of a red powdery methacrylic acid-troxide compound was obtained.
  • the obtained crosslinked polymethacrylic acid imino conjugate was washed with 500 ml of water and then with 500 ml of hexane, and then dried under reduced pressure to obtain 22.8 g of a crosslinked polymethacrylic acid imino compound as a white powder (yield 99.5). %).
  • the obtained crosslinked polymethacrylic acid-troxidized conjugate was washed with 500 ml of methanol and then with 500 ml of water, and then dried under reduced pressure to obtain a red powdered crosslinked polymethacrylic acid-troxidized conjugate 10.Og. .
  • Example 5 A white powdered crosslinked polymethacrylic acid imino compound was obtained in the same manner as in Example 5, except that 0.36 g of sodium dodecylbenzenesulfonate was used instead of 0.30 g of sodium dodecylbenzenesulfonate. 6 g (98.7% yield) 0
  • the obtained cross-linked polymethacrylic acid-troxide compound was washed with 500 ml of methanol and then with 500 ml of water, and then dried under reduced pressure to obtain a red powder of a crosslinked polymethacrylic acid-troxide conjugate 10.10 lg. .
  • the reaction solution was filtered to obtain a crosslinked polymethacrylic acid-troxide compound.
  • the obtained crosslinked polymethacrylic acid-troxide compound was washed with 500 ml of methanol and then with 500 ml of water, and then dried under reduced pressure to obtain 10.2 g of a red powder of a crosslinked polymethacrylic acid-troxide conjugate. .
  • the obtained crosslinked polymethacrylic acid-troxidized conjugate was washed with 500 ml of methanol and then with 500 ml of water, and then dried under reduced pressure to obtain a red powdered crosslinked polymethacrylic acid-troxidized conjugate 10.Og. .
  • Example 1 16.9 g of a red powder was obtained in the same manner as in Example 1 except that 1.23 g (6.2 mmol) of ethylene glycol dimethalate was not used.
  • Example 4 65.8 g of a red powder was obtained in the same manner as in Example 4 except that 1.23 g (6.2 mmol) of ethylene glycol dimetharate was not used.
  • Example 6 10.3 g of a red powder was obtained in the same manner as in Example 6, except that 0.40 g (2.0 mmol) of ethylene glycol dimethacrylate was not used.
  • a red powder (10.3 g) was obtained in the same manner as in Example 8 except that 0.80 g (4.0 mmol) of ethylene glycol dimetharate was not used.
  • the red powders obtained in Examples 1 to 8 are excellent in solvent stability because the solubility in all solvents used for evaluation is 1% or less. That's what it is.
  • Example 2 The red powder obtained in Example 2 was mixed at 10% by weight with respect to each solvent used, and then stored at 40 ° C with stirring. After a predetermined period, the filtrate obtained by filtration was dried under reduced pressure at 150 ° C. and 10 mmHg for 15 hours to obtain a crude dissolved component. The crude dissolved matter was washed with pure water, dried under reduced pressure at 150 ° C and 10 mmHg for 3 hours, and the dissolved matter was obtained to determine the solubility. Table 2 shows the results.
  • Retention period 10 Retention period 20 Retention period 50 Remarks Propylene power 1 ⁇ 1 ⁇ 1 ⁇ 1 Jetirka 1 Ponate 1 ⁇ 1 ⁇ 1 Ethylene power 1 ton
  • the red powder of the crosslinked polymethacrylic acid-troxide compound obtained in Example 1 was pulverized using an agate mortar to a particle size of 100 m or less, of which lg and 50 g of N-methylpyrrolidone as a solvent were used. Were mixed with 0.9 g of graphite powder as an auxiliary conductive material, and stirred to obtain a black slurry. 2 g of this slurry was dropped onto the surface of an aluminum foil (area: 1.5 cm X I. 5 cm, thickness: 100 m) provided with lead wires, and spread using a wire bar so that the entire surface had a uniform thickness. Thereafter, the electrode was dried under reduced pressure at 120 ° C.
  • the thickness of the coating film composed of red powder was measured by a film thickness measuring device (MHF-D100LR, manufactured by MORI TEX Co., Ltd.) and found to be 150 ⁇ m.
  • Example 1 After cutting this electrolyte film into 2.Ocm X 2.Ocm, the previously prepared red powder obtained in Example 1 was laminated on the electrode bound to the current collector, Lithium bonded copper foil with lead wire (Lithium film thickness 30 m, copper foil film thickness 20 m) was superposed thereon. Subsequently, the whole was rolled up using a 5 mm-thick polytetrafluoroethylene sheet and pressed against each other to bind the red powder obtained in Example 1 to the current collector. A lithium-ion secondary battery using the electrodes was fabricated.
  • Example 9 The same procedure as in Example 9 was repeated, except that the red powder obtained in Comparative Example 1 was used instead of the red powder of the crosslinked polymethacrylic acid-troxide compound obtained in Example 1, A lithium ion secondary battery using the electrode was manufactured.
  • the thickness of the coating film composed of the red powder was measured in the same manner as in Example 9, and it was 150 m.
  • Example 9 For the lithium ion secondary battery obtained in Example 9 and the lithium ion secondary battery using the electrode obtained by binding the red powder obtained in Comparative Example 5 to a current collector, a charge / discharge tester ( The battery was connected to Nagano Corporation (BTS2004W), and the charge and discharge characteristics were evaluated at a constant current density (42 ⁇ A / cm 2 , 20 ° C.).
  • an electrode material and a method for manufacturing an electrode which are useful for a secondary battery having a high energy density and a large capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymerisation Methods In General (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

明 細 書
架橋ポリ (メタ)アクリル酸化合物の製造方法
技術分野
[0001] 本発明は、架橋ポリ (メタ)アクリル酸化合物の製造方法および当該化合物を用いた 二次電池の電極の製造方法に関する。更に詳しくは、エネルギー密度が高く大容量 の二次電池の電極材料として用いられる、対溶媒安定性に優れた架橋ポリ (メタ)ァク リル酸-トロキシドィ匕合物の製造方法に関する。 背景技術
[0002] ノート型パソコンや携帯電話等の急速な市場拡大に伴い、これらに用いられるェネル ギー密度の高 、小型大容量二次電池への要求が高まって 、る。この要求に応えるた めに、リチウムイオン等のアルカリ金属イオンを荷電担体としてその電荷授受に伴う電 気化学反応を利用した二次電池が開発されている。中でもリチウムイオン二次電池 は、エネルギー密度が高ぐ安定性に優れた大容量二次電池として種々の電子機器 に利用されている。このようなリチウムイオン二次電池は、一般に、活物質として正極 にリチウム含有遷移金属酸化物を、負極に炭素を用いたものであり、これら活物質へ のリチウムイオンの挿入、脱離反応を利用して充放電を行っている。
[0003] 近年、より大容量化を目的に、電極反応に直接寄与する電極活物質としてラジカル 化合物を利用した二次電池が提案されて ヽる (特許文献 1参照)。
[0004] 前記二次電池では、負極と正極との両極間の荷電担体輸送を行う電解液を構成す る溶媒として、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカ一 ボネート、ジェチノレカーボネート、ェチノレメチノレカーボネート、 y ブチロラタトン、テ トラヒドロフラン、ジォキソフラン、スルホラン、ジメチルホルムアミド、ジメチルァセトアミ ド、 N—メチル—2—ピロリドン等の有機溶媒が、単独で、もしくは 2種以上を混合して 用いられる。
[0005] しかしながら、従来提案されているラジカルィ匕合物では、対溶媒安定性が不充分で、 電極活物質が電解液を構成する溶媒に溶出するため、二次電池の性能安定性が不 充分であるという問題があった。 特許文献 1:特開 2002— 151084号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、架橋ポリ (メタ)アクリル酸ィ匕合物の製造方法、なかでも、対溶媒安定性に 優れたラジカルィ匕合物である架橋ポリ (メタ)アクリル酸-トロキシドィ匕合物の製造方 法および当該化合物を用いた二次電池の電極の製造方法を提供することを目的と する。
課題を解決するための手段
[0007] 本発明は、一般式(1) :
[0008] [化 1]
Figure imgf000004_0001
[0009] (式中、 n個の Z1は、水素原子、および Zまたは、不対電子 1個を有する酸素原子を 示し、 Rは、水素原子またはメチル基を示し、 nは、 5〜: LOOOOOOの整数を示す。)で 表されるポリ(メタ)アクリル酸化合物が架橋されてなる架橋ポリ(メタ)アクリル酸化合 物の製造方法であって、前記架橋ポリ (メタ)アクリル酸ィ匕合物の製造方法は、一般 式 (2) :
[0010] [化 2]
Figure imgf000005_0001
[0011] (式中、 z2は、前記 z1が水素原子であるとき、水素原子を示し、前記 Z1が不対電子 1 個を有する酸素原子であるとき、水素原子または不対電子 1個を有する酸素原子を 示す。 Rは、前記一般式(1)における Rと同じ基を示す。)で表される (メタ)アクリル酸 化合物を架橋剤の存在下に重合する重合工程を含むことを特徴とする架橋ポリ (メタ )アクリル酸化合物の製造方法である。
[0012] 本発明は、架橋ポリ (メタ)アクリル酸化合物を塗料化する塗料化工程と、該塗料を集 電体に塗布する塗布工程と、を含む二次電池の電極の製造方法であって、前記架 橋ポリ (メタ)アクリル酸化合物は、前記架橋ポリ(メタ)アクリル酸化合物の製造方法に より製造した架橋ポリ (メタ)アクリル酸-トロキシドィ匕合物であることを特徴とする二次 電池の電極の製造方法である。
以下に本発明を詳細に説明する。
[0013] 本発明の架橋ポリ (メタ)アクリル酸化合物の製造方法は、前記一般式 (2)で表される
(メタ)アクリル酸ィ匕合物を用いた重合工程を経て、架橋ポリ (メタ)アクリル酸化合物を 製造する方法である。
前記架橋ポリ (メタ)アクリル酸ィ匕合物は、前記一般式(1)で表されるポリ (メタ)アタリ ル酸ィ匕合物が架橋されてなるものである。
前記一般式(1)における n個の Z1は、水素原子、および Zまたは、不対電子 1個を有 する酸素原子を示す。本明細書において、上記「前記一般式(1)における n個の Z1 は、水素原子、および Zまたは、不対電子 1個を有する酸素原子を示す。」とは、 (i) Z1が n個全て水素原子である場合、(ii) Z1が n個全て不対電子 1個を有する酸素原 子である場合、および、(iii) Z1が水素原子である繰り返し単位 (a)と Z1が不対電子 1 個を有する酸素原子である繰り返し単位 (b)との両方を有し両繰り返し単位の合計数 が n個である場合を意味する。前記 (iii)の場合、前記繰り返し単位 (a)および繰り返 し単位 (b)は、交互に結合していてもよいし、ブロック共重合体を構成していてもよい 。本明細書において、前記「不対電子 1個を有する酸素原子」とは、遊離基が有する 不対電子を原子上に有している酸素を意味する。
前記一般式(1)における Rは、水素原子またはメチル基を示し、 nは、 5-1000000 の整数を示す。前記 nは、好ましくは 10〜500000の整数である。
[0014] 前記重合工程は、前記一般式(2)で表される (メタ)アクリル酸化合物を架橋剤の存 在下に重合することよりなるものである。前記重合工程は、架橋剤の存在下に重合す るものであることにより、重合反応と架橋反応との両方を行うことができるものと考えら れ、対溶媒安定性に優れた架橋ポリマーを効率的に得ることができる。前記架橋剤 及び重合工程については、後述する。
前記一般式(2)における Rは、前記一般式(1)における Rと同じ基を示す。
前記一般式(2)における Z2は、前記一般式(1)における Z1が水素原子であるとき、水 素原子を示し、 Z1が不対電子 1個を有する酸素原子であるとき、水素原子または不 対電子 1個を有する酸素原子を示す。
[0015] 本発明の架橋ポリ (メタ)アクリル酸化合物の製造方法は、前記重合工程を含むもの である。
本発明の架橋ポリ (メタ)アクリル酸ィ匕合物の製造方法は、前記一般式(1)における Z 1が前記一般式(2)における Z2と同じである場合、前記重合工程によって、前記一般 式 (2)で表される (メタ)アクリル酸化合物を架橋剤の存在下に重合することにより、前 記一般式(1)で表されるポリ (メタ)アクリル酸ィ匕合物が架橋されてなる架橋ポリ (メタ) アクリル酸ィ匕合物を製造するものである。
[0016] 前記一般式 (2) (但し、 Z2は不対電子 1個を有する酸素原子)で表される (メタ)アタリ ル酸化合物(以下、「 (メタ)アクリル酸-トロキシドィ匕合物」と 、うことがある)としては特 に限定されず、例えば、 2, 2, 6, 6—テトラメチル一 4—ピベリジ-ル (メタ)アクリルレ ートの-トロキシドィ匕等の公知の方法により得られるものを用いることができる。
[0017] 本発明の架橋ポリ (メタ)アクリル酸化合物の製造方法は、また、前記一般式(1)にお ける n個の Z1が不対電子 1個を有する酸素原子、または、水素原子および不対電子 1 個を有する酸素原子であり、前記一般式 (2)における Z2が水素原子である場合、前 記一般式 (2) (但し、 Z2は水素原子)で表される (メタ)アクリル酸ィ匕合物(以下、「(メタ )アクリル酸ィミノ化合物」 t ヽぅことがある)を架橋剤の存在下に重合する前記重合ェ 程の後、更に、ニトロキシド化する-トロキシド化工程をも行うことにより、前記一般式( 1) (但し、 n個の Z1は不対電子 1個を有する酸素原子、または、水素原子および不対 電子 1個を有する酸素原子)で表されるポリ (メタ)アクリル酸ィ匕合物(以下、「ポリ (メタ )アクリル酸-トロキシド化合物」と 、うことがある)が架橋されてなる架橋ポリ (メタ)ァク リル酸ィ匕合物を製造するものである。
前記-トロキシド化工程は、水素原子の-トロキシド化を完全に行うものが好まし ヽが 、ニトロキシド化が不完全で残存する水素原子と不対電子 1個を有する酸素原子との 両方を有することとなるものであってもよい。前記一般式(1)における n個の Z1は、 -ト 口キシド化を完全に行った場合、不対電子 1個を有する酸素原子のみとなり、ニトロキ シドィ匕を不完全に行った場合、水素原子および不対電子 1個を有する酸素原子とな る。本明細書において、前記-トロキシド化工程を経たィ匕合物は、便宜上「ニトロキシ ド化合物」なる用語を付して称し、不対電子 1個を有する酸素原子を有することのみ 示し水素原子をも有し得ることについて省略する場合がある力 特に別の記載をしな い限り、ニトロキシドィ匕を不完全に行うことにより残存する水素原子をも含み得る概念 である。
[0018] なお、前記一般式(1)で表されるポリ (メタ)アクリル酸ィ匕合物は、後述の一般式(la) で表されるポリ(メタ)アクリル酸ィミノ化合物と一般式(lb)で表されるポリ (メタ)アタリ ル酸ニトロキシド化合物とから構成される概念である。前記一般式 (2)で表される (メ タ)アクリル酸ィ匕合物は、後述の一般式(2a)で表される (メタ)アクリル酸ィミノ化合物 と一般式 (2b)で表される (メタ)アクリル酸-トロキシドィ匕合物とから構成される概念で ある。
[0019] 本発明の架橋ポリ (メタ)アクリル酸化合物の製造方法は、上述したように、下記反応 図で表される。
[0020] [化 3]
Figure imgf000008_0001
[0021] 上記各一般式につ!、ては後述する。以下に本発明の架橋ポリ (メタ)アクリル酸ィ匕合 物の製造方法を、前記重合工程における単量体として一般式 (2a)で表される (メタ) アクリル酸ィミノ化合物を用いる場合と (以下、本発明の「第 1の態様」 、うことがある )、前記重合工程における単量体として一般式(2b)で表される (メタ)アクリル酸-トロ キシドィ匕合物を用いる場合 (以下、本発明の「第 2の態様」ということがある)とに分け て、更に説明する。
[0022] 本発明において、架橋ポリ (メタ)アクリル酸化合物の製造方法に係る第 1の態様とし ては、前記ポリ(メタ)アクリル酸ィ匕合物は、前記一般式(1)における n個の Z1が水素 原子であるポリ(メタ)アクリル酸ィミノ化合物であり、前記 (メタ)アクリル酸ィ匕合物は、 前記一般式(2)における Z2が水素原子である (メタ)アクリル酸ィミノ化合物であるもの である。
前記第 1の態様は、即ち、一般式 (2a):
[0023] [化 4]
Figure imgf000009_0001
[0024] (式中、 Rは、水素原子またはメチル基を示す)で表される (メタ)アクリル酸ィミノ化合 物を架橋剤の存在下に重合することにより一般式(la):
[0025] [化 5]
Figure imgf000010_0001
[0026] (式中、 Rは、前記一般式(2a)における Rと同じ基を示し、 nは、 5〜: L000000の整 数を示す)で表されるポリ (メタ)アクリル酸ィミノ化合物が架橋されてなる架橋ポリ(メタ )アクリル酸ィミノ化合物を製造することを特徴とする架橋ポリ (メタ)アクリル酸イミノィ匕 合物の製造方法である。
[0027] 本発明において、架橋ポリ (メタ)アクリル酸化合物の製造方法に係る第 1の態様とし ては、また、
前記ポリ (メタ)アクリル酸ィ匕合物は、前記一般式(1)における n個の Z1が不対電子 1 個を有する酸素原子、または、水素原子および不対電子 1個を有する酸素原子であ るポリ(メタ)アクリル酸-トロキシドィ匕合物であり、
前記 (メタ)アクリル酸ィ匕合物は、前記一般式 (2)における Z2が水素原子である (メタ) アクリル酸ィミノ化合物であり、
前記重合工程は、前記一般式(la)で表されるポリ (メタ)アクリル酸ィミノ化合物が架 橋されてなる架橋ポリ(メタ)アクリル酸イミノィ匕合物を製造するものであり、
前記架橋ポリ (メタ)アクリル酸化合物の製造方法は、更に、前記架橋ポリ(メタ)アタリ ル酸ィミノ化合物を-トロキシド化する-トロキシドィ匕工程をも含むものである。
[0028] 前記-トロキシド化工程をも含む第 1の態様は、即ち、(I)前記一般式 (2a)で表され る (メタ)アクリル酸ィミノ化合物を架橋剤の存在下に重合することにより前記一般式( la)で表されるポリ (メタ)アクリル酸ィミノ化合物が架橋されてなる架橋ポリ(メタ)アタリ ル酸ィミノ化合物を製造する工程、および、 (II)前記架橋ポリ(メタ)アクリル酸ィミノ化合物をニトロキシドィ匕することにより架橋ポリ
(メタ)アクリル酸-トロキシドィ匕合物を製造する工程を含むものであって、前記架橋ポ リ(メタ)アクリル酸-トロキシドィ匕合物は、一般式(lb):
[化 6]
Figure imgf000011_0001
[0030] (式中、 Rは、前記一般式(2a)における Rと同じ基を示し、 nは、前記一般式(la)に おける nと同じ整数を示す)で表されるポリ (メタ)アクリル酸-トロキシドィ匕合物が架橋 されてなるものであることを特徴とする架橋ポリ (メタ)アクリル酸-トロキシドィ匕合物の 製造方法である。
本明細書において、ポリ (メタ)アクリル酸ニトロキシドィ匕合物は、便宜上、一般式(lb) で表すが、ニトロキシドィ匕工程を経たものであるので、上述のように、ニトロキシド化を 不完全に行うことにより残存する水素原子をも有するものであってもよい。
本明細書において、架橋ポリ (メタ)アクリル酸ニトロキシドィ匕合物は、前記ポリ (メタ) アクリル酸-トロキシド化合物が架橋されてなるものであるので、同様に、ニトロキシド 化を不完全に行うことにより残存する水素原子をも有するものであってもよい。
[0031] 前記一般式(2a)において、 Rは水素原子またはメチル基を表し、具体的には、前記 一般式(2a)で表される (メタ)アクリル酸ィミノ化合物は、 2, 2, 6, 6—テトラメチルー 4—ピベリジ-ル (メタ)アタリレートであって、市販品を用いることができる。
なお、本発明において、アクリル酸およびメタクリル酸を (メタ)アクリル酸といい、アタリ レートおよびメタタリレートを (メタ)アタリレートという。 [0032] 本発明に用いられる架橋剤としては、重合性不飽和基を分子内に複数有する化合 物であれば特に限定されず、例えば、(メタ)アクリル酸系多官能化合物、ァリルエー テル系多官能化合物およびビニル系多官能化合物が挙げられる。(メタ)アクリル酸 系多官能化合物としては、例えば、エチレングリコールジ (メタ)アタリレート、ジェチレ ングリコールジ (メタ)アタリレート、ポリエチレングリコールジ (メタ)アタリレート、 1, 3- プロパンジオールジ (メタ)アタリレート、 1, 3 ブタンジオールジ (メタ)アタリレート、 1 , 4 ブタンジオールジ (メタ)アタリレート、 1, 5 ペンタンジオールジ(メタ)アタリレ ート、 1, 6 へキサンジオールジ (メタ)アタリレート、 1, 7 ヘプタンジオールジ (メタ )アタリレート、 1, 8 オクタンジオールジ (メタ)アタリレート、 1, 9ーノナンジオールジ (メタ)アタリレート、 1, 10—デカンジオールジ (メタ)アタリレート、トリメチロールプロパ ントリ(メタ)アタリレート、グリセリンジ (メタ)アタリレート、 2 ヒドロキシ一 3— (メタ)ァク リロイロキシプロピル (メタ)アタリレート等が挙げられる。ァリルエーテル系多官能化合 物としては、例えば、ジエチレングリコールジァリルエーテルおよびジブチレングリコ 一ルジァリルエーテル等が挙げられる。ビュル系多官能化合物としては、例えば、ジ ビュルベンゼン等が挙げられる。なかでも、高い反応性を有する観点から、(メタ)ァク リル酸系多官能化合物が好適に用いられ、特に、エチレングリコールジ (メタ)アタリレ ート、 1, 3 ブタンジオールジ (メタ)アタリレートおよび 1, 4 ブタンジオールジ (メタ )アタリレートが好適に用いられる。なお、これら架橋剤は、それぞれ単独で、あるい は混合して用いることができる。
[0033] 前記架橋剤の使用量は、最終的に得られる架橋ポリ(メタ)アクリル酸-トロキシドィ匕 合物が適度な架橋により充分な対溶媒安定性を示す観点および使用量に見合うだ けの効果を得る観点から、前記 (メタ)アクリル酸ィミノ化合物 1モルに対して 0. 0000 1〜0. 25モルの割合が好ましぐ前記割合は、より好ましくは 0. 00005-0. 1モル 、さらに好ましくは 0. 0001-0. 05モルであることが望ましい。
[0034] 本発明にお 、て、前記 (メタ)アクリル酸ィミノ化合物を前記架橋剤の存在下で重合 反応させる方法としては、特に限定されるものではなぐ例えば、攪拌機、温度計、窒 素ガス導入管および冷却管を備えた反応器に、所定量の (メタ)アクリル酸ィミノ化合 物、架橋剤および不活性溶媒を仕込み、窒素ガスにより脱酸素した後、攪拌しながら 重合開始剤を添加する方法が挙げられる。
[0035] 前記不活性溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水 素系溶媒およびジェチルエーテル、テトラヒドロフラン等のエーテル系溶媒等が挙げ られる。
[0036] 前記不活性溶媒の使用量は、反応を円滑に進行させる観点および使用量に見合う だけの効果を得る観点から、(メタ)アクリル酸ィミノ化合物 100重量部に対して 50〜2 000重量部が好ましい。
[0037] 前記重合開始剤としては特に限定されず、例えば、過酸化べンゾィル、ラウロイルバ ーォキシド、タメンノヽイド口パーォキシド、第三級ブチルハイド口パーォキシド、過硫酸 カリウム等の過酸ィ匕物系重合開始剤; α , a ' —ァゾビスイソプチ口-トリル、 2, 2' -ァゾビス - 2, 4-ジメチルバレロニトリル、ジメチル - 2, 2' -ァゾビスイソブチレ ート等のァゾ系重合開始剤;硫酸第一鉄アンモ-ゥム Z過硫酸アンモ-ゥム、ェタノ ールァミン Z過硫酸カリウム、臭素酸ナトリウム Z二酸化硫黄等のレドックス系重合開 始剤;グリニャール試薬(n ブチルマグネシウムブロマイド、イソブチルマグネシウム ブロマイド、 tーブチノレマグネシウムブロマイド、 n—ブチノレマグネシウムクロライド、ィ ソブチルマグネシウムクロライド、 t ブチルマグネシウムクロライド等)、アルキルリチ ゥム(n—ブチルリチウム、 tーブチルリチウム、 1, 1ージフエ-ルへキシルリチウム等) 等のァニオン系重合開始剤等が挙げられる。なかでも、安価であり取扱いが簡便な a , a ' —ァゾビスイソプチ口-トリル等のァゾ系重合開始剤が好適に用いられる。
[0038] 前記重合開始剤の使用量は、使用する重合開始剤の種類や反応温度により異なる 力 通常、(メタ)アクリル酸ィミノ化合物 100重量部に対して 0. 005〜5重量部である 。また、前記反応において、必要に応じてイソプロピルアルコール等の連鎖移動剤や メタノール等の重合停止剤等の添加剤を、適宜加えてもょ 、。
[0039] 前記反応温度としては、 20〜100°Cが好ましぐ—10〜80°Cがより好ましい。反 応時間は反応温度により異なるため一概には言えないが、通常、 2〜: LO時間である
[0040] カゝくして得られた反応生成物である架橋ポリ (メタ)アクリル酸ィミノ化合物は、反応液 をへキサン等の脂肪族炭化水素等の溶媒と混合し、該架橋ポリ (メタ)アクリル酸ィミノ 化合物を沈澱させた後、ろ過するなどして単離することができる。さらに、へキサン、メ タノール等を用いて、未反応物等を除去、洗浄し、乾燥すること〖こより精製することが できる。
[0041] 以上の (メタ)アクリル酸ィミノ化合物を前記架橋剤の存在下で重合反応させる方法 は、通常、溶液重合法により行うことができる。本発明において、該溶液重合法は、 ( メタ)アクリル酸ィミノ化合物の溶解度が比較的高 ヽ溶媒を前記不活性溶媒として使 用するものである。
本発明の第 1の態様においては、また、上記の溶液重合法のほか、反応生成物の単 離の容易さから、懸濁重合法および乳化重合法を重合方法として好適に用いること ができる。
[0042] 前記懸濁重合法としては、例えば、攪拌機、温度計、窒素ガス導入管および冷却管 を備えた反応器を用いて、所定量の (メタ)アクリル酸ィミノ化合物、架橋剤および油 溶性ラジカル重合開始剤を不活性炭化水素系溶媒に混合したものと、界面活性剤と を、不活性である水に混合し分散させた後、窒素ガスにより脱酸素し、攪拌下で加熱 する方法が挙げられる。
[0043] 懸濁重合法において使用する前記不活性炭化水素系溶媒としては、例えば、ベン ゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、 n—へキサン、 n—ヘプタン、 リグ口イン等の非環式飽和炭化水素系溶媒、シクロペンタン、メチルシクロペンタン、 シクロへキサン、メチルシクロへキサン等の環式飽和炭化水素系溶媒およびジクロロ メタン、クロ口ホルム、ジクロロェタン等のハロゲンィ匕炭化水素系溶媒等が挙げられる 。なかでも、工業的に入手が容易で、安価であり、得られる化合物の品質が安定する 観点から、芳香族炭化水素系溶媒が好ましぐトルエンがより好ましい。
前記不活性炭化水素系溶媒の使用量は、(メタ)アクリル酸ィミノ化合物を充分溶解さ せて重合反応を円滑に進行させる観点および使用量に見合うだけの効果を得る観 点力も、(メタ)アクリル酸ィミノ化合物 100重量部に対して 50〜300重量部が好ましく 、 100〜200重量咅力より好まし!/ヽ。
また前記水の使用量は、重合熱を充分除去できる観点および重合温度を制御しや すくする観点から、(メタ)アクリル酸ィミノ化合物 100重量部に対して 200〜 1500重 量部が好ましぐ 300〜1000重量部がより好ましい。
[0044] 懸濁重合法における前記油溶性ラジカル重合開始剤としては特に限定されず、例え ば、過酸化べンゾィル、過酸化ジー tーブチル、ラウロイルパーォキシド、ジイソプロピ ルペルォキシジカルボナート、ジシクロへキシルペルォキシジカルボナート等の過酸 化物系重合開始剤; α , α '—ァゾビスイソブチ口-トリル、 2, 2,—ァゾビス— 2, 4— ジメチルバレ口-トリル、ジメチル— 2, 2,—ァゾビスイソブチレート等のァゾ系重合開 始剤;過酸化ベンゾィル Ζジメチルァユリン、過酸化ジ t ブチル Zジメチルァユリ ン、ラウロイルバーオキシド Zジメチルァ-リン等のレドックス系重合開始剤等が挙げ られる。なかでも、安価であり取扱いが簡便な α , α,—ァゾビスイソプチ口-トリル等 のァゾ系重合開始剤が好適に用いられる。
前記油溶性ラジカル重合開始剤の使用量は、使用する油溶性ラジカル重合開始剤 の種類や反応温度により異なるが、通常、(メタ)アクリル酸ィミノ化合物 100重量部に 対して 0. 005〜5重量部である。また、前記反応において、必要に応じてイソプロピ ルアルコール等の連鎖移動剤やメタノール等の重合停止剤等の添加剤を、適宜カロ えてもよい。
[0045] 懸濁重合法に用いられる前記界面活性剤としては、ァ-オン性界面活性剤、カチォ ン性界面活性剤、ノ-オン性界面活性剤、両性界面活性剤のいずれをも用いること ができる。
ァニオン性界面活性剤としては、脂肪酸ナトリウム、脂肪酸カリウム、アルキル硫酸ナ トリウム、アルキルベンゼンスルホン酸ナトリウム、アルカンスルホン酸ナトリウム、アル キルリン酸ナトリウム、ァシロイルメチルタウレート、 Ν—メチルー Ν ァシルアミドプロ ピオン酸ナトリウム、モノアルキルビフエ-ルエーテルジスルホン酸ナトリウム、ナフタリ ンスルホン酸ナトリウム ホルマリン縮合物、ァシルグルタミン酸ナトリウム、ポリオキシ エチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルフエ-ルエー テルアルキルベンゼンスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテルメ チルカルボン酸ナトリウム、ポリオキシエチレンアルキルエーテルエタンスルホン酸ナ トリウム等が挙げられる。
カチオン性界面活性剤としては、モノアルキルトリメチルアンモ-ゥムメトサルフェート 、カチオン化セルロース、アルキルトリメチルアンモ -ゥムクロライド、ジステアリルジメ チルアンモ -ゥムクロライド、ジアルキルジメチルアンモ -ゥムクロライド、ジアルキル ジメチルベンジルアンモ -ゥムクロライド、アルキルピリジ-ゥムクロライド等が挙げら れる。
[0046] ノ-オン性界面活性剤としては、脂肪酸モノダリセライド、ソルビタン脂肪酸部分エス テル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフエニルェ 一テル、ポリオキシエチレン脂肪酸モノダリセライド、ポリオキシエチレンソルビトール 脂肪酸部分エステル、ポリオキシエチレンソルビタン脂肪酸部分エステル、ポリオキ シエチレンラノリンアルコールエーテル、ポリエチレングリコール脂肪酸モノエステル、 ポリエチレングリコール脂肪酸ジエステル、ポリオキシエチレン脂肪ァミン、ポリグリセ リン脂肪酸部分エステル、ビス(2—ヒドロキシェチル)アルキルァミン、アルキルジメチ ルアミンォキシド、脂肪酸アルキロールアミド、 ω—メトキシポリオキシエチレン α— アルキルエーテル、ポリオキシエチレンポリオキシプロピレンプロックコポリマー、ポリ ォキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンァセチレ ングリコール、シュガー脂肪酸部分エステル等が挙げられる。
[0047] 両性界面活性剤としては、 Ν ァシルアミドプロピル— Ν, Ν ジメチルアンモニオベ タイン、 Ν ァシルアミドプロピル Ν,, Ν,一ジメチル Ν, - β—ヒドロキシプロピ ルアンモ-ォスルホベタイン、 Ν ァシルアミドエチル—Ν,—ヒドロキシェチル—Ν, カルボキシメチルアンモニオベタイン、 Ν アルキル Ν ジメチル Ν カルボ キシメチルアンモニオベタイン、アルキルジアミノエチルグリシン、ァシル化ポリぺプタ イド等が挙げられる。
これらの界面活性剤のなかでも、工業的に入手が容易で、安価であり、得られる化合 物の品質が安定する観点から、アルキルベンゼンスルホン酸ナトリウムおよびポリオ キシエチレンアルキルフエ-ルエーテルアルキルベンゼンスルホン酸ナトリウムが好 適に用いられ、なかでも、ドデシルベンゼンスルホン酸ナトリウムおよびポリオキシェ チレンノ-ルフエ-ルエーテルドデシルベンゼンスルホン酸ナトリウムが好適に用いら れる。
[0048] 前記界面活性剤の使用量は、反応を円滑に進行させる観点および使用量に見合う だけの効果を得る観点から、前記水 100重量部に対して 0. 05〜1重量部であること 力 S好ましく、 0. 1〜0. 4重量部であることがより好ましい。
前記反応温度としては、 30〜100°Cが好ましぐ 40〜80°Cがより好ましい。反応時 間は、反応温度により異なるため一概には言えないが、通常、 0. 5〜: L0時間である。 力べして得られた反応生成物である架橋ポリ (メタ)アクリル酸ィミノ化合物は、反応溶 液中に粒子状態で存在するため、該反応液をろ過することにより単離することができ る。さらに、水、へキサン等を用いて、未反応物等を除去、洗浄し、乾燥することにより 精製することができる。
[0049] 本発明の第 1の態様に係る別の重合方法である乳化重合法としては、例えば、攪拌 機、温度計、窒素ガス導入管および冷却管を備えた反応器を用いて、所定量の (メタ )アクリル酸ィミノ化合物と、架橋剤と、界面活性剤とを、不活性溶媒である水に混合 し分散させた後、窒素ガスにより脱酸素し、水溶性ラジカル重合開始剤を添加して、 攪拌下で加熱する方法が挙げられる。
[0050] 乳化重合法における前記水溶性ラジカル重合開始剤としては特に限定されず、例え ば、過硫酸アンモニゥム、過硫酸ナトリウム、過硫酸カリウム等の過酸化物系重合開 始剤、硫酸第一鉄アンモ-ゥム Z過硫酸アンモ-ゥム、エタノールァミン Z過硫酸力 リウム等のレドックス系重合開始剤等が挙げられる。なかでも、安価であり取扱いが簡 便な過硫酸カリウム等の過酸ィ匕物系重合開始剤が好適に用いられる。
また前記乳化重合において、界面活性剤の種類や使用量、重合開始剤の使用量、 不活性溶媒としての水の使用量、反応温度および反応時間は、懸濁重合法におけ るそれらと同様のちのを適用することがでさる。
なお前記反応において、(メタ)アクリル酸ィミノ化合物を溶解するために、懸濁重合 法で用いるものと同様の不活性炭化水素系溶媒を適宜加えてもよぐさらに、必要に 応じてイソプロピルアルコール等の連鎖移動剤やメタノール等の重合停止剤等の添 加剤を適宜カ卩えてもよい。
[0051] 力べして得られた反応生成物である架橋ポリ (メタ)アクリル酸ィミノ化合物は、例えば 、反応液を大量の冷水と混合し、該架橋ポリ(メタ)アクリル酸ィミノ化合物を沈殿させ た後、ろ過するなどして単離することができる。さらに、水、へキサン、メタノール等を 用いて、未反応物等を除去、洗浄した後、乾燥すること〖こより精製することができる。
[0052] 本発明の第 1の態様においては、上記のようにして得られた架橋ポリ(メタ)アクリル酸 ィミノ化合物を-トロキシド化することにより、架橋ポリ(メタ)アクリル酸-トロキシドィ匕 合物を製造することができる。
[0053] 本発明にお 、て、前記架橋ポリ (メタ)アクリル酸ィミノ化合物を-トロキシドィ匕する方 法としては、特に限定されず、例えば、立体障害を有する第 2級ァミンを酸化剤を用 いて酸化することにより、対応するニトロキシド遊離基を有する化合物を製造する公 知の方法等を用いることができ、この方法の操作としては、例えば、前記架橋ポリ (メ タ)アクリル酸ィミノ化合物と不活性溶媒とを混合した後、撹拌下、酸化剤を添加しな 力 反応させる方法が挙げられる。
[0054] 前記-トロキシド化に使用する不活性溶媒としては、例えば、ジクロロメタン、クロロホ ルム、ジクロロェタン等のハロゲン化炭化水素類、ァセトニトリル、プロピオ-トリル、ブ チ口-トリル等の脂肪族-トリル類、ベンゾニトリル、トル-トリル等の芳香族-トリル類 、メタノーノレ、エタノーノレ、 n—プロノノーノレ、 iso—プロノ ノーノレ、 n—ブタノ一ノレ、 sec ーブタノール、 iso—ブタノール、 tert—ブタノール等のアルコール類およびベンゼン 、トルエン、キシレン等の芳香族炭化水素類が挙げられる。中でも、ジクロロメタン、ク ロロホルム、ジクロロェタン等のハロゲン化炭化水素類およびメタノール、エタノール 等のアルコール類が好適に用いられる。
[0055] 前記-トロキシド化に使用する不活性溶媒の使用量は、反応を円滑に進行させる観 点および使用量に見合うだけの効果を得る観点から、架橋ポリ (メタ)アクリル酸ィミノ ィ匕合物 100重量咅に対して 50〜5000重量咅^より好ましくは 100〜3000重量咅力 望ましい。
[0056] 前記酸化剤としては、例えば、過酸化水素、過ギ酸、過酢酸、過安息香酸および過 フタル酸等の過酸化物やこれらのハロゲン化物、酸化銀、四酢酸鉛、へキサシァノ鉄 (III)酸カリウムおよび過マンガン酸カリウム等の酸ィ匕物並びに空気等が挙げられる。
[0057] 前記酸化剤の使用量は、反応を円滑に進行させる観点および使用量に見合うだけ の効果を得る観点から、架橋ポリ (メタ)アクリル酸ィミノ化合物の製造に用いた (メタ) アクリル酸ィミノ化合物 1モルに対して 1〜40モルの割合が好ましぐ前記割合は、よ り好ましくは 1. 5〜15モルであることが望ましぐ本発明の第 1の態様における重合 工程の重合方法が溶液重合法である場合、前記割合は、 1. 5〜5. 0モルの割合が 好ましぐより好ましくは 1. 6〜3. 0モルであることが望ましい。
[0058] また、前記反応において、触媒を使用することができる。触媒としては、通常の-トロ キシドィ匕反応に使用されている触媒を挙げることができる。
[0059] 前記触媒の具体例としては、タングステンおよびモリブデン等の 18族型元素周期律 表第 6族力 選ばれる金属元素を含む化合物であって、例えば、タングステン酸、リ ンタングステン酸、ノ タングステン酸並びにこれらのアルカリ金属塩 (ナトリウム塩、 カリウム塩等)およびアンモ-ゥム塩ゃ酸ィ匕タングステン、タングステンカルボ-ル等 のタングステン化合物;モリブデン酸、リンモリブデン酸、パラモリブデン酸並びにこれ らのアルカリ金属塩 (ナトリウム塩、カリウム塩等)およびアンモ-ゥム塩ゃ酸ィ匕モリブ デン、モリブデンカルボニル等のモリブデンィ匕合物等が挙げられ、さらに具体的には 、パラタングステン酸アンモ-ゥム、タングステン酸ナトリウム、リンタングステン酸、モリ ブデン酸ナトリウム、三酸化モリブデン、モリブデンへキサカルボ-ル等が挙げられる
[0060] 前記触媒の使用量は、反応を円滑に進行させる観点および使用量に見合うだけの 効果を得る観点から、架橋ポリ (メタ)アクリル酸ィミノ化合物 100重量部に対して 0. 0 01〜20重量部が好ましぐより好ましくは 0. 01〜10重量部であることが望ましぐ本 発明の第 1の態様における重合工程の重合方法が溶液重合法である場合、架橋ポリ (メタ)アクリル酸ィミノ化合物 100重量部に対して 0. 001〜0. 1重量部が好ましぐよ り好ましくは 0. 01〜0. 05重量部であることが望ましい。
[0061] 前記反応温度としては、 0〜75°Cが好ましぐ 20〜50°Cがより好ましい。
前記反応において、架橋ポリ (メタ)アクリル酸ィミノ化合物、不活性溶媒および酸ィ匕 剤を混合した後、撹拌下、前記温度で反応させることもできるが、上記したように酸ィ匕 剤を添加しながら反応させる方力 容易に収率よく反応させることができるので好まし い。
[0062] 前記酸化剤を添加しながら反応させる時間は、特に制限はないが、通常、 1〜10時 間、好ましくは 3〜6時間である。さらに、通常、酸化剤の添加終了後、前記温度に 1 〜 10時間保持して反応を完結させる。
[0063] 力べして得られた架橋ポリ (メタ)アクリル酸-トロキシド化合物は、ろ過や乾燥等を組 み合わせて前記反応液から単離することができる。なお、前記反応において、架橋ポ リ(メタ)アクリル酸ィミノ化合物は必ずしも不活性溶媒に溶解させる必要はなぐ例え ば膨潤した状態であっても、前記反応は容易に進行する。
[0064] 次に、本発明における、架橋ポリ (メタ)アクリル酸ィ匕合物の製造方法に係る第 2の態 様について説明する。
[0065] 本発明にお 、て、架橋ポリ (メタ)アクリル酸化合物の製造方法に係る第 2の態様とし ては、前記ポリ(メタ)アクリル酸ィ匕合物は、前記一般式(1)における n個の Z1が不対 電子 1個を有する酸素原子、または、水素原子および不対電子 1個を有する酸素原 子であるポリ(メタ)アクリル酸-トロキシドィ匕合物であり、前記 (メタ)アクリル酸ィ匕合物 は、前記一般式 (2)における Z2が水素原子である (メタ)アクリル酸ィミノ化合物を含 むものであってもよい前記一般式 (2)における Z2が不対電子 1個を有する酸素原子 である (メタ)アクリル酸-トロキシド化合物であるものである。本明細書において、上 記「 (メタ)アクリル酸ィ匕合物は、(メタ)アクリル酸ィミノ化合物を含むものであってもよ Vヽ (メタ)アクリル酸-トロキシド化合物である」とは、(メタ)アクリル酸化合物が (メタ)ァ クリル酸-トロキシドィ匕合物分子の集合体であって、(メタ)アクリル酸ィミノ化合物分 子をも含むものであってもよ 、ことを意味する。
前記第 2の態様は、即ち、一般式 (2b):
[0066] [化 7]
Figure imgf000021_0001
[0067] (式中、 Rは、水素原子またはメチル基を示す)で表される (メタ)アクリル酸ニトロキシ ド化合物を架橋剤の存在下に重合することにより一般式(lb):
[0068] [化 8]
Figure imgf000021_0002
[0069] (式中、 Rは、前記一般式(2b)における Rと同じ基を示し、 nは、 5〜: L000000の整 数を示す)で表されるポリ (メタ)アクリル酸-トロキシド化合物が架橋されてなる架橋 ポリ (メタ)アクリル酸-トロキシドィ匕合物を製造することを特徴とする架橋ポリ (メタ)ァ クリル酸-トロキシドィ匕合物の製造方法である。
本明細書において、(メタ)アクリル酸-トロキシドィ匕合物は、便宜上、一般式(2b)で 表すが、ニトロキシドィ匕工程を経たものであるので、上述のように、ニトロキシド化を不 完全に行うことにより残存する水素原子をも有するものであってもよい。
[0070] 前記 (メタ)アクリル酸-トロキシドィ匕合物としては特に限定されないが、一般式(2a): [0071] [化 9]
Figure imgf000022_0001
[0072] (式中、 Rは、前記一般式(2b)における Rと同じ基を示す)で表される (メタ)アクリル 酸ィミノ化合物を-トロキシド化することにより得られるものであることが好ましい。
[0073] 前記一般式(2b)における Rと、前記一般式(2a)における Rとは、同じ基を表す。具 体的には、前記一般式(2b)で表される (メタ)アクリル酸-トロキシドィ匕合物は、 2, 2, 6 , 6—テトラメチル 4—ピベリジ-ルォキシ (メタ)アタリレートである。
[0074] 前記 (メタ)アクリル酸ィミノ化合物を-トロキシドィ匕する方法としては、例えば、本発明 の第 1の態様において、架橋ポリ (メタ)アクリル酸ィミノ化合物を-トロキシドィ匕して架 橋ポリ (メタ)アクリル酸ニトロキシドィ匕合物を製造する上記の方法と同様の方法を用 いることがでさる。
[0075] すなわち、(メタ)アクリル酸ィミノ化合物とハロゲンィ匕炭化水素類等の不活性溶媒とを 混合し、また必要に応じて、タングステン化合物およびモリブデンィ匕合物等の触媒を 加えた後、撹拌下、過酸ィ匕物等の酸化剤を添加しながら反応させる方法により、(メタ )アクリル酸-トロキシド化合物を得ることが可能となる。
[0076] 本発明にお 、て、前記一般式(2b)で表される (メタ)アクリル酸-トロキシド化合物を 架橋剤の存在下で重合反応させる方法としては、特に限定されるものではなぐ例え ば、本発明の第 1の態様における、(メタ)アクリル酸ィミノ化合物から架橋ポリ (メタ)ァ クリル酸イミノ化合物を製造する上記の溶液重合法と同様の方法を用いることができ る。
[0077] すなわち、前記 (メタ)アクリル酸-トロキシドィ匕合物と、エチレングリコールジメタクリレ ート、 1, 3 ブタンジオールジメタタリレートおよび 1, 4 ブタンジオールジメタクリレ ート等の架橋剤の単独あるいは混合したものと、ベンゼン、トルエン、キシレン等の芳 香族炭化水素系溶媒、 n—へキサン、 n ヘプタン、リグ口イン等の非環式飽和炭化 水素系溶媒、シクロペンタン、メチルシクロペンタン、シクロへキサン、メチルシクロへ キサン等の環式飽和炭化水素系溶媒およびジェチルエーテル、テトラヒドロフラン等 のエーテル系溶媒等の不活性溶媒とを混合し、窒素ガスにより脱酸素した後、攪拌 しながらアルキルリチウム(n—ブチルリチウム、 t—ブチルリチウム、 1, 1ージフエニル へキシルリチウム等)等のァニオン系重合開始剤等の重合開始剤を添加する方法に より、架橋ポリ (メタ)アクリル酸-トロキシドィ匕合物を得ることが可能となる。
[0078] 前記反応において、前記架橋剤の使用量は、得られる架橋ポリ(メタ)アクリル酸ニト 口キシド化合物が適度な架橋により充分な対溶媒安定性を示す観点および使用量 に見合うだけの効果を得る観点から、(メタ)アクリル酸-トロキシドィ匕合物 1モルに対 して 0. 00001〜0. 25モノレの害 ij合力好ましく、この害 ij合 ίま、より好ましく ίま 0. 00005 〜0. 1モノレ、さらに好ましくは 0. 0001〜0. 05モノレであること力望ましい。
力べして得られた架橋ポリ (メタ)アクリル酸-トロキシド化合物は、ろ過や乾燥等の単 位操作を組み合わせて前記反応液から単離することができる。
[0079] 本発明で得られた架橋ポリ (メタ)アクリル酸-トロキシドィ匕合物は、集電体と結着させ ることにより二次電池の電極を製造することができる。
前記集電体は、二次電池の電極カゝら発生する電荷が集められる電極構成部であつ て、導電体からなる。集電体に使用される部材としては、通常、ニッケル、アルミ-ゥ ム、銅、金、銀、アルミニウム合金、ステンレス等の金属箔、金属平板および金属メッ シュ、並びに、炭素棒等が挙げられる。
本発明の二次電池の電極の製造方法は、当該架橋ポリ (メタ)アクリル酸-トロキシド 化合物を塗料化する塗料化工程と該塗料を集電体に塗布する塗布工程とを含むも のである。 前記塗料化の方法および塗布の方法には特に制限がなぐ公知の方法や装置を用 いて行うことができる。
塗料ィ匕の方法としては、例えば、架橋ポリ (メタ)アクリル酸-トロキシド化合物にバイ ンダーを混合した後、溶媒を加えてスラリー状にする方法が挙げられる。バインダー の具体例としては、例えば、ポリフッ化ビ-リデン、ビ-リデンフロライド一へキサフル ォロプロピレン共重合体、ビ-リデンフロライドーテトラフルォロエチレン共重合体、ス チレン'ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミドおよび各種ポ リウレタン等の榭脂バインダーが挙げられる。また前記溶媒の具体例としては、例え ば、ジメチルホルムアミドおよび N—メチルピロリドン等が挙げられる。
また塗布の方法としては、例えば、前記塗料化により得られたスラリーを集電体の表 面に滴下し、ワイヤーバーで全体が均一な厚さとなるように展開させた後、乾燥させ て溶媒を除去する方法が挙げられる。
なお、前記塗料化に際し、インピーダンスを低下させる目的から、架橋ポリ (メタ)ァク リル酸-トロキシドィ匕合物に補助導電材ゃイオン伝導補助材を適宜加えてもよい。補 助導電材の具体例としては、グラフアイト、カーボンブラック、アセチレンブラック等の 炭素質微粒子、および、ポリア-リン、ポリピロール、ポリチォフェン、ポリアセチレン、 ポリアセン等の導電性高分子等が挙げられる。また、イオン伝導補助材の具体例とし ては、高分子ゲル電解質および高分子固体電解質等が挙げられる。
前記塗料化した架橋ポリ (メタ)アクリル酸-トロキシド化合物を塗布して得られる塗膜 の膜厚は、 10-1000 μ mであることが好ましぐより好ましくは 50〜300 μ mが望ま しい。
本発明の製造方法から得られる電極は、例えば、リチウムイオン二次電池等、ェネル ギー密度が高く大容量の二次電池の材料として好適に使用することができる。
発明の効果
本発明によると、架橋ポリ(メタ)アクリル酸ィ匕合物、なかでも、二次電池の電極活物質 として用いられる、対溶媒安定性に優れた架橋ポリ (メタ)アクリル酸-トロキシド化合 物の製造方法および当該化合物を用いた二次電池の電極の製造方法が提供される 発明を実施するための最良の形態
[0081] 以下に、実施例および比較例により本発明を具体的に説明するが、本発明はこれら 実施例に限定されるものではな 、。
実施例 1
攪拌機、窒素ガス導入管、温度計、還流冷却管を備えた 500ml容の 4つ口フラスコ に、 2, 2, 6, 6—テトラメチル— 4—ピベリジ-ルメタタリレート 70. Og (311ミリモル)、 エチレングリコールジメタタリレート 1. 23g (6. 2ミリモル)およびテトラヒドロフラン 150 mlを仕込み、均一溶液を得た。この溶液を 25°Cに保ちながら、窒素ガスを通じて反 応系内の酸素を除去した後、重合開始剤として a , a ' ーァゾビスイソプチ口-トリル 0. 358g (2. 2ミリモル)を加えて、攪拌下、 50°Cにて 6時間反応させた。反応終了後 、反応液を室温まで冷却し、へキサン 2000ml中にカ卩えた後、ろ過して架橋ポリメタク リル酸ィミノ化合物を得た。得られた架橋ポリメタクリル酸イミノ化合物をへキサン 500 mlで洗浄した後、減圧乾燥して白色粉体の架橋ポリメタクリル酸イミノ化合物 69. 5g を得た (収率 97. 6%)。
次に、得られた架橋ポリメタクリル酸イミノ化合物 18gおよびジクロロメタン 150mlを攪 拌機、窒素ガス導入管、温度計、還流冷却管および滴下ロートを備えた 500ml容の 4つ口フラスコに仕込み、 25°Cに保ちながら窒素ガスを通じて反応系内の酸素を除 去した後、ジクロロメタン 200mlに溶解させた m—クロ口過安息香酸 34. Og (純分 65 重量%、 128. 0ミリモル)を 5時間かけて滴下した。引き続き 6時間 25°Cに保持した 後、遠心分離により反応液から白色沈殿物を分離除去し、残りの上層部を 10重量% 炭酸カリゥム水溶液 150mlおよび飽和食塩水 150mlでそれぞれ洗浄後、有機層を 適量の硫酸マグネシウムで脱水し、硫酸マグネシウム除去後、減圧乾燥して赤色粉 体の架橋ポリメタクリル酸-トロキシドィ匕合物 17. 2gを得た。
[0082] 実施例 2
実施例 1において、エチレングリコールジメタタリレート 1. 23g (6. 2ミリモル)に代え て、エチレングリコールジメタタリレート 2. 50g (12. 5ミリモル)を用いた以外は実施 例 1と同様にして、赤色粉体の架橋ポリメタクリル酸-トロキシドィ匕合物 17. 2gを得た [0083] 実施例 3
実施例 1において、エチレングリコールジメタタリレート 1. 23g (6. 2ミリモル)に代え て、 1, 3—ブタンジオールジメタタリレート 1. 40g (6. 2ミリモル)を用いた以外は実施 例 1と同様にして、赤色粉体の架橋ポリメタクリル酸-トロキシドィ匕合物 17. 2gを得た
[0084] 実施例 4
攪拌機、窒素ガス導入管、温度計、還流冷却管および滴下ロートを備えた 1L容の 4 つ口フラスコに、 2, 2, 6, 6—テトラメチノレー 4ーピペリジニノレメタタリレート 70. Og (3 11ミリモル)およびジクロロメタン 600mlを仕込み、 25°Cに保ちながら窒素ガスを通じ て反応系内の酸素を除去した後、ジクロロメタン 200mlに溶解させた m—クロ口過安 息香酸 132. 3g (純分 65重量%、498. 0ミリモル)を 5時間かけて滴下した。引き続 き 6時間 25°Cに保持した後、反応液を濾過して白色沈殿を分離し、ろ液を 10重量% 炭酸カリゥム水溶液 600mlおよび飽和食塩水 600mlでそれぞれ洗浄後、有機層を 適量の硫酸マグネシウムで脱水し、硫酸マグネシウム除去後、減圧乾燥して赤色粉 体のメタクリル酸-トロキシド化合物 70. 2gを得た。
次に、得られたメタクリル酸-トロキシド化合物 70. Og (292ミリモル)を、エチレンダリ コールジメタタリレート 1. 23g (6. 2ミリモル)および脱水したトルエン 150mlとともに 攪拌機、窒素ガス導入管、温度計、還流冷却管を備えた 500ml容の 4つ口フラスコ に仕込み、均一溶液を得た。この溶液を 0°Cに保ちながら、窒素ガスを通じて反応系 内の酸素を除去した後、重合開始剤として市販の n—ブチルリチウムのへキサン溶液 (1. 5mol/l) l. 4ml(n—プチルリチウムとして 2. 2ミリモル、 0. 14g)を加えて、攪 拌下、 0°Cにて 6時間反応させた後、メタノールを添加して反応を停止させた。反応終 了後、反応液を室温までもどし、へキサン 2000ml中にカ卩えた後、ろ過して架橋ポリメ タクリル酸-トロキシド化合物を得た。得られた架橋ポリメタクリル酸-トロキシドィ匕合 物をへキサン 500mlで洗浄した後、 10重量%炭酸カリウム水溶液 500mlおよび飽 和食塩水 500mlでそれぞれ洗浄後、有機層を適量の硫酸マグネシウムで脱水し、 硫酸マグネシウム除去後、減圧乾燥して赤色粉体の架橋ポリメタクリル酸-トロキシド 化合物 67. Ogを得た (重合工程での収率 94. 1%)。 [0085] 実施例 5
内容積 200mlの三角フラスコに 2, 2, 6, 6—テトラメチル一 4—ピベリジ-ルメタタリ レート 22. 5g (100ミリモル)、エチレングリコールジメタタリレート 0. 40g (2. 0ミリモル )、重合開始剤として α , α,—ァゾビスイソブチ口-トリル 0. 115g (0. 7ミリモル)、お よびトルエン 35mlを仕込み、混合して均一溶液を得た。次に、攪拌機、窒素ガス導 入管、温度計、還流冷却管を備えた 500ml容の 4つ口フラスコに、水 200mlおよび 界面活性剤としてドデシルベンゼンスルホン酸ナトリウム 0. 30gを仕込み、混合し、こ の溶液を 25°Cに保ちながら、攪拌下、前記均一溶液を加えて分散させた。引き続き 、窒素ガスを通じて反応系内の酸素を除去した後、 60°Cにて 6時間反応させた。反 応終了後、反応液を室温まで冷却し、ろ過して架橋ポリメタクリル酸イミノ化合物を得 た。得られた架橋ポリメタクリル酸イミノィ匕合物を水 500ml、次いでへキサン 500mlで 洗浄した後、減圧乾燥して白色粉体の架橋ポリメタクリル酸イミノ化合物 22. 8gを得 た(収率 99. 5%)。
次に、得られた架橋ポリメタクリル酸イミノ化合物 10gおよびメタノール 300mlを攪拌 機、窒素ガス導入管、温度計、還流冷却管および滴下ロートを備えた 500ml容の 4 つ口フラスコに仕込み、 25°Cに保ちながら窒素ガスを通じて反応系内の酸素を除去 した後、 30%の過酸ィ匕水素溶液 50. 4g (445ミリモル)を 3時間かけて滴下した。引 き続き 8時間 25°Cに保持した後、反応液をろ過して架橋ポリメタクリル酸-トロキシド 化合物を得た。得られた架橋ポリメタクリル酸-トロキシドィ匕合物をメタノール 500ml、 次 ヽで水 500mlで洗浄した後、減圧乾燥して赤色粉体の架橋ポリメタクリル酸-トロ キシドィ匕合物 10. Ogを得た。
[0086] 実施例 6
実施例 5において、ドデシルベンゼンスルホン酸ナトリウム 0. 30gに代えて、ドデシル ベンゼンスルホン酸ナトリウム 0. 60gを用いた以外は実施例 5と同様にして、白色粉 体の架橋ポリメタクリル酸イミノ化合物 22. 6gを得た (収率 98. 7%) 0
次に、得られた架橋ポリメタクリル酸イミノ化合物 10g、触媒としてタングステン酸ナトリ ゥムニ水和物 0. 73g (2. 2ミリモル)、およびメタノール 300mlを攪拌機、窒素ガス導 入管、温度計、還流冷却管および滴下ロートを備えた 500ml容の 4つ口フラスコを仕 込み、 25°Cに保ちながら窒素ガスを通じて反応系内の酸素を除去した後、 30%の 過酸化水素溶液 50. 4g (445ミリモル)を 3時間かけて滴下した。引き続き 2時間 25 °Cに保持した後、反応液をろ過して架橋ポリメタクリル酸-トロキシド化合物を得た。 得られた架橋ポリメタクリル酸-トロキシド化合物をメタノール 500ml、次!、で水 500 mlで洗浄した後、減圧乾燥して赤色粉体の架橋ポリメタクリル酸-トロキシドィ匕合物 1 0. lgを得た。
[0087] 実施例 7
実施 ί列 5【こお!/、て、エチレングリコーノレジメタクリレー卜 0. 40g (2. 0ミリモノレ)【こ代免 て、 1, 4—ブタンジオールジメタタリレート 0. 91g (4. 0ミリモル)を用いた以外は実施 例 5と同様にして、白色粉体の架橋ポリメタクリル酸イミノィ匕合物 22. 8gを得た (収率 9 7. 4%)。
次に、得られた架橋ポリメタクリル酸イミノ化合物 10g、触媒としてタングステン酸ナトリ ゥムニ水和物 0. 65g (2. 0ミリモル)、およびメタノール 300mlを攪拌機、窒素ガス導 入管、温度計、還流冷却管および滴下ロートを備えた 500ml容の 4つ口フラスコに仕 込み、 25°Cに保ちながら窒素ガスを通じて反応系内の酸素を除去した後、 30%の 過酸化水素溶液 50. 4g (445ミリモル)を 3時間かけて滴下した。引き続き 2時間 25 °Cに保持した後、反応液をろ過して架橋ポリメタクリル酸-トロキシド化合物を得た。 得られた架橋ポリメタクリル酸-トロキシド化合物をメタノール 500ml、次!、で水 500 mlで洗浄した後、減圧乾燥して赤色粉体の架橋ポリメタクリル酸-トロキシドィ匕合物 1 0. 2gを得た。
[0088] 実施例 8
攪拌機、窒素ガス導入管、温度計、還流冷却管を備えた 500ml容の 4つ口フラスコ に、 2, 2, 6, 6—テ卜ラメチル— 4—ピベリジ-ルメタクリレー卜 45. 0g (200ミリモル)、 エチレングリコールジメタタリレート 0. 80g (4. 0ミリモル)、界面活性剤としてポリオキ シエチレンノ-ルフエ-ルエーテルドデシルベンゼンスルホン酸ナトリウム 0. 30g、お よび水 140mlを仕込んだ後、 2, 2, 6, 6—テトラメチルー 4ーピベリジ-ルメタクリレ ートの融点(60°C)より高温の 65°Cにて 1時間攪拌し、均一溶液を得た。引き続き、 窒素ガスを通じて反応系内の酸素を除去した後、重合開始剤として過硫酸カリウム 0 . 379g (l. 4ミリモル)を加えて、攪拌下、 70°Cにて 6時間反応させた。反応終了後、 反応液を室温まで冷却し、 5°Cの冷水(2000ml)中にカ卩えた後、ろ過して架橋ポリメ タクリル酸ィミノ化合物を得た。得られた架橋ポリメタクリル酸イミノ化合物を水 500ml で洗浄した後、減圧乾燥して白色粉体の架橋ポリメタクリル酸イミノ化合物 43. 5gを 得た (収率 95. 0%)。
次に、得られた架橋ポリメタクリル酸イミノ化合物 10gおよびメタノール 300mlを攪拌 機、窒素ガス導入管、温度計、還流冷却管および滴下ロートを備えた 500ml容の 4 つ口フラスコに仕込み、 25°Cに保ちながら窒素ガスを通じて反応系内の酸素を除去 した後、 30%の過酸ィ匕水素溶液 50. 4g (445ミリモル)を 3時間かけて滴下した。引 き続き 8時間 25°Cに保持した後、反応液をろ過して架橋ポリメタクリル酸-トロキシド 化合物を得た。得られた架橋ポリメタクリル酸-トロキシドィ匕合物をメタノール 500ml、 次 ヽで水 500mlで洗浄した後、減圧乾燥して赤色粉体の架橋ポリメタクリル酸-トロ キシドィ匕合物 10. Ogを得た。
[0089] 比較例 1
実施例 1において、エチレングリコールジメタタリレート 1. 23g (6. 2ミリモル)を用いな い以外は実施例 1と同様にして、赤色粉体 16. 9gを得た。
[0090] 比較例 2
実施例 4において、エチレングリコールジメタタリレート 1. 23g (6. 2ミリモル)を用いな い以外は実施例 4と同様にして、赤色粉体 65. 8gを得た。
[0091] 比較例 3
実施例 6において、エチレングリコールジメタタリレート 0. 40g (2. 0ミリモル)を用いな い以外は実施例 6と同様にして、赤色粉体 10. 3gを得た。
[0092] 比較例 4
実施例 8において、エチレングリコールジメタタリレート 0. 80g (4. 0ミリモル)を用いな い以外は実施例 8と同様にして、赤色粉体 10. 3gを得た。
[0093] 架橋ポリメタクリル酸ニトロキシド化合物又は赤色粉体の評価
実施例および比較例で得られた赤色粉体について、プロピレンカーボネート、ジェチ ルカーボネートおよびエチレンカーボネート Zジェチルカーボネートの混合溶媒(重 量比: 3Z7)の各溶媒に対する溶解性を評価した。各溶媒に対して、それぞれの粉 体濃度が 10重量%となるように混合し、室温にて 24時間攪拌した後、ろ過して得た ろ液を、 150°C、 lOmmHgで 15時間減圧乾燥を行い、粗溶解分を得た。この粗溶 解分を純水で洗浄し、 150°C、 lOmmHgで 3時間減圧乾燥を行い、溶解分を得て 溶解度を求めた。これらの結果を表 1に示す。
[0094] [表 1]
Figure imgf000030_0001
[0095] 表 1に示された結果から、実施例 1〜8で得られた赤色粉体は、評価に用いたすべて の溶媒に対する溶解度が 1%以下であることから、対溶媒安定性に優れていることが ゎカゝる。
[0096] 実施例 2で得られた赤色粉体について、使用した各溶媒に対して 10重量%となるよ うに混合した後、攪拌下 40°Cにて保存した。所定期間経過後、ろ過して得たろ液を、 150°C、 lOmmHgで 15時間減圧乾燥を行い、粗溶解分を得た。この粗溶解分を純 水で洗浄し、 150°C、 lOmmHgで 3時間減圧乾燥を行い、溶解分を得て溶解度を 求めた。結果を表 2に示す。
[0097] [表 2] 溶解度(%)
保存期間 1 0曰 保存期間 20曰 保存期間 50曰 プロピレン力一ポネート < 1 < 1 < 1 ジェチルカ一ポネート ぐ 1 < 1 < 1 エチレン力一ボネ一トノ
< 1 < 1 ぐ 1 ジェチルカーポネートの混合溶媒
[0098] 表 2に示された結果から、実施例 2で得られた赤色粉体は、評価に用いたすべての 溶媒に対する溶解度が保存期間 50日にわたつて 1%以下であることから、長期にわ たる対溶媒安定性に優れて ヽることがわかる。
[0099] 実施例 9 (リチウムイオン二次電池の電極およびリチウムイオン二次電池の作製)
(1)リチウムイオン二次電池の電極の作製
実施例 1で得られた架橋ポリメタクリル酸-トロキシド化合物の赤色粉末を、めのう乳 鉢を用いて粉砕して 100 m以下の粒径とし、そのうちの lgと、溶媒としての N—メチ ルピロリドン 50gと、バインダーとしてのポリフッ化ビ-リデン lOmgと、補助導電材とし てのグラフアイト粉末 0. 9gとを混合、攪拌して黒色のスラリーを得た。このスラリー 2g を、リード線を備えたアルミニウム箔(面積: 1. 5cm X I. 5cm、厚さ: 100 m)の表 面に滴下し、ワイヤーバーで全体が均一な厚さとなるように展開した後、 120°Cで 6時 間減圧乾燥することにより、実施例 1で得られた赤色粉体を集電体に結着させた電 極を作製した。なお、赤色粉体カゝらなる塗膜について、膜厚を膜厚測定装置 (MORI TEX (株)製、 MHF— D100LR)にて測定したところ 150 μ mであった。
(2)リチウムイオン二次電池の作製
電解質塩としての LiPF ImolZlを含んだエチレンカーボネート Zジェチルカーボネ
6
ート混合溶液(重量比: 3Z7) 1400mgにビ-リデンフロライド一へキサフルォロプロ ピレン共重合体 600mgおよびテトラヒドロフラン 11. 3gをカ卩えて室温で攪拌して電解 質溶液を調製した。この電解質溶液を段差をつけたガラス板上に塗布し、室温で一 時間放置し自然乾燥して、厚さ lmmの電解質フィルムを得た。この電解質フィルムを 2. Ocm X 2. Ocmに切り出した後、先に作製した、実施例 1で得られた赤色粉体を集 電体に結着させた電極上に積層し、さら〖こ、リード線を備えたリチウム張り合わせ銅箔 (リチウム膜厚 30 m、銅箔の膜厚 20 m)をその上に重ね合わせた。引き続き、そ の全体を厚さ 5mmのポリテトラフルォロエチレン製シートを用いて卷装することにより 互いに圧接して、実施例 1で得られた赤色粉体を集電体に結着させた電極を用いた リチウムイオン二次電池を作製した。
[0100] 比較例 5
実施例 1で得られた架橋ポリメタクリル酸-トロキシド化合物の赤色粉体に代えて、比 較例 1で得られた赤色粉体を用いること以外は、実施例 9と同様にして、電極および この電極を用いたリチウムイオン二次電池を作製した。なお、赤色粉体からなる塗膜 について、膜厚を実施例 9と同様に測定したところ 150 mであった。
[0101] リチウムイオン二次電池の評価
上記実施例 9で得られたリチウムイオン二次電池および比較例 5で得られた赤色粉 体を集電体に結着させた電極を用いたリチウムイオン二次電池について、それぞれ 充放電試験機 ( (株)ナガノ製、 BTS2004W)に接続して、定電流密度 (42 μ A/c m2, 20°C)にて充放電特性を評価した。
実施例 9で得られたリチウムイオン二次電池については 3. 5〜3. 6V付近に電圧の 平坦部が認められ、次に繰り返し充放電したところ、 100サイクル以上にわたって充 放電が可能であった。しかしながら、比較例 5で得られたリチウムイオン二次電池につ いては、当初は同様の電圧の平坦部が認められたものの、繰り返し充放電したところ 、数回のサイクル数の充放電しか認められな力つた。
産業上の利用可能性
[0102] 本発明によれば、エネルギー密度が高く大容量の二次電池に有用な電極材料およ び電極の製造方法を提供することができる。

Claims

請求の範囲 [1] 一般式 (1)
[化 1]
Figure imgf000033_0001
(式中、 n個の Z1は、水素原子、および Zまたは、不対電子 1個を有する酸素原子を 示し、 Rは、水素原子またはメチル基を示し、 nは、 5〜: L000000の整数を示す)で表 されるポリ(メタ)アクリル酸化合物が架橋されてなる架橋ポリ(メタ)アクリル酸ィ匕合物 の製造方法であって、
前記架橋ポリ (メタ)アクリル酸化合物の製造方法は、一般式 (2):
[化 2]
Figure imgf000033_0002
(式中、 z2は、前記 z1が水素原子であるとき、水素原子を示し、前記 z1が不対電子 1 個を有する酸素原子であるとき、水素原子または不対電子 1個を有する酸素原子を 示す。 Rは、前記一般式(1)における Rと同じ基を示す)で表される (メタ)アクリル酸 化合物を架橋剤の存在下に重合する重合工程を含むことを特徴とする架橋ポリ (メタ )アクリル酸化合物の製造方法。
[2] 前記ポリ (メタ)アクリル酸ィ匕合物は、前記一般式(1)における n個の Z1が水素原子で あるポリ(メタ)アクリル酸イミノィ匕合物であり、
前記 (メタ)アクリル酸ィ匕合物は、前記一般式 (2)における Z2が水素原子である (メタ) アクリル酸ィミノ化合物である請求項 1に記載の架橋ポリ (メタ)アクリル酸ィ匕合物の製 造方法。
[3] 前記ポリ (メタ)アクリル酸ィ匕合物は、前記一般式(1)における n個の Z1が不対電子 1 個を有する酸素原子、または、水素原子および不対電子 1個を有する酸素原子であ るポリ(メタ)アクリル酸-トロキシドィ匕合物であり、
前記 (メタ)アクリル酸ィ匕合物は、前記一般式 (2)における Z2が水素原子である (メタ) アクリル酸ィミノ化合物であり、
前記重合工程は、一般式(la):
[化 3]
Figure imgf000034_0001
(式中、 Rは、前記一般式(1)における Rと同じ基を示し、 nは、前記一般式(1)にお ける nと同じ整数を示す)で表されるポリ (メタ)アクリル酸ィミノ化合物が架橋されてな る架橋ポリ(メタ)アクリル酸ィミノ化合物を製造するものであり、
前記架橋ポリ (メタ)アクリル酸化合物の製造方法は、更に、前記架橋ポリ(メタ)アタリ ル酸ィミノ化合物を-トロキシド化する-トロキシドィ匕工程をも含む請求項 1に記載の 架橋ポリ (メタ)アクリル酸化合物の製造方法。
[4] 前記ポリ (メタ)アクリル酸ィ匕合物は、前記一般式(1)における n個の Z1が不対電子 1 個を有する酸素原子、または、水素原子および不対電子 1個を有する酸素原子であ るポリ(メタ)アクリル酸-トロキシドィ匕合物であり、
前記 (メタ)アクリル酸ィ匕合物は、前記一般式 (2)における Z2が水素原子である (メタ) アクリル酸ィミノ化合物を含むものであってもよ 、前記一般式(2)における Z2が不対 電子 1個を有する酸素原子である (メタ)アクリル酸ニトロキシドィ匕合物である請求項 1 に記載の架橋ポリ(メタ)アクリル酸化合物の製造方法。
[5] 前記 (メタ)アクリル酸ニトロキシドィ匕合物は、一般式(2a):
Figure imgf000035_0001
(式中、 Rは、前記一般式(1)における Rと同じ基を示す)で表される (メタ)アクリル酸 ィミノ化合物を-トロキシド化することにより得られるものである請求項 4に記載の架橋 ポリ (メタ)アクリル酸化合物の製造方法。
[6] 前記重合工程における重合方法が、懸濁重合法である請求項 2または 3に記載の架 橋ポリ (メタ)アクリル酸化合物の製造方法。
[7] 前記重合工程における重合方法が、乳化重合法である請求項 2または 3に記載の架 橋ポリ (メタ)アクリル酸化合物の製造方法。
[8] 前記架橋剤は、エチレングリコールジ (メタ)アタリレート、 1, 3—ブタンジオールジ (メ タ)アタリレートおよび 1, 4—ブタンジオールジ (メタ)アタリレートよりなる群力も選ばれ る少なくとも 1種である請求項 1、 2、 3、 4、 5、 6または 7に記載の架橋ポリ (メタ)アタリ ル酸化合物の製造方法。
[9] 前記架橋剤の使用量が、前記 (メタ)アクリル酸ィ匕合物 1モルに対して 0. 00001〜0 . 25モルの割合である請求項 1、 2、 3、 4、 5、 6、 7または 8に記載の架橋ポリ (メタ)ァ クリル酸化合物の製造方法。
[10] 架橋ポリ (メタ)アクリル酸化合物を塗料化する塗料化工程と、該塗料を集電体に塗 布する塗布工程と、を含む二次電池の電極の製造方法であって、
前記架橋ポリ (メタ)アクリル酸ィ匕合物は、請求項 1、 3、 4、 5、 6、 7、 8または 9記載の 架橋ポリ (メタ)アクリル酸ィ匕合物の製造方法により製造した架橋ポリ (メタ)アクリル酸 ニトロキシド化合物である
ことを特徴とする二次電池の電極の製造方法。
PCT/JP2005/009893 2004-05-31 2005-05-30 架橋ポリ(メタ)アクリル酸化合物の製造方法 WO2005116092A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05743720.4A EP1752474B1 (en) 2004-05-31 2005-05-30 Method for producing crosslinked poly(meth)acrylate compound
CN2005800176489A CN1961006B (zh) 2004-05-31 2005-05-30 交联聚(甲基)丙烯酸化合物的制造方法
JP2006513990A JP5124139B2 (ja) 2004-05-31 2005-05-30 架橋ポリ(メタ)アクリル酸ニトロキシド化合物の製造方法
US11/569,819 US7816457B2 (en) 2004-05-31 2005-05-30 Method for producing crosslinked poly(meth)acrylate compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004161412 2004-05-31
JP2004-161412 2004-05-31
JP2004325254 2004-11-09
JP2004-325254 2004-11-09

Publications (1)

Publication Number Publication Date
WO2005116092A1 true WO2005116092A1 (ja) 2005-12-08

Family

ID=35450847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009893 WO2005116092A1 (ja) 2004-05-31 2005-05-30 架橋ポリ(メタ)アクリル酸化合物の製造方法

Country Status (5)

Country Link
US (1) US7816457B2 (ja)
EP (1) EP1752474B1 (ja)
JP (1) JP5124139B2 (ja)
CN (2) CN101704924B (ja)
WO (1) WO2005116092A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022177A (ja) * 2004-07-07 2006-01-26 Mitsubishi Gas Chem Co Inc 安定ラジカルを持つ共重合体組成物の製造方法
WO2007017994A1 (ja) * 2005-08-05 2007-02-15 Sumitomo Seika Chemicals Co., Ltd. 架橋ポリ(メタ)アクリル酸ニトロキシド化合物の製造方法
JP2007211145A (ja) * 2006-02-09 2007-08-23 Adeka Corp 導電材混合組成物
WO2007115939A1 (en) * 2006-04-07 2007-10-18 Piotrek Co., Ltd. Process for the preparation of crosslinked nitroxide polymers
WO2008010356A1 (en) 2006-07-19 2008-01-24 Sumitomo Seika Chemicals Co., Ltd. Crosslinked (meth)acrylic acid copolymer and secondary-cell electrode employing the same
JP2008081557A (ja) * 2006-09-26 2008-04-10 Sumitomo Seika Chem Co Ltd (メタ)アクリル酸系架橋共重合体の製造方法および該架橋共重合体を用いた二次電池の電極
FR2911723A1 (fr) * 2007-01-19 2008-07-25 Arkema France Electrode comprenant au moins un polynitroxyde triazinique
JP2008174725A (ja) * 2006-12-20 2008-07-31 Sumitomo Seika Chem Co Ltd (メタ)アクリル酸アダマンチル系架橋重合体およびそれを用いた二次電池の電極
JP2008174543A (ja) * 2006-12-20 2008-07-31 Sumitomo Seika Chem Co Ltd (メタ)アクリル酸ジアザアダマンチル化合物およびその製造方法
FR2912554A1 (fr) * 2007-02-12 2008-08-15 Arkema France Electrode comprenant au moins un nitroxyde et des nanotubes de carbone
JP2008222999A (ja) * 2007-02-14 2008-09-25 Sumitomo Seika Chem Co Ltd (メタ)アクリル酸アダマンチル系架橋重合体の製造方法および該架橋重合体を用いた二次電池の電極
EP2025689A1 (en) * 2006-06-06 2009-02-18 NEC Corporation Process for production of polyradical compound and battery cell
JP2010180285A (ja) * 2009-02-03 2010-08-19 Sumitomo Seika Chem Co Ltd ニトロキシドラジカル架橋重合体組成物
JP2011074317A (ja) * 2009-10-01 2011-04-14 Waseda Univ ポリラジカル化合物の製造方法
JP2013184981A (ja) * 2012-03-05 2013-09-19 Sumitomo Seika Chem Co Ltd ラジカル材料組成物の製造方法、二次電池用活物質、二次電池用電極、及び、二次電池
JP2015060636A (ja) * 2013-09-17 2015-03-30 日本電気株式会社 二次電池
JP2019523792A (ja) * 2016-06-02 2019-08-29 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 電極材料の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4794619B2 (ja) 2008-12-26 2011-10-19 Tdk株式会社 リチウムイオン二次電池用正極の製造方法及びリチウムイオン二次電池の製造方法、並びに、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2016536427A (ja) * 2013-09-09 2016-11-24 ユニヴェルシテ・カトリック・ドゥ・ルーヴァン 導電性ポリマーコンポジットの調製方法
CN109312018B (zh) 2016-09-06 2021-04-20 赢创运营有限公司 改善仲胺基团氧化的方法
EP3588634B1 (de) 2018-06-27 2023-11-22 InnovationLab GmbH Verbessertes organisches elektrodenmaterial
TWI740221B (zh) * 2018-12-17 2021-09-21 德商贏創運營有限公司 用於有機電池之改良固體電解質
CN113574699A (zh) 2019-03-14 2021-10-29 赢创运营有限公司 制造成型有机电荷存储单元的方法
EP4016663B1 (de) 2020-12-17 2023-10-11 InnovationLab GmbH Elektrodenmaterial für den druck von polymerbatterien

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206687A (ja) 1993-05-20 1995-08-08 Sekisui Chem Co Ltd 経口コレステロール低下剤及びその製造方法
JP2001083672A (ja) 1999-09-08 2001-03-30 Fuji Photo Film Co Ltd ポリマー製造方法および該ポリマーを含む色素固定要素
EP1128453A2 (en) 2000-02-25 2001-08-29 Nec Corporation Secondary battery using a radical compound as active electrode material
EP1170277A2 (de) 2000-06-15 2002-01-09 Degussa Aktiengesellschaft Verfahren zur Oxidation von Alkoholen mit homogen löslichen polymervergrösserten Stickstoffverbindungen als Katalysator
JP2002304996A (ja) * 2001-04-03 2002-10-18 Nec Corp 蓄電デバイス
WO2003080689A1 (de) 2002-03-22 2003-10-02 Tesa Ag Verfahren zur herstellung copolymerer polyacrylat-haftklebemassen, damit erhaltene nitroxid-modofizierte polyacrylate und kamm-blockpolymere
JP2005097409A (ja) * 2003-09-24 2005-04-14 Mitsubishi Gas Chem Co Inc 安定ラジカルを持つ高分子化合物の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206687A (ja) 1993-05-20 1995-08-08 Sekisui Chem Co Ltd 経口コレステロール低下剤及びその製造方法
JP2001083672A (ja) 1999-09-08 2001-03-30 Fuji Photo Film Co Ltd ポリマー製造方法および該ポリマーを含む色素固定要素
EP1128453A2 (en) 2000-02-25 2001-08-29 Nec Corporation Secondary battery using a radical compound as active electrode material
EP1170277A2 (de) 2000-06-15 2002-01-09 Degussa Aktiengesellschaft Verfahren zur Oxidation von Alkoholen mit homogen löslichen polymervergrösserten Stickstoffverbindungen als Katalysator
JP2002304996A (ja) * 2001-04-03 2002-10-18 Nec Corp 蓄電デバイス
EP1381100A1 (en) 2001-04-03 2004-01-14 NEC Corporation Electricity storage device
WO2003080689A1 (de) 2002-03-22 2003-10-02 Tesa Ag Verfahren zur herstellung copolymerer polyacrylat-haftklebemassen, damit erhaltene nitroxid-modofizierte polyacrylate und kamm-blockpolymere
JP2005097409A (ja) * 2003-09-24 2005-04-14 Mitsubishi Gas Chem Co Inc 安定ラジカルを持つ高分子化合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1752474A4 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022177A (ja) * 2004-07-07 2006-01-26 Mitsubishi Gas Chem Co Inc 安定ラジカルを持つ共重合体組成物の製造方法
JP4506955B2 (ja) * 2004-07-07 2010-07-21 三菱瓦斯化学株式会社 安定ラジカルを持つ共重合体組成物の製造方法
WO2007017994A1 (ja) * 2005-08-05 2007-02-15 Sumitomo Seika Chemicals Co., Ltd. 架橋ポリ(メタ)アクリル酸ニトロキシド化合物の製造方法
US8252869B2 (en) 2005-08-05 2012-08-28 Sumitomo Seika Chemicals Co., Ltd. Process for production of crosslinked poly(meth) acrylic acid nitroxide compounds
JP2007211145A (ja) * 2006-02-09 2007-08-23 Adeka Corp 導電材混合組成物
WO2007115939A1 (en) * 2006-04-07 2007-10-18 Piotrek Co., Ltd. Process for the preparation of crosslinked nitroxide polymers
TWI472542B (zh) * 2006-04-07 2015-02-11 Piotrek Co Ltd 製備交聯氮氧化物聚合物的方法
US8492511B2 (en) 2006-04-07 2013-07-23 Piotrek Co., Ltd. Process for the preparation of crosslinked nitroxide polymers
JP2009532544A (ja) * 2006-04-07 2009-09-10 パイオトレック株式会社 架橋ニトロキシドポリマーの製造方法
EP2025689A1 (en) * 2006-06-06 2009-02-18 NEC Corporation Process for production of polyradical compound and battery cell
EP2025689A4 (en) * 2006-06-06 2010-08-25 Nec Corp PROCESS FOR PRODUCING POLYRADICAL AND BATTERY ELEMENT
US8728662B2 (en) 2006-06-06 2014-05-20 Nec Corporation Process for producing polyradical compound and battery cell
JP2008045096A (ja) * 2006-07-19 2008-02-28 Sumitomo Seika Chem Co Ltd (メタ)アクリル酸系架橋共重合体およびそれを用いた二次電池の電極
US8088874B2 (en) 2006-07-19 2012-01-03 Sumitomo Seika Chemicals Co., Ltd. Crosslinked (meth)acrylic acid copolymer and secondary-cell electrode employing the same
WO2008010356A1 (en) 2006-07-19 2008-01-24 Sumitomo Seika Chemicals Co., Ltd. Crosslinked (meth)acrylic acid copolymer and secondary-cell electrode employing the same
JP2008081557A (ja) * 2006-09-26 2008-04-10 Sumitomo Seika Chem Co Ltd (メタ)アクリル酸系架橋共重合体の製造方法および該架橋共重合体を用いた二次電池の電極
JP2008174543A (ja) * 2006-12-20 2008-07-31 Sumitomo Seika Chem Co Ltd (メタ)アクリル酸ジアザアダマンチル化合物およびその製造方法
JP2008174725A (ja) * 2006-12-20 2008-07-31 Sumitomo Seika Chem Co Ltd (メタ)アクリル酸アダマンチル系架橋重合体およびそれを用いた二次電池の電極
FR2911723A1 (fr) * 2007-01-19 2008-07-25 Arkema France Electrode comprenant au moins un polynitroxyde triazinique
WO2008099100A1 (fr) * 2007-01-19 2008-08-21 Arkema France Electrode comprenant au moins un polynitroxyde triazinique
FR2912554A1 (fr) * 2007-02-12 2008-08-15 Arkema France Electrode comprenant au moins un nitroxyde et des nanotubes de carbone
WO2008104683A1 (fr) * 2007-02-12 2008-09-04 Arkema France Electrode comprenant au moins un nitroxyde et des nanotubes de carbone
JP2008222999A (ja) * 2007-02-14 2008-09-25 Sumitomo Seika Chem Co Ltd (メタ)アクリル酸アダマンチル系架橋重合体の製造方法および該架橋重合体を用いた二次電池の電極
JP2010180285A (ja) * 2009-02-03 2010-08-19 Sumitomo Seika Chem Co Ltd ニトロキシドラジカル架橋重合体組成物
JP2011074317A (ja) * 2009-10-01 2011-04-14 Waseda Univ ポリラジカル化合物の製造方法
JP2013184981A (ja) * 2012-03-05 2013-09-19 Sumitomo Seika Chem Co Ltd ラジカル材料組成物の製造方法、二次電池用活物質、二次電池用電極、及び、二次電池
JP2015060636A (ja) * 2013-09-17 2015-03-30 日本電気株式会社 二次電池
JP2019523792A (ja) * 2016-06-02 2019-08-29 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 電極材料の製造方法

Also Published As

Publication number Publication date
EP1752474B1 (en) 2013-06-12
US7816457B2 (en) 2010-10-19
JP5124139B2 (ja) 2013-01-23
EP1752474A4 (en) 2010-03-10
CN101704924B (zh) 2012-06-27
US20080319149A1 (en) 2008-12-25
JPWO2005116092A1 (ja) 2008-04-03
CN101704924A (zh) 2010-05-12
CN1961006A (zh) 2007-05-09
CN1961006B (zh) 2010-05-05
EP1752474A1 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
WO2005116092A1 (ja) 架橋ポリ(メタ)アクリル酸化合物の製造方法
JP5438254B2 (ja) (メタ)アクリル酸系架橋共重合体およびそれを用いた二次電池の電極
CN106711458B (zh) 锂离子电池正极用导电浆料和锂离子电池正极用复合材料浆料
JP5527667B2 (ja) ピロリン系ニトロキシド重合体およびそれを用いた電池
JP4943106B2 (ja) (メタ)アクリル酸系架橋共重合体の製造方法
WO2001029917A1 (en) Binder composition for electrodes of lithium ion secondary batteries and use thereof
EP2039710B1 (en) Star polymer and method for producing the same
JP5000109B2 (ja) 電極作製用結着剤、電極及びポリマー電池
JP6148864B2 (ja) 非水電解質二次電池用正極合剤スラリー、非水電解質二次電池正極用電極および非水電解質二次電池
WO2007017994A1 (ja) 架橋ポリ(メタ)アクリル酸ニトロキシド化合物の製造方法
JP2018115290A (ja) 重合体粒子
JP4860986B2 (ja) 接着剤、電極作製用結着剤、及び固体電解質用組成物
JP5002430B2 (ja) (メタ)アクリル酸アダマンチル系架橋重合体の製造方法および該架橋重合体を用いた二次電池の電極
JP2008088330A (ja) (メタ)アクリル酸系架橋重合体およびそれを用いた二次電池の電極
JP2018115291A (ja) 重合体粒子
JP4997075B2 (ja) (メタ)アクリル酸アダマンチル系架橋重合体およびそれを用いた二次電池の電極
JP2008280400A (ja) ポリラジカル化合物および電池
TW202012468A (zh) 聚合物粒子、及聚合物粒子之製造方法
JP2008101037A (ja) (メタ)アクリル酸系架橋重合体の製造方法および該架橋重合体を用いた二次電池の電極
JP2004228008A (ja) 二次電池、単量体および重合体
JP5555485B2 (ja) N,n−ビス−(2,2,6,6−テトラメチル−ピペリジン−4−イル)−アミン−(メタ)アクリルアミドおよびn,n−ビス−(2,2,6,6−テトラメチル−ピペリジン−n−オキシル−4−イル)−アミン−(メタ)アクリルアミド化合物架橋重合体
JP2020117647A (ja) 共重合体、及び共重合体の製造方法
JP2007035375A (ja) 電極活物質、電池および重合体
JP2011126969A (ja) N,n−ビス−(2,2,6,6−テトラメチル−ピペリジン−n−オキシル−4−イル)−アミン−(メタ)アクリルアミド化合物およびn,n−ビス−(2,2,6,6−テトラメチル−ピペリジン−n−オキシル−4−イル)−アミン−(メタ)アクリルアミド化合物架橋重合体
JP5109670B2 (ja) 重合体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513990

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005743720

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580017648.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005743720

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11569819

Country of ref document: US