WO2005105668A1 - 二フッ化カルボニルの製造方法 - Google Patents

二フッ化カルボニルの製造方法 Download PDF

Info

Publication number
WO2005105668A1
WO2005105668A1 PCT/JP2005/007896 JP2005007896W WO2005105668A1 WO 2005105668 A1 WO2005105668 A1 WO 2005105668A1 JP 2005007896 W JP2005007896 W JP 2005007896W WO 2005105668 A1 WO2005105668 A1 WO 2005105668A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
gas
reaction
reactor
difluoride
Prior art date
Application number
PCT/JP2005/007896
Other languages
English (en)
French (fr)
Inventor
Seiji Takubo
Takuji Kume
Akinori Yamamoto
Chie Sawauchi
Hisako Nakamura
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to JP2006512785A priority Critical patent/JP5315610B2/ja
Priority to US11/587,946 priority patent/US7592484B2/en
Priority to CN2005800216575A priority patent/CN1976873B/zh
Priority to EP05736606.4A priority patent/EP1770061B1/en
Publication of WO2005105668A1 publication Critical patent/WO2005105668A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/80Phosgene

Definitions

  • the present invention relates to a method for producing carbon difluoride.
  • Carbonyl difluoride is a useful substance that has applications such as a raw material of an organic fluorine compound and a cleaning gas in the production of semiconductors.
  • Non-Patent Document 1 a method for producing carbon monoxide as a raw material is a method based on electrolytic fluorination of carbon monoxide (Patent Document 1).
  • Non-Patent Document 1 a method of fluorinating phosgene with hydrogen fluoride in the presence of a solvent or hydrogen fluoride in the presence of a solvent and triethylamine (Patent Document 2), fluorination with sodium fluoride in a solvent (Patent Document 3), fluorination of phosgene with hydrogen fluoride in the gas phase using an activated carbon catalyst (Patent Document 4) is known.
  • a method of reacting tetrafluoroethylene (TFE) with oxygen is known (Patent Document 5).
  • electrolytic fluorination and direct fluorination which are production methods using carbon monoxide as raw materials, require expensive electrolytic tanks or require large equipment for controlling large reaction heat. This method is not industrially suitable.
  • the selectivity of carbon difluoride is not high.
  • the method of fluorinating phosgene with hydrogen fluoride in the presence of a solvent and the method of fluorinating phosgene with hydrogen fluoride using an activated carbon catalyst are based on the production of carbon difluoride.
  • the difference in boiling point from that of hydrogen is about 1 ° C, which makes separation difficult.
  • Methods for fluorinating phosgene with hydrogen fluoride in the presence of a solvent and triethylamine or for fluorinating phosgene with sodium fluoride in the presence of a solvent include the ability to produce carbon difluoride without forming hydrogen chloride. Is produced in large quantities, resulting in the disposal or reuse of Required.
  • HCFC22 chlorodifluoromethane
  • HFC23 trifluoromethane
  • HCFC22 a method of reacting monohalodifluoromethane such as HCFC22 with oxygen
  • Non-Patent Document 2 a method of reacting HCFC22 with ozone
  • O ⁇ D electronically excited oxygen atoms
  • Patent Document 6 only the production of carbon difluoride was confirmed, but the quantification was not performed. There is no description about by-products.
  • Non-Patent Document 2 unknown by-products are obtained in addition to difluorinated compounds, in addition to HC1 and C1. Obtained here
  • HFC23 is trihalogenated methane like HCFC22 and does not contain chlorine so that HC1 is not generated as a by-product, but its reactivity is very different compared to HCFC22. Things are known. For example, the atmospheric lifespan indicated by the IPCC (acids stronger than O
  • Non-Patent Document 4 shows that HCFC22 power is 9 years, HFC23 power is 260 years, and other trihalogenated methane has CHBrF power of 7 years and H
  • FC23 is a compound that is more difficult to react than other trihalogenated methanes. Therefore, it is impossible to predict the generation of carbonyl difluoride from HFC23 in the same manner as in Patent Document 6 and Non-Patent Document 2.
  • the method of Non-Patent Document 3 is a reaction with a highly excited oxygen atom, which is basically different from the present invention. However, the method of Non-Patent Document 3 is difficult to commercialize industrially, and, like Patent Document 6, is not quantified. Further, according to Non-Patent Document 3, laser excites CO
  • O (3 P) is related to the reaction with HFC23 Do not give. It is known that OO) reacts with HFC23 to generate carbon difluoride, and is inactivated and converted to O ( 3 P) by collision with the generated carbon difluoride ( Non-patent document 5), it cannot be said to be an efficient reaction. It is known that OD) reacts with carbonyl difluoride and partially decomposes to CO and F (Non-Patent Document 5).
  • Patent Document 1 Japanese Patent Publication No. 45-26611
  • Patent Document 2 JP-A-54-158396
  • Patent Document 3 US3088975
  • Patent Document 4 US2836622
  • Patent Document 5 US3639429
  • Patent Document 6 EP0310255
  • Non-Patent Document 1 J. Am. Chem. Soc, Vol. 91, (1969) 4432-4436
  • Non-patent document 2 Chemical Abstracts Vol. 93, No. l3, (1980) 621 Abstracts No. l32037x
  • Non-patent document 3 Chemistry Letters (1992) 1309-1312
  • Non-Patent Document 4 Climate Change 2001: The Scientific Basis
  • Non-Patent Document 5 Chemical Physics Letters Vol. 69, (1983) 129-132
  • Non-Patent Document 6 Zeitschrift for Anorganische und Rheine Chemie Vol.242, (1939)
  • An object of the present invention is to provide an economically advantageous method for producing carbonyl difluoride, which is useful as a raw material of a fluorine-containing organic compound or as a cleaning gas in the production of semiconductors.
  • the present invention provides the following method:
  • a process for producing carbon difluoride comprising reacting trifluoromethane with an oxygen gas or an oxygen-containing gas under heating.
  • a method for producing carbonyl difluoride by reacting trifluoromethane with an oxygen gas or an oxygen-containing gas while heating in a reactor comprising the following steps:
  • the crude product gas from the reactor is pressurized by a compressor if necessary, the pressurized gas is cooled by a cooler, separated into oxygen-rich gas and liquid of other components, and converted to oxygen. The process of recycling rich gas into the reactor.
  • step (ii) Step of separating the liquid separated from oxygen in step (i) by a distillation column, separating and recovering high-purity carbon difluoride, and recycling the concentrated trifluoromethane to a reactor.
  • a method for producing carbonyl difluoride by reacting trifluoromethane with an oxygen gas or an oxygen-containing gas under heating in a reactor comprising the following steps:
  • the gas that has not been subjected to the liquid filtration in the GO step (i) is further pressurized by a compressor if necessary and then cooled by a cooler to separate it into an oxygen-rich gas and other liquids. Recycling process.
  • step (iii) Step of distilling the liquid separated in step (ii) with a distillation column, separating and recovering high-purity carbyl difluoride, and recycling the concentrated trifluoromethane to a reactor.
  • HFC23 used as a raw material is obtained as a by-product of HCFC22, which is produced as a raw material for TFE, a refrigerant that is a warming gas, and is partially used as an etching gas. I have. Effective use of HFC23 is economically and globally significant.
  • FIG. 1 shows an example of a COF2 production process of the present invention.
  • FIG. 2 shows an example of a COF2 production process of the present invention.
  • HFC23 trifluoromethane
  • oxygen gas or oxygen-containing gas are supplied continuously or intermittently to the heated reaction tube, and the crude product is continuously or intermittently supplied.
  • the crude product often contains CO, a by-product, in addition to the main products, luponyl difluoride and HF.
  • Compounds other than carbon difluoride in the crude product can be separated by distillation or the like, if necessary.
  • Compounds other than the separated carbon difluoride for example, unreacted HFC23 and oxygen (which may further contain carbonyl difluoride) can be recycled to the reaction system again. Therefore, when difluorocarbol is also separated from these, difluorocarbon There is no problem even if it contains a large amount of activated carbon.
  • HF and oxygen which have a large difference in boiling point from carbonyl, such as HF or oxygen, the crude product is compressed and / or cooled without separation by distillation, etc.
  • compounds having a higher boiling point than oxygen can be selectively separated to separate them.
  • the air or oxygen-enriched air can be separated, recovered, recycled, etc. in the same manner as oxygen.
  • about 100 ° C force is also about 1500 ° C, preferably about 300 ° C to about 1000 ° C, and more preferably about 350 ° C force is also about 700 ° C. If the reaction temperature is too low, Since the reaction rate becomes extremely slow, the reaction time becomes long, which is not efficient. On the other hand, if the reaction temperature is too high, by-products increase, and the life of the reactor is shortened due to corrosion or the like.
  • the reaction time depends on the reaction temperature.
  • the force is about 0.1 second and about 10 hours, preferably about 0.5 second to about 1 hour, and more preferably about 1 second and about 30 minutes.
  • the longer the reaction time the more the reaction proceeds.
  • the reaction time is extremely long, the reaction is heated more than necessary, which is inefficient.
  • the reaction time is too short, the reaction does not proceed sufficiently, making it difficult to separate the generated carbonyl difluoride.
  • the ratio of HFC23 to oxygen (O 2) is determined by the force that can be selected arbitrarily.
  • the amount of element is from about 0.01 to about 200 mol, preferably about 0.1 mol and about 100 mol, more preferably about 0.5 mol and about 50 mol.
  • 0.5 mole of oxygen reacts with 1 mole of HFC23, but there is no problem in the reaction with less than oxygen. However, if the amount is too small, the generated carbonyl difluoride will decrease, resulting in poor efficiency. Excessive oxygen promotes the reaction and increases the amount of generated carbon difluoride, which is efficient and unreacted oxygen can be recycled by returning it to the reaction system. If too much, the amount of recycling increases and the equipment becomes large, which is not economical.
  • oxygen-containing gas air or air having an increased oxygen concentration by an oxygen-enriched film or the like can be used.
  • the oxygen concentration in the oxygen-containing gas is not particularly limited as long as the reaction proceeds. For example, it is about 10% vZv or more and less than 100% vZv, preferably, about 20% vZv or more and less than 100% vZv. There is no problem if the oxygen concentration is lower than air.
  • the air removes moisture and CO by a method such as compression and cooling or an adsorbent before the reaction.
  • the reaction pressure can be arbitrarily selected from lower than atmospheric pressure or higher than atmospheric pressure. The higher the reaction pressure, the better the efficiency and the better the subsequent separation. More specifically, the gauge pressure is preferably from 0.09 MPaG to 20 MPaG. From the simplicity of the process, the pressure is preferably not less than atmospheric pressure and not more than 20 MPaG. Considering the pressure resistance of equipment such as reactors, not less than atmospheric pressure and not more than lOMPaG Is more preferred.
  • the material of the part of the reactor that comes into contact with the reaction gas is important. Any metal or inorganic material can be selected as long as it can withstand oxygen and HF at high temperatures, and iron, copper, or alloys containing a large amount of them can be selected. Reacts with carbon fluoride to generate CO and CO, so that the recovery of carbon difluoride
  • stainless steel such as SUS316, N-Cr-Mo alloy such as HASTELLOY C, N-Cr alloy such as INCONEL600,
  • Corrosion-resistant materials such as nickel alloys such as Ni-Mo alloys such as HASTELLOY B, M-Cu alloys such as MONEL400, and pure nickel are selected.
  • nickel alloys such as Ni-Mo alloys such as HASTELLOY B, M-Cu alloys such as MONEL400, and pure nickel are selected.
  • stainless steel since stainless steel partially causes decomposition of the carbon fluoride, it is more preferable to use a nickel alloy such as a Ni-Cr alloy, a Ni-Mo alloy, a Ni-Cr-Mo alloy, a Ni-Cu alloy, or a nickel alloy.
  • a material with high corrosion resistance such as is selected.
  • the reactor is coated with a stable metal fluoride such as sodium fluoride, potassium fluoride, calcium fluoride, or the like, the material can withstand a high-temperature oxygen atmosphere. Or stainless steel can also be used.
  • the present application is characterized in that the reaction between trifluoromethane and oxygen is carried out under heating. Carbon difluoride is partially decomposed into CO and CF by a nickel or platinum catalyst under heating.
  • Non-Patent Document 6 Non-Patent Document 6
  • carbonyl difluoride generated by the reaction is further decomposed to form CF, despite the fact that nickel-based reactors and nickel beads are filled.
  • CF carbonyl difluoride generated by the reaction
  • a catalyst can be used in the present invention as is generally used in a gas phase reaction. Or, Pellets and beads can be placed in the reactor simply as a heat medium. These materials do not cause decomposition of carbon difluoride and can be selected from sodium fluoride pellets and nickel beads.
  • ruthenium, rhodium, palladium, osmium, iridium, platinum, silver, and aluminum manganese, iron, conorto, nickel, copper, zinc, zirconium, molybdenum, silver, cadmium, tin, Fluorides such as hafnium, rhenium, thallium, lead and bismuth are used. These fluorides may be chlorides, bromides, oxides, etc. which do not need to be fluorides at the time of preparation.For example, CoCl, MnBr, MgCl, CuCl, etc.
  • the prepared catalyst can be fluorinated by contacting it with COF or HF before or during the reaction.
  • the platinum group catalyst can also be used after carrying a metal halide and then reduced with hydrogen or the like.
  • a carrier for supporting the catalyst alkali metal fluorides such as NaF and KF and alkaline earth metal fluorides such as MgF, CaF and BaF can be selected.
  • the reaction of the present invention can be carried out, for example, by the production process shown in FIGS.
  • the gas whose pressure has been increased is cooled by the cooler I, and the gas having a boiling point higher than that of oxygen is stored in the receiver I.
  • the liquid accumulated in the receiver I is sent to the distillation process from the gas phase or liquid phase as gas or liquid.
  • receiver I is cooled and HF and carbon difluoride are separated, only the phase rich in carbonyl difluoride can be sent to the next step.
  • the energized gas which is not liquefied in the cooler I is a gas containing a large amount of oxygen
  • the gas is adjusted to an appropriate pressure by a pressure regulating valve or the like, and then recycled to the reactor.
  • the liquid collected in the receiver I is transferred to the distillation process as it is, and separated into high-purity carbon difluoride, a mixture of HFC23 and carbon difluoride, and concentrated HF.
  • the mixture of HFC23 and carbon difluoride is returned to the reactor.
  • the top power of the high purity carbon difluoride A mixture of HFC23 and carbon difluoride is obtained.
  • the crude product gas exiting the reactor is pressurized by a compressor as necessary and cooled by the cooler 1, and HF having a high boiling point is filtered and stored in the receiver 1. If the pressure of the crude gas is sufficiently high, compression is not required.
  • the energized gas which is not liquefied in the cooler 2 is a gas containing a large amount of oxygen, and is adjusted to an appropriate pressure via a pressure adjusting valve or the like and then recycled to the reactor.
  • the liquid accumulated in the receiver 2 is directly transferred to the distillation step, where it is separated into high-purity carbon difluoride, a mixture of HFC23 and carbon difluoride, and concentrated HF.
  • the mixture of HFC23 and carbonyl difluoride is returned to the reactor.
  • high-purity carbonyl difluoride is obtained from the top of the column, and a mixture of HFC23 and carbon difluoride is obtained in the middle stage of the column.
  • oxygen-containing gas such as air or air whose oxygen concentration is increased by an oxygen-enriched film can be used instead of oxygen.
  • moisture and carbon dioxide as impurities are reduced by adsorption, compression, cooling or the like.
  • the crude product gas exiting the reactor can be used for heating the charged raw materials via a heat exchanger.
  • the compressor may not be provided.
  • a 3/4 inch outer diameter SUS316 reaction tube (approximately 30 cm in heating area) was heated to a predetermined temperature with a ring heater while flowing nitrogen. After that, HFC23 and oxygen were flowed at the specified flow rate at that temperature. At this time, the pressure in the reaction tube was about 0.1 OlMPaG in gauge pressure. Dilute the gas coming out of the reaction tube with about 1 L / min of nitrogen, and analyze the product gas by FTIR. , Reaction rate and selectivity were calculated. The results are shown in Table 1.
  • a HASTELLOYC reaction tube (approx. 50 cm) made of HASTELLOYC having an inner diameter of about 2 cm was heated to a predetermined temperature by flowing an nitrogen gas with an annular heater. After that, HFC23 and oxygen were flowed at a predetermined flow rate at that temperature. At this time, the pressure in the reaction tube was about 0.1 OlMPaG in gauge pressure. The gas coming out of the reaction tube was diluted with about 1 LZmin of nitrogen, and the reaction gas and selectivity were calculated by separating the generated gas by FTIR. The results are shown in Table 1.
  • a 3Z8-inch outer diameter nickel reaction tube (heating portion: about 50 cm) was heated to a predetermined temperature by flowing nitrogen gas through an annular heater. After that, HFC23 and oxygen were flowed at the specified flow rate at that temperature. At this time, the pressure in the reaction tube was about 0.1 OlMPaG in gauge pressure. The gas coming out of the reaction tube was diluted with about 1 LZmin of nitrogen, and the product gas was analyzed by FTIR to calculate the reaction rate and selectivity. The results are shown in Table 1. When the residence time of the heated part was calculated from the capacity of the part, the flow rate of the raw material, and the reaction temperature, it was 18 seconds in Example 17, 12 seconds in Example 18, and 9 seconds in Example 19.
  • Example 1 1 700 5.2 10.6 99.9 87
  • Example 1 2 520 18.3 35.9 99 99.8 Example 1 3 520 26.9 27.1 98 99.6
  • Example 1 4 420 17.1 33.3 91 99.9
  • Example 1 5 380 17.1 33.3 81 99.9
  • Example 1 6 350 5.2 5.2 64 99.9
  • Example 1 7 450 10 20 90 99.8
  • Example 1 8 450 15 30 52 99.8
  • Example 1 9 450 20 40 5 97.6
  • Examples 12 and 13 show that the reaction temperature (520 ° C) is excellent.
  • the selectivity was low due to the high reaction temperature, and in Examples 14 to 16, the selectivity was high, but a long reaction time was required due to the low reaction temperature. Is considered to have decreased.
  • the reaction temperature is preferably 400 ° C. to 600 ° C. If it is lower than that, the reaction rate is thought to be low, and if it is higher than that, it is considered that by-products are formed and the selectivity is lowered.
  • the reaction tube was heated to 520 ° C in the same manner as in Example 10, and then HFC23: 5.2 ml / min, oxygen: 10. lml / min, and nitrogen: 39.8 mlZmin were passed.
  • the gas coming out of the reaction tube was directly analyzed by FTIR, and the reaction rate and selectivity were calculated.
  • the reaction rate was 80%, and the selectivity for carbonyl difluoride was 99.5%.
  • Ni-Cr alloy Ni-Mo alloy
  • Ni-Cr-Mo alloy Ni-Cr-Mo alloy
  • reaction tube made of a nickel alloy such as a Ni-Cu alloy or a highly corrosion-resistant material such as nickel, decomposition of carbon difluoride into CO can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 本発明は、トリフルオロメタンと酸素または酸素含有ガスとを加熱下で反応させることを特徴とする、二フッ化カルボニルの製造方法に関する。

Description

明 細 書
二フッ化カルボニルの製造方法
技術分野
[0001] 本発明は、二フッ化カルボ-ルの製造方法に関するものである。
背景技術
[0002] 二フッ化カルボニルは、有機フッ素化合物の原料、半導体製造時のクリーニングガ スなどの用途があり、有用な物質である。
[0003] 二フッ化カルボニルの製造方法は、一酸化炭素を原料とする製造方法として、一酸 化炭素の電解フッ素化による方法 (特許文献 1)、一酸ィ匕炭素をフッ素ガスにより直接 フッ素化する方法 (非特許文献 1)が知られており、ホスゲンを原料とする製造方法と しては、溶媒存在下ホスゲンをフッ化水素によりフッ素化する方法或いは溶媒及びト リエチルァミン存在下フッ化水素によりホスゲンをフッ素化する方法 (特許文献 2)、溶 媒中でフッ化ナトリウムによりフッ素化する方法 (特許文献 3)、ホスゲンを気相にて活 性炭触媒でフッ化水素によりフッ素化する方法 (特許文献 4)が知られている。その他 、テトラフルォロエチレン (TFE)と酸素を反応させる方法 (特許文献 5)が知られて ヽ る。
[0004] しかし、一酸ィ匕炭素を原料とした製造方法である電解フッ素化や直接フッ素化は、 高価な電解槽が必要であったり、大きな反応熱を制御するため設備が大きくなるなど 、工業的には適さない方法である。また、一酸ィ匕炭素の電解フッ素化では CFや CF
4 3
OFが副生し、一酸ィ匕炭素の直接フッ素化では、 CF OFなどの過酸ィ匕物が副生し、
3
二フッ化カルボ-ルの選択率も高くない。また、ホスゲンを原料とした製造方法では、 溶媒存在下フッ化水素でホスゲンをフッ素化する方法や、ホスゲンを活性炭触媒で フッ化水素によりフッ素化する方法は、生成した二フッ化カルボ-ルと塩ィ匕水素との 沸点差が約 1°Cと小さくその分離が困難である。溶媒及びトリェチルァミン存在下フッ 化水素によるホスゲンのフッ素化或いは溶媒存在下フッ化ナトリウムでホスゲンをフッ 素化する方法は、塩ィ匕水素が生成せず二フッ化カルボ-ルが得られる力 トリェチル ァミンの塩酸塩、塩ィ匕ナトリウムが、大量に生成するためその廃棄若しくは再利用が 必要となる。
[0005] また、 TFEを酸素で酸化する反応は、非常に大きな反応熱が発生するため爆発の 危険を伴う。
さら〖こ、上記の製造方法で用いられる一酸化炭素、ホスゲン、 TFEは毒性やィ匕合物 の安定性などから一般的には大量に入手する事は困難であり、取り扱いも慎重さが 要求される。
[0006] 一方、容易に入手できる原料としてはクロロジフルォロメタン (HCFC22)、トリフル ォロメタン (HFC23)がある。これらを原料とする製造方法としては、 HCFC22などモ ノハロジフルォロメタンと酸素を反応させる方法 (特許文献 6)、 HCFC22とオゾンを 反応させる方法 (非特許文献 2)が知られている。また、製造方法ではないが、 HFC2 3と電子的に励起された酸素原子である O^D)との反応により二フッ化カルボ-ルが 生成することが知られている。(非特許文献 3)
し力し、特許文献 6では、二フッ化カルボ-ルの生成が確認されたのみで、定量は されていない。また、副生成物に関する記述も無い。非特許文献 2では、二フッ化力 ルポ-ル以外に HC1や C1にカロえ、不明の副生成物が得られている。ここで得られる
2
HC1は二フッ化カルボニルと沸点が近いためその分離が困難である。一方、 HFC23 は HCFC22と同じようにトリハロゲンィ匕されたメタンであり、塩素を含まないため副生 成物に HC1が生成することは無いが、その反応性は HCFC22に比べて極めて異な るものである事が知られている。例えば、 IPCCが示した大気寿命 (O以上に強い酸
2
ィ匕剤である OHラジカルとの反応速度力も算出した値)(非特許文献 4)は、 HCFC22 力 9年、 HFC23力 260年、ほかのトリハロゲン化メタンでは、 CHBrF力 7年と H
2
FC23が他のトリハロゲン化メタンに比べ突出して反応し難い化合物であることが知ら れている。従って、特許文献 6や非特許文献 2と同様の方法で HFC23から二フッ化 カルボニルが生成することを予測する事は不可能である。また、非特許文献 3の方法 は、高度に励起された酸素原子との反応であり、本発明とは基本的に異なる反応で ある。力!]えて、非特許文献 3の方法は工業的にも実用化が困難である上、特許文献 6 同様に、定量はされてない。更に非特許文献 3によると、レーザーにより COが励起
2 され、生成するのは O ( )の他 O (3P)が生成し、 O (3P)は HFC23との反応には関 与しない。 O O)は HFC23と反応し二フッ化カルボ-ルを生成するほ力、生成した 二フッ化カルボ-ルとの衝突により失活し O (3P)に変換されることが知られており(非 特許文献 5)、効率の良い反応とは言えない。また、 O D)は二フッ化カルボニルと 反応して一部 COと Fに分解することが知られているが(非特許文献 5)、二フッ化力
2 2
ルボニルと Oでは、 Fは Oより酸化力が強いため二フッ化カルボニルが COと Fに
2 2 2 2 2 分解する事は無い。
[0007] この様に、二フッ化カルボ-ルの製造方法は多く報告されており、フッ素化されたメ タンィ匕合物を原料にした方法も報告されているが、容易な方法で且つ収率の高い反 応は未だ見出されて 、な 、。
特許文献 1:特公昭 45— 26611
特許文献 2 :特開昭 54— 158396
特許文献 3 :US3088975
特許文献 4:US2836622
特許文献 5 :US3639429
特許文献 6 :EP0310255
非特許文献 1 : J. Am. Chem. Soc, Vol.91,(1969) 4432-4436
非特許文献 2 : Chemical Abstracts Vol.93,No.l3,(1980)621 Abstracts No.l32037x 非特許文献 3 : Chemistry Letters (1992)1309-1312
非特許文献 4: Climate Change 2001 :The Scientific Basis
非特許文献 5 : Chemical Physics Letters Vol.69,(1983)129- 132
非特許文献 6 :Zeitschrift for Anorganische und Allgemeine Chemie Vol.242, (1939)
272-276
発明の開示
発明が解決しょうとする課題
[0008] 本発明は含フッ素有機化合物の原料として、或いは半導体製造時のクリーニング ガスとして有用な二フッ化カルボニルの経済的に有利な製造方法を提供することを 目的とする。
課題を解決するための手段 [0009] 本発明者は、上記のような課題を解決するべく鋭意検討を行った結果、トリフルォロ メタンと酸素 (酸素ガスまたは空気や酸素富化空気などの酸素含有ガス)を加熱下で 反応させる事により、収率良く二フッ化カルボニルが得られる事を見出した。さらに耐 食性の反応器を用いる事により副生する COの生成量を極端に抑制できる事も見出
2
した。
[0010] 本発明は、下記の方法を提供するものである:
1. トリフルォロメタンと酸素ガスもしくは酸素含有ガスとを加熱下で反応させることを 特徴とする、二フッ化カルボ-ルの製造方法。
2. 反応温度が 100°Cから 1500°Cである項 1に記載の方法。
3. 酸素含有ガスが空気または酸素濃度が空気よりも高い酸素富化ガスである項 1 または 2に記載の方法。
4. トリフルォロメタンと酸素ガスもしくは酸素含有ガスを耐食性の反応器内で反応さ せることにより副生する COの生成を抑制することを特徴とする項 1〜3のいずれかに
2
記載の方法。
5. 触媒存在下で反応させることを特徴とする項 1〜4のいずれかに記載の方法。
6. トリフルォロメタンと酸素ガスもしくは酸素含有ガスとを反応器で加熱下に反応さ せて二フッ化カルボニルを製造する方法にぉ 、て、下記の工程を有することを特徴と する方法:
(0反応器からの粗生成ガスを、必要に応じて圧縮機で昇圧し、昇圧されたガスを冷 却器で冷却し、酸素に富むガスとそれ以外の成分の液体に分離し、酸素に富むガス を反応器にリサイクルする工程。
(ii)工程 (i)で酸素と分離された液体を蒸留塔で蒸留し、高純度の二フッ化カルボ- ルを分離回収し濃縮されたトリフルォロメタンは反応器にリサイクルする工程。
7. トリフルォロメタンと酸素ガスもしくは酸素含有ガスとを反応器で加熱下に反応さ せて二フッ化カルボニルを製造する方法にぉ 、て、下記の工程を有することを特徴と する方法:
(0反応器からの粗生成ガスを、必要に応じて圧縮機で昇圧し、昇圧されたガスを冷 却器で冷却し、 HFを液ィ匕して除去する工程。 GO工程 (i)で液ィ匕しなかったガスは、必要に応じて圧縮機で更に昇圧された後冷却 器で冷却され、酸素に富むガスとそれ以外の液体に分離し、前者を反応器にリサイク ルする工程。
(iii)工程 (ii)で分離された液体を蒸留塔で蒸留し、高純度の二フッ化カルボ二ルを分 離回収し濃縮されたトリフルォロメタンは反応器にリサイクルする工程。
発明の効果
[0011] 本発明によれば効率よく二フッ化カルボ-ルを製造することができる。さらに、原料 として用いられる HFC23は温暖化ガスである力 冷媒ゃ TFEの原料として製造され る HCFC22の副生成物として得られるもので、一部はエッチングガスとして利用され る力 その大半は焼却されている。この HFC23を有効利用することは、経済的にも、 地球環境的にも意義深 、ことである。
図面の簡単な説明
[0012] [図 1]本発明の COF2製造プロセスの一例を示す。
[図 2]本発明の COF2製造プロセスの一例を示す。
発明を実施するための最良の形態
[0013] 本発明の反応を、化学反応式として以下に示す:
2CHF + O → 2COF + 2HF
3 2 2
本反応の実施方法について特に制限は無いが、通常の気相反応と同様の形態を とる事ができる。即ち、加熱した反応管に連続的或いは間欠的にトリフルォロメタン( 以下、「HFC23」と略すことがある)と酸素ガスまたは酸素含有ガスを供給し、連続的 或 ヽは間欠的に粗生成物を得る方法である。粗生成物は主生成物である二フッ化力 ルポニルと HFの他に、副生成物である COが含まれる場合が多いが、反応条件に
2
よっては、未反応の HFC23や酸素が多く含まれたり、 COがほとんど含まれない場
2
合や、その他の微量の副生成物が含まれる場合もある。
[0014] 粗生成物中の二フッ化カルボ-ル以外の化合物は、必要であれば蒸留等で分離 が可能である。分離された二フッ化カルボ-ル以外の化合物、例えば未反応の HFC 23や酸素(さらに二フッ化カルボニルが含まれて 、てもよ 、)は再び反応系にリサイ クルできる。従って、二フッ化カルボ-ルカもこれらを分離する際は、これらにニフッ 化カルボ-ルが多く含まれていても問題ない。また、 HFや酸素のように二フッ化カル ボニルと沸点差が大きいものは、蒸留等で分離しなくとも、粗生成物を圧縮或いは冷 却或いはその両方を行う事により、例えば HFを選択的に液ィ匕したり、酸素より高沸 点の化合物を選択的に液ィ匕したりして分離する事もできる。
酸素として空気や酸素が富化された空気を使用した場合、空気または酸素富化空気 は、酸素と同様に分離'回収、リサイクル等を行うことができる。
[0015] HFC23と酸素(酸素ガスまたは酸素含有ガス)の反応条件としては、反応温度は、 高いほうが反応が速く効率が良いが、高すぎると副生成物である COが増えるため
2
好ましくはない。具体的には約 100°C力も約 1500°C程度、好ましくは約 300°Cから 約 1000°C程度、より好ましくは約 350°C力も約 700°C程度が良ぐ反応温度が低す ぎると反応速度が極端に遅くなるため反応時間が長時間になり、効率的ではない。ま た、反応温度が高すぎると、副生成物が増加する他、腐食等により反応器の寿命が 短くなるためやはり効率的ではなくなる。
反応時間は、反応温度にも依る力 約 0. 1秒力も約 10時間、好ましくは約 0. 5秒か ら約 1時間、より好ましくは約 1秒力も約 30分である。反応時間は長いほど反応は進 行するが、極端に長いと必要以上に加熱する事になり非効率である。また、短すぎる と反応が十分に進行しないため、生成した二フッ化カルボニルの分離が困難になる など、やはり効率が悪い。
[0016] HFC23と酸素(O )の比率は、任意に選択できる力 HFC23が 1モルに対して酸
2
素が約 0. 01から約 200モル程度、好ましくは約 0. 1力も約 100モル程度、より好まし くは約 0. 5モル力も約 50モル程度が良い。理論的には HFC23が 1モルに対して酸 素は 0. 5モル反応するが、酸素はそれ以下でも反応に問題はない。ただし少なすぎ ると生成する二フッ化カルボニルが少なくなり、効率が悪くなる。また、酸素を過剰に する事は、反応をより促進し生成する二フッ化カルボ-ルが増えるため効率が良ぐ かつ未反応の酸素は再び反応系に戻す事によりリサイクルする事ができるが、多す ぎるとリサイクル量が増え、設備が大きくなるため経済的ではない。
酸素含有ガスとしては、空気や酸素富化膜等で酸素濃度を上げた空気を用いる事も できる。酸素含有ガス中の酸素濃度は、反応が進行する限り特に制限はないが、例 えば 10%vZv程度以上、 100%vZv未満、好ましくは、 20%vZv程度以上、 100 %vZv未満である。空気より酸素濃度が低くても問題はな 、。
[0017] これらの空気は、反応前に圧縮や冷却等の方法や吸着剤により水分や COを除去
2 する事が望ましい。これらの空気を使用する場合の HFC23に対する酸素の比率も 上記と同様である。
反応圧力は、大気圧未満、大気圧以上から任意に選択できるが、高いほうが効率が 良ぐまた後の分離にも都合が良い。具体的には、ゲージ圧にして— 0. 09MPaGか ら 20MPaGが良ぐプロセスの簡便さからいくと大気圧以上 20MPaG以下が好ましく 、反応器等機器類の耐圧を考えると、大気圧以上 lOMPaG以下がより好ましい。
[0018] 反応器の反応ガスと接する部分の材質は重要である。高温で酸素や HFに耐え得 る材質であれば、あらゆる金属や無機物が選択できるため、鉄や銅或いはそれらを 多く含む合金なども選択できるが、これらは高温の酸素雰囲気下では、生成したニフ ッ化カルボ-ルと反応し COや COが生成してしまうため、二フッ化カルボ-ルの収
2
率を低下させる原因となる。そのため、好ましくは SUS316などのステンレス鋼、 HASTELLOY Cなどの Nト Cr- Mo合金、 INCONEL600などの N卜 Cr合金、
HASTELLOY Bなどの Ni- Mo合金、 MONEL400などの M-Cu合金といったニッケル 合金や純ニッケルなど耐食性の材質が選択される。さらにステンレス鋼でも一部ニフ ッ化カルボ-ルの分解の原因となるため、さらに好ましくは Ni-Cr合金、 Ni-Mo合金、 Ni-Cr-Mo合金、 Ni-Cu合金などのニッケル合金、ニッケル等の高耐食性の材質が選 択される。或いは、上記合金以外にも、フッ化ナトリウム、フッ化カリウム、フッ化カルシ ゥムなど安定な金属フッ化物で反応器をコーティングすることにより、高温の酸素雰 囲気に耐え得る材質であれば、鉄やステンレスなども使用できる。
[0019] 本願は、トリフルォロメタンと酸素との反応を加熱下で行う事を特徴としている力 二 フッ化カルボ-ルは加熱下ニッケル或いは白金触媒により一部 COと CFに分解す
2 4 る事が知られている (非特許文献 6)。しかし、本発明では、酸素共存下であるためか 、ニッケル系の反応器やニッケルビーズを充填しているにもかかわらず、反応により 生成した二フッ化カルボニルが更に分解して CFが生成することは無力つた。
4
気相反応で一般に用いられる様に、本発明でも触媒を用いる事ができる。或いは、 単に熱の媒体として、ペレットやビーズを反応器に入れる事ができる。これらの材質 は二フッ化カルボ-ルの分解の原因となるようなものは避け、フッ化ナトリウムのペレ ットゃニッケルのビーズなどを選択する事ができる。
[0020] 触媒としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、銀が 用いられる他、アルミ、マンガン、鉄、コノルト、ニッケル、銅、亜鉛、ジルコニウム、モ リブデン、銀、カドミウム、錫、ハフニウム、レニウム、タリウム、鉛、ビスマスなどのフッ 化物が用いられる。これらのフッ化物は、調製時はフッ化物である必要は無ぐ塩ィ匕 物、臭化物、酸化物等でも良ぐ例えば、 CoCl、 MnBr、 MgCl、 CuClなどはメタ
2 2 2 2 ノールへの溶解度が高いため担体への担持が容易となる。調製された触媒は、 COF や HF等と反応前或いは反応中に接触させる事によりフッ素化することができる。ま
2
た、白金族の触媒は、やはり金属ハロゲンィ匕物を担持した後、水素等により還元して 用いる事ができる。触媒を担持させる担体としては NaF、 KFなどのアルカリ金属フッ 化物、 MgF、 CaF、 BaFなどのアルカリ土類金属フッ化物を選択する事ができる。
2 2 2
[0021] 本発明の反応は、例えば図 1,図 2に示す製造プロセスにより実施することができる
[0022] 図 1に示されるプロセスは、以下のように実施することができる。
(1)反応器を出た粗生成ガスは、必要に応じて圧縮機 Iで昇圧される。粗生成ガス の圧力が十分高い場合には、圧縮は必要ない。
[0023] (2)必要に応じて昇圧されたガスは、冷却器 Iで冷却され、酸素より沸点の高 、ガス は液ィ匕し受器 Iに貯められる。受器 Iに溜まった液は気相部または液相部からガスまた は液で蒸留工程に送られる。または、受器 Iを冷却し HFと二フッ化カルボ-ルが分液 すれば二フッ化カルボニルに富んだ相のみを次の工程に送る事もできる。
[0024] (3)冷却器 Iで液ィ匕しな力つたガスは、酸素を多く含むガスであるため圧力調整弁 等で適切な圧力に調節された後、反応器にリサイクルされる。
(4)受器 Iに溜まった液は、そのまま蒸留工程に移され高純度の二フッ化カルボ二 ル、 HFC23と二フッ化カルボ-ルの混合物、濃縮された HFに分離される。このうち HFC23と二フッ化カルボ-ルの混合物は再び反応器に戻される。この時、蒸留工程 に送られる物質の組成や蒸留の条件にも依るが、塔頂力 高純度の二フッ化カルボ -ルが得られ塔中段力も HFC23と二フッ化カルボ-ルの混合物が得られる。
[0025] 図 2に示されるプロセスは、以下のように実施することができる。
[0026] (1)反応器を出た粗生成ガスは必要に応じて圧縮機で昇圧され冷却器 1で冷却さ れ、沸点の高い HFは液ィ匕され受器 1に貯められる。粗生成ガスの圧力が十分高い 場合には、圧縮は必要ない。
(2)冷却器 1で液ィ匕しなカゝつたガスは圧縮機 2で更に昇圧された後冷却器 2で冷却 され、酸素より沸点の高いガスはほとんど液化されて、受器 2に溜まる。
[0027] (3)冷却器 2で液ィ匕しな力つたガスは酸素を多く含むガスであり、圧力調整弁等を 介して適切な圧力に調節された後反応器へとリサイクルされる。
(4)受器 2に溜まった液は、そのまま蒸留工程に移され、高純度の二フッ化カルボ -ル、 HFC23と二フッ化カルボ-ルの混合物、濃縮された HFに分離される。 HFC2 3と二フッ化カルボニルの混合物は再び反応器に戻される。この時、蒸留工程に送ら れる物質の組成や蒸留の条件にも依るが、塔頂から高純度の二フッ化カルボニルが 得られ塔中段力も HFC23と二フッ化カルボ-ルの混合物が得られる。
図 1, 2共に、酸素の替わりに空気や酸素富化膜で酸素濃度を上げた空気等の酸素 含有ガスを利用する事もできる。この際、不純物である水分や炭酸ガスは吸着や圧 縮、冷却等によって低減しておく事が好ましい。
[0028] 反応器を出た粗生成ガスは熱交換器を介して仕込み原料の加熱に利用する事も できる。
[0029] また、反応器の圧力が十分に高い場合は、圧縮機が無くても良い。
実施例
[0030] 以下、本発明を実施例を用いてより詳細に説明するが、本発明はこれら実施例に 限定されない。
[0031] 実施例 1
環状ヒーターで、外径 3/4インチの SUS316製の反応管 (加熱部分約 30cm)を窒 素を流しながら所定の温度にまで加熱した。その後、その温度で HFC23と酸素を所 定流量で流した。この時の反応管内の圧力はゲージ圧で約 0. OlMPaGであった。 反応管から出てくるガスを約 lL/minの窒素で希釈し、 FTIRにより生成ガスを分析し 、反応率と選択率を算出した。その結果を表 1に示した。
[0032] 実施例 2〜6
実施例 1と同様の方法で、反応管には NaFペレット(3πιπιΦ X 3mmH)約 20mlを 加熱部分の一部に充填して反応を行った。結果を表 1に示した。
[0033] 実施例 7〜9
環状ヒーターで、内径約 2cmの HASTELLOYC製の反応管(加熱部分約 50cm)を 窒素を流しながら所定の温度にまで加熱した。その後その温度で HFC23と酸素を 所定流量で流した。この時の反応管内の圧力はゲージ圧で約 0. OlMPaGであった 。反応管から出てくるガスを約 lLZminの窒素で希釈し、 FTIRにより生成ガスを分 祈して、反応率と選択率を算出した。その結果を表 1に示した。
[0034] 実施例 10〜16
実施例 7と同様の方法で反応管にニッケルビーズ(2mm Φ )約 40mlを加熱部の一 部に充填して反応を行った。結果を表 1に示した。
[0035] 実施例 17〜19
環状ヒーターで、外径 3Z8インチのニッケル製の反応管 (加熱部分約 50cm)を窒 素を流しながら所定の温度にまで加熱した。その後その温度で HFC23と酸素を所 定流量で流した。この時の反応管内の圧力はゲージ圧で約 0. OlMPaGであった。 反応管から出てくるガスを約 lLZminの窒素で希釈し、 FTIRにより生成ガスを分析 して、反応率と選択率を算出した。その結果を表 1に示した。また、加熱部分の滞留 時間を当該部分の容量、原料の流量、反応温度から算出すると、実施例 17では 18 秒、同 18では 12秒、同 19では 9秒であった。
[0036] [表 1] /πη,Ιχ. トリフルォロメタン 02 反応率 二フッ化カルボニル選択率
(。c) (ml/min) (ml/mm) (%) (%) 実施例 1 518 14 14 86 80
実施例 2 520 14 14 88 88
実施例 3 460 14 14 83 89
実施例 4 491 22.6 5J 51 87
実施例 5 480 5.5 21.1 76 75
実施例 6 540 28 28 67 60
実施例 7 550 5.2 10.6 91 99
実施例 8 600 5.2 20.5 97 99
実施例 9 600 5.2 10.6 97 98
実施例 1 0 600 5.2 10.6 98 97
実施例 1 1 700 5.2 10.6 99.9 87
実施例 1 2 520 18.3 35.9 99 99.8 実施例 1 3 520 26.9 27.1 98 99.6 実施例 1 4 420 17.1 33.3 91 99.9 実施例 1 5 380 17.1 33.3 81 99.9 実施例 1 6 350 5.2 5.2 64 99.9 実施例 1 7 450 10 20 90 99.8 実施例 1 8 450 15 30 52 99.8 実施例 1 9 450 20 40 5 97.6
[0037] 上記実施例の結果から、 HASTELLOYC製の反応管が優れていることが明らかにな つた o
[0038] また、実施例 12, 13は反応温度(520°C)が優れていることを示している。実施例 11は反応温度が高いため選択率が低くなり、実施例 14〜16は選択率は高いが、反 応温度が低いため長い反応時間が必要になり、当該実施例の反応時間では反応率 が低くなつたと考えられる。
[0039] 上記の結果から、好ましレ、反応条件としては、反応温度は 400°C〜600°Cが好ましく 、それより低いと反応率が低くなり、高いと副生成物が生成し選択率が低下すると考 えられる。
[0040] 実施例 20
実施例 10と同様の方法で反応管を 520°Cまで加熱し、その後 HFC23 : 5. 2ml/mi n、酸素: 10. lml/min,窒素: 39. 8mlZminを流した。反応管から出てくるガスを そのまま FTIRにより分析し、反応率と選択率を算出したところ、反応率は 80%、ニフ ッ化カルボニルの選択率は 99. 5 %であつた。
[0041] 参考例 1
環状ヒーターで、外径 3/4インチの SUS316製の反応管 (加熱部分約 20cm)の加 熱部分に NaFペレット約 100mlを充填し、窒素を流しながら 520°Cまで加熱した後、 温度を維持しながら二フッ化カルボ-ルを 9mlZmin、酸素 Z窒素(20Z80vol)の 混合ガスを 171ml/minで流した。反応管から出てくるガスをそのまま FTIRにより分 祈したところ、少量の COが生成していた。反応後、反応管の内部を観察したところ、
2
NaFペレットには変化は見られな力つた力 反応管内部は腐食物が見られた。
[0042] 一方、 SUS316製の反応管に代えて Ni- Cr合金、 Ni- Mo合金、 Ni- Cr- Mo合金、
Ni-Cu合金などのニッケル合金、ニッケル等の高耐食性の材質の反応管を使用する ことで、二フッ化カルボ-ルの COへの分解を抑制することができる。

Claims

請求の範囲
[1] トリフルォロメタンと酸素ガスもしくは酸素含有ガスとを加熱下で反応させることを特徴 とする、二フッ化カルボ-ルの製造方法。
[2] 反応温度が 100°Cから 1500°Cである請求項 1に記載の方法。
[3] 酸素含有ガスが空気または酸素濃度が空気よりも高い酸素富化ガスである請求項 1 または 2に記載の方法。
[4] トリフルォロメタンと酸素ガスもしくは酸素含有ガスを耐食性の反応器内で反応させる ことにより副生する COの生成を抑制することを特徴とする請求項 1〜3のいずれか
2
に記載の方法。
[5] 触媒存在下で反応させることを特徴とする請求項 1〜4の!ヽずれかに記載の方法。
[6] トリフルォロメタンと酸素ガスもしくは酸素含有ガスとを反応器で加熱下に反応させて 二フッ化カルボ-ルを製造する方法にぉ 、て、下記の工程を有することを特徴とする 方法:
(0反応器からの粗生成ガスを、必要に応じて圧縮機で昇圧し、昇圧されたガスを冷 却器で冷却し、酸素に富むガスとそれ以外の成分の液体に分離し、酸素に富むガス を反応器にリサイクルする工程。
GO工程 (i)で酸素と分離された液体を蒸留塔で蒸留し、高純度の二フッ化カルボ- ルを分離回収し濃縮されたトリフルォロメタンは反応器にリサイクルする工程。
[7] トリフルォロメタンと酸素ガスもしくは酸素含有ガスとを反応器で加熱下に反応させて 二フッ化カルボ-ルを製造する方法にぉ 、て、下記の工程を有することを特徴とする 方法:
(0反応器からの粗生成ガスを、必要に応じて圧縮機で昇圧し、昇圧されたガスを冷 却器で冷却し、 HFを液ィ匕して除去する工程。
GO工程 (i)で液ィ匕しなかったガスは、必要に応じて圧縮機で更に昇圧された後冷却 器で冷却され、酸素に富むガスとそれ以外の液体に分離し、前者を反応器にリサイク ルする工程。
(iii)工程 (ii)で分離された液体を蒸留塔で蒸留し、高純度の二フッ化カルボ二ルを分 離回収し濃縮されたトリフルォロメタンは反応器にリサイクルする工程。
PCT/JP2005/007896 2004-04-28 2005-04-26 二フッ化カルボニルの製造方法 WO2005105668A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006512785A JP5315610B2 (ja) 2004-04-28 2005-04-26 二フッ化カルボニルの製造方法
US11/587,946 US7592484B2 (en) 2004-04-28 2005-04-26 Method for producing carbonyl difluoride
CN2005800216575A CN1976873B (zh) 2004-04-28 2005-04-26 羰基氟的制造方法
EP05736606.4A EP1770061B1 (en) 2004-04-28 2005-04-26 Method for producing carbonyl difluoride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-133275 2004-04-28
JP2004133275 2004-04-28

Publications (1)

Publication Number Publication Date
WO2005105668A1 true WO2005105668A1 (ja) 2005-11-10

Family

ID=35241580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007896 WO2005105668A1 (ja) 2004-04-28 2005-04-26 二フッ化カルボニルの製造方法

Country Status (6)

Country Link
US (1) US7592484B2 (ja)
EP (1) EP1770061B1 (ja)
JP (1) JP5315610B2 (ja)
CN (1) CN1976873B (ja)
TW (1) TW200538197A (ja)
WO (1) WO2005105668A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037151A (ja) * 2008-08-05 2010-02-18 Unimatec Co Ltd フッ化カルボニルの製造方法
JP4851463B2 (ja) * 2005-09-27 2012-01-11 独立行政法人産業技術総合研究所 フッ化カルボニルの製造方法
JP2013014500A (ja) * 2011-06-07 2013-01-24 Daikin Industries Ltd フッ化カルボニルの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008052012A1 (de) * 2008-10-17 2010-04-22 Bayer Materialscience Ag Katalysator und Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
CN103303894B (zh) * 2013-06-17 2015-03-11 邯郸净化设备研究所 一种碳酰氟的纯化方法
WO2021045115A1 (ja) * 2019-09-05 2021-03-11 国立大学法人神戸大学 ハロゲン化カルボニルの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255596A (ja) * 1996-03-22 1997-09-30 Showa Denko Kk 低級パーフルオロアルカンの製造方法
JP2003313016A (ja) * 2002-04-19 2003-11-06 Daikin Ind Ltd Cof2の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2836622A (en) * 1955-02-18 1958-05-27 Du Pont Preparation of carbonyl fluoride
US3088975A (en) * 1959-04-09 1963-05-07 Du Pont Preparation of carbonyl fluoride
US3639429A (en) * 1963-07-09 1972-02-01 Du Pont Process for oxidizing polyfluorinated olefines
US3404180A (en) * 1964-12-31 1968-10-01 Du Pont Manufacture of carbonyl fluoride
DE2823981A1 (de) 1978-06-01 1979-12-13 Hoechst Ag Verfahren zur herstellung von carbonyl-difluoriden
EP0310255A1 (en) * 1987-09-14 1989-04-05 STAUFFER MANAGEMENT COMPANY c/o ICI AMERICAS INC. Production of carbonyl difluoride
US5648530A (en) * 1994-12-22 1997-07-15 Du Pont Manufacture of carbonyl floride
JP4059680B2 (ja) * 2002-01-31 2008-03-12 セントラル硝子株式会社 二フッ化カルボニルの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255596A (ja) * 1996-03-22 1997-09-30 Showa Denko Kk 低級パーフルオロアルカンの製造方法
JP2003313016A (ja) * 2002-04-19 2003-11-06 Daikin Ind Ltd Cof2の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4851463B2 (ja) * 2005-09-27 2012-01-11 独立行政法人産業技術総合研究所 フッ化カルボニルの製造方法
JP2010037151A (ja) * 2008-08-05 2010-02-18 Unimatec Co Ltd フッ化カルボニルの製造方法
JP2013014500A (ja) * 2011-06-07 2013-01-24 Daikin Industries Ltd フッ化カルボニルの製造方法

Also Published As

Publication number Publication date
EP1770061A4 (en) 2009-07-15
US20080021243A1 (en) 2008-01-24
US7592484B2 (en) 2009-09-22
CN1976873A (zh) 2007-06-06
EP1770061A1 (en) 2007-04-04
TW200538197A (en) 2005-12-01
JPWO2005105668A1 (ja) 2008-03-13
CN1976873B (zh) 2010-09-15
JP5315610B2 (ja) 2013-10-16
EP1770061B1 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
JP6294087B2 (ja) HFC−245faからHFOtrans−1234zeを生産するための方法
JP5817373B2 (ja) トランス−1,3,3,3−テトラフルオロプロペンの製造方法
JP2024109806A (ja) トリフルオロヨードメタン及びトリフルオロアセチルヨージドを生成するための処理方法
JPH0892162A (ja) ジフルオロ酢酸フルオリドおよびジフルオロ酢酸エステルの製造方法
WO2005105668A1 (ja) 二フッ化カルボニルの製造方法
JP6119388B2 (ja) トランス−1,3,3,3−テトラフルオロプロペンと1,1,1,3,3−ペンタフルオロプロパンとの並産方法
US10752565B2 (en) Processes for producing trifluoroiodomethane
US20110071325A1 (en) Production process and purification process for 1,2,3,4-tetrachlorohexafluorobutane
JP4851463B2 (ja) フッ化カルボニルの製造方法
CN111116307B (zh) 一种高纯三氟甲烷的制备方法
JP5803098B2 (ja) 五フッ化リンの製造方法
EP2628709A1 (en) Method for producing phosphorus pentafluoride
JP2009091301A (ja) シス−1,2,3,3,3−ペンタフルオロプロペンの製造方法
EP3898561A1 (en) Catalysts and integrated processes for producing trifluoroiodomethane
JP3681503B2 (ja) ジフルオロメタンの製造のためのプロセス
JP4727830B2 (ja) 1,1,1−トリフルオロ−2,2−ジクロロエタンの製造方法
JPS5842849B2 (ja) 低級パ−フルオロアルカンの製造方法
JPWO2005056472A1 (ja) フッ化カルボニルの製造方法および製造装置
JPH0853388A (ja) ジフルオロ酢酸ハライドおよびジフルオロ酢酸の製造方法
CN113272268A (zh) 环丁烷的制造方法
JP5678762B2 (ja) ジフルオロ酢酸クロライドの精製方法
JP2739763B2 (ja) パーフルオロ化合物の製造法
WO2004092067A1 (ja) 二フッ化カルボニルの製造方法
CN111423306A (zh) 卤代环烯烃水解制备氢卤环烯烃的方法
JPH0672916A (ja) フッ化ビニリデンの生産

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580021657.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512785

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

REEP Request for entry into the european phase

Ref document number: 2005736606

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005736606

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005736606

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11587946

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11587946

Country of ref document: US