WO2005099002A1 - 粉体状触媒物質とその製造方法およびそれを用いた固体高分子型燃料電池電極 - Google Patents

粉体状触媒物質とその製造方法およびそれを用いた固体高分子型燃料電池電極 Download PDF

Info

Publication number
WO2005099002A1
WO2005099002A1 PCT/JP2005/006575 JP2005006575W WO2005099002A1 WO 2005099002 A1 WO2005099002 A1 WO 2005099002A1 JP 2005006575 W JP2005006575 W JP 2005006575W WO 2005099002 A1 WO2005099002 A1 WO 2005099002A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
solid polymer
catalyst
ink
catalyst material
Prior art date
Application number
PCT/JP2005/006575
Other languages
English (en)
French (fr)
Inventor
Satoshi Kadotani
Tatsuya Hatanaka
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP05721714A priority Critical patent/EP1734602A4/en
Priority to US11/547,617 priority patent/US20080038616A1/en
Priority to CA2561942A priority patent/CA2561942C/en
Publication of WO2005099002A1 publication Critical patent/WO2005099002A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a catalyst material used for forming an electrode catalyst layer of a polymer electrolyte fuel cell, a method for producing the same, and a solid-state molecular fuel cell electrode using the same.
  • a polymer electrolyte fuel cell has a membrane electrode assembly (MEA: Membrane-Electrode) consisting of an electrolyte membrane 1 consisting of an ion exchange membrane, a catalyst layer 2 and a gas diffusion layer 3 arranged on both sides of the electrolyte membrane. Assembly 4) and a separator laminated on the membrane electrode assembly.
  • MEA Membrane-Electrode
  • a catalyst ink in which carbon particles (catalyst-carrying conductor) carrying a catalyst such as platinum and a solid polymer electrolyte which is an ion-exchange tree are dispersed in a solvent is used.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 8-264190 proposes that a solid polymer electrolyte be colloided and used in a catalyst ink. That is, a dispersion in which the catalyst-carrying conductor is dispersed in an organic solvent is obtained, and the dispersion is mixed with an alcohol solution of a solid polymer electrolyte, whereby the colloid of the solid polymer electrolyte is mixed. In addition, the colloid is adsorbed on a catalyst-carrying conductor to form a mixed solution, which is applied to one surface of a gas diffusion layer to produce an electrode.
  • the catalyst-carrying conductor carbon powder supporting a noble metal catalyst
  • the solid polymer electrolyte can be brought into sufficient contact with each other. It is stated that carbon particles and solid polymer electrolyte can be dispersed in a state in which they are in close contact with each other, and a good three-phase interface is formed in the catalyst layer.
  • Patent Document 1
  • Patent Document 2
  • Patent Document 2 The solid polymer electrolyte fuel cell electrode formed by employing the method described in Patent Document 2 has a larger gap between the catalyst layer and the electrolyte membrane than the non-colloidal solid polymer electrolyte. It is expected that a good three-phase interface will be formed and a fuel cell with good power generation efficiency will be made.
  • Patent Document 2 employs a so-called wet method in which the catalyst ink is converted into a paste-like mixed liquid, which is then coated and dried to form a catalyst layer. In this method, a gas diffusion path is partially formed. It is predicted that it will be crushed, and it is hard to say that an effective three-phase interface is formed.
  • the present invention provides a method for preparing an ink in which a solid polymer electrolyte is colloided and using the ink to manufacture a solid polymer electrolyte fuel cell electrode, in which a three-phase interface formed is made more complete to improve the cell performance. More specifically, it is an object of the present invention to provide a catalyst substance therefor, a method for producing the same, and a solid polymer electrolyte battery electrode using the same.
  • the present inventors have conducted a number of experiments and studies to solve the above problems, and actively used a poor solvent for the solid polymer electrolyte when preparing an ink in which the solid polymer electrolyte was colloided. And dry and dissolve the ink instead of applying the prepared ink directly to the electrolyte membrane or gas diffusion layer by a wet method.
  • the catalyst layer having a more complete three-phase interface is formed by applying a powdery catalyst substance formed by removing the powder to an electrolyte membrane or a gas diffusion layer by a dry method as described in Patent Document 1, for example. It was found that battery performance was greatly improved.
  • the present invention is based on this finding, and the method for producing a powdery catalyst substance according to the present invention comprises at least a catalyst-supporting conductor, a solid polymer electrolyte, and a good solvent and a poor solvent for a solid polymer electrolyte. And preparing an ink in which at least a part of the solid polymer electrolyte has been formed into a colloid, and then drying it to obtain a powdery catalyst material.
  • the catalyst-carrying conductor is, for example, a catalyst-carrying conductor used in the manufacture of this type of conventional polymer electrolyte fuel cell electrode, such as a carbon powder carrying a catalyst substance (for example, Pt).
  • the body can be used arbitrarily.
  • the solid polymer electrolyte may be any of the conventional solid polymer electrolytes used in the production of this type of solid polymer fuel cell electrode, such as perfluorocarbon sulfonic acid ionomer. Can be used.
  • Good solvents for solid polymer electrolytes include those such as propylene glycol, ethylene glycol, (iso, n-) propynoleal cornole, and ethyl alcohol. Depending on the type of the solid polymer electrolyte to be used, one that can obtain the desired solubility is appropriately selected. One kind of good solvent may be used, or a mixture of two or more kinds may be used.
  • the poor solvent for the solid polymer electrolyte is for actively colloidalizing the solid polymer electrolyte dissolved in the good solvent, and includes water, cyclohexanol, .n butyl monoacetate, n Examples include acetic acid, n-butylamine, methyl amyl ketone, and tetrahydrofuran. Depending on the type of the solid polymer electrolyte to be used, a material capable of obtaining a desired colloid is appropriately selected. One kind of poor solvent may be used, or a mixture of two or more kinds may be used.
  • the value of poor solvent / good solvent is desirably set to 2 or more. If the value of poor solvent / good solvent is less than 2, colloidation is insufficient, No significant improvement is seen in the cell performance of the manufactured polymer electrolyte fuel cell. There is no theoretical upper limit to the amount of poor solvent.
  • One of the factors for making a dissolved substance into a colloid is the dielectric constant of the solvent.
  • a poor solvent having a dielectric constant of 15 or more, or 35 or more desired colloidalization can be achieved, and a desired powdery catalyst material is produced. We were able to.
  • an ink in which at least a part of the solid polymer electrolyte is colloidal may be prepared before the drying treatment.
  • the mixing order of the good solvent and the poor solvent for the molecular electrolyte and the solid polymer electrolyte There is no particular limitation on the mixing order of the good solvent and the poor solvent for the molecular electrolyte and the solid polymer electrolyte.
  • a mixed solution of a catalyst-carrying conductor, a solid polymer electrolyte, and a good solvent for a solid polymer electrolyte is first prepared, and a poor solvent for the solid polymer electrolyte is added thereto.
  • At least a part of the ink may be a colloidal ink.
  • a mixed solution of a catalyst-supporting conductor, a good solvent and a poor solvent for a solid polymer electrolyte is prepared, and a solid polymer electrolyte is added thereto.
  • an ink in which at least a part of the solid polymer electrolyte is colloidally formed may be used.
  • the ink prepared as described above, in which at least a part of the solid polymer electrolyte is colloided, is not wet-coated on the electrolyte membrane or the gas diffusion layer as it is, but the ink is dried. Then, by removing the good solvent and the poor solvent, a powdery catalyst substance is once obtained. That is, the present invention relates to a powdery catalyst material for a polymer electrolyte fuel cell comprising a catalyst-carrying conductor and a solid polymer electrolyte, wherein the solid polymer electrolyte adheres to the catalyst-carrying conductor in an aggregated state. Also disclosed are powdered insect vectors that are integrated.
  • the obtained powdery catalyst substance is obtained by removing the catalyst from the solvent in a state where the solvent is sufficiently removed. Since the particles (catalyst-carrying conductor) and the resin particles (solid polymer electrolyte) are adhered to each other, the particles have a high porosity and good gas diffusion. Also, compared to powder obtained by drying without colloidalization, As the thickness of the resin layer increases, the number of ion conduction paths also increases. Therefore, in the catalyst layer formed by applying the powdery catalyst material obtained by the production method of the present invention in a powder form, a good three-phase interface is formed even inside the catalyst particles, and the obtained battery has Performance will definitely improve.
  • the powdery catalyst substance is attached to the electrolyte membrane or the gas diffusion layer by an appropriate powder coating (dry coating) method such as a conventionally known electrostatic transfer method to form a catalyst layer.
  • an appropriate powder coating (dry coating) method such as a conventionally known electrostatic transfer method to form a catalyst layer.
  • the polymer electrolyte fuel cell electrode according to the present invention is obtained.
  • the electrolyte membrane include perfluorosulfonate membranes and hydrocarbon-based membranes
  • examples of the gas diffusion membrane include carbon cloth and carbon paper. Can be.
  • the catalyst layer is formed only on one surface.
  • FIG. 1 is a conceptual diagram showing a membrane electrode assembly (MEA: Membrane-Electrode Assembly) in a polymer electrolyte fuel cell.
  • MEA Membrane-Electrode Assembly
  • FIG. 2 is a diagram schematically illustrating an example of a method for producing a powdery catalyst material according to the present invention.
  • FIG. 3 is a graph showing the battery performance of the fuel cells in Examples 1 and 2 and Comparative Example.
  • FIG. 4 is a graph showing the cell performance of the fuel cell unit according to the third embodiment.
  • 1 is an electrolyte membrane
  • 2 is a catalyst layer
  • 3 is a gas diffusion layer
  • 4 is a membrane-electrode assembly (MEA)
  • 10 is a solid polymer electrolyte
  • 20 is a solvent.
  • 30 is a solid polymer electrolyte colloidalized in a solvent
  • 40 is a powdered catalyst obtained by drying.
  • Example 1 Ink A was prepared at the mixing ratio (% by weight) shown in Table 1. The preparation order was as follows: catalyst-supporting conductor (60 wt% Pt / C), solid polymer electrolyte, water (dielectric constant 78.5), propylene glycol (good solvent) (dielectric constant 32.0). A mixed solution was prepared (a schematic diagram is shown in Fig. 2a), and cyclohexanol (poor solvent) (dielectric constant: 15.0) was added with stirring. By stirring for about 30 minutes, an ink in which a part of the electrolyte was colloided was obtained (a conceptual diagram is shown in Fig. 2b).
  • the ink was dried using a spray dryer under the conditions of a liquid supply amount of 10 cc, a spray pressure of 0.1 MPa, and a drying temperature of 80 ° C to produce a powdery catalyst substance (Fig. 2).
  • c shows a conceptual diagram).
  • 10 is a catalyst-carrying conductor
  • 20 is a solid polymer electrolyte dissolved in a solvent
  • 30 is a solid polymer electrolyte colloided in a solvent
  • 40 is a dried polymer electrolyte.
  • 3 shows a powdery catalyst substance obtained by the above method.
  • the prepared powdery catalyst material was spray-coated on the electrolyte membrane to both sides at a rate of 0.20 mg / cm2 and 0.5 Omg / cm2, respectively, using a roll press machine.
  • the polymer was fixed at 0 ° C and 30 kgf / cm to form a polymer electrolyte fuel cell electrode.
  • Example 2 An ink was prepared in the same manner as in Example 1. However, the preparation order is as follows: a mixed solution of catalyst-carrying conductor (60 wt% Pt / C), water, propylene glycol (good solvent), and cyclohexanol (poor solvent) is made, and the mixture is stirred and solidified. A polymer electrolyte solution was added. Stirring was continued for 30 minutes to obtain a colloidal ink.
  • catalyst-carrying conductor 60 wt% Pt / C
  • water propylene glycol
  • cyclohexanol poor solvent
  • Example 2 Thereafter, in the same manner as in Example 1, the ink was dried to prepare a powdery catalyst material, and a fuel cell was prepared as a polymer electrolyte fuel cell electrode using the dried catalyst material, and the relationship between current density and voltage was obtained. And evaluated the battery performance. The results are shown in Fig. 3 for ink B (-mouth).
  • Example 2 An ink was prepared in the same manner as in Example 1 except that cyclohexanol (poor solvent) was not added. After leaving it for 30 minutes, colloidal formation of the electrolyte did not occur.
  • the ink was dried using a spray drier under the conditions of a liquid transfer rate of 10 cc / min, a spray pressure of 0.1MPa, and a drying temperature of 80 ° C., to produce a powdery catalyst material.
  • a fuel cell was formed as a polymer electrolyte fuel cell electrode using the powdery catalyst material, and the cell performance was evaluated from the relationship between current density and voltage. The results are shown in FIG. 3 for Comparative Example 1 (- ⁇ -1).
  • the graph of FIG. 3 shows that the batteries of Examples 1 and 2 have higher battery performance than those of the comparative example, which shows the effectiveness of the present invention.
  • Inks C, D, and E were prepared at the mixing ratios (% by weight) shown in Table 2.
  • the preparation order was the same as in Example 1.
  • An ink in which a part of the electrolyte was colloided was obtained.
  • Each ink was dried using a predryer in the same manner as in Example 1 to produce a powdery catalyst substance.
  • the prepared powdery catalyst substance was spray-coated on both sides of the electrolyte membrane using a spray coating method to obtain 0.2 Om gZcmZ and 0.5 Om gZcm2, respectively.
  • the polymer was fixed under the same conditions as in Example 1 to obtain a polymer electrolyte fuel cell electrode.
  • a fuel cell was fabricated using this polymer electrolyte fuel cell electrode, and its cell performance was evaluated from the relationship between current density and electricity.
  • Fig. 4 shows the results.
  • the graph in Fig. 4 shows that the cell performance of the fuel cells using inks C and D is almost the same, but the cell performance of the fuel cell using ink E is somewhat inferior. From this, it can be seen that in the present invention, it is particularly effective that the value of (solvent including water) is 2 or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

 三相界面を良好なものとして固体高分子型燃料電池の電池性能を向上させる。そのために、触媒担持導電体10と、固体高分子電解質20、30と、固体高分子電解質に対する良溶媒と貧溶媒とを混合して固体高分子電解質の少なくとも一部がコロイド化30したインクを調製し、それを乾燥して粉体状の触媒物質40とする。それを電解質膜またはガス拡散層に粉体塗布して電極の触媒層を形成する。

Description

明劍書 粉体状触媒物質とその製造方法およびそれを用いた固体高分子型燃料電池電極 技術分野
本発明は固体高分子型燃料電池の電極触媒層を形成するのに用いる触媒物質お よびその製造方法とそれを用いた固体^分子型燃料電池電極に関する。 背景技術 '
固体高分子型燃料電池は、 図 1に示すように、 イオン交換膜からなる電解質膜 1とこの両面に配置される触媒層 2およびガス拡散層 3からなる膜電極接合体 (M E A : Membrane-Electrode Assembly) 4と、 膜電極接合体に積層されるセパ レータなどを備える。 触媒層の形成に ίよ、 白金などの触媒を担持したカーボン粒 子 (触媒担持導電体) とイオン交換樹)旨である固体高分子電解質とを溶媒に分散 させた触媒ィンクが用いられ、 それを雹解質膜あるいはガス拡散層に塗布して乾 燥させる、 いわゆる湿式法が多く採用されている。 近年になり、 静電気力や気体 (キヤリヤーガス) の流れを利用して、 粉体状の触媒物質を電解質膜またはガス 拡散層に向けて飛翔させて直接付着さ ·¾Γる乾式塗布 (粉体塗布) 方法も採用され つつある (特許文献 1 (特開 2 0 0 3— 1 6 3 0 1 1号公報) 参照) 。
いずれの方法による場合も、 固体高分子型燃料電池の電池性能を向上させるに は、 セパレータからの水素および酸素 、 電解質膜と触媒層の界面 (三相界面) に一様にかつ速やかに供給されると同^に、 酸素極側で生成した水がセパレータ へ速やかに排出されなければならない。 そのために、触媒物質(触媒粒子)にも、 電子伝導性、 ガス拡散経路、 触媒物質のプロ トン伝導パスが十分に形成されたバ ランスのよい三相界面が形成されること が望ましい。
その目的で、 特許文献 2 (特開平 8— 2 6 4 1 9 0号公報) には、 触媒インク 中で固体高分子電解質をコロイ ド化して利用することが提案されている。 すなわ ち、 触媒担持導電体を有機溶媒に分散した分散液を得、 その分散液と固体高分子 電解質のアルコール溶液とを混合して、 それにより固体高分子電解質のコロイ ド を生成させるとともに、 該コロイドを触媒担持導電体に吸着させて混合液とし、 それをガス拡散層の片面に塗布して電極を作製するようにしている。
固体高分子電解質のコロイドを生成することにより、 触媒担持導電体 (貴金属 触媒を担持した炭素粉末) と固体高分子電解質とを十分に接触させることができ るので、 触媒層の内部で触媒の微粒子と炭素微粒子と固体高分子電解質とを、 相 互に十分に密着した状態で分散させることが可能となり、 良好な三相界面が触媒 層に形成されると記載されている。
特許文献 1
特開 2 0 0 3— 1 6 3 0 1 1号公報
特許文献 2
特開平 8— 2 6 4 1 9 0号公報 発明の開示
特許文献 2に記載の方法を採用して形成される固体高分子型燃料電池電極は、 固体高分子電解質がコロイ ド化されていないものと比較して、 触媒層と電解質月莫 との間に良好な三相界面が形成され発電効率のよい燃料電池ができるものと期待 される。 しかし、 特許文献 2では、 触媒インクをペースト状の混合液とし、 それ を塗布、 乾燥して触媒層とする、 いわゆる湿式方法を採用しており、 この方法で は、 ガス拡散経路が部分的に潰されてしまうことが予測され、 有効な三相界面が 形成されるとは言いがたい。
本発明は、 固体高分子電解質がコロイ ド化したインクを調製し、 それを用いて 固体高分子型燃料電池電極を作製する方法において、 形成される三相界面をよ り 完全なものとして電池性能をさらに向上させることを目的としており、 より具ィ本 的には、 そのための触媒物質とその製造方法およびそれを用いた固体高分子型 料電池電極を提供することを目的とする。
本発明者らは上記課題を解決すべく多くの実験と研究を行うことにより、 固ィ本 高分子電解質がコロイド化したインクを調製するに際して、 固体高分子電解質に 対する貧溶媒を積極的に利用すること、 および、 調製したインクを湿式法によつ て電解質膜あるいはガス拡散層に直接塗布するのではなく、 インクを乾燥し溶 1】 を除去して形成した粉末状の触媒物質を、 例えば特許文献 1に記載されるような 乾式方法によって電解質膜あるいはガス拡散層に粉末塗布することにより、 より 完全な三相界面を持つ触媒層を得ることができ、 電池性能が大きく向上すること を知見した。
本発明はこの知見に基づくものであり、 本発明による粉体状触媒物質の製造方 法は、 少なく とも、 触媒担持導電体と、 固体高分子電解質と、 固体高分子電解質 に対する良溶媒と貧溶媒とを混合して固体高分子電解質の少なくとも一部がコロ ィ ド化したインクを調製し、 それを乾燥して粉体状の触媒物質とすることを特徴 とする。 '
本発明において、 触媒担持導電体は、 例えば、 触媒物質 (例えば、 P t ) を担 持したカーボン粉末のように、 従来のこの種の固体高分子型燃料電池電極の製造 に用いられる触媒担持導電体を任意に用いることができる。 また、 固体高分子電 解質も同様に、例えば、パーフルォロカーボンスルホン酸アイオノマーのように、 従来のこの種の固体高分子型燃料電池電極の製造に用いられる固体高分子電解質 を任意に用いることができる。
固体高分子電解質に対する良溶媒には、 プロピレングリコール、 エチレングリ コール、 (イソ、 n一) プロピノレアルコーノレ、 エチルアルコールのようなものを 挙げることができる。 用いる固体高分子電解質の種類に応じて、 所望の溶解度が 得られるものを適宜選択する。 1種の良溶媒であってもよく、 2種以上を混合し たものを用いてもよい。
固体高分子電解質に対する貧溶媒は、 良溶媒中に溶解している固体高分子電解 質を積極的にコロイ ド化させるためのものであり、 水、 シクロへキサノール、 . n 一酢酸ブチル、 n一酢酸、 n—ブチルァミン、 メチルアミルケトン、 テトラヒ ド 口フランのようなものを挙げることができる。 用いる固体高分子電解質の種類に 応じて、 所望のコロイ ド化が得られるものを適宜選択する。 1種の貧溶媒であつ てもよく、 2種以上を混合したものを用いてもよい。
触媒担持導電体と、 固体高分子電解質と、 固体高分子電解質に対する良溶媒と 貧溶媒との混合溶液において、 貧溶媒/良溶媒の値が 2以上とされていることが 望ましい。 貧溶媒/良溶媒の値が 2未満であるとコロイ ド化が不十分であって、 製造した固体高分子型燃料電池の電池性能に大きな改善は見られない。 貧溶媒量 の上限に理論的には制限はない。
溶解している物質をコロイ ド化させるための一つと要因として、 溶媒の誘電率 を挙げることができる。本発明者らの実験では、貧溶媒として誘電率が 1 5以 、 または 3 5以上のものを用いることにより、 所望のコロイ ド化を達成することが でき、 所望の粉体状触媒物質を製造することができた。
なお、 本発明による粉体状触媒物質の製造方法において、 乾燥処理の前に、 固 体高分子電解質の少なくとも一部がコロイ ド化したインクが調製されていれ よ く、 触媒担持導電体、 固体高分子電解質、 および固体高分子電解質に対する良溶 媒と貧溶媒の混合順序に特に制限はない。 例えば、 触媒担持導電体と、 固体高分 子電解質と、 固体高分子電解質に対する良溶媒との混合溶液を先に調製し、 そこ に固体高分子電解質に対する貧溶媒を添加することにより固体高分子電解質の少 なくとも一部がコロイド化したィンクとしてもよく、 また、 触媒担持導電体と、 固体高分子電解質に対する良溶媒と貧溶媒との混合溶液を調製し、 そこに固体高 分子電解質を添加することにより固体高分子電解質の少なくとも一部がコロイ ド ィ匕したインクとしてもよい。 いずれの方法であっても、 所要のコロイ ド化が得ら れることが実験により確かめられている。 '
本発明では、 前記したようにして調製される、 固体高分子電解質の少なく も 一部がコロイ ド化したインクを、 そのまま電解質膜あるいはガス拡散層に湿式塗 布するのではなく、該インクを乾燥し、良溶媒や貧溶媒を除去することによって、 一旦、 粉体状の触媒物質とする。 すなわち、 本発明は、 触媒担持導電体と固体高 分子電解質とからなる固体高分子型燃料電池用の粉体状触媒物質であって、 固体 高分子電解質は凝集した状態で触媒担持導電体と付着一体化している粉体状き虫媒 物質をも開示する。
固体高分子電解質の少なくとも一部がコロイ ド化したインクを乾燥して溶媒を 除去する作業は容易であると共に、 得られる粉体状の触媒物質は、 溶媒が充分に 除去された状態で、 触媒粒子 (触媒担持導電体) と樹脂粒子 (固体高分子電角 質) とが相互に付着した形状のものとなるので、 高い空隙率のものとなり、 ガス ½散 性が良好となる。 また、 コロイ ド化しないで乾燥させて得られる粉体と比べて、 樹脂層の厚さが厚くなるので、 イオン伝導パスも増大する。 そのために、 本発明 の製造方法によって得られた粉体状触媒物質を粉末塗布して形成した触媒層では、 触媒粒子の内部にまで良好な三相界面が形成されることとなり、 得られる電池の 性能も確実に向上する。
前記のように、 粉体状触媒物質を、 従来知られた静電転写法のような適宜の粉 末塗布 (乾式塗布) 法により、 電解質膜あるいはガス拡散層に付着して ί媒層を 形成することにより'、本発明による固体高分子型燃料電池電極が得られる。なお、 電解質膜としては、 パーフルォロスルフォン酸膜、 炭化水素系膜のようなものを 挙げることができ、 ガス拡散膜としては、 カーボンクロスやカーボンぺ——パーの ようなものを挙げることができる。 ガス拡散膜の場合には、 当然に一方の面にの み触媒層は形成される。 図面の簡単な説明
図 1 は、 固体高分子型燃料電池における膜電極接合体 ( M E A: Membrane- Electrode Assembly) を示す概念図である。
図 2は、 本発明による粉体状触媒物質を作製する方法の一例を模式的 tこ示す図 である。
図 3は、 実施例 1, 2と比較例での燃科電池セルでの電池性能を示すグラフで ある。
図 4は、 実施例 3での燃料電池セルでの電池性能を示すグラフである。 図面において、 1は電解質膜、 2は触媒層、 3はガス拡散層、 4は膜霞極接合 体 (M E A : Membrane- Electrode Assembly) 、 1 0は固体高分子電解寳、 2 0は 溶媒中に溶解している固体高分子電解質、 3 0は溶媒中にコロイ ド化している固 体高分子電解質、 4 0は乾燥して得られた粉体状触媒物、をそれぞれ示している。 発明を実施するための最良の形態
以下、 実施例により、 本発明を説明する。
[実施例 1 ] 表 1で示す混合比 (重量%) でのインク Aを調製した。 調製順は、 触媒担持導 電体 (60 w t % P t/C) 、 固体高分子電解質、 水 (誘電率 78. 5) 、 プロ ピレンダリコール (良溶媒) (誘電率 3 2. 0) の混合溶液を作り (図 2 aに概 念図を示す) 、 それを攪拌しながらシクロへキサノール(貧溶媒) (誘電率 1 5. .0) を添加した。 3 0分程度攪拌することにより、 電解質の一部がコロイ ド化し たインクが得られた (図 2 bに概念図を示す) 。 そのインクを、 送液量 1 0 c c 分、 噴霧圧 0. lMP a、 乾燥温度 8 0°Cの条件下で、 スプレードライャを用 いて乾燥させ、 粉体状触媒物質を作製した (図 2 cに概念図を示す) 。 なお、 図 2 a〜 cにおいて、 1 0は触媒担持導電体、 20は溶媒中に溶解している固体高 分子電解質、 30は溶媒中にコロイ ド化している固体高分子電解質、 40は乾燥 して得られた粉体状触媒物質を示す。
表 1
Figure imgf000008_0001
Figure imgf000008_0002
作製した粉体状触媒物質を電解質膜上に両面にそれぞれ 0.20mg/cm2, 0. 5 Om g/ c m 2となるようにスプレー塗布の手法で粉体塗布し、 ロールプ レス機を用いて 1 6 0°C、 30 k g f /c mの条件で定着させて、 固体高分子型 燃料電池電極とした。
この固体高分子型燃料電池電極を用いて燃料電池セルを作り、 電流密度と電圧 の関係からその電池性能を評価した。 その結果を図 3にインク A (—◊一) で示 した。
[実施例 2] 実施例 1と同様にしてインクを調製した。 ただし、 調製順は、 触媒担持導電体 ( 6 0 w t % P t / C ) 、 水、 プロピレングリコール (良溶媒) 、 シクロへキサ ノール (貧溶媒) の混合溶液を作り、 それを攪拌しながら固体高分子電解質溶液 を添加した。 そのまま 3 0分間攪拌し、 コロイ ド化したインクが得られた。
以下、 実施例 1と同様にして、 インクを乾燥して粉体状触媒物質を作製し、 そ れを用いて固体高分子型燃料電池電極として燃料電池セルを作り、 電流密度と電 圧の関係からその電池性能を評価した。 その結果を図 3にインク B (—口一) で 示した。
[比較例 1 ]
シクロへキサノール (貧溶媒) を添加しない以外は、 実施例 1と同様に してィ ンクを調製した。 それを 3 0分間放置したが、 電解質のコロイ ド化は生じなかつ た。
そのインクを、 送液量 1 0 c c /分、 噴霧圧 0 . I M P a、 乾燥温度 8 0 °Cの 条件下で、 スプレードライヤを用いて乾燥させ、 粉体状触媒物質を作製した。 以 下、 実施例 1と同様にして、 粉体状触媒物質を用いて固体高分子型燃料電池電極 として燃料電池セルを作り、電流密度と電圧の関係からその電池性能を評価した。 その結果を図 3に比較例 1 (―〇一) で示した。
[考察]
図 3のグラフは、 実施例 1と 2のものは比較例のものと比較して高い電池性能 を有していることを示しており、 本発明の有効性が示される。
[実施例 3 ]
表 2で示す混合比 (重量%) でのインク C , D, Eを調製した。 調製順は実施 例 1と同様にした。 各インクを 3 0分間程度攪拌することより、 電解質の一部が コロイ ド化したインクが得られた。 各インクを実施例 1と同様にしてプレードラ ィャを用いて乾燥させ、 粉体状触媒物質を作製した。 表 2
Figure imgf000010_0001
作製した粉体状触媒物質を電解質膜上に両面にそれぞれ 0. 2 Om gZcmZ , 0. 5 Om gZc m 2となるようにスプレー塗布の手法で粉体塗布し、 口一ルプ レス機を用いて実施例 1と同じ条件で定着させて、 固体高分子型燃料電池電極と した。
この固体高分子型燃料電池電極を用いて燃料電池セルを作り、 電流密度と電 の関係からその電池性能を評価した。 その結果を図 4に示す。
[考察]
図 4のグラフは、 インク C, Dを用いた燃料電池セルの電池性能はほぼ同じで あるが、 ィンク Eを用いた燃料電池セルの電池性能は比較していくぶん劣って" 、 ることを示している。 このことから、本発明において、 (水も含む貧溶媒) 溶媒) の値が 2以上であることは、 特に効果的であることがわかる。

Claims

請求の範囲
1 . 少なくとも、 触媒担持導電体と、 固体高分子電解質と、 固体高分子電解質に 対する良溶媒と貧溶媒とを混合して固体高分子電解質の少なくと 一部がコロイ ド化したインクを調製し、 それを乾燥して粉体状の触媒物質とすることを特徴と する粉体状触媒物質の製造方法。
2 . 少なくとも、 触媒担持導電体と、 固体高分子電解質と、 固体高分子電解質に 対する良溶媒との混合溶液を調製し、 そこに固体高分子電解質に ォする貧溶媒を 添加することにより固体高分子電解質の少なくとも一部がコロイ ド化したインク とし、 それを乾燥して粉体状の触媒物質とすることを特徴とする粉体状触媒物質 の製造方法。
3 . 少なくとも、 触媒担持導電体と、 固体高分子電解質に対する良溶媒と貧溶媒 との混合溶液を調製し、 そこに固体高分子電解質を添加すること〖こより固体高分 子電解質の少なくとも一部がコロイド化したインクとし、 それを乾燥して粉体状 の触媒物質とすることを特徴とする粉体状触媒物質の製造方法。
4 . 触媒担持導電体と、 固体高分子電解質と、 固体高分子電解質 こ対する良溶媒 と貧溶媒とを混合した溶液において、 貧溶媒/良溶媒の値が 2以上とされている ことを特徴とする請求項 1〜 3のいずれかに記載の粉体状触媒物質の製造方法。
5 . 貧溶媒として、 誘電率が 1 5以下、 または 3 5以上のものを用いることを特 徴とする請求項 1〜 3のいずれかに記載の粉体状触媒物質の製造方法。
6 . 良溶媒がプロピレングリコール、 エチレンダリコール、 (イソ、 n -) プロ ピルアルコール、 エチルアルコールから選択される 1種または 2種以上であり、 貧溶媒が水、 シクロへキサノール、 n—酢酸プチル、 n—酢酸、 η—ブチルアミ ン、 メチルアミルケトン、 テトラヒ ドロフランから選択される 1種または 2種以 上であることを特徴とする請求項 1〜5のいずれかに記載の粉体状触媒物質の製 造方法。
7 . 請求項 1〜 6のいずれかに記載の製造方法で得られた粉体状危 f¾媒物質を電解 質膜またはガス拡散層に粉体塗布して形成された固体高分子型燃料電池電極。
8 . 触媒担持導電体と固体高分子電解質とからなる固体高分子型燃料電池用の粉 体状触媒物質であって、 固体高分子電解質は凝集した状態で触媒担探導電体と付 着一体化していることを特徴とする粉体状触媒物質。
PCT/JP2005/006575 2004-04-09 2005-03-29 粉体状触媒物質とその製造方法およびそれを用いた固体高分子型燃料電池電極 WO2005099002A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05721714A EP1734602A4 (en) 2004-04-09 2005-03-29 POWDER CATALYST MATERIAL, MANUFACTURING METHOD THEREFOR, AND ELECTRODE FOR SOLID POLYMER FUEL CELL USING THE SAME
US11/547,617 US20080038616A1 (en) 2004-04-09 2005-03-29 Powder Catalyst Material, Method for Producing Same and Electrode for Solid Polymer Fuel Cell Using Same
CA2561942A CA2561942C (en) 2004-04-09 2005-03-29 Powder catalyst material, method for producing same and electrode for solid polymer fuel cell using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004115510A JP5108199B2 (ja) 2004-04-09 2004-04-09 粉体状触媒物質とその製造方法およびそれを用いた固体高分子型燃料電池電極
JP2004-115510 2004-04-09

Publications (1)

Publication Number Publication Date
WO2005099002A1 true WO2005099002A1 (ja) 2005-10-20

Family

ID=35125384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006575 WO2005099002A1 (ja) 2004-04-09 2005-03-29 粉体状触媒物質とその製造方法およびそれを用いた固体高分子型燃料電池電極

Country Status (6)

Country Link
US (1) US20080038616A1 (ja)
EP (1) EP1734602A4 (ja)
JP (1) JP5108199B2 (ja)
CN (1) CN100477351C (ja)
CA (1) CA2561942C (ja)
WO (1) WO2005099002A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006031951A (ja) * 2004-07-12 2006-02-02 Tomoegawa Paper Co Ltd 固体高分子型燃料電池用ガス拡散電極の製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914815B2 (en) * 2000-08-16 2011-03-29 Encore Health, Llc Method for delivery of pharmaceuticals for treating or preventing presbyopia
JP2007280946A (ja) * 2006-03-16 2007-10-25 Fujifilm Corp 膜/電極接合体および燃料電池
CN101098007A (zh) * 2006-06-27 2008-01-02 上海攀业氢能源科技有限公司 用于制作燃料电池膜电极的催化剂浆料及其制备方法
KR101098676B1 (ko) 2007-11-08 2011-12-23 주식회사 엘지화학 연료전지용 전극의 제조방법과 이로부터 제조된 전극을포함하는 막전극 접합체 및 연료전지
EP2549571A4 (en) * 2010-03-15 2016-06-29 Toppan Printing Co Ltd SLUDGE FOR THE ELECTRODE CATALYST LAYER OF A FUEL CELL, ELECTRODE CATALYST LAYER, MEMBRANE ELECTRODE ARRANGEMENT AND FUEL CELL
KR101267786B1 (ko) * 2010-05-06 2013-05-31 주식회사 엘지화학 촉매층 형성용 파우더를 이용한 연료전지용 막전극 접합체, 이의 제조방법 및 이를 포함하는 연료전지
JP5526066B2 (ja) * 2011-03-28 2014-06-18 東芝燃料電池システム株式会社 ガス拡散層と燃料電池、及びガス拡散層の製造方法
CN103165913A (zh) * 2011-12-14 2013-06-19 中国科学院大连化学物理研究所 用于燃料电池膜电极催化剂层制备的浆料及其制备
JP5880356B2 (ja) * 2012-08-29 2016-03-09 トヨタ自動車株式会社 燃料電池スタック
CN103326032B (zh) * 2013-05-30 2015-07-15 上海交通大学 用于制备质子交换膜燃料电池的铂梯度分布催化层结构的方法
CN103769086B (zh) * 2014-01-13 2015-07-29 江苏绿遥燃料电池系统制造有限公司 一种燃料电池催化剂的制备方法
KR101931411B1 (ko) * 2016-04-07 2018-12-20 서강대학교산학협력단 이온전도성 고분자전해질막 캐스팅 과정 중 극성 용매의 상분리 향상 효과에 따른 이온채널의 크기가 조절된 이온전도성 고분자전해질막 및 이의 제조방법
CN114388820A (zh) * 2021-12-09 2022-04-22 同济大学 一种燃料电池用催化剂浆料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637851A1 (en) * 1993-08-06 1995-02-08 Matsushita Electric Industrial Co., Ltd. Solid polymer type fuel cell and method for manufacturing the same
JPH08130019A (ja) * 1994-10-28 1996-05-21 Tanaka Kikinzoku Kogyo Kk 高分子固体電解質型電気化学セル用電極の製造方法
JPH08264190A (ja) * 1995-01-26 1996-10-11 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池の製造法
US5843519A (en) 1994-10-17 1998-12-01 Tanaka Kikinzoku Kogyo K.K. Process for forming a catalyst layer on an electrode by spray-drying
US20010024748A1 (en) 2000-03-22 2001-09-27 Seiji Mizuno Fuel cell electrode catalyst solution and production method therefor
JP2002063912A (ja) * 2000-08-21 2002-02-28 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池の製造方法
US20030054225A1 (en) * 2001-09-17 2003-03-20 Toyota Jidosha Kabushiki Kaisha Method and apparatus for manufacturing a fuel cell electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287232A (en) * 1978-06-28 1981-09-01 United Technologies Corporation Dry floc method for making an electrochemical cell electrode
US6492295B2 (en) * 2000-03-15 2002-12-10 Japan Storage Battery Co., Ltd. Composite catalyst for solid polymer electrolyte type fuel cell and processes for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637851A1 (en) * 1993-08-06 1995-02-08 Matsushita Electric Industrial Co., Ltd. Solid polymer type fuel cell and method for manufacturing the same
US5843519A (en) 1994-10-17 1998-12-01 Tanaka Kikinzoku Kogyo K.K. Process for forming a catalyst layer on an electrode by spray-drying
JPH08130019A (ja) * 1994-10-28 1996-05-21 Tanaka Kikinzoku Kogyo Kk 高分子固体電解質型電気化学セル用電極の製造方法
JPH08264190A (ja) * 1995-01-26 1996-10-11 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池の製造法
US20010024748A1 (en) 2000-03-22 2001-09-27 Seiji Mizuno Fuel cell electrode catalyst solution and production method therefor
JP2002063912A (ja) * 2000-08-21 2002-02-28 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池の製造方法
US20030054225A1 (en) * 2001-09-17 2003-03-20 Toyota Jidosha Kabushiki Kaisha Method and apparatus for manufacturing a fuel cell electrode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"New Preparation Method for Polymer Electrolyte Fuel Cells", JOURNAL OF ELECTROCHEMICAL SOCIETY, vol. 142, no. 2, pages 463 - 468
See also references of EP1734602A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006031951A (ja) * 2004-07-12 2006-02-02 Tomoegawa Paper Co Ltd 固体高分子型燃料電池用ガス拡散電極の製造方法

Also Published As

Publication number Publication date
US20080038616A1 (en) 2008-02-14
CA2561942A1 (en) 2005-10-20
JP2005302473A (ja) 2005-10-27
CA2561942C (en) 2010-08-10
EP1734602A1 (en) 2006-12-20
CN1947293A (zh) 2007-04-11
CN100477351C (zh) 2009-04-08
EP1734602A4 (en) 2008-02-27
JP5108199B2 (ja) 2012-12-26

Similar Documents

Publication Publication Date Title
WO2005099002A1 (ja) 粉体状触媒物質とその製造方法およびそれを用いた固体高分子型燃料電池電極
JP5010823B2 (ja) 直接酸化型燃料電池用高分子電解質膜、その製造方法及びこれを含む直接酸化型燃料電池システム
US8309276B2 (en) Process for preparing of a catalyst solution for fuel cell and a membrane electrode assembly using the same
JP2012069536A (ja) 直接酸化型燃料電池用高分子電解質膜、その製造方法及びこれを含む直接酸化型燃料電池システム
EP2365569B1 (en) A membrane-electrode assembly for a fuel cell
JP2008077974A (ja) 電極
JP5428493B2 (ja) 固体高分子形燃料電池の製造方法
JP2005235706A (ja) 固体高分子型燃料電池用電極
KR102455396B1 (ko) 연료전지 전극 촉매층 형성용 촉매 잉크 및 이의 제조 방법
JP4918753B2 (ja) 電極、電池およびその製造方法
JP2011141994A (ja) 高分子形燃料電池用電極の製造方法及び、その高分子形燃料電池用電極の製造方法で作られた高分子形燃料電池用電極
JP2008171702A (ja) 燃料電池用接合体の製造方法、燃料電池の製造方法、燃料電池用接合体及び燃料電池
JP5672645B2 (ja) 燃料電池用電極触媒インク
JP2001300324A (ja) 複合触媒とその製造方法およびその複合触媒を使用した燃料電池用電極の製造方法
JP2019509594A (ja) 膜−電極接合体の製造方法、これから製造された膜−電極接合体およびこれを含む燃料電池
JP2004139789A (ja) 燃料電池用触媒粉末とその製造方法、ならびに電解質膜/電極接合体とこれを備える高分子電解質型燃料電池
JPH1116586A (ja) 高分子電解質膜−ガス拡散電極体の製造方法
JP5790049B2 (ja) 膜電極接合体およびその製造方法並びに固体高分子形燃料電池
JP2005149969A (ja) 燃料電池
JP2003282074A (ja) 燃料電池用電極とその製造方法
JP2016110888A (ja) 燃料電池用電極触媒層の製造方法
JP2010257715A (ja) 膜電極接合体及びその製造方法並びに固体高分子形燃料電池
JP2003297373A (ja) 触媒層用塗料とこれを用いた電解質膜電極接合体の製造方法
KR20080041844A (ko) 연료 전지용 막-전극 어셈블리, 이의 제조 방법 및 이를포함하는 연료 전지용 시스템
WO2023106392A1 (ja) 触媒組成物及び触媒組成物を用いた燃料電池用触媒層

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2561942

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11547617

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580012277.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005721714

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005721714

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11547617

Country of ref document: US