WO2005075406A1 - アダマンタン誘導体及びその製造方法 - Google Patents

アダマンタン誘導体及びその製造方法 Download PDF

Info

Publication number
WO2005075406A1
WO2005075406A1 PCT/JP2005/001404 JP2005001404W WO2005075406A1 WO 2005075406 A1 WO2005075406 A1 WO 2005075406A1 JP 2005001404 W JP2005001404 W JP 2005001404W WO 2005075406 A1 WO2005075406 A1 WO 2005075406A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
adamantane derivative
general formula
adamantane
Prior art date
Application number
PCT/JP2005/001404
Other languages
English (en)
French (fr)
Inventor
Naoyoshi Hatakeyama
Shinji Tanaka
Hidetoshi Ono
Yasunari Okada
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004029034A external-priority patent/JP4429754B2/ja
Priority claimed from JP2004296542A external-priority patent/JP4594695B2/ja
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to KR1020067015853A priority Critical patent/KR101114585B1/ko
Priority to US10/588,080 priority patent/US7528279B2/en
Priority to EP05709550A priority patent/EP1712542A4/en
Publication of WO2005075406A1 publication Critical patent/WO2005075406A1/ja
Priority to US12/363,895 priority patent/US20090156854A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/26Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
    • C07C303/28Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reaction of hydroxy compounds with sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/42Separation; Purification; Stabilisation; Use of additives
    • C07C303/44Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/64Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms
    • C07C309/65Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms of a saturated carbon skeleton
    • C07C309/66Methanesulfonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/29Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by introduction of oxygen-containing functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/74Adamantanes

Definitions

  • the present invention relates to a novel adamantane derivative and a method for producing the same, and more specifically, to a novel alkoxy-substituted adamantyl (meth) compound useful as a monomer for functional resins such as photosensitive resins in the field of photolithography.
  • the present invention relates to atalylates and alkylsulfo-loxy-substituted adamantyl (meth) atalylates and a method for efficiently producing these adamantan derivatives.
  • Adamantane is a stable compound with a high symmetry having a structure in which four cyclohexane rings are condensed in a cage, and its derivative shows a unique function. It is known to be useful as a raw material for highly functional industrial materials. For example, it has been attempted to use it for an optical disk substrate, an optical fiber, a lens, etc. because of its optical characteristics and heat resistance (Patent Documents 1 and 2).
  • Patent Document 3 Attempts have also been made to use adamantane esters as a resin raw material for photoresists by utilizing their acid sensitivity, dry etching resistance, and ultraviolet transparency.
  • Patent Document 1 Japanese Patent Application Laid-Open No. Hei 6-305044
  • Patent Document 2 Japanese Patent Application Laid-Open No. 9-302077
  • Patent Document 3 JP-A-4-39665
  • Patent Document 4 JP-A-63-33350
  • the present invention has been made under such circumstances, and provides a novel adamantane derivative useful as a monomer of a functional resin such as a photosensitive resin in the field of photolithography, and a method for producing the same.
  • the purpose is.
  • alkoxy-substituted adamantyl (meth) acrylates and methanesulfo-oxo-substituted adamantyl (meth) acrylates having a specific structure are novel compounds that can be adapted for the purpose, and that these compounds can be efficiently produced by reacting an alcohol having a corresponding adamantyl group as a raw material. .
  • the present invention has been completed based on such knowledge.
  • the present invention provides the following adamantane derivative and a method for producing the same.
  • R is a hydrogen atom, a methyl group or a CF group
  • Y is
  • R 1 represents an alkyl group or a cycloalkyl group having 11 to 10 carbon atoms, and may have a heteroatom and a Z or -tolyl group as a part of its structure.
  • k represents an integer of 0-14, and m and n each independently represent an integer of 0-4.
  • An adamantane derivative having a structure represented by the formula:
  • R is a hydrogen atom, a methyl group or a CF group
  • R 2 is
  • It 0 formed by three to ten alkyl groups, halogen atoms, hydroxyl groups or two Y's taken together. A plurality of Ys may be the same or different.
  • k represents an integer of 0-14, and m and n each independently represent an integer of 0-4.
  • R is a hydrogen atom, a methyl group or a CF group
  • Y is
  • It 0 formed by three to ten alkyl groups, halogen atoms, hydroxyl groups or two Y's taken together. A plurality of Ys may be the same or different.
  • k represents an integer of 0-14, and m and n each independently represent an integer of 0-14.
  • R 2 represents an alkyl group, a fluorine group, an alkyl fur group, or a CF group having 11 to 10 carbon atoms
  • X represents a hydroxyl group or a halogen atom.
  • R is a hydrogen atom, a methyl group or a CF group
  • R 2 is a C1 alkyl group
  • Y represents an alkyl group, an alkylphenyl group or a CF group
  • k represents an integer of 0-14
  • m and n each independently represent an integer of 0-14.
  • R 1 represents an alkyl group or a cycloalkyl group having 11 to 10 carbon atoms, and a hetero atom and a Z or -tolyl group may be included in a part of the structure.
  • R, Y, k, m And n are the same as above.
  • adamantane derivative I
  • adamantane derivative II
  • adamantane derivative II
  • adamantane derivative II
  • adamantane Derivatives are both novel compounds.
  • the adamantane derivative (I) of the present invention has the general formula (I)
  • R is a hydrogen atom, a methyl group or a trifluoromethyl group
  • R 1 represents an alkyl group having 1 to 10 carbon atoms, and may have a hetero atom and a Z or -tolyl group as a part of its structure.
  • k represents an integer of 0-14
  • m and n each independently represent an integer of 0—, preferably 0 or 1. Note that when m is 0 and n is 0, it indicates a structure in which oxygen is directly connected to the adamantyl group.
  • Y as an alkyl group having a carbon number of 1 one 10 in R 1, a methyl group, E Ji group, various propyl groups, various butyl groups, various pentyl groups, various hexyl group, heptyl group various, various Okuchiru And various nonyl groups and various decyl groups, which may be linear or branched.
  • This alkyl group may be substituted by a halogen atom, a hydroxyl group, or the like.
  • R 1 also represents a cycloalkyl group.
  • Alkyl group or cycloalkyl group of R 1 If the structure contains a heteroatom and a ⁇ or -tolyl group in part, when used as a photosensitive resin, the unevenness that occurs on the side of the resist pattern becomes more pronounced. Be improved.
  • R 1 include the following. Methyl group, ethyl group, 1-propyl group, 1-butyl group, 1-pentyl group, 3-methyl-1-butyl group, 2-methyl-1-butyl group, 2,2-dimethyl-1 Butyl, 3,3-dimethyl-1-butyl, cyclohexylmethyl, 1-adamantylmethyl, 3-hydro Xymethyl-1-adamantylmethyl group, 2-hydroxy-1-ethyl group, 2,3-bishydroxypropyl group, 2,2,2-tris (hydroxymethyl) ethyl group, 2-chloro-1-ethyl group, etc. Can be.
  • Examples thereof include a damantyl group, a 4-oxo-2-adamantyl group, a 1-methoxy-2-propyl group, and a 1,3-dihydroxoxy-2-propynole group.
  • 2-methyl-2-propyl group (tert-butyl group), 2-methyl-2-butyl group (tert-pentyl group), 2,3 dimethyl-2-butyl group (tert-hexyl group) , 1-adamantyl group, 3-hydroxy-1-adamantyl group, 4-oxo-1-adamantyl group, perfluoro-1-adamantyl group, perfluoro-3-hydroxy-1-adamantyl group, 1-methylcyclohexyl group, 1-ethylcyclopentyl group, 2-methyl —2—Adamantyl group and the like.
  • R 1 preferably has a tertiary carbon adjacent to O, and among them, tert-butyl, tert-pentyl, and tert-hexyl are preferred.
  • the substituents other than Y are preferably present at the bridgehead position.
  • halogen atom in Y examples include fluorine, chlorine, bromine and iodine.
  • conjugate represented by the general formula (I) include, for example, 3 tert-pentyloxy 1-adamantyl methacrylate, 3-tert-butyl butoxy 1-adamantyl phthalate, and 3-tert-pentyloxy.
  • 1-adamantyl 2 trifluoromethyl atalylate, 3-tert-hexyloxy 1-adamantyl methacrylate, 3-tert-pentyloxymethyl- 1-adamantyl methyl methacrylate, 3-tert-butyloxymethyl- 1 adamantyl methyl acrylate, 3-tert-pentyloxymethyl-1 adamantyl methyl 2 trifluoromethyl acrylate, 3-tert-butyloxy perfluoro 1-adamantyl methacrylate, 3-tert-pentyloxy perfluoro 1 Adamantyl atarilate and the like.
  • the adamantane derivative (II) of the present invention has the general formula ( ⁇ ) [0018] [Formula 9]
  • R is a hydrogen atom, a methyl group or a CF group
  • R 2 is
  • It 0 formed by three to ten alkyl groups, halogen atoms, hydroxyl groups or two Y's taken together. A plurality of Ys may be the same or different.
  • k represents an integer of 0-14, and m and n each independently represent an integer of 0-4. Note that, when m is 0 and n is 0, it indicates a structure in which oxygen is directly connected to an adamantyl group.
  • examples of the alkyl group having 1 to 10 carbon atoms for R 2 include those described above.
  • examples of the alkylphenol group include a methylphenol group, an ethylphenyl group, a propylphenyl group and the like.
  • adamantane derivative (II) represented by the general formula (II) those which are R 2 methyl group, 3 methanesulfo-loxy 1-adamantyl methacrylate, 3 methanesulfo-loxy 1-a Damantyl atalylate, 3 Methanesulfo-roxy 1-adamantyl 2-Trifluoromethyl acrylate, 1 Methanesulfo-roxy 4-adamantyl metharylate, 1 Methanesulfo-roxy 4-adamantyl acrylate, 1 Methanesulfo-roxy 4 Adamantyl 2 trifluoromethyl atalylate, 3 methanesulfo-roxymethyl-1 adamantyl methyl methacrylate, 3 methanesulfo-roxymethyl 1-adamantyl methyl acrylate, 3 methanesulfonyloxymethyl-1 adamantyl methyl 2 trifluoromethyl A Re
  • adamantane derivative (I) and adamantane derivative (II) are preferably prepared and produced. The method will be described.
  • the adamantane derivative (II) is produced by reacting an alcohol form of the adamantane compound represented by the general formula (III) with the sulfonyl disulfide compound represented by the general formula (IV). You.
  • adamantane compound represented by the general formula (III) As alcohols of the adamantane compound represented by the general formula (III) as a raw material, 3-hydroxy-1-adamantyl methacrylate, 3-hydroxy-1-adamantyl atalylate, 3-hydroxy-1-adamantyl 2- Trifluoromethyl acrylate, 3-hydroxymethyl-1-adamantyl methyl methacrylate, 3-hydroxymethyl-1-adamantyl methyl phthalate, 3-hydroxymethyl-1-adamantyl methyl 2-trifur Hydroxyl-containing adamantyl (meta) acrylates, such as orthomethyl acrylate, 3-hydroxy-perfluoro-1-adamantyl methacrylate, and 3-hydroxy-perfluoro-1-adamantyl acrylate And the like.
  • metala such as orthomethyl acrylate, 3-hydroxy-perfluoro-1-adamantyl methacrylate, and 3-hydroxy-perfluoro-1-adamantyl acrylate And
  • the sulfonyl disulfide compound represented by the general formula (IV) is preferably chlorine-containing in which X is more preferably a halogen atom than a hydroxyl group. Those that are atoms are preferred.
  • the sulfol compound include methanesulfonyl chloride, ethanesulfonyl chloride, propanesulfonyl chloride, p-toluenesulfonyl chloride, trifluoromethanesulfonyl chloride and the like. -Chloride is preferred.
  • the charging ratio of the alcohol compound of the adamantane compound represented by the general formula (III) to the sulfol compound represented by the general formula (IV) is such that the mole of the adamantane compound is 1: 1 with respect to 1 mole of the adamantane compound. A range of 5 moles is preferred.
  • a base is generally used as a catalyst, and a solvent is used if necessary.
  • Bases include sodium amide, triethylamine, tributylamine, trioctylamine, pyridine, N, N-dimethyla-line, 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), 1,8-diazabicyclo [5.4.0] Pendene-7 (DBU), sodium hydroxide, potassium hydroxide, sodium hydride, potassium carbonate, silver oxide, sodium methoxide, potassium t-butoxide and the like. These catalysts may be used alone or in combination of two or more. May be used in combination.
  • a solvent is usually used.
  • the solvent those having a solubility of a hydroxy group-containing adamantyl (meth) atalylate, which is a raw material, at a reaction temperature of 0.5% by mass or more, preferably 5% by mass or more are preferably used.
  • the amount of the solvent is such that the concentration of the hydroxyl group-containing adamantyl (meth) acrylate in the reaction mixture becomes 0.5% by mass or more, preferably 5% by mass or more.
  • the adamantane derivative (II) may be in a suspended state, but is preferably dissolved.
  • hydrocarbon solvents such as n-hexane and n-heptane
  • ether solvents such as getyl ether and tetrahydrofuran
  • halogen solvents such as dichloromethane and carbon tetrachloride
  • dimethyl sulfoxide N, N-dimethyl sulfoxide And so on.
  • solvents may be used alone or as a mixture of two or more.
  • an organic solvent having a dielectric constant of 8 or less at 20 ° C. As the solvent.
  • a solvent having a low dielectric constant the desired adamantane derivative (II) can be produced in a high yield, and the production of a polymer can be suppressed.
  • Specific examples of such a solvent include hydrocarbon solvents such as toluene, n-hexane, n-heptane, and cyclohexane; ester solvents such as ethyl acetate; and these solvents and getyl ether. And mixed solvents with ether-based solvents such as tetrahydrofuran and tetrahydrofuran. These solvents may be used alone or as a mixture of two or more.
  • the salt can be removed by washing with water after the reaction, and then the adamantane derivative (II) can be separated by crystallization.
  • the reaction temperature is usually in the range of -200 to 200 ° C. In this range, the reaction rate does not decrease and the reaction time does not become too long. Also, there is no increase in by-products of the polymer. Preferably it is in the range of 200-100 ° C, more preferably in the range of -50-50 ° C.
  • the reaction pressure is usually in the range of 0.01 to lOMPa in absolute pressure. In this range, a special pressure-resistant device is not necessary and is economical. Preferably, Compression is in the range of IMPa.
  • the reaction time is generally in the range of 1 minute to 24 hours, preferably 5 minutes to 6 hours, more preferably 30 minutes to 6 hours.
  • the reaction product is separated from the reaction termination solution, and then added to the reaction product.
  • the by-product can be separated from the by-product by removing the precipitate of the by-product polymer produced by adding a poor solvent for the by-product polymer contained therein.
  • methanol, ethanol, and ethyl ether can be used as the poor solvent, and among them, methanol is preferred.
  • water is added to the reaction-terminated liquid to deactivate methanesulfonyl chloride, then the solvent is distilled off, and the remaining liquid is washed to remove the catalyst.
  • a poor solvent for the by-product polymer contained in the residual liquid for example, methanol is added to precipitate the by-product polymer, and the precipitate is removed by means such as filtration, and then the poor solvent is distilled off.
  • the residue after distillation of the poor solvent is recrystallized using, for example, an ether-based solvent, whereby the desired adamantane derivative (II), which is an R 2 acetyl group, can be obtained with high purity.
  • distillation, crystallization, column separation, etc. For the purification of the target reaction product, distillation, crystallization, column separation, etc. can be adopted, and the purification method may be selected according to the properties of the product and the types of impurities.
  • the adamantane derivative (I) is obtained by reacting the alcohol form of the adamantane conjugate represented by the general formula (III) with the sulfonirno / ridei conjugate represented by the general formula (IV).
  • the adamantane derivative ( ⁇ ) can be obtained by reacting with an alcohol.
  • (meth) atalylate toy can be finally prepared after etherification in advance. That is, the method for producing the adamantane derivative (I) is based on the alcohol derivative of the adamantane compound represented by the general formula (III).
  • general formula (IV) [0029]
  • R 2 is the same as above, and X represents a halogen atom.
  • a first step a sulfolation step for obtaining a sulfo-roxy form represented by the following formula:
  • the sulfoloxy compound is represented by the following general formula (V)
  • the sulfonyloxyno and rhodii conjugates used in the first step are the same as the sulfonyl compound represented by the general formula (IV), and the sulfonyloxy compound is represented by the general formula (II) The same as the adamantane derivative (II). Accordingly, the sulfo-loxy derivative (II) can be produced by the same method as the above-mentioned method for producing the adamantane derivative (II).
  • the second step is a step in which the sulfonyloxy derivative (II) is reacted with the alcohol represented by the general formula (V) to obtain the desired adamantane derivative (I).
  • This sulfo-roxy form (II) For this purpose, methanesulfo-loxy-substituted adamantyl (meth) acrylates such as 3-methanesulfo-loxy 1-adamantyl (meth) acrylate are preferably used.
  • R 1 As the alcohol represented by the general formula (V), those described above as R 1 can be used, but tert-butyl alcohol, tert-pentyl alcohol, tert-butyl alcohol, Tertiary alcohols having a tertiary carbon adjacent to O, such as hexyl alcohol, are preferred.
  • the charge ratio may be in the range of 11 to 1.5 mol per 1 mol of the sulfo-loxy compound (II) obtained in the first step.
  • a base is generally used as a catalyst, and a solvent is used if necessary.
  • Bases include sodium amide, triethylamine, tributylamine, trioctylamine, pyridine, N, N-dimethyla-line, 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), 1,8-diazabicyclo [5.4.0] Pendene-7 (DBU), sodium hydroxide, potassium hydroxide, sodium hydride, potassium carbonate, silver oxide, sodium methoxide, potassium t-butoxide and the like. These catalysts may be used alone or in combination of two or more.
  • the solvent used in the etherification process preferably has a solubility of the sulfoxy-form (II) of 0.5% by mass or more, preferably 5% by mass or more at the reaction temperature.
  • the amount of the solvent is preferably such that the concentration of the sulfo-loxy compound (II) in the reaction mixture becomes 0.5% by mass or more, preferably 5% by mass or more. At this time, it is desirable that the sulfo-loxy form (II) is dissolved even in a suspended state. It is also desirable to remove water in the solvent before use.
  • hydrocarbon solvents such as n-hexane and n-heptane
  • ether solvents such as getyl ether and tetrahydrofuran
  • halogen solvents such as dichloromethane and tetrahydrofuran
  • dimethyl sulfoxide Dimethyl sulfoxide and the like
  • solvents may be used alone or as a mixture of two or more.
  • the reaction temperature is usually in the range of -200 to 200 ° C. In this range, the reaction rate does not decrease and the reaction time does not become too long. Also, there is no increase in by-products of the polymer. Preferably, it is in the range of 100-150 ° C.
  • the reaction pressure is usually in the range of 0.01 to lOMPa in absolute pressure. This Within this range, a device with a special pressure resistance is not necessary and is economical. Preferably, the pressure is in the range of 1 lOMPa at normal pressure.
  • the reaction time is usually in the range of 1 to 48 hours.
  • the unreacted sulfonyloxy compound (II) is hydrolyzed with an aqueous alkali solution such as an aqueous sodium hydrogen carbonate solution to convert it into an alcohol compound corresponding to the general formula ( ⁇ ).
  • the alcohol can be adsorbed on silica gel or the like.
  • the identification of the obtained compound was performed by gas chromatography (GC), liquid chromatography (LC), gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR), a melting point measuring device or the like.
  • the value of the dielectric constant of the solvent is a numerical value from the new edition of Solvent Pocket Book (Ohm Co., Ltd.) and Shozo Asahara et al.
  • the dielectric constant is a value calculated by the addition rule.
  • magnesium sulfate was removed by filtration. It was evaporated to remove getyl ether and analyzed by gas chromatography (GC) and GPC analysis. The yield was 156.26 g, the purity was 91.3% (GC), 97.8% (GPC) As a result, it was confirmed that 3-methanesulfo-loxy 1-adamantyl methacrylate was obtained.
  • a 2 liter glass reactor was fitted with a stirrer, into which the product obtained in (1) was placed, and dried 75.0 ml (6,849 mmol) of 2-methyl-2-butanol and dried 1,1 8-Diazabicyclo [5.4.0] -7-Pendecene (DBU) 80.0 ml (535 mmol) and methquinone 0.30 g (2,000 mass ppm) were stirred and stirred.
  • the temperature of the oil bath was set to 120 ° C, and the mixture was refluxed for 36 hours. Also, every 6 hours, 0.03 g (200 mass ppm) of methquinone was sequentially added.
  • magnesium sulfate was removed by filtration. It was evaporated to remove getyl ether and analyzed by gas chromatography. It was found that the desired product was obtained in an amount of 149.lg and a purity of 80.7%. It was dissolved in 1 liter of n hexane, and 3-hydroxy-1-adamantyl methacrylate was adsorbed on 100 g of silica gel, filtered and decolorized. The n-xane was removed with an evaporator to obtain 81. Og of a colorless transparent liquid. Gas chromatography analysis confirmed that the desired product was obtained with a purity of 99.8%. The data of NMR 13 C-NMR and GC-MS are shown below.
  • a 2 liter glass reactor was equipped with a stirrer, into which the product obtained in (1) was placed, and dried 110.0 ml (19725 mmol) of ethylene glycol and 76.0 ml (545 mmol) of dry triethylamine. ) was added and stirred.
  • the temperature of the oil bath was set at 80 ° C and heating was performed for 2 hours.
  • Gas chromatography analysis revealed that the desired product was obtained with a conversion of 99.9% and a selectivity of 99.8%.
  • the reaction solution was transferred to a 2 liter separatory funnel, 600 ml of getyl ether and 200 ml of water were added, and the mixture was extracted into the organic layer.
  • the torr was washed and washed with water to remove the triethylamine salt. 12. Og (100 mmol) of anhydrous magnesium sulfate was added, and after dehydration, magnesium sulfate was removed by filtration. It was evaporated to remove getyl ether, and subjected to gas chromatography analysis and GPC analysis. The yield was 91.96 g, purity 99.5% (GC), and 99.4% (GPC). S was confirmed to be obtained. The data of NMR, 13 C-NMR, GC-MS and melting point are shown below.
  • a 2 liter glass reactor was equipped with a stirrer, into which the product obtained in (1) was placed, and dried 10.0-methoxy-2-propanol 1100.0 ml (11254 mmol) and dried triethylamine 76.0 Milliliters (545 mmol) were stirred and stirred.
  • the temperature of the oil bath was set at 80 ° C and heating was performed for 2 hours. Gas chromatography analysis showed that the desired product was obtained with a conversion of 99.8% and a selectivity of 99.8%.
  • reaction solution was transferred to a 2 liter separatory funnel, 600 ml of getyl ether and 200 ml of water were added to extract the organic layer, 700 ml of 1N dilute hydrochloric acid was added, and the mixture was washed with water. The cake was washed with water to remove the triethylamine salt. Anhydrous magnesium sulfate 12. Og (100 mmol) was dried and dehydrated, and then magnesium sulfate was removed by filtration.
  • a 2 liter glass reactor was equipped with a stirrer, into which the product obtained in (1) was placed. (Mmol) was stirred and stirred. The temperature of the oil bath was set at 80 ° C and heating was performed for 2 hours. Gas chromatography analysis showed that the desired product was obtained with a conversion of 99.8% and a selectivity of 99.8%.
  • the reaction solution was transferred to a 2 liter separatory funnel, 600 ml of getyl ether and 200 ml of water were added to extract the organic layer, 700 ml of 1N dilute hydrochloric acid was added, and the mixture was washed with water. The cake was washed with water to remove the triethylamine salt. 12.0 g (100 mmol) of anhydrous magnesium sulfate was dried and dehydrated, and then magnesium sulfate was removed by filtration.
  • a 2-liter glass reactor was equipped with a stirrer and a dropping funnel.
  • 3-Hydroxy-1-adamantyl methacrylate (Adamantate II, manufactured by Idemitsu Kosan) 118. 16 g (500 mmol), dried triethylamine 104 .5 ml (750 mmol) and 1 liter of dry tetrahydrofuran were stirred, cooled to 0 ° C in an ice bath, and stirred. Thereto, 46.4 ml (600 mmol) of methanesulfonyl chloride was added dropwise over 1 hour.
  • a stirrer, a dropping funnel and a thermometer were attached to a 200 mL glass reactor, and adamantate HM (manufactured by Idemitsu Kosan: 3-hydroxy-1-adamantyl methacrylate) 10.0 g ( 42 mmol), 8.8 mL (63 mmol) of triethylamine and 84.
  • OmL of toluene were added, and the mixture was immersed in a water bath at 25 ° C and stirred. To this, 4. OmL (50 mmol) of methanesulfo-uricide was dropped over 35 minutes. Thereafter, the mixture was further stirred for 25 minutes.
  • a stirrer, a dropping funnel and a thermometer were attached to a 200 mL glass reactor, and adamantate HM (manufactured by Idemitsu Kosan Co., Ltd .: 3-hydroxy-1-adamantyl methacrylate) 10.
  • Og (42 mmol) triethylamine 8 .8 mL (63 mmol) and tetrahydrofuran (84 mL) were added, and the mixture was immersed in a water bath at 25 ° C. and stirred. To this, 4. OmL (50 mmol) of methanesulfo-uricide was dropped over 35 minutes. Thereafter, the mixture was further stirred for 25 minutes.
  • reaction solution was transferred to a 300 mL separatory funnel, washed with 100 mL of getyl ether and 40 mL of water, and washed with water. At that time, the polymer was separated out and adhered to the separating funnel, and when separating the organic layer and the aqueous layer, the cock of the separating funnel was clogged with the polymer, which took a lot of time to separate.
  • a stirrer, a dropping funnel and a thermometer were attached to a 200 mL glass reactor, and adamantate HM (manufactured by Idemitsu Kosan: 3-hydroxy-1-adamantyl methacrylate) 10.0 g (42 mmol), triethylamine 8 .8 mL (63 mmol) and 42 mL of toluene were added, and the mixture was cooled to 5 ° C in an ice bath with stirring. To this, 4.0 mL (50 mmol) of methanesulfoyurcide was added dropwise over 3 minutes. Thereafter, the mixture was further stirred for 5 minutes.
  • HM manufactured by Idemitsu Kosan: 3-hydroxy-1-adamantyl methacrylate
  • reaction solution was transferred to a 200-mL separatory funnel, washed with 40 mL of water, washed with water, and then the organic layer was washed with 1 mL of 1 mM ZmL hydrochloric acid, and then washed with 50 mL of water. In the course of this liquid separation operation, no polymer was precipitated. 6.
  • a stirrer, a dropping funnel and a thermometer were attached to a 200 mL glass reactor, and adamantate HM (manufactured by Idemitsu Kosan: 3-hydroxy-1-adamantyl methacrylate) 10.0 g (42 mmol), triethylamine 8 .8 mL (63 mmol) and 42 mL of tetrahydrofuran were added, and the mixture was cooled to 5 ° C in an ice bath with stirring. To this, methanesulfonyl chloride 4. OmL (50 mmol) was added dropwise over 3 minutes. Thereafter, the mixture was further stirred for 5 minutes.
  • HM manufactured by Idemitsu Kosan: 3-hydroxy-1-adamantyl methacrylate
  • the desired product was obtained in the same manner as in Example 7, except that methylene chloride was used instead of toluene.
  • Table 1 shows the yield of the target product, the purity by gas chromatography, and the results of the polymer formation ratio by GPC measurement.
  • Example 8 (Production of adamantane derivative (II), using an organic solvent having a low dielectric constant during the reaction) The purpose was the same as in Example 7 except that 42 mL of toluene was changed to 84 mL. I got something. The polymer did not precipitate during the liquid separation process. Table 1 shows the yield of the target product, the purity by gas chromatography, and the rate of polymer formation by GPC measurement.
  • Example 9 (Production of adamantane derivative (II), low-dielectric constant organic solvent was used during the reaction) [0075] In the same manner as in Example 7, except that toluene was changed to ethyl acetate, the target compound was obtained. Got. The polymer did not precipitate during the liquid separation process. Table 1 shows the yield of the target compound, the purity by gas chromatography, and the rate of polymer formation by GPC measurement.
  • Example 7 Mixing of toluene with 22 mL of cyclohexane and 22 mL of tetrahydrofuran in Example 7 The desired product was obtained in the same manner as in Example 7, except that the solvent was changed. No polymer was precipitated during the liquid separation process. Table 1 shows the yield of the target compound, the purity by gas chromatography, and the rate of polymer formation by GPC measurement.
  • Example 6 Example 6-1 Example 7 Example 7-1 Example 7-2 Example 8 Example 9 Example 10 0 Solvent usage (mL)
  • the adamantane derivative (I) of the present invention represented by the general formula (I) and the adamantane derivative (II) of the present invention represented by the general formula (II) are both novel adamantyl (meth) atalylate toys. It is useful as a monomer for functional resins such as photosensitive resins in the field of photolithography.
  • the adamantane derivative (I) of the present invention has surface roughness after exposure (LER: unevenness formed on the side surface of the resist, LWR: undulation when the wiring is viewed from above) and PEB (acid generated by the exposure. An effect of improving the temperature dependence of the heat treatment for diffusion) can be expected.
  • adamantane derivative ( ⁇ ) of the present invention is considered to have improved compatibility with PAG (photoacid generator), which is a component of the resist mixture, and can form a uniform film. It can be expected to improve the surface roughness after exposure (LER: unevenness on the side of the resist, LWR: undulation when the wiring is viewed from above).
  • PAG photoacid generator
  • the adamantane derivative (I) and the adamantane derivative (II) of the present invention can be produced in high yield by the method for producing the adamantane derivative (II).
  • the method for producing the adamantane derivative (II) which is reacted in an organic solvent having a dielectric constant of 8 or less at 20 ° C., the generation of a polymer can be suppressed, so that the node ring is improved and the efficiency is improved. It can be produced industrially advantageously.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 本発明は、一般式(I)で表される構造を有するアダマンタン誘導体(I)と一般式(II)で表される構造を有するアダマンタン誘導体(II)およびこれらのアダマンタン誘導体の製造方法を提供する。アダマンタン化合物のアルコール体をスルホニル化合物と反応させることによりアダマンタン誘導体(II)が得られ、次いで、アルコールと反応させることによりアダマンタン誘導体(I)が得られる。一般式(I)および一般式(II)で表される構造を有するアダマンタン誘導体(I)およびアダマンタン誘導体(II)は、共に新規なアダマンチル(メタ)アクリレート化合物であって、フォトリソグラフィー分野における感光性樹脂などの機能性樹脂のモノマーとして有用である。 【化1】 【化2】                                                                               

Description

明 細 書
ァダマンタン誘導体及びその製造方法
技術分野
[0001] 本発明は、新規なァダマンタン誘導体及びその製造方法に関し、さらに詳しくは、 フォトリソグラフィー分野における感光性榭脂などの機能性榭脂のモノマーとして有 用な新規なアルコキシ基置換ァダマンチル (メタ)アタリレート類及びアルキルスルホ -ルォキシ置換ァダマンチル (メタ)アタリレート類と、これらのァダマンタン誘導体を 効率よく製造する方法に関する。
背景技術
[0002] ァダマンタンは、シクロへキサン環が 4個、カゴ形に縮合した構造を有し、対称性が 高ぐ安定な化合物であり、その誘導体は、特異な機能を示すことから、医薬品原料 や高機能性工業材料の原料などとして有用であることが知られて 、る。例えば光学 特性や耐熱性などを有することから、光ディスク基板、光ファイバ一あるいはレンズな どに用いることが試みられている(特許文献 1、特許文献 2)。
また、ァダマンタンエステル類を、その酸感応性、ドライエッチング耐性、紫外線透 過性などを利用して、フォトレジスト用榭脂原料として、使用することが試みられてい る (特許文献 3)。
一方、近年、半導体素子の微細化が進むに伴い、その製造におけるリソグラフィー 工程において、さらなる微細化が要求されており、したがって、 KrF、 ArFあるいは F
2 エキシマレーザー光などの短波長の照射光に対応したフォトレジスト材料を用いて、 微細パターンを形成させる方法が種々検討されている。そして、前記エキシマレーザ 一光などの短波長の照射光に対応できる新しいフォトレジスト材料の出現が望まれて いる。従来、シリコン基板の密着性向上の目的で、水酸基を導入したモノマーは知ら れて 、るが (特許文献 4)、これまで知られて 、な 、機能性官能基をもったフォトレジ スト材料が望まれている。
[0003] 特許文献 1:特開平 6— 305044号公報
特許文献 2:特開平 9— 302077号公報 特許文献 3:特開平 4-39665号公報
特許文献 4:特開昭 63-33350号公報
発明の開示
[0004] 本発明は、このような状況下でなされたもので、フォトリソグラフィー分野における感 光性榭脂などの機能性榭脂のモノマーとして有用な新規なァダマンタン誘導体及び その製造方法を提供することを目的とするものである。
[0005] 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定の構造を 有するアルコキシ置換ァダマンチル (メタ)アタリレート類およびメタンスルホ-ルォキ シ置換ァダマンチル (メタ)アタリレート類は、新規な化合物であって、その目的に適 合し得ること、そしてこれらの化合物は、対応するァダマンチル基を有するアルコー ル体を原料として反応させることにより、効率よく製造し得ることを見出した。
本発明は、カゝかる知見に基いて完成したものである。
[0006] すなわち、本発明は、以下のァダマンタン誘導体およびその製造方法を提供する ものである。
(1) 一般式 (I)
[化 1]
Figure imgf000004_0001
(式中、 Rは水素原子、メチル基又は CF基、 Yは炭素数 1
3 一 10のアルキル基、ハロ ゲン原子、水酸基又は 2つの Yが一緒になつて形成された =0を示す。また、複数の Yは同じでもよぐ異なっていてもよい。 R1は炭素数 1一 10のアルキル基又はシクロア ルキル基を示し、その構造の一部にヘテロ原子及び Z又は-トリル基を含んでいて もよい。 kは 0— 14の整数を示し、 m、 nは独立に、 0— 4の整数を示す。 ) で表される構造を有することを特徴とするァダマンタン誘導体。
(2) Y以外の置換基が橋頭位に存在するものである(1)のァダマンタン誘導体。
(3) R1が、 Oに隣接する第 3級の炭素を有するものである(1)又は(2)のァダマンタ ン誘導体。
[0007] (4) 一般式 (Π)
[化 2]
Figure imgf000005_0001
(式中、 Rは水素原子、メチル基又は CF基、 R2は炭素数 1
3 一 10のアルキル基、フエ ニル基、アルキルフヱニル基、又は CF基、 Yは炭素数 1
3 一 10のアルキル基、ハロゲ ン原子、水酸基又は 2つの Yが一緒になつて形成された =0を示す。また、複数の Y は同じでもよぐ異なっていてもよい。 kは 0— 14の整数を示し、 m、 nは独立に、 0— 4 の整数を示す。 )
で表される構造を有することを特徴とするァダマンタン誘導体。
[0008] (5) R2力メチル基である(4)のァダマンタン誘導体。
(6) 一般式 (III)
[化 3]
Figure imgf000005_0002
(式中、 Rは水素原子、メチル基又は CF基、 Yは炭素数 1
3 一 10のアルキル基、ハロ ゲン原子、水酸基又は 2つの Yが一緒になつて形成された =0を示す。また、複数の Yは同じでもよぐ異なっていてもよい。 kは 0— 14の整数を示し、 m、 nは独立に、 0 一 4の整数を示す。 )
で表されるァダマンタンィ匕合物のアルコール体と、一般式 (IV) O
Figure imgf000006_0001
(式中、 R2は炭素数 1一 10のアルキル基、フ -ル基、アルキルフ -ル基、又は CF 基を示し、 Xは水酸基又はハロゲン原子を示す。 )
3
で表されるスルホ-ルイ匕合物を反応させることを特徴とする、一般式 (II)
[化 5]
Figure imgf000006_0002
(式中、 R、 R、 Y、 k、 m及び nは前記と同じである。 )
で表される構造を有するァダマンタン誘導体の製造方法。
(7) 一般式 (III)で表されるァダマンタンィヒ合物のアルコール体と、一般式 (IV)で表 されるスルホニル化合物を、 20°Cにおける誘電率が 8以下の有機溶媒中で反応させ る(6)のァダマンタン誘導体の製造方法。
(8) 一般式(IV)で表されるスルホ-ル化合物力 メタンスルホ-ルハライドである(6 )又は(7)のァダマンタン誘導体の製造方法。
(9) 一般式 (III)で表されるァダマンタンィヒ合物のアルコール体と、一般式 (IV)で表 されるスルホニル化合物を反応させた後、反応終了液から反応生成物を分離し、次 いで、該反応生成物に、その中に含まれる副生重合物に対する貧溶媒を加え、生成 する副生重合物の沈殿を除去する (6)— (8)のァダマンタン誘導体の製造方法。
(10) 副生重合物に対する貧溶媒が、メタノールである(9)のァダマンタン誘導体の 製造方法。
(11) 一般式 (Π) [0010] [化 6]
Figure imgf000007_0001
(式中、 Rは水素原子、メチル基又は CF基、 R2は炭素数 1 キル基、フエ
3 一 10のアル
ニル基、アルキルフエニル基又は CF基を示し、 Yは炭素数 1一 10のアルキル基、ハ
3
ロゲン原子、水酸基又は 2つの Yが一緒になつて形成された =0を示す。また、複数 の Yは同じでもよぐ異なっていてもよい。 kは 0— 14の整数を示し、 m、 nは独立に、 0 一 4の整数を示す。 )
で表される構造を有するァダマンタン誘導体を、アルコールと反応させることを特徴と する、一般式 (I)
[化 7]
Figure imgf000007_0002
(式中、 R1は炭素数 1一 10のアルキル基又はシクロアルキル基を示し、その構造の一 部にヘテロ原子及び Z又は-トリル基を含んでいてもよい。 R、 Y、 k、 m及び nは前 記に同じである。 )
で表されるァダマンタン誘導体の製造方法。
(12) 3—メタンスルホ -ルォキシー 1ーァダマンチル (メタ)アタリレートをアルコールと 反応させる(11)のァダマンタン誘導体の製造方法。
(13) アルコールが、第 3級アルコールである(11)又は(12)のァダマンタン誘導体 の製造方法。
発明を実施するための最良の形態
[0011] 以下にぉ 、て、本発明の一般式 (I)で表される化合物をァダマンタン誘導体 (I)、 一般式 (II)で表される化合物をァダマンタン誘導体 (II)とする。これらのァダマンタン 誘導体は共に新規な化合物である。
次にこれらのァダマンタン誘導体及びその製造方法について説明する。 先ず、本発明のァダマンタン誘導体 (I)は、一般式 (I)
[0012] [化 8]
Figure imgf000008_0001
[0013] で表される構造を有するアルコキシ基置換ァダマンチル (メタ)アタリレート類である。
上記一般式 (I)において、 Rは水素原子、メチル基又はトリフルォロメチル基、 Yは 炭素数 1一 10のアルキル基、ハロゲン原子、水酸基又は 2つの Yが一緒になつて形 成された =0を示す。ここで、複数の Yは同じでもよぐ異なっていてもよい。 R1は炭 素数 1一 10のアルキル基を示し、その構造の一部にヘテロ原子及び Z又は-トリル 基を含んでいてもよい。 kは 0— 14の整数を示し、 m、 nは独立に、 0—の整数、好ま しくは 0又は 1を示す。なお、 mが 0の場合および nが 0の場合は、ァダマンチル基に 酸素が直結した構造を示す。
上記において、 Y、 R1における炭素数 1一 10のアルキル基として、メチル基、ェチ ル基、各種プロピル基、各種ブチル基、各種ペンチル基、各種へキシル基、各種へ プチル基、各種ォクチル基、各種ノニル基、各種デシル基を挙げることができ、これら は直鎖状、分岐状いずれでもよい。このアルキル基は、ハロゲン原子、水酸基等によ つて置換されたものであってもよい。また、 R1はシクロアルキル基をも示す。 R1のアル キル基又はシクロアルキル基力 その構造の一部にヘテロ原子及び Ζ又は-トリル 基を含むものであると、感光性榭脂として用いた場合、レジストパターンの側面に発 生する凸凹がより改善される。
[0014] R1として、具体的には、下記のものを挙げることができる。第 1級炭素と結合している ものとして、メチル基、ェチル基、 1 プロピル基、 1 ブチル基、 1 ペンチル基、 3—メ チルー 1 ブチル基、 2—メチルー 1 ブチル基、 2, 2 ジメチルー 1 ブチル基、 3, 3—ジ メチルー 1 ブチル基、シクロへキシルメチル基、 1ーァダマンチルメチル基、 3—ヒドロ キシメチルー 1ーァダマンチルメチル基、 2—ヒドロキシー 1 ェチル基、 2, 3 ビスヒドロ キシプロピル基、 2, 2, 2—トリス(ヒドロキシメチル) ェチル基、 2—クロ口— 1—ェチル 基等を挙げることができる。
第 2級炭素と結合しているものとして、 2—プロピル基、 2—ブチル基、 2—ペンチル基 、 3—メチルー 2 ブチル基、 3, 3 ジメチルー 2 ブチル基、シクロへキシル基、 2—ァダ マンチル基、 4 ォキソー2—ァダマンチル基、 1ーメトキシー 2 プロピル基、 1, 3 ジヒド 口キシー 2—プロピノレ基等を挙げることができる。
第 3級炭素と結合しているものとして、 2—メチルー 2 プロピル基 (tert ブチル基)、 2—メチルー 2 ブチル基(tert ペンチル基)、 2, 3 ジメチルー 2 ブチル基(tert—へ キシル基)、 1—ァダマンチル基、 3—ヒドロキシー 1ーァダマンチル基、 4 ォキソ 1ーァ ダマンチル基、パーフルオロー 1ーァダマンチル基、パーフルオロー 3—ヒドロキシー1 ァダマンチル基、 1ーメチルシクロへキシル基、 1ーェチルシクロペンチル基、 2—メチル —2—ァダマンチル基等を挙げることができる。
[0015] 新規物質としての利用価値の点で、 R1は Oに隣接する第 3級炭素を有するものが 好ましく、中でも、 tert ブチル基、 tert ペンチル基、 tert—へキシル基が好ましい。 また、 Y以外の置換基は橋頭位に存在するものが好ま 、。
Yにおけるハロゲン原子として、フッ素、塩素、臭素、ヨウ素を挙げることができる。
[0016] 前記一般式 (I)で表される特に好ま 、ィ匕合物として、例えば、 3 tert ペンチル ォキシ 1—ァダマンチルメタタリレート、 3— tert ブチルォキシ 1—ァダマンチルァ タリレート、 3— tert ペンチルォキシー 1ーァダマンチル 2 トリフルォロメチルアタリレ ート、 3— tert—へキシルォキシ 1ーァダマンチルメタタリレート、 3— tert ペンチルォ キシメチルー 1ーァダマンチルメチルメタタリレート、 3— tert—ブチルォキシメチルー 1 ァダマンチルメチルアタリレート、 3— tert ペンチルォキシメチルー 1ーァダマンチルメ チル 2 トリフルォロメチルアタリレート、 3— tert ブチルォキシ パーフルオロー 1ーァ ダマンチルメタタリレート、 3— tert ペンチルォキシーパーフルオロー 1ーァダマンチル アタリレートなどを挙げることができる。
[0017] 次に、ァダマンタン誘導体 (II)について説明する。本発明のァダマンタン誘導体 (II )は、一般式 (Π) [0018] [化 9]
Figure imgf000010_0001
[0019] で表される構造を有するスルホニルォキシ置換ァダマンチル (メタ)アタリレート類であ る。
上記一般式 (II)において、 Rは水素原子、メチル基又は CF基、 R2は炭素数 1
3 一 10 のアルキル基、フヱニル基、アルキルフヱニル基、又は CF基、 Yは炭素数 1
3 一 10の アルキル基、ハロゲン原子、水酸基又は 2つの Yが一緒になつて形成された =0を示 す。また、複数の Yは同じでもよぐ異なっていてもよい。 kは 0— 14の整数を示し、 m 、 nは独立に、 0— 4の整数を示す。なお、 mが 0の場合および nが 0の場合は、ァダマ ンチル基に酸素が直結した構造を示す。
上記において、 R2の炭素数 1一 10のアルキル基としては、前述のものを挙げること ができる。アルキルフエ-ル基としては、メチルフエ-ル基、ェチルフエ-ル基、プロピ ルフエ-ル基などを挙げることができる
[0020] 前記一般式 (II)で表されるァダマンタン誘導体 (II)として、 R2カ チル基であるもの 、 3 メタンスルホ-ルォキシー1ーァダマンチルメタタリレート、 3 メタンスルホ -ルォ キシー 1ーァダマンチルアタリレート、 3 メタンスルホ -ルォキシー 1ーァダマンチル 2— トリフルォロメチルアタリレート、 1 メタンスルホ -ルォキシー 4ーァダマンチルメタタリ レート、 1 メタンスルホ -ルォキシー 4ーァダマンチルアタリレート、 1 メタンスルホ- ルォキシー 4ーァダマンチル 2 トリフルォロメチルアタリレート、 3 メタンスルホ -ルォ キシメチルー 1ーァダマンチルメチルメタタリレート、 3 メタンスルホ-ルォキシメチルー 1—ァダマンチルメチルアタリレート、 3 メタンスルホ-ルォキシメチルー 1—ァダマン チルメチル 2 トリフルォロメチルアタリレート、 3 メタンスルホ -ルォキシーパーフル オロー 1ーァダマンチルメタタリレート、 3 メタンスルホ -ルォキシーパーフルオロー 1 ァダマンチルアタリレートなどを好ましく挙げることができる。
[0021] 次に、上記のァダマンタン誘導体 (I)およびァダマンタン誘導体 (II)の好ま 、製造 方法について説明する。
先ず、ァダマンタン誘導体 (II)は、前記一般式 (III)で表されるァダマンタン化合物 のアルコール体を、前記一般式 (IV)で表されるスルホ二ルイ匕合物と反応させることに より製造される。
原料の一般式(III)で表されるァダマンタン化合物のアルコール体として、 3—ヒドロ キシー 1—ァダマンチルメタタリレート、 3—ヒドロキシー 1ーァダマンチルアタリレート、 3 —ヒドロキシー 1—ァダマンチル 2—トリフルォロメチルアタリレート、 3—ヒドロキシメチルー 1—ァダマンチルメチルメタタリレート、 3—ヒドロキシメチルー 1ーァダマンチルメチルァ タリレート、 3—ヒドロキシメチルー 1—ァダマンチルメチル 2—トリフルォロメチルアタリレ ート、 3—ヒドロキシーパーフルォロ一 1ーァダマンチルメタタリレート、 3—ヒドロキシーパ 一フルオロー 1ーァダマンチルアタリレートなどのヒドロキシル基含有ァダマンチル (メ タ)アタリレート類を挙げることができる。
[0022] 次に、一般式 (IV)で表されるスルホ二ルイ匕合物は、反応性の点から、 Xが水酸基よ りもハロゲン原子のものが好ましぐ特に工業的な面で塩素原子であるものが好まし い。該スルホ-ル化合物としては、例えばメタンスルホユルク口ライド、エタンスルホ- ルクロライド、プロパンスルホ-ルクロライド、 p-トルエンスルホ-ルクロライド、トリフル ォロメタンスルホ-ルクロライドなどを挙げられる力 これらの中:^タンスルホ-ルクロ ライドが好ましい。
前記一般式 (III)で表されるァダマンタンィヒ合物のアルコール体と一般式 (IV)で表 されるスルホ-ル化合物の仕込み比は、ァダマンタン化合物 1モルに対してスルホ- ル化合物が 1一 1. 5モルの範囲が好ましい。
[0023] この反応において、一般に触媒として塩基が使用され、必要により溶媒が使用され る。
塩基として、ナトリウムアミド、トリェチルァミン、トリブチルァミン、トリオクチルァミン、 ピリジン、 N, N—ジメチルァ-リン、 1, 5—ジァザビシクロ〔4. 3. 0〕ノネンー 5 (DBN)、 1, 8—ジァザビシクロ〔5. 4. 0〕ゥンデセン— 7 (DBU)、水酸化ナトリウム、水酸化カリ ゥム、水素化ナトリウム、炭酸カリウム、酸化銀、ナトリウムメトキシド、カリウム t-ブトキ シド等を挙げることができる。これらの触媒は、一種を単独で用いてもよぐ二種以上 を組み合わせて用いてもょ 、。
[0024] この反応においては、通常、溶媒が使用される。該溶媒としては、原料であるヒドロ キシル基含有ァダマンチル (メタ)アタリレート類の溶解度が、反応温度において、 0. 5質量%以上、望ましくは 5質量%以上のものが好ましく用いられる。溶媒量は反応 混合物中のヒドロキシル基含有ァダマンチル (メタ)アタリレート類の濃度が 0. 5質量 %以上、望ましくは 5質量%以上となる量である。この際、ァダマンタン誘導体 (II)は 懸濁状態でもよいが、溶解していることが望ましい。また、使用前に溶媒中の水分を 取り除くことが望ましい。具体的には、 n—へキサン, n ヘプタン等の炭化水素系溶媒 、ジェチルエーテル,テトラヒドロフラン等のエーテル系溶媒、ジクロロメタン, 四塩化 炭素等のハロゲン系溶媒、ジメチルスルホキシド、 N, N—ジメチルスルホキシドなどを 挙げることができる。これらの溶媒は、一種を単独で用いてもよぐ二種以上を混合し て用いてもよい。
[0025] これらの中で、溶媒として 20°Cにおける誘電率が 8以下の有機溶媒を使用すること が好ましい。このような低誘電率の溶媒を用いることにより、高収率で目的のァダマン タン誘導体 (II)を製造できると共に、重合体の生成も抑制できるので、ノ、ンドリングの 面においても改善される。このような溶媒としては、具体的には、トルエン、 n—へキサ ン, n ヘプタン、シクロへキサン等の炭化水素系溶媒、酢酸ェチルなどのエステル 系溶媒および、これらの溶媒と、ジェチルエーテル,テトラヒドロフラン等のエーテル 系溶媒との混合溶媒を挙げることができる。これらの溶媒は、一種を単独で用いても よぐ二種以上を混合して用いてもよい。
溶媒として上記の低誘電率の溶媒を用いる場合には、反応後、水洗により塩を除き 、その後、晶析により、ァダマンタン誘導体 (II)を分離することができる。
[0026] 反応温度については、通常、—200— 200°Cの範囲が採用される。この範囲であれ ば、反応速度が低下することもなぐ反応時間が長くなり過ぎることもない。また、重合 物の副生が増加することもない。好ましくは 200— 100°C、更に好ましくは—50— 5 0°Cの範囲である。
反応圧力については、通常、絶対圧力で 0. 01— lOMPaの範囲が採用される。こ の範囲であれば、特別な耐圧の装置は必要ではなぐ経済的である。好ましくは、常 圧一 IMPaの範囲である。
反応時間については、通常、 1分一 24時間、好ましくは 5分一 6時間、より好ましく は 30分一 6時間の範囲である。
[0027] なお、一般式 (II)で表されるスルホ二ルイ匕合物の R2カ チル基の場合には、反応終 了液から反応生成物を分離し、次いで、該反応生成物に、その中に含まれる副生重 合物に対する貧溶媒を加え、生成する副生重合物の沈殿を除去することによって副 生物と分離することができる。その場合、貧溶媒として、メタノール、エタノール、ジェ チルエーテルなどが使用でき、なかでもメタノールが好まし 、。
具体的には、反応終了液に水をカ卩えて、メタンスルホ二ルノヽライドを失活させたの ち、溶媒を留去し、残液を洗浄して触媒を除去する。次いで、残液中に含まれる副生 重合物に対する貧溶媒、例えばメタノールを加え、該副生重合物を沈殿させ、これを 濾過などの手段により除去したのち、貧溶媒を留去させる。次に、貧溶媒留去後の残 渣を、例えばエーテル系溶媒を用いて再結晶することにより、 目的の R2カ^チル基で あるァダマンタン誘導体 (II)を高純度で得ることができる。
目的とする反応生成物の精製については、蒸留、晶析、カラム分離などが採用可 能であり、生成物の性状と不純物の種類により精製方法を選択すればよい。
[0028] ァダマンタン誘導体 (I)は、前記一般式 (III)で表されるァダマンタンィ匕合物のアル コール体を、一般式 (IV)で表されるスルホ二ルノ、ライドィ匕合物と反応させることによつ てァダマンタン誘導体 (Π)とし、次いで、アルコールと反応させることにより得ることが できる。その他、予めエーテルィ匕した後、最後に (メタ)アタリレートイ匕することもできる すなわち、ァダマンタン誘導体 (I)の製造方法は、前記一般式 (III)で表されるァダ マンタン化合物のアルコール体を下記一般式(IV) [0029] [化 10]
Figure imgf000014_0001
(式中、 R2は前記に同じであり、 Xはハロゲン原子を示す。 )
で表されるスルホ ルォキシハライド化合物と反応させて、下記一般式 (II)
[0030] [化 11]
Figure imgf000014_0002
(式中、 R、
Figure imgf000014_0003
Y、 k、 m及び nは前記に同じである。 )
[0031] で表されるスルホ -ルォキシ体を得る工程(第 1工程:スルホ-ル化工程)と、
該スルホ-ルォキシ体を下記一般式 (V)
R -OH ·'· (ν)
(式中、 R1は前記に同じである。 )
で表されるアルコールと反応させて目的のァダマンタン誘導体 (I)を得る工程 (第 2ェ 程:エーテルィ匕工程)
力 なる。以下、これらの工程を順に説明する。
[0032] (1)第 1工程 (スルホ-ルイ匕工程)
第 1工程で用いられるスルホ二ルォキシノ、ライドィ匕合物は、前記の一般式 (IV)で表 されるスルホニル化合物と同様であり、スルホニルォキシ体は、前記の一般式(II)で 表されるァダマンタン誘導体 (II)と同様である。従ってスルホ -ルォキシ体 (II)は、上 記のァダマンタン誘導体 (II)の製造法と同様の方法により製造することができる。
[0033] (2)第 2工程 (エーテルィ匕工程)
第 2工程は、スルホニルォキシ体 (II)を一般式 (V)で表されるアルコールと反応さ せて目的のァダマンタン誘導体 (I)を得る工程である。このスルホ -ルォキシ体(II)と しては、 3—メタンスルホ -ルォキシー 1—ァダマンチル (メタ)アタリレートなどのメタンス ルホ-ルォキシ置換ァダマンチル (メタ)アタリレート類が好適に用いられる。
一般式 (V)で表されるアルコールは、 R1として前記に述べたものが使用できるが、 本願発明の新規物質としての利用価値の点で tert—ブチルアルコール、 tert—ペン チルアルコール、 tert—へキシルアルコールなどの Oに隣接する第 3級の炭素を有す る第 3級アルコールが好ましい。仕込み割合については、第 1工程で得られたスルホ -ルォキシ体(II) 1モルに対して 1一 1. 5モルの範囲であればよい。
[0034] この反応において、一般に触媒として塩基が使用され、必要により溶媒が使用され る。
塩基として、ナトリウムアミド、トリェチルァミン、トリブチルァミン、トリオクチルァミン、 ピリジン、 N, N—ジメチルァ-リン、 1, 5—ジァザビシクロ〔4. 3. 0〕ノネンー 5 (DBN)、 1, 8—ジァザビシクロ〔5. 4. 0〕ゥンデセン— 7 (DBU)、水酸化ナトリウム、水酸化カリ ゥム、水素化ナトリウム、炭酸カリウム、酸化銀、ナトリウムメトキシド、カリウム t-ブトキ シド等を挙げることができる。これらの触媒は、一種を単独で用いてもよぐ二種以上 を組み合わせて用いてもょ 、。
[0035] エーテルィ匕工程の溶媒としては、スルホ -ルォキシ体 (II)の溶解度が、反応温度に おいて、 0. 5質量%以上、望ましくは 5質量%以上のものが好ましい。溶媒量は反応 混合物中のスルホ -ルォキシ体 (II)の濃度が 0. 5質量%以上、望ましくは 5質量% 以上となる量にするのがよい。この際、スルホ -ルォキシ体 (II)が懸濁状態でもよい 力 溶解していることが望ましい。また、使用前に溶媒中の水分を取り除くことが望ま しい。具体的には、 n—へキサン, n—ヘプタン等の炭化水素系溶媒、ジェチルエーテ ル,テトラヒドロフラン等のエーテル系溶媒、ジクロロメタン,四塩ィ匕炭素等のハロゲン 系溶媒、ジメチルスルホキシド、 N, N—ジメチルスルホキシドなどを挙げることができ る。これらの溶媒は、一種を単独で用いてもよぐ二種以上を混合して用いてもよい。
[0036] 反応温度については、通常、—200— 200°Cの範囲が採用される。この範囲であれ ば、反応速度が低下することもなぐ反応時間が長くなり過ぎることもない。また、重合 物の副生が増加することもない。好ましくは、 100— 150°Cの範囲である。
反応圧力については、通常、絶対圧力で 0. 01— lOMPaの範囲が採用される。こ の範囲であれば、特別な耐圧の装置は必要ではなぐ経済的である。好ましくは、常 圧一 lOMPaの範囲である。
反応時間については、通常、 1一 48時間の範囲である。
[0037] 目的化合物の精製分離については、未反応のスルホニルォキシ体 (II)を、炭酸水 素ナトリウム水溶液等のアルカリ水溶液で加水分解して一般式 (ΠΙ)に相当するアル コール体に変え、該アルコール体をシリカゲル等に吸着させて行うことができる。 得られたィ匕合物の同定は、ガスクロマトグラフィー(GC)、液体クロマトグラフィー(L C)、ガスクロマトグラフィー質量分析 (GC— MS)、核磁気共鳴分光法 (NMR)、赤外 分光法 (IR)、融点測定装置などを用いて行うことができる。
実施例
[0038] 次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によ つてなんら限定されるものではな!/、。
溶媒の誘電率の値については、有機合成化学協会編 新版 溶剤ポケットブック( オーム社)および浅原照三ら 溶剤ハンドブック (講談社サイェンティフイク)よりの数 値であり、混合溶媒 (実施例 10)の誘電率については加成則により算出した数値で ある。
[0039] 〔実施例 1〕(ァダマンタン誘導体 (I)の製造)
構造式
[0040] [化 12]
Figure imgf000016_0001
[0041] で表される 3— tert—ペンチルォキシー 1ーァダマンチルメタタリレートの合成
(1)スルホニル化工程
2リットルのガラス反応器に、撹拌装置を取り付け、ここ〖こ 3-ヒドロキシ -1—ァダマン チルメタタリレート(ァダマンテート HM、出光興産製) 118. 16g (500ミリモル)、乾 燥したトリェチルァミン 104. 5ミリリットル(750ミリモル)及び乾燥したテトラヒドロフラ ン 1リットルをカ卩え、氷浴で 0°Cに冷却して撹拌した。ここにメタンスルホユルク口ライド 46. 4ミリリットル (600ミリモル)を加え、 5分間撹拌し、ガスクロマトグラフィー分析を行 つたところ、転化率 92. 6%、選択率 99. 8%で 3—メタンスルホ -ルォキシー 1—ァダ マンチルメタタリレートが得られていることを確認した。そこに、水 50ミリリットルをカロえ 、未反応のメタンスルホユルク口ライドを失活させ、エバポレーターでテトラヒドロフラン を除去した。それを 2リットルの分液ロートに移し、ジェチルエーテル 600ミリリットル、 水 550ミリリットルを 2回加えて 2度水洗し、トリェチルァミン塩、ポリマー 1. Olgを除去 した。無水硫酸マグネシウム 12. 0g ( 100ミリモル)を加え,脱水した後、濾過により、 硫酸マグネシウムを除去した。それをエバポレートしてジェチルエーテルを除去し、 ガスクロマトグラフィー(GC)分析及び GPC分析を行ったところ、収量が 156. 26g、 純度が 91. 3% (GC)、 97. 8% (GPC)で 3—メタンスルホ -ルォキシー 1—ァダマンチ ルメタタリレートが得られていることを確認した。
(2)エーテル化工程
2リットルのガラス反応器に、撹拌装置を取り付け、ここに(1)で得られたものを入れ 、乾燥した 2—メチル—2—ブタノール 750. 0ミリリットル(6, 849ミリモル)及び乾燥した 1, 8—ジァザビシクロ [5. 4. 0]— 7—ゥンデセン(DBU) 80. 0ミリリットル(535ミリモル )、メトキノン 0. 30g(2, 000質量 ppm)をカ卩え、撹拌した。オイルバスの温度を 120°C に設定し、 36時間還流した。また、 6時間ごとにメトキノン 0. 03g (200質量 ppm)を 逐次添加した。ガスクロマトグラフィー分析を行ったところ、転化率 86. 9%、選択率 9 9. 8%で目的物が得られていることが分力つた。転ィ匕していない、 3—メタンスルホ- ルォキシー 1—ァダマンチルメタタリレートを 3—ヒドロキシー 1—ァダマンチルメタクリレ ートにするために、飽和炭酸水素ナトリウム水溶液 100ミリリットルをカ卩え、撹拌し、 60 °Cで 8時間撹拌した。エバポレーターで 2—メチルー 2—ブタノールを除去した。それを 2リットルの分液ロートに移し、ジェチルエーテル 600ミリリットル、水 550ミリリットルを 2回加えて 2度水洗し、 DBU塩を除去した。無水硫酸マグネシウム 12. 0g (100ミリ モル)を加え、脱水した後、濾過により、硫酸マグネシウムを除去した。それをエバポ レートしてジェチルエーテルを除去し、ガスクロマトグラフィー分析を行ったところ、収 量 149. lg、純度 80.7%で目的物が得られていることが分かった。それを n キサ ン 1リットルに溶かし、それをシリカゲル lOOgに 3—ヒドロキシー 1ーァダマンチルメタク リレートを吸着させて、濾過、脱色した。エバポレータートで n キサンを除去し、無 色透明液体 81. Ogを得た。ガスクロマトグラフィー分析を行ったところ、 99.8%の純 度で目的物が得られていることを確認した。以下、 NMR 13C— NMR及び GC— MSの各データを示した。
[0043] ·核磁気共鳴分光法 (NMR): CDC1
3
iH—NMR (500MHz) :0.85(t, J = 7.7Hz, 3H, o) ,
1.21 (s, 6H, m), 1.43(q, J = 7.4Hz, 2H, n) ,
1.48 (m, 2H, h or i) , 1.80(br— s, 4H, f or j),
1.85 (s, 3H, a), 1.97(d, J=ll.5Hz, f or j),
2.08(d, J=ll.9Hz, f or j), 2.20 (s, 2H, g),
2.25 (s, 2H, h or i) , 5.43 (s, b1) , 5.96 (s, b2) ,
13C— NMR (126MHz) :8.62 (o), 18.27(a), 29.04 (h or m),
31.39 (m or h), 35.07 (g or ior n) , 37.49 (g or ior n) ,
40.06 (f or j) , 43.90 (j or f) , 48.96 (g or ior n) ,
73.35 (e or kor 1) , 76.42 (e or kor 1) , 81.54 (e or kor 1) ,
124.31(b), 137.85(c), 166.28(d)
[0044] [化 13]
Figure imgf000018_0001
[0045] •ガスクロマトグラフィー質量分析(GC— MS): EI
291(M+-CH , 0.05%) , 219(M+— CH O, 100%)
3 5 11
133(25.6%) , 69(98.6%) , 41(26.1%)
[0046] 〔実施例 2〕(ァダマンタン誘導体 (I)の製造) 構造式
[0047] [化 14]
Figure imgf000019_0001
[0048] で表される 3—(2—ヒドロキシエトキシ )ー1ーァダマンチルメタタリレートの合成
(1)スルホニル化工程
実施例 1のスルホ-ル化工程と同様にして得られた 3 メタンスルホ -ルォキシー 1 ァダマンチルメタタリレートに、ジェチルエーテル 100ミリリットルを加え、 0°Cに冷却 し再結晶を行ったところ、白色固体 115. 13gを得た。ガスクロマトグラフィー分析及 び GPC分析を行ったところ、純度が 99. 1% (GC)、 98. 9% (GPC)で 3—メタンスル ホ-ルォキシ 1ーァダマンチルメタタリレートが得られて 、ることを確認した。
[0049] (2)エーテル化工程
2リットルのガラス反応器に、撹拌装置を取り付け、ここに(1)で得られたものを入れ 、乾燥したエチレングリコール 1100. 0ミリリットル(19725ミリモル)及び乾燥したトリ ェチルァミン 76. 0ミリリットル(545ミリモル)を加え、撹拌した。オイルバスの温度を 8 0°Cに設定し、 2時間加熱した。ガスクロマトグラフィー分析を行ったところ、転化率 99 . 9%、選択率 99. 8%で目的物が得られていることが分力つた。反応液を 2リットルの 分液ロートに移し、ジェチルエーテル 600ミリリットル、水 200ミリリットルを加えて有機 層への抽出を行い、 1N希塩酸 700ミリリットルをカ卩えて水洗し、さら〖こ、水 700ミリリツ トルをカ卩えて水洗し、トリェチルアミン塩を除去した。無水硫酸マグネシウム 12. Og (l 00ミリモル)を加え、脱水した後、濾過により、硫酸マグネシウムを除去した。それをェ バポレートしてジェチルエーテルを除去し、ガスクロマトグラフィー分析及び GPC分 析を行ったところ、収量 91. 96g、純度 99. 5% (GC)、 99. 4% (GPC)で目的物力 S 得られていることを確認した。以下、 NMR、 13C— NMR、 GC— MS及び融点の各 データを示した。
Figure imgf000020_0001
, () HNMR OOMHZ1.212.8HZ 2H=I $≠ ()s0ΰ005NMR CDC1. [0054] [化 16]
Figure imgf000021_0001
[0055] で表される 3—(2—メトキシー 1 メチルエトキシ )ー1ーァダマンチルメタタリレートの合 成
(1)スルホニル化工程
実施例 2と同様にして、純度が 99. 1% (GC)、 98. 9% (GPC)で 3 メタンスルホ二 ルォキシー 1ーァダマンチルメタタリレートを得た。
(2)エーテル化工程
2リットルのガラス反応器に、撹拌装置を取り付け、ここに(1)で得られたものを入れ 、乾燥した 1ーメトキシ—2—プロパノール 1100. 0ミリリットル(11254ミリモル)及び乾 燥したトリェチルァミン 76. 0ミリリットル(545ミリモル)をカ卩え、撹拌した。オイルバス の温度を 80°Cに設定し、 2時間加熱した。ガスクロマトグラフィー分析を行ったところ、 転化率 99. 8%、選択率 99. 8%で目的物が得られていることが分力つた。反応液を 2リットルの分液ロートに移し、ジェチルエーテル 600ミリリットル、水 200ミリリットルを 加えて有機層への抽出を行い、 1N希塩酸 700ミリリットルをカ卩えて水洗し、さらに、水 700ミリリットルをカ卩えて水洗し、トリェチルアミン塩を除去した。無水硫酸マグネシゥ ム 12. Og ( 100ミリモル)をカ卩え、脱水した後、濾過により、硫酸マグネシウムを除去し た。
それをエバポレートしてジェチルエーテルを除去し、ガスクロマトグラフィー分析及 び GPC分析を行ったところ、収量 106. 40g、純度 99. 6% (GC)、 99. 5% (GPC) で目的物が得られていることを確認した。以下、 NMR、 13C— NMR及び GC— M Sの各データを示した。
[0056] ·核磁気共鳴分光法 (NMR): CDC1
3
^-NMR (500MHz): 1. 21 (o) , 1. 48 (m, 2H, h or i) , 1. 80(br-s, 4H, f or j) , 1. 85 (s, 3H, a),
1. 97 (d, f or j) , 2.08 (d, f or j) , 2. 20 (s, 2H, g),
3. 24 (s, 3H, p), 3. 34(1), 3. 50 (m), 5.43 (s, b1),
5. 96 (s, b2)
13C—NMR( 127MHz) :17. 7(o), 18. 3(a), 29.0(h),
37. 5 (g or i) , 40. 1 (f or j) , 43. 9 (j or f) , 49.0 (g or i) ,
54. 2 (p) , 67. 9 (1) , 75.4 (e or k) , 76.42 (e or k) ,
80.6(m), 124. 3(b), 137. 9(c), 166. 3(d)
[0057] [化 17]
Figure imgf000022_0001
[0058] •ガスクロマトグラフィー質量分析(GC— MS): EI
263(M+-CH OCH , 11. 1%), 220(16. 7%) , 219(100%)
2 3
133(25. 3%) , 73(12. 2), 69(99.4%) , 45(10.4%) ,
41(19. 9%)
[0059] 〔実施例 4〕(ァダマンタン誘導体 (I)の製造)
構造式
[0060] [化 18]
Figure imgf000022_0002
[0061] で表される 3—(2—シァノエトキシ) 1ーァダマンチルメタタリレートの合成
(1)スルホニル化反応
実施例 2と同様にして、純度が 99. 1%(GC)、 98. 9% (GPC)で 3 メタンスルホ: ルォキシー 1ーァダマンチルメタタリレートを得た。
(2)エーテルィ匕反応
2リットルのガラス反応器に、撹拌装置を取り付け、ここに(1)で得られたものを入れ 、乾燥した 3—ヒドロキシプロピオ-トリル 1100.0ミリリットル(16110ミリモル)及び乾 燥したトリェチルァミン 76.0ミリリットル(545ミリモル)をカ卩え、撹拌した。オイルバス の温度を 80°Cに設定し、 2時間加熱した。ガスクロマトグラフィー分析を行ったところ、 転化率 99.8%、選択率 99.8%で目的物が得られていることが分力つた。反応液を 2リットルの分液ロートに移し、ジェチルエーテル 600ミリリットル、水 200ミリリットルを 加えて有機層への抽出を行い、 1N希塩酸 700ミリリットルをカ卩えて水洗し、さらに、水 700ミリリットルをカ卩えて水洗し、トリェチルアミン塩を除去した。無水硫酸マグネシゥ ム 12.0g( 100ミリモル)をカ卩え、脱水した後、濾過により、硫酸マグネシウムを除去し た。
それをエバポレートしてジェチルエーテルを除去し、ガスクロマトグラフィー分析及 び GPC分析を行ったところ、収量 95.9g、純度 98.5%(GC)、 99.0%(GPC)で 目的物が得られていることを確認した。以下、 NMR、 13C— NMR及び GC— MS の各データを示した。
·核磁気共鳴分光法 (NMR): CDC1
3
^-NMR (500MHz): 1.48 (m, 2H, h or i) ,
1.80(br-s, 4H, f or j) , 1.85 (s, 3H, a),
1.97 (d, f or j) , 2.08 (d, f or j) , 2.20 (s, 2H, g),
2.58 (m) , 3.74(1), 5.43 (s, b1), 5.96 (s, b2)
13C— NMR (127MHz) :19.6(m), 18.3(a), 29.0(h),
37.5 (g or i) , 40. 1 (f or j) , 43.9 (j or f) , 49.0 (g or i) ,
61.0(1), 75.4(e or k), 76.42 (e or k), 117.7(n),
124.3(b), 137.9(c), 166.3(d) [0063] [化 19]
Figure imgf000024_0001
[0064] ·ガスクロマトグラフィー質量分析(GC— MS): EI
290 (M++ 1, 0. 18%) , 289 (Μ+, 1. 4%) , 204 (43. 1%) ,
203 (100%) , 148 (76. 9%) , 135 (39. 3%) , 92 (78. 3%) ,
69 (88. 6%) , 41 (69. 9%)
[0065] 〔実施例 5〕(ァダマンタン誘導体 (II)の製造'分離時に貧溶媒使用)
構造式
[0066] [化 20]
Figure imgf000024_0002
[0067] で表される 3—メタンスルホ -ルォキシー 1ーァダマンチルメタタリレートの合成
2リットルのガラス反応器に、攪拌装置、滴下ロートを取り付け、そこへ 3—ヒドロキシー 1ーァダマンチルメタタリレート(ァダマンテート ΗΜ、出光興産製) 118. 16g (500ミリ モル)、乾燥したトリェチルァミン 104. 5ミリリットル(750ミリモル)及び乾燥したテトラ ヒドロフラン 1リットルをカ卩え、氷浴で 0°Cに冷却して攪拌した。そこへメタンスルホ-ル クロライド 46. 4ミリリットル(600ミリモル)を 1時間かけて滴下した。さらに 1時間攪拌し 、ガスクロマトグラフィー分析を行ったところ、 3—ヒドロキシー 1—ァダマンチルメタクリレ ートは完全に転ィ匕し、選択率 99. 5%で目的物が得られていることを確認した。そこ へ、水 50ミリリットルを加え、未反応のメタンスルホニルクロライドを失活させ、エバポ レーターでテトラヒドロフランを除去した。それを 2リットルの分液ロートに移し、ジェチ ルエーテル 600ミリリットル、水 550ミリリットルを 2回カロえて 2度水洗し、卜リエチルアミ ン塩を除去した。それをエバポレーターでジェチルエーテルを除去した後、 300ミリリ ットルのメタノールをカ卩え、ポリマーを沈殿させ、ろ過によりポリマー 31.44gを除去し た。濾液をエバポレーターでメタノールを除いた後、ジェチルエーテル 200ミリリットル 、無水硫酸マグネシウム 12. 0g( 100ミリモル)をカ卩え、脱水した後、濾過により、硫酸 マグネシウムを除去した。それをエバポレーターでジェチルエーテルを除去し、ガス クロマトグラフィー分析及び GPC分析を行ったところ、収量が 115. 37g、純度が 98. 2%(GC)、 98. 7% (GPC)で目的物が得られていることを確認した。そこへジェチ ルエーテル 50ミリリットルをカ卩え、— 20°Cに冷却し、再結晶により、白色固体 102. 21 gを得た。ガスクロ分析を行ったところ、 98. 9%の純度で目的物が得られていることを 確認した。
この化合物の分析結果を以下に示す。
[0068] ·核磁気共鳴分光法 (NMR): CDC1
3
iH—NMR (500MHz) :1. 55(g), 1. 85(c),
2. 04—2. 06 (f or i)、 2. 13—2. 16 (f or i)、
2. 18(h), 2. 39 (f or i)、 2. 58 (f or i)、
2. 97(k)、 5.47—5.48(a2)、 5. 98 (al)
13C— NMR (127MHz) :18. 3(c)、31. 5(k)、
34. 3(f or h or i)、39. 5(f or h or i)、
40. 9(g), 41. 7(f or h or i)、
46. 6(f or h or i)、 80. 6(j)、 90. 3(e),
125. 0(a), 137.4(b), 166. 2(d)
•ガスクロマトグラフィー質量分析(GC— MS): EI
315(M++1, 2. %)、 314(M+, 11.4%)、 149(78. 8%)、
133(82. 6%)、 69(100%)
[0069] 〔実施例 6〕(ァダマンタン誘導体 (II)の製造、反応時に低誘電率の有機溶媒を使用
)
200mLのガラス反応器に撹拌装置、滴下漏斗および温度計を取り付け、ここにァ ダマンテート HM (出光興産製: 3-ヒドロキシ- 1-ァダマンチルメタタリレート) 10. 0g( 42ミリモル)、トリェチルァミン 8. 8mL (63ミリモル)およびトルエン 84. OmLを加え、 25°Cの水浴に漬け攪拌した。ここにメタンスルホユルク口ライド 4. OmL (50ミリモル) を 35分かけて滴下した。その後さらに 25分間撹拌した。そこに水 10mLを加え、未 反応のメタンスルホユルク口ライドを失活させた。反応液の一部をとり GPC測定を行 い目的物と重合体の生成割合を測定した。残りの反応液を 200mLの分液漏斗に移 し、水 40mLをカ卩えて水洗し、その後有機層を 1ミルモル ZmL塩酸 50mLで洗浄し、 次 ヽで水 50mLで洗浄した。この分液操作の過程でポリマーが析出することはなかつ た。無水硫酸マグネシウム 6. Og (50ミリモル)をカ卩え、脱水した後、濾過により硫酸マ グネシゥムを除去した。濾液をエバポレーターに付し、トルエンを留去した後、得られ た粘ちよう物を 0°Cに冷却し、結晶化させた。これを少量の n キサンで洗浄した後 、結晶を濾過により分け、恒量になるまで減圧乾燥させ目的物のァダマンタン誘導体 (3—メタンスルホ -ルォキシー 1ーァダマンチルメタタリレート)を得た。原料のァダマン タン化合物に対する目的物の収率 (モル0 /0)およびガスクロマトグラフィーによる純度 (質量%)、GPC測定による重合体生成割合 (質量%)の結果を第 1表に示す。
〔実施例 6-1〕(ァダマンタン誘導体 (II)の製造、反応時に低誘電率の有機溶媒を使 用せず)
200mLのガラス反応器に撹拌装置、滴下漏斗および温度計を取り付け、ここにァ ダマンテート HM (出光興産製: 3-ヒドロキシ- 1-ァダマンチルメタタリレート) 10. Og ( 42ミリモル)、トリェチルァミン 8. 8mL (63ミリモル)およびテトラヒドロフラン 84mLを 加え、 25°Cの水浴に漬け攪拌した。ここにメタンスルホユルク口ライド 4. OmL (50ミリ モル)を 35分かけて滴下した。その後さらに 25分間撹拌した。そこに水 10mLをカロえ 、未反応のメタンスルホユルク口ライドを失活させた。反応液の一部をとり GPC測定を 行い目的物と重合体の生成割合を測定した。残りの反応液を 300mLの分液漏斗に 移し、ジェチルエーテル 100mL、水 40mLをカ卩えて水洗した。その時、ポリマーが析 出し分液漏斗に付着、また有機層と水層の分離の際に分液漏斗のコックがポリマー により詰まり、分液に手間がカゝかった。その後有機層を 1ミルモル ZmL塩酸 50mLで 洗浄し、次いで水 50mLで洗浄した。無水硫酸マグネシウム 6. Og (50ミリモル)をカロ え,脱水した後、濾過により硫酸マグネシウムを除去した。濾液をエバポレーターに 付し、溶媒を留去した後、得られた粘ちよう物を o°cに冷却し、結晶化させた。これを 少量の n キサンで洗浄した後、結晶を濾過により分け、恒量になるまで減圧乾燥 させ目的物を得た。 目的物の収率およびガスクロマトグラフィーによる純度、 GPC測 定による重合体生成割合の結果を第 1表に示す。
[0071] 〔実施例 7〕(ァダマンタン誘導体 (II)の製造、反応時に低誘電率の有機溶媒を使用
)
200mLのガラス反応器に撹拌装置、滴下漏斗および温度計を取り付け、ここにァ ダマンテート HM (出光興産製: 3-ヒドロキシ- 1-ァダマンチルメタタリレート) 10. 0g ( 42ミリモル)、トリェチルァミン 8. 8mL (63ミリモル)およびトルエン 42mLを加え、攪 拌しながら氷浴で 5°Cに冷却した。ここにメタンスルホユルク口ライド 4. 0mL (50ミリモ ル)を 3分かけて滴下した。その後さらに 5分間撹拌した。そこに水 10mLを加え、未 反応のメタンスルホユルク口ライドを失活させた。反応液の一部をとり GPC測定を行 い目的物と重合体の生成割合を測定した。残りの反応液を 200mLの分液漏斗に移 し、水 40mLをカ卩えて水洗し、その後有機層を 1ミリモル ZmL塩酸 50mLで洗浄し、 次 ヽで水 50mLで洗浄した。この分液操作の過程でポリマーが析出することはなかつ た。無水硫酸マグネシウム 6. Og (50ミリモル)をカ卩え,脱水した後、濾過により硫酸マ グネシゥムを除去した。濾液をエバポレーターに付し、トルエンを留去した後、得られ た粘ちよう物を 0°Cに冷却し、結晶化させた。これを少量の n キサンで洗浄した後 、結晶を濾過により分け、恒量になるまで減圧乾燥させ目的物を得た。 目的物の収 率およびガスクロマトグラフィーによる純度、 GPC測定による重合体生成割合の結果 を第 1表に示す。
[0072] 〔実施例 7-1〕(ァダマンタン誘導体 (II)の製造、反応時に低誘電率の有機溶媒を使 用せず)
200mLのガラス反応器に撹拌装置、滴下漏斗および温度計を取り付け、ここにァ ダマンテート HM (出光興産製: 3-ヒドロキシ- 1-ァダマンチルメタタリレート) 10. 0g ( 42ミリモル)、トリェチルァミン 8. 8mL (63ミリモル)およびテトラヒドロフラン 42mLを 加え、攪拌しながら氷浴で 5°Cに冷却した。ここにメタンスルホニルクロライド 4. OmL ( 50ミリモル)を 3分かけて滴下した。その後さらに 5分間撹拌した。そこに水 10mLを 加え、未反応のメタンスルホユルク口ライドを失活させた。反応液の一部をとり GPC測 定を行い目的物と重合体の生成割合を測定した。残りの反応液を 300mLの分液漏 斗に移し、ジェチルエーテル 100mL、水 40mLを加えて水洗した。その時、ポリマー が析出し分液漏斗に付着した。その後有機層を 1ミリモル ZmL塩酸 50mLで洗浄し 、次いで水 50mLで洗浄した。無水硫酸マグネシウム 6. Og (50ミリモル)を加え,脱 水した後、濾過により硫酸マグネシウムを除去した。濾液をエバポレーターに付し、溶 媒を留去した後、得られた粘ちよう物を 0°Cに冷却し、結晶化させた。これを少量の n 一へキサンで洗浄した後、結晶を濾過により分け、恒量になるまで減圧乾燥させ目的 物を得た。 目的物の収率およびガスクロマトグラフィーによる純度、 GPC測定による 重合体生成割合の結果を第 1表に示す。
[0073] 〔実施例 7-2〕(ァダマンタン誘導体 (II)の製造、反応時に低誘電率の有機溶媒を使 用せず)
実施例 7においてトルエンを塩化メチレンに変えた以外は実施例 7と同様にして目 的物を得た。分液の過程でポリマーが析出した。 目的物の収率およびガスクロマトグ ラフィーによる純度、 GPC測定による重合体生成割合の結果を第 1表に示す。
[0074] 〔実施例 8〕(ァダマンタン誘導体 (II)の製造、反応時に低誘電率の有機溶媒を使用) 実施例 7においてトルエン 42mLを 84mLに変えた以外は実施例 7と同様にして目 的物を得た。分液の過程でポリマーが析出することはな力つた。 目的物の収率および ガスクロマトグラフィーによる純度、 GPC測定による重合体生成割合の結果を第 1表 に示す。
[0075] 〔実施例 9〕(ァダマンタン誘導体 (II)の製造、反応時に低誘電率の有機溶媒を使用) 実施例 7においてトルエンを酢酸ェチルに変えた以外は実施例 7と同様にして目的 物を得た。分液の過程でポリマーが析出することはな力つた。 目的物の収率およびガ スクロマトグラフィーによる純度、 GPC測定による重合体生成割合の結果を第 1表に 示す。
[0076] 〔実施例 10〕(ァダマンタン誘導体 (II)の製造、反応時に低誘電率の有機溶媒を使用 )
実施例 7においてトルエンをシクロへキサン 22mLとテトラヒドロフラン 22mLの混合 溶媒に変えた以外は実施例 7と同様にして目的物を得た。分液の過程でポリマーが 析出することはなかった。目的物の収率およびガスクロマトグラフィーによる純度、 GP C測定による重合体生成割合の結果を第 1表に示す。
[表 1]
Hi表
実施例 6 実施例 6— 1 実施例 7 実施例 7— 1 実施例 7— 2 実施例 8 実施例 9 実施例 1 0 溶媒使用量 (mL)
トルエン 84 42 84
シクロへキサン 22 酢酸ェチル 42
亍トラヒト'口フラン 84 42 22 塩化メチレン 42
溶媒の誘電率 2.2 8.2 2.2 8.2 9.1 2.2 6.0 5.1 反応方法
浴温度 (°c) 25 25 5 5 5 5 5 5 滴下時間(min) 35 35 3 3 3 3 3 3 後攪拌時間 (min) 25 25 5 5 5 5 5 5 ァダマンタン誘導体 (【1)
収率(モル %) 95 66 94 90 86 96 95 95 純度(質量" ¾) 99.0 98.3 99.1 97.7 94.8 99.4 98.9 98.9
0.4 28.8 0.6 4.4 8.3 0.3 2.2 1.9
産業上の利用可能性
一般式 (I)で表される本発明のァダマンタン誘導体 (I)および、一般式 (II)で表され る本発明のァダマンタン誘導体 (II)は、共に新規なァダマンチル (メタ)アタリレートイ匕 合物であって、フォトリソグラフィー分野における感光性榭脂などの機能性榭脂のモノ マーとして有用である。
本発明のァダマンタン誘導体 (I)は、露光後の表面荒れ (LER:レジストの側面にで きる凹凸、 LWR:配線を真上力も見た場合のうねり)及び PEB (露光によって発生し た酸を、拡散させるための熱処理)の温度依存性等の改善効果が期待できる。
また、本発明のァダマンタン誘導体 (Π)は、レジスト剤混合液の一成分である PAG ( 光酸発生剤)との相溶性が向上すると考えられ、均質な膜を作ることができ、それによ り露光後の表面荒れ (LER:レジストの側面にできる凹凸、 LWR:配線を真上力ゝら見 た場合のうねり)の改善効果が期待できる。
さらに、本発明のァダマンタン誘導体 (I)およびァダマンタン誘導体 (II)の製造方法 により、これらのァダマンタン誘導体を高収率で製造することができる。特に、 20°Cに おける誘電率が 8以下の有機溶媒中で反応させるァダマンタン誘導体 (II)の製造方 法においては、重合体の生成が抑制できるのでノヽンドリングの面においても改善され 、効率よく工業的に有利に製造することができる。

Claims

請求の範囲
[1] 一般式 (I)
[化 1]
Figure imgf000032_0001
(式中、 Rは水素原子、メチル基又は CF基、 Yは炭素数 1
3 一 10のアルキル基、ハロ ゲン原子、水酸基又は 2つの Yが一緒になつて形成された =0を示す。また、複数の Yは同じでもよぐ異なっていてもよい。 R1は炭素数 1一 10のアルキル基又はシクロア ルキル基を示し、その構造の一部にヘテロ原子及び Z又は-トリル基を含んでいて もよい。 kは 0— 14の整数を示し、 m、 nは独立に、 0— 4の整数を示す。 )
で表される構造を有することを特徴とするァダマンタン誘導体。
[2] Y以外の置換基が橋頭位に存在するものである請求項 1に記載のァダマンタン誘 導体。
[3] R1が、 Oに隣接する第 3級の炭素を有するものである請求項 1又は 2に記載のァダ マンタン誘導体。
[4] 一般式 (II)
[化 2]
Figure imgf000032_0002
(式中、 Rは水素原子、メチル基又は CF基、 R2は炭素数 1 キル基、フエ
3 一 10のアル
ニル基、アルキルフヱニル基、又は CF基、 Yは炭素数 1
3 一 10のアルキル基、ハロゲ ン原子、水酸基又は 2つの Yが一緒になつて形成された =0を示す。また、複数の Y は同じでもよぐ異なっていてもよい。 kは 0— 14の整数を示し、 m、 nは独立に、 0— 4 の整数を示す。 )
で表される構造を有することを特徴とするァダマンタン誘導体。
R メチル基である請求項 4に記載のァダマンタン誘導体。
一般式 (III)
[化 3]
Figure imgf000033_0001
(式中、 Rは水素原子、メチル基又は CF基、 Yは炭素数 1一 10のアルキル基、ハロ
3
ゲン原子、水酸基又は 2つの Yが一緒になつて形成された =0を示す。また、複数の Yは同じでもよぐ異なっていてもよい。 kは 0— 14の整数を示し、 m、 nは独立に、 0 一 4の整数を示す。 )
で表されるァダマンタンィ匕合物のアルコール体と、一般式 (IV)
[化 4]
Figure imgf000033_0002
(式中、 R2は炭素数 1一 10のアルキル基、フ -ル基、アルキルフ -ル基、又は CF 基を示し、 Xは水酸基又はハロゲン原子を示す。 )
3
で表されるスルホ-ルイ匕合物を反応させることを特徴とする、一般式 (II)
[化 5]
Figure imgf000033_0003
(式中、 R、 R2、 Y、 k、 m及び nは前記と同じである。 ) で表される構造を有するァダマンタン誘導体の製造方法。
[7] 一般式 (III)で表されるァダマンタンィ匕合物のアルコール体と、一般式 (IV)で表され るスルホニル化合物を、 20°Cにおける誘電率が 8以下の有機溶媒中で反応させる請 求項 6に記載のァダマンタン誘導体の製造方法。
[8] 一般式(IV)で表されるスルホ-ル化合物力 メタンスルホ-ルハライドである請求 項 6又は 7に記載のァダマンタン誘導体の製造方法。
[9] 一般式 (III)で表されるァダマンタンィ匕合物のアルコール体と、一般式 (IV)で表され るスルホニル化合物を反応させた後、反応終了液から反応生成物を分離し、次いで
、該反応生成物に、その中に含まれる副生重合物に対する貧溶媒を加え、生成する 副生重合物の沈殿を除去する請求項 6— 8に記載のァダマンタン誘導体の製造方法 副生重合物に対する貧溶媒が、メタノールである請求項 9に記載のァダマンタン誘 導体の製造方法。
一般式 (II)
[化 6]
Figure imgf000034_0001
(式中、 Rは水素原子、メチル基又は CF基、 R2は炭素数 1
3 一 10のアルキル基、フエ ニル基、アルキルフエニル基、又は CF基を示し、 Yは炭素数 1
3 一 10のアルキル基、 ハロゲン原子、水酸基又は 2つの Yが一緒になつて形成された =0を示す。また、複 数の Yは同じでもよぐ異なっていてもよい。 kは 0— 14の整数を示し、 m、 nは独立に 、 0— 4の整数を示す。 )
で表される構造を有するァダマンタン誘導体を、アルコールと反応させることを特徴と する、一般式 (I)
[化 7]
Figure imgf000035_0001
(式中、 R1は炭素数 1一 10のアルキル基又はシクロアルキル基を示し、その構造の一 部にヘテロ原子及び Z又は-トリル基を含んでいてもよい。 R、 Y、 k、 m及び nは前 記に同じである。 )
で表されるァダマンタン誘導体の製造方法。
[12] 3—メタンスルホ -ルォキシ— 1ーァダマンチル (メタ)アタリレートをアルコールと反応 させる請求項 11に記載のァダマンタン誘導体の製造方法。
[13] アルコールが、第 3級アルコールである請求項 11又は 12に記載のァダマンタン誘 導体の製造方法。
PCT/JP2005/001404 2004-02-05 2005-02-01 アダマンタン誘導体及びその製造方法 WO2005075406A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020067015853A KR101114585B1 (ko) 2004-02-05 2005-02-01 아다만테인 유도체 및 그의 제조방법
US10/588,080 US7528279B2 (en) 2004-02-05 2005-02-01 Adamantane derivatives and process for producing the same
EP05709550A EP1712542A4 (en) 2004-02-05 2005-02-01 ADAMANTANE DERIVATIVES AND METHOD OF PRODUCTION
US12/363,895 US20090156854A1 (en) 2004-02-05 2009-02-02 Adamantane derivatives and process for producing the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004-029034 2004-02-05
JP2004029034A JP4429754B2 (ja) 2004-02-05 2004-02-05 アダマンタン誘導体及びその製造方法
JP2004066626 2004-03-10
JP2004-066626 2004-03-10
JP2004-218686 2004-07-27
JP2004218686 2004-07-27
JP2004296542A JP4594695B2 (ja) 2004-10-08 2004-10-08 アダマンタン誘導体の製造方法
JP2004-296542 2004-10-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/363,895 Division US20090156854A1 (en) 2004-02-05 2009-02-02 Adamantane derivatives and process for producing the same

Publications (1)

Publication Number Publication Date
WO2005075406A1 true WO2005075406A1 (ja) 2005-08-18

Family

ID=34841840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001404 WO2005075406A1 (ja) 2004-02-05 2005-02-01 アダマンタン誘導体及びその製造方法

Country Status (5)

Country Link
US (2) US7528279B2 (ja)
EP (1) EP1712542A4 (ja)
KR (1) KR101114585B1 (ja)
TW (1) TW200535118A (ja)
WO (1) WO2005075406A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029442A1 (ja) * 2005-09-09 2007-03-15 Idemitsu Kosan Co., Ltd. アダマンタン誘導体及びその製造方法
WO2007029462A1 (ja) * 2005-09-09 2007-03-15 Tokyo Ohka Kogyo Co., Ltd. 高分子化合物、ネガ型レジスト組成物およびレジストパターン形成方法
JP2007131582A (ja) * 2005-11-11 2007-05-31 Mitsubishi Gas Chem Co Inc アダマンチルエステル化合物
JP2016221425A (ja) * 2015-05-27 2016-12-28 国立大学法人信州大学 結晶性バイオファイバーの粉砕方法、並びに、バイオナノウイスカー含有粉末及びその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089412A (ja) * 2004-09-24 2006-04-06 Idemitsu Kosan Co Ltd アダマンタン誘導体、その製造方法及びフォトレジスト用感光材料
KR20080008320A (ko) * 2005-05-20 2008-01-23 이데미쓰 고산 가부시키가이샤 포토레지스트용 중합성 화합물, 그 중합체 및 그 중합체를함유하는 포토레지스트 조성물
JP5249760B2 (ja) * 2006-08-04 2013-07-31 出光興産株式会社 アダマンタン構造含有重合性化合物、その製造方法及び樹脂組成物
JP5430821B2 (ja) * 2006-09-19 2014-03-05 東京応化工業株式会社 レジストパターン形成方法
JP5550041B2 (ja) 2007-09-27 2014-07-16 塩野義製薬株式会社 チトクロームp450を用いたアダマンタン水酸化体の製造方法
JP5250309B2 (ja) * 2008-05-28 2013-07-31 東京応化工業株式会社 レジスト組成物およびレジストパターン形成方法
JP5347495B2 (ja) * 2008-12-26 2013-11-20 三菱瓦斯化学株式会社 アダマンタチル(メタ)アクリレート類の製造方法
JP5542412B2 (ja) * 2009-10-28 2014-07-09 東京応化工業株式会社 ポジ型レジスト組成物、レジストパターン形成方法、高分子化合物
JP5608009B2 (ja) 2010-08-12 2014-10-15 大阪有機化学工業株式会社 ホモアダマンタン誘導体、その製造方法及びフォトレジスト組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122295A (ja) * 1998-05-25 2000-04-28 Daicel Chem Ind Ltd フォトレジスト用化合物およびフォトレジスト用樹脂組成物
JP2001048931A (ja) * 1999-08-05 2001-02-20 Daicel Chem Ind Ltd フォトレジスト用高分子化合物及びフォトレジスト用樹脂組成物
JP2001240625A (ja) * 2000-02-25 2001-09-04 Toshiba Corp フォトレジスト用高分子化合物及びフォトレジスト用樹脂組成物

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374382A (en) * 1981-01-16 1983-02-15 Medtronic, Inc. Marker channel telemetry system for a medical device
US4886064A (en) * 1987-11-25 1989-12-12 Siemens Aktiengesellschaft Body activity controlled heart pacer
DE3831809A1 (de) * 1988-09-19 1990-03-22 Funke Hermann Zur mindestens teilweisen implantation im lebenden koerper bestimmtes geraet
US4987897A (en) * 1989-09-18 1991-01-29 Medtronic, Inc. Body bus medical device communication system
US5117824A (en) * 1990-11-14 1992-06-02 Medtronic, Inc. Apparatus for monitoring electrical physiologic signals
US5261400A (en) * 1992-02-12 1993-11-16 Medtronic, Inc. Defibrillator employing transvenous and subcutaneous electrodes and method of use
US5292338A (en) * 1992-07-30 1994-03-08 Medtronic, Inc. Atrial defibrillator employing transvenous and subcutaneous electrodes and method of use
US5545186A (en) * 1995-03-30 1996-08-13 Medtronic, Inc. Prioritized rule based method and apparatus for diagnosis and treatment of arrhythmias
AU3056397A (en) * 1996-05-14 1997-12-05 Medtronic, Inc. Prioritized rule based method and apparatus for diagnosis and treatment of arrhythmias
IT1291822B1 (it) * 1997-04-08 1999-01-21 Leonardo Cammilli Sistema per la defibrillazione elettrica cardiaca impiantabile con attenuazione del dolore derivante dallo shock elettrico mediante
KR100574316B1 (ko) * 1998-05-25 2006-04-27 다이셀 가가꾸 고교 가부시끼가이샤 포토레지스트용 수지 조성물
US6134470A (en) * 1998-11-09 2000-10-17 Medtronic, Inc. Method and apparatus for treating a tachyarrhythmic patient
JP4790153B2 (ja) * 2000-09-01 2011-10-12 富士通株式会社 ネガ型レジスト組成物、レジストパターンの形成方法及び電子デバイスの製造方法
KR20030095046A (ko) 2002-06-11 2003-12-18 주식회사 이엔에프테크놀로지 2-알콕시알킬-2-아다만틸 (메타)아크릴레이트 및 그제조방법
US7313434B2 (en) * 2002-11-25 2007-12-25 Regents Of The University Of Minnesota Impedance monitoring for detecting pulmonary edema and thoracic congestion
US7470824B2 (en) 2002-12-25 2008-12-30 Idemitsu Kosan Co., Ltd. Adamantane derivative and process for producing the same
US8200331B2 (en) * 2004-11-04 2012-06-12 Cardiac Pacemakers, Inc. System and method for filtering neural stimulation
US20050149133A1 (en) * 2003-12-24 2005-07-07 Imad Libbus Sensing with compensation for neural stimulator
US7406105B2 (en) * 2004-03-03 2008-07-29 Alfred E. Mann Foundation For Scientific Research System and method for sharing a common communication channel between multiple systems of implantable medical devices
US7743151B2 (en) * 2004-08-05 2010-06-22 Cardiac Pacemakers, Inc. System and method for providing digital data communications over a wireless intra-body network
US7387610B2 (en) * 2004-08-19 2008-06-17 Cardiac Pacemakers, Inc. Thoracic impedance detection with blood resistivity compensation
JP2006089412A (ja) * 2004-09-24 2006-04-06 Idemitsu Kosan Co Ltd アダマンタン誘導体、その製造方法及びフォトレジスト用感光材料
US7881782B2 (en) * 2005-04-20 2011-02-01 Cardiac Pacemakers, Inc. Neural stimulation system to prevent simultaneous energy discharges
US9566447B2 (en) * 2005-12-28 2017-02-14 Cardiac Pacemakers, Inc. Neural stimulation system for reducing atrial proarrhythmia
US7742816B2 (en) * 2006-03-31 2010-06-22 Medtronic, Inc. Multichannel communication for implantable medical device applications
US7787947B2 (en) * 2006-03-31 2010-08-31 Medtronic, Inc. Method and apparatus for using an optical hemodynamic sensor to identify an unstable arrhythmia
US8255049B2 (en) * 2006-05-08 2012-08-28 Cardiac Pacemakers, Inc. Method and device for providing anti-tachyarrhythmia therapy
JP5279176B2 (ja) * 2006-06-29 2013-09-04 エア プロダクツ アンド ケミカルズ インコーポレイテッド エポキシ樹脂用硬化剤および塗料組成物
WO2008070142A2 (en) * 2006-12-06 2008-06-12 Medtronic, Inc. User interface with toolbar for programming electrical stimulation therapy
US8706212B2 (en) * 2006-12-13 2014-04-22 Cardiac Pacemakers, Inc. Neural stimulation systems, devices and methods
US20080167696A1 (en) * 2006-12-28 2008-07-10 Cvrx, Inc. Stimulus waveforms for baroreflex activation
US8070686B2 (en) * 2007-07-02 2011-12-06 Cardiac Pacemakers, Inc. Monitoring lung fluid status using the cardiac component of a thoracic impedance-indicating signal
US20090026201A1 (en) * 2007-07-26 2009-01-29 Richard Hall Coated lift-tab for resealing pop-top containers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122295A (ja) * 1998-05-25 2000-04-28 Daicel Chem Ind Ltd フォトレジスト用化合物およびフォトレジスト用樹脂組成物
JP2001048931A (ja) * 1999-08-05 2001-02-20 Daicel Chem Ind Ltd フォトレジスト用高分子化合物及びフォトレジスト用樹脂組成物
JP2001240625A (ja) * 2000-02-25 2001-09-04 Toshiba Corp フォトレジスト用高分子化合物及びフォトレジスト用樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1712542A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029442A1 (ja) * 2005-09-09 2007-03-15 Idemitsu Kosan Co., Ltd. アダマンタン誘導体及びその製造方法
WO2007029462A1 (ja) * 2005-09-09 2007-03-15 Tokyo Ohka Kogyo Co., Ltd. 高分子化合物、ネガ型レジスト組成物およびレジストパターン形成方法
JP2007070562A (ja) * 2005-09-09 2007-03-22 Tokyo Ohka Kogyo Co Ltd 高分子化合物、ネガ型レジスト組成物およびレジストパターン形成方法
JP2007077024A (ja) * 2005-09-09 2007-03-29 Idemitsu Kosan Co Ltd アダマンタン誘導体及びその製造方法
US7820360B2 (en) 2005-09-09 2010-10-26 Tokyo Ohka Kogyo Co., Ltd. Polymer compound, negative resist composition, and method of forming resist pattern
JP2007131582A (ja) * 2005-11-11 2007-05-31 Mitsubishi Gas Chem Co Inc アダマンチルエステル化合物
JP2016221425A (ja) * 2015-05-27 2016-12-28 国立大学法人信州大学 結晶性バイオファイバーの粉砕方法、並びに、バイオナノウイスカー含有粉末及びその製造方法

Also Published As

Publication number Publication date
KR101114585B1 (ko) 2012-03-14
US7528279B2 (en) 2009-05-05
US20090156854A1 (en) 2009-06-18
US20070129532A1 (en) 2007-06-07
EP1712542A1 (en) 2006-10-18
TW200535118A (en) 2005-11-01
KR20060123521A (ko) 2006-12-01
EP1712542A4 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
WO2005075406A1 (ja) アダマンタン誘導体及びその製造方法
JP4866237B2 (ja) アダマンタン誘導体、その製造方法及びフォトレジスト用感光材料
JP5249760B2 (ja) アダマンタン構造含有重合性化合物、その製造方法及び樹脂組成物
CN100577630C (zh) 金刚烷衍生物及其制备方法
JP4790290B2 (ja) アダマンタン誘導体及びその製造方法
JP5137982B2 (ja) アダマンタン誘導体及びその製造方法
JP4866517B2 (ja) (メタ)アクリル酸無水物の製造方法および(メタ)アクリル酸エステルの製造方法
JP2005314383A (ja) アダマンタン誘導体及びその製造方法
KR100857957B1 (ko) (메트)아크릴산 무수물의 제조방법 및 (메트)아크릴산에스테르의 제조방법
KR20060043217A (ko) (메타)아크릴레이트 및 이의 제조방법
CN112409176A (zh) 一种对乙酰氧基苯乙烯的合成方法
JP2003113174A (ja) ラクトン構造を有する多環式化合物
JP4220888B2 (ja) アダマンタン誘導体及びその製造方法
JP2009256307A (ja) 不飽和カルボン酸アダマンチルエステル及びその製造法
JP4049965B2 (ja) 新規な(メタ)アクリル酸エステル類及びその製造方法
JP4580165B2 (ja) アダマンタン誘導体及びその製造方法
JP4594695B2 (ja) アダマンタン誘導体の製造方法
JP2007077024A (ja) アダマンタン誘導体及びその製造方法
JP2009256306A (ja) 重合性不飽和基を有するアダマンタン誘導体とその製造法
JP2005060257A (ja) 光学活性ノルボルネンカルボン酸類の製造方法
JP2002047280A (ja) ラクトン(メタ)アクリレート類の製造方法
JP2004026718A (ja) 新規なヒドロキシアルキル基置換架橋環式炭化水素モノ(メタ)アクリレートとその製造方法
JP2005179192A (ja) カルボラクトン環を有する3級アルコール化合物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005709550

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580003712.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067015853

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005709550

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067015853

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007129532

Country of ref document: US

Ref document number: 10588080

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10588080

Country of ref document: US