WO2005069285A1 - 繰り返し制御装置、及び光ディスク装置 - Google Patents

繰り返し制御装置、及び光ディスク装置 Download PDF

Info

Publication number
WO2005069285A1
WO2005069285A1 PCT/JP2005/000339 JP2005000339W WO2005069285A1 WO 2005069285 A1 WO2005069285 A1 WO 2005069285A1 JP 2005000339 W JP2005000339 W JP 2005000339W WO 2005069285 A1 WO2005069285 A1 WO 2005069285A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory
filter
signal
control device
adder
Prior art date
Application number
PCT/JP2005/000339
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Kanda
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/586,355 priority Critical patent/US7649815B2/en
Priority to JP2005517063A priority patent/JPWO2005069285A1/ja
Priority to CN2005800024274A priority patent/CN1910668B/zh
Publication of WO2005069285A1 publication Critical patent/WO2005069285A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • G11B7/0953Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for eccentricity of the disc or disc tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • G11B7/0956Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for tilt, skew, warp or inclination of the disc, i.e. maintain the optical axis at right angles to the disc

Definitions

  • the present invention relates to an optical disk device using a repetition control device.
  • the servo signal has the characteristic that the amplitude remains the same and the frequency alone increases as the rotation speed of the disk increases, the servo signal is higher to maintain the servo residual below a specified value.
  • a loop gain is required.
  • FIG. 8 is a block diagram for explaining servo signal processing of a conventional optical disc device.
  • the servo signal processing system of the conventional optical disc device includes an adder 0, a servo finoleta 1, a caro calculator 2, a DAC 3, a driver 4, a pickup 5, a finoleta 6, and a memory. 7, a memory control unit 8, a rotation angle detection unit 9, and a gain 10.
  • the repetition control device 20 includes an adder 2, a filter 6, a memory 7, and a gain 10.
  • Adder 0 detects a position error of the light beam focal point with respect to the track position, and outputs the detected signal to servo filter 1 as a servo error signal.
  • Servo filter 1 performs PID control filter processing on the input servo error signal, and generates the compensated
  • the signal S3 is repeatedly output to the control device 20.
  • Adder 2 adds output S2 from gain 10 to output S3 of servo filter 1 to generate drive signal S1.
  • DAC3 is a DA converter, which converts drive signal S1 output from adder 2 into an analog signal.
  • Driver 4 receives the output of DAC3 and generates an actuator drive current.
  • the pickup 5 is a pickup that is controlled based on an actuator drive signal, and moves the position of the lens to move the focal point of the light beam on the optical disk.
  • the filter 6 is a filter of the repetition control device 20, and generates a signal in a predetermined frequency domain band for performing repetition control.
  • the filter 6 is composed of a low-pass filter that removes noise and a signal above the control band of the control device 20 for the signal output from the adder 2 and a high-pass filter that removes the DC component. Shall be.
  • the memory 7 has a plurality of memory areas, and stores signal information corresponding to one rotation of the disk in the plurality of memory areas.
  • the memory control unit 8 switches the address of the memory 7 based on the operation timing signal output from the rotation angle detection unit 9 and sends the contents of the selected address to the adder 2 and is indicated by the address. Store the output of filter 6 in the memory area.
  • the rotation angle detector 9 generates a clock signal having a frequency that is an integral multiple of a phase synchronized with the input spindle FG signal, and outputs it as an operation timing signal when performing memory control.
  • the gain 10 is a gain element j8 that multiplies the output from the memory 7 by a value of 1 or less and outputs the result to the adder 2, and
  • FIG. 9 is a block diagram for explaining memory 7 of repetition control device 20 shown in FIG.
  • FIG. 9 an arrow written next to the optical disc 100 indicates the rotation direction of the optical disc 100, and the numeral 116 on the optical disc 100 indicates that the optical disc 100 is rotated in the circumferential direction. The divided area is shown.
  • the pickup 5 traces tracks on the rotating optical disc 100 in the circumferential direction. This is the same as the pickup 5 in FIG.
  • the memory 102 has 16 memory areas corresponding to the areas 1 to 16 on the optical disc 100, and the corresponding addresses are determined.
  • the selector 103 selects one address of the memory 102, writes the data from the filter 6, and outputs the read data to the adder 2 shown in FIG. Note that the combination of the memory 102 and the selector 103 is the memory 7 in FIG.
  • the disk motor 104 rotates the optical disk 100 and outputs an FG pulse from an FG circuit provided.
  • the PLL 105 generates a clock signal by multiplying the FG pulse output from the disk motor 104 by two. In FIG. 9, since the optical disk is divided into 16, a clock of 16 pulses is generated per round.
  • the counter 106 counts the clock generated by the PLL 105 and outputs 1 to 16 counters.
  • the combination of the PLL 105 and the counter 106 is the rotation angle detector 9 in FIG.
  • the memory control unit 8 determines the area on the optical disc 100 currently being reproduced by the pickup 101 from the counter output of the counter 106, and sends out the corresponding address of the memory 102 to the selector 103 to! /, You. This is the same as the memory control unit 8 in FIG.
  • FIG. 10 is a waveform diagram illustrating how data in memory 7 is updated.
  • the output of the memory 7 is switched according to the memory address output from the memory control unit 8, and the output S2 from the memory 7 via the gain 10 and the output S3 of the servo filter 1 are added by the adder 2. After that, the addition result S1 is sent to the DAC 3 and input to the memory 7 via the filter 6.
  • the position of the focal point of the light beam output from the pickup 5 and the position of the track input from the outside are determined.
  • the position error of the focus of the light beam with respect to the track position is detected by the adder 0 and input to the servo filter 1.
  • the servo filter 1 processes such as phase compensation and low-frequency compensation are performed on the position error signal of the light beam focal point with respect to the input track position. After that, an actuator drive signal that follows the eccentricity of the track, runout, and the like is output from the driver 4 to the pickup 5 via the servo filter 1, the adder 2, and the DAC 3. By appropriately controlling the position of the pickup 5 based on the actuator drive signal output from the driver 4, the focus of the light beam is maintained on the track.
  • the signal S1 output from the adder 2 is input to the filter 6, where the low-pass filter removes noise and signals above the control band of the repetitive controller 20, and the high-pass filter removes the DC component. Is done.
  • the signal from the powerful filter 6 is stored in a predetermined address area of the memory 7 under the control of the memory control unit 8 that operates based on the operation timing signal output from the rotation angle detection unit 9. .
  • the memory control unit 8 simultaneously outputs information stored in a predetermined address area of the memory 7 to the gain 10, and outputs a signal S2 multiplied by a value of 1 or less by the gain 10 to the calo calculator 2.
  • the signal power for one rotation of the disk controlled to a predetermined frequency band by the filter 6 is recorded in a plurality of divided memory areas of the memory 7, and is sequentially output from the memory 7. It becomes.
  • the output signal S2 from the gain 10 is added by the adder 2 to the compensated signal S3 output from the servo filter 1.
  • the low-pass filter of the filter 6 acts as an anti-aliasing filter when the drive signal S1 is stored in the memory 7 using the address switching frequency of the memory 7 as a sampling frequency.
  • the signal S2 synchronized with the rotation of the disk is supplied from the memory 7 via the gain 10 as feedforward.
  • the disk of the compensated signal S3 output from the servo filter 1 The signal level of the frequency component synchronized with the rotation can be reduced. This means that the level of the servo error signal, which is the input of the servo filter 1, is lowered without recovery, which means that the track following performance is improved.
  • FIG. 11 is a diagram showing the transfer function G characteristic of the component composed of the filter 6 and the memory 7.
  • the dotted line (1) shows the transfer function G characteristic when the repetitive control is not performed.
  • the characteristic and the solid line (2) show the characteristic of the transfer function G when the repetitive control is performed.
  • Patent Document 1 JP-A-9-50303
  • phase rotation occurs at a frequency near the cutoff frequency of the high-pass filter of the filter 6 and a frequency near the cutoff frequency of the low-pass filter (see the phase diagram of FIG. 11).
  • the servo performance improving effect could not be sufficiently exhibited.
  • this causes a reduction in the effect of partial eccentricity and partial surface fluctuation having high frequency components, which occur during high-speed recording / reproduction, and reduces the follow-up performance during high-speed recording / reproduction processing. It was the cause of lowering.
  • the present invention has been made in view of the above-mentioned problems, and prevents occurrence of phase rotation during filtering, and in particular, partial eccentricity and partial deviation having high frequency components.
  • High against! ⁇ Means to solve the problem aiming to provide a repetitive control device that exhibits tracking performance
  • the iterative control device includes an adding unit to which a compensated signal is input, and sequentially updating and storing an output signal from the adding unit. And a feedback signal system for outputting to the adding unit.
  • a filter that uses a memory that divides and stores signal information for the number of rotations in a plurality of memory areas as a delay element, and a gain that is output to the filter and multiplied by a value of 1 or less and input to the adder. And the filter operates using a clock signal that is an integral multiple of the operating frequency of the drive signal.
  • the iterative control device is the iterative control device according to claim 1, wherein the filter has a register connected in parallel to the memory, and During the filtering process, the upper bit data of the input signal is recorded in the memory, and the lower bit data is recorded in the register.
  • the circuit scale of the memory can be reduced, the filter operation can be stabilized, and the calculation accuracy can be maintained.
  • the word length of the upper bit data recorded in the memory is added by the addition unit.
  • the word length of the data of the compensated signal is added by the addition unit.
  • the filter in the iterative control device according to claim 4 of the present invention, includes a low-pass filter, and the memory includes the low-pass filter.
  • the filter in the iterative control device according to claim 1 or 2, the filter includes a low-pass filter, and the memory includes the low-pass filter.
  • the memory includes the low-pass filter.
  • the filter is a band-pass filter that is a low-pass filter and a high-noise filter.
  • the memory is used as a delay element of the low-pass filter.
  • the adder to which the servo error signal is input and a signal to sequentially update the output signal of the adder power and input to the adder.
  • the memory is used as a delay element of the input signal to perform the integration operation.
  • an optical disc device according to claim 7 of the present invention is provided with an iterative control device according to claim 1 in addition to an optical disc device for recording or reproducing an optical disc. It is possible to exhibit high follow-up performance with respect to track position fluctuation caused by disk shape such as surface runout.
  • an optical disc apparatus is an optical disc apparatus for recording or reproducing an optical disc, on which the repetition control device according to claim 6 is mounted. High tracking performance with respect to track position fluctuations caused by the shape of the disc.
  • an adder to which the compensated signal is input, and a feedback signal system for sequentially updating and storing the output signal of the calorie calculator and outputting the signal to the adder.
  • a delay element of a filter constituting the feedback signal system a memory for dividing signal information for one rotation of a disk into a plurality of memory areas and storing the divided signal information is used.
  • signals with no phase shift can be recorded in the memory and output for frequency components synchronized with the rotation speed, and the disk components such as eccentricity and surface runout can be recorded. It is possible to exhibit high tracking performance with respect to track position fluctuation caused by the shape.
  • the laser connected in parallel to the filter force memory.
  • a high-order bit data of the input signal is recorded in the memory and the low-order bit data of the input signal is recorded in the register at the time of filter processing. Can be maintained, and the calculation accuracy can be maintained.
  • the integral operation processing performed by the integral term operation unit of the servo filter uses the memory that divides the signal information for one rotation of the disk into a plurality of memory areas and stores the divided information.
  • the gain at the frequency synchronized with the disk rotation speed in the servo error signal can be made the same as the DC gain of the integral term. The same effect as when a control device is added can be obtained.
  • FIG. 1 is a block diagram for explaining servo signal processing of an optical disc device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a filter using a memory of the iterative control device according to the first embodiment of the present invention as a delay element;
  • Fig. 3 (a) shows the waveform of the output signal SI-S3 in the conventional repetitive control device.
  • FIG. 3 (b) is a waveform diagram showing waveforms of output signals S1-S3 in the iterative control device according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a transfer function G characteristic when a transfer function of a filter and a memory of the iterative control device according to the first embodiment of the present invention is G.
  • FIG. 5 is a block diagram showing a configuration of a filter using a memory of a repetition control device according to a second embodiment of the present invention as a delay element;
  • FIG. 6 is a block diagram for explaining servo signal processing of an optical disc device according to Embodiment 3 of the present invention.
  • FIG. 7 (a) is a waveform diagram showing gain characteristics and phase characteristics obtained by a conventional integral term operation unit.
  • FIG. 7 (b) shows a gain characteristic obtained by the integral term calculation unit according to the third embodiment of the present invention. And waveform diagram showing phase characteristics
  • FIG. 8 is a block diagram for explaining servo signal processing of a conventional optical disc device.
  • FIG. 9 is a block diagram for explaining a memory of a conventional optical disk device.
  • FIG. 10 is a waveform chart for explaining how data is updated in a conventional memory.
  • FIG. 11 is a diagram showing a transfer function G characteristic when a transfer function of a filter and a memory of a conventional iterative controller is G.
  • FIG. 1 is a block diagram for explaining servo signal processing of the optical disc device according to the first embodiment of the present invention.
  • the optical disc device includes an adder 0, a servo finoleta 1, a caro calculator 2, a DAC 3, a driver 4, a pickup 5, a finoleta 6, It comprises a memory 7, a memory control unit 8, a rotation angle detection unit 9, and a gain 10.
  • the memory 7 of the repetition control device 11 is a delay element of the filter 6, and Further, the operating frequency is different from the operating frequency of the drive signal, which is not the switching frequency of the memory address, or the dividing frequency.
  • FIG. 2 is a block diagram showing in detail a part in which the memory 7 is a part of a component of the filter 6.
  • the filter 6 is composed of a high-pass filter 21 and a low-pass filter 22, and the memory 7 is used as a delay element of the low-pass filter 22.
  • a high-pass filter 21 removes a DC component.
  • the adder 23, the memory 7, and the feedback gain 24 form a low-pass filter 22, and removes noise and signals that are higher than the control band of the repetitive control device 11.
  • 7M in the memory 7 indicates a memory area (hereinafter referred to as a memory cell) currently selected by the address control of the memory control unit 8, and data writing and reading are performed on the memory cell 7M. Done.
  • the drive signal sent from the servo filter 1 to the DA converter 3 via the adder 2 has a DC component removed through a noise filter 21 shown in FIG. 23, input to the low-pass filter composed of feedback gain 24. Thereafter, the noise and the signal exceeding the control band of the repetitive control device 11 are removed by the low noise filter 22, added to the output of the servo filter 1, and sent to the DA converter 3 as a drive signal.
  • these processes are performed at the same operating frequency as the drive signal or at the frequency of the drive signal, so that the memory control unit 8 switches the address of the memory 7 until the address is switched.
  • Tens to hundreds of processes are repeatedly performed on the 7M.
  • the average value of the drive signal after the selection of the memory cell 7M is written in the memory cell 7M.
  • the drive signal data at that time corresponding to the rotation angle of the disk is stored in each cell of the memory 7 without phase shift.
  • FIG. 3 is a waveform diagram for explaining the operation of repetition control device 11 according to Embodiment 1 of the present invention.
  • FIG. 3 (a) is a diagram showing a waveform of a signal output from each component of the conventional repetitive control device 11 shown in FIG. 8, and
  • FIG. 3 (b) is a diagram showing a waveform shown in FIG.
  • FIG. 3 is a diagram showing waveforms of signals output from respective components of the repetitive control device 11 according to the first embodiment of the present invention.
  • S1 is the waveform of the drive signal output from adder 2 required for disk following
  • S2 is the waveform of the signal input to adder 2 after the filter processing
  • S3 is the waveform of the servo filter 1
  • the waveforms of the output compensated signals are shown. Note that the waveform of the compensated signal S3 is determined by (S1 ⁇ S2), as is clear from FIG.
  • the filter 6 and the memory 7 operate at the memory address switching frequency of the memory control unit 8
  • the adder 2 output from the memory 7 is used.
  • the input S2 has a phase delay due to the filtering.
  • repetition control device 11 uses memory 7 of repetition control device 11 as a delay element of low-pass filter 22 of filter 6,
  • the operating frequency is the same as the operating frequency of the drive signal, which is not the switching frequency of the memory address, or a frequency divided from the operating frequency.
  • FIG. 4 is a diagram showing characteristics of the transfer function G of the filter 6 and the memory 7 when the repetition control device 11 according to the first embodiment of the present invention is used.
  • the servo characteristics as in the conventional case, it is possible to increase the loop gain at a frequency that is an integral multiple of the frequency of one rotation of the disk, and to suppress the track position fluctuation due to the disk shape.
  • the tracking performance of the pickup 5 can be improved.
  • the filter 6 having the memory 7 as a delay element acts as a comb filter, so that the phase rotation becomes zero at the peak of the comb and the phase rotation occurs at the time of filtering. Can be prevented.
  • the memory 7 is used as a delay element of the filter 6, and the filtering is performed by using a clock signal having an integral multiple of the operating frequency of the drive signal.
  • the gain can be increased without generating a phase rotation with respect to the compensated signal, and the track position fluctuation caused by the disk shape such as eccentricity and surface runout can be increased. Following performance can be exhibited.
  • the iterative control device has a register connected in parallel with the memory 7 of the iterative control device 11 according to the first embodiment.
  • the upper bit data of the signal is recorded in the memory 7 and the lower bit data is recorded in a register.
  • FIG. 5 is a block diagram showing in detail a portion where memory 7 of repetition control device according to Embodiment 2 of the present invention is a part of a component of filter 6.
  • the filter 6 is composed of a high-pass filter 31 and a low-pass filter 32, and the memory 7 and the register 35 are used as delay elements of the low-pass filter 32.
  • a high-pass filter 31 removes a DC component.
  • the adder 33, the memory 7, the feedback gain 34, and the register 35 constitute a low-pass filter 32, which removes noise and signals above the control band of the repetitive control device.
  • 7M in the memory 7 indicates the memory cell currently selected by the address control of the memory control unit 8, and data writing and reading are performed on the memory cell 7M.
  • the register 35 constitutes a delay element of the low-pass filter 32 together with the memory 7, and the memory cell 7M stores the upper data of the input signal data and the register 35 stores the lower data.
  • the data stored in memory 7 In addition to reducing the word length of the data, the reduced portion is recorded in the register 35 shown in FIG. 5 without truncation, so that the filtering process is performed without reducing the word length of the data used in the arithmetic processing. This makes it possible to stabilize the filter operation and maintain the accuracy while suppressing an increase in the circuit size of the memory 7.
  • the word length of the memory 7 that handles the upper bits be at least equal to the number of bits of the DA converter 3 to which the output is given.
  • the circuit size of the memory can be suppressed to the minimum necessary, the filter operation can be stabilized, and the calculation accuracy can be maintained.
  • the repetition control device performs the operation of the drive signal in which the filter processing by the filter 6 does not depend on the switching frequency of the memory address. It is performed using the same frequency or its divided frequency. Therefore, the content of the register 35 is updated several tens to several hundred times until the address of the memory 7 is switched by the memory control unit 8, and the value of the register 35 converges to the original value. The impact can be minimized.
  • filter 6 has register 35 connected in parallel with S memory 7, and has the upper bit data of the input signal at the time of filtering. Is recorded in the memory 7 and the lower bit data is recorded in the register 35, so that the circuit size of the memory can be minimized, the filter operation can be stabilized, and the calculation accuracy can be maintained. The effect is obtained.
  • the filter 6 is configured by a band-pass filter including a low-pass filter and a high-pass filter, and the memory 7 is used as a delay element of the low-pass filter. 7 is used as a delay element at the time of filtering, and if so, the configuration of the filter 6 is not limited to the above.
  • the filter 6 is configured only with a low-pass filter using the memory 7 as a delay element. You can also.
  • the iterative control device divides the signal information for one rotation of the disk into a plurality of memory areas by performing the integral operation processing performed by the integral term operation unit of the servo filter. This is performed using a memory for storing.
  • FIG. 6 is a block diagram for explaining servo signal processing of the optical disc device according to Embodiment 3 of the present invention.
  • the optical disc device according to Embodiment 3 of the present invention includes an adder 0, a servo filter 41, an adder 2, a DAC 3, a driver 4, a pickup 5, and a memory control unit 8. And a rotation angle detector 9.
  • the optical disk device according to the third embodiment of the present invention uses the memory 7 as a delay element of the integral term calculation unit of the servo filter 41, and has the same components as the conventional optical disk device shown in FIG. Are denoted by the same reference numerals, and description thereof is omitted here.
  • the servo filter 41 includes a differential term operation unit 41a, a proportional term operation unit 41b, an integral term operation unit 4lc, a differential term operation unit 41a, a proportional term operation unit 41b, and an integral term operation unit 41c. And an adder 41d for adding and outputting the outputs.
  • the differential term operation unit 41a performs proportional control on the position error signal output from the adder 0, and the proportional term operation unit 41b operates on the position error signal output from the adder 0. To perform proportional control.
  • the integral term calculation unit 41c performs integration control on the position error signal output from the adder 0, and performs feedback control on the position error signal output from the adder 0 and the feedback output from the memory 7.
  • the integration term calculation section 41c is selected by the memory control section 8 to store the memory. The integration process is performed using the cells.
  • This integration process is performed at the same operating frequency as that of the drive signal or at the divided frequency, and the same memory cell 7M is applied to the same memory cell 7M until the memory address is switched by the control signal from the memory control unit 8. Is repeated several hundred times.
  • the memory address of the memory 7 is cut by the memory control unit 8 according to the rotation of the disk.
  • the servo control signal corresponding to each disk rotation angle is sequentially stored in a plurality of memory cells of the low-frequency component memory 7 and is sequentially output at the same time.
  • This operation makes it possible to store and output a drive signal corresponding to the displacement of each position on the disk over a wide band, eliminate the phase delay in the integration process, and improve the loop phase characteristic. It can be improved.
  • FIG. 7 is a waveform diagram showing gain'phase characteristics obtained by the integral term calculation unit of the iterative control device according to the third embodiment of the present invention.
  • FIG. 7 (a) is a diagram showing gain characteristics and phase characteristics obtained by a conventional integral term operation unit
  • FIG. 7 (b) is a diagram showing an integral term operation unit according to Embodiment 3 of the present invention.
  • FIG. 4 is a diagram illustrating gain characteristics and phase characteristics obtained.
  • the solid line (1) in the figure shows the gain'phase characteristics when the low-frequency gain of the input signal is increased
  • the dotted line (2) shows the gain'phase characteristics of the input signal.
  • the signal processed by the integral term operation unit using the iterative control device according to the third embodiment of the present invention can increase the low-frequency gain without causing a phase delay.
  • the iterative control device divides the signal information for one rotation of the disk into a plurality of memory areas by performing the integral operation processing performed by the integral term operation unit of the servo filter.
  • the gain at the frequency synchronized with the disk rotation speed in the servo error signal can be made the same as the DC gain of the integral term. It is possible to increase the gain without causing a delay.
  • the repetition control device makes it possible to increase the gain without causing a phase rotation in an input signal, and is very useful when performing servo signal processing. //: / O 6 ⁇ £ ⁇ 1 £ SS690S00ZAV L _ ⁇

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

 本発明は、サーボ信号処理を行う際に使用する繰り返し制御装置において、メモリ(7)をフィルタ(6)の遅延要素として用い、フィルタ(6)によるフィルタ処理を駆動信号の動作周波数の整数倍のクロック信号を用いて行うようにしたことにより、被補償信号に対して位相回りを発生させることなく、ゲインを上げることができ、光ディスク装置における記録.再生処理において、偏心や面ぶれなどのディスクの形状に起因するトラック位置変動に対して高い追従性能を発揮することが可能になる。

Description

明 細 書
繰り返し制御装置、及び光ディスク装置
技術分野
[0001] 本発明は、繰り返し制御装置を用いた光ディスク装置に関するものである。
背景技術
[0002] 光ディスク装置の高倍速化、高密度化の進展に伴い、レーザービームの焦点を情 報記録トラック上に維持する光サーボは、急速にその精度向上を求められつつある。 特に、光ディスク装置の高倍速ィ匕に伴って、光ディスクの偏心、面ぶれなどのディスク 回転に同期するトラック位置変動は大きくなる一方であり、これらの変動に追従するこ とができる光ディスク装置の開発が望まれている。
[0003] し力しながら、サーボ信号は、ディスクの回転数が高くなるに従って振幅はそのまま で周波数のみが高くなる特性を有するため、サーボ残差を規定値以下に維持するた めにはより高いループゲインが必要となる。その一方で、ループゲインを上げることは ピックアップの持つ 2次共振などの制約により限界があり、その結果、追従性能の劣 化という問題が生じていた。
[0004] そこで、この追従性能を確保するための技術として特許文献 1に示されるような、繰 り返し制御装置が注目されて 、る。
[0005] 図 8は、従来の光ディスク装置のサーボ信号処理を説明するためのブロック図であ る。
[0006] 図 8において、従来の光ディスク装置のサーボ信号処理系は、加算器 0と、サーボ フイノレタ 1と、カロ算器 2と、 DAC3と、ドライバ 4と、ピックアップ 5と、フイノレタ 6と、メモリ 7 と、メモリ制御部 8と、回転角検出部 9と、ゲイン 10とからなる。なお、繰り返し制御装 置 20は、図示するように、加算器 2とフィルタ 6とメモリ 7とゲイン 10とから構成されて いる。
[0007] 加算器 0は、トラック位置に対する光ビーム焦点の位置誤差を検出し、検出した信 号をサーボエラー信号としてサーボフィルタ 1に出力する。サーボフィルタ 1は、入力 されたサーボエラー信号に対して PID制御フィルタ処理等を行 、、生成した被補償 信号 S3を繰り返し制御装置 20に出力する。
[0008] 加算器 2は、サーボフィルタ 1の出力 S3にゲイン 10からの出力 S2を加算し、駆動 信号 S1を生成する。 DAC3は、 DAコンバータで、加算器 2から出力される駆動信号 S1をアナログ信号に変換する。ドライバ 4は、 DAC3の出力を受けてァクチユエータ 駆動電流を発生する。ピックアップ 5は、ァクチユエータ駆動信号に基づいて制御さ れるピックアップであり、レンズの位置を移動して光ディスク上の光ビームの焦点の位 置を移動させる。
[0009] フィルタ 6は、繰り返し制御装置 20のフィルタで、繰り返し制御を行う所定の周波数 領域帯域の信号を生成する。なお、ここでは、フィルタ 6を加算器 2から出力される信 号に対して繰り返し制御装置 20の制御帯域以上のノイズおよび信号を除去するロー パスフィルタと直流成分を除去するハイパスフィルタとで構成するものとする。
[0010] メモリ 7は、複数のメモリ領域を有し、ディスク一回転分の信号情報を該複数のメモリ 領域に分割して格納する。メモリ制御部 8は、回転角検出部 9から出力される動作タ イミング信号に基づいて、メモリ 7のアドレスを切り換えて、選択されたアドレスの内容 を加算器 2に送ると共に、該アドレスで示されるメモリ領域にフィルタ 6の出力を格納 する。
[0011] 回転角検出部 9は、入力されたスピンドル FG信号に位相同期した整数倍の周波数 を有するクロック信号を発生し、メモリ制御を行う際の動作タイミング信号として出力す る。
[0012] ゲイン 10は、メモリ 7からの出力に対して 1以下の値を乗じて加算器 2に出力するゲ イン要素 j8であり、常に学習の度合いが 100%とならないように |8≤1の値を乗じ、繰 り返し制御の安定条件を満たすよう作用する。
[0013] 図 9は、図 8で示した繰り返し制御装置 20のメモリ 7を説明するためのブロック図で ある。
[0014] 図 9において、光ディスク 100の横に記載された矢印は、光ディスク 100の回転方 向を示すものであり、また、光ディスク 100上の 1一 16の数字は、光ディスク 100を周 方向に 16分割した領域を示して 、る。
[0015] ピックアップ 5は、回転する光ディスク 100上のトラックを周方向にトレースしている。 これは図 8のピックアップ 5と同じものである。
[0016] メモリ 102は、光ディスク 100上の領域 1一 16に対応する 16個のメモリ領域を有し、 それぞれ対応するアドレスが決められている。セレクタ 103は、メモリ 102のうちの一 つのアドレスを選択してフィルタ 6からのデータを書き込み、また、読み出したデータ を図 8で示した加算器 2に出力する。なお、メモリ 102とセレクタ 103を合わせたもの が図 8のメモリ 7である。
[0017] ディスクモータ 104は、光ディスク 100を回転させると共に、備えている FG回路から FGパルスを出力する。
[0018] PLL105は、ディスクモータ 104から出力された FGパルスを遁倍してクロック信号 を生成する。なお、この図 9では、光ディスクを 16分割しているため、一周あたり 16パ ルスのクロックを生成している。カウンタ 106は、 PLL105の発生したクロックをカウン トして、 1一 16のカウンタ出力を行う。なお、 PLL105とカウンタ 106を合わせたものが 図 8の回転角検出部 9である。
[0019] メモリ制御部 8は、カウンタ 106のカウンタ出力から、ピックアップ 101が現在再生し ている、光ディスク 100上の領域を判別し、対応するメモリ 102のアドレスをセレクタ 1 03に送り出して!/、る。これは図 8のメモリ制御部 8と同じものである。
[0020] 図 10は、メモリ 7のデータ更新の様子を説明する波形図である。メモリ制御部 8から 出力されるメモリアドレスに従ってメモリ 7出力が切り換えられ、ゲイン 10を介したメモ リ 7からの出力 S2とサーボフィルタ 1の出力 S3とが加算器 2によって加算される。その 後、加算結果 S1が、 DAC3に送られると共に、フィルタ 6を経由してメモリ 7に入力さ れる。
[0021] 図 10では簡単のために、サーボフィルタ 1の出力 S3をゼロとして作図しているので 、ゲイン 10を介したメモリ 7の出力 S2はフィルタ 6の入力 S1に等しくなつている。 次に、この従来の光ディスク装置の動作について説明する。
[0022] まず、図 8に示す加算器 0、サーボフィルタ 1、加算器 2、 DAC3、ドライバ 4、ピック アップ 5からなるサーボループが行うサーボループ処理について説明する。
[0023] 先ず、回転する光ディスク上のトラックをピックアップ 5がトレースしている際にピック アップ 5から出力される光ビーム焦点の位置と、外部より入力されるトラック位置とから 、トラック位置に対する光ビーム焦点の位置誤差が加算器 0により検出され、サーボ フィルタ 1に入力される。
[0024] サーボフィルタ 1では、入力されたトラック位置に対する光ビーム焦点の位置誤差信 号に対して、位相補償、低域補償等の処理が行われる。その後サーボフィルタ 1、加 算器 2、及び DAC3を経由して、トラックの偏心、面ぶれなどに追従するァクチユエ一 タ駆動信号がドライバ 4からピックアップ 5に出力される。そして、このドライバ 4から出 力されるァクチユエータ駆動信号に基づいてピックアップ 5の位置が適切に制御され ることにより、トラック上に光ビームの焦点が維持される。
[0025] 次に、前記サーボループ処理に対してフィードフォワード制御を行う繰り返し制御 装置 20の処理にっ 、て説明する。
[0026] 加算器 2から出力された信号 S1は、フィルタ 6に入力され、ローパスフィルタにより、 繰り返し制御装置 20の制御帯域以上のノイズおよび信号が除去されるとともに、ハイ パスフィルタによって直流成分が除去される。
[0027] そして、力かるフィルタ 6からの信号は、回転角検出部 9から出力される動作タイミン グ信号に基づいて動作するメモリ制御部 8の制御によりメモリ 7の所定のアドレス領域 に格納される。メモリ制御部 8は、同時にメモリ 7の所定のアドレス領域に格納されて いる情報をゲイン 10に出力し、ゲイン 10により 1以下の値が乗じられた信号 S2がカロ 算器 2に出力される。この構成により、フィルタ 6により所定の周波数帯域に制御され たディスク一回転分の信号力^モリ 7の複数に分割されたメモリ領域に記録されるとと もに、順次メモリ 7から出力されることとなる。
[0028] その後、ゲイン 10からの出力信号 S2は、加算器 2により、サーボフィルタ 1から出力 される被補償信号 S3に加算される。
[0029] なお、この繰り返し制御装置 20の動作において、フィルタ 6のローパスフィルタは、 メモリ 7のアドレス切換周波数をサンプリング周波数として駆動信号 S1をメモリ 7に記 憶する際のアンチエイリアスフィルタとして作用する。
[0030] 以上のように、従来の繰り返し制御装置 20を備えた光ディスク装置によれば、ディ スクの回転に同期した信号 S2が、メモリ 7からゲイン 10を介してフィードフォワードとし て供給されるようになり、サーボフィルタ 1から出力される被補償信号 S3の、ディスク 回転に同期した周波数成分の信号レベルを低下させることができる。これは、取りも 直さず、サーボフィルタ 1の入力であるサーボ誤差信号のレベルが下がることであり、 トラックに対する追従性能が向上したことを意味する。
[0031] また、サーボ特性としては、図 11のゲイン図で示すように、ディスク 1回転の周波数 の整数倍の周波数におけるループゲインが上がったこととなる。その結果、偏心、面 ぶれなど、ディスクの形状に起因するトラック位置変動に対する、ピックアップ 5の追 従性能を向上させることができる。なお、図 11は、フィルタ 6とメモリ 7からなる構成要 素の伝達関数 G特性を示す図であり、ゲイン特性中、点線(1)が繰り返し制御を行わ なカゝつた場合の伝達関数 Gの特性、実線(2)が繰り返し制御を行った場合の伝達関 数 Gの特性を示す。
特許文献 1:特開平 9— 50303号公報
発明の開示
発明が解決しょうとする課題
[0032] しかしながら、上記従来の構成では、フィルタ 6のハイパスフィルタのカットオフ周波 数付近の周波数とローパスフィルタのカットオフ周波数付近の周波数において位相 回りが発生するため(図 11の位相図参照)、前記サーボ性能向上効果が十分に発揮 できな 、と!/、つた問題点があった。
[0033] これは特に、高倍速記録'再生時に発生する、高い周波数成分を持つ部分的な偏 心や部分的な面ぶれに対する効果の低下を招き、高倍速記録'再生処理時の追従 性能を低下させる原因となっていた。
[0034] 本発明は、前記問題点に鑑みてなされたものであり、フィルタ処理時に位相回りが 発生することを防止し、特に、高い周波数成分を持つ部分的な偏心や部分的な面ぶ れに対しても高!ヽ追従性能を発揮する繰り返し制御装置を提供することを目的とする 課題を解決するための手段
[0035] 上記課題を解決するために本発明の請求項 1に記載の繰り返し制御装置は、被補 償信号が入力される加算部と、前記加算部からの出力信号を順次更新記憶して前 記加算部に出力するフィードバック信号系とを備え、前記フィードバック信号系力 デ イスクー回転分の信号情報を複数のメモリ領域に分割して格納するメモリを、遅延要 素として用いるフィルタと、前記フィルタからの出力に対して 1以下の値を乗じて前記 加算部に入力するゲイン要素とからなり、前記フィルタが駆動信号の動作周波数の 整数倍のクロック信号を用いて動作するようにした。これにより、被補償信号に対して 位相回りを発生させることなぐゲインを上げることができ、偏心や面ぶれなどのディス クの形状に起因するトラック位置変動に対して高い追従性能を発揮することが可能に なる。また、従来必要であったフィルタの遅延処理用のメモリを省略することができる ため、回路規模の縮小を図ることも可能になる。
[0036] また、本発明の請求項 2に記載の繰り返し制御装置は、請求項 1に記載の繰り返し 制御装置において、前記フィルタが、前記メモリに並列に接続したレジスタを有し、前 記フィルタによるフィルタ処理時に、入力信号の上位ビットデータを前記メモリに記録 し、下位ビットデータを前記レジスタに記録するようにした。これにより、メモリの回路 規模を抑えることができるとともに、フィルタ動作を安定ィ匕し、演算精度を維持すること が可能になる。
[0037] また、本発明の請求項 3に記載の繰り返し制御装置は、請求項 2に記載の繰り返し 制御装置において、前記メモリに記録される上位ビットデータの語長を、前記加算部 で加算される被補償信号のデータの語長に等しくした。これにより、メモリの回路規模 を必要最小限に抑えることができるとともに、フィルタ動作を安定ィ匕し、演算精度を維 持することが可能になる。
[0038] また、本発明の請求項 4に記載の繰り返し制御装置は、請求項 1または請求項 2に 記載の繰り返し制御装置において、前記フィルタは、ローパスフィルタを含み、前記メ モリを該ローパスフィルタの遅延要素として用いるようにした。
[0039] また、本発明の請求項 5に記載の繰り返し制御装置は、請求項 1または請求項 2に 記載の繰り返し制御装置において、前記フィルタは、ローパスフィルタとハイノ スフィ ルタと力 なるバンドパスフィルタであり、前記メモリを前記ローパスフィルタの遅延要 素として用いるようにした。
[0040] また、本発明の請求項 6に記載の繰り返し制御装置は、サーボエラー信号が入力さ れる加算部と、前記加算部力 の出力信号を順次更新して前記加算部に入力するフ イードバック信号系と、前記加算部力もの出力に対して所定の値を乗算する積分ゲイ ンとを備え、前記フィードバック信号系力 ディスク一回転分の信号情報を複数のメモ リ領域に分割して格納するメモリと、前記メモリからの出力に対して 1以下の値を乗じ て前記加算部に入力するゲイン要素とからなり、入力されたサーボエラー信号に対し て積分演算処理を行う際に、前記メモリを入力信号の遅延要素として用いて積分演 算処理を行うようにした。これにより、サーボエラー信号中のディスク回転数に同期し た周波数におけるゲインを積分項の DCゲインと同じにすることができ、より少ない回 路規模で、位相遅れを生じさせることなぐゲインを上昇させることが可能となる。
[0041] また、本発明の請求項 7に記載の光ディスク装置は、光ディスクの記録又は再生を 行う光ディスク装置にぉ 、て、請求項 1に記載の繰り返し制御装置を搭載したもので あり、偏心や面ぶれなどのディスクの形状に起因するトラック位置変動に対して高い 追従性能を発揮することが可能になる。
[0042] また、本発明の請求項 8に記載の光ディスク装置は、光ディスクの記録又は再生を 行う光ディスク装置において、請求項 6に記載の繰り返し制御装置を搭載したもので あり、偏心や面ぶれなどのディスクの形状に起因するトラック位置変動に対して高い 追従性能を発揮することが可能になる。
発明の効果
[0043] 本発明の繰り返し制御装置によれば、被補償信号が入力される加算部と、前記カロ 算部カもの出力信号を順次更新記憶して前記加算部に出力するフィードバック信号 系とを備え、前記フィードバック信号系を構成するフィルタの遅延要素として、ディスク 一回転分の信号情報を複数のメモリ領域に分割して格納するメモリを用い、フィルタ 処理を駆動信号の動作周波数の整数倍のクロック信号を用いて行うようにしたことに より、回転数に同期した周波数成分については、位相ずれのない信号を、メモリに記 録し、出力することが可能になり、偏心や面ぶれなどのディスクの形状に起因するトラ ック位置変動に対して高い追従性能を発揮することが可能となる。
[0044] また、従来必要であったフィルタの遅延処理用のメモリを省略することができるため 、回路規模の縮小を図ることも可能になる。
[0045] また、本発明の繰り返し制御装置によれば、フィルタ力メモリに並列に接続されるレ ジスタを有し、フィルタ処理時に入力信号の上位ビットデータをメモリに記録し、下位 ビットデータをレジスタに記録するようにしたので、メモリの回路規模を必要最小限に 抑えることができるとともに、フィルタ動作を安定ィ匕し、演算精度を維持することが可 會 になる。
[0046] また、本発明の繰り返し制御装置によれば、サーボフィルタの積分項演算部が行う 積分演算処理を、ディスク一回転分の信号情報を複数のメモリ領域に分割して格納 するメモリを用いて行うようにしたことにより、サーボエラー信号中のディスク回転数に 同期した周波数におけるゲインを積分項の DCゲインと同じにすることができ、より少 ない回路規模で、通常のサーボフィルタ回路に繰り返し制御装置を追加した場合と 同等の効果を得ることが可能となる。
図面の簡単な説明
[0047] [図 1]図 1は本発明の実施の形態 1による光ディスク装置のサーボ信号処理を説明す るためのブロック図
[図 2]図 2は本発明の実施の形態 1による繰り返し制御装置のメモリを遅延要素として 用いたフィルタの構成を示すブロック図
[図 3(a)]図 3 (a)は従来の繰り返し制御装置における出力信号 SI— S3の波形を示す 波形図
[図 3(b)]図 3 (b)は本発明の実施の形態 1による繰り返し制御装置における出力信号 S1— S3の波形を示す波形図
[図 4]図 4は本発明の実施の形態 1による繰り返し制御装置のフィルタ及びメモリの伝 達関数を Gとした場合の伝達関数 G特性を示す図
[図 5]図 5は本発明の実施の形態 2による繰り返し制御装置のメモリを遅延要素として 用いたフィルタの構成を示すブロック図
[図 6]図 6は本発明の実施の形態 3による光ディスク装置のサーボ信号処理を説明す るためのブロック図
[図 7(a)]図 7 (a)は従来の積分項演算部で得られるゲイン特性及び位相特性を示す 波形図
[図 7(b)]図 7 (b)は本発明の実施の形態 3による積分項演算部で得られるゲイン特性 及び位相特性を示す波形図
[図 8]図 8は従来の光ディスク装置のサーボ信号処理を説明するためのブロック図
[図 9]図 9は従来の光ディスク装置のメモリを説明するためのブロック図
[図 10]図 10は従来例のメモリのデータ更新の様子を説明するための波形図
[図 11]図 11は従来の繰り返し制御装置のフィルタ及びメモリの伝達関数を Gとした場 合の伝達関数 G特性を示す図
符号の説明
0 加算器
1、41 サーボフィルタ
2 加算器
3 DAコンバータ
4 ドライノ
5 ピックアップ
6 フィルタ
7 メモリ
8 メモリ制御部
9 回転角検出部
10 ゲイン
11、 20 繰り返し制御装置
21、 31 ハイパスフィルタ
22、 32 ローパスフィルタ
23、 33 加算器
24、 34 フィードバックゲイ:
41a 微分項演算部
41b 比例項演算部
41c 積分項演算部
41d、41e 加算器
発明を実施するための最良の形態 [0049] (実施の形態 1)
以下に、本発明の実施の形態 1による繰り返し制御装置について説明する。
[0050] 図 1は、本発明の実施の形態 1による光ディスク装置のサーボ信号処理を説明する ためのブロック図である。
[0051] 図 1において、本発明の実施の形態 1による光ディスク装置は、加算器 0と、サーボ フイノレタ 1と、カロ算器 2と、 DAC3と、ドライバ 4と、ピックアップ 5と、フイノレタ 6と、メモリ 7 と、メモリ制御部 8と、回転角検出部 9と、ゲイン 10とからなる。なお、各構成要素は、 図 8で示した従来の光ディスク装置と同じであるが、本発明の実施の形態 1では、繰り 返し制御装置 11のメモリ 7がフィルタ 6の遅延要素となっており、また、その動作周波 数は、メモリアドレスの切換周波数ではなぐ駆動信号の動作周波数と同じ、あるいは 、その分周周波数であるという点で異なる。
[0052] 図 2は、メモリ 7がフィルタ 6の構成要素の一部となっている部分を詳細に図示した ブロック図である。なお、ここでは、フィルタ 6がハイパスフィルタ 21とローパスフィルタ 22とで構成され、メモリ 7をローパスフィルタ 22の遅延要素として用いる例を示す。
[0053] 図 2において、ハイパスフィルタ 21は直流成分を除去するものである。加算器 23、 メモリ 7、及びフィードバックゲイン 24はローパスフィルタ 22を構成し、繰り返し制御装 置 11の制御帯域以上のノイズおよび信号を除去する。なお、メモリ 7中の 7Mは、メモ リ制御部 8のアドレス制御により現在選択されて 、るメモリ領域 (以下、メモリセルと ヽ う)を示し、データの書き込み及び読み出しがこのメモリセル 7Mに対して行われる。
[0054] 次に、本発明の実施の形態 1による繰り返し制御装置 11の動作を説明する。
[0055] サーボフィルタ 1から加算器 2を介して DAコンバータ 3に送られる駆動信号は、図 2 に示すノヽイノスフィルタ 21を経由して直流成分を取り除かれた後、メモリセル 7Mと カロ算器 23、フィードバックゲイン 24によって構成されたローパスフィルタに入力される 。その後、ローノ スフィルタ 22で繰り返し制御装置 11の制御帯域以上のノイズおよび 信号が除去され、サーボフィルタ 1の出力と加算され、駆動信号として DAコンバータ 3に送られる。
[0056] 本発明では、これらの処理を駆動信号の動作周波数と同じ、あるいは、その分周周 波数で行うため、メモリ制御部 8によってメモリ 7のアドレスが切り換えられるまで、メモ リ 7Mに対して、数 10から数 100回の処理が繰り返し行われることとなる。その結果、 メモリセル 7Mには、メモリセル 7Mが選択されて以降の駆動信号の平均値が書き込 まれる。
[0057] そして、メモリ制御部 8の制御によりメモリ 7のアドレスが切り換わった時点で、メモリ セル 7Mの内容はホールドされ、他のメモリセルがアドレスされている間、保存される。
[0058] この動作により、メモリ 7の各セルにはディスクの回転角度に対応したその時点にお ける駆動信号データが位相ずれ無しに記憶されることとなる。
[0059] 次に、図 3及び図 4を用いて本発明の実施の形態 1による繰り返し制御装置 11が行 う処理についてさらに詳細に説明する。
[0060] 図 3は、本発明の実施の形態 1による繰り返し制御装置 11の動作を説明するため の波形図である。
[0061] 図 3 (a)は、図 8に示した従来の繰り返し制御装置 11の各構成要素から出力される 信号の波形を示す図であり、図 3 (b)は、図 1に示した本発明の実施の形態 1による 繰り返し制御装置 11の各構成要素から出力される信号の波形を示す図である。
[0062] 図 3において、 S1は加算器 2から出力されるディスク追従に必要な駆動信号の波形 、 S2はフィルタ処理後の加算器 2に入力される信号の波形、 S3はサーボフィルタ 1か ら出力される被補償信号の波形をそれぞれ示す。なお、被補償信号 S3の波形は図 1からも明らかなように、(S 1— S 2)で決定される。
[0063] ここで、サーボフィルタ 1出力 S3を A、加算器 2出力 SIを B、加算器 2入力 S2をじと し、フィルタ 6とメモリ 7の伝達関数を Gとすると、以下の数 1のような関係が成り立つ。
[0064] [数 1]
Β = ^ · Α
A = (1- G) ■ B
C = G■ B
[0065] 図 3 (a)に示すように、従来の光ディスク装置では、フィルタ 6及びメモリ 7がメモリ制 御部 8のメモリアドレス切換周波数で動作するため、メモリ 7から出力される加算器 2 入力 S2には、フィルタ処理を行うことによる位相遅れが生じてしまう。これにより、メモ リ 7から出力される加算器 2入力 S2の出力振幅を大きくしたとしても、 S3 = S1— S2で 決定されるサーボフィルタ 1出力 S3をゼロにすることは出来ない。
[0066] これに対し、本発明の実施の形態 1による繰り返し制御装置 11は、図 2に示すよう に、繰り返し制御装置 11のメモリ 7をフィルタ 6のローパスフィルタ 22の遅延要素とし て用い、その動作周波数として、メモリアドレスの切換周波数ではなぐ駆動信号の動 作周波数と同じ、あるいは、その分周周波数を用いている。
[0067] これにより、メモリ制御部 8によりメモリ 7のアドレスが切り換わるまでに、数 10から数 100回のフィルタ処理が繰り返し行われることとなり、メモリ 7の対応するメモリセル 7M には、メモリセル 7Mが選択されて以降の駆動信号の平均値が書き込まれ、図 3 (b) に示すように、メモリ 7から出力される加算器 2入力 S2にフィルタ処理による位相遅れ が生じない。
[0068] そのため、メモリ 7から出力される加算器 2入力 S2の出力振幅を大きくすることによ つて、 S3 = S1—S2で決定されるサーボフィルタ 1出力 S3をゼロにすることができる。
[0069] 図 4は、本発明の実施の形態 1による繰り返し制御装置 11を用いた場合のフィルタ 6とメモリ 7の伝達関数 Gの特性を示す図である。
[0070] 図 4に示すように、サーボ特性としては、従来と同様に、ディスク 1回転の周波数の 整数倍の周波数におけるループゲインを上げることが可能となり、ディスクの形状に 起因するトラック位置変動に対するピックアップ 5の追従性能を向上させることができ る。
[0071] また、位相特性においても、メモリ 7を遅延要素とするフィルタ 6がくし型フィルタとし て作用するため、くし型のピーク時では位相回りがゼロとなり、フィルタ処理時に位相 回りが発生することを防止することができる。
[0072] 以上のように、本発明の実施の形態 1による繰り返し制御装置 11によれば、メモリ 7 をフィルタ 6の遅延要素として用い、フィルタ処理を駆動信号の動作周波数の整数倍 のクロック信号を用いて行うようにしたことにより、被補償信号に対して位相回りを発生 させることなく、ゲインを上げることができ、偏心や面ぶれなどのディスクの形状に起 因するトラック位置変動に対して高い追従性能を発揮することが可能になる。 [0073] また、本発明によれば、さらに、従来必要であったフィルタの遅延処理用のメモリを 省略することができるため、回路規模の縮小を図ることも可能になる。
[0074] (実施の形態 2)
次に、本発明の実施の形態 2による繰り返し制御装置について説明する。
[0075] 本発明の実施の形態 2による繰り返し制御装置は、前記実施の形態 1による繰り返 し制御装置 11のメモリ 7と並列に接続したレジスタを有し、フィルタ 6によるフィルタ処 理時に、入力信号の上位ビットデータをメモリ 7に記録し、下位ビットデータをレジスタ に記録するようしたものである。
[0076] 図 5は、本発明の実施の形態 2による繰り返し制御装置のメモリ 7がフィルタ 6の構 成要素の一部となっている部分を詳細に図示したブロック図である。なお、ここでは、 フィルタ 6がハイパスフィルタ 31とローパスフィルタ 32とで構成され、メモリ 7及びレジ スタ 35をローパスフィルタ 32の遅延要素として用いる例を示す。
[0077] 図 5において、ハイパスフィルタ 31は直流成分を除去するものである。加算器 33、 メモリ 7、フィードバックゲイン 34、及びレジスタ 35はローパスフィルタ 32を構成し、繰 り返し制御装置の制御帯域以上のノイズおよび信号を除去する。なお、メモリ 7中の 7 Mは、メモリ制御部 8のアドレス制御により現在選択されているメモリセルを示し、デー タの書き込み及び読み出しがこのメモリセル 7Mに対して行われている。
[0078] ここで、レジスタ 35はメモリ 7とともにローパスフィルタ 32の遅延要素を構成し、メモリ セル 7Mが入力信号データの上位、レジスタ 35が下位のデータを記憶する。
[0079] 前述した本発明の実施の形態 1による繰り返し制御装置では、メモリ 7のみがローバ スフィルタ 22の遅延要素として機能している。しかしながら、ローパスフィルタ 22の力 ットオフ周波数を低い周波数に設定しょうとする場合、遅延要素であるメモリ 7に記憶 されるデータの語長がきわめて長いものとなり、メモリ 7の回路規模が大きなものとな つてしまうという問題がある。
[0080] また、回路規模を削減するために単純にデータの下位ビットを切り捨てると、ローバ スフィルタ 32の演算精度が低下したり、ステップ応答が収束せずに振動的な応答を 示すなどの問題が生じる。
[0081] そこで、本発明の実施の形態 2による繰り返し制御装置では、メモリ 7に格納するデ ータの語長を削減するとともに、削減した部分を切り捨てずに図 5に示すレジスタ 35 に記録させることで、演算処理に用いるデータの語長を削減することなくフィルタ処理 を行っている。これにより、メモリ 7の回路規模の増大を抑えながら、フィルタ動作を安 定化し、精度を維持することが可能になる。
[0082] なお、上位ビットを受け持つメモリ 7の語長は、少なくとも、その出力が与えられる D Aコンバータ 3のビット数に等しくしておくことが望ましい。これにより、メモリの回路規 模を必要最小限に抑えることができるとともに、フィルタ動作を安定ィ匕し、演算精度を 維持することが可能となる。
[0083] また、本発明の実施の形態 2による繰り返し制御装置は、前記実施の形態 1による 繰り返し制御装置と同様に、フィルタ 6によるフィルタ処理を、メモリアドレスの切換周 波数ではなぐ駆動信号の動作周波数と同じ、あるいは、その分周周波数を用いて 行っている。そのため、メモリ制御部 8によってメモリ 7のアドレスが切り換えられるまで レジスタ 35の内容が数 10から数 100回更新されることとなり、レジスタ 35の値が本来 の値に収束するため、繰り返し制御動作への影響も最小限にとどめることができる。
[0084] 以上のように、本発明の実施の形態 2による繰り返し制御装置によれば、フィルタ 6 力 Sメモリ 7に並列に接続されるレジスタ 35を有し、フィルタ処理時に入力信号の上位 ビットデータをメモリ 7に記録し、下位ビットデータをレジスタ 35に記録するようにした ので、メモリの回路規模を必要最小限に抑えることができるとともに、フィルタ動作を 安定化し、演算精度を維持することができるという効果が得られる。
[0085] なお、本発明の実施の形態 1及び 2では、フィルタ 6をローパスフィルタとハイパスフ ィルタからなるバンドパスフィルタで構成し、ローパスフィルタの遅延要素としてメモリ 7 を用いるものについて説明したが、メモリ 7をフィルタリング時の遅延要素として用 、る ものであればフィルタ 6の構成は上記のものに限定されるものではなぐ例えばフィル タ 6を、メモリ 7を遅延要素として用いたローパスフィルタのみで構成することもできる。
[0086] (実施の形態 3)
次に、本発明の実施の形態 3による繰り返し制御装置について説明する。
[0087] 本発明の実施の形態 3による繰り返し制御装置は、サーボフィルタの積分項演算部 が行う積分演算処理を、ディスク一回転分の信号情報を複数のメモリ領域に分割して 格納するメモリを用いて行うようにしたものである。
[0088] 図 6は、本発明の実施の形態 3による光ディスク装置のサーボ信号処理を説明する ためのブロック図である。
[0089] 図 6において、本発明の実施の形態 3による光ディスク装置は、加算器 0と、サーボ フィルタ 41と、加算器 2と、 DAC3と、ドライバ 4と、ピックアップ 5と、メモリ制御部 8と、 回転角検出部 9とからなる。なお、本発明の実施の形態 3による光ディスク装置は、メ モリ 7をサーボフィルタ 41の積分項演算部の遅延要素として用いたものであり、図 8で 示した従来の光ディスク装置と同じ構成要素については同一符号を付し、ここでは説 明を省略する。
[0090] サーボフィルタ 41は、微分項演算部 41aと、比例項演算部 41bと、積分項演算部 4 lcと、微分項演算部 41a、比例項演算部 41b、及び積分項演算部 41cからの出力を 加算して出力する加算器 41dとからなる。
[0091] 微分項演算部 41aは、加算器 0から出力される位置誤差信号に対して比例制御を 行うものであり、比例項演算部 41bは、加算器 0から出力される位置誤差信号に対し て比例制御を行うものである。
[0092] 積分項演算部 41cは、加算器 0から出力される位置誤差信号に対して積分制御を 行うものであり、加算器 0から出力される位置誤差信号とメモリ 7から出力されるフィー ドバック信号とを加算する加算器 41eと、複数のメモリ領域を有し、ディスク一回転分 の信号情報を該複数のメモリ領域に分割して格納するメモリ 7と、ゲイン 10と、積分ゲ インとから構成される。
[0093] 次に、本発明の実施の形態 3による繰り返し制御装置の動作を説明する。
加算器 0からトラック位置に対する光ビーム焦点の位置誤差を示すサーボエラー信 号が積分項演算部 41cに入力されると、積分項演算部 41cは、メモリ制御部 8により 選択されて!、るメモリセルを用いて積分処理を行う。
[0094] この積分処理は、駆動信号の動作周波数と同じ、あるいは、その分周周波数で行 われ、メモリ制御部 8からの制御信号によりメモリアドレスが切り換わるまで同じメモリ セル 7Mに対して数 10から数 100回の処理が繰り返し行われることとなる。
[0095] そして、メモリ 7のメモリアドレスがディスクの回転に応じてメモリ制御部 8によって切り 換えられることで、それぞれのディスク回転角度に対応したサーボ制御信号の低域 成分カ モリ 7が有する複数のメモリセルに順次保存されると同時に、順次出力される
[0096] この動作により、ディスク上の各位置の変位に対応する駆動信号を広帯域に渡って 記憶し出力することが可能になるとともに、積分処理における位相遅れを解消し、ル ープ位相特性を改善することが可能になる。
[0097] 図 7は、本発明の実施の形態 3による繰り返し制御装置の積分項演算部で得られる ゲイン'位相特性を示す波形図である。
[0098] 図 7 (a)は、従来の積分項演算部で得られるゲイン特性及び位相特性を示す図で あり、図 7 (b)は、本発明の実施の形態 3による積分項演算部で得られるゲイン特性 及び位相特性を示す図である。なお、図中の実線(1)は入力信号の低域ゲインを上 げた場合のゲイン'位相特性を示し、点線 (2)は入力信号のゲイン'位相特性を示す
[0099] 図 7 (a)に示すように、従来の積分項演算部による積分処理では、低域ゲインを上 げようとすると位相遅れが生じるため、トラックに対する追従性能に悪影響を及ぼす 結果となる。
[0100] 一方で、本発明の実施の形態 3による繰り返し制御装置を用いた積分項演算部に よる処理を行った信号は、位相遅れを発生させることなぐ低域ゲインを上げることが できる。
[0101] 以上のように、本発明の実施の形態 3による繰り返し制御装置は、サーボフィルタの 積分項演算部が行う積分演算処理を、ディスク一回転分の信号情報を複数のメモリ 領域に分割して格納するメモリを用 、て行うようにしたことにより、サーボエラー信号 中のディスク回転数に同期した周波数におけるゲインを積分項の DCゲインと同じに することができ、より少ない回路規模で、位相遅れを生じさせることなぐゲインを上昇 させることが可會となる。
産業上の利用可能性
[0102] 本発明にかかる繰り返し制御装置は、入力信号に位相回りを発生させることなぐゲ インを上げることを可能にするものであり、サーボ信号処理を行う際に大変有用であ //:/ O 6εεοοο£οοί1£ SS690S00ZAV L _■

Claims

請求の範囲
[1] 被補償信号が入力される加算部と、
前記加算部力もの出力信号を順次更新記憶して前記加算部に出力するフィードバ ック信号系とを備え、
前記フィードバック信号系は、
ディスク一回転分の信号情報を複数のメモリ領域に分割して格納するメモリを、遅 延要素として用いるフィルタと、
前記フィルタ力 の出力に対して 1以下の値を乗じて前記加算部に入力するゲイン 要素とからなり、
前記フィルタが駆動信号の動作周波数の整数倍のクロック信号を用いて動作する、 ことを特徴とする繰り返し制御装置。
[2] 請求項 1に記載の繰り返し制御装置にお 、て、
前記フィルタは、前記メモリに並列に接続したレジスタを有し、前記フィルタによるフ ィルタ処理時に、入力信号の上位ビットデータを前記メモリに記録し、下位ビットデー タを前記レジスタに記録する、
ことを特徴とする繰り返し制御装置
[3] 請求項 2に記載の繰り返し制御装置において、
前記メモリに記録される上位ビットデータの語長は、前記加算部で加算される被補 償信号のデータの語長に等しい、
ことを特徴とする繰り返し制御装置。
[4] 請求項 1または請求項 2に記載の繰り返し制御装置において、
前記フィルタは、ローパスフィルタを含み、前記メモリを該ローパスフィルタの遅延要 素として用いる、
ことを特徴とする繰り返し制御装置。
[5] 請求項 1または請求項 2に記載の繰り返し制御装置において、
前記フィルタは、ローパスフィルタとハイパスフィルタとからなるバンドパスフィルタで あり、前記メモリを前記ローパスフィルタの遅延要素として用いる、
ことを特徴とする繰り返し制御装置。
[6] サーボエラー信号が入力される加算部と、
前記加算部からの出力に対して所定の値を乗算する積分ゲインと、
前記加算部力もの出力信号を順次更新して前記加算部に入力するフィードバック 信号系を備え、
前記フィードバック信号系は、
ディスク一回転分の信号情報を複数のメモリ領域に分割して格納するメモリと、 前記メモリからの出力に対して 1以下の値を乗じて前記加算部に入力するゲイン要 素とからなり、
入力されたサーボエラー信号に対して積分演算処理を行う際に、前記メモリを入力 信号の遅延要素として用いて積分演算処理を行う、
ことを特徴とする繰り返し制御装置。
[7] 光ディスクの記録又は再生を行う光ディスク装置にぉ 、て、
請求項 1に記載の繰り返し制御装置を搭載した、
ことを特徴とする光ディスク装置。
[8] 光ディスクの記録又は再生を行う光ディスク装置にぉ 、て、
請求項 6に記載の繰り返し制御装置を搭載した、
ことを特徴とする光ディスク装置。
PCT/JP2005/000339 2004-01-16 2005-01-14 繰り返し制御装置、及び光ディスク装置 WO2005069285A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/586,355 US7649815B2 (en) 2004-01-16 2005-01-14 Repetitive control device and optical disc device
JP2005517063A JPWO2005069285A1 (ja) 2004-01-16 2005-01-14 繰り返し制御装置、及び光ディスク装置
CN2005800024274A CN1910668B (zh) 2004-01-16 2005-01-14 循环控制装置以及光盘装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-008917 2004-01-16
JP2004008917 2004-01-16

Publications (1)

Publication Number Publication Date
WO2005069285A1 true WO2005069285A1 (ja) 2005-07-28

Family

ID=34792252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000339 WO2005069285A1 (ja) 2004-01-16 2005-01-14 繰り返し制御装置、及び光ディスク装置

Country Status (4)

Country Link
US (1) US7649815B2 (ja)
JP (2) JPWO2005069285A1 (ja)
CN (1) CN1910668B (ja)
WO (1) WO2005069285A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233732A (ja) * 2006-03-01 2007-09-13 Ricoh Co Ltd サーボ制御装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5221735B2 (ja) 2011-10-27 2013-06-26 ファナック株式会社 不感帯処理部を備えた電動機の制御装置
WO2014155573A1 (ja) * 2013-03-27 2014-10-02 株式会社 東芝 電子機器、記録方法及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140432A (ja) * 1987-11-27 1989-06-01 Sony Corp 光ディスク装置
JPH03194736A (ja) * 1989-12-22 1991-08-26 Konica Corp 光ディスクドライブの偏心補正方法
JPH0920303A (ja) * 1995-07-06 1997-01-21 Teraoka Seiko Co Ltd ストレッチフィルム包装機
JPH10134380A (ja) * 1996-10-31 1998-05-22 Matsushita Electric Ind Co Ltd トラッキング制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07334931A (ja) * 1994-06-10 1995-12-22 Pioneer Electron Corp クロストーク除去装置
JP3536455B2 (ja) 1995-08-04 2004-06-07 三菱電機株式会社 繰り返し補償器およびこの繰り返し補償器を備えたディスク装置
CN2371641Y (zh) * 1999-04-29 2000-03-29 光德电子股份有限公司 具有错误校正电路的影音光碟播放机
TW509926B (en) * 1999-12-10 2002-11-11 Koninkl Philips Electronics Nv Device for scanning a rotating information carrier
JP2001307341A (ja) * 2000-04-24 2001-11-02 Matsushita Electric Ind Co Ltd 光ディスク装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01140432A (ja) * 1987-11-27 1989-06-01 Sony Corp 光ディスク装置
JPH03194736A (ja) * 1989-12-22 1991-08-26 Konica Corp 光ディスクドライブの偏心補正方法
JPH0920303A (ja) * 1995-07-06 1997-01-21 Teraoka Seiko Co Ltd ストレッチフィルム包装機
JPH10134380A (ja) * 1996-10-31 1998-05-22 Matsushita Electric Ind Co Ltd トラッキング制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233732A (ja) * 2006-03-01 2007-09-13 Ricoh Co Ltd サーボ制御装置

Also Published As

Publication number Publication date
JPWO2005069285A1 (ja) 2007-12-27
US20070159939A1 (en) 2007-07-12
CN1910668A (zh) 2007-02-07
JP2009170102A (ja) 2009-07-30
CN1910668B (zh) 2012-05-30
JP4775866B2 (ja) 2011-09-21
US7649815B2 (en) 2010-01-19

Similar Documents

Publication Publication Date Title
KR100677097B1 (ko) 광 기록/재생 장치에서 학습 제어를 이용한 외란 보상장치 및 방법과, 그를 이용한 광 기록 매체 드라이브 서보시스템
US6304200B1 (en) Digital/analog conversion apparatus and reproduction apparatus
JPH0685612A (ja) 確定したインパルスに応答するデイジタル・フイルタ
KR20010113821A (ko) 디스크 드라이브 구동기용 조절 고성능 하드웨어 제어기
JPH0822680A (ja) 情報再生装置
KR100400045B1 (ko) 외란 제거 장치 및 방법
WO2005069285A1 (ja) 繰り返し制御装置、及び光ディスク装置
JP2005222681A (ja) 光ディスクの欠陥補償装置及びその方法
JP4509952B2 (ja) 制御装置、ディスク装置、及びシーク軌道生成方法
JP2008052777A (ja) ドライブ装置
JPWO2006013660A1 (ja) 再生信号処理装置
US5546245A (en) Data storage apparatus with an A/D converter having a reference voltage control based upon a signal before and after discrimination
JPH0696538A (ja) データ記録再生装置のヘッド位置決め制御装置
JPH11353004A (ja) 外乱抑制装置
JP4813470B2 (ja) 演算処理回路装置及びディスク装置
JPH1125486A (ja) 光ディスク・ドライブ装置
JPH0830998A (ja) スキュー制御装置
JP4945832B2 (ja) ディスク再生制御装置
US7773470B2 (en) Pickup control device, optical disk apparatus and pickup control method for the same
JP2006252627A (ja) 光ディスク装置
JP2002140876A (ja) 情報記録再生装置
JP3065737B2 (ja) 光ディスクのサーボ制御装置
JPH0896391A (ja) 光ディスク装置のトラッキング制御装置
JPH10340417A (ja) サーマルアスピリティ補償再生チャネル及びデータ記憶ファイル装置及び信号処理lsi
JP2001195760A (ja) トラッキング制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005517063

Country of ref document: JP

Ref document number: 200580002427.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007159939

Country of ref document: US

Ref document number: 10586355

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10586355

Country of ref document: US