WO2005063628A1 - 酸化インジウム一酸化錫粉末及びそれを用いたスパッタリングターゲット - Google Patents

酸化インジウム一酸化錫粉末及びそれを用いたスパッタリングターゲット Download PDF

Info

Publication number
WO2005063628A1
WO2005063628A1 PCT/JP2004/019353 JP2004019353W WO2005063628A1 WO 2005063628 A1 WO2005063628 A1 WO 2005063628A1 JP 2004019353 W JP2004019353 W JP 2004019353W WO 2005063628 A1 WO2005063628 A1 WO 2005063628A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
sno
indium
tin
tin oxide
Prior art date
Application number
PCT/JP2004/019353
Other languages
English (en)
French (fr)
Inventor
Seiichiro Takahashi
Hiroshi Watanabe
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Priority to US10/584,709 priority Critical patent/US7601661B2/en
Priority to JP2005516645A priority patent/JP4721901B2/ja
Publication of WO2005063628A1 publication Critical patent/WO2005063628A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the present invention relates to indium oxide oxide tin powder and a sputtering target using the same.
  • a sputtering method is known as one of the methods for forming a thin film.
  • the sputtering method is a method of obtaining a thin film by sputtering a sputtering target, and is used industrially because a large area can be easily formed and a high-performance film can be efficiently formed.
  • a reactive sputtering method in which sputtering is performed in a reactive gas
  • a magnetron sputtering method in which a magnet is provided on a back surface of a target to perform high-speed thin film formation are known. I have.
  • an indium oxide-oxide oxide (InO-SnO composite oxide, hereinafter referred to as "ITO”) film has high visible light transmittance.
  • ITO indium oxide-oxide oxide
  • Such a sputtering target is obtained by mixing an indium oxide powder and a tin oxide powder at a predetermined ratio, molding the mixture by a dry or wet method, and sintering it (Patent Document 1).
  • Highly dispersible indium oxide powder for obtaining a compact has been proposed (see Patent Documents 2, 3, and 4).
  • indium-tin-oxide is contained in the crystal lattice of indium oxide.
  • a method has been proposed in which an ITO powder containing at least 90% by volume of a solid solution phase is manufactured to obtain an ITO powder having a predetermined electric resistivity when a compact is obtained (see Patent Document 10).
  • Patent Document 1 JP-A-62-21751
  • Patent Document 2 JP-A-5-193939
  • Patent Document 3 JP-A-6-191846
  • Patent Document 4 JP 2001-261336 A
  • Patent Document 5 JP-A-62-21751
  • Patent Document 6 Japanese Patent Application Laid-Open No. 9-221322
  • Patent Document 7 JP-A-2000-281337
  • Patent Document 8 JP 2001-172018 A
  • Patent Document 9 JP-A-2002-68744
  • Patent Document 10 JP-A-11-11946
  • the present invention provides an indium oxide oxide powder that can be manufactured at low cost, can obtain a high-density sputtering target, and can extend the life of the target. Means to solve the problem: to provide a sputtering target using the same.
  • a first aspect of the present invention for solving the above-mentioned problem is that an oxide containing an In-Sn oxidized substance as a main component is provided. Ndudimu acid lantern powder, wherein the inter-compound In Sn O was not detected by X-ray diffraction.
  • Indium oxide-tin oxide powder characterized by having a solid solution amount of 2 3 2 2 3 ⁇ of 2.3% by mass or more
  • the oxidized tin is dissolved in the indium oxide in a predetermined amount or more, the sinterability can be increased without increasing the density of the molded body.
  • the density of the sintered sputtering target can be kept high.
  • the second aspect of the present invention is the first aspect, wherein the amount of SnO solid solution in In 2 O is 2.4 mass%.
  • the tin content is 2.3 or less in terms of SnO.
  • the indium-tin alloy is supplied as a liquid stream, droplets or powder, or the ITO powder is supplied to a heat source capable of oxidizing atmosphere.
  • the indium tin oxide powder is characterized by being obtained by capturing and collecting the generated fine particles with a fluid.
  • the indium tin alloy is supplied as a liquid stream, droplets, or powder into a heat source capable of oxidizing atmosphere, and the generated fine particles are captured and recovered by a fluid.
  • ITO powder can be easily obtained.
  • a fifth aspect of the present invention is the indium oxide monotin powder according to the fourth aspect, wherein the fluid is a mist-like liquid fluid.
  • fine particles can be relatively easily used by using a mist-like liquid fluid. Can be recovered.
  • the maximum velocity force at the time of capturing the generated fine particles with the fluid is 150 mZsec or less. In the dangling powder.
  • fine particles are cooled and collected at a relatively low speed, so that they can be produced relatively easily.
  • a seventh aspect of the present invention is a sputtering target obtained by sintering the indium oxide-tin oxide powder of any one of the first to sixteenth aspects.
  • a sputtering target with good sinterability can be obtained.
  • the ITO powder of the present invention has an inter-compound In Sn O detected by X-ray diffraction.
  • FIG. 1 is a schematic configuration diagram showing an example of an apparatus for producing fine particles for producing an ITO powder of the present invention.
  • FIG. 2 is a view showing a result of X-ray diffraction of the ITO powder of Example 1 of the present invention.
  • FIG. 3 is a view showing the result of X-ray diffraction of the ITO powder of Example 2 of the present invention.
  • FIG. 4 is a view showing the result of X-ray diffraction of the ITO powder of Comparative Example 1 of the present invention.
  • FIG. 5 is a view showing the result of X-ray diffraction of the ITO powder of Comparative Example 2 of the present invention.
  • FIG. 6 is a view showing the result of X-ray diffraction of the ITO powder of Comparative Example 3 of the present invention.
  • FIG. 7 is a view showing the result of X-ray diffraction of the ITO powder of Example 3 of the present invention.
  • FIG. 8 is a view showing the result of X-ray diffraction of the ITO powder of Comparative Example 4 of the present invention.
  • FIG. 9 shows the results of Test Example 4 of the present invention.
  • the ITO powder of the present invention is an indium tin oxide powder containing In-Sn oxide as a main component, and the inter-compound InSnO2 is not detected by X-ray diffraction. That is, IT
  • Such ITO powders are excluded because 4 n O is detected.
  • the ITO powder of the present invention has an InO (222) integrated diffraction intensity and a SnO (110) integrated diffraction intensity.
  • the ratio and force of 2 32 are also calculated.
  • the amount of solid solution of SnO in In 2 O is 2.3 mass% or more, preferably 2.4 mass%.
  • the amount of solid solution of SnO refers to the integrated diffraction of In 2 O (222) by X-ray diffraction.
  • the sinterability is higher than that of the wet-synthesized ITO powder, and as a result, a sintered body having a high density can be obtained.
  • Patent Document 10 the force defining the content of the solid solution phase of indium tin oxide in the crystal lattice of indium oxide to be at least 90% by volume, here, the crystal lattice of indium oxide
  • the content of the solid solution phase of indium tin oxide in the inside is not a problem, but attention is paid to the amount of tin oxide dissolved in indium oxide.
  • the ITO powder of the present invention has a high level of SnO solid solution in In O,
  • the tin content in the ITO powder of the present invention is 2.3-45% by mass in terms of SnO. S Since the ⁇ solid solution amount is 2.3% by mass or more, the tin content should be at least 2.3
  • the content is 22% by mass, but exceeds 45% by mass, for example, when a thin film is formed by using a sputtering target, SnO precipitates and impairs the conductivity, which is not preferable.
  • the method for producing the ITO powder of the present invention is not particularly limited as long as the above-mentioned one can be obtained.
  • the ITO powder of the present invention can be obtained relatively easily and at low cost. it can. That is, a liquid stream, droplets or powder of the In—Sn alloy, or ITO powder is supplied to a heat source capable of oxidizing atmosphere, for example, acetylene flame or DC plasma flame, and the generated ITO fine particle powder is collected.
  • a heat source capable of oxidizing atmosphere for example, acetylene flame or DC plasma flame
  • the generated ITO fine particle powder is collected.
  • an ITO powder can be obtained.
  • the liquid flow or droplets of the In-Sn alloy can be obtained by dropping continuously or intermittently from the molten alloy, and the powder of the In-Sn alloy can be obtained by, for example, an atomizing method.
  • ITO powder produced by various production methods or ITO powder obtained by pulverizing a sintered ITO sintered body can be used as a raw material.
  • the manufactured ITO fine powder may be collected by dry collection using a bag filter or an electrostatic precipitator, but wet collection is performed by spraying water onto the ITO fine powder and capturing it, and collecting it as a slurry by gas-liquid separation using a cyclone. May be adopted.
  • ITO powder can be obtained.
  • ITO powder As described above, preferably 2.4 mass% or more of ITO powder can be obtained.
  • the ITO powder of the present invention can be formed by dry or wet molding and sintered to obtain a sintered body.
  • a high-density sintered body can be obtained.
  • a high-density sintered body can be obtained without significantly increasing the density of the compact.
  • the particle size or particle size distribution of the ITO powder of the present invention is not particularly limited. However, in order to obtain a high-density sintered body, the specific surface area (BET) is 11 to 15 m 2 Zg, 3-10 m 2 Zg is preferred.
  • the ITO powder of the present invention can be obtained, for example, by supplying an indium tin alloy as a liquid stream, droplets or powder, or supplying the ITO powder into a heat source capable of oxidizing atmosphere, and capturing and collecting the generated fine particles by a fluid. Can be obtained.
  • the In-Sn alloy is supplied as a liquid stream, droplets or powder, or the ITO powder is supplied to a heat source capable of oxidizing atmosphere. That is, it may be continuously dropped as a liquid stream or droplets from a molten metal reservoir of the In—Sn alloy, or an atomized powder may be formed and supplied, or ITO powder may be supplied. You can do it.
  • Examples of the heat source capable of oxidizing atmosphere include acetylene flame, DC plasma flame, and the like.
  • the temperature of the heat source is not particularly limited as long as it is a temperature at which the indium tin alloy or the ITO powder can be melted and acidified sufficiently.
  • acetylene flame it is said that the temperature is several thousand ° C or more, and in the case of DC plasma flame, it is several ten thousand ° C or more.
  • the raw material is supplied to such an acetylene flame or a DC plasma flame as a liquid stream, droplets or powder, the product is obtained as it is or as an oxidant together with a gas stream.
  • the obtained product is captured by a fluid. That is, dry recovery may be performed, in which fine particles are recovered together with a gas flow using a bag filter or the like.
  • the ITO powder generated in the heat source is quenched by a gas stream and collected as fine particles.
  • a mist-like liquid fluid may be ejected and captured. That is, a mist-like liquid fluid, preferably mist-like water, is sprayed on the product flowing with the jet of the acetylene flame or the DC plasma flame. As a result, the product is rapidly cooled to fine particles, and becomes a slurry of the sprayed liquid fluid.
  • the supply of the atomized liquid fluid is not particularly limited as long as the obtained product can be captured and cooled. For example, when water is used, water at room temperature, preferably pure water at room temperature may be used, but cooling water may be used.
  • the liquid fluid containing fine particles captured by the sprayed liquid fluid is subjected to gas-liquid separation, and the fine particles are converted into a slurry.
  • the method for recovering the slurry is not particularly limited, but preferably can be performed using a cyclone.
  • the maximum speed at which the product is captured is, for example, 150 mZsec or less, preferably about 100 mZsec or less.
  • an indium oxide iridin oxide (ITO) powder can be manufactured by using an In-Sn alloy or an ITO powder as a raw material.
  • ITO powder can be used as a material for an ITO sputtering target.
  • the tin content should be 2.3-45% by mass in SnO conversion.
  • This apparatus is obtained by supplying raw material 2 supplied in acetylene flame or DC plasma flame 1 as a heat source capable of oxidizing atmosphere as a liquid stream, droplets or powder.
  • the inlet 10 is not particularly limited as long as it can introduce a gas flow containing a product, but the gas flow may be sucked.
  • the fluid ejection means 20 is provided downstream of the introduction pipe 11 provided with the introduction port 10, and is provided with a plurality of ejection nozzles 21 for ejecting a fluid, for example, water, and introduces fluid to the ejection nozzles 21. And a fluid tank 23 for storing a fluid.
  • the direction of injection of the fluid from the injection nozzle 21 is not particularly limited. It is preferable to inject in the direction of merging.
  • the product 3 contained in the gas stream introduced from the inlet 10 is cooled by the sprayed fluid, for example, water, and is captured as fine particles.
  • a part of the venturi 12 with a narrowed flow path is provided downstream of the injection nozzle 21 of the introduction pipe 11 to prevent a decrease in the flow rate of the gas-liquid mixture, but a part 12 of the bench lily is necessarily provided. No need.
  • the injection nozzle 21 and the pump 22 may be configured to suck and eject the liquid by the suction force of the gas flow which is not necessarily provided.
  • the introduction pipe 11 provided with the introduction port 10 communicates with the introduction port 31 of the cyclone 30, which is a gas-liquid separation unit.
  • the gas-liquid mixture introduced from the inlet 31 of the cyclone 30 is separated into gas and liquid by a vortex 33 circulating along the inner wall of the cyclone main body 32, and the liquid component, that is, the slurry containing the fine particles is separated into the lower part. , And the gaseous component is discharged from the exhaust port 34.
  • a circulation means 40 is provided at the exhaust port 34. That is, a circulation pipe 41 communicating with the introduction pipe 10 in the vicinity of the introduction port 10 is provided at the exhaust port 34, and a blower 42 is interposed in the middle of the circulation pipe 41, and these constitute the circulation means 40. ing.
  • this circulating means 40 the captured fine powder is returned to the upstream side of the injection nozzle 21 to improve the capture efficiency.
  • the liquid component gas-liquid separated by the cyclone 30 is discharged from the water discharge port 36 and filled in the fluid tank 23. Since the supernatant water of the slurry filled in the fluid tank 23 is circulated by the circulating means 40, a slurry having a fine particle component concentration is gradually obtained.
  • a filter for filtering fine particle components may be provided in the fluid tank 23, or a sedimentation for neutralizing with an alkaline solution to precipitate and separate fine particle components.
  • a separation tank may be provided in addition to the fluid tank 23.
  • a second cyclone 50 which is a second gas-liquid separation unit, is connected to the second exhaust port 35 via an exhaust pipe 43.
  • the second cyclone 50 is basically It has the same structure as cyclone 30 and has a gas-liquid separation function. That is, the gas-liquid mixture introduced from the introduction port 51 to which the exhaust pipe 43 is connected is separated into gas and liquid as a vortex 53 circulating along the inner wall of the cyclone body 52 and contains a liquid component, that is, fine particles. The slurry falls to the lower part, is discharged from the water discharge port 54, accumulates in the fluid tank 61, and the gas component is discharged from the exhaust port 55.
  • a part of a bench lily 44 having a narrowed flow path is provided in the middle of the exhaust noise 43, and a water circulation pipe 62 for communicating the part of the bench lily 44 with the fluid tank 61 is provided.
  • a water circulation pipe 62 for communicating the part of the bench lily 44 with the fluid tank 61 is provided.
  • the water in the fluid tank 61 is sucked and injected into the bench lily part 44 by the high-speed gas flow in the venturi section 44, and the fine particles remaining in the gas are captured in the liquid.
  • an exhaust pipe 71 is connected to the exhaust port 55, and a second blower 72 is provided in the exhaust nozzle 71 so that the gas is exhausted from the exhaust port 55 through the second blower 72. Has become.
  • the water in the water tank 61 may be sprayed into the exhaust pipe 43 by using a pump and a spray nozzle as in the cyclone 30 described above.
  • the fluid tank 61 may be provided with a filter as described above, or may be provided with a sedimentation separation tank for neutralizing and separating fine particles.
  • a part of the exhaust gas from the exhaust port 55 may be circulated upstream of the bench lily part 44 of the exhaust pipe 43 to further enhance the capture efficiency.
  • the second cyclone 50 is not necessarily provided, or in the case where the capturing efficiency is to be further increased, a plurality of cyclones are further provided. You may connect.
  • the ITO powder of the present invention described above is suitable for use as a raw material for a sputtering target.
  • ITO powder as a raw material is formed using various conventionally known wet methods or dry methods, and fired.
  • Examples of the dry method include a cold press method and a hot press method.
  • a cold press method a molding die is filled with ITO powder to produce a molded body, which is fired and sintered under an air atmosphere or an oxygen atmosphere.
  • Hot press method Sinters the ITO powder directly in the mold.
  • a filtration molding method for example, it is preferable to use a filtration molding method (see JP-A-11-286002).
  • This filtration molding method is a filtration molding die that also has a water-insoluble material power for obtaining a molded body by draining water under reduced pressure from a ceramic raw material slurry, and a molding die having one or more water drain holes.
  • a water-permeable filter placed on the lower mold for molding, and a molding frame for clamping the upper surface side through a sealing material for sealing the filter. The mold, the molding material, the sealing material, and the filter are assembled so that they can be disassembled, and the mixed powder and the ion-exchanged water are used only in one side of the filter.
  • a slurry comprising an organic additive
  • the slurry is poured into a filtration mold, and water in the slurry is drained from only one side of the filter under reduced pressure to produce a molded body. body After drying degreasing, and firing.
  • the firing temperature is, for example, 1300-1600 for a target.
  • ° C is preferred, and more preferably 1450-1600 ° C. Thereafter, a mechanical force is applied to a predetermined size for forming and forming, thereby obtaining a target.
  • the surface is ground to adjust the thickness, and further, several levels of polishing are performed to smooth the surface. It is preferable to remove the.
  • the powder was collected by a dry method using a filter to obtain the ITO powder of Example 1.
  • ITO powder dry-synthesized from acetylene flame in the same manner as in Example 1 was wet-recovered with spray water and used as the ITO powder of Example 2.
  • Comparative Example 1 In a mortar, 90 mass% of indium oxide powder, which was calcined at 1000 ° C., and 10 mass% of tin oxide powder, which was calcined at 1000 ° C., similarly. The mixture was designated as Comparative Example 1 and as Standard Product 1.
  • the ITO powder wet-synthesized by the coprecipitation method was used as the ITO powder of Comparative Example 2.
  • aqueous ammonia (special reagent grade) was mixed with the mixed acid to neutralize the mixture to pH 6.5, whereby a white precipitate was deposited.
  • 25% aqueous ammonia special reagent grade
  • ICP spectroscopy inductively coupled high frequency plasma spectroscopy
  • the volume ratio was calculated.
  • ITO powders of Examples 1 and 2 and Comparative Examples 13 and 13 were analyzed by powder X-ray diffraction (XRD: MXP18II, manufactured by Mac Science Co., Ltd.) to determine the amount of SnO deposited. You That is, the presence or absence of the intermetallic compound (In Sn O) was confirmed from the diffraction results, and the intermetallic compound was detected.
  • XRD powder X-ray diffraction
  • the amount of SnO deposited (% by mass) is calculated from the integrated diffraction intensity ratio of X-ray diffraction.
  • the amount of SnO that was not output was defined as the amount of SnO dissolved in InO.
  • the solid solution amount of SnO was 2.35 wt% and 2.42 wt%.
  • the ITO powder of Example 3 had a SnO solid solution amount of 3.00 wt%
  • ITO powder (specific surface area: 2.97 mg) synthesized in the same manner as in Example 2 and calcined at 1100 ° C. was pulverized by a dry ball mill and then cold pressed. The relative density of the molded body after degreasing was 53.5% of the theoretical density of 7.15.
  • the ITO powder synthesized in the same manner as in Example 1 and calcined at 1000 ° C. was crushed by a dry ball mill (specific surface area at this time: 7.7 m 2 Zg) and further crushed by a wet ball mill.
  • the slurry was poured into a filtration mold, and water in the slurry was drained under reduced pressure only on one side of the filter to produce a compact, and the obtained ceramic compact was dried and degreased.
  • the relative density of the molded body after degreasing was 64.9% of the theoretical density of 7.15.
  • ITO powder (specific surface area: 2.5 m 2 Zg) synthesized in the same manner as in Example 3 and calcined at 1100 ° C was crushed by a dry ball mill and a wet ball mill to form a slurry, and the slurry was filtered. And the water in the slurry was drained under reduced pressure only from the filter on one side of the filter to produce a molded body, and the obtained ceramic molded body was dried and degreased. The relative density of the molded body after degreasing was 64.9% of the theoretical density of 7.15.
  • the sinterability was compared in each production example and each comparative production example. The results are shown in Fig.
  • the sinterability indicates the ratio of the relative density of the sintered body to the relative density of the compact.
  • the ITO powder of the present invention provides a high-density sintered body with high sinterability, and a high-density sintered body can be obtained without increasing the density of the compact. I knew I could get it.
  • Arcing characteristics were measured using the sputtering targets of Production Example 2-4 and Comparative Production Example 2. That is, continuous sputtering was performed by DC magnetron sputtering under the following conditions, and the 50 Counts life was measured. Where 50Counts life is DOO use start force also except initial arc count up input power amount lOWhZcm 2, refers to the input power amount when the cumulative Aki ring number becomes 50 times (WhZcm 2). The arcing was detected by an arc detector (MAM Genesis) manufactured by Landmark Technology Co., Ltd. The results are shown in Table 4 below and FIG.
  • the sputtering target using the ITO powder of the present invention was found to have excellent arcing characteristics and a long target life.
  • the target of Production Example 4 using ITO powder by DC plasma flame had a longer target life than Production Examples 2 and 3 using ITO powder by acetylene flame.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 安価に製造することができ、高密度のスパッタリングターゲットを得ることができ、ターゲットのライフを伸ばすことができる酸化インジウム−酸化錫粉末及びそれを用いたスパッタリングターゲットを提供する。  In−Sn酸化物を主成分とする酸化インジウム−酸化錫粉末であって、X線回折で間化合物In4Sn3O12が検出されず、In2O3(222)積分回折強度及びSnO2(110)積分回折強度の比から求められるSnO2の析出量(質量%)から算出される、In2O3中のSnO2固溶量が2.3質量%以上であることを特徴とする酸化インジウム−酸化錫粉末にある。

Description

明 細 書
酸化インジウム一酸ィ匕錫粉末及びそれを用いたスパッタリングターゲット 技術分野
[0001] 本発明は、酸化インジウム 酸ィ匕錫粉末及びそれを用いたスパッタリングターゲット に関する。
背景技術
[0002] 一般的に、薄膜を成膜する方法の 1つとしてスパッタリング法が知られている。スパ ッタリング法とは、スパッタリングターゲットをスパッタリングすることにより薄膜を得る方 法であり、大面積ィ匕が容易であり、高性能の膜が効率よく成膜できるため、工業的に 利用されている。また、近年、スパッタリングの方式として、反応性ガスの中でスパッタ リングを行う反応性スパッタリング法や、ターゲットの裏面に磁石を設置して薄膜形成 の高速ィ匕を図るマグネトロンスパッタリング法なども知られている。
[0003] このようなスパッタリング法で用いられる薄膜のうち、特に、酸化インジウム-酸ィ匕錫( In O -SnOの複合酸化物、以下、「ITO」という)膜は、可視光透過性が高ぐかつ
2 3 2
導電性が高いので透明導電膜として液晶表示装置やガラスの結露防止用発熱膜、 赤外線反射膜等に幅広く用いられて 、る。
[0004] このため、より効率よく低コストで成膜するために、現在においてもスパッタ条件ゃス パッタ装置などの改良が日々行われており、装置を如何に効率的に稼働させるかが 重要となる。また、このような ΙΤΟスパッタリングにおいては、新しいスパッタリングター ゲットをセットして力も初期アーク (異常放電)がなくなって製品を製造できるまでの時 間が短いことと、一度セットして力もどれくらいの期間使用できる力 (積算スパッタリン グ時間:ターゲットライフ)が問題となる。
[0005] このような ΙΤΟスパッタリングターゲットは、酸化インジウム粉末及び酸化錫粉末を 所定の割合で混合して乾式又は湿式で成形し、焼結したものであり(特許文献 1)、 高密度の ΙΤΟ焼結体を得るための高分散性の酸化インジウム粉末が提案されている (特許文献 2, 3, 4等参照)。
[0006] 一方、共沈法により湿式合成された ΙΤΟ粉末を ΙΤΟ焼結体とすることも知られてお り(特許文献 5等参照)、同様に高密度な焼結体を得るための ITO粉末の湿式合成 方法が多数提案されて ヽる (特許文献 6— 9等参照)。
[0007] さらに、プラズマアーク中でインジウム 錫合金と酸素とを反応させて、マッハ 1以上 のガス流で所定の冷却速度以上で冷却することにより、酸化インジウムの結晶格子 内にインジウム 錫 酸ィ匕物固溶体相を少なくとも 90容量%含有する ITO粉末を製 造し、圧縮体としたときに所定の電気抵抗率を有する ITO粉末を得る方法が提案さ れている (特許文献 10参照)。
[0008] し力しながら、依然として、焼結条件等を高度に制御しなくても、比較的容易に高密 度の焼結体が得られ、この結果、ライフの長いターゲットを得ることができる ITO粉末 を求める要望が多い。
[0009] 特許文献 1 :特開昭 62— 21751号公報
特許文献 2 :特開平 5—193939号公報
特許文献 3:特開平 6—191846号公報
特許文献 4:特開 2001— 261336号公報
特許文献 5 :特開昭 62— 21751号公報
特許文献 6:特開平 9 221322号公報
特許文献 7:特開 2000-281337号公報
特許文献 8:特開 2001—172018号公報
特許文献 9:特開 2002— 68744号公報
特許文献 10:特開平 11-11946号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明はこのような事情に鑑み、安価に製造することができ、高密度のスパッタリン グターゲットを得ることができ、ターゲットのライフを伸ばすことができる酸化インジウム 酸ィ匕錫粉末及びそれを用いたスパッタリングターゲットを提供することを課題とする 課題を解決するための手段
[0011] 前記課題を解決する本発明の第 1の態様は、 In— Sn酸ィ匕物を主成分とする酸化ィ ンジゥムー酸ィ匕錫粉末であって、 X線回折で間化合物 In Sn O が検出されず、 In
4 3 12 2
O (222)積分回折強度及び SnO (110)積分回折強度の比及び ICP分析による In
3 2
、 Snの元素濃度から求められる In O及び SnOの比とから算出される、 In O中の S
2 3 2 2 3 ηθ固溶量が 2. 3質量%以上であることを特徴とする酸化インジウム -酸化錫粉末に
2
ある。
[0012] かかる第 1の態様では、酸化インジウムの中に酸ィ匕錫が所定量以上固溶して 、るの で、焼結性が大きぐ成形体の密度をそれほど大きくしなくても、焼結体であるスパッ タリングターゲットの密度を高く保つことができる。
[0013] 本発明の第 2の態様は、第 1の態様において、 In O中の SnO固溶量が 2. 4質量
2 3 2
%以上であることを特徴とする酸化インジウム一酸化錫粉末にある。
[0014] かかる第 2の態様では、酸化インジウム中に固溶している酸ィ匕錫の量が多いので、 焼結性がさらに大きい。
[0015] 本発明の第 3の態様は、第 1又は 2の態様において、錫含有量が SnO換算で 2. 3
2 一 45質量%であることを特徴とする酸化インジウム 酸ィ匕錫粉末にある。
[0016] かかる第 3の態様では、 SnO固溶量が 2. 3質量%以上であるから、錫含有量は最
2
低でも SnO換算で 2. 3質量%であり、一方、 45質量%を超える場合には、例えば、
2
スパッタリングターゲットして薄膜を形成した際に SnOが析出して導電性を阻害する
2
ことになる。
[0017] 本発明の第 4の態様は、第 1一 3の何れかの態様において、インジウム 錫合金を 液流、液滴又は粉末として、又は ITO粉末を、酸化雰囲気可能な熱源中に供給し、 生成した微粒子を流体により捕獲して回収することにより得たものであることを特徴と する酸化インジウム一酸化錫粉末にある。
[0018] かかる第 4の態様では、インジウム 錫合金を液流、液滴又は粉末として、酸化雰囲 気可能な熱源中に供給し、生成した微粒子を流体により捕獲して回収することにより 、比較的容易に ITO粉末を得ることができる。
[0019] 本発明の第 5の態様は、第 4の態様において、前記流体が霧状の液状流体である ことを特徴とする酸化インジウム一酸ィ匕錫粉末にある。
[0020] かかる第 5の態様では、霧状の液状流体を用いることにより、比較的容易に微粒子 を回収することができる。
[0021] 本発明の第 6の態様は、第 4又は 5の態様において、前記生成した微粒子の前記 流体により捕獲する際の最大速度力 150mZsec以下であることを特徴とする酸ィ匕 インジウム 酸ィ匕錫粉末にある。
[0022] かかる第 6の態様では、比較的低速で微粒子を冷却回収するので、比較的容易に 製造できる。
[0023] 本発明の第 7の態様は、第 1一 6の何れかの態様の酸化インジウム-酸ィ匕錫粉末を 焼結してなることを特徴とするスパッタリングターゲットにある。
[0024] 力かる第 7の態様では、焼結性の良好なスパッタリングターゲットを得ることができる
発明の効果
[0025] 以上説明したように、本発明の ITO粉末は、 X線回折で間化合物 In Sn O が検
4 3 12 出されず、 In O (222)積分回折強度及び SnO (110)積分回折強度の比及び ICP
2 3 2
分析による In、 Snの元素濃度から求められる In O及び SnOの比とから算出される
2 3 2
、 In O中の SnO固溶量が 2. 3質量%以上であるので、焼結性が良好であり、成形
2 3 2
体の密度を大きくしなくても高密度のスパッタリングターゲットを比較的容易に製造す ることができると!、う効果を奏する。
図面の簡単な説明
[0026] [図 1]本発明の ITO粉末を製造するための微粒子の製造装置の一例を示す概略構 成図である。
[図 2]本発明の実施例 1の ITO粉末の X線回折の結果を示す図である。
[図 3]本発明の実施例 2の ITO粉末の X線回折の結果を示す図である。
[図 4]本発明の比較例 1の ITO粉末の X線回折の結果を示す図である。
[図 5]本発明の比較例 2の ITO粉末の X線回折の結果を示す図である。
[図 6]本発明の比較例 3の ITO粉末の X線回折の結果を示す図である。
[図 7]本発明の実施例 3の ITO粉末の X線回折の結果を示す図である。
[図 8]本発明の比較例 4の ITO粉末の X線回折の結果を示す図である。
[図 9]本発明の試験例 4の結果を示す図である。 発明を実施するための最良の形態
[0027] 本発明の ITO粉末は、 In— Sn酸化物を主成分とする酸化インジウム一酸化錫粉末 であって、 X線回折で間化合物 In Sn O が検出されないものである。すなわち、 IT
4 3 12
O粉末を 1250°C以上で焼結した焼結体を粉砕した場合は勿論、酸化インジウム粉 末及び酸化錫粉末の混合物を焼結した焼結体を粉砕した場合には、間化合物 In S
4 n O が検出されるので、このような ITO粉末は除外される。
13 12
[0028] また、本発明の ITO粉末は、 In O (222)積分回折強度及び SnO (110)積分回
2 3 2
折強度の比及び ICP分析による In、 Snの元素濃度から求められる In O及び SnO
2 3 2 の比と力も算出される、 In O中の SnO固溶量が 2. 3質量%以上、好ましくは 2. 4
2 3 2
質量%以上である。ここで、 SnO固溶量とは、 X線回折での In O (222)積分回折
2 2 3
強度及び SnO (110)積分回折強度の比と、例えば、溶融して分析した場合、或い
2
は誘導結合高周波プラズマ分光分析 (ICP分光分析)などの分析での In、 Snの元素 濃度から求められる In O及び SnOの比とを求め、両者の分析の差力 算出するこ
2 3 2
とができるものであり、本発明では、 In O (222)積分回折強度及び SnO (110)積
2 3 2 分回折強度の比及び ICP分析による In、 Snの元素濃度から求められる In O及び S
2 3 ηθの比とから算出されるものとして定義する。
2
[0029] In O中の SnO固溶量が 2. 3質量%以上、好ましくは 2. 4質量%以上だと、従来
2 3 2
の湿式合成した ITO粉末と比較して焼結性が高ぐこの結果、密度が大きな焼結体 を得ることができるという効果を奏する。
[0030] なお、上述した特許文献 10では、酸化インジウムの結晶格子内におけるインジウム 錫 酸ィ匕物固溶体相の含有量を少なくとも 90容量%と規定している力 ここでは酸 ィ匕インジウムの結晶格子内におけるインジウム 錫 酸ィ匕物固溶体相の含有量を問 題にしているのではなぐ酸化インジウム中に固溶する酸化錫の量に着目したもので ある。
[0031] 本発明の ITO粉末は、このように In O中の SnO固溶量が高水準なので、焼結性
2 3 2
が高ぐ比較的容易に高密度の焼結体が得られ、この結果、ライフの長いターゲット を得ることができる。
[0032] なお、本発明の ITO粉末中の錫含有量は SnO換算で 2. 3— 45質量%である。 S ηθ固溶量が 2. 3質量%以上であるから、錫含有量は最低でも SnO換算で 2. 3質
2 2 量%であり、一方、 45質量%を超える場合には、例えば、スパッタリングターゲットし て薄膜を形成した際に SnOが析出して導電性を阻害するから、共に好ましくない。
2
[0033] 本発明の ITO粉末の製造方法は上述したものを得ることができれば特に限定され ないが、乾式合成を行うことにより、比較的容易に且つ低コストで本発明の ITO粉末 を得ることができる。すなわち、 In— Sn合金の液流、液滴又は粉末、又は ITO粉末を 、酸化雰囲気可能な熱源、例えば、アセチレン炎又は DCプラズマ炎中に供給し、生 成した ITO微粒子粉体を回収することにより、 ITO粉末を得ることができる。ここで、 I n— Sn合金の液流又は液滴は、合金溶湯カゝら連続的に又は断続的に滴下することに より得ることができ、 In— Sn合金の粉末は、例えばアトマイズ法により得ることができる 。また、各種製造方法により製造された ITO粉末、又は焼結された ITO焼結体を粉 砕した ITO粉末を原料とすることができる。さらに、製造された ITO微粉末の回収は、 バグフィルターや電気集塵機により乾式回収してもよいが、 ITO微粉末に水を噴霧し て捕獲し、サイクロンによる気液分離によりスラリーとして回収する湿式回収を採用し てもよい。
[0034] ここで、乾式回収するにしても、湿式回収するにしても、上述した特許文献 10に記 載されるようなマッハ 1以上の高速のガス流を用いての噴射冷却を行う必要はなぐ 生成した微粒子の流体による捕獲後の最大速度は、例えば、 150mZsec以下、好 ましくは lOOmZsec以下程度で十分である。また、この程度の捕獲速度による急冷 により、 In O中の SnO固溶量が従来の湿式合成法と比較して大きくなり、焼結性が
2 3 2
向上した ITO粉末とすることができる。また、間化合物 In Sn O が含有される ITO
4 3 12
粉末を原料としても、間化合物 In Sn O を含有せず、 SnO固溶量が 2. 3質量%
4 3 12 2
以上、好ましくは 2. 4質量%以上の ITO粉末を得ることができる。
[0035] 但し、後述する実施例の結果より、このような SnO固溶量は、酸化雰囲気可能な
2
熱源中の酸素濃度や冷却条件等により変化し、また、湿式回収した ITO粉末の方が
、乾式回収のものより高くなる傾向にあることがわ力つた。
[0036] 本発明の ITO粉末は、乾式又は湿式で成形し、焼結することにより、焼結体を得る ことができる。この場合、焼結性が著しく高いので、高密度の焼結体を得ることができ 、或 、は成形体の密度をそれほど高めなくても高密度の焼結体を得ることができる。
[0037] なお、本発明の ITO粉末の粒径或いは粒度分布は特に制限されな ヽが、高密度 の焼結体を得るためには、比表面積 (BET)が 1一 15m2Zg、特に、 3— 10m2Zgの ものが好ましい。
[0038] ここで、本発明の ITO粉末を製造する方法を説明する。
[0039] 本発明の ITO粉末は、例えば、インジウム 錫合金を液流、液滴又は粉末として、 又は ITO粉末を、酸化雰囲気可能な熱源中に供給し、生成した微粒子を流体により 捕獲して回収することにより得ることができる。
[0040] かかる製造方法では、 In - Sn合金を液流、液滴又は粉末として、又は ITO粉末を、 酸化雰囲気可能な熱源中に供給する。すなわち、 In— Sn合金の溶湯溜などから連 続的に液流として若しくは液滴として滴下してもよぐ又はアトマイズ粉末を形成して これを供給するようにしてもよく、又は ITO粉末を供給するようにしてもょ 、。
[0041] また、酸化雰囲気可能な熱源としては、例えば、アセチレン炎、 DCプラズマ炎など を挙げることができる。熱源の温度は、インジウム 錫合金又は ITO粉末が溶融し、十 分に酸ィヒ可能な温度であればよぐ特に制限されない。なお、アセチレン炎の場合に は、数千 °C以上、 DCプラズマ炎の場合には、数万 °C以上であるといわれている。こ のようなアセチレン炎又は DCプラズマ炎に原料を液流、液滴又は粉末として供給す ると、生成物は、そのまま又は酸ィ匕物として気体流と共に得られる。
[0042] ここで、得られた生成物は、流体により捕獲する。すなわち、気体流と共にバグフィ ルター等で微粒子を回収する、乾式回収をするようにしてもよい。この場合、熱源中 で生成された ITO粉末は気体流により急冷され、微粒子として回収される。
[0043] また、霧状の液状流体を噴射して捕獲するようにしてもよ!ヽ。すなわち、アセチレン 炎や DCプラズマ炎の噴流と共に流れる生成物に霧状の液状流体、好ましくは霧状 の水を噴霧する。これにより、生成物は急冷されて微粒子となり、噴霧された液状流 体のスラリーとなる。ここで、霧状の液状流体の供給は、得られる生成物を捕獲して冷 却できるように行えばよぐ特に限定されない。例えば、水を用いる場合には、常温の 水、好ましくは、常温の純水を用いればよいが、冷却水を用いてもよい。噴霧された 液状流体に捕獲された微粒子を含む液状流体を気液分離し、微粒子をスラリーとし て回収する。ここで、スラリーの回収方法は特に限定されないが、好ましくは、サイクロ ンを用いて行うことができる。
[0044] このような液状流体を用いた湿式回収を用いると、微粒子の ITO粉末の回収が乾 式回収より比較的容易であり、また、乾式回収と冷却状態が異なるため力 乾式回収 したものより Sn固溶量が増大する。
[0045] 何れにしても、このような生成物を流体により微粒子として捕獲する場合、捕獲する 際の最大速度は、例えば、 150mZsec以下、好ましくは lOOmZsec以下程度であ る。
[0046] このような製造方法を用いると、原料として In— Sn合金又は ITO粉末を用いることに より、酸化インジウム 酸ィ匕錫 (ITO)粉末を製造することができる。かかる ITO粉末は 、 ITOスパッタリングターゲットの材料として用いることができる。力かる ITOスパッタリ ングターゲットの材料としては、錫含有量が SnO換算で 2. 3— 45質量%であるのが
2
好ましい。
[0047] 以下、本発明方法を実施する微粒子の製造装置の一例を図 1を参照しながら説明 する。
[0048] この装置は、酸ィ匕雰囲気可能な熱源であるアセチレン炎又は DCプラズマ炎力 な る火炎 1中に供給された原料 2を液流、液滴又は粉末として供給することにより得られ る生成物 3を気体流体と共に導入する導入口 10と、導入された微粒子に対して霧状 の液状流体を噴射する流体噴射手段 20と、液状流体で捕獲された微粒子を気液分 離して前記微粒子のスラリーを得る気液分離手段であるサイクロン 30と、液状流体で 捕獲できなカゝつた微粒子を含む雰囲気流体の一部を流体滴噴射位置まで戻して循 環させる循環手段 40とを具備する。
[0049] ここで、導入口 10は、生成物を含む気体流を導入できるものであれば特に限定さ れないが、気体流を吸引するようにしてもよい。
[0050] 流体噴射手段 20は、導入口 10が設けられた導入管 11の下流側に設けられて流 体、例えば、水を噴射する複数の噴射ノズル 21と、噴射ノズル 21へ流体を導入する ためのポンプ 22及び流体を湛える流体タンク 23とを有する。噴射ノズル 21からの流 体の噴射の方向は特に限定されないが、導入口 10から導入される気体流の流れ方 向に向カゝつて合流する方向に噴射するのがよい。導入口 10から導入された気体流 に含有される生成物 3は、噴霧された流体、例えば、水により冷却され、微粒子として 捕獲される。なお、導入管 11の噴射ノズル 21の下流側には、流路を絞ったベンチュ リ一部 12を設けて気液混合物の流速の低下を防止して 、るが、ベンチユリ一部 12は 必ずしも設ける必要はない。また、噴射ノズル 21及びポンプ 22は、必ずしも設ける必 要はなぐ気体流の流れによる吸引力により液体を吸引して噴射するようにしてもよい
[0051] 導入口 10が設けられた導入管 11は、気液分離手段であるサイクロン 30の導入口 3 1に連通している。サイクロン 30の導入口 31から導入された気液混合物は、サイクロ ン本体 32の内壁に沿って周回する渦流 33となって気液分離され、液体成分、すな わち、微粒子を含むスラリーが下部に落下し、気体成分は排気口 34から排出される ようになっている。
[0052] この装置では、排気口 34に循環手段 40が設けられて 、る。すなわち、排気口 34に は、導入管 11の導入口 10近傍に連通する循環パイプ 41が設けられ、循環パイプ 4 1の途中にブロア 42が介装されており、これらが循環手段 40を構成している。この循 環手段 40により、捕獲しきれなカゝつた粉末を噴射ノズル 21の上流側に戻し、捕獲効 率を向上させている。
[0053] また、サイクロン 30で気液分離された液体成分は水排出口 36から排出され、流体 タンク 23に湛えられる。なお、この流体タンク 23に湛えられたスラリーの上澄みの水 が循環手段 40により循環されているので、徐々に微粒子成分の濃度の濃いスラリー が得られる。なお、上澄みの水を循環手段 40により循環させるためには、流体タンク 23の中に微粒子成分を濾過するフィルターを設けてもよぐまた、アルカリ溶液により 中和して微粒子成分を沈降分離する沈降分離槽を流体タンク 23に併設してもよい。
[0054] サイクロン 30からの排気の大部分は排気口 34から循環ノィプ 41に循環されるが、 排気の一部、例えば、十分の一程度は第 2の排気口 35から排気されるようになって いる。
[0055] また、この装置では、第 2の排気口 35には、第 2の気液分離手段である第 2のサイク ロン 50が排気パイプ 43を介して接続されている。第 2のサイクロン 50は、基本的には サイクロン 30と同一の構造を有して気液分離機能を有する。すなわち、排気パイプ 4 3が接続される導入口 51から導入された気液混合物は、サイクロン本体 52の内壁に 沿って周回する渦流 53となって気液分離され、液体成分、すなわち、微粒子を含む スラリーは下部に落下し、水排出口 54から排出され、流体タンク 61に溜まり、気体成 分は排気口 55から排出されるようになっている。さらに詳言すると、排気ノイブ 43の 途中には流路を絞ったベンチユリ一部 44が設けられており、このベンチユリ一部 44と 、流体タンク 61とを連通する水循環パイプ 62が設けられている。これにより、ベンチュ リー部 44の高速の気体の流れにより、流体タンク 61中の水が吸引されてベンチユリ 一部 44内に噴射され、気体中に残存する微粒子を液体中に捕獲するようにして ヽる 。一方、排気口 55には排気パイプ 71が連結され、排気ノイブ 71には第 2のブロア 7 2が設けられ、当該第 2のブロア 72を介して排気口 55からの気体力排気されるように なっている。なお、水タンク 61の水を排気パイプ 43内に噴霧するには、上述したサイ クロン 30のように、ポンプと噴霧ノズルを用いて行ってもよい。また、流体タンク 61に は、上述したように、フィルターを設けてもよいし、中和して微粒子を分離する沈降分 離槽を設けてもよい。さらに、排気口 55からの排気の一部を排気パイプ 43のベンチ ユリ一部 44の上流側に循環させるようにして、さらに捕獲効率を高めてもよい。
[0056] なお、サイクロン 30のみで微粒子の捕獲効率が十分な場合には、第 2のサイクロン 50は、必ずしも設ける必要はなぐ又は、さらに捕獲効率を高めたい場合には、さら に複数のサイクロンを連結してもよ 、。
[0057] 以上説明した本発明の ITO粉末は、スパッタリングターゲットの原料に用いて好適 である。
[0058] ここで、本発明の ITO粉末を用いたスパッタリングターゲットの製造方法の一例を示 す。
[0059] まず、原料となる ITO粉末を、従来から公知の各種湿式法又は乾式法を用いて成 形し、焼成する。
[0060] 乾式法としては、コールドプレス(Cold Press)法やホットプレス(Hot Press)法 等を挙げることができる。コールドプレス法では、 ITO粉を成形型に充填して成形体 を作製し、大気雰囲気下または酸素雰囲気下で焼成 ·焼結させる。ホットプレス法で は、 ITO粉を成形型内で直接焼結させる。
[0061] 湿式法としては、例えば、濾過成形法 (特開平 11—286002号公報参照)を用いる のが好ましい。この濾過成形法は、セラミックス原料スラリー力 水分を減圧排水して 成形体を得るための非水溶性材料力もなる濾過式成形型であって、 1個以上の水抜 き孔を有する成形用下型と、この成形用下型の上に載置した通水性を有するフィル ターと、このフィルターをシールするためのシール材を介して上面側力 挟持する成 形用型枠からなり、前記成形用下型、成形用型枠、シール材、およびフィルターが各 々分解できるように組立てられており、該フィルタ一面側からのみスラリー中の水分を 減圧排水する濾過式成形型を用い、混合粉、イオン交換水と有機添加剤からなるス ラリーを調製し、このスラリーを濾過式成形型に注入し、該フィルタ一面側からのみス ラリー中の水分を減圧排水して成形体を製作し、得られたセラミックス成形体を乾燥 脱脂後、焼成する。
[0062] 各方法において、焼成温度は、例えば、 ΙΤΟターゲットの場合には、 1300— 1600
°Cが好ましぐさらに好ましくは、 1450— 1600°Cである。その後、所定寸法に成形' 加工のための機械力卩ェを施しターゲットとする。
[0063] 一般的には、成形後、厚さ調整のために表面を研削し、さらに、表面を平滑にする ために、何段階かの研磨を施す力 所定の表面処理を施して、マイクロクラックを除 去するようにするのが好ま 、。
実施例
[0064] 以下、本発明を実施例に基づいて説明する力 これに限定されるものではない。
[0065] (実施例 1)
In— Sn合金(Sn9. 6wt%)のアトマイズ粉末(平均粒径 45 μ m)を、アセチレン炎 に導入して ITO (In O : SnO = 90 : 10wt%)粉末を乾式合成し、これをバグフィル
2 3 2
ターにより乾式回収し、実施例 1の ITO粉末とした。
[0066] (実施例 2)
実施例 1と同様にしてアセチレン炎より乾式合成した ITO粉末を、スプレー水により 湿式回収し、これを実施例 2の ITO粉末とした。
[0067] (比較例 1) 湿式合成された酸化インジウム粉末を 1000°Cで仮焼した酸化インジウム粉末 90質 量%と、同様に湿式合成された酸化錫を 1000°Cで仮焼した酸化錫粉末 10質量%と を乳鉢で混合したものを比較例 1とし、標準品 1とした。
[0068] (比較例 2)
共沈法により湿式合成された ITO粉末を比較例 2の ITO粉末とした。
[0069] 共沈法による湿式合成の手順は以下の通りである。すなわち、まず、 In (4N) 20g を硝酸 (試薬特級:濃度 60— 61%) 133ccに常温にて溶解し (pH=— 1. 5)、一方、 Sn(4N) 2. 12gを塩酸 (試薬特級:濃度 35— 36%) lOOccに常温にて溶解し (pH =-1. 9)、両者を混合して混酸溶液とした。このとき、析出物はなぐ pHは— 1. 5で あった。次いで、この混酸に 25%アンモニア水(試薬特級)を混合して中和して pH6 . 5としたところ、白い沈殿物を析出した。数時間後、上水を捨てて純水 2リットル (L) にて 3回洗浄した後、 80°Cにて乾燥させた後、 600°Cで 3時間培焼、脱水反応させ、 湿式合成 ITO粉末を得た。
[0070] (比較例 3)
湿式合成された酸化インジウム粉末と酸化錫粉末との混合物 (酸化錫 10wt%)の 粉末を用いて 1550°C以上で焼結した焼結体を粉砕したものを比較例 3の ITO粉末 とした。
[0071] (試験例 1)
各実施例 1, 2及び各比較例 1一 3の ITO粉末について、 SnO固溶量を求めた。
2
手順は以下の通りである。なお、試験の実施に先駆けて、実施例 1, 2及び比較例 2 , 3の ITO粉末については、 1000°C X 3時間、大気中で仮焼して、微小粒子として 析出している SnOを成長させて SnOとして検出され易いようにした。
2 2
1.まず、誘導結合高周波プラズマ分光分析 (ICP分光分析)した。この結果より、 In、 Sn以外は全て酸素 Oであるとし、その Oの量は欠損して 、る可能性があると仮定して 、 Inと Snとの比を求め、この In及び Snの全てが In O
2 3、 SnOになったとしたときの重
2
量比を算出した。
2.各実施例 1, 2及び各比較例 1一 3の ITO粉末について、粉末 X線回折 (XRD : ( 株)マックサイエンス社製、 MXP18II)による分析を行い、 SnO析出量を求めた。す なわち、回折結果から、間化合物 (In Sn O )の有無を確認し、間化合物が検出さ
4 3 12
れない場合には、比較例 1の標準品 1として各試料の In O (222)積分回折強度及
2 3
び SnO (110)積分回折強度の比力 SnOの析出量 (質量%)を求めた。すなわち
2 2
SnOの析出量 (質量%)は、 X線回折の積分回折強度比から求められる SnOの
2 2 含有量であり、 In Oに固溶していない SnO力 l000°C程度の仮焼により成長して X
2 3 2
線回折の SnO (110)のピークとなると仮定している。 X線回折の結果を図 2 図 6に
2
示す。
3. 1及び 2の結果から、 ICP分析で検出された力 X線回折では SnO (110)とは検
2
出されない SnOを、 In O中の SnO固溶量とした。
2 2 3 2
[0072] これらの結果を表 1に示す。
[0073] この結果、実施例 1, 2の ITO粉末では、 SnO固溶量が 2. 35wt% 2. 42wt%と
2
、湿式合成した ITO粉末である比較例 2の 2. 26wt%より多いことがわかった。なお、 一度焼結体としたものを粉砕した比較例 3の ITO粉末では間化合物が検出され、 Sn O固溶量は測定不能であった。
2
[0074] [表 1]
Figure imgf000015_0001
(実施例 3)
In— Sn合金(Sn9. 6wt%)のアトマイズ粉末(平均粒径 45 μ m)を、 DCプラズマ炎 に導入して ITO (In O: SnO = 90 : 10wt%)粉末を乾式合成し、これをスプレー水
2 3 2
により湿式回収し、実施例 3の ITO粉末とした。 [0076] (比較例 4)
比較例 1と同様に、湿式合成された酸化インジウム粉末を 1000°Cで仮焼した酸ィ匕 インジウム粉末 90質量%と、同様に湿式合成された酸化錫を 1000°Cで仮焼した酸 化錫粉末 10質量%とを乳鉢で混合したものを比較例 4とし、標準品 2とした。
[0077] (試験例 2)
実施例 3及び各比較例 4の ITO粉末について、試験例 1と同様に SnO固溶量を求
2 めた。なお、粉末 X線回折 (XRD)はスぺタトリス((株) )社製の X, PertPRO MPD を用いて分析した。これらの結果を表 2に示す。また、 X線回折の結果を図 7及び図 8 に示す。
[0078] この結果、実施例 3の ITO粉末では、 SnO固溶量が 3. 00wt%と、 DCプラズマ炎
2
の代わりにアセチレン炎を用いた以外は同等の実施例 2の SnO固溶量より著しく大
2
きいことがわかった。
[0079] [表 2]
Figure imgf000016_0001
[0080] (製造例 1)
実施例 2と同様にして合成し、 1100°Cで仮焼した ITO粉末 (比表面積 2. 97m g )をドライボールミルで解砕後、コールドプレスした。この成形体の脱脂後の相対密度 は、理論密度 7. 15の 53. 5%であった。
[0081] これを 1600°Cで焼成し、焼結体であるスパッタリングターゲットを得た。この相対密 度は 99. 8%であった。
[0082] (製造例 2)
実施例 1と同様にして合成し、 1000°Cで仮焼した ITO粉末をドライボールミルで解 砕し (このときの比表面積 7. 7m2Zg)、これをさらにウエットボールミルにより解砕して スラリーとし、このスラリーを濾過式成形型に注入し、フィルタ一面側カゝらのみスラリー 中の水分を減圧排水して成形体を製作し、得られたセラミックス成形体を乾燥脱脂し た。この成形体の脱脂後の相対密度は、理論密度 7. 15の 64. 9%であった。
[0083] これを 1600°Cで焼成し、焼結体であるスパッタリングターゲットを得た。この相対密 度は 99. 9%であった。
[0084] (製造例 3)
実施例 2と同様にして合成し、 1050°Cで仮焼した ITO粉末 (比表面積 4. 02m g
)を、ドライボールミル及びウエットボールミルにより解砕してスラリーとし、このスラリー を濾過式成形型に注入し、フィルタ一面側カゝらのみスラリー中の水分を減圧排水して 成形体を製作し、得られたセラミックス成形体を乾燥脱脂した。この成形体の脱脂後 の相対密度は、理論密度 7. 15の 65. 0%であった。
[0085] これを 1600°Cで焼成し、焼結体であるスパッタリングターゲットを得た。この相対密 度は 99. 8%であった。
(製造例 4)
実施例 3と同様に合成し、 1100°Cで仮焼した ITO粉末 (比表面積 2. 5m2Zg)を、 ドライボールミル及びウエットボールミルにより解砕してスラリーとし、このスラリーを濾 過式成形型に注入し、フィルタ一面側カゝらのみスラリー中の水分を減圧排水して成 形体を製作し、得られたセラミックス成形体を乾燥脱脂した。この成形体の脱脂後の 相対密度は、理論密度 7. 15の 64. 9%であった。
[0086] これを 1600°Cで焼成し、焼結体であるスパッタリングターゲットを得た。この相対密 度は 99. 8%であった。
[0087] (比較製造例 1)
比較例 1と同様に湿式合成された酸化インジウム粉末を 1095°Cで仮焼した酸化ィ ンジゥム粉末 90質量%と、同様に湿式合成された酸化錫を 1050°Cで仮焼した酸ィ匕 錫粉末 10質量%とをドライボールミルで混合、解砕し (このときの比表面積は 4. 99m 2/g)、これをコールドプレスした。脱脂後の相対密度は、理論密度 7. 15の 59. 5% であった。
[0088] これを 1600°Cで焼成し、焼結体であるスパッタリングターゲットを得た。この相対密 度は 99. 3%であった。
[0089] (比較製造例 2)
比較例 1と同様に湿式合成された酸化インジウム粉末を 1095°Cで仮焼した酸化ィ ンジゥム粉末 90質量%と、同様に湿式合成された酸化錫を 1050°Cで仮焼した酸化 錫粉末 10質量%との混合物をドライボールミルで混合、解砕し (このときの比表面積 は 4. 99m2/g)、これをさらにウエットボールミルで混合、解砕してスラリーとし、この スラリーを濾過式成形型に注入し、フィルタ一面側からのみスラリー中の水分を減圧 排水して成形体を製作し、得られたセラミックス成形体を乾燥脱脂した。この成形体 の脱脂後の相対密度は、理論密度 7. 15の 67. 7%であった。
[0090] これを 1600°Cで焼成し、焼結体であるスパッタリングターゲットを得た。この相対密 度は 99. 9%であった。
[0091] (試験例 3)
各製造例及び各比較製造例において、焼結性について比較した。この結果を ¾a に示す。なお、焼結性は成形体の相対密度に対する焼結体の相対密度の倍率を示 す。
[0092] この結果、本発明の ITO粉末は焼結性が高ぐ高密度の焼結体が得られるもので あり、また、成形体の密度を大きくしなくても高密度の焼結体が得られることがわかつ た。
[0093] [表 3]
Figure imgf000018_0001
[0094] (試験例 4)
製造例 2— 4及び比較製造例 2のスパッタリングターゲットを用いてアーキング特性 を測定した。すなわち、以下のような条件にて DCマグネトロンスパッタによって連続ス パッタリングし、 50Countsライフを測定した。ここで、 50Countsライフは、各ターゲッ ト使用開始時力も投入電力量 lOWhZcm2まで初期アーク回数を除き、累積ァーキ ング回数が 50回となったときの投入電力量 (WhZcm2)をいう。なお、アーキングの 検出は、ランドマークテクノロジ一社製のアーク検出装置(MAM Genesis)により行 つた。結果は下記表 4及び図 9に示す。
[0095] この結果、本発明の ITO粉末を用いたスパッタリングターゲットは、アーキング特性 が優れており、ターゲットライフが長いことがわ力つた。また、 DCプラズマ炎による IT O粉末を用いた製造例 4のターゲットは、アセチレン炎による ITO粉末を用いた製造 例 2及び 3と比較して、ターゲットライフがさらに長いことが確認された。
[0096] (スパッタリング条件)
ターゲット寸法 :直径 6inch、厚さ 6mm
スパッタ方式 : DCマグネトロンスパッタ
気装置 :ロータリーポンプ +クライオポンプ
到達真空度 : 3. 0 X 10— 7[Torr]
Ar圧力 :3. 0 X 10— 3[Torr]
酸素分圧 : 3. 0 X 10— 5[Torr]
スパッタ電力 :300W (電力密度 1. 6WZcm2)
[0097] [表 4]
5 0 C o u n t sライフ
(Watt · hour/ c m 2 )
製造例 2 8 7
製造例 3 8 7
製造例 4 9 2
比較製造例 2 7 5

Claims

請求の範囲
[1] In— Sn酸化物を主成分とする酸化インジウム一酸化錫粉末であって、 X線回折で間 化合物 In Sn O が検出されず、 In O (222)積分回折強度及び SnO (110)積分
4 3 12 2 3 2 回折強度の比及び ICP分析による In、 Snの元素濃度力も求められる In O及び Sn
2 3
Oの比と力 算出される、 In O中の SnO固溶量が 2. 3質量%以上であることを特
2 2 3 2
徴とする酸化インジウム一酸化錫粉末。
[2] 請求の範囲 1において、 In O中の SnO固溶量が 2. 4質量%以上であることを特徴
2 3 2
とする酸化インジウム一酸化錫粉末。
[3] 請求の範囲 1又は 2において、錫含有量が SnO換算で 2. 3— 45質量%であること
2
を特徴とする酸化インジウム一酸化錫粉末。
[4] 請求の範囲 1一 3の何れかにおいて、インジウム 錫合金を液流、液滴又は粉末とし て、又は ITO粉末を、酸化雰囲気可能な熱源中に供給し、生成した微粒子を流体に より捕獲して回収することにより得たものであることを特徴とする酸化インジウム 酸ィ匕 錫粉末。
[5] 請求の範囲 4において、前記流体が霧状の液状流体であることを特徴とする酸化ィ ンジゥム一酸化錫粉末。
[6] 請求の範囲 4又は 5において、前記生成した微粒子の前記流体により捕獲する際の 最大速度が、 150mZsec以下であることを特徴とする酸化インジウム 酸ィ匕錫粉末。
[7] 請求の範囲 1一 6の何れかの酸化インジウム一酸化錫粉末を焼結してなることを特徴 とするスパッタリングターゲット。
PCT/JP2004/019353 2003-12-25 2004-12-24 酸化インジウム一酸化錫粉末及びそれを用いたスパッタリングターゲット WO2005063628A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/584,709 US7601661B2 (en) 2003-12-25 2004-12-24 Indium oxide-tin oxide powder and sputtering target using the same
JP2005516645A JP4721901B2 (ja) 2003-12-25 2004-12-24 酸化インジウム−酸化錫粉末及びそれを用いたスパッタリングターゲット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003431585 2003-12-25
JP2003-431585 2003-12-25

Publications (1)

Publication Number Publication Date
WO2005063628A1 true WO2005063628A1 (ja) 2005-07-14

Family

ID=34736440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019353 WO2005063628A1 (ja) 2003-12-25 2004-12-24 酸化インジウム一酸化錫粉末及びそれを用いたスパッタリングターゲット

Country Status (6)

Country Link
US (1) US7601661B2 (ja)
JP (1) JP4721901B2 (ja)
KR (1) KR100960876B1 (ja)
CN (1) CN100513316C (ja)
TW (1) TW200523226A (ja)
WO (1) WO2005063628A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007008752A (ja) * 2005-06-29 2007-01-18 Mitsui Mining & Smelting Co Ltd 酸化インジウム−酸化錫粉末及びそれを用いたスパッタリングターゲット並びに酸化インジウム−酸化錫粉末の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101080527B1 (ko) * 2005-09-20 2011-11-04 이데미쓰 고산 가부시키가이샤 스퍼터링 타겟, 투명 도전막 및 투명 전극
JP4960244B2 (ja) * 2005-09-22 2012-06-27 出光興産株式会社 酸化物材料、及びスパッタリングターゲット
CN102367568B (zh) * 2011-10-20 2014-04-23 宁波江丰电子材料有限公司 高纯钽靶材制备方法
CA2787584A1 (en) 2012-08-22 2014-02-22 Hy-Power Nano Inc. Method for continuous preparation of indium-tin coprecipitates and indium-tin-oxide nanopowders with substantially homogeneous indium/tin composition, controllable shape and particle size
CN104668569A (zh) * 2015-02-13 2015-06-03 江永斌 一种高纯超细金属粉末的冷却方法
CN111116194B (zh) * 2019-12-19 2022-03-25 广西晶联光电材料有限责任公司 一种超高密度细晶ito靶材的生产方法
CN112479682A (zh) * 2020-12-15 2021-03-12 株洲火炬安泰新材料有限公司 一种环保高效ito靶材的制备方法
CN116496081B (zh) * 2023-04-17 2024-10-15 湘潭大学 一种铟锡氧三元化合物靶材及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246141A (ja) * 1995-03-03 1996-09-24 Sumitomo Metal Mining Co Ltd 酸化物焼結体
JPH08246140A (ja) * 1995-03-03 1996-09-24 Sumitomo Metal Mining Co Ltd 酸化物焼結体
JPH08246142A (ja) * 1995-03-03 1996-09-24 Sumitomo Metal Mining Co Ltd 酸化物焼結体

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221751A (ja) * 1985-07-22 1987-01-30 昭和電工株式会社 In↓2O↓3−SnO↓2焼結体及びその製造法
JPS63199862A (ja) * 1987-02-17 1988-08-18 Asahi Glass Co Ltd 錫を含む物理蒸着用酸化インジウム焼結体
US5071800A (en) * 1989-02-28 1991-12-10 Tosoh Corporation Oxide powder, sintered body, process for preparation thereof and targe composed thereof
JP3289335B2 (ja) 1991-08-30 2002-06-04 東ソー株式会社 酸化インジウム粉末及びito焼結体の製造方法
JP3324164B2 (ja) 1992-12-25 2002-09-17 東ソー株式会社 酸化インジウム粉末及びその製造方法並びにito焼結体の製造方法
JPH0826141A (ja) * 1994-07-19 1996-01-30 Mitsubishi Motors Corp リッドの開閉ハンドル
ATE204029T1 (de) * 1995-08-18 2001-08-15 Heraeus Gmbh W C Target für die kathodenzerstäubung und verfahren zur herstellung eines solchen targets
US5866493A (en) * 1995-11-30 1999-02-02 Korea Academy Of Industrial Technology Method of manufacturing a sintered body of indium tin oxide
JP3608316B2 (ja) 1995-12-06 2005-01-12 住友化学株式会社 酸化インジウム−酸化錫粉末及びその製造方法
JP3862385B2 (ja) * 1996-11-08 2006-12-27 Dowaホールディングス株式会社 酸化スズ含有酸化インジウム粉及び焼結体の製造方法
DE19721649C2 (de) * 1997-05-23 2003-02-20 Heraeus Gmbh W C Verfahren zur Herstellung eines Mischkristallpulvers mit geringem spezifischen elektrischen Widerstand
JP2972996B2 (ja) * 1997-12-02 1999-11-08 三井金属鉱業株式会社 Ito微粉末及びその製造方法
DE19822570C1 (de) * 1998-05-20 1999-07-15 Heraeus Gmbh W C Verfahren zum Herstellen eines Indium-Zinn-Oxid-Formkörpers
US6500225B2 (en) * 1998-12-03 2002-12-31 Sumitomo Chemical Company, Limited Method for producing high density indium-tin-oxide sintered body
JP4253907B2 (ja) 1999-03-31 2009-04-15 住友化学株式会社 酸化インジウム−酸化錫粉末の製造方法
JP2001172018A (ja) * 1999-12-16 2001-06-26 Sumitomo Chem Co Ltd 酸化インジウム−酸化錫粉末の製造方法
JP4559581B2 (ja) 2000-03-22 2010-10-06 富士チタン工業株式会社 スズ含有酸化インジウム微粒子粉体およびその製造方法
JP4841029B2 (ja) * 2000-08-30 2011-12-21 三井金属鉱業株式会社 酸化錫添加酸化インジウム粉末及びその製造方法
JP4060187B2 (ja) * 2001-03-28 2008-03-12 日鉱金属株式会社 酸化インジウム中に錫が固溶したito粉末の製造方法及びitoターゲットの製造方法
WO2003014409A1 (fr) * 2001-08-02 2003-02-20 Idemitsu Kosan Co., Ltd. Cible de pulverisation, film conducteur transparent et leur procede de fabrication
US7115219B2 (en) * 2002-09-11 2006-10-03 Sumitomo Chemical Company, Limited Method of producing Indium Tin Oxide powder
JP2004123403A (ja) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd 結晶性ito分散液の製造方法
DE10311645A1 (de) * 2003-03-14 2004-09-23 Degussa Ag Nanoskaliges Indium-Zinn-Mischoxidpulver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246141A (ja) * 1995-03-03 1996-09-24 Sumitomo Metal Mining Co Ltd 酸化物焼結体
JPH08246140A (ja) * 1995-03-03 1996-09-24 Sumitomo Metal Mining Co Ltd 酸化物焼結体
JPH08246142A (ja) * 1995-03-03 1996-09-24 Sumitomo Metal Mining Co Ltd 酸化物焼結体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007008752A (ja) * 2005-06-29 2007-01-18 Mitsui Mining & Smelting Co Ltd 酸化インジウム−酸化錫粉末及びそれを用いたスパッタリングターゲット並びに酸化インジウム−酸化錫粉末の製造方法

Also Published As

Publication number Publication date
JP4721901B2 (ja) 2011-07-13
TW200523226A (en) 2005-07-16
US7601661B2 (en) 2009-10-13
JPWO2005063628A1 (ja) 2007-07-19
CN1906130A (zh) 2007-01-31
CN100513316C (zh) 2009-07-15
US20070144900A1 (en) 2007-06-28
KR20060109980A (ko) 2006-10-23
KR100960876B1 (ko) 2010-06-04

Similar Documents

Publication Publication Date Title
KR100907735B1 (ko) 미립자의 제조 방법 및 제조 장치
KR100844446B1 (ko) 산화인듐-산화주석 분말 및 그것을 사용한 스퍼터링 타겟및 산화인듐-산화주석 분말의 제조방법
US7575711B2 (en) Apparatus for producing nano-particles of silver
WO2005063628A1 (ja) 酸化インジウム一酸化錫粉末及びそれを用いたスパッタリングターゲット
WO2015015795A1 (ja) SiOX粉末製造法及びSiOX粉末製造装置
CN101665263A (zh) 一种处理氧化锌矿或氧化锌二次资源制取超细活性氧化锌的方法
WO2002079092A1 (fr) Methode de production de poudre d'ito contenant de l'oxyde d'indium et de l'etain dissous, et methode de production de cible d'ito
EP1441835B1 (en) Apparatus and method for producing pigment nano-particles
CN110272181A (zh) 一种喷雾干燥塔尾粉的回收方法
JP3803757B2 (ja) 超微粒子作製装置
CN102247949B (zh) 一种超细粉选粉机
KR100529054B1 (ko) 고온 다습한 캐리어 가스에 의하여 운반되는미세분체로부터 수분을 제거하는 장치 및 방법
KR100734608B1 (ko) 고온 다습한 캐리어 가스에 의해 이송되는 분체의 제조장치
CN1673088A (zh) 纳米氧化铝粉的电弧喷涂反应合成系统及其制备方法
JPH10324519A (ja) 易焼結性高純度アルミナ粉末の製造方法
JP2018016531A (ja) 複合金属水酸化物粒子の高効率製造方法
RU2397140C2 (ru) Устройство для улавливания нанопорошков
CN109231197A (zh) 一种低杂质及低层数氧化石墨烯制备系统
JPH0255222A (ja) 微粒状の酸化ビスマスの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005516645

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007144900

Country of ref document: US

Ref document number: 10584709

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067013341

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200480041061.7

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067013341

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10584709

Country of ref document: US