WO2005059927A1 - 透明導電膜の形成方法及び透明電極 - Google Patents

透明導電膜の形成方法及び透明電極 Download PDF

Info

Publication number
WO2005059927A1
WO2005059927A1 PCT/JP2004/018948 JP2004018948W WO2005059927A1 WO 2005059927 A1 WO2005059927 A1 WO 2005059927A1 JP 2004018948 W JP2004018948 W JP 2004018948W WO 2005059927 A1 WO2005059927 A1 WO 2005059927A1
Authority
WO
WIPO (PCT)
Prior art keywords
atmosphere
conductive film
transparent conductive
fine particles
gas
Prior art date
Application number
PCT/JP2004/018948
Other languages
English (en)
French (fr)
Inventor
Sadayuki Ukishima
Hideo Takei
Satoru Ishibashi
Tsutomu Atsuki
Masaaki Oda
Hiroshi Yamaguchi
Original Assignee
Ulvac, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac, Inc. filed Critical Ulvac, Inc.
Priority to KR1020057011809A priority Critical patent/KR101157854B1/ko
Priority to EP04807305.0A priority patent/EP1696443B1/en
Priority to US10/541,039 priority patent/US20060251818A1/en
Publication of WO2005059927A1 publication Critical patent/WO2005059927A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Definitions

  • the present invention relates to a method for forming a transparent conductive film and a transparent electrode, and more particularly to a method and a method for forming a transparent conductive film that can be used in the field of electric and electronic industries using metal fine particles or alloy fine particles.
  • the present invention relates to a transparent electrode made of the transparent conductive film.
  • the electrodes of a flat panel display represented by a liquid crystal display include IT
  • a transparent conductive film made of ATO or the like is used.
  • the manufacturing method includes an evaporation method, an plating method, a sputtering method, and the like, and is formed by attaching a metal oxide film on a glass substrate. More generally, an ITO film which is an oxide film is formed by a sputtering method! / Is the current situation.
  • a dispersion of tin-doped indium oxide powder is prepared, and this dispersion is applied on a substrate and dried.
  • a method of obtaining a transparent conductive film by firing is known (for example, see Patent Document 1).
  • an oxide film is formed directly on a transparent substrate such as a glass substrate, and the obtained transparent conductive film is used for a flat panel display represented by a liquid crystal or a plasma display.
  • display manufacturing on acrylic substrates which is becoming mainstream along with the increase in size, will cause damage to the substrates due to the film forming technology at such high temperatures as 400 ° C. There is a problem of receiving.
  • the antistatic film there is a technique of using low-resistance transparent oxide particles and ensuring conductivity by contacting the particles.
  • a transparent conductive film is formed on the base material, and then a second layer is applied on the transparent conductive film in order to make the packing more dense.
  • the contact resistance is reduced by increasing the contact resistance, and as a result, the surface resistance is reduced. In this case, there is a problem that the process becomes complicated.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 07-242842 (Claims, Examples)
  • Patent Document 2 JP-A-2003-249131 (Claims)
  • Patent Document 3 JP 2001-176339 A (Claims)
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and it uses a metal fine particle or an alloy fine particle to be fired at a low temperature, has a low resistance, and has a high transmittance. It is an object of the present invention to provide a method for forming an electric film and a transparent electrode comprising the transparent conductive film. Means for solving the problem
  • the method for forming a transparent conductive film of the present invention comprises fine particles of at least one metal selected from indium, tin, antimony, aluminum, and zinc, and two or more metals selected from these metals.
  • a dispersion containing at least one kind of fine particles of an alloy or a mixture of these fine particles is applied to a substrate, and then fired in an atmosphere in which the metal or alloy does not oxidize, and then fired in an oxidizing atmosphere. And forming a transparent conductive film.
  • This fine particle mixture is a mixture of fine metal particles and fine alloy particles.
  • the non-oxidizing atmosphere is an atmosphere selected from a vacuum atmosphere, an inert gas atmosphere, and a reducing atmosphere.
  • firing is further performed in a reducing atmosphere.
  • the inert gas atmosphere is an atmosphere of at least one kind of inert gas selected from a rare gas, carbon dioxide, and nitrogen, and the reducing atmosphere is hydrogen, carbon monoxide, or lower alcohol.
  • the atmosphere is characterized by at least one selected reducing gas.
  • the vacuum atmosphere includes at least one inert gas selected from a rare gas, carbon dioxide, and nitrogen, at least one oxidizing gas selected from oxygen and water vapor, hydrogen, carbon monoxide, and a lower alcohol. At least one selected reducing gas, or a mixture of this inert gas and an oxidizing gas or a reducing gas! / ⁇
  • the oxidizing atmosphere contains oxygen, water vapor, an oxygen-containing gas (eg, air, etc.) or a water vapor-containing gas.
  • an oxygen-containing gas eg, air, etc.
  • the metal fine particles and the alloy fine particles are fine particles formed by adhering an organic compound around the fine particles. Thereby, the dispersibility of each fine particle is improved.
  • the transparent electrode of the present invention also has a transparent conductive film formed by the above method.
  • the firing temperature in the non-oxidizing atmosphere and the oxidizing atmosphere is set between the melting point of the metal fine particles and the alloy fine particles and lower than the softening point of the base material. It is preferable that the temperature is an allowable temperature for heat resistance. This firing temperature is preferably, for example, 30 ° C. or lower. In this temperature range, the substrate is not damaged.
  • the metal fine particles and the alloy fine particles preferably have a particle size of 0.5 nm to 50 n.
  • the thickness is less than 0.5 nm, the substantial surface area of the particles increases, and as a result, the amount of organic substances attached around the particles increases. Become. If it exceeds 50 nm, sedimentation is likely to occur when dispersed in an organic solvent.
  • specific metal fine particles and alloy fine particles are first fired at a low temperature in a non-oxidizing atmosphere, and then fired at a low temperature in an oxidizing atmosphere. This makes it possible to form a transparent conductive film having a low refractive index at a low temperature, and to provide an excellent transparent electrode having the transparent conductive film.
  • metal fine particles will be described as including these alloy fine particles.
  • fine particles of at least one metal of each component metal (indium, tin, antimony, aluminum, and zinc) of the metal oxide for forming a transparent conductive film A dispersion containing fine particles of at least one alloy composed of two or more metals selected from metals or a mixed fine particle of these fine metal particles and alloy fine particles is coated on a substrate to be treated by a known method.
  • firing is performed in an atmosphere in which the metal or alloy does not oxidize, such as a vacuum atmosphere, an inert gas atmosphere, or a reducing atmosphere. Introducing an acidic gas in a vacuum atmosphere has the effect of burning only the attached organic substance without oxidizing the metal or alloy.
  • firing is performed in an oxidizing atmosphere.
  • the base material coated with the dispersion may be dried at a predetermined temperature to remove the dispersion medium and the like. The removal of the dispersion medium may be performed by a firing process.
  • the above two firing processes are performed at a temperature (generally, 400 to 700 ° C.) necessary for firing the metal oxide fine particles of the usual material for forming a transparent conductive film alone.
  • the process is carried out at a low temperature (for example, 300 ° C or lower) to obtain a target transparent conductive film.
  • a low temperature for example, 300 ° C or lower
  • the metal fine particles used in the present invention become a dense film at a lower temperature than that of a metal oxide, a transparent conductive film having low electric resistance can be manufactured at a low temperature, and an oxidizing atmosphere can be produced.
  • an improvement in permeability can be achieved.
  • irradiation with a UV lamp during firing is more effective in reducing time and lowering the temperature.
  • a known method using atmospheric pressure plasma is also effective.
  • the metal oxide for forming a transparent conductive film in the present invention includes, for example, ITO (In-Sn-0) (the range of Sn is 0 Sn ⁇ 20 wt%, preferably 3 ⁇ Sn ⁇ 10 wt%), ATO ( Sn_Sb— OX Sb (Z) fQffl3 ⁇ 40 ⁇ Sb ⁇ 20wt%, preferably 5 AZO (Zn-Al-0) (A1 is 0 ⁇ Al ⁇ 20wt%, preferably 5Al ⁇ 15wt%), IZO (In-Zn- ⁇ ) (Zn is 0 ⁇ Zn 20wt%, preferably Is 5 ⁇ Zn ⁇ 15wt%).
  • ITO In-Sn-0
  • ATO Sn_Sb— OX Sb (Z) fQffl3 ⁇ 40 ⁇ Sb ⁇ 20wt%, preferably 5 AZO (Zn-Al-0) (A1 is 0 ⁇ Al ⁇ 20wt%,
  • the substrate that can be used in the method for forming a transparent conductive film of the present invention is not particularly limited as long as it is a transparent substrate.
  • low-temperature firing such as an acrylic substrate, a polyimide substrate, or a polyethylene terephthalate (PET) film
  • PET polyethylene terephthalate
  • the organic resin material include, in addition to the above, for example, cellulose acetates, polystyrene, polystyrenes, polyethers, polyimide, epoxy resin S, phenoxy resin, polycarbonate, polyvinylidene fluoride, Teflon (registered trademark) and the like. It can also be used.
  • the shape of the substrate is not particularly limited, and may be, for example, a flat plate, a three-dimensional object, a film, or the like.
  • the substrate to be processed is preferably washed with pure water, ultrasonic waves or the like before applying the dispersion.
  • a method for coating the substrate for example, a method such as a spin coating method, a spray method, an ink jet method, an immersion method, a roll coating method, a screen printing method, a contact printing method, or the like can be used. .
  • the coating may be applied once or repeatedly as long as a desired film thickness can be obtained.
  • the coating film is first fired in an atmosphere in which metal fine particles are not oxidized, such as a vacuum atmosphere, an inert atmosphere, and a reducing atmosphere.
  • an atmosphere in which metal fine particles are not oxidized such as a vacuum atmosphere, an inert atmosphere, and a reducing atmosphere.
  • the vacuum state may be simply drawn by a pump, and after the pump is once pumped, an inert gas, a reducing gas, or an oxidizing gas may be introduced. Firing in a vacuum atmosphere can be usually carried out at 10 one 5 ⁇ 10 3 Pa about.
  • the lower alcohol used in this case is a lower T alcohol having a carbon number of! Methyl alcohol, ethyl alcohol, propyl alcohol, butynoleanol, hexyl alcohol and the like.
  • the method for producing the fine metal particles and fine alloy particles used in the present invention is not particularly limited. • For example, even in the case of a gas evaporation method, a wet reduction method or spraying of an organometallic compound to a high-temperature atmosphere is used. The heat reduction method may be used.
  • the surface of the obtained metal fine particles and alloy fine particles is preferably in a metal state, but may be in a state where at least a part thereof is oxidized.
  • the in-gas evaporation method evaporates a metal in a gas atmosphere and in a gas phase in which a vapor of a solvent coexists, condenses the evaporated metal into uniform ultrafine particles, and converts the metal into a solvent.
  • This is a method of dispersing to obtain a dispersion (for example, Japanese Patent No. 2561537).
  • This gas steam By the firing method, ultrafine metal particles having a uniform particle size of 50 nm or less can be produced.
  • the organic solvent may be appropriately selected depending on the type of metal fine particles to be used, and examples thereof include the following. That is, alcohols such as methanol, ethanol, pro-z-nore, iso-propyl ano-lechol, butanol, hexanol, heptanol, otano-no-le, decanol, cyclohexanol, and alcohol such as terbineol, ethylene glycol And glycols such as propylene glycol ', ketones such as acetone, methyl ethyl / leketone, and getyl ketone; esters such as ethyl acetate, butyl acetate, and benzyl acetate; and ethers such as methoxyethanol and ethoxyethanol.
  • alcohols such as methanol, ethanol, pro-z-nore, iso-propyl ano-lechol, butanol, hexanol, h
  • this organic solvent shall include water
  • the organic solvent in which the metal fine particles prepared by the gas evaporation method are dispersed can be used.
  • a nonpolar solvent such as toluene, xylene, benzene, or tetradecane
  • ketones such as ethyl ketone, and alcohols such as methanol, ethanol, propanol and butanol.
  • organic solvents may be used alone or in the form of a mixed solvent.
  • long chain It may be a mineral spirit that is a mixture of lucans.
  • the amount of the solvent to be used may be appropriately set according to the type and use of the metal fine particles to be used, so that application is easy and a desired film thickness can be obtained.
  • the metal fine particle concentration can be adjusted as needed by heating in a vacuum or the like even after the dispersion liquid is manufactured so that the concentration of the gold J fine particles is 1 to 70 wt%.
  • the metal fine particles and alloy fine particles used in the present invention may be fine particles obtained by adhering an organic compound around the fine particles.
  • metal fine particles having a particle size of 50 nm or less are isolated, and at least one selected from alkylamine, carboxylic amide, and amino carboxylate is used as a dispersant. It is dispersed in an organic solvent.
  • the metal fine particles are particles in a state where an organic compound as a dispersant adheres to the periphery thereof, and the use of these fine particles facilitates dispersion.
  • the alkynoleamine of the dispersant may be a primary to tertiary amine, or may be a monoamine, diamine, or triamine.
  • Alkylamines having 4 to 20 carbon atoms in the main chain are preferable, and alkylamines having 8 to 18 carbon atoms in the main chain are more preferable from the viewpoint of stability and handling properties, and ⁇ .
  • the carbon number of the alkylamine is shorter than the carbon number power of the main chain, the amine has too strong basicity and tends to corrode the fine metal particles, which eventually dissolves the fine metal particles.
  • alkylamines include, for example, butylamine, octylamine, decylamine, hexadodecinoleamine, octadecylamine, cocoamine, taroamine, 7k-modified talamine, oleylamine, laurylamine, and stearylamine.
  • Primary amines such as diicococoamine, dihydrogenated tallowamine, and secondary amines such as distearylamine; and dodecinoledimethylamine, didodecylmonomethylamine, tetradecinoresime.
  • Luamine octadecinoledimethylamine, cocodimethinoleamine
  • tertiary amines such as tinoleamine and trioctylamine
  • other diamines such as naphthalenediamine, stearinolepropylenediamine, tactamethylenediamine, and nonandiamine.
  • carboxylic acid amide diaminocarboxylate examples include, for example, stearic acid amide, palmitic acid amide, lauric acid laurate, oleic acid amide, oleic acid diethanolamide, oleic acid laurylamide, and stearanilide And oleylaminoethyl / regricin.
  • the metal fine particles used in the present invention may be those obtained by a chemical reduction method such as a liquid phase reduction method.
  • a raw material for reduction which is a contained organic compound can also be used.
  • the chemical reduction method is a method for preparing a metal fine particle dispersion by a chemical reaction using a reducing agent.
  • the fine particle dispersion can be arbitrarily adjusted to 50 nm or less.
  • This reduction method is performed, for example, as follows. With the dispersant added to the raw material, the raw material is thermally decomposed at a predetermined temperature, or metal fine particles are generated by using a reducing agent such as water or sodium borohydride. Almost all of the generated fine metal particles are recovered in an independent dispersion state. The particle size of the metal fine particles is about 50 nm or less. By replacing the metal fine particle dispersion with the organic solvent as described above, a desired metal fine particle dispersion can be obtained. The obtained dispersion maintains a stable dispersion state even when concentrated by heating in a vacuum.
  • the transparent conductive film formed by the method for forming a transparent conductive film of the present invention as described above includes, for example, a transparent electrode for flat display, a transparent antistatic film, a transparent electromagnetic wave sinored film, a surface heating element, a transparent electrode antenna, It can be used for solar cells, electrodes for electronic paper, transparent electrode gas sensors, etc.
  • fine particles of each of the above metals other than In and Sn and alloy fine particles can be similarly obtained according to the above-mentioned production method.
  • In_Sn alloy fine particles produced by evaporation in gas in Production Example 1 were used as metal fine particles. These particles had an average particle size of lOnm, and were confirmed to be non-oxidized alloy fine particles by X-ray diffraction. Further, the content of Sn was 6 wt% by fluorescent X-ray analysis. ⁇
  • the fine particles were dispersed in an organic solvent (toluene) at a concentration of 10 wt%, and this dispersion was applied on a glass substrate by spin coating. Thereafter, 230 ° in reduced pressure of the coating film 1 X 10- 3 Pa (, was fired under the conditions of LOmin. Then, in an oxidizing atmosphere (air), 230 ° C, was fired for 60min. The resulting The obtained transparent conductive film was sufficiently densified, had a surface resistance of 60 ⁇ / port, showed a transmittance at 550 nm of 92%, and the film thickness at this time was 200 iim. After firing in an oxidizing atmosphere, firing was further performed in a hydrogen gas atmosphere and a carbon monoxide atmosphere. As a result, the surface resistance of the obtained transparent conductive film was further reduced and improved.
  • an organic solvent toluene
  • Example 1 The transparent conductive film obtained in Example 1 was useful as a transparent electrode for a display device.
  • Example 1 Using the metal fine particle dispersion of Example 1, coating was performed on a glass substrate in the same manner as in Example 1. Next, this coating film was baked in the air at 250 ° C. for 60 minutes. The resulting transparent conductive film was insufficiently densified and had a surface resistance of 5.3 ⁇ 10 5 ⁇ square. The transmittance was 93%. When all the sintering was performed in the air, the transmittance was sufficient, but the surface resistance was high, and the transparent electrode was not useful.
  • In-Sn alloy fine particles were produced by a gas evaporation method under various evaporation conditions as metal fine particles. From the alloy fine particles obtained under various evaporation conditions, a fine particle having an average particle diameter of about 70 nm was selected and, as in the case of Example 1, in an organic solvent (toluene) at a concentration of 10 wt%. Disperse to prepare a dispersion liquid. This dispersion liquid settled out after a while (about 3 o'clock), was unstable, and was not practical.
  • the surface resistance values of the obtained films showed the same or slightly higher values as those of the In-Sn system.
  • the film had better etching characteristics.
  • the films obtained in these examples were etched with oxalic acid (Kanto Chemical, ITO-06N), the etching rate was 3 to 4 nm / sec.
  • the films obtained in Examples 5 to 8 above only about 0.1 to 0.2 band Zsec was obtained. From the above, it can be seen that the In_Zn-based film is a film having excellent curability.
  • the obtained films had high surface resistance, but were excellent in thermal stability and chemical stability. These films were immersed in aqua regia but were not etched at all. Even after the obtained film was further baked at 600 ° C, no change in the surface resistance was observed.
  • Comparative Example 3 In the case of Comparative Example 3 in which fine particles of In metal, ⁇ -Sn alloy, Sn—Sb alloy, and Zn—A1 alloy were used, and fired only in a vacuum atmosphere, the surface resistance was low, but the transmission was low. The rate was low. In Comparative Examples 4, 5, 6, 8, and 9 fired only in an oxidizing atmosphere, the transmission characteristics of the obtained films are improved by increasing the firing time, but the firing time is long. And acid in the membrane The resistance value has deteriorated significantly due to the progress of the formation. In the case of Comparative Example 7 in which firing was performed first in an oxidizing atmosphere and then in a reducing atmosphere, the transmittance was good, but the surface resistance was extremely high.
  • a transparent conductive film having a low resistance and a high transmittance can be formed by firing at a low temperature. It can be applied as a transparent electrode used for a display device such as a panel display, a charging of a display surface, and a magnetic shielding film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Non-Insulated Conductors (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Liquid Crystal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

   インジウム、錫、アンチモン、アルミニウム及び亜鉛から選ばれた金属の微粒子、これらの金属の2種以上の金属からなる合金の微粒子、又はこれら微粒子の混合物を含有する分散液を基材に塗布後、真空雰囲気、不活性ガス雰囲気、還元性雰囲気中で焼成し、その後、酸化性雰囲気中で焼成する。この酸化性雰囲気中での焼成後、さらに還元性雰囲気で焼成してもよい。不活性ガス雰囲気が、希ガス、二酸化炭素及び窒素から選ばれたガスの雰囲気であり、還元性雰囲気が、水素、一酸化炭素及び低級アルコールから選ばれたガスの雰囲気である。上記方法により形成された透明導電膜からなる透明電極。低温焼成で、低抵抗かつ高透過率を有する透明導電膜が形成される。

Description

明 細 書
透明導電膜の形成方法及び透明電極
技術分野
[00O1] 本発明は、透明導電膜の形成方法及び透明電極に関し、特に、金属微粒子や合 金微粒子を使用して、電気電子工業等の分野において用いることのできる透明導電 膜を形成する方法及ぴこの透明導電膜からなる透明電極に関する。
背景技術
[00O2] 一般に、液晶ディスプレーに代表されるフラットパネルディスプレーの電極には、 IT
0、 ATO等からなる透明導電膜が使用されている。その製造法には、蒸発法、イ ン プレーティング法、スパッタリング法等があり、ガラス基板上に金属酸化物膜を付着さ せて形成している。より一般的には、酸ィ匕物膜である ITO膜をスパッタリング法により 形成して!/、るのが現状である。
[00O3] また、帯電防止膜、電極 ·回路形成用膜として用いる透明導電膜の形成方法として 、錫ドープ酸化インジウム粉末の分散液を調製し、この分散液を基板上に塗布し、乾 燥後に焼成して透明導電膜を得る方法が知られている (例えば、特許文献 1参照)。 この特許文献 1に示される方法では、ガラス基板等の透明基板上に直接酸化物膜を 形成しており、得られる透明導電膜を液晶やプラズマディスプレーに代表されるフラ ットパネルディスプレー用として使用するためには、この透明基板上での成膜後に、 2 00〜900°C (実施例では、 400°Cで行っている)で焼成することが必要である。しかる に、今後、大型化とともに主流になりつつあるアクリル基板上でのディスプレー製造に ぉレ、ては、基板に対する熱的制限力もこのような 400°Cという高温での成膜技術では 基板が損傷を受けるという問題がある。
[00O4] これら問題の解決方法として、ディスプレー用の透明電極の場合、例えば、金属ナ ノ粒子を使用し、塗布、乾燥、焼成により IT〇、 ATO膜を製造することにより、低コス トで大面積の透明導電膜を形成することが知られてレ、る(例えば、 ,特許文献 2参照)。
[0005] また、 Ag超微粒子等の金属超微粒子を使用して、透明なプラスチックフィルム等の 基材上に比較的低温で透明導電膜を形成して低抵抗の膜を得ることも知られている (例えば、特許文献 3参照)。この特許文献 3に示されるように、 Agを使用することによ り低抵抗化は可能であるが、 Ag超微粒子はプラズモン吸収により着色し、十分な透 過率を得ることが出来ないという問題がある。
[0006] さらに、帯電防止膜における他の方法として、低抵抗の透明酸化物粒子を使用し、 , その粒子の接触によって導電性を確保する技術もある。この場合は、より緻密なパッ キングにするため、基材上に透明導電膜を形成した後、さらにその上に 2層目の膜を 塗布し、その熱収縮を利用して粒子同士の密着性を高めて接触抵抗を下げ、その結 果として表面抵抗を下げると言う方法が採用されている。この場合は、プロセスが複 雑になるという問題がある。
特許文献 1:特開平 07— 242842公報 (特許請求の範囲、実施例)
特許文献 2 :特開 2003— 249131号公報 (特許請求の範囲)
特許文献 3:特開 2001 _ 176339号公報 (特許請求の範囲)
発明の開示
発明が解決しょうとする課題
[0007] 本発明の課題は、上述の従来技術の問題点を解決することにあり、金属微粒子又 は合金微粒子を用いて、低温焼成で、低抵抗を有しかつ高透過率を有する透明導 電膜を形成する方法及びこの透明導電膜からなる透明電極を提供することにある。 課題を解決するための手段
[0008] 本発明の透明導電膜の形成方法は、インジウム、錫、アンチモン、アルミニウム及 ぴ亜鉛力 選ばれた少なくとも 1種の金属の微粒子、これらの金属から選ばれた 2種 以上の金属からなる合金の少なくとも 1種の微粒子、又はこれらの微粒子の混合物を 含有する分散液を基材に塗布後、金属や合金が酸化しない雰囲気中で焼成し、そ の後、酸化性雰囲気中で焼成して、透明導電膜を形成することを特徴とする。この微 粒子混合物は、金属微粒子と合金微粒子との混合物である。このこのような二段階プ ロセスにより、低温焼成で、低抵抗かつ高透過率を有する透明導電膜が得られる。
[0009] 前記酸化しなレ、雰囲気が、真空雰囲気、不活性ガス雰囲気及び還元性雰囲気か ら選ばれた雰囲気であることを特徴とする。
[0010] 前記酸化性雰囲気中での焼成後、更に還元性雰囲気中で焼成することを特徴とす る。
[0011] 前記不活性ガス雰囲気が、希ガス、二酸ィヒ炭素及び窒素力 選ばれた少なくとも 1 種の不活性ガスの雰囲気であり、還元性雰囲気が、水素、一酸化炭素及び低級アル コール力も選ばれた少なくとも 1種の還元性ガスの雰囲気であることを特徴とする。
[0012] 前記真空雰囲気が、希ガス、二酸化炭素及び窒素から選ばれた少なくとも 1種の不 活性ガス、酸素及び水蒸気から選ばれた少なくとも 1種の酸化性ガス、水素、一酸化 炭素及び低級アルコール力 選ばれた少なくとも 1種 還元性ガス、 又はこの不活性 ガスと酸化性ガス若しくは還元性ガスとの混合ガスを含んで!/ヽることを特徴とする。
[0013] 前記酸化性雰囲 が、酸素、水蒸気、酸素含有ガス (例えば、空気等)又は水蒸気 含有ガスを含んでレ、ることを特徴とする。
[0014] 前記金属微粒子及び合金微粒子が、その微粒子の周りに有機化合物が付着して なる微粒子であることを特徴とする。これにより、各微粒子の分散性が良くなる。
[0015] 本発明の透明電極は、上記方法により形成した透明導電膜力もなるものである。
[0016] 本発明の実施の形態によれば、前記酸化しない雰囲気及び酸化性雰囲気中での 焼成温度は、金属微粒子や合金微粒子の融点以上力ゝら基材の軟ィ匕点未満の間の 耐熱許容温度であることが好ましい。この焼成温度は、例えば 30O°C以下であること 力はり好ましい。この温度範囲であれば、基材がダメージを受けることがない。
[0017] また、前記金属微粒子及び合金微粒子の粒径は、 0. 5nm〜50n であることが好 ましい。 0. 5nm未満であると、実質的な粒子の表面積が増え、その結果粒子の周り に付着している有機物質が増加し、焼成時間が長くなるだけでなぐ熱収縮でクラッ クが発生しやすくなる。また、 50nmを超えると、有機溶媒に分散させた場合、沈降が 生じやすくなる。
'発明の効果
[0018] 本発明によれば、特定の金属微粒子、合金微粒子をまず酸化しない雰囲気中で低 温焼成し、その後酸ィヒ性雰囲気中で低温焼成しているので、優れこ低抵抗かつ高 透過率を有する透明導電膜を低温で形成することができると共に、この透明導電膜 力 なる優れた透明電極を提供できるという効果を奏する。
発明を実施するための最良の形態 [0019] 以下、特に断らない限り、「金属微粒子」という場合、この微粒子には合金微粒子も 含まれるものとして説明する。
[0020] 本発明によれば、上記したように、透明導電膜形成用金属酸化物の各成分金属( インジウム、錫、アンチモン、アルミニウム及ぴ亜鉛)の少なくとも 1種の金属の微粒子 や、この成分金属から選ばれた 2種以上の金属からなる少なくとも 1種の合金の微粒 子や、これらの金属微粒子と合金微粒子との混合微粒子を含有する分散液を、被処 理基材上に公知の塗布方法を用いて塗布した後、真空雰囲気、不活性ガス雰囲気 、還元性雰囲気のような金属や合金が酸化しない雰囲気中で焼成する。真空雰囲気 の場合に酸ィヒ性ガスを導入すると、金属あるいは合金は酸ィ匕せずに、付着している 有機物質だけを燃焼させる効果がある。次いで、酸化性雰囲気中で焼成する。この 場合、最初の焼成前に、分散液を塗布した基材を所定の温度で乾燥することにより、 分散媒等を除去してもよレ、。この分散媒の除去は、焼成プロセスで行ってもよい。
[0021] 本発明によれば、上記 2つの焼成プロセスを、通常の透明導電膜形成用材料の金 属酸化物微粒子を単体で焼成するのに必要な温度 (一般に、 400〜700°C)より低 温 (例えば、 300°C以下)で実施して、目的とする透明導電膜を得ている。このように 、本発明で用いる金属微粒子は、金属酸化物の場合よりも低温で緻密な膜となるた め、低温で電気抵抗の小さな透明導電膜を製造することができると共に、酸化性雰 囲気での焼成では、透過性の向上が達成され得る。また、 2つの焼成プロセスにおい て、焼成時に UVランプ照射を行うと、時間短縮 ·低温化の面でさらに効果がある。さ らに、本発明における焼成では、公知の大気圧プラズマを用レ、る方法も有効である。
[0022] 本発明における透明導電膜形成用金属酸化物には、例えば、 ITO(In-Sn-0)( Snの範囲は 0 Sn≤20wt%、好ましくは 3≤Sn≤10wt%)、 ATO(Sn_Sb— OX Sb(Z)fQffl¾0≤Sb≤20wt% 好ましくは5
Figure imgf000005_0001
AZO(Zn— Al— 0)(A 1の範囲は 0≤Al≤20wt%、好ましくは 5 Al≤15wt%)、 IZO(In— Zn—〇)(Znの 範囲は 0≤Zn 20wt%、好ましくは 5≤Zn≤15wt%)を挙げることができる。
[0023] 本発明の透明導電膜形成方法で使用できる基材は、透明基材であれば特に制限 されず、例えば、アクリル基材、ポリイミド基材、ポリエチレンテレフタレート(PET)フィ ルム等の低温焼成が必要な有機樹脂材料からなる基材であってもよレ、し、有機系力 ラーフィルターのような有機系の膜がついたガラス電極等であってもよい。有機樹脂 材料としては、上記の他に、例えば、セルロースアセテート類、ポリスチレン、ポリスチ レン類、ポリエーテル類、ポリイミド、エポキシ樹 S旨、フエノキシ樹脂、ポリカーボネート 、ポリフッ化ビニリデン、テフロン (登録商標)等を用いることもできる。これらを単独で 又は貼り合わせて基材として用いることができる。この基材の形状としては、 特に制限 されず、例えば、平板、立体物、フィルム等であってもよい。なお、この被処理基板は ' 、分散液を塗布する前に、純水や超音波等を用いて洗浄することが好ましレ、。
[0024] 本発明によれば、基材への塗布方法としては、例えば、スピンコート法、スプレー法 、インクジェット法、浸漬法、ロールコート法、スクリーン印刷法、コンタクトプリント法等 の方法が使用できる。塗布は、所望の膜厚を得ることができれば、一度塗りでも、重 ね塗りでもよい。
[0025] 本発明によれば、上記したように、塗布膜を、まず、真空雰囲気、不活性:^ス雰囲 気、還元性雰囲気のような金属微粒子を酸ィ匕しない雰囲気中で焼成する。 この場合 の真空状態は、単にポンプで引いただけでもよぐまた一旦ポンプ弓 Iきした後、不活 性ガス、還元性ガス、酸化性ガスを導入してもよい。真空雰囲気中での焼成は、通常 、 10一5〜 103Pa程度で行うことができる。
[0026] ' 本発明によれば、金属微粒子を酸化しない雰囲気である還元性雰囲気中で焼成 するが、この場合に使用される低級アルコールは、炭素数が:!〜 6の低級 T レコール 、例えばメチルアルコール、エチルアルコール、プロピルアルコール、ブチノレアノレコ ール、へキシルアルコール等である。
[0027] 本発明で使用される金属微粒子及び合金微粒子の作製法は、特に制限されず、 • 例えば、ガス中蒸発法であっても、湿式還元法、有機金属化合物の高温雰囲気への スプレーによる熱還元法等であってもよレ、。
[0028] 得られた金属微粒子及び合金微粒子の表面は、金属状態であることが好ましレヽが 、少なくともその 部が酸化された状態であってもよい。
[0029] 上記作製法のうちのガス中蒸発法は、ガス雰囲気中でかつ溶剤の蒸気の共存する 気相中で金属を蒸発させ、蒸発した金属を均一な超微粒子に凝縮させて溶剤中に 分散し、分散液を得る方法である(例えば、特許第 2561537号公報)。このガス中蒸 発法により、粒径 50nm以下の粒度の揃った金属超微粒子を製造することができる。 このような金属微粒子を原料として、各種用途に適したようにするためには、最終ェ 程で有機溶媒での置換を行えばよぐこの微粒子の分散安定性を増すためには、所 定の工程で分散剤を添加すればよい。これにより、金属微粒子が個々に独立して均 一に分散され、かつ、流動性のある状態が保持されるようになる。
[0030] 上記有機溶媒としては、使用する金属微粒子の種類によって適宜選択すればよく 、例えば、次のようなものがある。すなわち、メタノーノレ、エタノール、プロ z ノ一ノレ、ィ ソプロピルァノレコール、ブタノ一ノレ、へキサノーノレ、ヘプタノール、オタタノ一ノレ、デカ ノール、シクロへキザノール、及びテルビネオール等のアルコール類、エチレングリコ ール、及びプロピレングリコール '等のグリコール類、アセトン、メチルェチ /レケトン、及 びジェチルケトン等のケトン類、酢酸ェチル、酢酸ブチル、及ぴ酢酸べンジル等のェ ステル類、メトキシエタノール、及びエトキシエタノール等のエーテルアルコール類、 ジォキサン、及びテトラヒドロフラン等のエーテル類、 Ν,Ν—ジメチルホノレムアミド等の 酸アミド類、ベンゼン、トルエン、キシレン、トリメチルベンゼン、及びドデシルベンゼン 等の芳香族炭化水素類、へキサン、ヘプタン、オクタン、ノナン、デカン、ゥンデカン、 ドデカン、トリデカン、テトラデカン、ペンタデカン、へキサデカン、ォクタデカン、ノナ デカン、エイコサン、及びトリメチルペンタン等の長鎖アルカン、シクロへキサン、シク 口ヘプタン、及びシクロオクタン等の環状アルカン等のような常温で液体のもの適宜 選択して使用することができる。さらに、この有機溶媒中には水も含まれるものとする
[0031] また、ガス中蒸発法で調製した金属微粒子を分散させる有機溶媒としては、上記の ような溶媒が使用できるが、好ましくは、トルエン、キシレン、ベンゼン、テトラデカンの ような無極性溶媒、アセトン、ェチルケトンのようなケトン類、メタノール、エタノール、 プロパノール、ブタノールのようなアルコール類等が使用可能である。なお、インクジ ヱット用のインク液を調製する場合には、ヘッド材料 (表面コート材を含む)との相性( 例えば、腐食、溶解等しないという物性を有すること)、ヘッド内での金属微粒子の凝 集、粒子詰まりを考慮して、適切な溶媒を選定する必要がある。
[0032] 上記有機溶媒は、単独で用いても、混合溶媒の形で用いてもよい。例えば、長鎖ァ ルカンの混合物であるミネラルスピリットであってもよい。
[0033] 上記溶媒の使用量は、使用する金属微粒子の種類、用途に応じて、塗布しやすく 、かつ所望の膜厚を得ることができるように適宜設定すればよい。例えば、金 J 微粒 子 l〜70wt%の濃度になるように、溶媒を使用すればよぐこの金属微粒子濃度は、 分散液製造後でも真空中加熱等により随時調整可能である。
[0034] また、上記したように、本発明で使用する金属微粒子、合金微粒子は、その微粒子 の周りに有機化合物が付着してなる微粒子であってもよい。ガス中蒸発法により作製 された金属微粒子分散液は、粒径 50nm以下の金属微粒子が、孤立状態で、アルキ ルァミン、カルボン酸アミド及びアミノカルボン酸塩力 選ばれた少なくとも 1種を分散 剤として、有機溶媒中に分散されたものである。この金属微粒子は、その周困に分散 剤である有機化合物が付着した状態の粒子であり、この微粒子を用いると、分散が容 易になる。 ,
[0035] 上記分散剤のアルキノレアミンとしては、第 1〜3級ァミンであっても、モノアミン、ジァ ミン、トリアミンであっても良い。主鎖の炭素数が 4〜20であるアルキルァミンが好まし く、主鎖の炭素数が 8〜: 18であるアルキルァミンが安定性、ハンドリング性の, ^からは さらに好ましレ、。アルキルァミンの主鎖の炭素数力 より短かいと、ァミンの塩基性が 強過ぎて金属微粒子を腐食する傾向があり、最終的には金属微粒子を溶かしてしま うという問題がある。また、アルキルァミンの主鎖の炭素数が 20よりも長いと、金属微 粒子分散液の濃度を高くしたときに、分散液の粘度が上昇してハンドリング ¾がやや 劣るようになり、また、焼成後の膜中に炭素が残留しやすくなつて、比抵抗値 S上昇 するという問題がある。また、全ての級数のアルキルァミンが分散剤として有効に働く が、第 1級のアルキルァミンが安定性、ハンドリング性の点からは好適に用レヽられる。
[0036] アルキルァミンの具体例としては、例えば、プチルァミン、ォクチルァミン、 デシル ァミン、へクサドデシノレアミン、ォクタデシルァミン、ココアミン、タロウァミン、 7k素化タ ロウァミン、ォレイルァミン、ラウリルァミン、及びステアリルアミン等のような第 1級アミ ン、ジココアミン、ジ水素化タロウァミン、及ぴジステアリルアミン等のような第 2級アミ ン、並びにドデシノレジメチルァミン、ジドデシルモノメチルァミン、テトラデシノレジメチ ' ルァミン、ォクタデシノレジメチルァミン、ココジメチノレアミン、 チノレアミン、及びトリオクチルァミン等のような第 3級ァミンや、その他に、ナフタレンジ ァミン、ステアリノレプロピレンジァミン、才クタメチレンジァミン、及びノナンジァミン等の ようなジァミンがある。
[0037] 上記カルボン酸アミドゃァミノカルボン酸塩の具体例としては、例えば、ステアリン 酸アミド、パルミチン酸アミド、ラウリン酸ラウリルアミド、ォレイン酸アミド、ォレ ン酸ジ エタノールアミド、ォレイン酸ラウリルアミド、ステアラニリド、ォレイルアミノエチ /レグリ シン等がある。
[0038] なお、本発明において用いる金属微粒子は、液相還元法等の化学還元法で得ら れたものでもよぐ分散液を製造する場合、金属微粒子を製造するための原杯として 、金属含有有機化合物である還元用原料を使用することもできる。
[0039] この化学還元法は、還元剤を用いる化学反応により金属微粒子分散液を調製する 方法であって、この還元法により製造した微粒子の場合、 50nm以下に任意に調整 可能である。この還元法は、例えば、次のようにして行われる。原料に分散剤を添カロ した状態で、所定の温度で原料を加熱分解させるか、又は還元剤、例えば水 や水 素化ホウ素ナトリウム等を利用して、金属微粒子を発生させる。発生した金属微粒子 のほぼ全量を独立分散状態で回収する。この金属微粒子の粒径は約 50nm以下で ある。この金属微粒子分散液を上記したような有機溶媒に置換すれば、所望の金属 微粒子分散液が得られる。得られた分散液は、真空中での加熱により濃縮しても、安 定な分散状態を維持してレ、る。
[0040] 上記したような本発明の透明導電膜形成方法によって形成される透明導電膜は、 例えば、平面ディスプレー用透明電極、透明帯電防止膜、透明電磁波シーノレド膜、 面発熱体、透明電極アンテナ、太陽電池、電子ペーパー用電極、透明電極ガスセン サ一等に使用することが出来る。
[0041] 以下、金属微粒子の製造法を説明する。
(製造例 1)
[0042] ヘリウムガス圧力 0· 5torrの条件下で高周波誘導加熱を用いるガス中蒸発法によ り Snを 6重量%含む In_Sn合金微粒子を生成する際に、生成過程の In— Sra合金 微粒子に α—テルビネオールとドデシルァミンとの 20: 1 (容量比)の蒸気を換触させ 、冷却捕集して In— Sn合金微粒子を回収し、 α—テルビネオ一レ溶媒中〖こ独立し た状態で分散してレ、る平 i匀粒子径 1 Onmの In— Sn合金微粒子を 20重量%含有す る分散液を調製した。この分散液 (コロイド液) 1容量に対してアセトンを 5容量カロえ、 攪拌した。極性のアセトンの作用により分散液中の微粒子は沈降した。 2時間静置後 、上澄みを除去し、再ぴ最初と同じ量のアセトンを加えて攪拌し、 2時閬静置後、上 澄みを除去した。この沈降物から、残留溶媒を完全に除去し、平均粒子径 lOnmの I n— Sn合金微粒子を作製した。
[0043] また、 In, Sn以外の上記各金属の微粒子、及び合金微粒子も上記製造法に従つ て同様に得られる。
実施例 1
[0044] ■ 金属微粒子として、製造例 1にてガス中蒸発により作製した In_Snの合金微粒子 を使用した。この粒子は、その平均粒径が lOnmであり、 X線回折により、酸化されて いない合金微粒子であることを確認した。また、 Snの含有量は蛍光 X線分桥により 6 wt%であった。 ■
[0045] この微粒子を 10wt%の濃度にて有機溶媒 (トルエン)中に分散させ、この分散液を スピンコート法によりガラス基材上に塗布した。その後、この塗膜を 1 X 10— 3Paの減 圧下において 230° (、 lOminの条件で焼成した。次いで、酸化性雰囲気(大気)中 で、 230°C、 60minの焼成を行った。得られた透明電導膜は、十分緻密化しており、 その表面抵抗は 60 Ω /口であり、 550nmにおける透過率は 92%を示した。この時 の膜厚は 200iimであった。この場合に、酸化性雰囲気中での焼成後に、さらに水素 ガス雰囲気中及び一酸化炭素雰囲気中で焼成したところ、得られた透明導電膜の表 面抵抗はさらに低くなり、改良された。
[0046] 実施例 1で得られた透明導電膜は、'ディスプレー機器の透明電極として有用であつ た。
(比較例 1)
[0047] 実施例 1の金属微粒子分散液を用いて実施例 1の場合と同様の方法によりガラス 基材上に塗布した。次いで、この塗膜を大気中、 250°Cで、 60分間焼成した。得られ た透明導電膜は、緻密化が不十分であり、その表面抵抗は 5. 3 X 105 ΩΖ口であり 、透過率は 93%を示した。このように焼成を全て大気中で行った場合、透過率 十 分であるが、表面抵抗は高ぐ透明電極と Lては有用ではなかった。
[0048] 以上のことから、最初に、金属、合金の麟化しない雰囲気である真空雰囲気で焼成 することが、低い表面抵抗及び高い透過率を有する透明導電膜を形成せしめるには 有効であることが分力 た。この原因は、最初に真空雰囲気中で処理すると、 In— S n合金微粒子は酸化されずに、分散剤や金属微粒子を保護してレヽる炭化水素筝の 有機物質が分解、蒸発できるので、合金微粒子同士の結合が促進され、緻密な透明 導電膜になるものと推定される。このため ίこ、次の大気焼成プロセスにおいても β莫中 への酸素の取り込みが制限され、電気抵抗値が劣化しないものと考えられる。
(比較例 2)
[0049] 金属微粒子として、各種蒸発条件を用いて、ガス中蒸発法により In— Sn合金微粒 子を作製した。各種蒸発条件で得られた合金微粒子のなかから、平均粒径が 70;nm 位になる微粒子を選んで、実施例 1の場合と同様に、 10wt%の濃度にて有機溶媒( トルエン)中に分散させて分散液を調製しブこ。この分散液は、しばらくすると(3時閩程 度)沈降が生じ、不安定であり、実用的で なかった。
[0050] 以下、その他の実施例として、上記透明導電膜形成用金属酸化物の各成分金属 の金属微粒子や合金微粒子を用いた場合について、上記実施例記載の方法に ¾έつ て、低温焼成で同様に低い表面抵抗を有し、かつ透過率の高い透明導電膜が得ら れることを以下の表 1に示す。表 1には、 ifeの比較例もあわせて示す。
[表 1] .
1stァニール:真空、不活性ガス、還元性雰囲気 2ndァニール:酸ィ匕性雰囲気 3rdァ :還 実施例 使用材料 温度 圧力 (Pa) 雰囲気 時間 (min) 温度 圧力 (Pa) 雰函気 時間 (min) 温度 圧力 (Pa) 雰
2 In 250 667 減圧のみ 30 250 667 酸素 30
3 In 230 8.証- 02 減圧のみ 30 230 667 酸素 60
4 In 250 8.80E-02 減圧のみ 30 200 大気圧 Ν2,酸素 30
In_Sn
5 Sn6wt% 230 1.00E-03 減圧のみ 10 230 大気圧 大気 10
In-Sn
6 Sn6wt% 230 1.00E-03 減圧のみ 10 230 大気圧 大¼ 120
In- Sn
7 Sn6wt% 230 L00E-03 減圧のみ 5 230 大気圧 大 60
In- Sn
8J Sn6wt% 230 1.00E- 03 減圧のみ 5 230 大気圧 大^ 120
9 Sn6wt% 230 8.2 減圧のみ 10 230 大気圧 大気 60
jn-Sn
10 Sn6wt% 230 8.2 減圧のみ 10 230 大気圧 大^ 120
In— Sn
11 Sn6wt% 230 大気圧 Ν2 10 230 大気圧 大気 120
In一
12 Sn6wt% 230 大 5 圧 Ν2 30 230 大気圧 大気 120 一酸
In- Sn
13 Sn6wt% 230 8.2 減圧のみ 10 230 大気圧 水蒸 30 230 大気圧 Ν2、 jn-Sn
14 Sn6wt% 230 大気圧 アルゴン 10 230 大気圧 酸素 30 230 大気圧 一酸
In - Sn
15 Sn6wt% 230 大気圧 ヘリウム 10 230 大気圧 酸素 30 230 大気圧 メタ
In-Sn
16 Sn6wt 230 8.2 減圧のみ 10 230 大気圧 水蒸気 30 230 1.00E-03
In-Sn
17 Sn6wt 230 大気圧 アルゴン 10 230 大気圧 30 230 1.00E-03 大
In-Sn
18 Sn6wt% 230 大気圧 ヘリウム 10 230 大気圧 酸素 30 230 1.00E-03 一酸
In-Zn
19 Zn6wt% 230 1.00E-03 減圧のみ 10 230 大: ¾< : 大 Ά 10
Figure imgf000013_0001
Zn-Al
40 Al 5wt% 250 l.OOE-03 減圧のみ 10 250 大気圧 人 ί¾ 10
Zn-AI
41 A] 5wt% 250 l.OOE-03 減圧のみ 10 250 大気圧 大気 120
Zn-A]
42 Al 5wt% 250 8.2 減圧のみ 10 250 大気圧 大気 60
Zn-Al
43 Al 5wt% 250 8.2 減圧のみ 10 250 大気圧 大 ¼ 120
Zn-Al
44 Al 5wt% 250 8.2 減圧のみ 10 250 大気圧 水蒸気 30 230 大気圧 Ν2
Zn-Al
45 A1 5wt% 250 大気圧 アルゴン 10 250 大気圧 酸素 30 230 大気庄 一酸
Zn-Al
46 Al 5wt% 250 大気圧 ァ ゴン 10 250 大?¾it 酸素 30 230 1.00E-03 大 比較例 3 In 230 l.OOE-03 減圧のみ 10
比較例 4 In 230 大気圧 酸素 10 250 l.OOE-03 大気 120
ln-Sn
比較例 5 Sn6wt% 230 大気圧 酸素 10 250 l.OOE-03 大気 60
ln-Sn
比較例 6 Sn6wt% 230 大気圧 大気 10
Sn-Sb
比較例 7 Sb5wt% 250 大気圧 酸素 10 250 l.OOE-03 一酸化炭 30
Sn-Sb
比較例 8 Sb5wt% 250 大気圧 大気 10
Zn-Al
比較例 9 Al 5wt% 250 大気圧 大気 10 250 l.OOE-03 酸素 30
[0051] 表 1記載のデータを解析すれば、以下の通りである。
[0052] In金属微粒子を用いた実施例 2〜4の場合、得られた膜の透過率 (%)は良好であ るが、表面抵抗値(Ω /口)は In— Sn合金微粒子を用いた場合と比べ、 1〜2村亍高い 値を示したが、十分実用に耐えるものであった。 In金属微粒子の場合、このように高 い値を示したのは、イオンィ匕された Snドナーが伝導に寄与していな!/、ためである。
[0053] In— Sn合金微粒子を用いた実施例 5〜: L8の場合、最初に酸化しない雰囲気中で 焼成し、次いで酸化性雰囲気中で焼成した後、所望により還元性雰囲気中で; t宪成す ることにより得られた膜は、非常に低い表面抵抗値及び高い透過率を示した。
[0054] 1!1ー211合金微粒子を用ぃた実施例19〜32の場合、得られた膜の表面抵抗値は I n—Sn系と同程度か若干高めの値を示した。しかし、 In、 In— Sn、 Sn— Sb系と比較 して、エッチング特性に優れた膜であった。これらの実施例で得られた膜に対して、 シユウ酸(関東化学製、 ITO— 06N)でエッチングしたところ、 3〜4nm/secのエツ チングレートであった。上記実施例 5〜8で得られた膜の場合は、 0. 1〜0. 2匪 Zs ec程度しか得られなかった。以上のことから、 In_Zn系の膜はカ卩ェ性に優れている 膜であることが分かる。
[0055] Sn— Sb合金微粒子を用いた実施例 33〜39の場合、得られた膜の表面抵抗値は 高いが、熱的安定性、化学的安定性に優れた膜であった。これらの膜を王水中に浸 漬したが、全くエッチングされなかった。また、得られた膜をさらに 600°Cで焼成した 後も、表面抵抗値の変化は見られな力つた。
[0056] . Zn— A1合金微粒子を用いた実施例 40〜46の場合、 In_Sn系の場合と比べ、 1 桁高レ、レベルであった。
[0057] 以上の実施例から、上記した金属微粒子を出発原料として、本発明の焼成プロセ スを経ることにより、種々の目的に沿って、適宜選択しうる種々の透明導電膜を幵成 することがでさる。
[0058] In金属、 Ιη—Sn合金、 Sn—Sb合金、及ぴ Zn— A1合金の微粒子を用レ、、真空雰 囲気中のみで焼成した比較例 3の場合、表面抵抗は低いが、透過率が低くかった。 酸化性雰囲気中でのみ焼成した比較例 4、 5、 6、 8、及ぴ 9の場合、得られた膜の透 過特性は、焼成時間を長くすることにより良好となるが、焼成時間が長いと膜中の酸 化が進行してしまうために抵抗値は大幅に劣化した。また、最初に酸化性雰囲気中、 次いで還元性雰囲気中で焼成した場合についての比較例 7の場合、透過率は良好 であったが、表面抵抗は極めて高かった。
産業上の利用可能性
本発明によれば、低温焼成で、低抵抗を有し、 かつ高透過率を有する透明導電月篦 を形成することができるので、この透明導電膜は、例えば電気電子工業等の分野で、 フラットパネルディスプレー等のディスプレー機器やディスプレー表面の帯電及ぴ鼇 磁波シールド膜等に使用される透明電極として適用できる。

Claims

請求の範囲.
[1] インジウム、錫、アンチモン、アルミニウム及び亜鉛力 選ばれた少なくとも 1種の金属 の微粒子、これらの金属から選ばれた 2種以上の金属力 なる合金の少なくとも 1種 の微粒子、又はこれらの微粒子の混合物を含有する分散液を基材に塗布後、金属 や合金が酸化しない雰囲気中で焼成し、その後、酸化性雰囲気中で焼成して、透明 導電膜を形成することを特徴とする透明導電膜の形成方法。
[2] 前記酸化しない雰囲気が、真空雰囲気、不活性ガス雰囲気及び還元性雰囲気から ' 選ばれた雰囲気であることを特徴とする請求項 1記載の透明導電膜の形成方法。
[3] 前記酸化性雰囲気中での焼成後、更に還元性雰囲気中又は真空雰囲気中で焼成 することを特徴とする請求項 1又は 2記載の透明導電膜の形成方法。
[4] 前記不活性ガス雰囲気が、希ガス、二酸化炭素及び窒素から選ばれた少なくとも 1 種の不活性ガスの雰囲気であり、還元性雰囲気が、水素、一酸ィ匕炭素及び低級アル 'コール力 ^選ばれた少なくとも 1種の還元性ガスの雰囲気であることを特徴とする請 求項 2又は 3に記載の透明導電膜の形成方法。
[5] 前記真空雰囲気が、希ガス、二酸化炭素及び窒素力 選ばれた少なくとも 1種の不 活性ガス、酸素及ぴ水蒸気から選ばれた少なくとも 1種の酸化性ガス、水素、一酸化 炭素及び低級アルコール力 選ばれた少なくとも 1種の還元性ガス、又は前記不活 性ガスと酸化性ガス若しくは還元性ガスとの混合ガスを含んでレ、ることを特徴とする 請求項 2又は 3に記載の透明導電膜の形成方法。
[6] 前記酸化性雰囲気が、酸素、水蒸気、酸素含有ガス又は水蒸気含有ガスを含んで レ、ることを特徴とする請求項 1〜5の!/、ずれかに記載の透明導電膜の形成方法。
[7] , 前記金属微粒子、合金微粒子が、その微粒子の周りに有機化合物が付着してなる .微粒子であることを特徴とする請求項 1〜6のいずれかに記載の透明導電膜の形成 方法。
[8] 請求項 1〜7のいずれかに記載の方法により形成した透明導電膜からなることを特徴 とする透明電極。
PCT/JP2004/018948 2003-12-17 2004-12-17 透明導電膜の形成方法及び透明電極 WO2005059927A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020057011809A KR101157854B1 (ko) 2003-12-17 2004-12-17 투명 도전막의 형성방법 및 투명 전극
EP04807305.0A EP1696443B1 (en) 2003-12-17 2004-12-17 Method for forming transparent conductive film and transparent electrode
US10/541,039 US20060251818A1 (en) 2003-12-17 2004-12-17 Method for forming transparent conductive film and transparent electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-418897 2003-12-17
JP2003418897A JP4807933B2 (ja) 2003-12-17 2003-12-17 透明導電膜の形成方法及び透明電極

Publications (1)

Publication Number Publication Date
WO2005059927A1 true WO2005059927A1 (ja) 2005-06-30

Family

ID=34697151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018948 WO2005059927A1 (ja) 2003-12-17 2004-12-17 透明導電膜の形成方法及び透明電極

Country Status (6)

Country Link
US (1) US20060251818A1 (ja)
EP (1) EP1696443B1 (ja)
JP (1) JP4807933B2 (ja)
KR (1) KR101157854B1 (ja)
CN (1) CN100449652C (ja)
WO (1) WO2005059927A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4807933B2 (ja) 2003-12-17 2011-11-02 株式会社アルバック 透明導電膜の形成方法及び透明電極
JP4822783B2 (ja) * 2005-09-22 2011-11-24 株式会社日本触媒 金属ナノ粒子の製法および当該製法により得られた粒子のコロイド
JP4742787B2 (ja) * 2005-09-29 2011-08-10 大日本印刷株式会社 有機エレクトロルミネッセンス素子用バリア性基板
DE102005047447A1 (de) * 2005-09-30 2007-04-05 Robert Bosch Gmbh Sensoreinheit zur Bestimmung eines Messgasparameters
JP2007182605A (ja) * 2006-01-06 2007-07-19 Konica Minolta Holdings Inc 薄膜形成方法及び薄膜
JP5562512B2 (ja) * 2006-01-25 2014-07-30 株式会社日本触媒 金属被膜の製造方法
JP2008182141A (ja) * 2007-01-26 2008-08-07 Seiko Epson Corp 紫外線検出センサー、紫外線検出センサーの製造方法、紫外線の検出方法及び太陽電池
JP5459896B2 (ja) * 2007-03-05 2014-04-02 株式会社半導体エネルギー研究所 配線及び記憶素子の作製方法
DE102007013181B4 (de) * 2007-03-20 2017-11-09 Evonik Degussa Gmbh Transparente, elektrisch leitfähige Schicht
JP5186667B2 (ja) * 2007-04-06 2013-04-17 株式会社アルバック 透明導電膜の形成方法
JP2008258050A (ja) * 2007-04-06 2008-10-23 Ulvac Japan Ltd 透明導電膜形成用塗布液、透明導電膜の形成方法及び透明電極
CN101689568B (zh) * 2007-04-20 2014-02-26 凯博瑞奥斯技术公司 复合透明导体及其形成方法
JP5150382B2 (ja) * 2008-06-24 2013-02-20 株式会社アルバック 表示装置用パネル、液晶表示装置、配線形成方法
JP2010034031A (ja) 2008-06-30 2010-02-12 Panasonic Corp プラズマディスプレイパネルおよびその製造方法
JP2010015858A (ja) 2008-07-04 2010-01-21 Panasonic Corp プラズマディスプレイパネルおよびその製造方法
JP2010015857A (ja) 2008-07-04 2010-01-21 Panasonic Corp プラズマディスプレイパネルおよびその製造方法
JP2010040238A (ja) 2008-08-01 2010-02-18 Panasonic Corp プラズマディスプレイパネルの製造方法
DE102009009337A1 (de) * 2009-02-17 2010-08-19 Evonik Degussa Gmbh Verfahren zur Herstellung halbleitender Indiumoxid-Schichten, nach dem Verfahren hergestellte Indiumoxid-Schichten und deren Verwendung
KR101260957B1 (ko) * 2010-12-31 2013-05-06 연세대학교 산학협력단 산화물 박막용 조성물, 산화물 박막용 조성물 제조 방법, 산화물 박막용 조성물을 이용한 산화물 박막 및 전자소자
JP2012144384A (ja) * 2011-01-07 2012-08-02 Tokyo Institute Of Technology 導電性酸化亜鉛膜の製造方法
KR101228743B1 (ko) * 2011-06-13 2013-01-31 주식회사 포스코 태양전지용 기판 및 그 제조방법
KR101242942B1 (ko) * 2011-06-13 2013-03-12 주식회사 포스코 태양전지용 기판 및 그 제조방법
KR101228692B1 (ko) * 2011-06-13 2013-02-01 주식회사 포스코 ZnO계 전극층이 구비된 박막형 태양전지용 기판의 제조방법 및 이를 이용한 박막형 태양전지용 기판
CN103194116A (zh) * 2012-01-09 2013-07-10 深圳市纳宇材料技术有限公司 一种油墨、透明导电线路及透明导电线路的制备方法
CN105489265B (zh) * 2015-12-03 2017-03-22 佛山市首诺新能源材料有限公司 一种用于导电线路的喷墨打印透明纳米导电银溶液及其制备方法和施工方法
CN105436515B (zh) * 2015-12-03 2017-09-29 佛山市首诺新能源材料有限公司 一种超细导电线路用纳米银溶液的制备方法
JP6461860B2 (ja) * 2016-05-30 2019-01-30 日鉄ケミカル&マテリアル株式会社 透明導電性フィルムの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249126A (ja) * 2002-02-26 2003-09-05 Ulvac Japan Ltd 低抵抗透明導電膜及びその製造法
JP2003249131A (ja) * 2002-02-26 2003-09-05 Fuji Photo Film Co Ltd 透明導電膜の製造方法
JP2003249132A (ja) * 2002-02-26 2003-09-05 Ulvac Japan Ltd 低抵抗透明導電膜の製造法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4842705A (en) * 1987-06-04 1989-06-27 Siemens Aktiengesellschaft Method for manufacturing transparent conductive indium-tin oxide layers
JPH02234309A (ja) * 1989-03-06 1990-09-17 Japan Synthetic Rubber Co Ltd 導電性皮膜形成用組成物
US6534183B1 (en) * 1998-08-31 2003-03-18 Idemitsu Kosan Co., Ltd. Target for transparent electroconductive film, transparent electroconductive material, transparent electroconductive glass, and transparent electroconductive film
US6376691B1 (en) * 1999-09-01 2002-04-23 Symetrix Corporation Metal organic precursors for transparent metal oxide thin films and method of making same
JP4099911B2 (ja) * 1999-10-07 2008-06-11 日立電線株式会社 透明導電膜形成基板及び形成方法
US6495709B1 (en) * 2000-03-16 2002-12-17 Symetrix Corporation Liquid precursors for aluminum oxide and method making same
US7507447B2 (en) * 2002-02-26 2009-03-24 Fujifilm Corporation Transparent conductive film, method for producing same and method for forming pattern
JP4807933B2 (ja) 2003-12-17 2011-11-02 株式会社アルバック 透明導電膜の形成方法及び透明電極

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249126A (ja) * 2002-02-26 2003-09-05 Ulvac Japan Ltd 低抵抗透明導電膜及びその製造法
JP2003249131A (ja) * 2002-02-26 2003-09-05 Fuji Photo Film Co Ltd 透明導電膜の製造方法
JP2003249132A (ja) * 2002-02-26 2003-09-05 Ulvac Japan Ltd 低抵抗透明導電膜の製造法

Also Published As

Publication number Publication date
US20060251818A1 (en) 2006-11-09
CN100449652C (zh) 2009-01-07
EP1696443A1 (en) 2006-08-30
EP1696443A4 (en) 2010-07-28
JP2005183054A (ja) 2005-07-07
KR101157854B1 (ko) 2012-06-22
EP1696443B1 (en) 2013-07-03
JP4807933B2 (ja) 2011-11-02
KR20060117871A (ko) 2006-11-17
CN1723510A (zh) 2006-01-18

Similar Documents

Publication Publication Date Title
WO2005059927A1 (ja) 透明導電膜の形成方法及び透明電極
WO2005081265A1 (ja) 透明導電膜形成用分散液、透明導電膜の形成方法及び透明電極
EP1840244B1 (en) Method for forming metal thin film, and metal thin film
JP5139659B2 (ja) 銀粒子複合粉末およびその製造法
CN108098191B (zh) 一种铜纳米颗粒焊膏的制备方法及其产品
JP5761483B2 (ja) 銀微粒子とその製造方法、並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス
WO2011040521A1 (ja) 銀微粒子及びその製造方法、並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス
JP4756163B2 (ja) 複合粒子粉の分散液及びペースト並びにこれに用いる銀粒子粉の製造法
JP5785023B2 (ja) 銀粒子分散体組成物、これを用いた導電性回路および導電性回路の形成方法
US20200131392A1 (en) Copper particle mixture and method for manufacturing same, copper particle mixture dispersion, ink containing copper particle mixture, method for storing copper particle mixture, and method for sintering copper particle mixture
CN105355881B (zh) 一种石墨烯复合材料及其制备方法
JP2017179551A (ja) ニッケル粒子、導電性ペースト、内部電極及び積層セラミックコンデンサ
TW201610005A (zh) 核殼型金屬微粒子之製造方法、核殼型金屬微粒子、導電性墨水及基板之製造方法
JP5446097B2 (ja) 導電性基板及びその製造方法
WO2015129781A1 (ja) 金属ナノワイヤー形成用組成物、金属ナノワイヤー及びその製造方法
KR101635848B1 (ko) 탄소 비결합성 금속 나노입자가 함유된 잉크 기제 제조 방법 및 금속 나노입자가 분산된 잉크
WO2012053456A1 (ja) 水素化銅微粒子分散液の製造方法、導電インクおよび導体付き基材の製造方法
JP6136622B2 (ja) 透明導電膜用水系塗工液及びこれを用いた透明導電膜
JP2009062611A (ja) 金属微粒子材料、金属微粒子材料分散液及びこれを含む導電性インキ、並びにこれらの製造方法
JP2012031478A (ja) 銀微粒子とその製造方法、並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス
JP5005362B2 (ja) 銀粒子分散液およびその製造方法
JP2012004030A (ja) 金属酸化物半導体薄膜形成用分散組成物、及び、金属酸化物半導体薄膜の製造方法
JP2015056392A (ja) 導電性ペースト材料の製造と製造方法
JP2012048949A (ja) 金担持粒子及びその製造方法、並びにその金担持粒子を用いた導電性膜及びその製造方法
JP2003249132A (ja) 低抵抗透明導電膜の製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020057011809

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048016926

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004807305

Country of ref document: EP

Ref document number: 10541039

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006251818

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004807305

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057011809

Country of ref document: KR