WO2005040645A1 - 3ピース組合せオイルリング - Google Patents

3ピース組合せオイルリング Download PDF

Info

Publication number
WO2005040645A1
WO2005040645A1 PCT/JP2004/015842 JP2004015842W WO2005040645A1 WO 2005040645 A1 WO2005040645 A1 WO 2005040645A1 JP 2004015842 W JP2004015842 W JP 2004015842W WO 2005040645 A1 WO2005040645 A1 WO 2005040645A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil ring
spacer expander
expander
nitriding
oil
Prior art date
Application number
PCT/JP2004/015842
Other languages
English (en)
French (fr)
Inventor
Junya Takahashi
Gyo Muramatsu
Miyuki Usui
Original Assignee
Kabushiki Kaisha Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Riken filed Critical Kabushiki Kaisha Riken
Priority to JP2005515002A priority Critical patent/JPWO2005040645A1/ja
Priority to US10/542,634 priority patent/US20060061043A1/en
Priority to EP04792963A priority patent/EP1686295B1/en
Publication of WO2005040645A1 publication Critical patent/WO2005040645A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/06Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction using separate springs or elastic elements expanding the rings; Springs therefor ; Expansion by wedging
    • F16J9/064Rings with a flat annular side rail
    • F16J9/066Spring expander from sheet metal
    • F16J9/068Spring expander from sheet metal corrugated in the axial direction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races

Definitions

  • the present invention relates to a three-piece combination oil ring mounted on a piston of an internal combustion engine and performing oil control.
  • Fig. 6 shows a cross-sectional configuration of a general piston ring in an internal combustion engine.
  • the piston 100 is formed with ring grooves 110, 120, and 130 for mounting a piston ring.
  • two pressure rings 200 and 210 mainly for gas sealing and an oil control
  • a pair of combined oil rings 220 mainly for an oil sealing function is mounted.
  • the outer peripheral sliding surfaces of these rings slide on the inner wall of the cylinder 300.
  • the combined oil ring shown in the figure is composed of a pair of upper and lower side rails 222 in the axial direction, and a spacer expander 224 that is combined between them and presses the inner peripheral side force of the side rails 222 to generate tension on the side rails 222.
  • a three-piece force is also included.
  • the spacer expander also has a radial expander 224 shown in Fig. 7, but a structure that supports the side rails 222 and generates tension is provided. Is basically the same.
  • the side rail 222 (Fig. 6) is a spacer expander 224 that presses the side rail. Due to the angle of the lug (side rail pressing piece) 224a, the lug is pressed with a component force in the radial direction toward the cylinder wall surface and in the axial direction toward the upper and lower surfaces of the ring groove. Therefore, since the side rail 222 exerts a sealing function on the cylinder wall surface and on the upper and lower surfaces of the ring groove, the thinned three-piece combination oil ring has begun to be widely used as a structure capable of reducing oil consumption.
  • this type of three-piece oil ring has one of the side rail outer peripheral surface 222a that slides on the cylinder wall surface, the side rail inner peripheral surface 222b that comes into contact with each other, and the spacer 224a.
  • the force with which the spacer expander presses the side rails is reduced, so that the oil removing function is reduced.
  • the wear of the ears (224a) is greater than the wear of the inner peripheral surface (222b) of the side rail.
  • a decrease in the oil purging function due to wear of the ears (224a) leads to an increase in oil consumption.
  • a martensitic stainless steel is provided on the side rail.
  • Patent Document 1 JP-A-56-66429 (Patent Document 1), JP-A-56-66430 (Patent Document 2), JP-A-57-206752 (Patent Document 3), and JP-A-58-5456 (Patent Document 4), JP-A-60-116844 (Patent Document 5), JP-A-5-33866 (Patent Document 6), and JP-A-6-235461 (Patent Document 7)
  • the expander is subjected to soft nitriding or gas nitriding.
  • An example of performing gas nitriding on a side rail is described in Tribologist, Vol. 44, No. 3 (1999), page 19 (Non-Patent Document 1).
  • the nitriding of austenitic stainless steel used in spacer expanders is caused by the point and the face-centered cubic lattice (fee) structure of austenitic iron, which must be reduced without first reducing the dense surface passive film. Extremely slow, the nitridation rate is a practical issue.
  • the nitrided layer structure of austenitic stainless steel it has long been known that chromium nitride and iron nitride are the main constituent components, but the following findings have been obtained through research since the 1970s.
  • Nitriding has excellent corrosion resistance to acids (Fe, Cr, Ni, ⁇ ) N phase (Takai et al.
  • Patent Document 1 JP-A-56-66429
  • Patent Document 2 JP-A-56-66430
  • Patent Document 3 JP-A-57-206752
  • Patent Document 4 JP-A-58-5456
  • Patent Document 5 JP-A-60-116844
  • Patent Document 6 JP-A-5-33866
  • Patent Document 7 JP-A-6-235461
  • Non-Patent Document 1 Tribologist, Vol. 44, No. 3 (1999), p. 19
  • Non-Patent Document 2 Kazuo Takai, Hiroo Fujimura, Takao Takase, "Surface Layer Structure, Corrosion Resistance and Hardness of Ion-nitrided 18-8 Stainless Steel”: Heat Treatment 25 Vol. 4 (8), 191-195, 1985.
  • Non-Patent Document 3 Kazuka Teramon “Low-temperature nitriding process and new functionality”: Abstracts of the 105th Annual Meeting of Surface Technology Association, 391-394 (2002.2.8 accepted).
  • Non-Patent Document 4 Kuniyasu Genma, "Gas nitriding and nitrided layer growth promotion mechanism of austenitic stainless steel”: Surface Technology, Vol. 54, No. 3, pp. 193-199, 2003.
  • the nitrided layer is composed of a CrN phase and a FeN phase ( Also called ⁇ 'phase
  • the thinning of the oil ring improves the oil consumption by improving the followability to the cylinder wall, but the fine combustion products and the like deposited on the oil ring are reduced.
  • Foreign matter becomes difficult to be discharged, and the contact surface wear between the inner peripheral surface of the side rail and the ear of the spacer expander rapidly increases!
  • the sediment adheres between the spacer expander and the side rail supported by the spacer expander, which inhibits transmission of tension to the side rail by the spacer expander. It causes the so-called "stick phenomenon", which lowers the oiling function.
  • a CrN phase and an Fe ⁇ ( ⁇ ') phase are mainly formed by soft nitriding or gas nitriding at the lugs of a spacer expander.
  • a first object of the present invention is to provide a low tension three-piece combination oil ring which improves the wear resistance of the spacer expander ear contacting the inner peripheral surface of the side rail and does not cause a decrease in tension. (See (a) above).
  • a second object of the present invention is to prevent the combustion products and the like from depositing and sticking to the side rails and the surface of the spacer expander, thereby preventing the stick from deteriorating the oil seal function.
  • a low-tension three-piece combination oil ring having a high oil control function is provided by securing a passage for excess lubricating oil that has been removed from the cylinder wall by the side rail (see (b) above). , (c)).
  • a third object of the present invention is to achieve the above first and second objects at the same time, to provide an engine of various specifications having a high oil control function, and to use various lubricating oils and fuels. Underneath, excellent durability and low oil consumption ⁇ Low tension 3-piece combination oil A ring shall be provided.
  • the so-called S phase was not considered to exist stably until a high temperature of about 703K (430 ° C), and was transformed into a nitride at a high temperature, and as a result, the corrosion resistance of the austenitic stainless steel was considered to deteriorate (see above source).
  • the present inventors performed salt bath nitriding and gas nitriding at 570 ° C. for 30 minutes on a SUS304 space exander to identify the phases constituting the nitrided layer. It should be noted that, despite the high temperature of 570 ° C in gas nitriding, the S phase (Fe, Cr, Ni, Fact
  • the oil ring according to the first object of the present invention is at least a side rail inner peripheral surface in a spacer oil expander and a pair of side oil rails supported by the spacer expander and having a pair of side rail forces.
  • the austenitic stainless steel expander ears that come into contact with the gas are subjected to gas nitriding at a temperature of 470 ° C or higher to obtain a 10–60 ⁇ m-thick Cu-K ⁇
  • gas nitriding does not use a gas having a carbon source such as cyanide salt (NaCN) or cyanate (NaCNO), but uses a gas containing or consisting of NH.
  • N phase is a solid solution of Cr and has excellent corrosion resistance to acids.
  • the CrN phase was precipitated in the (Fe, Cr, Ni,
  • Corrosion resistance is reduced by the process, so it is treated under the nitriding condition where the (Fe, Cr, Ni, ...) N phase remains.
  • the gas nitriding treatment is performed at 470 ° C. or more for 10 minutes or more. Considering the disappearance of the (Fe, Cr, Ni,...) N phase within the range where the specified nitrided layer thickness can be obtained
  • the meaning of Ni, ... means that elements of austenitic stainless steel other than Ni etc. can be dissolved.
  • the nitride layer according to the present invention is a nitride layer having a thickness of 10 to 60 m. If the thickness of the nitrided layer is less than 10 m, sufficient durability cannot be obtained, and if the thickness of the nitrided layer exceeds 60 m, the variation in tension becomes large, so that it can be manufactured with a predetermined tolerance width.
  • the causes of the large variation in tension are the increase in Young's modulus due to nitriding and the length of development (length in the circumferential direction). In addition, the processing time becomes longer, and the (Fe, Cr, Ni, ...) N phase disappears.
  • the thickness of the nitride layer of the present invention is
  • the nitrided layer according to the present invention has a sufficient hardness from the viewpoint of abrasion resistance.
  • a hardness of HvlOO-1500 is obtained.
  • a second object of the present invention is to prevent the combustion products and the like from depositing and sticking to the surfaces of the side rails and the spacer expander, thereby preventing the stick from deteriorating the oil seal function.
  • the present invention provides a low tension three-piece combination oil ring having a high oil control function by securing a passage for excess lubricating oil that has been removed from the cylinder wall by a side rail. That is, the present inventors focused on the state of sticking between the combustion products and the surface of the oil ring, and focused on at least the surface of the spacer expander of the three-piece combination oil ring facing the side rail side surface or at least the spacer of the side rail.
  • the oil ring according to the second object of the present invention is a spacer oil expander and a pair of side rails supported by the spacer expander that also have a pair of side rails.
  • a resin film is coated on at least a surface facing the side rail side surface or at least a surface facing the spacer expander of the side rail.
  • the location where the combustion products are most likely to adhere is between the ears of the spacer expander and the outer peripheral projections that support the side rails, and a resin film is coated on the spacer. If it is to be covered, apply a resin film to at least that part. The same effect can be obtained by coating a resin film on the surface of the side rail facing the spacer expander. Of course, it is more effective if both are coated with a resin film.
  • the oil ring according to the third object of the present invention is a combined oil ring including a spacer expander and a pair of side rails supported by the spacer expander.
  • FIG. 1 is a view showing a three-piece combination oil ring according to the present invention, wherein FIG. 1 (a) shows a resin film coated only between a lug of a space pendant and an outer peripheral projection supporting a side rail.
  • FIG. 4B is a cross-sectional view showing an example of coating
  • FIG. 4B is a cross-sectional view showing an example in which a resin film is coated on the entire surface of the spacer expander up to the outer peripheral side protrusion
  • () Is a cross-sectional view showing an example in which only the side surface of the side rail facing the spacer expander is coated with a resin film.
  • FIG. 2 shows the results of comparing the X-ray diffraction chart of Example 1 (J1) in which gas nitriding was performed at 570 ° C. for 30 minutes for each nitride layer depth.
  • FIG. 3 shows a result of comparing an X-ray diffraction chart of Example 2 (J2) in which gas nitriding was performed at 530 ° C. for 30 minutes according to a depth of a nitrided layer.
  • FIG. 4 shows the results of comparing the X-ray diffraction chart of Comparative Example 1 (HI), which was subjected to salt bath nitriding at 570 ° C. for 30 minutes, with respect to the nitride layer depth.
  • FIG. 5 is a diagram showing an optical micrograph of the nitrided layer
  • FIG. 5 (a) shows an optical micrograph of the nitrided layer in Comparative Example 2 (H2) in which gas nitriding was performed at 450 ° C. for 60 minutes.
  • FIG. 13B shows an optical microscope photograph of the nitrided layer in Example 9 (J9) in which the gas was nitrided at 530 ° C. for 30 minutes.
  • FIG. 6 is a cross-sectional view showing a state in which a piston on which a conventional piston ring is mounted is in a cylinder.
  • the oil ring shown in the figure is a typical three-piece combination oil ring having a waveform in the axial direction. Is shown.
  • FIG. 7 shows a typical three-piece combination oil ring having a conventional radially corrugated shape.
  • FIG. 1 schematically shows an example of a portion covered with a resin film 31 in a three-piece piston ring according to an embodiment of the present invention.
  • Fig. 1 (a) shows only the space between the ears of the spacer expander and the outer peripheral protrusion supporting the side rail
  • Fig. 1 (b) shows the distance between the ears of the space expander and the outer protrusion.
  • Fig. 1 (c) is the side surface between the ear of the spacer expander and the outer peripheral side projection supporting the side rail, and the side surface of the side rail facing the spacer spacer.
  • Fig. 1 (d) is the side surface.
  • a resin film is applied only to the side of the rail facing the spacer expander.
  • the thickness of the resin film to be coated is preferably 0.5 to 20 m.
  • the length is preferably 110 m.
  • the resin film according to the present invention which is chemically stable and non-adhesive to carbon-based combustion products, may be any resin having a heat resistance of about 150 ° C.
  • Resins can also be used, but fluorine resins, polyamideimide (PAI), polyimide, butyl chloride, polyester, and the like are preferable.
  • PAI polyamideimide
  • fluororesins are more effective in terms of desirable properties such as low friction coefficient and self-lubrication.
  • fluororesin is chemically stable and excellent in non-adhesiveness, has high heat resistance, and has a low coefficient of friction and excellent self-lubricating properties. Is a very difficult substance.
  • a fluororesin when using a fluororesin, it is necessary to use it in combination with a binder.
  • the binder the above-mentioned heat-resistant resins such as polyamideimide (PAI), polyimide, butyl chloride, and polyester can be used.
  • the fluorine content is suitably 70% by weight or less in consideration of the effect of the binder and the like.
  • the fluororesin polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), and perfluoroethylene propene copolymer (FEP) can be easily used because of availability. From the viewpoint of lubricity, disulfide molybdenum (MoS), boron nitride (BN), C
  • TiO 2 titanium oxide
  • 12CaO 7 Al 0 C12A7 compound (12CaO 7 Al 0) having a catalytic function of decomposing carbon
  • the novel nitriding method of austenitic stainless steel that can be applied to the oil ring nitriding according to the first object of the present invention is a method of nitriding NH and N gas at a nitriding temperature of 470 to 600 ° C.
  • the nitriding time was suitably in the range of 10 minutes to 1 hour.
  • the nitriding temperature is lower than 470 ° C, it takes 1 hour or more to form the nitrided layer according to the present invention at 10 / zm or more, and when the temperature exceeds 600 ° C, it is formed (Fe, Cr, Ni, N
  • the four phases are decomposed too much and disappear.
  • the nitriding time shown here naturally depends on the size and processing amount of the furnace for performing the nitriding treatment, and it is needless to say that it is not specified in a strict sense.
  • reduction of the passive film is essential.
  • the reduction method can use conventional methods such as the halogenation compound addition method.
  • Reducing agents containing carbon sources such as CN- ions generate (Fe, Cr, Ni, Inhibit
  • the nitriding treatment furnace has a matsuful structure, and that the inside of the furnace be in a vacuum state before performing the above-described reduction treatment and nitriding treatment.
  • the resin film can be conveniently coated by spray application.
  • electrostatic painting dipping, screen printing, node printing, etc. can also be used.
  • the solvent used Prior to coating, it is necessary to adjust the viscosity to an appropriate value for each coating method.
  • the solvent used must dissolve the resin and completely volatilize at a temperature that does not decompose the resin.
  • fluorine resin when fluorine resin is contained, it is important to dissolve only the binder without dissolving the fluorine resin.
  • N-methyl-2-pyrrolidinone to which xylene or the like is added as a main solvent
  • pyrrolidone N-methyl-2-pyrrolidinone
  • the thickness of the resin film to be coated is suitably 0.5 to 20 m, and the viscosity must be sufficiently low depending on the application method used.
  • the oil ring according to the present invention has a high hardness and excellent corrosion resistance in the nitrided layer (Fe, Cr, Ni,
  • the oil ring according to the present invention is obtained by coating a resin film on at least the surface of the spacer expander facing the side rail side surface or at least the surface of the side rail facing the spacer expander! Therefore, by preventing sticking of the side rails and spacer expander by the combustion products, the oil seal function of the stick is not reduced, and the cylinder wall force is reduced by the side rails. By securing excess oil passages, it has become possible to provide a low-tension 3-piece oil ring with high oil control function.
  • the oil ring according to the present invention can be used in an engine of various specifications having an enhanced oil control function and in an environment of use of various lubricating oils and fuels by simultaneously performing the above-mentioned measures against ear wear and sticking.
  • Gas nitriding was performed at 570 ° C and 530 ° C for 30 minutes.
  • the nitriding treatment was performed using a furnace with a Matsufuru structure, and the temperature was raised after the furnace was once evacuated.
  • the passivation film was first reduced by adding a predetermined amount of salted ammonium at a predetermined timing.
  • salt bath nitriding was also subjected to salt bath nitriding at 570 ° C. for 30 minutes after degreasing and washing.
  • electrolytic polishing was performed in an electrolyte consisting of phosphoric acid, oxalic acid, and gelatin at a current density of 5 mA / mm 2 and 25-30 ° C.
  • a qualitative analysis was performed to identify the phases that make up the nitrided layer by a technique called X-ray diffraction after polishing a predetermined depth of the nitrided layer. X-ray diffraction was performed with Cu- ⁇ ray, tube voltage of 40 kV, and tube current of 30 mA.
  • FIG. 2 shows the results obtained by comparing the results of X-ray diffraction of Example 1 (Jl) gas-nitrided at 570 ° C. for 30 minutes for each depth of the nitrided layer.
  • Figure 3 shows the X-ray diffraction results of Example 2 (J2) of gas nitriding at 530 ° C for 30 minutes, and the X-ray diffraction of Comparative Example 1 (HI) of salt bath nitriding at 570 ° C for 30 minutes.
  • the results are shown in FIG. Table 1 summarizes these results.
  • the ⁇ phase is (Fe, Ni, ⁇ ) N phase
  • the y f phase is (Fe, Ni, ⁇ ) N phase
  • Example 2 Using a sample cut from a SUS304 strip with a width of 2.70 mm, a thickness of 0.25 mm, and a length of 20 mm, which is the same as in Example 1, and after degreasing and washing, the atmosphere shown in Table 2 was used in the same atmosphere as in Example 1. Gas nitriding was performed under the conditions of temperature and holding time. The passivation film was reduced in the same manner as in Example 1. For the sample after the nitriding treatment, the thickness of the nitrided layer and the area ratio (%) by image analysis of the (Fe, Cr, Ni,...) N phase were determined from the optical micrograph of the cross section. Optical microscopy
  • the mirror photograph shows that the (Fe, Cr, Ni, ⁇ ) N phase decomposed into CrN phase, ⁇ 'phase, etc. appears black
  • Photographs were taken of a sample glass that had been subjected to an etching process using a marble solution.
  • the Vickers hardness at a load of 25 g on the surface of the nitride layer was measured. Table 2 shows the results.
  • Nitriding condition Nitriding layer (Fe, Cr, Ni, ...) 4 N phase Temperature (in) Time (min) Thickness (/ m) Area ratio of hardness (Hv) (3 ⁇ 4;)
  • FIG. 5 shows an optical microscope photograph of the nitrided layer in the treatment of Comparative Example 2 (H2) (450 ° C, 60 minutes), and Fig. Figure (b) shows an optical micrograph of the nitrided layer in the treatment of Example 9 (J9) (530 ° C, 30 minutes).
  • the (Fe, Cr, Ni, ⁇ ) N phase is formed over the entire nitrided layer, but the thickness is small (7 / ⁇ ⁇ ), 530 ° C, Half an hour
  • a SUS304 strip having a width of 2.50 mm and a thickness of 0.25 mm was formed into a spacer expander having an axial waveform by a gear forming method.
  • the spiral-shaped spacer expander was cleaned and degreased, and then subjected to Example 4, Example 4 in Example 19, Example 5 in Example 20, Example 7 in Example 21, and Example 10 in Example 22.
  • Example 23 was Example 13;
  • Example 24 was Example 16;
  • Comparative Example 4 was Comparative Example 2; and Comparative Example 5 was nitrided under the same conditions as Comparative Example 1.
  • the spacer expander is designed so that a predetermined tension is generated by a precise waveform shape and a fixed deployment length.
  • a SUS440B strip having a width of 2.30 mm and a thickness of 0.40 mm was used. From this strip, a side rail is formed into a spiral shape of predetermined dimensions by continuous round winding, and a nitriding process is performed to a nitride layer thickness of about 50 m by gas nitriding, and the cutting, outer wrap, and puff finishing processes are performed. After that, it was changed to Side Reynore.
  • the wear amount of the spacer expander ears of the oil ring according to the present invention is within 20 m even after 250 hours of the endurance test under the above operating conditions, and the conventional salt bath-nitrided ears Compared with (Comparative Example 5, H5), the sample shows sufficient durability.
  • Example 19 Using the same side rail and spacer expander as in Example 19 and Comparative Example 5, a resin film having the composition shown in Table 4 was spray-coated at a predetermined location in a predetermined amount, and baked at 210 ° C. Coated.
  • the nitriding condition J19 (H5) means that gas nitriding was performed under the same conditions as those of the side rail and spacer expander of Example 19 (Comparative Example 5). I do.
  • the covered portions a, b, c, and d indicate (a), (b), (c), and (d) in FIG. "No (medium, small, or fine)” means that the oil ring tension has not declined even if there is some carbon accumulation (many, medium, small, and minute indicate the degree of carbon accumulation).
  • the sticking “Yes (many)” means that the tension of the oil ring has decreased due to the accumulation of carbon.
  • Comparative Example 6 (H6) in which the adhesion was “presence (many)”, the oil consumption rate was also increased.
  • the three-piece combination oil ring according to the present invention improves the performance of an oil ring used in a gasoline internal combustion engine and a diesel internal combustion engine, and uses a lubricating oil. Contribute to reducing ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

 軸方向上下一対のサイドレール222と、その間に組み合わされ、サイドレール222の内周側から押圧しサイドレール222に張力を発生させるスペーサエキスパンダ224とを含む3ピースから構成される3ピース組合せオイルリングである。少なくともサイドレール内周面と接触するオーステナイト系ステンレス製スペーサエキスパンダ耳部に、470°C以上の温度でガス窒化処理を施して、厚さ10~60μmであり、かつ、Cu-KαX線回折において2θ=40°及び2θ=46°にピークを持つ相を含むガス窒化層を形成し、且つ/又は、スペーサエキスパンダ(7)の少なくともサイドレール側面と対向する表面又は少なくともサイドレール(5,6)のスペーサエキスパンダ(7)と対向する表面に樹脂皮膜(31)を被覆する。     

Description

明 細 書
3ピース組合せオイルリング
技術分野
[0001] 本発明は、内燃機関のピストンに装着され、オイルコントロールを行う 3ピース組合 せオイルリングに関する。
背景技術
[0002] 地球環境保護の一貫として、自動車の燃費向上や排気ガス浄ィ匕が強く求めら れている。そのため内燃機関各部の摩擦力(フリクション)低減やエンジンオイル消費 量の低減は重要な課題となっており、これらの課題を解決するうえでピストンリングの 果たす役割は大きい。ピストンリングの設計においては、摩擦力低減のためのピスト ンリングの低張カイ匕(オイルリングの張力は 10— 20Nというレベルまで低張力化するこ とが試みられている。)やオイル消費改善のためのピストンリングの薄幅化が注目され ている。薄幅化は、ピストンリングの断面係数を小さくし、シリンダ壁への追従性を向 上させることによりオイル消費を改善する。
[0003] 内燃機関における一般的なピストンリングの断面構成を第 6図に示す。ピストン 100には、ピストンリングを装着するためのリング溝 110, 120, 130が形成され、これら のリング溝内に、ガスシール作用を主目的とする 2本の圧力リング 200, 210と、オイル コントロール及びオイルシール作用を主目的とする 1組の組合せオイルリング 220が装 着される。ピストン 100の往復動に伴い、これらリングの外周摺動面がシリンダ 300の内 壁と摺動される。
同図に示す組合せオイルリングは、軸方向上下一対のサイドレール 222と、その間 に組み合わされ、サイドレール 222の内周側力 押圧しサイドレール 222に張力を発 生させるスぺーサエキスパンダ 224とを含む 3ピース力も構成される。
[0004] スぺーサエキスパンダには、同図に示す軸方向波形形状の他に第 7図に示す半径 方向波形形状のもの 224もあるが、サイドレール 222を支持し、張力を発生させる構造 は基本的に同じである。
サイドレール 222 (第 6図)は、サイドレールを押圧するスぺーサエキスパンダ 224の 耳部(サイドレール押圧片) 224aの角度により、シリンダ壁面に向かう半径方向及びリ ング溝上下面に向力う軸方向に分力をもって押圧される。よって、サイドレール 222は シリンダ壁面及びリング溝上下面にぉ 、てシール機能を発揮するため、特に薄幅化 された 3ピース組合せオイルリングはオイル消費の低減が図れる構造として広く用いら れ始めている。
しかし、この種の 3ピース組合せオイルリングは、シリンダ壁面と摺動するサイドレー ル外周面 222a、並びに、相互に接触しあうサイドレール内周面 222b及びスぺーサェ キスパンダの耳部 224aの何れか一つが摩耗すると、スぺーサエキスパンダがサイドレ 一ルを押圧する力が減少するので、オイル搔き機能が低下する。多くの場合、耳部 (224a)の摩耗がサイドレールの内周面 (222b)の摩耗より大きい。最近の低張力化の傾 向にあっては、耳部 (224a)の摩耗によるオイル搔き機能の低下がオイル消費の増大 に繋がる。
[0005] 一般に、サイドレール外周面とシリンダ壁面との間には潤滑オイルの油膜が存在 するが、サイドレール内周面とスぺーサエキスパンダ耳部とは、その間に十分な油膜 の存在しな! 、わゆる境界潤滑条件で、また摺動と!、う観点でも摺動速度がほとんど ゼロと 、う厳し 、摩耗環境におかれて 、る。
[0006] また、潤滑オイルが燃料とともに燃焼すると、カーボン系燃焼生成物が生成され 、潤滑オイルに混ざってエンジンブロック内を循環する。オイルリングは複雑な形状で あるため、これらの燃焼生成物はオイルリングに付着しやすぐ一旦付着した燃焼生 成物はその部分のオイルの流れを阻害するためさらに堆積していくという悪循環が生 じる。オイルリング付近は 100— 150°Cの温度環境でもあり、ひどい場合には、ピストン との固着 (スティック)が生じることになる。固着対策としては、ピストンのオイルリング溝 の軸方向幅とオイルリング幅との差であるリング溝のクリアランスを大きくすることが有 効である力 クリアランスを大きくすることは、ピストンの上下動に伴いサイドレールが ピストン溝の中で上下に振動する幅が大きくなることから、溝摩耗の発生やシール機 能の低下、さらには振動音問題を引き起こす。よって、クリアランスの拡大には限界が める。
[0007] オイルリングの摩耗対策としては、一般に、サイドレールにはマルテンサイト系ステ ンレス鋼を用いて、ガス窒化ゃイオン窒化処理が施され、スぺーサエキスパンダには 軟窒化処理されたオーステナイト系ステンレス鋼が用いられて 、る。特開昭 56-66429 号公報 (特許文献 1)、特開昭 56-66430号公報 (特許文献 2)、特開昭 57-206752号 公報 (特許文献 3)、特開昭 58-5456号公報 (特許文献 4)、特開昭 60-116844号公報 (特許文献 5)、特開平 5-33866号公報 (特許文献 6)、特開平 6-235461号公報 (特許 文献 7)は、スぺーサエキスパンダに軟窒化又はガス窒化が施される例を開示してい る。トライボロジスト Vol.44, No.3(1999)第 19頁(非特許文献 1)にはサイドレールにガ ス窒化を施す例が記述されて 、る。
スぺーサエキスパンダに用いられるオーステナイト系ステンレス鋼の窒化は、緻密 な表面の不働態膜を先ず還元しなければ窒化されな 、点と、オーステナイト鉄の面 心立方格子 (fee)構造に起因する極めて遅 、窒化速度が実務上の課題となって 、る 。オーステナイト系ステンレス鋼の窒化層組織については、窒化クロム、窒化鉄が主 たる構成成分であることは古くから知られていたが、 1970年代以降の研究により次 の知見が得られている。市井一男、藤村侯夫、高瀬孝夫「イオン窒化処理した 18-8ス テンレス鋼の表面層組織と耐食性および硬さ」:熱処理 25卷 4号 (8), 191— 195頁, 1985 (非特許文献 2)に報告しているように、 400°C, 4時間, N: H =1:9の条件でイオン
2 2
窒化すると、酸に対する耐食性に優れる (Fe, Cr, Ni, · ··) N相(巿井らは S相と名付け
4
た。)が形成される。この相は、 Cu-Κ α Χ線回折によれば、 2 Θ =40° 及び 2 Θ =46° にピークを持つ。また、寺門一佳が「低温窒化プロセスと新機能性」:表面技術協会 第 105回講演大会要旨集、 391— 394頁 (2002. 2. 8受理)(非特許文献 3)に、
AISI304, 316, 321について窒化温度と窒化時間に対して上記 S相の存在と CrNが析 出する境界条件を求めた結果を紹介している力 AISI304においては、 450°C以下の 窒化温度条件でないと S相が存在し得ないことが読みとれる。一方、ガス窒化につい ても、源馬國恭「オーステナイト系ステンレス鋼のガス窒化および窒化層成長促進機 構」:表面技術 54卷 3号, 193— 199頁, 2003 (非特許文献 4)に解説しているように、 415°Cや 420°Cの低温での NH窒化で S相が観察された従来例が存在するのみであ
3
る。
特許文献 1:特開昭 56-66429号公報 特許文献 2:特開昭 56-66430号公報
特許文献 3:特開昭 57-206752号公報
特許文献 4:特開昭 58-5456号公報
特許文献 5:特開昭 60-116844号公報
特許文献 6:特開平 5-33866号公報
特許文献 7:特開平 6-235461号公報
非特許文献 1:トライボロジスト Vol.44,No.3(1999)第 19頁
非特許文献 2 :巿井一男、藤村侯夫、高瀬孝夫「イオン窒化処理した 18- 8ステンレス 鋼の表面層組織と耐食性および硬さ」:熱処理 25卷 4号 (8), 191— 195頁, 1985。 非特許文献 3:寺門一佳「低温窒化プロセスと新機能性」:表面技術協会第 105回講 演大会要旨集、 391— 394頁(2002.2.8受理)。
非特許文献 4:源馬國恭「オーステナイト系ステンレス鋼のガス窒化および窒化層成 長促進機構」:表面技術 54卷 3号, 193— 199頁, 2003。
発明の開示
[0009] スぺーサエキスパンダで、一般的に採用されている 550— 600°C, 1時間程度保持さ れて行われる塩浴窒化ゃガス窒化では、窒化層は CrN相, Fe N相( γ ' 相とも呼ば
4
れる),及びその他の相から構成され、冒頭で述べたピストンリング使用環境では、耐 食性と耐摩耗性に劣るものであった。そのため、ガソリンエンジンにおいても、有鉛ガ ソリンを使用する場合又はガソリンにィォゥが数百 (300— 500) ΡΡΜ含有される場合に おいて、腐食摩耗は特に顕著である。このような場合、窒化されたスぺーサエキスパ ンダでは耳部 (224a,第 6図)の腐食摩耗が進み、張力の低下をきたし、オイル消費量 が増加する。また微細で硬質の燃焼生成物の粒子がサイドレール内周面 (226b,第 6 図)とスぺーサエキスパンダ耳部 (224a,第 6図)の接触面に介在し、耳部の摩耗を急 激に増加させる場合もある。さらに、近年の燃費向上手段としての直噴方式をガソリ ンエンジンに適用した場合には、ガソリンが潤滑オイルに混ざりやす 、ため潤滑条件 力 り厳しくなる。
[0010] また、前述したようにオイルリングの薄幅化は、シリンダ壁への追従性を向上させる ことによりオイル消費を改善するが、オイルリングに堆積される微細な燃焼生成物等 の異物が排出され難くなり、サイドレール内周面とスぺーサエキスパンダ耳部間の接 触面摩耗を急激に増力!]させるだけでなく、スぺーサエキスパンダとスぺーサエキスパ ンダに支持されるサイドレールとの間に堆積物の固着し、スぺーサエキスパンダによ るサイドレールへの張力伝達を阻害する 、わゆる「スティック現象」を起こし、オイル搔 き機能を低下させてしまう。また、サイドレールに搔き落とされた余剰の潤滑オイルは 、スぺーサエキスパンダの各ピッチの隙間(窓部)を通過し、ピストンのリング溝に設け られた貫通穴部を経て、ピストン内部に排出され、循環する。サイドレールとスぺーサ エキスパンダに堆積物が増加してくると、この潤滑オイルの循環通路も狭くなり、結果 としてオイル消費が増加してしまう。
[0011] 以上のように、燃費向上のため低張力化したオイルリングにおいては、スぺーサ エキスパンダの耳部に軟窒化又はガス窒化により CrN相、 Fe Ν ( γ ' )相を主とする
4
窒化層を設けても、(a)耳部の摩耗により張力が低下してしまい、多様なエンジン仕様 や使用環境下にお 、てオイル搔き機能の十分な寿命保証ができない問題があった。 またスぺーサエキスパンダとサイドレールに堆積物が固着することで、(b)張力がサイ ドレールに伝達されずにオイルシール機能を低下させることでのオイル消費の増加と 、(c)堆積物がオイル循環の通路を遮断してしまうことでのオイル消費の増加の問題 があった。
[0012] そこで、本発明の第 1の目的は、サイドレール内周面と接触するスぺーサエキスパ ンダ耳部の耐摩耗性を改善し、張力減退の起こらな 、低張力 3ピース組合せオイルリ ングを提供することとする(上記 (a)参照)。
[0013] また、本発明の第 2の目的は、サイドレールとスぺーサエキスパンダの表面に燃焼 生成物などを堆積'固着させないようにすることによりスティックによるオイルシール機 能の低下を起こさず、且つ、サイドレールによってシリンダ壁力 搔き落とされた余剰 の潤滑オイルの通路を確保することによりオイルコントロール機能の高い低張力 3ピ ース組合せオイルリングを提供することとする (上記 (b),(c)参照)。
[0014] さらに、本発明の第 3の目的は、上記の第 1及び第 2の目的を同時に達成し、オイ ルコントロール機能が高ぐ多様な仕様のエンジン及び多様な潤滑油や燃料の使用 環境下にお 、ても耐久性に優れ、オイル消費の少な ヽ低張力 3ピース組合せオイル リングを提供することとする。
[0015] 従来いわゆる S相は約 703K (430°C)の高温までは安定に存在せず、高温では窒 化物に変態し、その結果オーステナイト系ステンレスの耐食性は劣化すると考えられ ていた (前掲源馬「表面処理技術」第 21頁)。本発明者らは、 SUS304製のスぺーサェ キスパンダに 570°C、 30分の塩浴窒化及びガス窒化を施し、窒化層を構成する相の 同定を行った。その際、ガス窒化において 570°Cという高温にもかかわらず、巿井らや 寺門が報告している S相なる (Fe, Cr, Ni, · · ·) N相が形成されるという注目すべき事実
4
と、その相を形成させたスぺーサエキスパンダは実用面で優れた耐摩耗性を発揮す ることを発見した。すなわち、 (Fe, Cr, Ni, · · ·) N相は、塩浴窒化では形成されないが
4
、ガス窒化においては 570°Cという高温においても形成されるということを発見した。こ の理由について、本発明者らは、 Fe Cのほう力Fe Nよりも標準生成自由エネルギー
3 4
が低いため、窒化雰囲気中にカーボンと窒素の共存する環境においては、例えば、 塩浴窒化に使用されるシアン化塩 (NaCN)又はシアン酸塩 (NaCNO)はカーボン源と して作用し、被処理材中での Fe Nの生成が阻害されるためと考えた。なお、 Fe4Nは
4
(Fe, Cr, Ni, · · ·) N相生成において一種の核のような寄与をすると考えられる。
4
[0016] よって、本発明の第 1の目的に係るオイルリングは、スぺーサエキスパンダとスぺ ーサエキスパンダに支持される一対のサイドレール力もなる組合せオイルリングにお いて、少なくともサイドレール内周面と接触するオーステナイト系ステンレス製スぺー サエキスパンダ耳部に、 470°C以上の温度でガス窒化処理を施して、厚さ 10— 60 μ m でありかつ、 Cu-K α Χ線回折において 2 Θ =40° 及び 2 Θ =46° にピークを持つ相を 含むガス窒化層を形成したことを特徴とする。
[0017] 本発明において、ガス窒化とは、シアン化塩(NaCN)やシアン酸塩(NaCNO)のよ うなカーボン源を有するガスを使用せず、 NHを含むあるいはこれからなるガスを使
3
用して 470°C以上で行なう窒化処理である。 NHの残部は、 H ,Νなどである。本発明
3 2 2
のガス窒化処理では、塩浴窒化と異なり (Fe, Cr, Ni, · · ·) N相が生成される。(Fe, Cr,
4
Ni, · · ·) N相は、 Crを固溶するため酸に対する耐食性に優れる力 窒化処理中に、時
4
間の経過とともに分解反応によって該 (Fe, Cr, Ni, · · ·) N相中に CrN相が析出するた
4
め基地中の Crが減少して基地の耐食性が低下する。従って、高温で長時間の窒化 処理を行うと、耐食性に優れた (Fe, Cr, Ni,…) N相は消失し、 CrN相が析出したこと
4
により耐食性が低下するので、(Fe, Cr, Ni,…) N相が残存する窒化処理条件で処理
4
しなければならな!/、。本発明は窒化層中に Cu-K a X線回折にぉ 、て 2 Θ =40° 及び 2 Θ =46° にピークを持つ (Fe, Cr, Ni,…) N相が存在することを要件とするが、腐食
4
環境下では、窒化層中に少なくとも 30体積 %以上の該 (Fe, Cr, Ni,…) N相が含まれる
4
ことが好ましい。本発明者らの実験では、 470°C以上、 10分以上のガス窒化処理とす る。所定の窒化層の厚さが得られる範囲内で、該 (Fe, Cr, Ni,…) N相の消失を考慮
4
すれば、温度の高いほど短時間で処理しなければならず、よって、工程管理上は時 間を短くするよりも温度を下げるほうが好ましい。 470°Cより低温のガス窒化で( Fe,Cr,Ni,- - -) N相が生成される場合は、窒化厚さが薄いか、あるいは窒化処理時間
4
が著しく長 、ために実用的ではな!、。
[0018] (Fe, Cr, Ni,…) N相の X線回折による回折線は ASTMカードでは同定できないが
4
、 Cu-Κ α Χ線回折によれば、第 1のピークが 2 Θ =40° 付近、第 2のピークが 2 Θ =46° 付近に現れる。この両ピークは、窒素の固溶量に依存して低角側或いは高角側にず れる。また、 Ni,…との表記の意味は Niなど以外のオーステナイト系ステンレス鋼の元 素が固溶し得ることである。
[0019] 本発明による窒化層は、厚さが 10— 60 mの窒化層とする。窒化層の厚さが 10 m未満の場合は充分な耐久性が得られず、窒化層の厚さが 60 mを超えると張力の バラツキが大きくなるので所定の公差幅で製造しに《なる。張力バラツキが大きくな る原因は窒化によるヤング率の増加と展開長さ(周方向の長さ)の増加にある。また、 処理時間が長くなり (Fe, Cr, Ni,…) N相が消失してしまう。本発明の窒化層の厚さは
4
後述の拡散層の厚さを含む。
[0020] 本発明による窒化層は、耐摩耗性という観点で充分な硬さを有し、最外表面から 荷重 25gでビッカース硬度を測定すると HvlOOO— 1500の硬度が得られる。
また、本発明による窒化層の母材側には、オーステナイト系ステンレス鋼の窒化で 典型的な比較的硬度の低い拡散層が薄く存在する場合が多い。一般に、この拡散 層が露出してくると急速に摩耗が進行するといわれている。本発明は、 Cu-K « X線 回折において 2 Θ =40° 及び 2 Θ =46° にピークを持つ化合物相である (Fe, Cr, Ni, · · ·) N相の存在によって、 目的を達成するものであり、よって、母材に接する拡散層の
4
存在は重要でない。
[0021] また、本発明の第 2の目的は、サイドレールとスぺーサエキスパンダの表面に燃焼 生成物などを堆積'固着させないようにすることによりスティックによるオイルシール機 能の低下を起こさず、且つ、サイドレールによってシリンダ壁力 搔き落とされた余剰 の潤滑オイルの通路を確保することによりオイルコントロール機能の高い低張力 3ピ ース組合せオイルリングを提供するものである。すなわち、本発明者らは、燃焼生成 物とオイルリング表面の間の固着状況に着目し、 3ピース組合せオイルリングのスぺ ーサエキスパンダの少なくともサイドレール側面と対向する表面又は少なくともサイド レールのスぺーサエキスパンダと対向する表面に化学的に安定な皮膜が存在すれ ば、サイドレールとスぺーサエキスパンダの固着を防止でき、且つ、サイドレールによ つてシリンダ壁力 搔き落とされた余剰の潤滑オイルの通路を確保することができるこ とに想到した。
[0022] よって、本発明の第 2の目的に係るオイルリングは、スぺーサエキスパンダとスぺー サエキスパンダに支持される一対のサイドレール力もなる組合せオイルリングにおい て、スぺーサエキスパンダの少なくともサイドレール側面と対向する表面又は少なくと もサイドレールのスぺーサエキスパンダと対向する表面に樹脂皮膜を被覆したことを 特徴とする。
[0023] 燃焼生成物が最も固着しやす!、箇所は、スぺーサエキスパンダの耳部とサイドレー ルを支持する外周側突起部の間であり、スぺーサエキスパンダに榭脂皮膜を被覆す る場合は少なくともその部分に榭脂皮膜を被覆する。また、サイドレールのスぺーサ エキスパンダと対向する表面に榭脂皮膜を被覆しても同様な効果がある。勿論、両 方に榭脂皮膜を被覆すればさらに効果的である。
[0024] 上記スぺーサエキスパンダ耳部への窒化とスぺーサエキスパンダの少なくともサイ ドレール側面と対向する表面又は少なくともサイドレールのスぺーサエキスパンダと 対向する表面に榭脂皮膜の被覆を組み合わせれば、さらに一層効果的である。すな わち、本発明の第 3の目的に係るオイルリングは、スぺーサエキスパンダとスぺーサ エキスパンダに支持される一対のサイドレールカゝらなる組合せオイルリングにおいて 、少なくともサイドレール内周面と接触するスぺーサエキスパンダ耳部に 470°C以上 の温度でガス窒化処理を施し、得られた窒化層力 窒化層の厚さが 10— 60 mで、 Cu-Κ α Χ線回折において 2 Θ =40° 及び 2 Θ =46° にピークを持つ相を含み、且つ、 スぺーサエキスパンダの少なくともサイドレール側面と対向する表面又は少なくともサ イドレールのスぺーサエキスパンダと対向する表面に榭脂皮膜を被覆したことを特徴 とする。
図面の簡単な説明
[図 1]本発明に係る 3ピース組合せオイルリングを示す図であり、同図 (a)はスぺーサェ キスパンダの耳部とサイドレールを支持する外周側突起部の間のみに榭脂皮膜を被 覆した例を示す断面図、同図 (b)はスぺーサエキスパンダの耳部力 外周側突起部ま での全面に榭脂皮膜を被覆した例を示す断面図、同図 (c)はスぺーサエキスパンダ の耳部とサイドレールを支持する外周側突起部の間及びサイドレールのスぺーサェ キスパンダに対向する側面に榭脂皮膜を被覆した例を示す断面図、同図 (d)はサイド レールのスぺーサエキスパンダに対向する側面のみに榭脂皮膜を被覆した例を示 す断面図である。
[図 2]570°C、 30分間の条件でガス窒化した実施例 1 (J1)の X線回折チャートを窒化層 の深さ別に対比させた結果を示す。
[図 3]530°C、 30分間の条件でガス窒化した実施例 2 (J2)の X線回折チャートを窒化層 の深さ別に対比させた結果を示す。
[図 4]570°C、 30分間の条件で塩浴窒化した比較例 1 (HI)の X線回折チャートを窒化 層の深さ別に対比させた結果を示す。
[図 5]窒化層の光学顕微鏡写真を示す図であり、同図 (a)は 450°C、 60分間の条件で ガス窒化した比較例 2 (H2)における窒化層の光学顕微鏡写真を示し、同図 (b)は 530 °C、 30分間の条件でガス窒化した実施例 9 (J9)における窒化層の光学顕微鏡写真を 示す。
[図 6]従来のピストンリングが装着されたピストンがシリンダ内にあるときの状態を示す 断面図であり、同図に示されるオイルリングは軸方向波形形状の代表的な 3ピース組 合せオイルリングを示す。 [図 7]従来の半径方向波形形状の代表的な 3ピース組合せオイルリングを示す。 発明を実施するための最良の形態
[0026] 第 1図は、本発明の実施態様を示す 3ピースピストンリングにおいて、榭脂皮膜 31 を被覆する箇所の例を模式的に示したものである。第 1図 (a)はスぺーサエキスパンダ の耳部とサイドレールを支持する外周側突起部の間のみ、第 1図 (b)はスぺーサェキ スパンダの耳部から外周側突起部までの全面、第 1図 (c)はスぺーサエキスパンダの 耳部とサイドレールを支持する外周側突起部の間及びサイドレールのスぺーサェキ スパンダに対向する側面、第 1図 (d)はサイドレールのスぺーサエキスパンダに対向 する側面のみに榭脂皮膜を被覆して 、る。
[0027] 本発明において、被覆する榭脂皮膜の厚さは、 0.5— 20 mとすることが好ましい。
スぺーサエキスパンダの突起部やサイドレール側面等、リング溝とのクリアランスに影 響する位置への榭脂皮膜の被覆の場合は、 1一 10 mが好ましい。
[0028] 本発明による化学的に安定であり、かつカーボン系燃焼生成物に対して非凝着性 をもつ榭脂皮膜は、 150°C程度の耐熱性を有する榭脂であれば、いずれの榭脂も使 用可能であるが、フッ素榭脂、ポリアミドイミド (PAI)、ポリイミド、塩化ビュル、ポリエス テル等が好ましい。化学的安定性と非凝着性以外に、望ましい性質である低摩擦係 数や自己潤滑性という観点では、フッ素榭脂を利用するとより効果的である。しかし、 フッ素榭脂は化学的に安定で非粘着性に優れ、耐熱性が高く低摩擦係数と自己潤 滑性に優れているが、フッ素榭脂単体では密着性に乏しいため皮膜を形成すること が極めて困難な物質である。従って、フッ素榭脂を利用する場合には、バインダーと 複合して使用する必要がある。ノ インダーとしては、上記に挙げたポリアミドイミド( PAI)、ポリイミド、塩化ビュル、ポリエステル等の耐熱性榭脂が使用できる。フッ素含 有率としては、バインダーの効果等を考慮すれば 70重量 %以下が適当である。フッ素 榭脂は、入手の容易性から、ポリテトラフルォロエチレン (PTFE)、パーフルォロアル コキシアルカン(PFA)、パーフルォロエチレンプロペンコポリマ(FEP)が容易に利用 できる。潤滑性という観点では、二硫ィ匕モリブデン (MoS )、ボロンナイトライド (BN)、 C
2
(黒船)等を 35重量%以下含有させても良い。さらに、カーボンを分解させる触媒機 能を持つ酸ィ匕チタン (TiO )や C12A7化合物(12CaO ' 7Al 0 )等の微粒子を上記榭
2 2 3 脂皮膜の中に 35重量%以下分散させても良 、。
[0029] 本発明の第 1の目的に係るオイルリングの窒化に応用することができる新規なォー ステナイト系ステンレスの窒化方法は、窒化温度 470— 600°Cの範囲で NHと Nガスの
3 2 雰囲気でガス窒化処理し、形成された (Fe, Cr, Ni, · ··) N相が消失する前にガス窒化
4
処理を止めるというものである。本発明者らの実験によれば、窒化時間は 10分一 1時 間の範囲が適当であった。窒化温度 470°C未満では、本発明に係る窒化層を 10 /z m 以上形成するのに 1時間以上を要し、 600°Cを超えると形成された (Fe, Cr, Ni, · ··) N
4 相は分解が進みすぎて消失してしまう。ここに示した窒化時間は、窒化処理を行う炉 の大きさや処理量等に当然依存するものであり、厳密な意味で規定しているものでな いことはいうまでもない。
[0030] また、オーステナイト系ステンレスの窒化においては不働態皮膜の還元を必須と する。還元方法は、ハロゲンィ匕物添加法等、従来力 行われている手法が使用でき る力 CN-イオン等のカーボン源を含む還元剤は (Fe, Cr, Ni, · ··) N相の生成を阻害
4
するため使用できない。また、目的の窒化層を安定的に得るためには、窒化処理炉 はマツフル構造とし、前述の還元処理と窒化処理を行う前に炉内を真空状態とするこ とが望ましい。
[0031] 本発明の第 2の目的に係るオイルリングにおいて、榭脂被膜は、スプレー塗布によ つて便利に被覆できる。勿論、静電塗装、浸せき法、スクリーン印刷、ノ^ド印刷等も 利用できる。塗布に先立ち、各被覆方法に適切な粘度に調整する必要があるが、使 用する溶剤は、榭脂を溶かし、且つ、榭脂を分解しない温度で完全に揮発することを 要件とする。但し、フッ素榭脂を含有させる場合は、フッ素榭脂を溶カゝさずにバインダ 一のみ溶かすことが重要である。榭脂材料又はバインダーとしてポリイミドゃポリアミド イミドを選択した場合、 N-メチル -2-ピロリジノン (ピロリドン)を主溶剤としてキシレン等 を添加したものが便利に利用できる。フッ素榭脂ゃ固体潤滑材を混合する場合は、 溶剤に溶力したバインダーに所定量を混合、充分均一に攪拌することが重要である 。また、被覆する榭脂皮膜の厚さは 0.5— 20 mが適当であり、使用する塗布方法に よっては、充分粘度を低くする必要がある。
[0032] 本発明の効果を説明すると次のとおりである。 本発明に係るオイルリングは、窒化層に高硬度で耐食性に優れた (Fe, Cr, Ni, · · ·)
4
N相を有するため、有鉛ガソリンを使用する場合又はガソリンにィォゥが数百 (300— 500) PPM含有される場合で、且つ、潤滑条件も厳しい環境下においても腐食摩耗を 起こさない。よって、サイドレール内周面と接触するスぺーサエキスパンダ耳部の耐 摩耗性が大幅に改善され、張力減退の起こらな 、低張力 3ピース組合せオイルリング 、すなわち、多様なエンジン仕様や使用環境下においても十分な耐久性を備えた低 張力 3ピース組合せオイルリングを提供することが可能となった。
[0033] また、本発明に係るオイルリングは、スぺーサエキスパンダの少なくともサイドレール 側面と対向する表面又は少なくともサイドレールのスぺーサエキスパンダと対向する 表面に榭脂皮膜を被覆して!/ヽるため、サイドレールとスぺーサエキスパンダの燃焼生 成物による固着を防止することにより、スティックによるオイルシール機能の低下を起 こさず、且つ、サイドレールによってシリンダ壁力 搔き落とされた余剰のオイルの通 路を確保することによりオイルコントロール機能の高い低張力 3ピース組合せオイルリ ングを提供することが可能となった。
[0034] さらに、本発明に係るオイルリングは、上記耳摩耗対策と固着対策を同時に行うこ とにより、オイルコントロール機能が高ぐ多様な仕様のエンジンや多様な潤滑オイル や燃料の使用環境下にお 、ても耐久性に優れ、オイル消費の少な 、低張力 3ピース 組合せオイルリングを提供することが可能となった。
[0035] 以下、実施例により本発明をさらに詳しく説明する。
本発明を実施するための最良の形態については、以下の具体的実施例により詳細 に説明する。なお、以下の実施例では、軸方向波形形状のスぺーサエキスパンダの 例を示している力 本発明は該形状のスぺーサエキスパンダに限定されるものでなく 、半径方向波形形状のスぺーサエキスパンダにも適用できることはいうまでもない。さ らに、オーステナイト系ステンレス鋼は最も一般的な SUS304について例示する力 こ の改良鋼種や、 SUS316,321などであっても本発明を適用できることはいうまでもない
[0036] 実施例 1一 2 ( 11- 12)及び比較例 1 (HI)
幅 2.70mm、厚さ 0.25mm、長さ 20mmのスぺーサエキスパンダ用の圧延帯材( SUS304材)から切り出したサンプルを使用し、脱脂洗浄後、 NH 90% · Ν 10%雰囲気の
3 2
570°C及び 530°Cで 30分間のガス窒化を行った。なお、窒化処理はマツフル構造を持 っ炉を使用し、一旦、炉内を真空状態とした後に昇温した。窒化処理に先立ち、先 ず不働態膜の還元を塩ィ匕アンモ-ゥムの所定量を所定のタイミングで添加することに よって行った。また、比較のため、同様のサンプルを用いて、脱脂洗浄後、 570°Cで 30分の塩浴窒化も行った。窒化処理後、窒化層構造の深さ方向における変化を確 認するため、燐酸、シユウ酸及びゼラチン力 なる電解質中で、電流密度 5 mA/mm2 、25— 30°Cの条件で電解研磨して窒化層の所定の深さを研磨した後 X線回折すると いう手法により、窒化層を構成する相を同定する定性分析を行った。 X線回折は Cu-Κ α線、管電圧 40kV、管電流 30mAで行った。
[0037] 第 2図に 570°C、 30分間、ガス窒化した実施例 l (Jl)の X線回折結果を窒化層の深 さ別に対比させた結果を示す。 530°C、 30分間のガス窒化の実施例 2 (J2)についての X線回折結果を第 3図に、 570°C、 30分間の塩浴窒化の比較例 1 (HI)についての X 線回折結果を第 4図に示す。第 1表は、これらの結果を纏めたものである。
[0038] (表 1)
実施例 1一 2及び比較例 1の窒化層中の構成相
Figure imgf000015_0001
[0039] ここで、 ε相は (Fe, Ni, · · ·) N相, y f 相は (Fe, Ni, · · ·) N相, は SUS304のオース
2-3 4
テナイト鉄と考えられる。 X線回折において、 S1が 2 Θ =40° 付近、及び S2力 ¾ Θ =46° 付近にピークを持っている。これまでの文献等では、 450°C以下の低温窒化条件でし か得られなかったいわゆる S相と名付けられた (Fe, Cr, Ni, · ··) N相が、 570°Cという高
4
温においても、形成された該化合物相が消失する前にガス窒化処理を止めること〖こ より得られていることが分かる。それに反し、塩浴窒化においては、カーボン源の存 在により (Fe, Cr, Ni, · ··) N相の形成が阻害され、該 (Fe, Cr, Ni, · ··) N相は一切現れ
4 4
ていない。
[0040] 実施例 3— 18 (13— T18)及び比較例 2— 3 (H2— H3)
実施例 1と同じぐ幅 2.70mm、厚さ 0.25mm、長さ 20mmの SUS304材の帯材から切り 出したサンプルを使用し、脱脂洗浄後、実施例 1と同様な雰囲気で、表 2に示した温 度及び保持時間の条件でガス窒化処理を行った。なお、不働態膜の還元も実施例 1 と同様に行った。窒化処理後のサンプルについて、断面の光学顕微鏡写真から窒化 層の厚さ及び (Fe, Cr, Ni, · ··) N相の画像解析による面積率 (%)を求めた。光学顕微
4
鏡写真は、 (Fe, Cr, Ni, · ··) N相が CrN相や γ ' 相等に分解した部分が黒色に見える
4
ようマーブル液を用いてエッチング処理を行ったサンプルカゝら撮影された。また窒化 層表面の荷重 25gのビッカース硬度を測定した。これらの結果を第 2表に示す。
[0041] (表 2)
各窒化条件における窒化層の厚さ及び硬度並びに窒化層中の (Fe, Cr, Ni, · ··) N
4 相の面積率 (%)
窒化条件 窒ィ 層 (Fe, Cr, Ni , ...) 4N相 温度(で) 時間(分) 厚さ (/ m) 硬度 (Hv) の面積率 (¾;)
H2 450 60 7 1260 〉98
J3 470 60 10 1090 〉98
J4 490 60 13 1 180 85
J5 510 60 21 1240 73
J6 510 40 16 1220 82
J7 530 60 25 1290 56
18 530 40 20 1250 63
J9 530 30 16 1230 68
J 10 550 60 34 1280 46
J l 1 550 30 19 1220 49
J 12 550 15 1 1 1050 53
J 13 570 60 41 1230 38
J 14 570 30 23 1230 41
J 15 570 15 13 1 180 43
J 16 590 60 53 1250 31
J 17 590 30 29 1210 35
J 18 590 10 1 1 1030 37
H3 610 30 35 1200 26 窒化層組織の代表例として、第 5図 (a)に、比較例 2 (H2) (450°C, 60分)の処理にお ける窒化層の光学顕微鏡写真、第 5図 (b)に、実施例 9 (J9) (530°C, 30分)の処理にお ける窒化層の光学顕微鏡写真を示す。 450°C, 60分のガス窒化処理では、 (Fe, Cr, Ni, · ··) N相が窒化層全体に形成されているものの厚さが薄く(7 /ζ πι)、 530°C, 30分
4
のガス窒化処理では、約 30%近くの (Fe, Cr, Ni,…) N相が CrN相や γ ' 相等に分解'
4
消失している様子が分力る。
実施例 19一 24 (119— 124)及び比較例 4一 5 (Η4— Η5)
エンジンにて摩耗への影響を短時間で評価するため、 3ピース組合せオイルリング を以下のように作製した。
幅 2.50mm、厚さ 0.25mmの SUS304材の帯材をギア成形法により軸方向波形のスぺ ーサエキスパンダに成形した。スパイラル状に成形したスぺーサエキスパンダは、脱 脂洗浄後、実施例 19は実施例 4、実施例 20は実施例 5、実施例 21は実施例 7、実施 例 22は実施例 10、実施例 23は実施例 13、実施例 24は実施例 16、比較例 4は比較例 2 、比較例 5は比較例 1と同じ条件で窒化処理を行った。窒化処理後、定寸切断、合口 面仕上げ工程を経て、所定のボア径、組合せ厚さ、組合せ幅、張力のスぺーサェキ スパンダを製作した。スぺーサエキスパンダは、精密な波形形状と一定の展開長さに より所定の張力が出るように設計して 、る。
[0043] また、サイドレールには、幅 2.30mm、厚さ 0.40mmの SUS440B材の帯材を用いた。こ の帯材から、連続真円巻きにより所定の寸法のスパイラル状にサイドレールを成形し 、ガス窒化により窒化層厚さ約 50 mの窒化処理を施し、切断、外周ラップ、パフ仕 上げ工程を経て、サイドレーノレとした。
[0044] これらの 3ピース組合せオイルリングを用い、シリンダ内径 82.5mmのガソリン直接 噴射型の 2000cc、直列 4気筒水冷のエンジンで、有鉛ガソリンを燃料として、全負荷 状態で 6500rpm、 250時間の加速耐久試験を行った。 250時間経過後のサイドレール 内周面の摩耗量及びスぺーサエキスパンダ耳部の摩耗量を測定した。その結果を 第 3表に示す。
[0045] (表 3)
耐久試験結果 (摩耗量の測定)
Figure imgf000018_0001
[0046] 本発明に係るオイルリングのスぺーサエキスパンダ耳部の摩耗量は、上記運転条 件の耐久試験の 250時間経過後においても 20 m以内であり、従来の塩浴窒化した 耳部(比較例 5, H5)と比較して、充分な耐久性を示している。
[0047] 実施例 25— 37 (.125- 137)及び比較例 6 (H6)
実施例 19及び比較例 5と同じサイドレールとスぺーサエキスパンダを用いて、第 4表 に示す組成の榭脂皮膜を、所定の箇所に所定量スプレー塗布、 210°Cで焼成するこ とにより被覆した。
これらのオイルリングを、 2400cc、直列 4気筒水冷のエンジン、有鉛ガソリン、加減速 パターン、 200時間の運転条件で耐久試験を行った。耐久試験後のサイドレールとス ぺーサエキスパンダの固着の有無を同時に第 4表に示す。
[0048] (表 4)
耐久試験結果 (固着の有無)
Figure imgf000019_0001
[0049] 第 4表において、窒化条件 J19 (H5)とは、実施例 19 (比較例 5)のサイドレールとスぺ ーサエキスパンダに施した窒化条件と同じ条件でガス窒化処理を行ったことを意味 する。また、被覆箇所 a, b, c, dは、第 1図の (a), (b), (c), (d)を示す。固着「無(中又は 少又は微)」は、多少のカーボンの堆積 (多、中、少、微はカーボンの堆積程度を示 す。)があってもオイルリングの張力が減退していないことを意味し、固着「有 (多)」は 、カーボンの堆積によりオイルリングの張力が減退していることを意味する。また、固 着「有 (多)」であった比較例 6 (H6)はオイル消費率の増大も見られた。
[0050] 以上より、本発明に係るオイルリングは、上記運転条件の耐久試験においてもサ イドレールとスぺーサエキスパンダとの間に重大な固着が観察されず、よって、榭脂 皮膜を被覆しな 、従来のオイルリングと比較して、充分な耐久性を示して 、る。 産業上の利用可能性
[0051] 以上説明したように、本発明に係る 3ピース組合せオイルリングはガソリン内燃機 関、ジーゼル内燃機関に使用されるオイルリングの性能を向上し、かつ潤滑オイル消 ίを少なくすることに貢献する。

Claims

請求の範囲
[1] スぺーサエキスパンダ(7)とスぺーサエキスパンダ(7)に支持される一対のサイドレ ール(5, 6)からなる組合せオイルリングにおいて、少なくともサイドレール内周面と接 触するオーステナイト系ステンレス製スぺーサエキスパンダ耳部に、 470°C以上の温 度でガス窒化処理を施して、厚さ 10— 60 mであり、かつ、 Cu-Κ α Χ線回折におい て 2 Θ =40° 及び 2 Θ =46° にピークを持つ相を含むガス窒化層を形成したことを特徴 とするオイルリング。
[2] スぺーサエキスパンダ(7)とスぺーサエキスパンダ(7)に支持される一対のサイドレ ール(5, 6)からなる組合せオイルリングにおいて、スぺーサエキスパンダの少なくとも サイドレール側面と対向する表面又は少なくともサイドレールのスぺーサエキスパン ダと対向する表面に榭脂皮膜 (31)を被覆したことを特徴とするオイルリング。
[3] 前記榭脂皮膜 (31)にフッ素榭脂が含有される請求の範囲第 2項に記載のオイルリン グ。
[4] 前記榭脂皮膜 (31)に固体潤滑材が含有される請求の範囲第 2項に記載のオイルリ ング。
[5] 前記榭脂皮膜 (31)に TiO及び C12A7化合物の少なくとも何れかが含有される請求
2
の範囲第 2項に記載のオイルリング。
[6] スぺーサエキスパンダ(6)とスぺーサエキスパンダ(7)に支持される一対のサイドレ ール(5, 6)からなる組合せオイルリングにおいて、少なくともサイドレール内周面と接 触するオーステナイト系ステンレス製スぺーサエキスパンダ耳部に、 470°C以上の温 度でガス窒化処理を施して、厚さ 10— 60 mであり、かつ、 Cu-Κ α Χ線回折におい て 2 Θ =40° 及び 2 Θ =46° にピークを持つ相を含むガス窒化層を形成し、且つ、スぺ ーサエキスパンダ(7)の少なくともサイドレール側面と対向する表面又は少なくともサ イドレール(5, 6)のスぺーサエキスパンダ(7)と対向する表面に榭脂皮膜 (31)を被 覆したことを特徴とするオイルリング。
[7] 前記榭脂皮膜 (31)にフッ素榭脂が含有される請求の範囲第 6項に記載のオイルリン グ。
[8] 前記榭脂皮膜 (31)に固体潤滑材が含有される請求の範囲第 6項に記載のオイルリ ング。
[9] 前記榭脂皮膜 (31)に TiO及び C12A7化合物の少なくとも何れかが含有される請求
2
の範囲第 6項に記載のオイルリング。
[10] オーステナイト系ステンレス鋼に 470— 600°Cの温度でガス窒化処理を施し、 Cu-K
a X線回折にぉ 、て 2 Θ =40° 及び 2 Θ =46° にピークを持つ相(以下「S相」 t\、う)が 形成され続いて化合物相に変態して消失する以前に、ガス窒化処理を中止し、 S相 を含む窒化層をオーステナイト系ステンレス鋼の表面に形成することを特徴とする窒 化方法。
[11] 前記窒化層の厚さが 10 m以上であることを特徴とする請求の範囲第 10項に記載 の窒化方法。
PCT/JP2004/015842 2003-10-27 2004-10-26 3ピース組合せオイルリング WO2005040645A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005515002A JPWO2005040645A1 (ja) 2003-10-27 2004-10-26 3ピース組合せオイルリング
US10/542,634 US20060061043A1 (en) 2003-10-27 2004-10-26 Three piece-combined oil ring
EP04792963A EP1686295B1 (en) 2003-10-27 2004-10-26 Three piece-combined oil ring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003365500 2003-10-27
JP2003-365500 2003-10-27

Publications (1)

Publication Number Publication Date
WO2005040645A1 true WO2005040645A1 (ja) 2005-05-06

Family

ID=34510172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015842 WO2005040645A1 (ja) 2003-10-27 2004-10-26 3ピース組合せオイルリング

Country Status (5)

Country Link
US (1) US20060061043A1 (ja)
EP (1) EP1686295B1 (ja)
JP (1) JPWO2005040645A1 (ja)
TW (1) TWI255885B (ja)
WO (1) WO2005040645A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2886912A1 (en) 2013-12-18 2015-06-24 Kabushiki Kaisha Riken Combined oil control ring
EP2889517A1 (en) 2013-12-26 2015-07-01 Kabushiki Kaisha Riken Combined oil control ring
US10352446B2 (en) 2015-01-09 2019-07-16 Kabushiki Kaisha Riken Combined oil control ring

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10340312A1 (de) * 2003-09-02 2005-05-12 Mahle Gmbh Mehrteiliger Ölabstreifring für Kolben von Verbrennungsmotoren
US7846272B2 (en) * 2006-04-28 2010-12-07 Gm Global Technology Operations, Inc. Treated austenitic steel for vehicles
DE102009045878A1 (de) * 2009-10-21 2011-04-28 Robert Bosch Gmbh Verfahren zum Steigern der Beanspruchbarkeit von Bauteilen aus Stahl unter zyklischer Belastung
US10036471B2 (en) * 2009-11-18 2018-07-31 Achates Power, Inc. Ported engine constructions with low-tension compression seals
JP5557562B2 (ja) * 2010-03-10 2014-07-23 Tpr株式会社 組合せオイルリング
CN103502700B (zh) * 2011-03-31 2014-11-05 株式会社理研 组合油环
JP5587285B2 (ja) 2011-12-21 2014-09-10 Tpr株式会社 組合せオイルリング
JP5970239B2 (ja) * 2012-05-28 2016-08-17 株式会社リケン 組合せオイルコントロールリング
BR102012019166B1 (pt) 2012-07-31 2020-05-19 Mahle Int Gmbh anel de controle de óleo de três peças para motores de combustão interna.
BR102012024729B1 (pt) 2012-09-27 2020-05-19 Mahle Int Gmbh anel de controle de óleo de três peças para motores de combustão interna, elemento expansor e elemento anelar
JP6530200B2 (ja) * 2015-02-23 2019-06-12 株式会社リケン サイドレール
WO2016159269A1 (ja) * 2015-03-31 2016-10-06 日本ピストンリング株式会社 組合せオイルリング
DE102015008469A1 (de) * 2015-07-02 2017-01-05 Federal-Mogul Burscheid Gmbh Ölabstreifkolbenring
DE102015008470A1 (de) * 2015-07-02 2017-01-05 Federal-Mogul Burscheid Gmbh Ölabstreifkolbenring
JP6339748B1 (ja) * 2017-09-29 2018-06-06 Tpr株式会社 セグメント、組合せオイルリングおよびセグメントの製造方法
JP6389970B1 (ja) * 2018-01-16 2018-09-12 Tpr株式会社 組合せオイルリング
CN112703339A (zh) * 2018-11-15 2021-04-23 帝伯爱尔株式会社 组合式活塞环

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407515A (en) 1981-06-12 1983-10-04 Nippon Piston Ring Co., Ltd., Combined oil ring
JPH0533866A (ja) * 1991-07-26 1993-02-09 Teikoku Piston Ring Co Ltd 組合せオイルリング
JPH09209830A (ja) * 1996-02-07 1997-08-12 Hino Motors Ltd ディーゼルエンジン用のピストンとその製造方法
JP2002047554A (ja) 2000-07-28 2002-02-15 Sumitomo Metal Mining Co Ltd 窒化層被覆オーステナイト系鉄基合金
JP2002523689A (ja) * 1998-08-21 2002-07-30 ズィンテク・ケラーミク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディートゲゼルシャフト 極微細炭素からなるピストンおよびその製造方法
JP2002310299A (ja) * 2001-04-09 2002-10-23 Riken Corp 組合せオイルリング用サイドレール
JP2003028299A (ja) * 2001-07-11 2003-01-29 Riken Corp スペーサーエキスパンダおよびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003245864A1 (en) * 2002-07-16 2004-02-02 Danmarks Tekniske Universitet-Dtu Case-hardening of stainless steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407515A (en) 1981-06-12 1983-10-04 Nippon Piston Ring Co., Ltd., Combined oil ring
JPH0533866A (ja) * 1991-07-26 1993-02-09 Teikoku Piston Ring Co Ltd 組合せオイルリング
JPH09209830A (ja) * 1996-02-07 1997-08-12 Hino Motors Ltd ディーゼルエンジン用のピストンとその製造方法
JP2002523689A (ja) * 1998-08-21 2002-07-30 ズィンテク・ケラーミク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディートゲゼルシャフト 極微細炭素からなるピストンおよびその製造方法
JP2002047554A (ja) 2000-07-28 2002-02-15 Sumitomo Metal Mining Co Ltd 窒化層被覆オーステナイト系鉄基合金
JP2002310299A (ja) * 2001-04-09 2002-10-23 Riken Corp 組合せオイルリング用サイドレール
JP2003028299A (ja) * 2001-07-11 2003-01-29 Riken Corp スペーサーエキスパンダおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1686295A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2886912A1 (en) 2013-12-18 2015-06-24 Kabushiki Kaisha Riken Combined oil control ring
US9618115B2 (en) 2013-12-18 2017-04-11 Kabushiki Kaisha Riken Combined oil control ring
EP2889517A1 (en) 2013-12-26 2015-07-01 Kabushiki Kaisha Riken Combined oil control ring
JP2015124805A (ja) * 2013-12-26 2015-07-06 株式会社リケン 組合せオイルコントロールリング
US9303765B2 (en) 2013-12-26 2016-04-05 Kabushiki Kaisha Riken Combined oil control ring
EP3076053A1 (en) 2013-12-26 2016-10-05 Kabushiki Kaisha Riken Combined oil control ring
US10352446B2 (en) 2015-01-09 2019-07-16 Kabushiki Kaisha Riken Combined oil control ring

Also Published As

Publication number Publication date
EP1686295A1 (en) 2006-08-02
EP1686295A4 (en) 2009-06-10
US20060061043A1 (en) 2006-03-23
TW200521319A (en) 2005-07-01
EP1686295B1 (en) 2012-12-12
TWI255885B (en) 2006-06-01
JPWO2005040645A1 (ja) 2007-03-22

Similar Documents

Publication Publication Date Title
WO2005040645A1 (ja) 3ピース組合せオイルリング
JP5452734B2 (ja) コーティングを有するスライド要素、特に、ピストンリング、およびスライド要素を製造するプロセス
JP3367630B2 (ja) 大きな摩擦歪みを受ける鉄表面の処理方法
JP2007232026A (ja) 摺動部材
JPWO2007099968A1 (ja) ピストンリング
EP2162561B1 (en) Piston ring with a sulphonitriding treatment
JP7219776B2 (ja) ピストンリング
JP6422495B2 (ja) ピストンリング
JP7284700B2 (ja) 摺動機構
JP2006002221A (ja) クロム含有ダイヤモンド状炭素膜及び摺動部材
US6726216B2 (en) Piston ring with oxide-nitride composite layer
JP2006152385A (ja) 耐環境性及び耐磨耗性に優れる複合層被覆部材及びその製造方法
JP2006242297A (ja) 組合せオイルコントロールリング
JP2002266697A (ja) 摺動部材およびその製造方法
JP5854554B2 (ja) 摺動機構
JP2757974B2 (ja) ピストンリング
JP5473890B2 (ja) ピストンリング
JP6029790B2 (ja) 組合せオイルコントロールリング
JP5980966B2 (ja) 組合せオイルコントロールリング
JP2012062539A (ja) 低摩擦摺動部材
JPH04175442A (ja) 摺動部材
JP2000320673A (ja) 低フリクション炭素薄膜
WO2022131057A1 (ja) 皮膜及びピストンリング
JPH0694130A (ja) 摺動材料及びピストンリング並びに摺動材料の製造方法
JPH09196173A (ja) 組合せオイルリング

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515002

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004792963

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006061043

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10542634

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10542634

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004792963

Country of ref document: EP