WO2005028537A1 - 末端にエポキシ基および/またはオキセタン基含有ケイ素基を有する有機重合体を含む光硬化型樹脂組成物およびその製造方法 - Google Patents

末端にエポキシ基および/またはオキセタン基含有ケイ素基を有する有機重合体を含む光硬化型樹脂組成物およびその製造方法 Download PDF

Info

Publication number
WO2005028537A1
WO2005028537A1 PCT/JP2004/013707 JP2004013707W WO2005028537A1 WO 2005028537 A1 WO2005028537 A1 WO 2005028537A1 JP 2004013707 W JP2004013707 W JP 2004013707W WO 2005028537 A1 WO2005028537 A1 WO 2005028537A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
organic polymer
photocurable composition
compound
Prior art date
Application number
PCT/JP2004/013707
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Kohno
Hiroshi Ando
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to EP04773326A priority Critical patent/EP1679328A1/en
Priority to JP2005514074A priority patent/JP4758230B2/ja
Publication of WO2005028537A1 publication Critical patent/WO2005028537A1/ja
Priority to US11/373,306 priority patent/US7534820B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/56Polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds

Definitions

  • Photocurable composition containing an organic polymer having a terminal epoxy group and / or oxetane group-containing silicon group, cured product obtained therefrom, and production method
  • the present invention relates to a novel terminal-containing epoxy group and / or oxetane group-containing cage in which an epoxy group and / or an oxetane group-containing silicon group is selectively introduced into the terminal of various organic polymers.
  • the present invention relates to a photocurable composition containing an organic polymer having a silicon group and a cationic photoinitiator.
  • epoxy group-containing polymers in which epoxy groups are introduced into various polymers have been developed because of their good reactivity and adhesiveness.
  • the method of epoxidizing olefin with a peroxide or the like when introducing an epoxy group involves deterioration of the polymer due to oxidation or the like, selective introduction of an epoxy group to the polymer terminal or multifunctionalization. There was a problem that was difficult. Also, depending on the production method, it may be necessary to remove by-products.
  • the method of polymerizing the epoxy group-containing polyisobutene, and the structure of the epoxy group-containing polymer obtained therefrom are concerned with the above-described oxidative deterioration and the like, and the three-dimensional structure around the epoxy group of the obtained polymer.
  • There was concern about responsiveness due to mechanical obstacles Japanese Unexamined Patent Publication No. 3-5655.
  • the epoxy group-containing polymer obtained by the conventional method has not always exhibited sufficiently satisfactory physical properties for various uses.
  • organic polymers have unique characteristics, and the main chain skeleton is selected from the group consisting of polyisobutylene, hydrogenated caropolyisoprene, hydrogenated polybutadiene and copolymers thereof.
  • Saturated hydrocarbon polymers have characteristics such as high weather resistance, high heat resistance, low moisture permeability, low gas permeability, and excellent flexibility.
  • oxyalkylene polymers have excellent compatibility with other polymers, flexibility, and excellent low-temperature properties.
  • water may be added to the terminal of the above-mentioned saturated hydrocarbon polymer or oxyalkylene polymer.
  • Various polymers with decomposable groups, unsaturated groups, hydrosilyl groups, etc. have been developed.Forcing them requires moisture and heating, and requires a certain amount of time and high temperature to cure. Cost. There is also a problem in storage stability.
  • the conventional thermosetting system has been changed to a photocuring system to reduce the processing time, and light to heat-sensitive components such as organic EL sealants has been reduced.
  • a curing system and polymers having an epoxy group are used for new applications such as photo-ion curing, and are expected to be used in such fields as electronic materials.
  • the present invention is directed to a novel terminal wherein an epoxy group and / or an oxetane group-containing silicon group is selectively introduced into the terminal of various organic polymers, and a new terminal such as an epoxy group or an oxetane group.
  • the present invention relates to a photocurable composition containing an organic polymer having a silicon group and a cationic photoinitiator. In the present composition, curing conditions such as high temperature and moisture which burden the substrate are not required, and sufficient curing can be performed in a short time by irradiation of light energy.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, have found that a polymer having a specific epoxy group-containing silicon group has excellent physical properties, and have completed the present invention. .
  • R 1 and R 2 are the same or different and are an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or (R ′) 3 S i 0
  • X is a monovalent organic group containing an epoxy group and / or an oxetane group, and m is 0 or more.
  • X and R 2 are the same as above, and R 3 and R 4 are the same as the methyl group or X or R 2 , either of which is a bonding portion to the organic polymer.
  • 1 ′ ′ represents an average of 1 and a bond to the terminal of the organic polymer.
  • R 5 represents a divalent organic group having 1 to 20 carbon atoms and containing, as a constituent atom, at least one selected from the group consisting of hydrogen, oxygen, and nitrogen.
  • R 6 represents a divalent organic group having 1 to 20 carbon atoms and containing at least one selected from the group consisting of hydrogen, oxygen, and nitrogen as a constituent atom.
  • the organic polymer (A) wherein the main chain skeleton is selected from a saturated hydrocarbon polymer, an oxyalkylene polymer, and a butyl polymer.
  • a photocurable composition as described.
  • Organic polymer (A) force It is produced by reacting an organic polymer having an unsaturated group at a terminal with a hydrosilane compound, and the above-mentioned hydrosilane compound has an epoxy group and / or an oxetane group.
  • the present invention relates to the photocurable composition according to any one of 1) to 6), which is a hydrosilane compound.
  • Organic polymer (A) force It is produced by an exchange reaction of a hydrolyzable group between an organic polymer having a hydrolyzable silyl group at a terminal and a compound having one hydroxyl group in one molecule.
  • the compound having one hydroxyl group in one molecule is a compound having at least one epoxy group and Z or oxetane group.
  • Cationic photoinitiator (B) force The photocurable composition according to any one of 1) to 8), which has a structure represented by the general formula (7).
  • M is a metal or metalloid constituting the central atom of the complex [MZ V + U ], and B, P, As, Sb, Fe, Sn, Bi, Al, Ca, I It is a metal or metalloid selected from n, Ti, Zn, Sc, V, Cr, Mn and Co.
  • Z is a ligand that coordinates to M, and is a halogen atom or an organic group.
  • u is the net charge of the complex ion.
  • V is the valence of M. )
  • a method for producing a cured product which comprises irradiating the photocurable composition according to any one of 1) to 11) with a light energy source to obtain a cured product.
  • the present invention relates to a novel organic polymer having an epoxy group and a silicon group containing a Z or epoxy group at a terminal, and a photocurable composition containing a cationic photoinitiator, and the irradiation of a light energy source Thereby, excellent curability can be developed in a short time.
  • the curable composition is very useful in various industrial applications such as a coating agent, an adhesive, and a sealant.
  • the photocurable composition of the present invention is a photocurable composition comprising a novel organic polymer having an epoxy group and a z- or epoxy group-containing silicon group (A) and a cationic photoinitiator (B).
  • a composition optionally containing an epoxy group-containing compound and a Z or epoxy group-containing oligomer (C), an oxetane group-containing compound and / or an oxetane group-containing oligomer (D).
  • other components such as other photothione-polymerizable compounds, silane coupling agents, fillers, modifiers, stabilizers, and other resin components may be used as long as the effects of the present invention are not impaired. Can be contained.
  • the photocurable composition of the present invention can exhibit excellent curability, and can exhibit unique characteristics of the polymer depending on the type of the organic polymer main chain serving as the skeleton.
  • the main chain skeleton of the organic polymer is not particularly limited.
  • organic polymers such as generally known acrylic polymers, polyester polymers, saturated hydrocarbon polymers, and oxyalkylene polymers are used. Coalescing can be used.
  • the structure of at least one terminal of the organic polymer (A) in the present invention is represented by the following general formula (1), general formula (2) or general formula (3).
  • R 1 and R 1 are the same or different and are an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms or (R ′ ) 3 TriO— represents a triorganosiloxy group, and when two or more R 1 or R 2 are present, they may be the same or different.
  • R ' is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and three R, may be the same or different.
  • X is an epoxy group and / or an oxetane group
  • A is a monovalent organic group
  • m is an integer of 0 to 20
  • n is an integer of 1, 2, or 3.
  • M in the general formula (1) is preferably 0 or more and 10 or less from the viewpoint of availability of raw materials.
  • X is a monovalent organic group containing an epoxy group
  • R 2 is a hydrocarbon group having 1 to 20 carbon atoms and may contain one or more phenyl groups
  • R 3 and R 4 are Either a methyl group or a force that is the same as X or R 2 is the bond to the organic polymer.
  • 1 ' represents an average of 1 and represents a bond to the terminal of the organic polymer.
  • X and R 2 are the same as above.
  • ' represents an average of 1 and a bond to the terminal of the organic polymer.
  • m '+ n is 1 or more and 50 or less, but the compatibility between the polymer and the hydrosilane compound, the obtained optical polymer containing an epoxy group and / or an oxetane group-containing organic polymer. From the viewpoint of the reactivity of the curable composition, it is preferably 3 or more and 30 or less, and particularly preferably 4 or more and 20 or less.
  • the number of m ' is 1 or more, but the reactivity of the organic polymer (A) can be adjusted by the number of m'.
  • m ′ is preferably 2 or more.
  • n ' is 0 or more, but the compatibility between the hydrosilane compound and the organic polymer can be adjusted by the number of n and.
  • n ′ is preferably 1 or more, and when m ′ is 2 or more, n ′ is more preferably 2 or more.
  • n is preferably 1.
  • '- ⁇ ' in the general formula (3) is 1 or more and 20 or less, but is preferably from the viewpoint of increasing the number of epoxy groups at the polymer terminal and the compatibility of the polymer with the hydrosilane compound. 3 or more and 20 or less.
  • the number of m ''s is 1 or more, but the reactivity of the organic polymer (A) can be adjusted by the number of m''s.
  • M ′ ′′ is preferably 2 or more from the viewpoint of the reactivity of the obtained epoxy group and / or oxetane group-containing organic polymer.
  • the number of ' is 0 or more, but the compatibility between the hydrosilane compound and the organic polymer can be adjusted by the number of'.
  • ⁇ ′′ is preferably 1 or more.
  • ⁇ ′ ′′ is preferably 1.
  • X is preferably a structure represented by the following general formula (4).
  • the structure is more preferable in terms of ease of production and availability of raw materials.
  • R & represents a divalent organic group having 1 to 20 carbon atoms and containing at least one selected from the group consisting of hydrogen, oxygen, and nitrogen as a constituent atom.
  • R 3 ⁇ 4 represents hydrogen, oxygen, and a divalent organic group having a carbon number of 1 to 2 0 containing at least one selected from the group consisting of nitrogen as a constituent atom.
  • the structure represented by the general formula (6) is preferable from the viewpoint of curability.
  • R 5 is the same as above.
  • the main chain skeleton of the organic polymer in the present invention is not limited, the main chain skeleton is a saturated hydrocarbon-based polymer selected from the group consisting of polyisobutylene, hydrogenated polyisoprene, hydrogenated polybutadiene, and a copolymer thereof.
  • the cured product obtained therefrom has the characteristic of exhibiting rubber-like elasticity.
  • the saturated hydrocarbon polymer is a polymer that does not substantially contain a carbon-carbon unsaturated bond other than an aromatic ring, and examples thereof include polyethylene, polypropylene, polyisobutylene, hydrogenated polybutadiene, and hydrogenated polyisoprene. can give.
  • the polymer constituting the main chain skeleton of the saturated hydrocarbon polymer used in the present invention is (1) A homo- or copolymerized copolymer containing an olefin compound having 1 to 6 carbon atoms such as propylene, 1-butene, or isobutylene as a main component; or (2) a gen-based compound such as butadiene or isoprene. Can be obtained by homopolymerization or copolymerization, or by copolymerization with the above-mentioned olefin compound and then hydrogenation.
  • an olefin compound having 1 to 6 carbon atoms such as propylene, 1-butene, or isobutylene
  • a gen-based compound such as butadiene or isoprene
  • an isobutylene-based polymer and a hydrogenated polybutadiene-based polymer are preferable because a functional group can be easily introduced into a terminal, a molecular weight can be easily controlled, and the number of terminal functional groups can be increased.
  • isobutylene-based polymers are liquid or fluid and easy to handle. The main chain does not contain carbon-carbon unsaturated bonds other than aromatic rings, so there is no need for hydrogenation and extremely excellent weather resistance. This is particularly preferred.
  • all of the monomer units may be formed from the isobutylene unit, or a monomer unit copolymerizable with the isobutylene may be contained in the isobutylene-based polymer, preferably at most 50% by weight. More preferably, it may be contained in a range of not more than 30% by weight, particularly preferably not more than 10% by weight. Of these, homopolymers are most preferred.
  • Such a monomer component examples include C4 to C12 olefins, vinyl ethers, aromatic butyl compounds, butyl silanes, and allyl silanes.
  • Such copolymer components include, for example, 1-butene, 2-butene, 2-methyl-11-butene, 3-methyl-11-butene, pentene, 4-methyl-1-pentene, hexene, vinylinolex hexene, methyl Nolebininoleatenore, etinole vinylether, isopti / lebininoleatenore, styrene, monomethylstyrene, dimethylinostyrene, monochlorostyrene, dichlorostyrene, ⁇ -pinene, indene, butyltrichlorosilane, vininolemethinoresichlorosilane, buldimethinole Chlorosilane, Vininoresimethinolemethoxysilane,
  • the number average molecular weight of the saturated hydrocarbon-based polymer, preferably the isobutylene-based polymer or the hydrogenated polybutadiene-based polymer is preferably about 500 to 500,000, and particularly about 1,000 to 20,000. Liquid or fluid materials are preferred because they are easy to handle.
  • the main chain structure of the oxyalkylene-based polymer may be any polymer having a repeating unit of the structure represented by one R 11 — R—, wherein R 11 is a divalent C 1-20 carbon atom. Any organic group may be used. Further, it may be a homopolymer in which all of the repeating units are the same, or a copolymer containing two or more types of repeating units. Further, the main chain may have a branched structure.
  • R 11 examples include one CH 2 CH 2 —, one CH (CH 3 ) CH 2 _, -CH (C 2 H 5 ) CH 2 —, one C (CH 3 ) 2 CH 2 —, one CH 2 CH 2 CH 2 CH 2 — and the like.
  • R 11 is particularly preferably one CH (CH 3 ) CH 2 —.
  • the main chain skeleton of the oxyalkylene polymer can be obtained by, for example, ring-opening polymerization of a monoepoxide in the presence of an initiator and a catalyst.
  • the initiator include ethylene glycol, propylene glycol, pentanodiol, hexamethylene glycolone, metallinoleanolone, bisphenole A, hydrogenated bisphenol A, neopentyl glycol, polybutadienediol, Diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, polypropylene triol, polypropylene tetranole, dipropylene glycol, glycerin, trimethylonolemethane, trime Examples thereof include divalent anoles such as tylolpronone and pentaerythritol, polyvalent anolescol, various oligomers having a hydroxyl group, and the like.
  • the monoepoxide examples include ethylene oxide, propylene oxide, ⁇ -butylene oxide, ⁇ -butylene oxide, hexene oxide, hexagonal hexoxide, styrene oxide, and ⁇ -methylstyrene oxide.
  • alkyl glycidyl ethers such as methyl daricidinole ether, ethyl tyl cisidyl ether, isopropyl glycidyl ether and butyl glycidyl ether, aryl glycidyl ethers, aryl glycidyl ethers and aryl glycidyl ethers.
  • Examples of a method for synthesizing a polyoxyalkylene polymer include a polymerization method using an alkali catalyst such as ⁇ , for example, by reacting an organoaluminum compound and porphyrin described in Japanese Patent Application Laid-Open No. 61-216623.
  • a polymerization method using a transition metal compound-porphyrin complex catalyst such as a complex obtained by the method described in, for example, Japanese Patent Publication No. 46-272500, and Japanese Patent Publication No. 59-153336.
  • Polymerization method using a complex metal sulfide complex catalyst, a polymerization method using a cesium catalyst, a polymerization method using a phosphazene catalyst, and the like but are not particularly limited.
  • a polymerization method using a double metal cyanide complex catalyst is preferred from the viewpoint that a polymer having a high molecular weight and little coloring is easily obtained.
  • the main chain skeleton of Okishiarukiren based polymer a basic compound a hydroxyl group-terminated Okishiarukire down polymers, for example KOH, N a OH, KOCH 3 , N a OCH presence of such 3, bifunctional or more halogen alkyl can also be obtained by, for example, CH 2 C 1 2, CH 2 by B r 2 such chain extension and the like.
  • urethane bond component may be contained in the main chain skeleton of the oxyalkylene polymer as long as the properties of the oxyalkylene polymer are not significantly impaired.
  • the butyl monomer constituting the main chain of the butyl polymer of the present invention is not particularly limited. Instead, various types can be used. For example, (meth) acrylic acid, (meth) methyl acrylate, (meth) ethyl acrylate, (meth) acrylic acid_n-propyl, (meth) isopropyl acrylate, (meth) acrylic acid Butyl, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, (N-heptyl) (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, (meth)
  • the main chain of the butyl polymer is selected from the group consisting of (meth) acrylic monomers, acrylonitrile monomers, aromatic butyl monomers, fluorine-containing vinyl monomers, and silicon-containing butyl monomers. It is preferable to be produced by polymerizing one kind of monomer 100 mol%, or to be mainly produced by polymerizing at least one monomer.
  • “mainly” means that 50% by mole or more, preferably 70% by mole or more of the monomer units constituting the vinyl polymer are the above-mentioned monomers.
  • styrene-based monomers and (meth) acrylic acid-based monomers are preferred in view of the physical properties of the product. More preferred are acrylate monomers and methacrylate monomers, particularly preferred are acrylate monomers, and still more preferred is butyl acrylate. In the present invention, these preferred monomers may be copolymerized with other monomers, or further, may be subjected to block copolymerization, in which case the preferred monomers are contained in a weight ratio of 40% or more. Is preferred.
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid.
  • the lath transition temperature is preferably lower than room temperature or use temperature.
  • a known method such as free radical polymerization or controlled radical polymerization can be suitably used as the method for synthesizing the butyl polymer.
  • controlled radical polymerization it is preferable to use controlled radical polymerization in terms of easy introduction of the structure of the present invention at the terminal, and when controlled radical polymerization is used, living radical polymerization is preferable, and atom transfer radical polymerization is more preferable.
  • an organic halide particularly an organic halide having a highly reactive carbon-halogen bond (for example, a carbon compound having a halogen at the ⁇ - position or a compound having a halogen at the benzyl position), or Snolefonyl halide compounds and the like are used as initiators.
  • the ratio (Mw / Mn) between (Mw) and the number average molecular weight (Mn) is not particularly limited, but is preferably less than 1.8, more preferably 1.7 or less, and even more preferably 1 or less. 6 or less, more preferably 1.5 or less, particularly preferably 1.4 or less, and most preferably 1.3 or less.
  • the form is used as a mobile phase, and the measurement is performed with a polystyrene gel column, and the number average molecular weight and the like can be obtained in terms of polystyrene.
  • the number average molecular weight of the bull polymer in the present invention is not particularly limited, but is preferably in the range of 500 to 1,000,000 as measured by gel permeation chromatography, and 1,000 to: L00,000. Is more preferable, and 5,000 to 50,000 is still more preferable.
  • the above monomers can be used, and for example, a solution polymerization method by a radical reaction can be used.
  • the polymerization is usually carried out by adding the above-mentioned monomer or radical initiator, a chain transfer agent and the like and reacting at 50 to 150 ° C.
  • radical initiator examples include 2,2, -azobisisobutyl-tolyl, 2,2, -azobis (2-methylbutyronitrile), 4,4, -azobis (41-cyanovaleric) acid, 1,1, -azobis (1-cyclohexanecarboxynitrile), azobisisobutyric acid amidine hydrochloride, 2, Examples include azo-based initiators such as 2,1-azobis (2,4-dimethylpareronitrile) and organic peroxide-based initiators such as benzoyl peroxide and di-tert-butyl peroxide. The use of azo initiators is preferred because they are not affected by the solvent used and have a low risk of explosion.
  • chain transfer agent examples include n-dodecylmercaptan, tert-dodecylmercaptan, laurylmercaptan, y-mercaptopropinoletrimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, y-mercapto Menole captans such as propylmethylethoxysilane; halogen-containing compounds; and the like.
  • the polymerization may be performed in a solvent.
  • the solvent include non-reactive solvents such as ethers, hydrocarbons, and esters.
  • the number average molecular weight when polymerized by the free radical polymerization method is not particularly limited, but when measured by gel permeation chromatography, it is 500 to 100,000. It is preferable from the viewpoint of easiness. Further, 5,000 to 3,000 is more preferable because the cured product has good weather resistance and good workability.
  • the method of introducing an epoxy group and / or an oxetane group-containing silicon group having the structure of general formula (1), (2) or (3) into the terminal of the organic polymer in the present invention is not particularly limited. Since there is no need for purification such as deterioration due to oxidation at the time or deoxidation after introduction, introduction by addition of an epoxy group and / or oxetane group-containing hydrosilane compound to an unsaturated group, or termination at the terminal.
  • the introduction of the organic polymer having a hydrolyzable silyl group and the compound having at least one or more epoxy group and / or oxetane group and one hydroxyl group in one molecule by exchange reaction of the hydrolyzable group is performed. preferable.
  • the introduction of a hydrosilane compound by an addition reaction is carried out by (I) having an unsaturated group at the terminal.
  • any method can be used by an addition reaction to an unreacted hydrosilyl group with an epoxy compound having an unsaturated group such as an aryl group.
  • the number of hydrosilyl groups in the hydrosilane compound is one on average, so that it can be selectively and easily introduced into the terminal of the polymer, and the increase in the molecular weight of the polymer can be suppressed.
  • the order of charging the reactants is not limited, but considering the heat generation of the reaction system and the viscosity of the organic polymer, a mixture of the hydrosilylation catalyst and the organic polymer having an unsaturated group at the terminal is used. Then, a method of dropping a hydrosilane compound having an average of one hydrosilyl group having an epoxy group and / or an oxetane group is preferable.
  • the molar ratio between the terminal unsaturated group and the hydrosilyl group in the organic polymer is not particularly limited.
  • the terminal unsaturated group in the organic polymer may be in the range of ⁇ 2.0, and from the viewpoint of increasing the introduction ratio of the epoxy group Z or oxetane group, 0.8 ⁇ Drosylsilyl group Z
  • the terminal unsaturated group in the organic polymer is preferably ⁇ 1.5, and 0.8 ⁇ hydrosilyl group / terminal unsaturated group ⁇ 1.2 in the organic polymer is preferable from the viewpoint of removing the remaining hydrosilane compound. More preferred.
  • an unreacted hydrosilyl group at the polymer terminal can be sufficiently reacted with a compound containing an epoxy group and a Z or oxetane group, and a plurality of epoxy groups and / or It is possible to introduce an oxetane group.
  • the order of charging the reactants is not limited, but it is preferable to slowly drop the mixture of the organic polymer and the catalyst onto the hydrosilane compound from the viewpoint of suppressing the increase in the molecular weight.
  • the molar ratio of the terminal unsaturated group to the hydrosilyl group in the organic polymer is not particularly limited, but may be in the range of 2.0 ⁇ hydrosilyl group Z to the range of the terminal unsaturated group in the organic polymer.
  • the terminal unsaturated group in the organic polymer be 3.0 ⁇ hydrosilyl group, From the viewpoint of suppressing the increase in the molecular weight, it is more preferable that 3.0 ⁇ hydrosilyl group / terminal unsaturated group in the organic polymer ⁇ 5.0.
  • a hydrosilane compound represented by the following general formula (8), (9) or (10) can be used.
  • R 1 and R 2 are the same or different and are an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or
  • R, 3 SiO— represents a triorganosiloxy group.
  • R is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the three R's may be the same or different.
  • X represents a monovalent organic group containing an epoxy group and / or an oxetane group, m represents an integer of 0 or more and 20 or less, and n represents an integer of 1, 2, or 3.
  • X is a monovalent organic group containing an epoxy group and Z or oxetane group
  • R 2 is a hydrocarbon group having 1 to 20 carbon atoms and may contain one or more phenyl groups.
  • each unit is not specified.
  • they may be arranged alternately or randomly.
  • X is preferably a structure represented by the general formula (4), and further, a structure represented by the general formula (5) Is more preferable in terms of ease of production and availability of raw materials.
  • R 5 represents a divalent organic group having 1 to 20 carbon atoms and containing, as a constituent atom, at least one selected from the group consisting of hydrogen, oxygen, and nitrogen.
  • R 6 is one or more selected from the group consisting of hydrogen, oxygen, and nitrogen. It represents a divalent organic group having 1 to 20 carbon atoms contained as a constituent atom. Further, the structure represented by the general formula (6) is preferable from the viewpoint of curability.
  • R 5 is the same as above.
  • m and + n are 1 or more and 50 or less.
  • the compatibility between the polymer and the hydrosilane compound, and the obtained epoxy group and / or oxetane group-containing organic polymer are not considered. From the viewpoint of the reactivity of the contained photocurable composition, it is preferably 3 or more and 30 or less, particularly preferably 4 or more and 20 or less.
  • the number of m ' is 1 or more, but the reactivity of the organic polymer (A) can be adjusted by the number of m'.
  • M ′ is preferably 2 or more from the viewpoint of the reactivity of the obtained epoxy group and Z or oxetane group-containing organic polymer.
  • n ' is 0 or more, but the compatibility between the hydrosilane compound and the unsaturated group-containing organic polymer can be adjusted by the number of n'.
  • n ′ is preferably 1 or more, and when m ′ is 2 or more, n ′ is more preferably 2 or more.
  • n is preferably 1.
  • ′ ′ + ⁇ ′ ′′ in the general formula (10) is 1 or more and 20 or less, but is preferable from the viewpoint of an increase in the number of epoxy groups at the polymer terminal and compatibility between the polymer and the hydrosilane compound. Is 3 or more and 20 or less.
  • the number of m f ′ is one or more, but the reactivity of the organic polymer (A) can be adjusted by the number of m ′ ′. From the viewpoint of the reactivity of the obtained organic polymer containing an epoxy group and / or an oxetane group, it is preferable that 'is 2 or more.
  • the number of ⁇ ′ ′′ is 0 or more, but the compatibility between the hydrosilane compound and the organic polymer can be adjusted by the number of ⁇ ′′ ′.
  • the main chain skeleton of the organic polymer ( ⁇ ) is saturated carbon
  • n ′ ′′ is preferably 1 or more.
  • n ′ ′′ is preferably 1.
  • the compatibility between the organic polymer and the hydrosilane compound can be adjusted by increasing or decreasing n ′ and ⁇ ′ ′, but there is a method of appropriately selecting the substituent R 2 as another means for adjusting the compatibility.
  • R 2 is an alkyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having ⁇ to 20 carbon atoms. preferable.
  • hydrosilane compounds can be synthesized by a known synthesis method. For example, a hydrosilyl group of a polysiloxane compound having a hydrocarbon and a hydrogen atom on a Si atom is subjected to a hydrosilylation reaction with a compound having an unsaturated group at a terminal such as an aryl group, whereby the above-mentioned hydrosilane compound is obtained. Obtainable.
  • an epoxy group or a zoxetane group when introduced, it can be introduced by, for example, hydrosilylating a compound such as aryldaricidyl ether and a polysiloxane compound having a hydrosilyl group.
  • R 2 in the above general formulas (2) and (3) can be introduced by hydrosilylation of a hydrocarbon having an unsaturated group such as an aryl group at its terminal or ⁇ -methylstyrene. is there.
  • a method for synthesizing an organic polymer having an unsaturated group at a terminal there is no problem in a generally known method.
  • a method in which a terminal is a halogen group due to living cationic polymerization or the like is performed using a metal alkoxide.
  • An unsaturated group can be introduced by a method of dehydrohalogenation, or by reacting aryltrimethylsilane or the like in the presence of titanium tetrachloride or the like.
  • Compounds having an unsaturated bond at the hydroxyl terminal And reacting the product with an ether bond, an ester bond, a urethane bond, a carbonate bond, or the like.
  • R 12 is a divalent organic group having 1 to 20 carbon atoms
  • R 13 is a hydrocarbon group having 10 or less carbon atoms
  • Y is a halogen atom.
  • N a K alkali metal such as; N a H such metal hydride; N a OC 11 3 of such a metal alkoxide; N a OH al Chikarari hydroxide such as KOH And the like.
  • Specific examples of the unsaturated group-containing compound represented by the general formula (10) or (11) include:
  • CH 2 C H- CH 2 -C 1
  • CH 2 CH- CH 2 -B r
  • CH 2 CH— C 2 H 4 _ C
  • the above-mentioned hydrosilylation reaction involves the reaction of an organic polymer having an unsaturated group at the terminal with the hydrosilylation.
  • a method of reacting a run compound in the presence of a Group VIII transition metal catalyst is preferred.
  • a metal complex catalyst selected from Group VIII transition metal elements such as platinum, rhodium, cobalt, palladium, and nickel is effectively used.
  • Group VIII transition metal elements such as platinum, rhodium, cobalt, palladium, and nickel
  • H 2 P t C 1 6 ⁇ 6 H 2 platinum one Bulle siloxane complex, platinum - Orefin complexes, P t metal, R h C 1 (PP h 3) 3, R h C 1 3, R h / a 1 is 2 0 3, R u C 1 3, I r C 1 3, F e C 1 3, P d C 1 2 ⁇ 2 H 2 0, N i C 1 Yo I
  • Do compounds such 2 can be used, from the viewpoint of the reactivity of human Doroshiriru reduction
  • H 2 P t C 1 6 ⁇ 6 H 2 0, platinum one vinyl siloxane complex is preferably any one of platinum Orefuin complex.
  • a platinum-butylsiloxane complex is preferred
  • the catalyst arsenide Doroshiriru reaction can also be used a radical initiator such as such as A 1 C 1 3, T i C l 4 , etc. and a pen zone I helper oxa Lee de besides these.
  • a preferable temperature may be selected from the viewpoint of the reaction rate and the like as long as the temperature does not cause undesirable side reactions such as deterioration of the polymer, but it is usually 10 to 150 ° C.
  • the temperature is in the range of 20 to 120 ° C, more preferably 40 to: LO 0 ° C. If necessary, for example, adjustment of the reaction temperature, adjustment of the viscosity of the reaction system, etc. , Toluene, xylene, tetrahydrofuran, methylene chloride, pentane, hexane, heptane and the like.
  • the hydrosilylation reaction can be performed in the presence of an antioxidant.
  • the isobutylene-based polymer having an epoxy group and a Z or oxetane group at the terminal of the present invention can be obtained by a polymerization method called an inifer method (a cationic polymerization method using a specific compound called an inifer and used as an initiator and a chain transfer agent). It can be produced using the obtained terminal functional type, preferably, all terminal functional type isobutylene-based polymer. For example, an unsaturated group is added to the terminal by a dehydrohalogenation reaction of this polymer or an unsaturated group introduction reaction into the polymer as described in JP-A-63-2005.
  • the hydrogenated polybutadiene-based polymer for example, first, the hydroxyl end of the hydroxy-terminated hydrogenated polybutadiene-based polymer is converted into an oxymetal group such as ONa or _OK, and then the general formula (11) or the general formula ( By the method of reacting the unsaturated group-containing compound represented by 12), it is also possible to obtain a hydrogenated polybutadiene-based polymer having an unsaturated group at the terminal.
  • a hydrogenated polybutadiene polymer having a terminal unsaturated group having substantially the same molecular weight as the hydrogenated polybutadiene polymer used as a starting material can be obtained.
  • one molecule such as methylene chloride, bis (octamethyl) benzene, bis (chloromethyl) ether, etc.
  • the molecular weight can be increased by reacting with an organic halogen compound containing two or more halogens, and then reacting with an organic halogen compound represented by the general formula (11) or (12). Higher molecular weight and having an olefin group at the end Hydrogenated polybutadiene-based polymer can be obtained.
  • the saturated hydrocarbon polymer does not substantially contain an unsaturated bond other than an aromatic ring in the molecule, it is formed from a conventional rubber polymer such as an organic polymer having an unsaturated bond. Better weather resistance than coating. Further, since the polymer is a hydrocarbon polymer, it has good low gas permeability and water resistance, and forms a film having high low gas permeability.
  • the method for producing an oxyalkylene polymer having an epoxy group and / or an oxetane group-containing silicon group at the terminal of the present invention is not particularly limited, and examples thereof include an oxyalkylene polymer having an unsaturated group at the terminal. It can be obtained by a hydrosilylation reaction with an epoxy group-containing monohydrosilane compound represented by the general formula (8), (9) or (10).
  • the OM (-OM ( M is Na or K, etc.), and then a method of reacting the unsaturated group-containing compound represented by the general formula (11) or (12) can also be used.
  • the method for producing the vinyl polymer having an epoxy group and / or an oxetane group-containing silicon group at the terminal of the present invention is not particularly limited, and for example, an oxyalkylene polymer having an unsaturated group at the terminal may be used. It can be obtained by a hydrosilylation reaction using an epoxy group-containing monohydrosilane compound represented by the formula (8), (9) or the general formula (10).
  • the introduction of an epoxy group and / or an oxetane group by the exchange reaction of a hydrolyzable group is carried out by combining at least one epoxy group and / or an oxetane group with at least one organic polymer having a hydrolyzable silyl group at a terminal.
  • Compounds with one hydroxyl group An epoxy group and / or an oxetane group can be introduced into the terminal by the exchange reaction of the hydrolyzable group with the product.
  • the hydrolyzable silyl group of the organic polymer having a hydrolyzable silyl group at the terminal is not particularly limited, but typical examples thereof include a group represented by the general formula (13). Is mentioned.
  • RR 2 , m and n are the same as those in the general formula (1).
  • Q represents a hydroxyl group or a hydrolyzable group, and when Q is divalent or more, they may be the same. , May be different.
  • the hydrolyzable group in Q is not particularly limited, and may be a conventionally known hydrolyzable group. Specific examples include a hydrogen atom, a halogen atom, an alkoxy group, an alkoxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group. Among these, an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, and an isopropoxy group is preferable in terms of gentle hydrolysis and easy handling.
  • hydroxyl groups or hydrolyzable groups When two or more hydroxyl groups or hydrolyzable groups are present in the reactive silicon group, they may be the same or different.
  • the reactive silicon group represented by the following general formula (14) is preferable because it is easily available.
  • the method for producing the above-mentioned organic polymer having a hydrolyzable silyl group at the terminal is not particularly limited, and the organic polymer having an unsaturated group at the terminal described above is represented by the following general formula (15) It can be obtained by using the above-mentioned addition reaction method with a hydrosilane compound.
  • hydrosilane compound has a general formula (16)
  • Specific examples of the compound represented by the general formula (15) or (16) include trichlorinolesilane, methinoresichronorelane, dimethinolecronolerane, pheninoresinolenosilane, and trimethinolecinone.
  • Halogenated silanes such as xymethinophenol silane, 1,1,3,3-tetramethyl-1-bromodisiloxane; trimethoxysilane, triethoxysilane, methylethoxysilane, methinoresimemethoxysilane, phenyldimethoxysilane, trimethylsiloxymethyl Alkoxysilanes such as methoxysilane and trimethylsiloxy xy ethoxy silane; methyl diacetoxy silane, phenyl diacetoxy silane, triacetoxy silane, trimethyl thi oxy methoxy ethoxy silane, and trimethyl siloxy diacetate Acyloxysilanes such as xysilane; bis (dimethylketoxime) methylsilane, bis (cyclohexylketoxime) methylsilane, bis (getylketoxime) trimethylsiloxysilane, bis (methinoleethylketoxi
  • the compound having at least one epoxy group and / or oxetane group and / or one hydroxyl group in one molecule to be reacted with the organic polymer having a hydrolyzable silyl group at the terminal is not particularly limited. However, compounds having a secondary or primary hydroxyl group are preferred from the viewpoint of reactivity.
  • W is a monovalent organic group containing an epoxy group and / or an oxetane group.
  • Specific examples of these compounds include 2,3-epoxy-11-propanol and 3-ethynole_3 from the viewpoint of availability.
  • Compounds such as hydroxymethinoleoxetane and glycerin diglycidyl ether.
  • the amount of these compounds used is not particularly limited.However, in order to accelerate the exchange reaction, it is necessary to use one or more equivalents based on the hydrolyzable group of the organic polymer having a hydrolyzable silyl group at the terminal. preferable.
  • the exchange reaction of the hydrolyzable group is carried out by the above-mentioned organic polymer having a hydrolyzable silyl group and the above-mentioned compound having at least one or more epoxy group and / or oxetane group and one hydroxyl group in one molecule.
  • the reaction can be carried out by adding a transesterification catalyst to the reaction mixture.
  • the transesterification catalyst is exemplified by alkali metal alkoxides, Sn compounds, Ti compounds, Zn compounds, Ba compounds, and conventional strong alkali compounds.
  • suitable transesterification catalysts include dimethyltin neodecanoate, dibutyltin diacetate, dibutyltin diallate, dioctyltin dilaterate, dibutyltin dioctate, zinc naphthenate, cobalt naphthenate, lead octylate, tin octylate Octylate, cobalt dioctylate, diisooctyl mercaptoacetate, dinorconate naphthenate, dinorconate octinoleate, tetrabutyl titanate, tetraisopropyl titanate, barium hydroxide monohydrate and other organic metal catalysts.
  • the transesterification catalyst is preferably selected from alkoxides such as te
  • the amount of the above-mentioned transesterification catalyst is not particularly limited, but is usually used in the range of 50 ppm to 100 ppm, preferably 100 ppm to 300 ppm, relative to the above organic polymer. Is done.
  • the reaction can further include a solvent.
  • the solvent is not particularly limited.
  • aliphatic hydrocarbons such as pentane, cyclopentane, hexane, cyclohexane, heptane, octane and nonane; aromatic hydrocarbons such as benzene, toluene and xylene And fluorine-substituted, chlorine- and bromine-substituted aliphatic or aromatic hydrocarbons such as, for example, ethylene and bromobenzene.
  • two or more nonpolar solvents can be used in combination.
  • the amount of solvent is not limited, but can include from 0 to 100 parts by weight of solvent per 100 parts by weight of polymer.
  • This method can accelerate the reaction by removing volatiles from the product.
  • a method for removing volatile components those known in the art can be used. Any method for removing volatile components can be used in the present invention. Such methods are exemplified by heating, heating and depressurizing, rotary evaporators, thin-film streets, f / i,! Wiping film evaporators or combinations of these. You.
  • volatiles are removed by heating the product to a temperature of 50-150 ° C. under a reduced pressure of about 260-130 Pa.
  • the organic polymer having an epoxy group and / or an oxetane group-containing silicon group at the terminal of the present invention is a novel polymer having an epoxy group and / or an oxetane group-containing silicon group selectively introduced at the terminal. In this case, it is also possible to avoid the deterioration of the polymer main chain and perform the synthesis.
  • the polymer thus obtained can be cured by itself using a known reaction of an epoxy group, and can be used as a modifier for a conventionally used epoxy-based cured product. It is expected that the characteristics derived from the polymer main chain will be exhibited by various usages.
  • the method for curing an organic polymer having an epoxy group and / or an oxetane group-containing silicon group at the terminal of the present invention includes a method for curing an epoxy group and / or an oxetane with a general curing agent for a compound containing an epoxy group and / or an oxetane group.
  • the groups can react and cure.
  • Curing agents include amine-based curing agents, acid-based curing agents, Boron fluoride amine complex-based curing agents, cationic photo-curing agents, and the like can be used in a general manner.
  • curing can be performed in a short time.
  • the photothion initiator (B) of the present invention is not particularly limited as long as it initiates cationic polymerization of the resin as the component (A) by light, and any of them can be used.
  • the photodynamic thione initiator there is a structure represented by the following general formula (7).
  • T i, Z r, Fe, Ru, ⁇ s or N ⁇ N, R 7 , R 8 , R 9 , and R 10 are the same or different organic groups, and a, b, c and d are each Is an integer from 0 to 3, where (a + b + c + d) is equal to the valence of W.
  • M is a metal or metalloid constituting a central atom of the complex [MZ V + U ], for example, B, P, As, Sb, Fe, Sn, Bi, Al, and Ca , In, Ti, Zn, Sc, V, Cr, Mn, Co, and the like.
  • Z is, for example, a ligand coordinated to M, and is a halogen atom such as F, Cl, or Br, or an organic group.
  • u is the net charge of the complex ion.
  • V is the valence of M.
  • sulfonic acid diaryldonium salt sulfonic acid triarylsulfonium salt
  • boronic acid diaryldonium salt boronic acid triarylsulfonium salt. It is preferable to select the cation-based photoinitiator because it is easily available.
  • onium salts include dipheno-dominium, 4-methodine, bis- (4-methinophenol), bis- (4-tert-pentinorefenyl), Bis (dodecylphenyl) eodonium, trinoleminorenodium, triphenylenolesnorehonium, triphenylenole snorehonium, dipheninole 4-thiophenoxyphenylenolesnorehonim, Screw [4 -(Jif ⁇ -Noreslfonio) 1 ⁇ 2 ⁇ 2) Snorefied, bis (4 ⁇ 1 (2 (4 (2— (2—-Hydroxyshetinole)) 2 ⁇ 4 ⁇ 2 ⁇ 4 ⁇ 2 ⁇ 4 ⁇ 4 ⁇ 2 ⁇ 4 ⁇ 4 ⁇ 4 ⁇ 4 ⁇ 4 (Cycle mouth pentagenenyl) [1, 2, 3, 4, 5, 6— ⁇ — (methyle
  • anion in the general formula (7) examples include tetrafluoroporate, tetrakis (pentafluorophenol), hexafenoleophosphate, hexafenoleoantimonate, and hexafluoroarsenate. And hexaclo mouth antimonate.
  • photo-thione initiators can be used alone or in combination of two or more.
  • decamethylphen mouth / tetrakis (3,5 difluorophenyl) porate
  • decamethylphen mouth / tetrakis 3,5 difluoromethylphenyl) porate
  • decamethylfe mouth / tetrakis decamethylfe mouth / tetrakis
  • the content ratio of the component (II) in the resin composition of the present invention is usually 0.1 to 10 parts by weight, preferably 0.3 to 3 parts by weight. It is preferable that the content ratio of the component (II) is 0.1 part by weight or more, because the curing condition of the resin composition becomes better. Also, from the viewpoint of preventing the elution of the optical thione initiator after curing, the amount is preferably 10 parts by weight or less. preferable.
  • the sensitizer is not particularly limited, and any sensitizer used for general cationic photoinitiators can be used without any problem.
  • aromatic hydrocarbons such as anthracene, pyrene, and perylene may be used for the feeling of arylideum and triarylsulfonium salt, and not for the feeling of arylidenedium salt.
  • Aromatic ketones such as benzophenone, xanthon, thioxanthone, Michler's ketone, 9,10-phenanthraquinone, eosin, ketocoumarin, and atalidine dyes, etc.
  • the photocurable composition of the present invention may contain a compound (C) having an epoxy group and / or a compound (D) having an oxetane group, if necessary.
  • the compound (C) having an epoxy group can improve the curability and mechanical strength of a cured product, and examples thereof include the following.
  • compounds having one epoxy group include polyglycidyl ether and butyl glycidyl ether, and compounds having two or more epoxy groups include hexanediol diglycidyl ether and tetraethylene.
  • Dalicol diglycidyl ether trimethylonolepropane triglycidyl ether, bisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, novolak epoxy compounds and the like. Further, a compound having an alicyclic epoxy group can be used without any problem.
  • components (C) can be used alone or in combination of two or more.
  • a compound suitable for the component (A) because the compatibility and the like differ depending on the type of the main chain skeleton of the component (A).
  • the content of the component (C) in the resin composition of the present invention is usually 1 to 70 parts by weight, and preferably 1 to 50 parts by weight.
  • the addition of the component (C) is effective for improving the curability, adhesiveness, and heat resistance of the composition.
  • any compound having at least one oxetane ring represented by the general formula (18) can be used. 5 (18)
  • R 14 and R 15 are the same or different and include hydrogen, oxygen, and nitrogen.
  • Examples of these compounds having an oxetane ring include 3-ethyl-3-hydroxymethyltiloxetane, 3-ethyl-3- (phenoxymethyl) -xetane, 3-ethyl-3- (hexyloxymethinoleoxetane, and 3-ethyl-3- (2 —Ethynolehexyl oxymethyl) xetane, 3-ethyl 3 -— ⁇ [3- (triethoxysilyl) propoxy] methyl ⁇ xetane, di [1-ethyl (3-oxetanyl)] methyl ether, 1,4-bis ⁇ [3-Ethyl-1- (3-oxetanyl) methoxy] methyl ⁇ Benzene, 3,3'-dimethinolei 2- ( ⁇ -methoxipinole) -oxetane and the like.
  • components (D) can be used alone or in combination of two or more.
  • compatibility etc. differs depending on the type of the main chain skeleton of the component (A)
  • the content of the component (D) in the resin composition of the present invention is usually 1 to 70 parts by weight, and preferably 1 to 50 parts by weight.
  • the addition of the component (D) is effective for high-speed curability and high molecular weight of the composition.
  • curable composition of the present invention other photo-ionizable polymerizable compounds, silane coupling agents, fillers, modifiers, stabilizers, and other resin components are provided as long as the effects of the present invention are not impaired. And other components.
  • photoactive thione polymerizable compounds examples include oxolane compounds, cyclic acetal compounds, cyclic lactone compounds, thiirane compounds, chetan compounds, spiro orthoester compounds, butyl ether compounds, ethylenically unsaturated compounds, and cyclic ethers.
  • silane coupling agent examples include silane compounds having a reactive group such as an epoxy group, a carbonyl group, a methacryloyl group, and an isocyanate group. Specifically, trimethoxysilylbenzoic acid, ⁇ -methacryloxypropyltrimethoxysilane, Examples include butyl acetooxysilane, butyl methoxy silane, ⁇ -isocyanato-porphyrtoethoxy silane, ⁇ -glycidoxypropyl trimethoxy silane, ⁇ - (3,4-epoxycyclohexyl) ethyl trimethoxy silane, and the like. These components can be used alone or in combination of two or more.
  • the content of the silane coupling agent component in the resin composition of the present invention is not particularly limited, but is usually 0.1 to 20 parts by weight, preferably 0.3 to 10 parts by weight. When the content is in the range of 0.1 to 20 parts by weight, the effect of improving the adhesiveness and the economical balance are excellent.
  • the filler examples include fine particles, glass beads, talc, styrene-based polymer particles, methacrylate-based polymer particles, ethylene-based polymer particles, and propylene-based polymer particles.
  • inorganic fillers can be preferably used.
  • fine particle silica is preferable. These may be used alone or in combination of two or more.
  • the fine particles preferably have an average primary particle size of 5 to 100 nm. These can be surface treated or untreated.
  • the modifier examples include a polymerization initiator, a leveling agent, a wettability improver, a surfactant, and a plasticizer. These may be used alone or in combination of two or more.
  • the stabilizer examples include an antioxidant, an antioxidant, a light stabilizer, and an ultraviolet absorber. These may be used alone or in combination of two or more.
  • resin components examples include resin components such as polyamide, polyurethane, polybutadiene, polyether, polyester, acrylic resin, silicon resin, and fluororesin.
  • the curable composition of the present invention is prepared by uniformly mixing the components.
  • the method of mixing There is no particular limitation on the method of mixing, but first, except for the cationic photoinitiator of component (B). After sufficiently mixing the other components, the cationic photoinitiator of the component (B) is preferably mixed in view of the stability of the composition. In particular, it is preferable that a component containing a large amount of water be subjected to a dehydration treatment in advance and mixed.
  • the method and apparatus for mixing are not particularly limited, but are adjusted by appropriately mixing using a manual stirrer, a mechanical stirrer, a roll mill, or the like.
  • the cured product of the present invention can be obtained by irradiating the curable composition with a light energy source.
  • a light energy source those generally used for a photocuring reaction can be used without particular limitation, and examples thereof include ultraviolet light, an electron beam, and visible light.
  • curing of the photocurable composition itself involves passing the coated substrate through a desired source of light energy, e.g., under an ultraviolet lamp, at a predetermined speed, and placing the required energy source in an output state for a predetermined time. This can be accomplished by any of the known methods, including exposing the coated substrate completely to light energy.
  • the application of the photocurable composition to obtain the cured product includes, for example, brushing, extrusion, spraying, gravure, kiss roll, dispenser, and any suitable known in the art such as by air knife. Techniques can be applied.
  • the solid substrate to which the photocurable composition of the present invention is applied is, for example, a flexible sheet material such as paper, polyolefin film, polyolefin-coated paper, foil, wood, cardboard and cotton; aluminum, copper, steel and silver, for example.
  • a flexible sheet material such as paper, polyolefin film, polyolefin-coated paper, foil, wood, cardboard and cotton; aluminum, copper, steel and silver, for example.
  • Metal materials, such as glass and stone; and synthetic polymers such as, for example, polyolefins, polyamides, polyesters, and polyarylates.
  • post-curing such as heating
  • the photocurable composition of the present invention is useful as an adhesive, a paint, a sealant composition, a waterproofing agent, a spraying agent, a molding material, a casting rubber material and the like.
  • the product comprising the cured product containing the photocurable composition of the present invention as a constituent is the photocurable composition of the present invention, or another photothione polymerizable compound, a silane coupling agent, or a filler as necessary.
  • the photocurable composition of the present invention is mixed with a photocurable composition mixed with a modifier, another resin component, and the like, and is applied to the use site of each application, and the site is adhered by irradiating light energy. Sealed and sealed.
  • the method for producing these products is not particularly limited, and a process suitable for each application can be used.
  • a power supply filled with the photocurable composition of the present invention and a UV irradiation device are installed in a spinning device of the optical fiber, and the optical fiber is drawn by drawing a straight line and passing through a cup.
  • the curable composition is coated and then cured by UV irradiation to obtain an optical fiber coated with a cured product of the curable composition of the present invention.
  • the periphery of the device on the substrate is sealed with the photocurable composition of the present invention, capped, irradiated with UV, and then sealed.
  • An organic EL device sealed with the cured product of the present invention is obtained from the cured product of the curable composition of the present invention.
  • the photocurable composition of the present invention can be expected to have the unique performance of the main chain skeleton.
  • the photocurable composition of the present invention when the main chain skeleton of the component (A) of the present invention is a saturated hydrocarbon polymer, the photocurable composition of the present invention, or a cured product containing it, has excellent heat resistance, low moisture permeability, and low heat resistance. Hygroscopicity and low gas permeability can be imparted.
  • a curable composition is suitable as an adhesive or a sealing agent around an electronic material, and is particularly suitable as an adhesive or a sealing agent for parts that are sensitive to heat and moisture, such as organic EL. .
  • the main chain skeleton of the component (A) is an oxyalkylene polymer
  • the photocurable composition of the present invention or the cured product containing the same has excellent low-temperature properties, flexibility, and compatibility with other components. Excellent compatibility and the like can be provided.
  • the photocurable composition of the present invention and the cured product containing the same can be imparted with excellent weather resistance, flexibility, excellent compatibility with other components, and the like.
  • the main chain skeleton of the component (A) may be a single one, and by combining two or more kinds, a photocurable composition having the above characteristics and a cured product containing the same can be obtained. is there.
  • a pressure-resistant glass liquefaction collection tube with a needle valve containing the isobutylene monomer 2 54 ml (2.99 mo 1) was connected to a three-way cock, and the polymerization vessel was dried at 17 o ° c with dry ice. After cooling in a / ethanol bath, the inside of the vessel was evacuated using a vacuum pump. After opening the needle valve and introducing the isobutylene monomer from the liquefied gas sampling tube into the polymerization vessel, the inside of the vessel was returned to normal pressure by introducing nitrogen from one of the three-way cocks. Next, 0.387 g (4.15 mmo 1) of 2-methylpyridine was added.
  • F n (v) 1.88 (the number of aryl groups per aromatic ring molecule serving as an initiator residue in NMR analysis).
  • Propylene oxide was polymerized in the presence of zinc hexanocopartate glyme complex catalyst using polypropylene dalicol having a number average molecular weight of 2000 as an initiator to obtain a polypropylene glycol having a number average molecular weight of 10,000. Subsequently, 1.2 times equivalent of CH 3 ONa (methanol solution) was added to the terminal hydroxyl group of the polypropylene glycol, and the terminal was subjected to metaloxylation while removing methanol under reduced pressure. After adding 1.3 times equivalent of 3_chloro-1-propene and reacting, the salt by-produced was removed by desalting and purification, and an oxypropylene polymer having an aryl group at the terminal (P-2 ).
  • CH 3 ONa methanol solution
  • a photocurable composition was prepared according to the following examples, a film was applied, and UV irradiation was performed to obtain a cured product thereof. Further, by extracting the cured product with a good solvent, the gel fraction of insolubles was measured and calculated, and the curability was determined.
  • Evaluation method of gel fraction An appropriate amount of the obtained cured product film was weighed in a 200-mesh wire gauze and wrapped so that insolubles did not flow out. These were immersed in a sufficient amount of hexane for 15 hours to extract the eluted components, and then dried at 80 ° C for 2 hours. The ratio of the insoluble content to the initial weight at that time was defined as the gel fraction (%).
  • Light irradiation method Using a commercially available UV lamp (400 W), the illuminance at the sample position was adjusted to 28000 to 30000 ⁇ cm2 (measurement wavelength: 310 to 400 nm). The irradiation time was adjusted, and the integrated light amount was adjusted. Under the conditions of this example, the integrated light amount of 1.5 J was obtained by irradiation for one minute. Further, the temperature of the sample surface in this example was about 50 ° C.
  • a triarylsulfoniumhexafluoroantimonate-based cationic photoinitiator (Adekaobtomer SP- 1 72: Asahi Denka Kogyo Co., Ltd.) 1 part by weight was sufficiently mixed to prepare a photocurable composition.
  • This mixture was uniformly formed into a film having a thickness of 100 m on a Teflon (R) sheet using an applicator, and then irradiated with UV by a UV lamp.
  • the cured film was peeled off by UV irradiation at 1.5 J of cumulative light, the elution was extracted with hexane, and the curability was determined by calculating the gel fraction of the insoluble component (Table 1).
  • a triarylsulfoniumhexafluorophosphate-based cationic photoinitiator (Adekaobtomer SP_152: Asahi) 1 part by weight of Denka Kogyo Co., Ltd.) was sufficiently mixed to prepare a photocurable composition.
  • This mixture was uniformly formed into a film having a thickness of 100 ⁇ m on a Teflon (R) sheet using an applicator, and then irradiated with UV by a UV lamp.
  • the cured film was peeled off by UV irradiation at 1.5 J of cumulative light, the elution was extracted with hexane, and the curability was determined by calculating the gel fraction of the insoluble component (Table 1).
  • the cured film was peeled off by UV irradiation at 1.5 J of cumulative light, the elution was extracted with hexane, and the curability was determined by calculating the gel fraction of the insoluble component (Table 1).
  • the cured film was peeled off by UV irradiation at 1.5 J of cumulative light, the elution was extracted with hexane, and the curability was determined by calculating the gel fraction of the insoluble component (Table 1).
  • the epoxy compound (C) component (alicyclic epoxy diluent: celoxide 3000: manufactured by Daicel Chemical Industries, Ltd.) ) 10 parts by weight of the oxetane compound (di [1-ethyl (3-oxetanyl)] methyl ether) of component (D) are sufficiently mixed, and further mixed with 10% by weight of triarylsulfoniumhexafluoro.
  • an antimony-based photothione photoinitiator (ADEKA OBTMER SP-172: manufactured by Asahi Denka Kogyo KK) was sufficiently mixed to prepare a photocurable composition. This mixture was uniformly formed into a film having a thickness of 100 ⁇ m on a Teflon (R) sheet using an applicator, and then irradiated with UV by a UV lamp.
  • the cured film was peeled off by UV irradiation at 1.5 J of cumulative light, the elution was extracted with hexane, and the curability was determined by calculating the gel fraction of the insoluble component (Table 1).
  • Dibutyltin diacetyl acetate toner (Neostan U-220: Nitto Kasei Co., Ltd.) is mixed with 0.5 part by weight per 100 parts by weight of a propylene polymer (MS Polymer SAT350: Kanegafuchi Chemical Industry Co., Ltd.). Then, a film having a thickness of 100 ⁇ m was uniformly formed on a Teflon (R) sheet using an applicator, and then irradiated with UV by a UV lamp. An attempt was made to check the curability, but no film was formed and the film did not cure.
  • 100 parts by weight of an aryl-terminated polyisobutylene having a molecular weight of about 10,000 (EP40OA, manufactured by Kaneguchi Chemical Industry Co., Ltd.) having no terminal structure is added to 100 parts by weight of ⁇ -methylstyrene-modified methylhydrazine polysiloxane ( After mixing 7.3 parts by weight of Kanebuchi Chemical Industry Co., Ltd., CR 100), and mixing by hand, dimethyl maleate (manufactured by Wako Pure Chemical Co., Ltd., special grade reagent) ), And 60 / L of platinum-vinylsiloxane complex catalyst (HS-KA, manufactured by Kaneka Chemical Industry Co., Ltd.), and mixed by hand.
  • EP40OA manufactured by Kaneguchi Chemical Industry Co., Ltd.
  • This mixture was uniformly formed into a film having a thickness of 100 m on a Teflon (R) sheet using an applicator, and then irradiated with UV by a UV lamp. An attempt was made to confirm curability, but no film was formed and the film did not cure.
  • Example 1 The sample of Example 1 was separately prepared, subjected to UV irradiation, and further heat-cured at 80 ° C. for 1 hour. The cured film was peeled off, the elution was extracted with hexane, and the curability was confirmed by calculating the gel fraction of the insoluble component. As a result, it was confirmed that the gel fraction was improved as compared with only the UV irradiation in Example 1 (Table 3).
  • Example 5 A sample of Example 5 was separately prepared, subjected to UV irradiation, and further heat-cured at 80 ° C. for 1 hour. The cured film was peeled off, the elution was extracted with hexane, and the curability was confirmed by calculating the gel fraction of the insoluble component. As a result, it was confirmed that the gel fraction was improved as compared with only the UV irradiation in Example 5 (Table 3).
  • the photocurable composition of the present invention had good photocurability, and a cured product having both the rubber elasticity characteristic of the component (A) was obtained.
  • Celoxa I '3000 Fat 3 epoxy diluent (manufactured by Daicel Chemical Industries, Ltd.) Table 2
  • EP400A 100 Neostan U220 0.5
  • the photocurable composition of the present invention is a composition excellent in both photocurability and rubber elasticity after curing.

Abstract

新規な末端にエポキシ基および/またはオキセタン基含有ケイ素基を有する有機重合体およびカチオン系光開始剤を含有する光硬化性組成物を提供する。たとえば、末端に不飽和基を有する有機重合体とエポキシ基および/またはオキセタン基を有するヒドロシラン化合物の付加反応により製造される末端にエポキシ基および/またはエポキシ基含有ケイ素基を有する有機重合体(A)およびカチオン系光開始剤(B)を含むことを特徴とする光硬化性組成物、により解決する。

Description

明細書
末端にエポキシ基および/またはォキセタン基含有ケィ素基を有する有機重合 体を含む光硬化性組成物、 それから得られる硬化物、 及ぴ製造方法
技術分野
本発明は、 各種の有機重合体の末端に選択的にエポキシ基および/またはォキ セタン基を含有したケィ素基が導入された、 新規な末端にエポキシ基および/ま たはォキセタン基含有ケィ素基を有する有機重合体およぴカチオン系光開始剤を 含有する光硬化性組成物に関する。
背景技術
従来エポキシ基の良好な反応性、 接着性から、 エポキシ基を様々な重合体に導 入したエポキシ基含有重合体が開発されている。 し し、 エポキシ基を導入する 際にォレフィンを過酸化物等によりエポキシ化する方法では、 酸化等による重合 体の劣化を伴ったり、 重合体末端への選択的なエポキシ基の導入や多官能化が困 難であるという問題があった。 また製造法によっては副生成物の除去が必要であ る場合がある。 特に上記の方法として、 エポキシ基含有ポリイソブテンを重合す る方法、 およびそれから得られるエポキシ基含有重合体の構造では、 上記のよう な酸化劣化等の懸念や、 得られる重合体のエポキシ基周辺の立体的障害による反 応性への懸念があった (特開平 3 _ 5 6 5 0 5号) 。 このため、 従来法によるェ ポキシ基含有重合体では、 種々の用途に対し必ずしも十分に満足できる物性を示 すに至っていなかった。
一方、 各種の有機重合体は、 それぞれに独特の特徵を有することが広く知られ ており、 特に主鎖骨格がポリイソプチレン、 水素添カロポリイソプレン、 水素添加 ポリブタジエン及びその共重合体からなる群から選ばれる飽和炭化水素系重合体 は、 高耐候性、 高耐熱性、 低透湿性、 低気体透過性、 優れた可とう性等の特徴を 有している。一方、ォキシアルキレン系重合体は、他の重合体との優れた相溶性、 可とう性、 更には優れた低温特性を有している。
また前記の飽和炭化水素系重合体やォキシアルキレン系重合体等の末端に加水 分解性基、 不飽和基、 ヒ ドロシリル基等を導入した重合体は種々開発されている 力 それらの硬化においては水分や加熱が必要であり、 十分な硬化までにある程 度の時間や高温状態を要した。 また貯蔵安定性の点でも問題を有している。 特に 近年、 電子部品周りの接着、 シーリング用途において、 工程時間の短縮を目的と した従来の熱硬化系から光硬化系への変更、 また有機 E L封止剤等の熱に弱い部 品への光硬化系の利用が求められており、 エポキシ基を有する重合体は光力チォ ン硬化等の新しい用途に使用され、 このような電子材料等の分野での使用が期待 されている。
以上のことから、 各種の有機重合体の末端に選択的にエポキシ基が導入された 重合体への要求は高く、 また硬化工程の時間短縮が可能な光硬化への適用の必要 性が非常に高いと考えられる。
発明の開示
本発明は、 各種の有機重合体の末端に選択的にエポキシ基および/またはォキ セタン基を含有したケィ素基が導入された、 新規な末端にエポキシ基おょぴ Zま たはォキセタン基含有ケィ素基を有する有機重合体およぴカチオン系光開始剤を 含有する光硬化性組成物に関する。 本組成物においては、 基材に負担のかかる高 温や湿分等の硬化条件を必要とせず、 光エネルギーの照射により短時間で十分な 硬化が可能である。
本発明者らは、 上記課題を解決するため鋭意検討を重ねた結果、 特定のェポキ シ基含有ケィ素基を有する重合体が優れた物性を有することを見い出し、 本発明 を完成するに至った。
すなわち、
1 ) 末端に一般式 (1 ) 、 一般式 (2 ) あるいは一般式 (3 ) で表される構造 を有する有機重合体 (A) 、 及び、 カチオン系光開始剤 (B ) を含むこと を特徴とする光硬化性組成物に関する。
Figure imgf000004_0001
(式中、 R1および R2は、 同一または異なった炭素数 1から 20のアルキル基、 炭素数 6から 20のァリール基、炭素数 7から 20のァラルキル基若しくは(R') 3S i 0_で示される トリオルガノシロキシ基を示し、 R1または R2が 2個以上存 在するとき、 それらは同一であってもよく、 異なっていてもよい。 ここで R' は 炭素数 1から 20の 1価の炭化水素基であり 3個の R, は同一であってもよく、 異なっていてもよい。 Xはエポキシ基および/またはォキセタン基を含有する 1 価の有機基、 mは 0以上 20以下の整数、 ηは 1、 2または 3の整数を示す。 )
Figure imgf000004_0002
(式中、 X、 R2は上記と同じ、 R3、 R4はメチル基もしくは Xあるいは R2と同一 のものであるか、 いずれかが有機重合体への結合部である。 ここで 1 ' は平均 1 で有機重合体末端への結合部を表すが R3、 R4いずれかが有機重合体末端への結 合部の場合 1 ' = 0である。 1≤m, + n, ≤ 50 1≤m' 、 0≤ n ' であり、 各ュニットの位置は特定されたものではなく、 それぞれ複数個含有される場合に 交互あるいはランダムに配置されていて良い。 )
Figure imgf000005_0001
(式中、 X、 R2は上記と同一である。 ここで 1 ' ' は平均 1で有機重合体末端へ の結合部を表す。 l≤m' ' + n ' ≤ 20 1 ^m' ' 、 0≤η' ' であり、 各ュ-ットの位置は特定されたものではなく、 それぞれ複数個含有される場合に 交互あるいはランダムに配置されていて良い。 )
2) 有機重合体 (Α) の Xが一般式 (4) で表される構造を有する 1) に記載 の光硬化性組成物に関する。
Figure imgf000005_0002
(式中、 R5は水素、 酸素、 及び窒素からなる群より選択される 1種以上を構成原 子として含有する炭素数 1から 20の 2価の有機基を示す。 )
3) 有機重合体 (A) の Xが一般式 (5) で表される構造を有する 1 ) に記載 の光硬化性組成物に関する。
Figure imgf000005_0003
(式中、 R6は水素、 酸素、 及び窒素からなる群より選択される 1種以上を構成原 子として含有する炭素数 1から 20の 2価の有機基を示す。 ) 4) 有機重合体 (A) の Xが一般式 (6) で表される構造を有する 1) に記載 の光硬化性組成物に関する。
Figure imgf000006_0001
(式中、 R5は上記と同じ)
5) 有機重合体 (A) の主鎖骨格が、 飽和炭化水素系重合体、 ォキシアルキレ ン系重合体、 又はビュル系重合体から選ばれることを特徴とする 1 ) 〜4) のい ずれかに記載の光硬化性組成物に関する。
6) 飽和炭化水素系重合体が、 ポリイソプチレン、 水素添加ポリブタジエン、 水素添加ポリィソプレン及ぴその共重合体からなる群から選ばれることを特徴と する 5) に記載の光硬化性組成物に関する。
7) 有機重合体 (A) 力 末端に不飽和基を有する有機重合体とヒ ドロシラン 化合物との反応により製造されるものであり、 前記のヒ ドロシラン化合物がェポ キシ基および/またはォキセタン基を有するヒ ドロシラン化合物である、 1) 〜 6) のいずれかに記載の光硬化性組成物に関する。
8) 有機重合体 (A) 力 末端に加水分解性シリル基を有する有機重合体と 1 分子中に 1つの水酸基を有する化合物との加水分解性基の交換反応により製造さ れるものであり、 前記の 1分子中に 1つの水酸基を有する化合物が少なく とも 1 つ以上のエポキシ基および Zまたはォキセタン基を有する化合物である、 1) 〜
6) のいずれかに記載の光硬化性組成物に関する。
9 ) カチオン系光開始剤 (B) 力 一般式 (7) で表される構造であることを 特徴とする 1) 〜8) のいずれかに記載の光硬化性組成物に関する。
[R7 aR8 bR9 cR10 dW] U+ [MZV+U] u— (7) (式中、 Wは、 S、 S e、 T e、 P、 A s、 S b、 B i、 0、 I、 B r、 C l、 T i、 Z r、 F e、 R u、 O sまたは N≡Nであり、 R7、 R8、 R9、 および R10 は同一または異なる有機基であり、 a、 b、 cおよび dはそれぞれ 0〜 3の整数 であって、 (a + b + c + d) は Wの価数に等しい。 Mは、 錯体 [MZV+U] の中 心原子を構成する金属またはメタロイ ドであり、 B、 P、 A s、 S b、 F e、 S n、 B i、 A l、 C a、 I n、 T i、 Z n、 S c、 V、 C r、 Mnおよび C oか ら選ばれる金属またはメタロイドである。 Zは、 Mに配位する配位子で、 ハロゲ ン原子または有機基である。 uは錯体イオンの正味の電荷である。 Vは Mの原子 価である。 )
1 0) カチオン系光開始剤 (B) 力 S、 ォ -ゥム塩、 スルホン酸のジァリールョ 一ドニゥム塩、 スルホン酸のトリァリールスルホ -ゥム塩、 ボロン酸のジァリー ノレョードニゥム塩又はボロン酸のトリァリ一ルスルホニゥム塩から選ばれるカチ オン系光開始剤であることを特徴とする 1) 〜8) のいずれかに記載の光硬化性 組成物に関する。
1 1) (C)エポキシ基含有化合物および/またはエポキシ基含有オリゴマー、 (D) ォキセタン基含有化合物および またはォキセタン基含有オリゴマーから 選ばれる少なく とも一種以上をさらに含むことを特徴とする 1 ) 〜1 0) のいず れかに記載の光硬化性組成物に関する。
1 2) 1) から 1 1) のいずれかに記載の光硬化性組成物に、 光エネルギー源 を照射して硬化物を得る、 硬化物の製造方法に関する。
1 3) 1 2) 記載の製造方法で得られる硬化物に関する。
1 4) 1 3) 記載の硬化物を構成要素として含む製品に関する。
本発明は、 新規な末端にエポキシ基および Zまたはェポキシ基含有ケィ素基を 有する有機重合体およぴカチオン系光開始剤を含有する光硬化性組成物に関する ものであり、 光エネルギー源の照射により短時間で優れた硬化性を発現すること が可能である。 当該硬化性組成物は、 コーティング剤、 接着剤、 封止剤等の各ェ 業的用途において非常に有用である。 発明を実施するための最良の形態
本発明の光硬化性組成物は、 新規な末端にエポキシ基および zまたはエポキシ 基含有ケィ素基を有する有機重合体 (A ) およぴカチオン系光開始剤 (B ) を含 有する光硬化性組成物であり、 場合によってはェポキシ基含有化合物および Zま たはエポキシ基含有オリゴマー (C ) 、 ォキセタン基含有化合物および/または ォキセタン基含有オリゴマー(D )を含有するものである。さらに必要に応じて、 本発明の効果を損なわない範囲で、 他の光力チオン重合性化合物、 シランカップ リング剤、 充填剤、 改質剤、 安定剤、 他の樹脂成分等のその他の成分を含有する ことができる。
本発明の光硬化性組成物は優れた硬化性を発現するとともに、 その骨格となる 有機重合体主鎖の種類によって、その重合体独特の特性を発現することができる。 上記有機重合体の主鎖骨格には特に限定はなく、 例えば、 一般的に知られている アクリル系重合体、 ポリエステル系重合体、 飽和炭化水素系重合体、 ォキシアル キレン系重合体等の有機重合体を使用することができる。
本発明における有機重合体 (A) の少なくとも一つの末端部分の構造は、 以下 の一般式 (1 ) 、 一般式 (2 ) あるいは一般式 (3 ) で示される。
Figure imgf000008_0001
ここで式中、 R 1および は、 同一または異なった炭素数 1から 2 0のアルキ ル基、 炭素数 6から 2 0のァリール基、 炭素数 7から 2 0のァラルキル基若しく は (R ' ) 3 S i O—で示される トリオルガノシロキシ基を示し、 R 1または R 2 が 2個以上存在するとき、 それらは同一であってもよく、 異なっていてもよい。 ここで R ' は炭素数 1から 2 0の 1価の炭化水素基であり 3個の R, は同一であ つてもよく、 異なっていてもよい。 Xはエポキシ基および/またはォキセタン基 を含有する 1価の有機基、 mは 0以上 20以下の整数、 nは 1、 2または 3の整 数を示す。
一般式 (1) での mは、 原料の入手性の点から 0以上 1 0以下のものが好まし い。
Figure imgf000009_0001
ここで式中、 Xはエポキシ基を含有する 1価の有機基、 R2は炭素数 1から 20 の炭化水素基で 1個以上のフヱニル基を含有していもよい、 R3、 R4はメチル基 もしくは Xあるいは R2と同一のものである力 \いずれかが有機重合体への結合部 である。 ここで 1 ' は平均 1で有機重合体末端への結合部を表すが R3、 R4いず れかが有機重合体末端への結合部の場合 =0である。 l≤m' +n '≤ 50、 1≤m' 、 0≤ n ' であり、 各ユニッ トの位置は特定されたものではなく、 それ ぞれ複数個含有される場合に交互あるいはランダムに配置されていて良い。
Figure imgf000009_0002
ここで式中、 X、 R2は上記と同一である。 ここで ' は平均 1で有機重合体 末端への結合部を表す。 l≤m' ' + ' ≤ 20 1 ^m' ' 、 0≤ η' ' で あり、 各ユニッ トの位置は特定されたものではなく、 それぞれ複数個含有される 場合に交互あるいはランダムに配置されていて良い。
一般式 (2 ) での m ' + n, は 1以上 5 0以下であるが、 重合体とヒ ドロシラ ン化合物との相溶性、 得られるエポキシ基および/またはォキセタン基含有有機 重合体を含む光硬化性組成物の反応性の点から、 好ましくは 3以上 3 0以下であ り、 特に好ましくは 4以上 2 0以下である。
m ' の数は、 1以上であるが、 m ' の数により有機重合体 (A ) の反応性が調 整可能である。 得られるエポキシ基および/またはォキセタン基含有有機重合体 の反応性の点より、 m ' は 2以上が好ましい。
n ' の数は、 0以上であるが、 n, の数によりヒ ドロシラン化合物と有機重合 体との相溶性が調整可能である。 特に有機重合体 (A ) の主鎖骨格が飽和炭化水 素有機重合体である場合は、 n ' は 1以上が好ましく、 m ' が 2以上のときには n ' も 2以上がより好ましい。 また極性の高い主鎖骨格の場合は、 例えばォキシ アルキレン重合体のような場合は、 n, は 1が好ましい。
一般式 (3 ) での ' - η ' ' は 1以上 2 0以下であるが、 重合体末端のェ ポキシ基数の増加の点および重合体とヒ ドロシラン化合物との相溶性の点から、 好ましくは 3以上 2 0以下である。
m' ' の数は、 1以上であるが、 m' ' の数により有機重合体 (A ) の反応性 が調整可能である。 得られるエポキシ基および/またはォキセタン基含有有機重 合体の反応性の点より、 m' ' は 2以上が好ましい。
' の数は、 0以上であるが、 ' の数によりヒ ドロシラン化合物と有機 重合体との相溶性が調整可能である。 特に有機重合体 (Α ) の主鎖骨格が飽和炭 化水素有機重合体である場合は、 η ' ' 1以上が好ましい。 また極性の高い主鎖 骨格の場合は、 例えばォキシアルキレン重合体のような場合は、 η ' ' は 1が好 ましい。
本発明の有機重合体の末端部分の構造は、 エポキシ基の反応性の点から、 Xは 一般式 (4 ) で表される構造であることが好ましく、 更には、 一般式 (5 ) で表 される構造であることが、 製造の容易さ、 原料の入手の点から、 より好ましい。
Figure imgf000011_0001
ここで式中、 R &は水素、 酸素、 及ぴ窒素からなる群より選択される 1種以上を 構成原子として含有する炭素数 1から 2 0の 2価の有機基を示す。
Figure imgf000011_0002
ここで式中、 R ¾は水素、 酸素、 及び窒素からなる群より選択される 1種以上を 構成原子として含有する炭素数 1から 2 0の 2価の有機基を示す。
また一般式 (6 ) で表される構造であることが、 硬化性の点から好ましい。
Figure imgf000011_0003
ここで式中、 R 5は上記と同じ。
本発明における有機重合体の主鎖骨格は限定されるものではないが、 主鎖骨格 がポリイソプチレン、 水素添加ポリイソプレン、 水素添加ポリブタジエン及びそ の共重合体からなる群から選ばれる飽和炭化水素系重合体あるいはォキシアルキ レン系重合体である場合、 それから得られる硬化物がゴム状の弾性を示す特徴を 有する。
前記飽和炭化水素系重合体は、 芳香族環以外の炭素一炭素不飽和結合を実質的 に含有しない重合体であり、 たとえば、 ポリエチレン、 ポリプロピレン、 ポリイ ソブチレン、 水素添加ポリブタジエン、 水素添加ポリイソプレンなどがあげられ る。
本発明に用いる飽和炭化水素系重合体の主鎖骨格をなす重合体は、 ( 1 ) ェチ レン、 プロピレン、 1ーブテン、 ィソブチレンなどのような炭素数 1〜 6のォレ フィン系化合物を主成分として単独重合もしくは共重合させるか、 (2 ) ブタジ ェン、 ィソプレンなどのようなジェン系化合物を単独重合もしくは共重合させ、 あるいは、 上記ォレフィン系化合物とを共重合させた後、 水素添加するなどの方 法により得ることができる。 中でも、 イソプチレン系重合体や水添ポリブタジェ ン系重合体は、 末端に官能基を導入しやすく、 分子量を制御しやすく、 また、 末 端官能基の数を多くすることができるので好ましい。 さらに、 イソブチレン系重 合体は液状または流動性を有するので取り扱いやすく、 主鎖に芳香族環以外の炭 素一炭素不飽和結合を含まないため水添の必要が無く、 耐候性に極めて優れてい るので特に好ましい。
ィソプチレン系重合体は、 単量体単位のすべてがィソブチレン単位から形成さ れていてもよいし、 ィソブチレンと共重合可能な単量体単位をィソブチレン系重 合体中に、 好ましくは 5 0重量%以下、 さらに好ましくは 3 0重量%以下、 とく に好ましくは 1 0重量%以下の範囲で含有してもよい。 この中でも、 単独重合体 が最も好ましい。
このような単量体成分としては、 たとえば、 炭素数 4〜 1 2のォレフィン、 ビ ニルエーテル、 芳香族ビュル化合物、 ビュルシラン類、 了リルシラン類などがあ げられる。このような共重合体成分としては、たとえば 1ーブテン、 2—ブテン、 2—メチル一 1 ーブテン、 3—メチル一 1 —ブテン、 ペンテン、 4ーメチルー 1 一ペンテン、 へキセン、 ビニノレシク口へキセン、 メチノレビニノレエーテノレ、 ェチノレ ビニルエーテル、 イソプチ/レビニノレエーテノレ、 スチレン、 一メチレスチレン、 ジメチノレスチレン、 モノクロロスチレン、 ジクロロスチレン、 β―ピネン、 イン デン、 ビュルトリ クロロシラン、 ビニノレメチノレジクロロシラン、 ビュルジメチノレ クロロシラン、 ビニノレジメチノレメ トキシシラン、 ビニノレトリ メチルシラン、 ジビ ニノレジクロロシラン、 ジビニノレジメ トキシシラン、 ジビニノレジメチルシラン、 1 , 3—ジビニルー 1, 1, 3, 3—テ トラメチルジシロキサン、 トリ ビニルメチル シラン、 テ トラビュルシラン、 ァリルト リ クロロシラン、 ァリルメチルジクロ口 シラン、 ァリルジメチルクロロシラン、 ァリルジメチルメ トキシシラン、 ァリル トリメチルシラン、 ジァリルジクロロシラン、 ジァリルジメ トキシシラン、 ジァ リルジメチルシラン、 γ—メタタリロイルォキシプロピルトリメ トキシシラン、 γ—メタタリロイルォキシプロピルメチルジメ トキシシランなどがあげられる。 水添ポリブタジエン系重合体や他の飽和炭化水素系重合体においても、 上記ィ ソブチレン系重合体の場合と同様に、 主成分となる単量体単位の他に他の単量体 単位を含有させてもよい。
飽和炭化水素系重合体、 好ましくはィソプチレン系重合体または水添ポリブタ ジェン系重合体の数平均分子量は 5 00〜 5 0, 00 0程度であるのが好ましく、 とくに 1, 000〜 20, 000程度の液状ないし流動性を有するものが取扱い やすいなどの点から、 好ましい。
ォキシアルキレン系重合体の主鎖構造としては、 一R11— Ο—で示される構造 を繰り返し単位とする重合体であればよく、 このとき、 R 11は炭素数 1から 20 の 2価の有機基であればよい。 また、 繰り返し単位の全てが同一である単独重合 体であっても良く、 2つ以上の種類の繰り返し単位を含む共重合体であっても良 い。 さらに、 主鎖中に分岐構造を有していても良い。
R11の具体例としては、 一 CH2CH2—、 一 CH (CH3) CH2_、 - CH (C2 H5) CH2—、 一 C (CH3) 2CH2—、 一 CH2CH2CH2CH2—等が挙げられる。 R11としては特に一 CH (CH3) CH2—が好ましい。
ォキシアルキレン系重合体の主鎖骨格は、 例えば開始剤と触媒の存在下、 モノ エポキシドを開環重合することによって得られる。
開始剤の具体例としては、 エチレングリコール、 プロピレングリコール、 プタ ンジォ一ノレ、 へキサメチレングリコーノレ、 メタリノレアノレコーノレ、 ビスフエノーノレ A、 水素化ビスフエノール A、 ネオペンチルグリコール、 ポリブタジエンジォー ル、ジエチレングリコール、 トリエチレングリコール、ポリエチレングリコール、 ポリプロピレングリコール、 ポリプロピレントリオール、 ポリプロピレンテトラ ォーノレ、 ジプロピレングリコール、 グリセリン、 トリメチローノレメタン、 トリメ チロールプロノ ン、ペンタエリスリ トール等の 2価ァノレコーノレや多価ァノレコール、 水酸基を有する各種のオリゴマ一等が挙げられる。
モノエポキシドの具体例としては、 エチレンォキサイ ド、 プロピレンォキサイ ド、 α -ブチレンォキサイ ド、 β -プチレンォキサイ ド、 へキセンォキサイ ド、 シ ク口へキセンォキサイ ド、 スチレンォキサイ ド、 α—メチルスチレンオキサイ ド 等のァノレキレンォキサイ ド類や、 メチルダリシジノレエーテル、 ェチルダリシジル エーテル、 イソプロピルグリシジルエーテル、 プチルグリシジルエーテル等のァ ルキルグリシジルエーテル類、 ァリルグリシジルェ一テル類、 ァリールグリシジ ルエーテル類等が挙げられる。
ポリオキシアルキレン系重合体の合成法としては、 たとえば ΚΟΗのようなァ ルカリ触媒による重合法、 たとえば特開昭 6 1 - 2 1 5 6 2 3号公報に示される 有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体のような遷 移金属化合物一ポルフィ リ ン錯体触媒による重合法、 たとえば特公昭 4 6 - 2 7 2 5 0号公報おょぴ特公昭 5 9— 1 5 336号公報などに示される複合金属シァ ン化物錯体触媒による重合法、 セシウム触媒による重合法、 ホスファゼン触媒に よる重合法等があげられるが、 特に限定されるものではない。 中でも、 高分子量 でかつ着色の少ない重合体が容易に得られる点からは、 複合金属シアン化物錯体 触媒による重合法が好ましい。
この他、 ォキシアルキレン系重合体の主鎖骨格は、 水酸基末端ォキシアルキレ ン重合体を塩基性化合物、 例えば KOH、 N a OH、 KOCH3、 N a OCH3等 の存在下、 2官能以上のハロゲン化アルキル、 例えば CH2C 12、 CH2B r2等に よる鎖延長等によっても得ることができる。
さらに、 上記ォキシアルキレン系重合体の主鎖骨格中にはォキシアルキレン系 重合体の特性を大きく損なわない範囲でウレタン結合成分等の他の成分を含んで .いてもよレヽ。
次に主鎖骨格がビュル系重合体の場合について説明する。
本発明のビュル系重合体の主鎖を構成するビュル系モノマーとしては特に限定 されず、 各種のものを用いることができる。 例示するならば、 (メタ) アクリル 酸、 (メタ) ァクリル酸メチル、 (メタ) アクリル酸ェチル、 (メタ) アクリル 酸 _ n—プロピル、 (メタ) アクリル酸イソプロピル、 (メタ) アクリル酸一 n 一プチル、 (メタ) アクリル酸イソブチル、 (メタ) アクリル酸一 t e r t—ブ チル、 (メタ) アタリル酸一 n—ペンチル、 (メタ) アクリル酸一 n—へキシル、 (メタ) アクリル酸シクロへキシル、 (メタ) アクリル酸一 n—ヘプチル、 (メ タ) アクリル酸一 n—ォクチル、 (メタ) アクリル酸 _ 2—ェチルへキシル、 (メ タ) アクリル酸ノニル、 (メタ) アクリル酸デシル、 (メタ) アクリル酸ドデシ ル、 (メタ) アクリル酸フエニル、 (メタ) アクリル酸トルィル、 (メタ) ァク リル酸ベンジル、 (メタ) アクリル酸一 2—メ トキシェチル、 (メタ) アクリル 酸 _ 3—メ トキシプチル、 (メタ) アクリル酸一 2—ヒ ドロキシェチル、 (メタ) アクリル酸 _ 2—ヒ ドロキシプロピル、 (メタ) アクリル酸ステアリル、 (メタ) アクリル酸グリシジル、 (メタ) アクリル酸 2—アミノエチル、 γ— (メタタリ ロイルォキシプロピル) トリメ トキシシラン、 (メタ) アクリル酸のエチレンォ キサイ ド付加物、 (メタ) アクリル酸トリフルォロメチルメチル、 (メタ) ァク リル酸 2— トリフルォロメチルェチル、 (メタ) アクリル酸 2—パーフルォロェ チルェチル、 (メタ) アクリル酸 2—パーフルォロェチルー 2—パーフルォロブ チルェチル、 (メタ) アクリル酸 2—パーフルォロェチル、 (メタ) アクリル酸 パーフルォロメチル、 (メタ) アクリル酸ジパーフルォロメチルメチル、 (メタ) アタリノレ酸 2—パーフルォロメチル一 2—パーフルォロェチルメチル、 (メタ) アクリル酸 2 _パーフルォ口へキシルェチル、 (メタ) アクリル酸 2—パーフル ォロデシルェチル、 (メタ) アクリル酸 2—パーフルォ口へキサデシルェチル等 の (メタ) アク リル系モノマー ; スチレン、 ビニノレトノレェン、 α—メチノレスチレ ン、 クロノレスチレン、 スチレンスノレホン酸及びその塩等の芳香族ビニノレ系モノマ 一;パーフノレオ口エチレン、 パーフノレオ口プロピレン、 フッ化ビユリデン等のフ ッ素含有ビュル系モノマー; ビエルトリメ トキシシラン、 ビュルトリエトキシシ ラン等のケィ素含有ビュル系モノマー ;無水マレイン酸、 マレイン酸、 マレイン 酸のモノアルキルエステル及ぴジアルキルエステル ; フマル酸、 フマル酸のモノ アルキルエステル及ぴジアルキルエステル; マレイミ ド、 メチルマレイ ミ ド、 ェ チルマレイミ ド、プロピルマレイ ミ ド、ブチルマレイミ ド、へキシノレマレイミ ド、 ォクチルマレイ ミ ド、 ドデシノレマレイ ミ ド、 ステアリノレマレイ ミ ド、 フエ-ノレマ レイミ ド、 シク口へキシルマレイ ミ ド等のマレイミ ド系モノマー ; ァク リ ロ- ト リル、 メタタ リ ロニ 卜リル等のァク リ ロニトリル系モノマー ; ァク リルアミ ド、 メタクリルアミ ド等のアミ ド基含有ビュル系モノマー ;酢酸ビュル、 プロピオン 酸ビュル、 ピパリ ン酸ビュル、 安息香酸ビュル、 桂皮酸ビニル等のビニノレエステ ル類;エチレン、 プロピレン等のアルケン類; ブタジエン、 イソプレン等の共役 ジェン類 ; 塩化ビニル、 塩化ビニリデン、 塩化ァリル、 ァリルアルコール等が挙 げられる。 これらは、 単独で用いても良いし、 複数を共重合させても構わない。 ビュル系重合体の主鎖が、 (メタ) アク リル系モノマー、 アク リ ロニ ト リル系 モノマー、 芳香族ビュル系モノマー、 フッ素含有ビニル系モノマー及ぴケィ素含 有ビュル系モノマーからなる群より選ばれる 1種類のモノマー 1 0 0モル%を重 合して製造されること、 あるいはそれらの少なく とも 1つのモノマーを主として 重合して製造されるものであることが好ましい。 ここで 「主として」 とは、 ビエ ル系重合体を構成するモノマー単位のうち 5 0モル%以上、 好ましくは 7 0モ ル%以上が、 上記モノマーであることを意味する。 なかでも、 生成物の物性等か ら、 スチレン系モノマー及ぴ (メタ) アクリル酸系モノマーが好ましい。 より好 ましくは、 アクリル酸エステルモノマー及びメタクリル酸エステルモノマーであ り、 特に好ましくはアクリル酸エステルモノマーであり、 更に好ましくは、 ァク リル酸ブチルである。 本発明においては、 これらの好ましいモノマーを他のモノ マーと共重合、 更にはブロック共重合させても構わなく、 その際は、 これらの好 ましいモノマーが重量比で 4 0 %以上含まれていることが好ましい。 なお上記表 現形式で例えば (メタ) アクリル酸とは、 アクリル酸およぴ あるいはメタタリ ル酸を表す。
なお、 限定はされないが、 ゴム弾性を要求する用途には本ビニル系重合体のガ ラス転移温度が室温ないしは使用温度よりも低いことが好ましい。
本発明における、 ビュル系重合体の合成法は、 フリーラジカル重合、 制御ラジ カル重合等の公知の方法が好適に使用できる。 中でも末端に本発明の構造を導入 し易い点より、 制御ラジカル重合を用いることが好ましく、 また制御ラジカル重 合を用いた場合は、 リ ビングラジカル重合が好ましく、 原子移動ラジカル重合が より好ましい。
原子移動ラジカル重合では、 有機ハロゲン化物、 特に反応性の高い炭素—ハロ ゲン結合を有する有機ハロゲン化物 (例えば、 α位にハロゲンを有するカルボ二 ル化合物や、 ベンジル位にハロゲンを有する化合物) 、 あるいはハロゲン化スノレ ホニル化合物等が開始剤として用いられる。
原子移動ラジカル重合で重合した場合の本発明のビュル系重合体の分子量分布、 すなわち、 ゲルパーミエーションクロマトグラフィ一で測定した重量平均分子量
(Mw) と数平均分子量 (Mn) との比 (Mw/Mn) は、 特に限定されないが、 好ましくは 1. 8未満であり、 より好ましくは 1. 7以下であり、 さらに好まし くは 1. 6以下であり、 なお好ましくは 1. 5以下であり、 特に好ましくは 1. 4以下であり、 最も好ましくは 1. 3以下である。 本発明での G P C測定におい ては、 通常、 移動相としてクロ口ホルムを用い、 測定はポリスチレンゲルカラム にておこない、 数平均分子量等はポリスチレン換算で求めることができる。
本発明におけるビュル系重合体の数平均分子量は特に制限はないが、 ゲルパー ミエーシヨンクロマトグラフィーで測定した場合、 500〜 1, 000, 000 の範囲が好ましく、 1, 000〜: L 00, 000がより好ましく、 5, 000〜 50, 000がさらに好ましい。
フリーラジカル重合法により重合する場合は、 上記のモノマーが使用可能であ り、 例えばラジカル反応による溶液重合法が利用できる。 重合は、 通常、 前記の 単量体おょぴラジカル開始剤や連鎖移動剤等を加えて 50〜 1 50°Cで反応させ ることにより行われる。
前記ラジカル開始剤の例としては、 2, 2, ーァゾビスイソプチ口-トリル、 2, 2, ーァゾビス (2—メチルブチロニト リル) 、 4 , 4, ーァゾビス ( 4一 シァノバレリ ック) アシッ ド、 1, 1 , ーァゾビス ( 1ーシク口へキサンカルボ 二 トリル) 、 ァゾビスイソ酪酸アミジン塩酸塩 、 2, 2, 一ァゾビス ( 2, 4 ージメチルパレロニトリル) などのァゾ系開始剤、 過酸化べンゾィル、 過酸化ジ - t e r t 一ブチルなどの有機過酸化物系開始剤があげられるが、 重合に使用す る溶媒の影響を受けない、 爆発等の危険性が低いなどの点から、 ァゾ系開始剤の 使用が好ましい。
連鎖移動剤の例としては、 n _ドデシルメルカプタン、 t e r t —ドデシルメ ルカブタン、 ラウリルメルカプタン、 y一メルカプトプロピノレト リメ トキシシラ ン、 γ—メルカプトプロピルメチルジメ トキシシラン、 γ—メルカプトプロピル ト リエトキシシラン、 y—メルカプトプロピルメチルジェトキシシラン等のメノレ カプタン類ゃ含ハロゲン化合物等があげられる。
重合は溶剤中で行なってもよい。溶剤の例としては、エーテル類、炭化水素類、 エステル類などの非反応性の溶剤が好ましい。 フリ一ラジカル重合法で重合し た場合の数平均分子量は特に制限はないが、 ゲルパーミエーシヨンクロマトグラ フィ一で測定した場合、 5 0 0〜1 0 0, 0 0 0のものが取り扱いの容易さの点 から好ましい。 さらに 5 , 0 0 0〜3 0, 0 0 0のものが硬化物の耐候性、 作業 性が良好であることからより好ましい。
本発明における有機重合体の末端へ一般式 (1 ) 、 (2 ) または (3 ) の構造 を有するエポキシ基および/またはォキセタン基含有ケィ素基を導入する方法に は特に限定はないが、 導入時の酸化等による劣化や導入後の脱酸等の精製の必要 性のないことから、 エポキシ基および/またはォキセタン基を有するヒ ドロシラ ン化合物の不飽和基への付加反応による導入、 あるいは末端に加水分解性シリル 基を有する有機重合体と 1分子中に少なく とも 1つ以上のエポキシ基および/ま たはォキセタン基および 1つの水酸基を有する化合物との加水分解性基の交換反 応による導入が好ましい。
ヒ ドロシラン化合物の付加反応による導入は、 ( I ) 末端に不飽和基を有する 有機重合体を合成し、 その後エポキシ基および/またはォキセタン基を有する平 均 1個のヒ ドロシリル基を有するヒ ドロシラン化合物を付加反応させる方法、 あ るいは (II) ヒ ドロシリル基を分子内に 2個以上有するヒ ドロシラン化合物の有 機重合体末端への付加反応後、 ァリル基等の不飽和基を有するエポキシ化合物に よる未反応ヒ ドロシリル基への付加反応による方法のいずれでも可能である。 前者 ( I ) の方法では、 ヒ ドロシラン化合物のヒ ドロシリル基が平均 1個のた め選択的に重合体末端に容易に導入でき、 重合体の高分子量化が抑制できる。 こ の場合、 反応物の仕込み順序等に限定はないが、 反応系の発熱、 有機重合体の粘 度等を考慮すると、 ヒ ドロシリル化触媒と末端に不飽和基を有する有機重合体と の混合物に、 エポキシ基および/またはォキセタン基を有する平均 1個のヒ ドロ シリル基を有するヒ ドロシラン化合物を滴下する方法が好ましい。
有機重合体中の末端不飽和基とヒ ドロシリル基のモル比は、特に限定はない力 s、
0 . 5≤ヒ ドロシリル基 Z有機重合体中の末端不飽和基≤ 2 . 0の範囲であれば 良く、 エポキシ基おょぴ Zまたはォキセタン基の導入率を高くする点から 0 . 8 ≤ヒ ドロシリル基 Z有機重合体中の末端不飽和基≤ 1 . 5が好ましく、 残存する ヒ ドロシラン化合物の除去性から 0 . 8≤ヒ ドロシリル基/有機重合体中の末端 不飽和基≤ 1 . 2がより好ましい。
また後者 (II) の方法では、 重合体末端の未反応ヒ ドロシリル基に対し、 十分 にエポキシ基および Zまたはォキセタン基含有化合物を反応させることができ、 重合体末端に複数のエポキシ基および/またはォキセタン基を導入することが可 能である。 この場合も、 反応物の仕込み順序等に限定はないが、 高分子量化を抑 える点からヒ ドロシラン化合物へ有機重合体と触媒の混合物をゆつく り滴下する ことが好ましい。
有機重合体中の末端不飽和基とヒ ドロシリル基のモル比は、特に限定はないが、 2 . 0≤ヒ ドロシリル基 Z有機重合体中の末端不飽和基の範囲であれば良く、 有 機重合体末端へ複数個のエポキシ基および/またはォキセタン基を導入する点か ら 3 . 0≤ヒ ドロシリル基 有機重合体中の末端不飽和基であることが好ましく、 高分子量化の抑制の点から 3. 0≤ヒ ドロシリル基/有機重合体中の末端不飽和 基≤ 5. 0であることがより好ましい。
本発明において、 特定の末端構造を有する重合体を得るためには、 以下の一般 式 (8) 、 一般式 (9) あるいは一般式 (10) で示されるヒ ドロシラン化合物 を使用することができる。
Figure imgf000020_0001
ここで式中、 R1および R2は、 同一または異なった炭素数 1から 20のアルキル 基、 炭素数 6から 20のァリール基、 炭素数 7から 20のァラルキル基若しくは
(R, ) 3S i O—で示されるトリオルガノシロキシ基を示し、 R1または R2が 2 個以上存在するとき、 それらは同一であってもよく、 異なっていてもよい。 ここ で R, は炭素数 1から 20の 1価の炭化水素基であり 3個の R' は同一であって もよく、 異なっていてもよい。 Xはエポキシ基および/またはォキセタン基を含 有する 1価の有機基、 mは 0以上 20以下の整数、 nは 1、 2または 3の整数を 示す。
Figure imgf000020_0002
ここで式中、 Xはエポキシ基および Zまたはォキセタン基を含有する 1価の有機 基、 R2は炭素数 1から 20の炭化水素基で 1個以上のフエ-ル基を含有していも よい、 R3、 R4は水素、 メチル基もしくは Xあるいは R2と同一のものである。 1 ' は平均 1であるが R3、 R4いずれかが水素の場合 1 ' = 0である, ≤≥ m + n
50、 m, 、 0≤ n ' であり、 各ユニットの位置は特定されたものではな く、 それぞれ複数個含有される場合に交互あるいはランダムに配置されていて良 い。
Figure imgf000021_0001
ここで式中、 X、 R は上記と同一である。 ここで 1 ' ' は平均 1である。 1≤ m' ' + η ' ' ≤ 2 0 , l≤m' ' 、 0≤ ' であり、 各ユニッ トの位置は特 定されたものではなく、 それぞれ複数個含有される場合に交互あるいはランダム に配置されていて良い。
有機重合体の末端部分の構造は、エポキシ基の反応性の点から、 Xは一般式( 4 ) で表される構造であることが好ましく、 更には、 一般式 (5 ) で表される構造で あることが、 製造の容易さ、 原料の入手の点から、 より好ましい。
Figure imgf000021_0002
ここで式中、 R 5は水素、 酸素、 及び窒素からなる群より選択される 1種以上を 構成原子として含有する炭素数 1から 2 0の 2価の有機基を示す。
Figure imgf000021_0003
(5) で式中、 R 6は水素、 酸素、 及び窒素からなる群より選択される 1種以上を 構成原子として含有する炭素数 1から 20の 2価の有機基を示す。 また一般式 (6) で表される構造であることが、 硬化性の点から好ましい。
Figure imgf000022_0001
ここで式中、 R5は上記と同じ。 一般式 (9) での m, +n, は 1以上 5 0以 下であるが、 重合体とヒ ドロシラン化合物との相溶性、 得られるエポキシ基およ び/またはォキセタン基含有有機重合体を含む光硬化性組成物の反応性の点から、 好ましくは 3以上 3 0以下であり、 特に好ましくは 4以上 20以下である。
m' の数は、 1以上であるが、 m' の数により有機重合体 (A) の反応性が調 整可能である。 得られるエポキシ基および Zまたはォキセタン基含有有機重合体 の反応性の点より、 m' は 2以上が好ましい。
n ' の数は、 0以上であるが、 n' の数によりヒ ドロシラン化合物と不飽和基 含有有機重合体との相溶性が調整可能である。 特に有機重合体 (A) の主鎖骨格 が飽和炭化水素有機重合体である場合は、 n' は 1以上が好ましく、 m' が 2以 上のときには n' も 2以上がより好ましい。 また極性の高い主鎖骨格の場合は、 例えばォキシアルキレン重合体のような場合は、 n, は 1が好ましい。
一般式 (1 0) での in' ' +η' ' は 1以上 20以下であるが、 重合体末端の エポキシ基数の増加の点および重合体とヒ ドロシラン化合物との相溶性の点から、 好ましくは 3以上 2 0以下である。
mf ' の数は、 1以上であるが、 m' ' の数により有機重合体 (A) の反応性 が調整可能である。 得られるエポキシ基および/またはォキセタン基含有有機重 合体の反応性の点より、 ' は 2以上が好ましい。
η' ' の数は、 0以上であるが、 η' ' の数により ヒ ドロシラン化合物と有機 重合体との相溶性が調整可能である。 特に有機重合体 (Α) の主鎖骨格が飽和炭 化水素有機重合体である場合は、 n ' ' 1以上が好ましい。 また極性の高い主鎖 骨格の場合は、 例えばォキシアルキレン重合体のような場合は、 n ' ' は 1が好 ま,しい。
なお、有機重合体とヒ ドロシラン化合物の相溶性は、上記の如く、 n 'や η ' ' の増減により調整できるが、 その他の相溶性調整手段として置換基 R 2を適切に 選択する方法がある。 例えば、 有機重合体が飽和炭化水素系重合体の場合には、 R 2は炭素数 2〜 2 0のアルキル基や炭素数 6〜 2 0のァリール基、 炭素数 Ί〜 2 0のァラルキル基が好ましい。
これらのヒ ドロシラン化合物は、公知の合成方法により合成することができる。 例えば、 S i原子上に炭化水素および水素原子を有するポリシロキサン化合物の ヒ ドロシリル基を、 ァリル基等の末端に不飽和基を有する化合物でヒ ドロシリル 化反応させることにより、 上記のヒ ドロシラン化合物を得ることができる。
すなわちエポキシ基おょぴ zまたはォキセタン基を導入する場合は、 例えばァ リルダリシジルエーテルなどの化合物とヒ ドロシリル基を有するポリシロキサン 化合物とをヒ ドロシリル化することで導入可能である。
同様に上記一般式 (2 ) 、 ( 3 ) での R 2の導入方法は、 末端にァリル基等の不 飽和基を有する炭化水素あるいは α—メチルスチレン等をヒ ドロシリル化させる ことで導入可能である。
一般式 ( 1 0 ) の化合物としては、 1, 3, 5, 7—テトラメチルシクロテト ラシロキサンを上記のように変成し、 エポキシ基および/またはォキセタン基お ょぴ R 2を導入する方法が、 原料の 1, 3, 5, 7—テトラメチルシクロテトラシ ロキサンの入手性、 導入時の選択性が高く好ましい。
末端に不飽和基を有する有機重合体の合成方法としては、 一般的に知られてい る方法で問題はなく、 例えばリ ビングカチオン重合等により末端がハロゲン基で あるようなものは、 金属アルコキシドにより脱ハロゲン化水素する方法、 あるい は四塩化チタン等の存在下、 ァリルトリメチルシラン等を反応させることにより 不飽和基を導入することができる。 また、 水酸基末端に不飽和結合を有する化合 物を反応させて、 エーテル結合、 エステル結合、 ウレタン結合、 カーボネート結 合などにより導入させる方法等が挙げられる。
例えば、 水酸基末端を有する重合体を不飽和基末端にする場合は、 水酸基末端 を一 ON aや一 OKなどのォキシメタル基にした後、 一般式 (1 1 )
CH2= C H— R12— Y —般式 (1 1 )
または一般式 (1 2 )
CH2= C (R13) 一 R12— Y —般式 (1 2 )
(式中、 R12は炭素数 1から 2 0の 2価の有機基、 R13は炭素数 1 0以下の炭化水 素基、 Yはハロゲン原子。 ) で示される不飽和基含有化合物を反応させる方法が 挙げられる。
末端水酸基をォキシメタル基にする方法としては、 N a Kのごときアルカリ 金属; N a Hのごとき金属水素化物; N a O C 113のごとき金属アルコキシド; N a OH KOHなどのアル力リ水酸化物などと反応させる方法があげられる。 一般式 (1 0 ) または (1 1 ) で示される不飽和基含有化合物の具体例として は、
CH2= C H- CH2- C 1 C H2= CH- CH2- B r C H2= C H— C 2H4_ C
1 G ri o— C H― C 2H4 ~ £> Γ Ii_2 h"― 3H g― 1 Crig^ CH— C 3
H6- B r CH2= C (CH3) 一 CH2_ C 1 CH2= C (CH3) _ CH2_ B r CH2= C (CH2C H3) — C H2— C l CH2= C (CH2C H3) — CH2— B r CH2= C (CH2CH (CH3) 2) — CH2— C l CH2= C (CH2CH (CH3) 2) - C H2- B r
等が挙げられ、 特に反応性の点から、 CH2= CH— CH2— Cし CH2= C (C H3) _ CH2— C 1が好ましい。
不飽和基の導入方法としては、 これ以外に CH2= CH— C H2—基や CH2= C (C H3) — CH2_基等を有するイソシァネート化合物、 カルボン酸、 エポキシ 化合物等を用いることもできる。
上記ヒ ドロシリル化の反応は、 末端に不飽和基を有する有機重合体とヒ ドロシ ラン化合物を、 V I I I族遷移金属触媒の存在下で反応させる方法が好ましい。
V I I I族遷移金属触媒としては、 白金、 ロジウム、 コバルト、 パラジウム及 ぴニッケル等の V I I I族遷移金属元素から選ばれた金属錯体触媒等が有効に使 用される。 例えば、 H2 P t C 1 6 · 6 H20、 白金一ビュルシロキサン錯体、 白金 —ォレフィン錯体、 P tメタル、 R h C 1 ( P P h 3) 3、 R h C 1 3、 R h /A 1 203、 R u C 1 3、 I r C 1 3、 F e C 1 3、 P d C 1 2 · 2 H20、 N i C 1 2等のよ うな化合物が使用できるが、 ヒ ドロシリル化の反応性の点から、 H2 P t C 1 6 · 6 H20、 白金一ビニルシロキサン錯体、 白金ーォレフイン錯体のいずれかである ことが好ましい。 特に白金—ビュルシロキサン錯体が反応誘導期が短い等の点で 好ましい。
ヒ ドロシリル化反応の触媒としては、 これら以外にも A 1 C 1 3、 T i C l 4等 やペンゾィルパーオキサイ ドなどのラジカル開始剤等も使用することができる。
ヒ ドロシリル化反応は、 重合体が劣化等の好ましくない副反応が起こらない温 度であれば、 反応速度等の点から好ましい温度を選択すればよいが、 通常 1 0〜 1 5 0 °C、 好ましくは 2 0〜 1 2 0 °C、 さらに好ましくは 4 0〜: L O 0 °Cの範囲 とするのが好適であり、反応温度の調節、反応系の粘度の調整など必要に応じて、 ベンゼン、 トルエン、 キシレン、 テ トラヒ ドロフラン、塩化メチレン、 ペンタン、 へキサン、 ヘプタン等の溶剤を用いることができる。
ヒ ドロシリル化反応の反応促進には、 特開平 8— 2 8 3 3 3 9号公報で開示さ れる酸素の使用による触媒の再活性化や硫黄添加などの方法を用いることができ る。
さらにヒ ドロシリル化反応において有機重合体、 反応溶媒、 系中の可塑剤等が 酸素により酸化されることを抑制するために、 酸化防止剤の存在下でヒ ドロシリ ル化反応を行うことができる。
エポキシ基および/またはォキセタン基含有ケィ素基の導入率を測定する方法 としては種々の方法が考えられるが、 現在のところ NM Rスペクトルにより、 ェ ポキシ基および/またはォキセタン基含有ケィ素基の導入された末端と導入され なかった末端の積分値を比較することで正確な値を得ることができる。 次に、 本発明における末端にエポキシ基および/またはォキセタン基含有ケィ 素基を有する飽和炭化水素系重合体の製法について詳しく説明する。
本発明の末端にエポキシ基および Zまたはォキセタン基を有するィソブチレン 系重合体は、 ィニファー法と呼ばれる重合法 (ィニファーと呼ばれる開始剤と連 鎖移動剤を兼用する特定の化合物を用いるカチオン重合法) で得られた末端官能 型、 好ましくは、 全末端官能型イソブチレン系重合体を用いて製造することがで きる。 例えば、 この重合体の脱ハロゲン化水素反応や特開昭 6 3— 1 0 5 0 0 5 号公報に記載されているような重合体への不飽和基導入反応等により末端に不飽 和基を有するポリイソプチレンを得た後、 一般式 (8 ) 、 ( 9 ) あるいは (1 0 ) で示されるようなエポキシ基含有ヒ ドロシラン化合物を白金触媒を用いてヒ ドロ シリル化反応で付加反応をさせることによりエポキシ基含有ケィ素基を重合体に 導入する方法があげられる。
水添ポリブタジエン系重合体では、 たとえば、 まず、 末端ヒ ドロキシ水添ポリ ブタジエン系重合体の水酸基末端を一 O N aや _ O Kなどのォキシメタル基にし た後、 一般式 (1 1 ) または一般式 (1 2 ) で表される不飽和基含有化合物を反 応させる方法により、 同様に末端に不飽和基を含有する水添ポリブタジエン系重 合体を得ることが可能である。
上記方法では、 出発原料として使用した末端ヒ ドロキシ水添ポリブタジエン系 重合体とほぼ同じ分子量をもつ末端不飽和基含有水添ポリブタジェン系重合体が 得られるが、 より高分子量の重合体を得たい場合には、 一般式 (1 1 ) あるいは 一般式(1 2 ) の有機ハロゲン化合物を反応させる前に、塩化メチレン、 ビス (ク 口ロメチル) ベンゼン、 ビス (クロロメチル) エーテノレなどのごとき、 1分子中 にハロゲンを 2個以上含む多価有機ハ口ゲン化合物と反応させれば分子量を増大 させることができ、 その後一般式 (1 1 ) あるいは一般式 (1 2 ) で示される有 機ハロゲン化合物と反応させれば、 より高分子量でかつ末端にォレフィン基を有 する水添ポリブタジエン系重合体を得ることができる。
末端不飽和基含有水添ポリブタジエン系重合体へのエポキシ基および/または ォキセタン基含有ケィ素基の導入は、 前記ィソブチレン系重合体の場合と同様に ヒ ドロシラン化合物を白金系触媒を用いて付加反応をさせることにより製造され る。
飽和炭化水素系重合体が、 芳香族環でない不飽和結合を分子中に実質的に含有 しない場合には、 不飽和結合を有する有機系重合体のような従来のゴム系重合体 から形成される被膜と比べて耐候性がよい。 また、 該重合体は炭化水素系重合体 であるので低気体透過性や耐水性がよく、 低気体透過性の高い被膜を形成する。 本発明のエポキシ基および/またはォキセタン基含有ケィ素基を末端に有する ォキシアルキレン系重合体の製造法としては、 特に限定されず、 例えば末端に不 飽和基を有するォキシアルキレン系重合体と一般式 (8 ) 、 (9 ) あるいは一般 式 (1 0 ) で示されるエポキシ基含有モノヒ ドロシラン化合物によるヒ ドロシリ ル化反応により得ることができる。
末端に不飽和基を有するォキシアルキレン系重合体の製造法としては、 例えば エーテル結合により不飽和基を導入する場合は、 ォキシアルキレン系重合体の水 酸基末端のメタルォキシ化により— O M (Mは N aまたは K等) を生成した後、 一般式.(1 1 ) または一般式 (1 2 ) で表される不飽和基含有化合物を反応させ る方法が同様に利用できる。
本発明のエポキシ基および/またはォキセタン基含有ケィ素基を末端に有する ビニル系重合体の製造法としては、 特に限定されず、 例えば末端に不飽和基を有 するォキシアルキレン系重合体と一般式 (8 ) 、 ( 9 ) あるいは一般式 (1 0 ) で示されるエポキシ基含有モノヒ ドロシラン化合物によるヒ ドロシリル化反応に より得ることができる。
加水分解性基の交換反応によるエポキシ基および/またはォキセタン基の導入 は、 末端に加水分解性シリル基を有する有機重合体と 1分子中に少なく とも 1つ 以上のェポキシ基および/またはォキセタン基おょぴ 1つの水酸基を有する化合 物との加水分解性基の交換反応により末端にェポキシ基および またはォキセタ ン基が導入可能となる。
上記の末端に加水分解性シリル基を有する有機重合体の加水分解性シリル基は、 特に限定されるものではないが、 代表的なものを示すと、 例えば一般式 (1 3) で表わされる基が挙げられる。
_[S i R^O]^ i (R2 3_n) Qn (1 3)
(式中 R R2、 mおよび nは前記一般式 (1) と同じである。 Qは水酸基また は加水分解性基を示し、 Qが二価以上存在する時、それらは同一であってもよく、 異なっていてもよい。 )
上記 Qのうちの加水分解性基は特に限定されず、 従来公知の加水分解性基であ れば良い。 具体的には例えば水素原子、 ハロゲン原子、 アルコキシ基、 ァシルォ キシ基、 ケトキシメート基、 アミノ基、 アミ ド基、酸アミ ド基、 アミノォキシ基、 メルカプト基、 アルケニルォキシ基等が挙げられる。 これらの内では、 加水分解 性が穏やかで取扱やすいという点でメ トキシ基、 エトキシ基、 プロポキシ基、 ィ ソプロポキシ基等のアルコキシ基が好ましい。
水酸基や加水分解性基が反応性ケィ素基中に 2個以上存在する場合には、 それ らは同一であっても良く、 異なっていてもよい。
なお、 下記一般式 (1 4) で表される反応性ケィ素基が入手が容易であるため 好ましい。
—S i (R2 3-n) Qn ( 1 4)
(式中 R2、 Q、 nは前記と同じ。 )
上記の末端に加水分解性シリル基を有する有機重合体の製造法としては、 特に 限定されず、前述した不飽和基を末端に有する有機重合体と、 下記一般式 (1 5) で表されるヒ ドロシラン化合物とを前述した付加反応の方法を用いることで得る ことができる。
H-[S i R^]^ i (R23_n) Qn ( 1 5) (式中 R 1, R 2, Q , mおよび nは前記と同じ。 )
上記ヒ ドロシラン化合物は、 特に一般式 (1 6 )
H - S i ( R 23-n) Q n ( 1 6 )
で表わされる化合物が入手性の点から好ましい。
(式中 R 2, Q, mおよび nは前記と同じ。 )
一般式 (1 5 ) または ( 1 6 ) の化合物を具体的に例示するならば、 トリ クロ ノレシラン、 メチノレジクロノレシラン、 ジメチノレクロノレシラン、 フエニノレジクロノレシ ラン、 ト リ メチノレシ口キシメチノレク口ルシラン、 1, 1, 3, 3 —テ トラメチル - 1 —ブロモジシロキサンの如きハロゲン化シラン類; トリメ トキシシラン、 ト リエ トキシシラン、 メチルジェ トキシシラン、 メチノレジメ トキシシラン、 フエ二 ルジメ トキシシラン、 ト リ メチルシロキシメチルメ トキシシラン、 ト リメチルシ 口キシジェ トキシシランの如きアルコキシシラン類;メチルジァセ トキシシラン、 フエニルジァセ トキシシラン、 ト リァセ トキシシラン、 ト リ メチルシ口キシメチ ルァセ トキシシラン、 トリメチルシロキシジァセ トキシシランの如きァシロキシ シラン類; ビス (ジメチルケ トキシメー ト) メチルシラン、 ビス (シクロへキシ ルケトキシメー ト) メチルシラン、 ビス (ジェチルケトキシメ一ト) トリメチル シロキシシラン、 ビス (メチノレエチルケ トキシメート) メチルシラン、 トリス (ァ セ トキシメート) シランの如きケ トキシメートシラン類 ; メチルイソプロぺニル 才キシシランの如きアルケニルォキシシラン類などが挙げられる。 これらのなか で、 特にアルコキシシラン類が好ましく、 アルコキシ基の中でもメ トキシ基、 ェ トキシ基、 プロポキシ基、 イソプロポキシ基が特に好ましい。
前記末端に加水分解性シリル基を有する有機重合体と反応せしめる 1分子中に 少なく とも 1つ以上のエポキシ基および/またはォキセタン基おょぴ 1つの水酸 基を有する化合物としては、 特に限定はないが反応性の点で 2級あるいは 1級の 水酸基を有する化合物が好ましい。
上記 1分子中に少なく とも 1つ以上のエポキシ基および Zまたはォキセタン基 および 1つの水酸基を有する化合物の具体的例としては、 下記一般式 (1 7 ) で 表される化合物が使用できる。
W - O H ( 1 7 )
(W はエポキシ基および/またはォキセタン基を含有する 1価の有機基) これらの化合物の具体的な化合物としては、 入手性の点より 2 , 3—エポキシ 一 1—プロパノール、 3—ェチノレ _ 3—ヒ ドロキシメチノレオキセタン、 グリセリ ンジグリ シジルエーテル等の化合物が挙げられる。
これら化合物の使用量に特に限定はないが、 交換反応を速やかに進行させるた めに末端に加水分解性シリル基を有する有機重合体の加水分解性基に対し、 1当 量以上使用することが好ましい。
加水分解性基の交換反応は、 上記の末端に加水分解性シリル基を有する有機重 合体と上記の 1分子中に少なくとも 1つ以上のエポキシ基および/またはォキセ タン基および 1つの水酸基を有する化合物にエステル交換反応触媒を加え反応さ せることにより実施することができる。
上記エステル交換反応触媒は、 アルカリ金属アルコキシド、 S n化合物、 T i 化合物、 Z n化合物、 B a化合物、 及び慣用的な強アルカリ化合物により例示さ れる。適切なエステル交換反応触媒の例としては、ジメチル錫ネオデカノエート、 ジプチル錫ジァセテ一ト、ジブチル錫ジラゥレート、ジォクチル錫ジラゥレー ト、 ジブチル錫ジォクテート、 ナフテン酸亜鉛、 ナフテン酸コバルト、 ォクチル酸亜 鉛、ォクチル酸錫、ォクチル酸コバルト、ジィソォクチルメルカプトァセテ一ト、 ナフテン酸ジノレコニゥム、 ォクチノレ酸ジノレコニゥム、 テトラブチルチタネー ト、 テトライソプロピルチタネート、 水酸化バリゥム一水和物及ぴ他の有機金属触媒 が挙げられる。 特に、 エステル交換反応触媒がテトライソプロピルチタネート、 水酸化バリゥム一水和物及びナトリウムメ トキシド等のアルコキシドから選ばれ ることが好ましい。
上記エステル交換反応触媒の量は、 特に限定はないが、 通常上記有機重合体に 対し 5 0 p p m〜 1 0 0 , 0 0 0 p p m、 好ましくは 5 0 p p m〜 3 0 0 0 p p mの範囲で使用される。 この反応は溶剤をさらに含むことができる。 この溶剤に特に限定はないが、 例 えばペンタン、 シクロペンタン、 へキサン、 シク口へキサン、 ヘプタン、 ォクタ ン及ぴノナン等の脂肪族炭化水素;例えばベンゼン、 トルエン及びキシレン等の 芳香族炭化水素;並びに例えばペルクロ口エチレン及ぴブロモベンゼン等のフッ 素置換、 塩素置換及び臭素置換された脂肪族又は芳香族炭化水素により例示され る。 また 2種以上の無極性溶剤を併用することもできる。
溶剤の量に限定はないが、 ポリマー 1 0 0重量部当たり 0〜 1 0 0重量部の溶 剤を含むことができる。
この方法は、 生成物から揮発分を除去することで反応を促進することが可能で ある。 揮発性成分を除去する方法は当該技術分野で公知であるものが使用可能で ある。 本発明において任意の揮発性成分除去方法を使用することができる。 その ような方法は、 加熱、 加熱し減圧すること、 ロータリーエバポレーター、 薄膜ス トリ、フ / 一、 ! ィプ式フイノレムェ/ ポレー夕一 (wiped fi lm evaporator)又 fまこ れらの組み合わせにより例示される。 好ましくは、 揮発分は、 生成物を約 2 6 0 0〜1 3 3 0 0 P aの減圧下で 5 0〜 1 5 0 °Cの温度に加熱することにより除去 される。
本発明の末端にエポキシ基および/またはォキセタン基含有ケィ素基を有する 有機重合体は、 選択的に末端にエポキシ基および/またはォキセタン基含有ケィ 素基を導入した新規な重合体であり、 製造の際にも重合体主鎖の劣化等を回避し 合成することが可能である。 このようにして得られた重合体は、 それ単独でェポ キシ基の公知な反応を利用して硬化させることも可能であり、 また従来使用され ているェポキシ系硬化物への改質剤的な使用法によっても重合体主鎖由来の特徴 を発現することが期待される。
本発明の末端にエポキシ基および/またはォキセタン基含有ケィ素基を有する 有機重合体硬化方法としては、 エポキシ基および/またはォキセタン基含有化合 物の一般的な硬化剤により、 エポキシ基および/またはォキセタン基を反応させ 硬化させることができる。 硬化剤としては、 アミン系硬化剤、 酸系硬化剤、 3フ ッ化ホウ素ァミンコンプレックス系硬化剤、 カチオン系光硬化剤等が一般的な方 法で使用可能である。
特に光硬化反応を用いた場合は、 短時間で硬化させることが可能となり好まし レ、。
本発明の光力チオン開始剤 (B) は、 光により、 (A) 成分の樹脂のカチオン 重合を開始する化合物であれば特に限定はなく、 いずれでも使用することができ る。 例えば光力チオン開始剤の好ましい例として下記一般式 (7) で表される構 造が挙げられる。
[R7 aR8 bR9 cR10 dW] u+ [MZV+U] u- (7)
(式中、 Wは、 S、 S e、 T e、 P、 A s、 S b、 B i、 0、 I、 B r、 C l、
T i、 Z r、 F e、 Ru、 〇 sまたは N≡Nであり、 R7、 R8、 R9、 および R10 は同一または異なる有機基であり、 a、 b、 cおよび dはそれぞれ 0〜 3の整数 であって、 (a + b + c + d) は Wの価数に等しい。 Mは、 錯体 [MZV+U] の中 心原子を構成する金属またはメタロイ ドであり、 例えば、 B、 P、 A s、 S b、 F e、 S n、 B i、 A l、 C a、 I n、 T i、 Z n、 S c、 V、 C r、 Mn、 C o等である。 Zは例えば、 Mに配位する配位子で、 F、 C l、 B r等のハロゲン 原子や有機基である。 uは錯体イオンの正味の電荷である。 Vは Mの原子価であ る。 )
またカチオン系光開始剤 (B) 力 ォニゥム塩、 スルホン酸のジァリールョー ドニゥム塩、 スルホン酸のトリァリールスルホニゥム塩、 ボロン酸のジァリール ョ一ドニゥム塩又はボロン酸のトリァリ一ルスルホ -ゥム塩から選ばれるカチォ ン系光開始剤であることが、 入手性が容易なことから好ましい。
これらのォニゥム塩の具体例としては、 ジフエ二ルョードニゥム、 4ーメ トキ シジフエニノレョー ドニゥム、 ビス (4—メチノレフェェノレ) ョー ドニゥム、 ビス ( 4 - t e r t一プチノレフエニル) ョ一ドニゥム、 ビス (ドデシルフェニル) ョード 二ゥム、 ト リノレク ミノレョードニゥム、 ト リ フエニノレスノレホニゥム、 ト リ フエ二ノレ スノレホニゥム、 ジフエニノレー 4—チオフエノキシフエニノレスノレホニゥム、 ビス 〔 4 - (ジフヱ-ノレスルフォニォ) 一フエ二ノレ〕 スノレフイ ド、 ビス 〔4一 (ジ (4— ( 2—ヒ ドロキシェチノレ) フエ二ノレ) スノレホニォ) 一フエ二ノレ〕 スノレフイ ド、 η 5 - 2 , 4 - (シク口ペンタジェニル) 〔1, 2, 3, 4, 5, 6— η — (メチ ルェチル) ベンゼン〕 一鉄 (1 +) 等が挙げられる。 一般式 (7) において陰ィ オンの具体例としては、 テトラフルォロポレート、 テトラキス (ペンタフルォロ フエ-ノレ) ポレート、 へキサフノレオ口ホスフェー ト、 へキサフノレオ口アンチモネ ート、 へキサフルォロアルセネート、 へキサクロ口アンチモネート等が挙げられ る。 これらの光力チオン開始剤は、 1種単独であるいは 2種以上を組み合わせて 使用することができる。
また上記のォニゥム塩以外にも、 デカメチルフエ口セン/テトラキス ( 3, 5 ージフルオロフェエル) ポラート、 デカメチルフエ口セン/テトラキス (3, 5 一ジブルォロメチルフエニル)ポラート、デカメチルフエ口セン/テトラキス [ 4 — (トリフルォロメチル) フエニル] ポラートなど特開平 1 1 一 4 9 7 9 1、 特 開 2 0 0 0— 2 2 6 3 9 6等に記載の開始剤を使用することが可能であり、 組成 物の安定性向上等の効果がある。
本発明の樹脂組成物における (Β) 成分の含有割合は、 通常 0. 1〜1 0重量 部であり、 好ましくは、 0. 3〜3重量部である。 (Β) 成分の含有割合 0. 1 重量部以上であるとより樹脂組成物の硬化状況が良好となり好ましく、 又硬化後 に光力チオン開始剤が溶出の予防の観点から 1 0重量部以下が好ましい。
本発明の光硬化性組成物には、 (Β) 成分に加え增感剤を使用することが可能 である。 増感剤としては、 特に限定はなく、 一般のカチオン系光開始剤に用いら れる增感剤なら問題なく使用できる。 具体例としては、 ジァリールョードユウム やトリァリ一ルスルホニゥム塩の增感にはアントラセン、 ピレン、 ペリレンなど の芳香族炭化水素が、 ジァリールョードニゥム塩の增感にはべンゾフエノン、 キ サントン、 チォキサントン、 ミヒラーケトン、 9, 1 0—フエナントラキノンな どの芳香族ケトン、 ェォシン、 ケトクマリン、 アタリジン染料などが、 トリァリ 一ルスルホニゥム塩の増感には芳香族ァミン、 芳香族 3級ァミン、 クマリン、 ィ ソベンゾフランなどが挙げられるが、 これらに限定されるものではない。 . 本発明の光硬化性組成物には、 必要に応じてエポキシ基を有する化合物 (C ) および/またはォキセタン基を有する化合物 (D ) を含有することができる。 ェ ポキシ基を有する化合物 (C ) は、 硬化物の硬化性や機械的強度を向上すること ができ、 以下のものが例示できる。 例えば、 エポキシ基を 1個有する化合物とし ては、 フヱ-ルグリシジルエーテル、 プチルグリシジルエーテル等があり、 ェポ キシ基を 2個以上有する化合物としては、 へキサンジオールジグリシジルエーテ ル、 テトラエチレンダリコールジグリシジルエーテル、 トリメチローノレプロパン トリグリシジルエーテル、 ビスフエノール Aジグリシジルエーテル、 水添ビスフ ェノール Aジグリシジルエーテル、ノボラック型エポキシ化合物等が挙げられる。 また、 脂環式エポキシ基を有する化合物も問題なく使用できる。
これらの (C ) 成分は、 1種単独であるいは 2種以上を組み合わせて使用する ことができる。 また (A) 成分の主鎖骨格の種類により相溶性等が異なるため、 ( A) 成分に適した化合物を選択することが好ましい。 本発明の樹脂組成物にお ける (C ) 成分の含有割合は、 通常 1〜 7 0重量部であり、 好ましくは、 1〜5 0重量部である。 (C ) 成分の添加は、 組成物の硬化性、 接着性、 耐熱性を改良 させるのに有効である。
本発明におけるォキセタン環を有する化合物 (D ) は、 一般式 (1 8 ) で表さ れるォキセタン環を少なく とも 1つ有する化合物であればいずれでも使用するこ とができる。 5 (18)
Figure imgf000034_0001
ここで式中、 R 14、 R 15は、 同一または異なった水素、 酸素、 及び窒素からな る群より選択される 1種以上を構成原子として含有する炭素数 1から 2 0の 2価 の有機基を示す。
これらォキセタン環を有する化合物としては、 3—ェチルー 3 - ヒ ドロキシメ チルォキセタン、 3ーェチルー 3― (フエノキシメチル) 才キセタン、 3—ェチ ノレ一 3 —へキシロキシメチノレオキセタン、 3—ェチルー 3― ( 2—ェチノレへキシ 口キシメチル) 才キセタン、 3—ェチルー 3— { [ 3 - (ト リエ トキシシリル) プロポキシ] メチル } 才キセタン、 ジ [ 1一ェチル ( 3—ォキセタニル) ] メチ ルエーテル、 1 , 4一ビス { [ 3 - ェチル一 ( 3 - ォキセタニル) メ トキシ] メ チル } ベンゼン、 3 , 3 '一ジメチノレー 2 - ( ρ—メ トキシフヱ二ノレ) —ォキセ タン等の化合物が挙げられる。
これらの (D ) 成分は、 1種単独であるいは 2種以上を組み合わせて使用する ことができる。 また (A) 成分の主鎖骨格の種類により相溶性等が異なるため、
(A) 成分に適した化合物を選択することが好ましい。 本発明の樹脂組成物にお ける (D ) 成分の含有割合は、 通常 1 〜 7 0重量部であり、 好ましくは、 1 〜 5 0重量部である。 (D ) 成分の添加は、 組成物の高速硬化性、 高分子量化に有効 である。
本発明の硬化性組成物には、 本発明の効果を損なわない範囲で、 他の光力チォ ン重合性化合物、 シランカップリング剤、 充填剤、 改質剤、 安定剤、 他の樹脂成 分等のその他の成分を含有することができる。
他の光力チオン重合性化合物としては、 例えば、 ォキソラン化合物、 環状ァセ タール化合物、 環状ラク トン化合物、 チイラン化合物、 チェタン化合物、 スピロ オルソエステル化合物、 ビュルエーテル化合物、 エチレン性不飽和化合物、 環状 エーテル化合物、 環状チォエーテル化合物、 ビ二ル化合物等が挙げられる。 これ らは、 1種単独でも複数種を組み合わせて使用してもよい。
シランカツプリング剤とは、エポキシ基、力ルポキシル基、メタクリロイル基、 イソシァネート基等の反応性基を有するシラン化合物が挙げられる。具体的には、 トリメ トキシシリル安息香酸、 γ—メタクリロキシプロピルトリメ トキシシラン、 ビュルト リァセ トキシシラン、 ビュルト リメ トキシシラン、 γ —イソシアナトプ 口ピルト リエ トキシシラン、 γ —グリ シドキシプロピルトリ メ トシキシラン、 β 一 (3, 4 _エポキシシクロへキシル) ェチルトリメ トシキシラン等が挙げられ る。 これらの成分は、 1種単独であるいは 2種以上を組み合わせて使用すること ができる。本発明の樹脂組成物におけるシランカツプリング剤成分の含有割合は、 特に限定はないが通常 0 . 1〜 2 0重量部であり、 好ましくは、 0 . 3〜 1 0重 量部である。 0 . 1〜 2 0重量部の範囲では、 接着性向上の効果と経済性のバラ ンスの点で優れている。
充填剤としては、 例えば、 微粒子シリ力、 ガラスビーズ、 タルク、 スチレン系 ポリマー粒子、 メタクリレート系ポリマー粒子、 エチレン系ポリマー粒子、 プロ ピレン系ポリマー粒子等が挙げられ、 中でも無機充填剤が好ましく使用でき、 特 に微粒子シリカが好ましい。 これらは、 1種単独でも複数種を組み合わせて使用 してもよい。
微粒子シリ力は、 一次粒子の平均系が 5〜 1 0 0 n mのシリ力が好ましい。 こ れらは、 表面処理、 未処理のものいずれも使用できる。
これらの無機充填剤を使用することにより、 高強度化、 耐透湿性や接着性を向 上させることができる。
改質剤としては、 例えば重合開始助剤、 レべリング剤、 濡れ性改良剤、 界面活 性剤、 可塑剤等が挙げられる。 これらは、 1種単独でも複数種を組み合わせて使 用してもよレ、。
安定剤としては、 老化防止剤、 酸化防止剤、 光安定剤、 紫外線吸収剤等が挙げ られる。 これらは 1種単独でも複数種を組み合わせて使用してもよい。
他の樹脂成分としては、 例えばポリアミ ド、 ポリウレタン、 ポリブタジエン、 ポリエーテル、 ポリエステル、 アク リル樹脂、 シリ コン樹脂、 フッ素系樹脂等の 樹脂成分が挙げられる。
本発明の硬化性組成物は、 各成分を均一に混合することにより調製される。 混 合する方法に特に限定はないが、 まず (B ) 成分のカチオン系光開始剤を除くそ の他の成分を十分に混合した後に、 (B ) 成分のカチオン系光開始剤を混合する ことが組成物の安定性の点で好ましい。 特に水分を多く含有するような成分につ いては、 事前に脱水処理を施し、 混合することが好ましい。 混合する方法、 装置 には特に限定はないが、 手攪拌、 機械的攪拌装置、 ロールミル等を用い適宜混合 することにより調整される。
本発明の硬化物は、 硬化性組成物に光エネルギー源を照射することにより得ら れる。 光エネルギー源としては、 一般に光硬化反応に用いられるものを特に制限 なく使用できるが、 紫外線、 電子線、 可視光等を挙げることができる。 例えば、 光硬化性組成物自体の硬化は、 塗布された基材を望ましい光エネルギー源、 例え ば紫外線ランプの下を所定の速度で通過させ、 そして必要なエネルギー源を出力 状態に所定の時間おくことによりその塗布された基材を完全に光エネルギーに暴 露することを含む公知の方法のうちのいずれかにより達成される。
硬化物を得る際に施す光硬化性組成物の塗布としては、 例えば、 はけ塗り、 押 出、 吹付け、 グラビア、 キスロール、 ディスペンサー及びエアーナイフによるよ うな当該技術分野で公知の任意の適切な手法が適用できる。
本発明の光硬化性組成物を塗布する固体基材は、 例えば紙、 ポリオレフインフ イルム、 ポリオレフイン被覆紙、 箔、 木材、 厚紙及び綿等の柔軟なシート材料; 例えばアルミニウム、 銅、 スチール及び銀等の金属材料;例えばガラス及び石等 のケィ質材料;並びに例えばポリオレフィン、 ポリアミ ド、 ポリエステル及びポ リアタリ レート等の合成ポリマー等が挙げられる。
また必要に応じて光エネルギーの照射の後に、 さらに加熱等の後硬化させるこ とにより、 より十分に硬化させることができる。
本発明の光硬化性組成物は、 接着剤、 塗料、 シーリング剤組成物、 防水剤、 吹 き付け剤、 型取り用材料、 注入型ゴム材料等として有用である。 具体的には、 U V硬化型塗料 ' コーティング ·インキ、 液状ソルダレジスト、 液晶用レジスト、 光ファイバ一コーティング剤、 U V ·可視光硬化型接着剤、 光ディスクコーティ ング剤、 電子部品用封止剤等が挙げられる。 中でも、 加熱工程の低減、 生産性向 上が求められる電子部品用途への使用が好適である。
本発明の光硬化性組成物を含む硬化物を構成要素としてなる製品は、 本発明の 光硬化性組成物、 あるいは必要に応じて他の光力チオン重合性化合物、 シラン力 ップリング剤、 充填剤、 改質剤、 他の樹脂成分等混合した光硬化性組成物を、 各 用途の使用部位に本発明の光硬化性組成物を塗布し、 光エネルギーを照射するこ とによりその部位を接着、 シール、 封止したものである。
これら製品の製造方法としては特に限定はなく、 各用途に適した工程が使用で きる。 例えば、 光ファイバ一コーティングでは、 光ファイバ一の紡糸装置中に本 発明の光硬化性組成物を満たした力ップおよび U V照射装置を設置し、 ファイバ 一線を引きカップを通過することで光硬化性組成物をコーティングし、 その後 U V照射により硬化し、 本発明の硬化性組成物からなる硬化物で被覆された光ファ ィバーを得ることができる。
その他、 有機 E L素子の封止剤として使用した場合は、 基材上の素子周辺を本 発明の光硬化性組成物でシールし、 キャップした後 U V照射し封止することによ り、 本発明の硬化性組成物からなる硬化物で本発明の硬化物で封止された有機 E L素子が得られる。
本発明の光硬化性組成物は、 (A) 成分の主鎖骨格の種類を変更することでそ の主鎖骨格独特の性能が期待できる。
特に本発明の (A) 成分の主鎖骨格が飽和炭化水素系重合体の場合は、 本発明 の光硬化性組成物おょぴそれを含む硬化物に優れた耐熱性、低透湿性、低吸湿性、 低気体透過性等を付与することができる。 このような硬化性組成物は、 電子材料 周辺での接着剤あるいはシーリング剤として好適であり、 特に熱およぴ湿気等に 弱い部品等、 例えば有機 E L等に対する接着剤、 シーリング剤に好適である。 また (A) 成分の主鎖骨格がォキシアルキレン系重合体の場合は、 本発明の光 硬化性組成物おょぴそれを含む硬化物に優れた低温特性、 可とう性、 他成分との 優れた相溶性等を付与することができる。
また (A) 成分の主鎖骨格がアクリル系重合体の場合は、 そのモノマー種の調 整により本発明の光硬化性組成物およびそれを含む硬化物に優れた耐候性、 可と う性、 他成分との優れた相溶性等を付与することができる。
これら (A) 成分の主鎖骨格は、 単一であっても良く、 2種以上を組み合わせ ることで上記の特徴を併せ持つ光硬化性組成物およびそれを含む硬化物を得るこ とが可能である。
実施例
以下、 実施例に基づき本発明を更に詳細に説明するが、 本発明はこれらにより なんら制限を受けるものではない。
(合成例 1 )
(エポキシ基含有ヒ ドロシランの合成)
シロキサン結合の繰返し単位が平均 5個のメチルハイ ドロジエンポリシロキサ ン 23. 3 g、 トルエン 20 gを 20 Om 1三口フラスコに計量し、 冷却管およ ぴ滴下管を取り付け、 90°Cに昇温した。 続いて α—メチルスチレン 7. 7 g、 了リルグリシジルエーテル 7. 44 g、 トルエン 1 5 gおよび白金— 1, 1, 3, 3—テトラメチルー 1, 3—ジビュルジシロキサン錯体(白金換算で 0. 3重量% の トルエン溶液) 6 μ 1の混合物をゆっく り滴下し、 2時間攪拌した。 ヒ ドロシ ランのモル数は、 アルコー/レに溶解させたメチルハイ ドロジエンポリシロキサン にアルカリ水溶液を滴下したときの水素発生量により算出した。 反応の進行は、 1 H— NMRにて α—メチルスチレンの不飽和基のピーク ( 5. 0 p m付近、 5. 3 ρ p m付近) の減少、 ァリルグリシジルエーテルの不飽和基のピーク (5. 3 p pm付近、 5. 9 p pm付近) の減少およびヒ ドロシランのピーク (4. 4 p pm付近) の減少により追跡した。 反応終了後、 — NMRで確認の結果下記式 (14) で表すような α—メチルスチレン基平均 2個、 エポキシ含有基平均 2個 が導入され、 ヒ ドロシリル基が平均 1個残存するヒ ドロシラン (SH— 1) が得 られた。
Figure imgf000040_0001
(合成例 2)
(エポキシ基含有環状ヒ ドロシランの合成)
1, 3, 5, 7—テトラメチルシクロテトラシロキサン 1 O O gを 3 0 0m l 三ッロフラスコに計量し、 9 0°Cに昇温した。 続いて上記ヒ ドロシランに対しァ リルグリシジルエーテル 1 04. 5 g、 1 -へキサデセン 1 02. 6 gおよび白 金一 1, 1 , 3, 3—テトラメチル— 1, 3—ジビ -ルジシロキサン錯体 (白金 換算で 0. 3重量0 /0のトルエン溶液) 1 0 μ 1の混合物をゆっく り と滴下した。 1時間反応後、 1 H— NMRでァリル基のピーク (5. 3 p p m付近、 5. 9 p p m付近) を確認した結果、 反応物のァリル基の消滅が確認でき、 下記式 (1 5) で示される平均 1個のヒ ドロシリル基を有する化合物 (SH— 2) が得られた。
Figure imgf000040_0002
(合成例 3 )
(ァリル末端イソプチレン系重合体の合成)
2 Lの耐圧ガラス製容器に、 三方コックを取り付け、 容器内を窒素置換した後、 注射器を用いて容器内に、 ェチルシクロへキサン (モレキュラーシーブス 3 Aと ともに 1夜間以上放置することにより乾燥したもの) 1 38m lおよびトルエン (モレキュラーシーブス 3 Aとともに 1夜間以上放置することにより乾燥したも の) 1 0 1 2m l、 1, 4—ビス (ひ一クロロイソプロピル) ベンゼン 8. 1 4 g (3 5. 2 mm o 1 ) を加えた。
次にィソブチレンモノマー 2 54m l (2. 9 9 m o 1 ) が入っているニード ルバルブ付耐圧ガラス製液化採取管を、 三方コックに接続して、 重合容器を一 7 o°cの ドライアイス/エタノールバス中につけて冷却した後、 真空ポンプを用い て容器内を減圧にした。 ニードルバルブを開け、 イソブチレンモノマーを液化ガ ス採取管から重合容器内に導入した後、 三方コック内の一方から窒素を導入する ことにより容器内を常圧に戻した。次に、 2—メチルピリジン 0. 38 7 g (4. 1 5 mm o 1 ) を加えた。 次に、 四塩化チタン 4. 90m l (44. 7 mm o 1 ) を加えて重合を開始した。 反応時間 70分後に、 ァリルトリメチルシラン 9. 6 5 g ( 1 3. 4 mm o 1 )を加えてポリマー末端にァリル基の導入反応を行った。 反応時間 1 20分後に、 反応溶液を水 20 0m lで 4回洗浄した後、 溶剤を留去 することによりァリル末端イソブチレン系重合体 (P— 1) を得た。
こう して得られたポリマーの収量より収率を算出するとともに、 Mn及ぴ Mw /Mnを G P C法により、また末端構造を 3 00MH z 1H_NMR分析により各 構造に帰属するプロ トン (開始剤由来のプロ トン : 6. 5〜 7. 5 p p m、 ポリ マー末端由来のァリル基のピーク (4. 9 7 p p m : =CH2、 5. 7 9 p p m : _CH=C) ) の共鳴信号の強度を測定、 比較することにより求めた。 — NM Rは、 V a r i a n G e m i n i 300 (30 OMH z f o r ipi)を用い、 四塩化炭素 Z重ァセ トン中で測定した。
なお、 G P Cは送液システムとして Wa t e r s L C Mo d u l e l、 力 ラムは S h o d e x K— 804を用いて行った。 分子量はポリスチレンスタン ダードに対する相対分子量で与えられる。ポリマーの分析値は、 Μη = 5800、 Mw/Mn = 1. 3 9、
F n (v) = 1. 88 (NMR分析において、 開始剤残基となる芳香族環 1分 子当たりに対するァリル基の数) であった。
(合成例 4 )
(末端ァリル基含有ォキシプロピレン系重合体の合成)
数平均分子量が 2000のポリプロピレンダリコールを開始剤とし、 亜鉛へキ サシァノコパルテー トグライム錯体触媒の存在下、 プロピレンォキサイ ドの重合 を行い、 数平均分子量が 10000のポリプロピレングリコールを得た。 続いて このポリプロピレングリコールの末端水酸基に対して 1. 2倍当量の CH3ON a (メタノール溶液) を添加し、 減圧下でメタノールを除去しながら、 末端をメタ ルォキシ化した。 ここに 1. 3倍当量の 3 _クロロー 1—プロペンを添加し、 反 応させた後、 副生した塩を脱塩精製により除き、 末端にァリル基を有するォキシ プロピレン系重合体 (P— 2) を得た。
得られた重合体の末端ァリル基濃度を測定したところ、 0. 223mmo l / gでめつ 7こ。
(合成例 5 )
(重合体末端へのエポキシ基含有ケィ素基の導入一 1 )
上記の末端にァリル基を含有するポリイソブチレン系重合体 (P— 1 ) 1 00 g、 1, 4, 一 t e r t—ブチノレー 4—ヒ ドロキシトノレエン 0. 05 gおよびト ルェン 100 gを 500m lの三ッ口フラスコに計量し、真空シール付き攪拌機、 冷却管およぴ玉栓を取り付けた。
続いて 1 00°Cに昇温後、 6 %酸素含有空気雰囲気化で硫黄の 1 %トルエン溶 液を 1 1. 1 μ 1滴下、 攪拌し、 続いて白金一 1, 1, 3, 3—テトラメチルー 1, 3—ジビニルジシロキサン錯体のトルエン溶液 21. 6 μ 1 (白金換算で 3 重量%のトルエン溶液) を滴下、攪拌し、上記で合成したヒ ドロシラン化合物 (S H— 2) 23. 9 gをゆっく り と滴下し 2時間反応させた。
反応の進行は、 1 H— NMRにより末端ァリル基のピーク (5. 1 p p m: =C H2、 5. 9 p p m: -CH=C) の減少、 消滅おょぴ滴下したエポキシ基含有ヒ ドロシランのヒ ドロシリル基 (s i— H) のピーク (4. 8 p p m) の減少によ り確認した。
得られた反応物の1 H— NMRを測定したところ、初期末端ァリル基含有重合体 に対し、 上記記載のァリル基を示すピークおよびヒ ドロシランを示すピークが完 全に消滅していることが判明し、 目的の末端に下記の構造のエポキシ基含有ケィ 素基を含有するイソブチレン系重合体 (A— 1) が得られた。
Figure imgf000043_0001
(合成例 6 )
(重合体末端へのエポキシ基含有ケィ素基の導入一 2)
上記の末端にァリル基を含有するォキシプロピレン系重合体 100 gおよびへ キサン 2 gを 30 Om 1の三ッロフラスコに計量し、 真空シール付き攪拌機、 三 方コックおよぴ玉栓を取り付けた。 これを 90°Cに昇温、 攪拌し、 真空ポンプに より 2時間共沸脱水を行った。
続いて白金一 1, 1, 3, 3—テトラメチル一 1 , 3—ジビュルジシロキサン 錯体(白金換算で 3重量%のトルエン溶液) 4. 10 1滴下し、 よく攪拌した。 続いてエポキシ基含有ヒ ドロシラン(S H— 1 ) 50. 5 gを窒素雰囲気下ゆつく りと滴下し、 その後 6時間攪拌した。 反応の進行は、 1 H— NMRにより末端ァリル基のピーク (4. 97 p p m: = CH2、 5. 79 p p m:— CH= C) の減少、 消滅および滴下したエポキシ基含 有モノ ヒ ドロシランのヒ ドロシリル基 (S i -H) のピーク (4. 6 p pm付近) の減少により確認した。
得られた反応物の1 H— NMRを測定したところ、初期末端ァリル基含有重合体 に対し、 上記記載のァリル基を示すピークおょぴヒ ドロシランを示すピークが完 全に消滅していることが判明し、 末端に下記の構造のエポキシ基含有ケィ素基を 有するォキシアルキレン系重合体 (A— 2) が得られた。
Figure imgf000044_0001
(合成例 7)
(加水分解性シリル基含有重合体の合成)
上記の末端にァリル基を含有するポリイソブチレン系重合体 1 00 gおよぴト ルェン 2 gを 300 m 1の三ッロフラスコに計量し、 真空シール付き攪拌機、 三 方コックおよぴ玉栓を取り付けた。 これを 1 80°Cに昇温、 攪拌し、 真空ポンプ により 2時間脱水おょぴ脱塩酸を行った。
続いて 100°Cに冷却後、 1, 4, 一 t e r t—ブチル一 4—ヒ ドロキシトル ェン 0. 05 g、 白金一 1, 1, 3, 3—テトラメチルー 1, 3ージビュルジシ ロキサン錯体 21. 6 μ 1 (白金換算で 3重量%のトルエン溶液) 、 硫黄の 1 % トルエン溶液を 1 1. 滴下し、 よく攪拌した。 さらに、メチルジメ トキシシラン 5.86 gを滴下管によりゆっく り と滴下し、 その後 6%酸素含有空気中で 2時間攪拌した。 その後、 過剰のメチルジメ トキシ シランを減圧除去し、 下記の構造の末端に加水分解性基を有するイソブチレン系 重合体を得た。
Figure imgf000045_0001
(合成例 8 )
(加水分解性基交換反応)
上記合成例 7で得られた、 末端にアルコキシシリル基を有するポリイソブチレ ン系重合体 100 g、 ぉょぴトノレェン 1 00 gをディーンスタークセパレーター を備えた 5 O Om lのフラスコに計量した。 続いて 3—ェチル一 3—ヒ ドロキシ メチルォキセタン 14. 4 gおよびテトライソプロポキシチタネート 200 1 を加え、 攪拌しながら 70°Cに昇温し、 1 6時間反応させた。 反応後、 トルエン および過剰の 3—ェチルー 3—ヒ ドロキシメチルォキセタンを減圧除去した。 反応の進行は、 1 H— NMRにより末端メ トキシ基のピーク (3. 5 p p m: - CH3) の減少、 消滅により確認した。
得られた反応物の1 H— NMRを測定したところ、 3—ェチル一 3—ヒ ドロキシ メチルォキセタンが末端に平均 1. 5個導入されたことが判明し、 目的の末端に 下記の構造のォキセタン基含有ケィ素基を含有するイソブチレン系重合体 (A_ 3) が得られた。
Figure imgf000046_0001
(光硬化性組成物およびそれらを含む硬化物の作製)
下記実施例に従い光硬化性組成物を調整し、 フィルムを塗布し、 UV照射する ことでそれらの硬化物を得た。 さらに硬化物の良溶媒で抽出することで、 不溶分 のゲル分率を測定算出し、 硬化性を判断した。
ゲル分率の評価方法:得られた硬化物フィルムを 200メッシュ金網に適量計 量し、 不溶分が流出しないよう包み込んだ。 これらを十分量のへキサンに 1 5時 間浸漬し、 溶出分を抽出し、 その後 8 0°C2時間乾燥した。 その時の不溶分の初 期重量に対する割合をもってゲル分率 (%) とした。
光照射の方法:市販の UVランプ (4 00W) を用い、 サンプル位置での照度 を 2 800 0〜30 000 · c m 2 (測定波長 : 3 1 0〜 400 n m) に調 整した。 照射時間を調整し、 積算光量を調整した。 本実施例の条件では、 1分間 の照射で 1. 5 Jの積算光量となった。 また、 本実施例でのサンプル表面の温度 は約 50°Cとなった。
(実施例 1 )
上記で合成例 5で合成した有機重合体 (A— 1 ) 1 00重量部に対し、 トリア リルスルフォニゥムへキサフルォロアンチモネ一ト系のカチオン系光開始剤 (ァ デカオブトマー S P— 1 7 2 :旭電化工業(株)製) 1重量部を十分に混合し、 光 硬化性組成物を調整した。 この混合物をアプリケーターを用いテフロン (R) 製 のシート上に均一に 1 00 mの厚みで成膜し、 その後 U Vランプにより U V照 射した。
積算光量 1. 5 Jの UV照射により硬化したフィルムを剥し、 へキサンにより 溶出分を抽出し、不溶分のゲル分率を計算することで硬化性を判断した(表 1 )。 (実施例 2)
上記で合成例 5で合成した有機重合体 (A— 1) 100重量部に対し、 (D) 成分のォキセタン化合物 (ジ [1一ェチル ( 3ーォキセタニル) ] メチルエーテ ル) 10重量部を十分混合し、 更にトリァリルスルフォ -ゥムへキサフルォロア ンチモネート系のカチオン系光開始剤 (アデカオプトマー S P— 1 72 :旭電化 工業(株)製) 1重量部を十分に混合し、 光硬化性組成物を調整した。 この混合物 をアプリケーターを用いテフロン (R) 製のシート上に均一に 1 00 μ mの厚み で成膜し、 その後 UVランプにより UV照射した。
積算光量 1. 5 Jの UV照射により硬化したフィルムを剥し、 へキサンにより 溶出分を抽出し、不溶分のゲル分率を計算することで硬化性を判断した(表 1 )。
(実施例 3)
上記で合成例 6で合成した有機重合体 (A— 2) 100重量部に対し、 トリア リルスルフォニゥムへキサフルオロフォスフエート系のカチオン系光開始剤 (ァ デカオブトマー S P_ 1 52 :旭電化工業(株)製) 1重量部を十分に混合し、 光 硬化性組成物を調整した。 この混合物をアプリケーターを用いテフロン (R) 製 のシート上に均一に 1 00 μ mの厚みで成膜し、 その後 UVランプにより UV照 射した。
積算光量 1. 5 Jの UV照射により硬化したフィルムを剥し、 へキサンにより 溶出分を抽出し、不溶分のゲル分率を計算することで硬化性を判断した(表 1 )。
(実施例 4)
上記で合成例 6で合成した有機重合体 (A— 2) 100重量部に対し、 (C) 成分のエポキシ化合物 (1, 6一へキサンジオールジグリシジルエーテル) 20重 量部を十分混合し、 更にトリァリルスルフォニゥムへキサフルオロフォスフエー ト系のカチオン系光開始剤 (アデカオブトマー S P - 1 5 2 :旭電化工業(株)製) 1重量部を十分に混合し、 光硬化性組成物を調整した。 この混合物をアプリケー ターを用いテフロン (R) 製のシート上に均一に 1 00 μ mの厚みで成膜し、 そ の後 UVランプにより UV照射した。
積算光量 1. 5 Jの UV照射により硬化したフィルムを剥し、 へキサンにより 溶出分を抽出し、不溶分のゲル分率を計算することで硬化性を判断した(表 1 )。
(実施例 5)
上記で合成例 8で合成した有機重合体 (A— 3) 100重量部に対し、 (D) 成分のォキセタン化合物 (ジ [1一ェチル (3—ォキセタ -ル) ] メチルエーテ ル) 1 0重量部を十分混合し、 更にトリァリルスルフォニゥムへキサフルォロア ンチモネート系のカチオン系光開始剤 (アデカオプトマー S P— 1 72 :旭電化 工業(株)製) 1重量部を十分に混合し、 光硬化性組成物を調整した。 この混合物 をアプリケーターを用いテフロン (R) 製のシート上に均一に 100 μ mの厚み で成膜し、 その後 UVランプにより UV照射した。
積算光量 1. 5 Jの UV照射により硬化したフィルムを剥し、 へキサンにより 溶出分を抽出し、不溶分のゲル分率を計算することで硬化性を判断した(表 1 )。
(実施例 6 )
上記で合成例 5で合成した有機重合体 (A— 1) 1 00重量部に対し、 (C) 成分のエポキシ化合物 (脂環式エポキシ希釈剤 : セロキサイ ド 3000 : ダイセ ル化学工業 (株) 製) 1 0重量部、 (D) 成分のォキセタン化合物 (ジ [1ーェ チル (3—ォキセタニル) ] メチルエーテル) 1 0重量部を十分混合し、 更にト リアリルスルフォニゥムへキサフルォロアンチモネ一ト系の力チオン系光開始剤 (アデカオブトマー S P— 1 72:旭電化工業(株)製) 1重量部を十分に混合し、 光硬化性組成物を調整した。 この混合物をアプリケーターを用いテフロン (R) 製のシート上に均一に 1 00 μ mの厚みで成膜し、 その後 UVランプにより UV 照射した。
積算光量 1. 5 Jの UV照射により硬化したフィルムを剥し、 へキサンにより 溶出分を抽出し、不溶分のゲル分率を計算することで硬化性を判断した(表 1 )。
(比較例 1 )
本発明の末端構造を有しない、 加水分解性シリル基を分子内に有するポリオキ シプロピレン重合体 (MSポリマー S AT 350 :鐘淵化学工業 (株) ) 100 重量部に対し、 ジブチルスズジァセチルァセトナート (ネオスタン U— 220 : 日東化成 (株) ) を 0. 5部混合し、 アプリケーターを用いテフロン (R) 製の' シート上に均一に 1 00 μ mの厚みで成膜し、 その後 UVランプにより UV照射 した。 硬化性を確認しょう としたが、 フィルムは形成されず、 硬化しなかった。 別途作製したサンプルを実施例のサンプル表面の温度と同等の温度(約 50°C) で実施例の UV照射と同等の時間 (本試験では 1分) での硬化性を確認したが、 フィルムは形成されず、 ほとんど硬化していない状態であった。 さらに同温度で 2時間放置した後にゲル分率が実施例と同等となった (表 2) 。
(比較例 2)
本発明の末端構造を有しない、 分子量約 10000のァリル基末端ポリイソブ チレン (鐘淵化学工業 (株) 製、 EP 40 OA) 1 00重量部に α-メチルスチレ ン変性メチルハイ ドロジヱンポリシロキサン (鐘淵化学工業 (株) 製、 CR 1 0 0) を 7. 3重量部を混合し、 手混ぜした後, さらに保存性改良剤としてマレイ ン酸ジメチル (和光純薬 (株) 製、 特級試薬) を 90 ^i L、 白金ビニルシロキサ ン錯体触媒 (鐘淵化学工業 (株) 製、 HS— KA) を 60 / L加え、 手混ぜ混合 した。
この混合物をアプリケーターを用いテフロン (R) 製のシート上に均一に 10 0 mの厚みで成膜し、 その後 UVランプにより UV照射した。 硬化性を確認し ようとしたが、 フィルムは形成されず、 硬化しなかった。
別途作製したサンプルを 1 0 o°cおよび実施例のサンプル表面の温度と同等の 温度 (約 50°C) で実施例の UV照射と同等の時間 (本試験では 1分) 加熱した 後の硬化性を確認したが、 ほとんど硬化していない状態であった。 さらに 50°C で、 2時間放置した後でもゲル分率が実施例と同等にならず、より高温の 100 °C 1時間硬化させた場合に実施例と同等のゲル分率が得られた (表 2) 。
表 1、 表 2より、 いずれの実施例の組成物も短時間の UV照射のみで良好な硬 化性を有し、 かつ硬化物はゴム弾性を有する比較的柔らかい硬化物であった。 ま た比較例の湿分硬化性あるいは熱硬化性の組成物では、 このような短時間では十 分な硬化性が得られなかった。
(実施例 7 )
実施例 1のサンプルを別途作製し、 U V照射に加え、 さらに 8 0 °C 1時間カロ熱 硬化した。 硬化したフィルムを剥し、 へキサンにより溶出分を抽出し、 不溶分の ゲル分率を計算することで硬化性を確認した。 その結果、 実施例 1での U V照射 のみに比べ、 ゲル分率が向上していることが確認された (表 3 ) 。
(実施例 8 )
実施例 5のサンプルを別途作製し、 U V照射に加え、 さらに 8 0 °C 1時間カロ熱 硬化した。 硬化したフィルムを剥し、 へキサンにより溶出分を抽出し、 不溶分の ゲル分率を計算することで硬化性を確認した。 その結果、 実施例 5での U V照射 のみに比べ、 ゲル分率が向上していることが確認された (表 3 ) 。
以上の結果より、 本発明の光硬化性組成物は、 良好な光硬化性を有し、 (A) 成分の特徴であるゴム弾性を併せ持つ硬化物が得られることが判明した。
«1
Figure imgf000050_0001
注 3: セロキサ仆' 3000:脂 3式エポキシ希釈剤 (ダイセル化学工業 (株)製) 表 2
比 1 比較'列 2
MSホリマー SAT350 100
EP400A 100 ネオスタン U220 0.5
CR100 7.3 マレイン酸シ'メチル 90 l 白金ビニルシロキサン eojLi i
UV照射のみ 0 0
硬化性 (ゲル分率 (お)) 50°C1min 0 0
50°C2h 92 60
100°C1 h ― 93
表 3
Figure imgf000051_0001
, :
注 3 : セロキサイド 3000:脂環式エポキシ希釈剤 (ダイセル化学工業(株)製) 産業上の利用可能性
本発明の光硬化性組成物は光硬化性と硬化後のゴム弾性の両面において優れた 組成物である。

Claims

請求の範囲
1. 末端に一般式 (1) 一般式 (2) あるいは一般式 (3) で表される構造を 有する有機重合体 (A) 及び、 カチオン系光開始剤 (B) を含むことを特徴と する光硬化性組成物。
Figure imgf000052_0001
(式中、 R1および R2は、 同一または異なった炭素数 1から 2 0のアルキル基、 炭素数 6から 20のァリール基、炭素数 7から 20のァラルキノレ基若しくは(R')
3S i O—で示されるトリオルガノシロキシ基を示し、 R1または R2が 2個以上存 在するとき、 それらは同一であってもよく、 異なっていてもよい。 ここで R, は 炭素数 1から 20の 1価の炭化水素基であり 3個の R, は同一であってもよく、 異なっていてもよい。 Xはエポキシ基および/またはォキセタン基を含有する 1 価の有機基、 mは 0以上 20以下の整数、 nは 1、 2または 3の整数を示す。 )
Figure imgf000052_0002
(式中、 X、 ま上記と同じ、 R3、 R4はメチル基もしくは Xあるいは R2と同 一のものであるか、 いずれかが有機重合体への結合部である。 ここで 1 , は平均 1で有機重合体末端への結合部を表すが R3、 R4いずれかが有機重合体末端への 結合部の場合 1, = 0である。 l≤m, + n ' ≤ 50 , 1≤m ' 、 0≤ n, であ り、 各ユニットの位置は特定されたものではなく、 それぞれ複数個含有される場 合に交互あるいはランダムに配置されていて良い。 )
Figure imgf000053_0001
(式中、 X、 R2は上記と同一である。 ここで z は平均 1で有機重合体末端へ の結合部を表す。 l≤m' ' +η' ' ≤ 20 , 1 ^m' ' 、 0≤ η' ' であり、 各ュニットの位置は特定されたものではなく、 それぞれ複数個含有される場合に 交互あるいはランダムに配置されていて良い。 )
2. 有機重合体 (Α) の Xが一般式 (4) で表される構造を有する請求項 1に記 載の光硬化性組成物。
Figure imgf000053_0002
(式中、 Ι Ίま水素、 酸素、 及び窒素からなる群より選択される 1種以上を構成原 子として含有する炭素数 1から 20の 2価の有機基を示す。 )
3. 有機重合体 (Α) の Xが一般式 (5) で表される構造を有する請求項 1に記 載の光硬化性組成物。
0
CH2一 CH—— CH2
(式中、 R。は水素、 酸素、 及び窒素からなる群より選択される 1種以上を構成原 子として含有する炭素数 1から 20の 2価の有機基を示す。 )
4. 有機重合体 (A) の Xが一般式 (6) で表される構造を有する請求項 1に記 載の光硬化性組成物。
Figure imgf000054_0001
(式中、 R5は上記と同じ)
5. 有機重合体 (A) の主鎖骨格が、 飽和炭化水素系重合体、 ォキシアルキレン 系重合体、 又はビュル系重合体から選ばれることを特徴とする請求項 1〜4のい ずれかに記載の光硬化性組成物。
6. 飽和炭化水素系重合体が、 ポリイソプチレン、 水素添加ポリブタジエン、 水 素添加ポリイソプレン及ぴその共重合体からなる群から選ばれることを特徴とす る請求項 5に記載の光硬化性組成物。
7. 有機重合体 (A) 力 S、 末端に不飽和基を有する有機重合体とヒ ドロシラン化 合物との反応により製造されるものであり、 前記のヒ ドロシラン化合物がェポキ シ基および/またはォキセタン基を有するヒ ドロシラン化合物である、 請求項 1 〜 6のいずれかに記載の光硬化性組成物。
8. 有機重合体 (A) 、 末端に加水分解'! ¾シリル基を有する有機重合体と 1分 子中に 1つの水酸基を有する化合物との加フ ] 分解性基の交換反応により製造され るものであり、 前記の 1分子中に 1つの水酸基を有する化合物が少なく とも 1つ 以上のエポキシ基および/またはォキセタン基を有する化合物である、 請求項 1 〜 6のいずれかに記載の光硬化性組成物。
9. カチオン系光開始剤 (B) 力 一般式 ( 7) で表される構造であることを特 徴とする請求項 1〜8のいずれかに記載の光硬化性組成物。
[R7 aR8 bR9 cR10 dW] u+ [M Z v+u] u" (7)
(式中、 Wは、 S、 S e、 T e、 P、 A s、 S b、 B i、 0、 I、 B r、 C l、 54
T i、 Z r、 F e、 Ru、 O s または N≡Nであり、 R7、 R8、 R9、 および R10 は同一または異なる有機基であり、 a、 b、 cおよび dはそれぞれ 0〜 3の整数 であって、 (a + b + c + d) は Wの価数に等しい。 Mは、 錯体 [MZV+U] の中 心原子を構成する金属またはメタロイ ドであり、 B、 P、 A s、 S b、 F e、 S n、 B i、 A l、 C a、 I n、 T i、 Z n、 S c、 V、 C r、 Mnおよび C oか ら選ばれる金属またはメタロイ ドである。 Zは、 Mに配位する配位子で、 ハロゲ ン原子または有機基である。 uは錯体イオンの正味の電荷である。 Vは Mの原子 価である。 )
10. カチオン系光開始剤 (B ) 力 ォニゥム塩、 スルホン酸のジァリールョー ドニゥム塩、 スルホン酸のトリ ァリー/レスルホニゥム塩、 ポロン酸のジァリール ョードニゥム塩又はボロン酸の トリァリ一ルスルホニゥム塩から選ばれるカチォ ン系光開始剤であることを特徴とする請求項 1〜 8のいずれかに記載の光硬化性 組成物。
1 1. (C)エポキシ基含有化合物および/またはエポキシ基含有オリゴマー、 (D) ォキセタン基含有化合物および Zまたはォキセタン基含有オリゴマーから 選ばれる少なくとも一種をさらに含むことを特徴とする請求項 1〜1 0のいずれ かに記載の光硬化性組成物。
1 2. 請求項 1〜 1 1のいずれかに記載の光硬化性組成物に、光エネルギー源を 照射して硬化物を得る、 硬化物の製造方法。
1 3. 請求項 1 2に記載の製造方法で得られる硬化物。
14. 請求項 1 3に記載の硬化物を構成要素として含む製品。
PCT/JP2004/013707 2003-09-18 2004-09-13 末端にエポキシ基および/またはオキセタン基含有ケイ素基を有する有機重合体を含む光硬化型樹脂組成物およびその製造方法 WO2005028537A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04773326A EP1679328A1 (en) 2003-09-18 2004-09-13 Photocuring resin composition containing organic polymer having epoxy group and/or oxethane group-containing silicon group at end, and method for producing same
JP2005514074A JP4758230B2 (ja) 2003-09-18 2004-09-13 末端にエポキシ基および/またはオキセタン基含有ケイ素基を有する有機重合体を含む光硬化性組成物、それから得られる硬化物、及び製造方法
US11/373,306 US7534820B2 (en) 2003-09-18 2006-03-13 Photocuring resin composition containing organic polymer having epoxy group and/or oxetane group-containing silicon group at end, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-326713 2003-09-18
JP2003326713 2003-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/373,306 Continuation-In-Part US7534820B2 (en) 2003-09-18 2006-03-13 Photocuring resin composition containing organic polymer having epoxy group and/or oxetane group-containing silicon group at end, and method for producing same

Publications (1)

Publication Number Publication Date
WO2005028537A1 true WO2005028537A1 (ja) 2005-03-31

Family

ID=34372829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013707 WO2005028537A1 (ja) 2003-09-18 2004-09-13 末端にエポキシ基および/またはオキセタン基含有ケイ素基を有する有機重合体を含む光硬化型樹脂組成物およびその製造方法

Country Status (4)

Country Link
US (1) US7534820B2 (ja)
EP (1) EP1679328A1 (ja)
JP (1) JP4758230B2 (ja)
WO (1) WO2005028537A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163961A (ja) * 1999-12-07 2001-06-19 Toagosei Co Ltd オキセタン環を含有するアルキド樹脂の製造方法および該樹脂からなる活性エネルギー線硬化性組成物
JP2008133204A (ja) * 2006-11-27 2008-06-12 Toagosei Co Ltd 多官能オキセタンの製造方法
JP2009024176A (ja) * 2008-08-01 2009-02-05 Shin Etsu Chem Co Ltd 光記録媒体用硬化性樹脂組成物
JP2013216782A (ja) * 2012-04-09 2013-10-24 Kaneka Corp 硬化性組成物およびその用途
JP5364267B2 (ja) * 2005-12-26 2013-12-11 株式会社カネカ 硬化性組成物
JP2014505274A (ja) * 2011-10-14 2014-02-27 エルジー・ケム・リミテッド 両面型偏光板及びこれを含む光学装置
CN104540684A (zh) * 2012-08-27 2015-04-22 爱克发印艺公司 用于使基材脱墨的可自由基辐射固化的液体
WO2018190415A1 (ja) * 2017-04-14 2018-10-18 株式会社スリーボンド 光硬化性樹脂組成物、それを用いた燃料電池およびシール方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4651935B2 (ja) * 2003-12-10 2011-03-16 東レ・ダウコーニング株式会社 活性エネルギー線硬化型オルガノポリシロキサン樹脂組成物、光伝送部材および光伝送部材の製造方法
EP1869107A1 (en) * 2005-04-12 2007-12-26 Dow Corning Corporation Epoxy-functional polysiloxanes, silicone composition, and coated optical fiber
FR2904321B1 (fr) * 2006-07-25 2008-09-05 Rhodia Recherches Et Technologies Sas Composition polymerisable et/ou reticulable sous irradiation par voie cationique et/ou radicalaire
EP2116900A4 (en) * 2007-03-01 2012-06-27 Asahi Glass Co Ltd PROCESSED SUBSTRATES WITH WATER-REPELLENT AREAS IN PATTERNS, MANUFACTURING PROCESS THEREFOR AND PROCESS FOR PRODUCING MEMBERS WITH PATTERNS PRODUCED FROM FUNCTIONAL MATERIALS
BRPI0920162A2 (pt) * 2008-10-14 2020-06-23 Bridgestone Corporation Polímeros e uso dos mesmos na preparação de composições poliméricas de alto impacto
WO2014032936A1 (en) * 2012-08-27 2014-03-06 Agfa Graphics Nv Recycling of radiation cured printed matter
JP5667281B1 (ja) * 2013-12-27 2015-02-12 古河電気工業株式会社 有機電界発光素子用充填材料及び有機電界発光素子の封止方法
US10703927B2 (en) 2014-04-10 2020-07-07 3M Innovative Properties Company Adhesion promoting and/or dust suppression coating
WO2017010401A1 (ja) 2015-07-10 2017-01-19 住友精化株式会社 エポキシ樹脂組成物、その製造方法、及び該組成物の用途
WO2017131006A1 (ja) * 2016-01-26 2017-08-03 富士フイルム株式会社 表面修飾無機物を含む樹脂組成物、熱伝導材料、およびデバイス
CN107621752B (zh) 2016-07-13 2019-11-12 常州强力先端电子材料有限公司 一种混杂型光敏树脂及其制备方法
CN107619399B (zh) 2016-07-13 2021-04-27 常州强力先端电子材料有限公司 多官能度氧杂环丁烷类化合物及其制备方法
EP3514626B1 (en) * 2016-09-29 2021-03-31 Kaneka Corporation Photosensitive composition, colored pattern and method for producing same
US11091627B2 (en) 2017-01-10 2021-08-17 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
CN110191921B (zh) * 2017-01-10 2022-04-26 住友精化株式会社 环氧树脂组合物
EP3569626B1 (en) 2017-01-10 2023-03-01 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
US11292872B2 (en) 2017-01-10 2022-04-05 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
US20210198290A1 (en) * 2017-09-22 2021-07-01 3M Innovative Properties Company Cyclic siloxanes, compositions, methods, and articles
US20220380531A1 (en) * 2019-10-25 2022-12-01 Tissium Sa Composition comprising activated and functionalized prepolymer
CN115449228B (zh) * 2022-09-28 2023-11-10 汇涌进光电(浙江)有限公司 耐高温高湿及光老化的光电封装材料及其制备方法、应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214021A (ja) * 1992-02-03 1993-08-24 Nippon Shokubai Co Ltd 含珪素反応性ポリマーの製造方法
JPH06135973A (ja) * 1992-07-08 1994-05-17 General Electric Co <Ge> ポリエポキシシラン及び放射線硬化性ポリエポキシシリコーン組成物
JP2001040066A (ja) * 1999-07-30 2001-02-13 Dow Corning Toray Silicone Co Ltd 紫外線硬化性組成物
JP2001114897A (ja) * 1999-07-15 2001-04-24 Arakawa Chem Ind Co Ltd エポキシ変性アルコキシシラン縮合物およびその製造方法
JP2002526391A (ja) * 1998-10-02 2002-08-20 ロディア・シミ 陽イオンプロセスにより架橋できるシリコーンをベースとした歯科用組成物
JP2004068000A (ja) * 2002-06-14 2004-03-04 Shin Etsu Chem Co Ltd 紫外線硬化型シリコーン組成物
JP2004143200A (ja) * 2002-10-22 2004-05-20 Kanegafuchi Chem Ind Co Ltd 末端にエポキシ基含有ケイ素基を有する有機重合体およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954580A (en) * 1987-12-01 1990-09-04 Ciba-Geigy Corporation Epoxysiloxanes
US5266644A (en) * 1992-11-02 1993-11-30 Eastman Kodak Company Process for preparing epoxy-terminated polymers
US6218482B1 (en) * 1994-02-24 2001-04-17 New Japan Chemical Co., Ltd. Epoxy resin, process for preparing the resin and photo-curable resin composition and resin composition for powder coatings containing the epoxy resin
US5696179A (en) * 1994-10-19 1997-12-09 Dsm, N.V. Silane oligomer and radiation curable coating composition containing the oligomer
FR2752582B1 (fr) * 1996-08-21 2003-06-13 Rhone Poulenc Chimie Compositions a base de polyorganosiloxanes a groupements fonctionnels reticulables et leur utilisation pour la realisation de revetements anti-adherents
US5939477A (en) * 1998-02-02 1999-08-17 Dow Corning Corporation Silicone pressure sensitive adhesive composition containing functionalized polyisobutylene
DE69931076T2 (de) * 1998-10-08 2006-12-07 Kaneka Corp. Härtbare zusammensetzungen
EP1123944B1 (en) * 1999-07-15 2009-02-25 Arakawa Chemical Industries, Ltd. Partial condensate of glycidyl ether group-containing alkoxysilane, silane-modified resin, compositions thereof, and preparation methods thereof
US6703433B1 (en) * 2000-05-12 2004-03-09 Dow Corning Corporation Radiation curable compositions containing alkenyl ether functional polyisobutylenes
US6831133B2 (en) * 2000-06-27 2004-12-14 The University Of Akron Addition of unsaturated hydrocarbons to poly(vinyl chloride) and functionalization thereof
US7176269B2 (en) * 2000-07-25 2007-02-13 Mitsui Chemicals, Inc. Curable composition and its use
AU2003236347A1 (en) * 2002-04-08 2003-10-20 Kaneka Corporation Organic polymers having at the ends epoxy- and/or oxetanyl-containing silicon groups and process for production thereof
US6875795B2 (en) * 2002-06-14 2005-04-05 Shin-Etsu Chemical Co., Ltd. Ultraviolet-curable silicone composition
US6733893B2 (en) * 2002-08-02 2004-05-11 Dow Corning Corporation Coated silicone rubber article and method of preparing same
US7034089B2 (en) * 2002-12-20 2006-04-25 National Starch And Chemical Investment Holding Corporation Epoxy-functional hybrid copolymers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214021A (ja) * 1992-02-03 1993-08-24 Nippon Shokubai Co Ltd 含珪素反応性ポリマーの製造方法
JPH06135973A (ja) * 1992-07-08 1994-05-17 General Electric Co <Ge> ポリエポキシシラン及び放射線硬化性ポリエポキシシリコーン組成物
JP2002526391A (ja) * 1998-10-02 2002-08-20 ロディア・シミ 陽イオンプロセスにより架橋できるシリコーンをベースとした歯科用組成物
JP2001114897A (ja) * 1999-07-15 2001-04-24 Arakawa Chem Ind Co Ltd エポキシ変性アルコキシシラン縮合物およびその製造方法
JP2001040066A (ja) * 1999-07-30 2001-02-13 Dow Corning Toray Silicone Co Ltd 紫外線硬化性組成物
JP2004068000A (ja) * 2002-06-14 2004-03-04 Shin Etsu Chem Co Ltd 紫外線硬化型シリコーン組成物
JP2004143200A (ja) * 2002-10-22 2004-05-20 Kanegafuchi Chem Ind Co Ltd 末端にエポキシ基含有ケイ素基を有する有機重合体およびその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163961A (ja) * 1999-12-07 2001-06-19 Toagosei Co Ltd オキセタン環を含有するアルキド樹脂の製造方法および該樹脂からなる活性エネルギー線硬化性組成物
JP5364267B2 (ja) * 2005-12-26 2013-12-11 株式会社カネカ 硬化性組成物
JP2008133204A (ja) * 2006-11-27 2008-06-12 Toagosei Co Ltd 多官能オキセタンの製造方法
JP2009024176A (ja) * 2008-08-01 2009-02-05 Shin Etsu Chem Co Ltd 光記録媒体用硬化性樹脂組成物
JP2014505274A (ja) * 2011-10-14 2014-02-27 エルジー・ケム・リミテッド 両面型偏光板及びこれを含む光学装置
JP2013216782A (ja) * 2012-04-09 2013-10-24 Kaneka Corp 硬化性組成物およびその用途
CN104540684A (zh) * 2012-08-27 2015-04-22 爱克发印艺公司 用于使基材脱墨的可自由基辐射固化的液体
WO2018190415A1 (ja) * 2017-04-14 2018-10-18 株式会社スリーボンド 光硬化性樹脂組成物、それを用いた燃料電池およびシール方法
JPWO2018190415A1 (ja) * 2017-04-14 2020-03-05 株式会社スリーボンド 光硬化性樹脂組成物、それを用いた燃料電池およびシール方法
US11414512B2 (en) 2017-04-14 2022-08-16 Threebond Co., Ltd. Photocurable resin composition, fuel cell using same, and sealing method
JP7149479B2 (ja) 2017-04-14 2022-10-07 株式会社スリーボンド 光硬化性樹脂組成物、それを用いた燃料電池およびシール方法

Also Published As

Publication number Publication date
US20070066699A1 (en) 2007-03-22
US7534820B2 (en) 2009-05-19
JPWO2005028537A1 (ja) 2006-11-30
EP1679328A1 (en) 2006-07-12
JP4758230B2 (ja) 2011-08-24

Similar Documents

Publication Publication Date Title
WO2005028537A1 (ja) 末端にエポキシ基および/またはオキセタン基含有ケイ素基を有する有機重合体を含む光硬化型樹脂組成物およびその製造方法
JP3890085B2 (ja) 室温硬化性組成物
JP2873395B2 (ja) 反応性ケイ素基を有するイソブチレン系重合体、その製造方法及びその硬化性組成物
KR100720816B1 (ko) 경화성 수지 조성물 및 상온 경화 접착제
TWI429704B (zh) Hardened composition
EP0108946B1 (en) Curing composition
WO1999005215A1 (fr) Composition adhesive polymerisable
JPS636041A (ja) 硬化性組成物
JPS636003A (ja) 硬化性組成物
JPS6332824B2 (ja)
JPH0252935B2 (ja)
JP2000109676A (ja) 硬化性組成物
JP2000129147A (ja) 硬化性の組成物
JP3924939B2 (ja) 室温硬化性組成物
US7067605B2 (en) Organic polymer having epoxy-and/or oxetanyl-containing silicon group at the end and process for producing the same
JP2000109678A (ja) 改良された室温硬化性組成物
JP4251058B2 (ja) カチオン硬化性樹脂組成物
JPWO2005037876A1 (ja) オキセタニル基を有するポリマー、及びこれを含むカチオン硬化性樹脂組成物
JP2000109677A (ja) 室温硬化性組成物
KR20180093959A (ko) 가황 촉매로서의 티타늄 착물
JP2004143200A (ja) 末端にエポキシ基含有ケイ素基を有する有機重合体およびその製造方法
JP2000129146A (ja) 硬化性組成物
JP3457064B2 (ja) 硬化性組成物
JP3368061B2 (ja) マスチック型硬化性組成物
JP2003138151A (ja) 硬化性組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514074

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004773326

Country of ref document: EP

Ref document number: 11373306

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004773326

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11373306

Country of ref document: US