WO2005024295A1 - 光源装置および液晶表示装置 - Google Patents

光源装置および液晶表示装置 Download PDF

Info

Publication number
WO2005024295A1
WO2005024295A1 PCT/JP2004/012007 JP2004012007W WO2005024295A1 WO 2005024295 A1 WO2005024295 A1 WO 2005024295A1 JP 2004012007 W JP2004012007 W JP 2004012007W WO 2005024295 A1 WO2005024295 A1 WO 2005024295A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
angle
light source
source device
Prior art date
Application number
PCT/JP2004/012007
Other languages
English (en)
French (fr)
Inventor
Kazutaka Hara
Naoki Takahashi
Kentarou Takeda
Miki Shiraogawa
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to US10/570,141 priority Critical patent/US7841730B2/en
Publication of WO2005024295A1 publication Critical patent/WO2005024295A1/ja
Priority to US12/912,011 priority patent/US8373829B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer

Definitions

  • the present invention relates to a light source device and a liquid crystal display device
  • a prism sheet (P) and the like are combined with a side light type light guide plate (L) with a diffuse reflection plate () arranged at the bottom, and Is designed to increase the incident component.
  • the diffusion plate (Y) is arranged on the prism sheet.
  • the exit light angle of the sidelight type light guide plate is close to the upper side / lower side, and is distributed at a shallow angle of 60 degrees or more from the front, and in many cases 70 degrees or more from the front.
  • This type of light guide plate uses a critical angle to guide light into the resin plate, and breaks the critical conditions to extract light, so it emits light at a shallow oblique angle. There are overwhelming rays. For this reason, a method of condensing light in the front direction using a prism sheet is generally used.
  • an optical layer (T) having an angle dependence with respect to transmittance and reflectance such as a vapor deposition type bandpass filter using Brewster angle and a selective reflection characteristic of cholesteric liquid crystal using Bragg reflection.
  • a technique for condensing a diffused light source in the front direction using the light source is known.
  • FIG. 28 shows a light source device using a powerful technique.
  • Patent Document 1 Patent Document 2, Patent Document 3, Patent Document 4, Patent Document 5, Patent Document 6, Patent Document 6, Patent Document 5). 7, Patent Document 8, Patent Document 9, etc.
  • Patent Document 3 JP-A-10-321025
  • Patent document 5 German Patent Application Publication No. 3836955
  • Patent Document 6 German Patent Application Publication No. 422028
  • Patent Document 7 European Patent Application Publication No. 578302
  • Patent Document 8 US Patent Application Publication No. 2002/34009
  • Patent Document 10 U.S. Patent Application Publication No. 2001/521643
  • Patent Document 11 U.S. Patent Application Publication No. 2001/516066
  • Patent Document 12 US Patent Application Publication No. 2002/036735
  • Patent Document 13 JP-A-2002-90535
  • An object of the present invention is to provide a light source device in which a transmittance angle dependent layer is applied to a sidelight type backlight light guide plate, and which has a small absorption loss due to repetition of reflection or the like.
  • a further object of the present invention is to provide a liquid crystal display device using the light source device.
  • a transmittance angle dependent layer (T1) that transmits vertically incident light and reflects obliquely incident light is disposed.
  • a light source device characterized in that a reflection plate (R) having a repetitively inclined structure is arranged on the other surface of the side light type backlight light guide plate (L).
  • the transmittance angle-dependent layer (T1) force is a bandpass filter
  • the light source device according to 1.
  • the transmittance angle-dependent layer (T1) stretches a multilayer laminate of resin materials having different refractive indices.
  • the light source device according to any one of the above 2 to 4, wherein the light source device is a body.
  • Reflection transmittance angle dependent polarizing layer (T2) is arranged,
  • a light source device characterized in that a reflection plate (R) having a repetitively inclined structure is arranged on the other surface of the side light type backlight light guide plate (L).
  • the reflective polarizer (a) is a circularly polarized reflective polarizer (al) that transmits certain circularly polarized light and selectively reflects opposite circularly polarized light,
  • the reflection polarizer (a) is a linear polarization type reflection polarizer (a2) that transmits one of orthogonal linearly polarized light and selectively reflects the other, and
  • Retardation layer (b) frontal retardation (normal direction) is almost zero, 30 ° or more with respect to the normal direction It has a phase difference layer (bl) of ⁇ / 4 or more with respect to the incident light that is incident at an angle. On both sides of the phase difference layer (bl), a linear polarization type reflective polarizer (a2) is provided. A layer (b2) having a phase difference of about / 4,
  • the incident side layer (b2) is at an angle of 45 ° (one 45 °) ⁇ 5 ° with respect to the polarization axis of the incident side linear polarization type reflective polarizer (a2).
  • the exit-side layer (b2) is at an angle of -45 ° (+ 45 °) ⁇ 5 ° with respect to the polarization axis of the exit-side linear polarizing reflective polarizer (a2).
  • the reflective polarizer (a) is a linear polarization type reflective polarizer (a2) that transmits one of orthogonal linearly polarized light and selectively reflects the other, and
  • the retardation layer (b) has two biaxial retardation layers (b3) having a front retardation of approximately ⁇ / 4 and a ⁇ coefficient of 2 or more,
  • the incident-side layer (b3) has an angle of 45 ° (—45 °) ⁇ 5 ° with respect to the polarization axis of the linearly-polarizing reflective polarizer (a2) on the incident side.
  • the emission-side layer (b3) has an angle of one 45 ° (+ 45 °) ⁇ 5 ° with respect to the polarization axis of the emission-side linear polarization type reflective polarizer (a2).
  • the reflective polarizer (a) is a linear polarization type reflective polarizer (a2) that transmits one of orthogonal linearly polarized lights and selectively reflects the other, and
  • the retardation layer (b) has one biaxial retardation layer (b4) having a front retardation of approximately ⁇ / 2 and a ⁇ coefficient of 1.5 or more,
  • the direction of the slow axis of the layer on the incident side is 45 ° (—45 °) ⁇ 5 ° with respect to the polarization axis of the linearly polarized reflective polarizer (a2) on the incident side.
  • the direction of the slow axis of the layer on the emission side is at an angle of 45 ° (+45.) ⁇ 5 ° with respect to the polarization axis of the linearly polarized reflective polarizer (a2) on the emission side.
  • At least one layer of a reflective polarizer which is a linear polarization type reflective polarizer (a2) that transmits one of orthogonal linearly polarized light and selectively reflects the other;
  • the phase difference layer (b) has a front phase difference (normal direction) of approximately ⁇ / 4, and a phase difference of ⁇ / 8 or more with respect to incident light incident at an angle of 30 ° or more with respect to the normal direction.
  • FIG. 1 shows that light rays emitted and reflected on the lower surface side are provided below the sidelight type backlight light guide plate (L) to the transmittance angle dependent layer (T1).
  • a reflector (R) having a repetitively inclined structure which is designed to be in the vertical incidence direction, is disposed.
  • the light rays reflected by the reflector (R) having the repetitively inclined structure are transmitted through the transmittance angle-dependent layer (T1) that repeats the reflection many times, and are collected.
  • T1 transmittance angle-dependent layer
  • the emission angle of the emitted light from the light source is ⁇
  • the light is reflected in the front direction to the transmittance angle dependent layer (T1). Since this light beam is perpendicularly incident, it passes through the transmittance angle dependent layer (T1) and can be made bright only in the front direction.
  • the transmittance angle dependent layer (T1) is applied to the side light type backlight light guide plate (L), and the reflection plate (R) having a repetitively inclined structure for the reflected light or the like is applied.
  • the arranged light source device of the present invention it is possible to obtain a low-cost, high-yield, and high-brightness light source device without modifying the conventionally used dot printing / textured sidelight type light guide plate. S can.
  • the transmittance angle dependent polarizing layer (T2) having a high degree of polarization is used instead of the transmittance angle dependent layer (T1) (FIG. 8)
  • about 50% of the normal incident light is used.
  • the reflected light passes through the original optical path again, is further reflected by the reflector (R), then enters the transmittance angle-dependent polarizing layer (T2) in an oblique direction, is reflected again, and is reflected again. It is returned to the plate (R) direction.
  • FIG. 8 shows, with arrows, only light rays transmitted after being reflected by the transmittance angle-dependent polarizing layer (T2).
  • (1) is an obliquely emitted light from the light source to the upper surface side of the light guide plate (L).
  • (2) is the outgoing light to the lower surface side where the obliquely emitted light of (1) is reflected by the transmittance angle dependent polarizing layer (T2). Also, the light is emitted obliquely from the light source to the light guide plate (U lower surface side).
  • (3) is transmitted light in which the emitted light of (2) is reflected in the front direction by the reflective plate (R) having a repeating structure and transmitted through the transmittance angle-dependent polarizing layer (T2).
  • (5) is the reflected light obtained by obliquely reflecting the reflected light of (4) on the reflector (R).
  • (6) is the reflected light of (5) reflected by the transmittance-dependent reflective polarizing layer (T2).
  • (7) is the reflected light of (6) reflected in the front direction by the reflector (R), and transmits through the transmittance angle-dependent polarizing layer (T2).
  • (1) and (2) are all natural light
  • (3) is circularly polarized light
  • (4) and (7) are circularly polarized light opposite to (3).
  • (5) and (6) are circularly polarized lights in the same direction as (3). That is, it is understood that the circularly polarized light of (7) cannot pass through the transmittance angle-dependent polarizing layer (T2).
  • the transmittance angle dependent polarizing layer (T2) when used, the distance between the transmittance angle dependent polarizing layer (T2) and the sidelight type backlight light guide plate (L) is increased. And / or between the sidelight type backlight light guide plate (L) and the reflector (R), an optical layer having a function of canceling the polarized light reflected by the transmittance angle dependent polarizing layer (T2) It is preferable to arrange (D). If the optical layer (D) having depolarization ability is located between the sidelight type backlight light guide plate (L) and the reflector (R), it is disposed on the surface of the repetitively inclined structure of the reflector (R). Talk about doing things.
  • FIG. 10 (a) shows a case where an optical layer (D) having depolarization ability is disposed between the transmittance angle-dependent polarizing layer (T2) and the sidelight type backlight light guide plate (L). is there.
  • FIG. 10 (b) shows a case where an optical layer (D) having depolarization ability is arranged between a side light type backlight light guide plate (L) and a reflector (R).
  • FIG. 10 (c) shows an example in which an optical layer (D) having depolarization ability is formed on the surface of the repeating inclined structure of the reflector (R).
  • this optical layer (D) which has depolarizing ability, improves the light use efficiency even when a transmittance angle-dependent polarizing layer (T2) is used, resulting in absorption loss and stray light in unusable angle directions. This makes it possible to fundamentally eliminate the disadvantages such as conversion, and to produce a bright and efficient light source at low cost.
  • FIG. 1 shows that a transmittance angle-dependent layer (T1) that transmits vertically incident light and reflects obliquely incident light is disposed on the liquid crystal cell (LC) side of the sidelight-type backlight light guide plate (L).
  • FIG. 9 is a schematic view of a light source device in which a reflector (R) having a repetitively inclined structure is arranged on the other side. The reflection plate (R) is arranged such that the side of the repetitively inclined structure faces the sidelight type backlight light guide plate (L).
  • a cold cathode tube (X) is provided on the side light type backlight light guide plate (L).
  • the sidelight type backlight light guide plate (L) As the sidelight type backlight light guide plate (L), a conventionally used one can be used without any particular limitation, and it is possible to use a dot printing / texture type sidelight type light guide plate as it is. Further, a ⁇ edge type light guide plate can be used as the backlight light guide plate.
  • the transmittance angle dependent layer (T1) transmits vertically incident light rays and reflects obliquely incident light rays.
  • Examples of the transmittance angle dependent layer (T1) include a near-infrared reflection filter, a bandpass filter, and an interference filter. When using a bandpass filter, it is preferable to combine with a light source having an emission line spectrum.
  • the transmittance angle-dependent layer (T1) is formed by evaporating a multilayer thin film of a vapor-deposited multilayer thin film having a different refractive index, a thin multilayer laminate of a resin material having a different refractive index, or a multilayer laminate of a resin material having a different refractive index. I can raise my body
  • the inclination structure of the reflection plate (R) is such that the average inclination angle ( ⁇ )
  • the angle distribution shape may be changed for each inclination, or the inclined surface itself may be formed by making the inclined surface concave and convex.
  • the angle distribution shape may be changed for each inclination, or the inclined surface itself may be formed by making the inclined surface concave and convex.
  • the tilt angle should be set according to ⁇ at each point
  • an average value of the maximum value and the minimum value of ⁇ can be used for simplification of manufacturing.
  • the average inclination angle ( ⁇ ) was measured by a stylus type surface roughness meter (Talysurf manufactured by Taylor Hobson).
  • the repeating inclined structure may have a flat inclined surface as shown in FIG. 2 or a curved surface as shown in FIG. Further, the repeating inclined structure may be a linear structure as shown in FIG. 4 or a microprism dot array as shown in FIG. Further, the repeating inclined structure may be a symmetric type or an asymmetric type as shown in FIG. Further, when the backlight light guide plate is a ⁇ -edge type light guide plate, the output light angle may be different between the vicinity of the light source and the side farther from the light source. In such a case, as shown in Fig. 7, even if the angle of the repetitive structure is changed on the side near the light source and on the side farther from the light source to optimize the inclination angle with respect to the emission angle ( ⁇ ), respectively. Good, and the average value of both
  • the repeated inclined structure of the reflection plate (R) includes, for example, a method in which a mold having a desired inclined structure is formed and transferred to the mold.
  • the mold is made by subjecting a brass mold or the like to precision grinding.
  • the transfer method is a method of applying a UV-curable resin or the like to the mold and irradiating with ultraviolet light to cure the mold, and a method of applying a thermosetting resin on the mold and heat-curing to transfer the transfer.
  • To transfer the shape of the mold by injecting a thermoplastic resin, or to apply the resin that has been dissolved in a solvent to a mold, dry it, and transfer it.
  • an inclined structure is formed on a metal roll and the structure is transferred to the surface of the film substrate by embossing.
  • the repetitively inclined structure can be formed by directly grinding a resin base material.
  • the repeating inclined structure can be directly formed by applying a photocurable resin such as a resist on a substrate, exposing and developing a mask having a repeating structure in which transmittance continuously changes. .
  • FIG. 8 shows that, on the liquid crystal cell (LC) side of the sidelight-type backlight light guide plate (L), vertically incident light is transmitted, the other polarized light component is selectively reflected, and obliquely incident light is polarized light.
  • the liquid crystal cell (LC) is omitted.
  • the side light type backlight light guide plate (L) and the reflection plate (R) having a repetitively inclined structure the same ones as described above can be used.
  • the transmittance angle-dependent polarizing layer (T2) includes a retardation layer (b) between at least two reflective polarizers (a) in which the wavelength bands of selective reflection of polarized light overlap each other.
  • the polarizing element (A) can be used. Polarizing elements (Circular polarizing type and linear polarizing type are also available. The polarizing element (A) is described below. When the polarizing element (A) is used, light-collecting properties and improved brightness are simultaneously exhibited. The mechanism of the present invention will be described below by describing the present invention with an ideal model.
  • FIG. 11 is an explanatory diagram showing the principle when a circularly polarizing reflective polarizer (al) is used as the reflective polarizer (a).
  • circularly polarized light is used as the polarizing element (A) from the backlight side (lower side).
  • the reflective polarizer (al), the retardation layer (bl), and the reflective polarizer (al) are arranged in this order.
  • Circularly polarized reflective polarizer which separates polarized light by reflection, separates incident light into transmitted light and reflected light according to the direction of polarization. Therefore, there is no absorption loss.
  • Incident light rays in oblique directions are not absorbed but returned as reflected light.
  • the reflected light is repeatedly reflected until it becomes a transmitted light.
  • the retardation plate (bl) used here is generally called a negative C plate (negative retardation plate) or a positive C plate (positive retardation plate). These retardation plates (bl) have the property of producing a phase difference when the phase difference is inclined close to 0 in the vertical direction (normal direction).
  • Typical negative C plates are biaxially stretched polycarbonate film ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ polyethylene terephthalate film or cholesteric liquid crystal.Selective reflection wavelength band shorter than visible light or discotic liquid crystal Examples thereof include a film obtained by orienting a parallel-aligned film or an in-plane inorganic crystal compound having a negative retardation.
  • a typical positive C plate is, for example, a liquid crystal film having a homeotropic aperture.
  • the circularly polarized reflective polarizer (al) mainly aligns the cholesteric liquid crystal, and adjusts the twist pitch so that the selective reflection wavelength band covers the visible light region / light source emission wavelength band (for example, the selective reflection wavelength band).
  • a laminate of a plurality of films having different reflection center wavelengths, or a single layer film having a fixed pitch which varies in the thickness direction is used.
  • the circularly polarized reflective polarizer (al) disposed on both sides of the phase difference plate (b 1) in FIG. 11 those having the same direction of transmitted circularly polarized light are preferably used.
  • the transmitted light (r4) passes through the circular polarization type reflective polarizer (al).
  • the transmitted light (r5) is used for a liquid crystal display device disposed thereon.
  • the circularly polarized reflective polarizer (a1) is polarized into the transmitted light (r8) and the reflected light (r7), respectively. Separated. The direction of rotation of the circularly polarized light is opposite to that of the transmitted light and the reflected light.
  • the transmitted light (r8) is affected by the phase difference when passing through the phase difference layer (bl).
  • the circularly polarized light turns in the opposite direction and becomes the opposite direction. For this reason, the transmitted light (r8) transmits through the retardation layer (bl) and then reverses its rotation.
  • the transmitted light (r9) is emitted with its rotation inverted due to the influence of the phase difference.
  • the reflected light (rlO) is affected by the phase difference when passing through the phase difference layer (bl).
  • the reflected light (r2, r7, rl2) returns to the backlight side and is recycled. These return light rays are reflected repeatedly while changing the traveling direction and the direction of polarization at random by a diffuser or the like arranged in the backlight until the light rays can pass through the vicinity of the normal direction of the polarizing element (A) again. , Which contributes to improving the brightness.
  • Transmitted circularly polarized light (r5) can be converted to linearly polarized light by disposing a ⁇ ⁇ 4 plate, and can be used without causing absorption loss in the liquid crystal display device.
  • the wavelength characteristic of the transmitted light shifts to the shorter wavelength side with respect to the incident light in the oblique direction. Therefore, it is necessary to have sufficient polarization characteristics / phase difference characteristics on the long wavelength side outside the visible light range in order to function sufficiently for light rays incident at a depth and an angle.
  • the retardation layer (bl) used should have exactly a phase difference of 1Z2 wavelength in the oblique direction, but the circularly polarizing reflective polarizer ( al: cholesteric liquid crystal layer) has some properties as a negative retardation plate. Therefore, in order to obtain the function of the present invention, if the phase difference layer (bl) has a phase difference of about 1/8 wavelength or more in an oblique direction, the optical function can be exerted.
  • the reflection polarizer (a) is a linear polarization type reflection polarizer (a2)
  • a C plate reftardation layer (bl)
  • the oblique direction force on the C plate The optical axis for the incident light beam is always orthogonal to the light beam direction. As a result, no phase difference occurs and the polarization is not converted. Therefore, when using a linear polarization type reflective polarizer (a2), on both sides of the C plate, the slow axis is set at an angle of 45 ° or 150 ° with respect to the polarization axis of the linear polarization type reflective polarizer (a2).
  • a ⁇ / 4 plate (b2) having a direction is arranged.
  • the linearly polarized light is converted to circularly polarized light by the ⁇ / 4 plate (b2), then converted to inverse circularly polarized light by the phase difference of the C plate, and the circularly polarized light is again converted to linearly polarized light by the ⁇ ⁇ 4 plate (b2).
  • FIG. 13 is a conceptual diagram in which natural light is polarization-separated into linearly polarized light by a linear polarization type reflective polarizer (a2), and further converted into circularly polarized light by a ⁇ 4 plate (b2).
  • FIG. 14 is a conceptual diagram in the case where a linear polarization type reflection polarizer (a2) is used as the reflection polarizer (a).
  • a linear polarization type anti-reflection film is viewed from the backlight side (lower side).
  • a polarizer (a2), a ⁇ / 4 plate (b2), a retardation layer (bl), an / 4 plate (b2), and a linear polarization type reflection polarizer (a2) are arranged in this order.
  • FIG. 15 is an example of a bonding angle of each film in the parallel light conversion system shown in FIG.
  • the double-headed arrow shown on the linear polarization type reflection polarizer (a2) is the polarization axis
  • the double-headed arrow shown on the ⁇ 4 plate (b2) is the slow axis.
  • the angle formed by the axes of the ⁇ ⁇ 4 plate (b2) on the incident side and the exit side is arbitrary.
  • the linearly polarized reflective polarizer (a2) transmits linearly polarized light (rl5) and reflects linearly polarized light ( ⁇ 6) in the orthogonal direction.
  • Circularly polarized light (rl7) passes through the retardation layer (bl).
  • the circularly polarized light (rl8) passes through the ⁇ / 4 plate (b2) and is converted into linearly polarized light (rl9).
  • the linearly polarized light (r20) enters the liquid crystal display device disposed thereon and is transmitted without loss.
  • part of the natural light (r21) supplied from the backlight is obliquely incident on the linear polarization type reflection polarizer (a2).
  • the linear polarization type reflection polarizer (a2) transmits linearly polarized light (r22) and reflects linearly polarized light (r23) in the orthogonal direction.
  • the linearly polarized light (r22) passes through the ⁇ / 4 plate (b2) and is converted into circularly polarized light (r24).
  • the circularly polarized light (r24) When passing through the retardation layer (bl), the circularly polarized light (r24) receives a 1/2 wavelength phase difference, Reverse.
  • the circularly polarized light (r28) When passing through the retardation layer (bl), the circularly polarized light (r28) receives a phase difference of 1/2 wavelength, and the rotation is reversed.
  • the linearly polarized light (r30) passes through the linearly polarized reflection polarizer (a2).
  • the transmittance and reflectance of the linear polarization type reflection polarizer (a2) are such that the point that the wavelength characteristic of the transmitted light shifts to the shorter wavelength side with respect to the incident light in the oblique direction is circular polarization using a cholesteric liquid crystal. It is the same as the reflective reflective polarizer (al). Therefore, it is necessary to have sufficient polarization characteristics and Z-phase difference characteristics on the long wavelength side outside the visible light range in order to function sufficiently for light rays incident at a deep angle.
  • biaxial retardation layers (b3) having a front phase difference of about / 4 and a thickness direction phase difference of about / 2 or more are arranged.
  • a similar effect can be obtained.
  • Such a biaxial retardation layer (b3) satisfies the above requirements if the Nz coefficient is 2 or more.
  • FIG. 17 shows an example of a bonding angle of each film in the parallel light conversion system shown in FIG.
  • the double-headed arrow shown in the linear polarization type reflection polarizer (a2) is the polarization axis
  • the double-headed arrow shown in the retardation layer (bl) is the slow axis.
  • the polarization axis of the linear polarization type reflection polarizer (a2) and the slow axis of the biaxial retardation layer (b3) are arranged at an angle of 45 ° ( ⁇ 45 °) ⁇ 5 °. These combinations are shown as setl and set2, respectively.
  • the polarization axes of the upper and lower linearly polarizing reflective polarizers (a2) are parallel and the slow axes of the biaxial retardation layers (b3) are orthogonal to each other.
  • the angle formed by the slow axes of the upper and lower biaxial retardation layers (b3) is arbitrary. If the angle between the polarization axis of the linear polarization type reflective polarizer (a2) and the slow axis of the biaxial retardation layer (b3) is maintained at 45 ° (—45 °), rotate setl and set2. Is also good.
  • the linear polarization type reflection polarizer (a2) transmits linearly polarized light (r33) and reflects linearly polarized light (r34) in the orthogonal direction.
  • the linearly polarized light (r33) passes through two biaxial retardation layers (b3) having a front phase difference of about 1/4 wavelength.
  • the front phase difference is zero. Therefore, the linearly polarized light (r35) passes through.
  • Linearly polarized light (r35) passes through the linearly polarized reflection polarizer (a2).
  • Linearly polarized light (r36) enters the liquid crystal display device and is transmitted without loss.
  • the linear polarization type reflection polarizer (a2) transmits linearly polarized light (r38) and reflects linearly polarized light (r39) in the orthogonal direction.
  • Linearly polarized light (r38) is obliquely incident on two biaxial retardation layers (b3). Since the biaxial retardation layer (b3) has a front retardation of 1Z4 wavelength and an Nz coefficient of 2 or more, a straight line transmitted through the two biaxial retardation layers (b3) due to a change in the retardation in the thickness direction.
  • the polarized light (r40) changes its polarization axis direction by 90 °.
  • Linearly polarized light (r40) enters the linearly polarized reflection polarizer (a2).
  • the linearly polarized light 42) passes through the linearly polarized reflective polarizer (a2).
  • the polarizing element (A) shown in FIGS. 16 and 17 has a front phase difference of about ⁇ wavelength and a biaxial phase difference layer (b3) having an Nz coefficient of 2 or more.
  • a biaxial phase difference layer (b3) having an Nz coefficient of 2 or more.
  • a three-layered structure with two ⁇ / 4 plates (b2) sandwiching a C plate: a retardation layer (bl) is used. Almost the same characteristics can be generated. Therefore, the productivity is slightly better because the number of layers is smaller than that of the above-mentioned polarizing element (A).
  • the angle between the slow axis of the retardation layer (b3) described here and the polarization axis of the linear polarization type reflective polarizer (a2) is 45 °.
  • the characteristics of the actual linear polarization type reflective polarizer (a2) and retardation layer (b3) are not perfect in the visible light range, and there are subtle changes for each wavelength. If this is ignored and laminated at 45 °, coloring may be observed.
  • the retardation layer (b) When the reflection polarizer (a) is a linear polarization type reflection polarizer (a2), the retardation layer (b) has a front phase difference of approximately ⁇ 2 and a thickness direction phase difference of The same effect can be obtained by disposing a biaxial retardation layer (b4) in which ⁇ 2 or more. Such a biaxial retardation layer (b4) satisfies the above requirements if the Nz coefficient is 1.5 or more.
  • FIG. 18 is a conceptual diagram in a case where a linear polarization type reflection polarizer (a2) is used as the reflection polarizer (a), and a biaxial retardation layer (b4) is used.
  • a linearly polarizing reflective polarizer (a2), a biaxial retardation layer (b4), and a linearly polarizing reflective polarizer (a2) are used as polarizing elements (A) from the backlight side (lower side). They are arranged in this order.
  • FIG. 19 is an example of a bonding angle of each film in the parallel light conversion system shown in FIG.
  • the double-headed arrow shown in the linear polarization type reflective polarizer (a2) is the polarization axis
  • the double-headed arrow shown in the retardation layer (b4) is the slow axis.
  • the polarization axes of the upper and lower linear polarization type reflection polarizers (a2) are arranged substantially orthogonally.
  • the slow axis of the biaxial retardation layer (b4) and the polarization axis of the linear polarization type reflective polarizer (a2) are arranged at an angle of 45 ° ( ⁇ 45 °) ⁇ 5 °.
  • the linear polarization type reflective polarizer (a2) transmits linearly polarized light (r48) and reflects linearly polarized light (r49) in the orthogonal direction.
  • the linearly polarized light (r48) passes through the biaxial retardation layer (b4) having a front phase difference of about 1Z2 wavelength, is converted to linearly polarized light (r50), and the direction of the polarization axis is rotated by 90 °.
  • the transmitted linearly polarized light (r51) enters the liquid crystal display device and is transmitted without loss.
  • part of the natural light (r52) supplied from the backlight Obliquely enters the child (a2).
  • the linear polarization type reflection polarizer (a2) transmits linearly polarized light (r53) and reflects linearly polarized light (r54) in the orthogonal direction.
  • Linearly polarized light (r53) is obliquely incident on the biaxial retardation layer (b4). Since the biaxial retardation layer (b4) has a front retardation of approximately 1/2 wavelength and an Nz coefficient of 2 or more, the direction of the polarization axis is the same as that of linearly polarized light (r53) due to the effect of the retardation in the thickness direction. Transmitted with linearly polarized light (r55).
  • the reflected light (r49, r54, r58) is returned to the backlight side and recycled.
  • the polarizing element (A) shown in FIGS. 18 and 19 has a biaxial retardation layer (b4) having a front retardation of about 1/4 wavelength and an Nz coefficient of 1.5 or more.
  • a C-plate a three-layer laminate with a structure in which a retardation layer (bl) is sandwiched between two ⁇ / 4 plates (b2). Almost the same characteristics as when used can be generated. Therefore, the productivity is slightly better because the number of layers is smaller than that of the polarizing element (A) described above. Further, the productivity is superior to the case of using a two-layer laminate as shown in FIGS.
  • the angle between the slow axis of the retardation layer (b4) described here and the polarization axis of the linear polarization type reflection polarizer (a2) is 45 °.
  • the characteristics of the actual linear polarization type reflective polarizer (a2) and retardation layer (b4) are not perfect in the visible light range, and there are subtle changes for each wavelength. If this is ignored and laminated at 45 °, coloring may be observed.
  • the transmittance and reflectance of the linear polarization type reflective polarizer (a2) are such that the point that the wavelength characteristic of the transmitted light shifts to the shorter wavelength side with respect to the incident light in the oblique direction is the circular polarization using the cholesteric liquid crystal. Same as the optical reflection polarizer (al). Therefore, in order to function sufficiently for light rays incident at a deep angle, it is necessary to have sufficient polarization characteristics / phase difference characteristics on the long wavelength side outside the visible light range.
  • the polarizing element (A) converts the light beam incident at an incident angle of 30 ° from the normal direction into the axial direction reflected by the two reflective polarizers (a).
  • the polarizer (A) has a total reflection function at an incident angle of 30 °, and does not transmit light near the incident angle of 30 °.
  • the polarizing element (A) has a high transmittance in a range of about ⁇ 15 to 20 ° from the normal direction, and light rays having an incident angle higher than that are reflected and reused. Therefore, the transmitted light from the light source is concentrated in the above range, and is condensed and collimated.
  • the collimated backlight obtained in this manner is thinner than the conventional technology, has high parallelism, and has characteristics that a light source can be easily obtained.
  • parallel light is generated by ray polarization reflection having essentially no absorption loss, the reflected non-parallel light component returns to the backlight side, is scattered and reflected, and only the parallel light component therein is extracted. Recycling is repeated, and substantially high transmittance and high light use efficiency can be obtained.
  • moiré is a light and shade pattern having a lower frequency than a lattice that is visually recognized when lattices formed in different layers are superposed at an angle.
  • the reflective polarizer (a) in a wavelength region of at least 550 nm ⁇ 10 nm, where it is desirable to achieve total reflection for light with a wavelength around 550 nm, which has higher visibility than the viewpoint of improving brightness. It is desirable that the wavelengths overlap. Furthermore, from the viewpoint of coloring and the viewpoint of supporting RGB in liquid crystal display devices, it is more desirable that the reflection wavelength band overlaps with the entire visible light wavelength range of 380 nm to 780 nm.
  • the backlight light source emits only a specific wavelength, for example, in the case of a colored cold-cathode tube, it is sufficient that only the obtained bright line can be shielded.
  • the reflective polarizer (a) may be a completely identical combination, or one of them may be a visible light. One having reflection at all wavelengths and the other partially reflecting may be used.
  • the circular polarization type reflection polarizer (al) for example, a cholesteric liquid crystal material is used.
  • the selective reflection wavelength shifts blue, so that the overlapping wavelength region is preferably wider.
  • the circular polarization type reflective polarizer (al) is a cholesteric material
  • the phase difference becomes zero or ⁇ .
  • a polarizer is used, but it is not preferable because problems such as anisotropy and coloring due to the azimuth of the inclined axis occur. From this point of view, combinations of the same type (right-twisted, left-twisted) are preferable, but coloring can also be suppressed by canceling out the combination of the upper and lower cholesteric liquid crystal molecules or the combination of C-plates with different wavelength dispersion characteristics. .
  • the cholesteric liquid crystal constituting the circular polarization type reflective polarizer (al) is not particularly limited as long as an appropriate one is used.
  • a liquid crystal polymer exhibiting cholesteric liquid crystallinity at high temperature, or a polymerizable liquid crystal obtained by polymerizing a liquid crystal monomer and, if necessary, a chiral agent and an alignment aid by irradiation with ionizing radiation such as an electron beam or ultraviolet light or heat, or Examples include mixtures thereof.
  • the liquid crystal properties may be either lyotropic or thermopick, but it is desirable that the liquid crystal be a thermopick liquid crystal from the viewpoint of easy control and easy formation of a monodomain.
  • the cholesteric liquid crystal layer can be formed by a method according to a conventional alignment treatment.
  • a film of polyimide, polybutyl alcohol, polyester, polyacrylate, polyamideimide, polyetherimide, etc. is formed on a support base material such as triacetyl cellulose or amorphous polyolefin having a birefringence retardation as small as possible.
  • the liquid crystal polymer is spread on the film and heated to a temperature equal to or higher than the glass transition temperature and lower than the isotropic phase transition temperature. And a method of forming a solidified solidified layer.
  • the structure may be fixed by irradiation with energy such as ultraviolet rays or an ion beam at the stage when the alignment state is formed.
  • the base material having a small birefringence may be used as it is as a liquid crystal layer support.
  • the birefringence is large or the requirement for the thickness of the polarizing element (A) is strict, the liquid crystal layer can be peeled off from the alignment substrate and used as appropriate.
  • the liquid crystal polymer film is formed, for example, by applying a solution of a liquid crystal polymer in a solvent by a spin coating method, a mouth coating method, a flow coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, a gravure printing method. Etc., and can be carried out by, for example, a method of developing a thin layer and drying it as necessary.
  • the solvent examples include chlorine solvents such as methylene chloride, trichloroethylene and tetrachloroethane; ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone; aromatic solvents such as toluene; cycloheptane Such a cyclic alkane; or N-methylpyrrolidone tetrahydrofuran can be used as appropriate.
  • chlorine solvents such as methylene chloride, trichloroethylene and tetrachloroethane
  • ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone
  • aromatic solvents such as toluene
  • cycloheptane Such a cyclic alkane; or N-methylpyrrolidone tetrahydrofuran can be used as appropriate.
  • a heated melt of a liquid crystal polymer preferably a heated melt in a state exhibiting an isotropic phase
  • a method or the like can be adopted. This method is a method that does not use a solvent, and therefore, the liquid crystal polymer can be developed even by a method with good hygiene of the working environment.
  • a method of superposing a cholesteric liquid crystal layer via an alignment film or the like can be adopted as needed for the purpose of thinning or the like.
  • these optical layers can be peeled off from the supporting base material / alignment base material used at the time of film formation and transferred to another optical material for use.
  • the circularly polarizing reflective polarizer (al) of the present invention a combination of a linearly polarizing reflective polarizer (a2) to be described later and an YZ4 plate can be used. These may be:! Or two or more. All circularly polarized reflective polarizers (al) are linearly polarized reflective polarizers. A combination of a photon and a ⁇ / 4 plate may be used. When used for the lowermost layer (for example, the first sheet from the backlight side), the linearly polarizing reflective polarizer is arranged from the knocklight side, and then the / 4 plate.
  • a ⁇ / 4 plate When used for the uppermost layer, a ⁇ / 4 plate is arranged from the backlight side, and then a linearly polarized reflective polarizer. When used for an intermediate layer (for example, the second layer from the backlight side when three layers are stacked), ⁇ / 4 plates are arranged on both sides of a linear polarization type reflective polarizer.
  • the linearly polarized reflective polarizer (a2) As the linearly polarized reflective polarizer (a2), the refractive indices used in grid polarizers, multilayer thin film laminates of two or more layers made of two or more materials having a difference in refractive index, and beam splitters are different. Evaporated multi-layer thin film laminate of two or more layers made of vapor-deposited multilayer thin film, two or more materials having birefringence, and two or more resin laminates made of two or more resins having birefringence And those that separate linearly polarized light by reflecting and transmitting it in the orthogonal axis direction.
  • materials that generate retardation by stretching such as polyethylene naphthalate, polyethylene terephthalate, and polycarbonate, acryl resins, such as polymethyl methacrylate, and norbornene, such as ARTON manufactured by JSR Corporation
  • a resin obtained by uniaxially stretching a resin having a small amount of retardation, such as a system resin, as a multilayer laminate can be used.
  • the retardation layer (bl) disposed between the circularly polarizing reflective polarizer (al) and the linearly polarizing reflective polarizer (a2) has a phase difference of almost zero in the front direction and is 30 ° from the normal direction. It has a phase difference of ⁇ 8 or more with respect to incident light at an angle.
  • the front phase difference is desirably ⁇ or less because the purpose is to maintain polarized light that has been vertically incident.
  • the incident light from an oblique direction is appropriately determined by the angle of total reflection so as to be efficiently polarized and converted.
  • the phase difference measured at 60 ° should be determined to be about ⁇ / 2.
  • the transmitted light from the circularly polarized reflective polarizer (al) is usually inserted because the polarization state is also changed due to the birefringence of the circularly polarized reflective polarizer (al) itself like a C plate.
  • the phase difference measured at that angle of the C plate is smaller than ⁇ / 2. Since the phase difference of the C-plate monotonically increases as the incident light tilts, as a guideline for causing effective total reflection when the light is tilted at an angle of 30 ° or more, ⁇ / 8 or more
  • the polarizing element ( ⁇ ) of the present invention is designed so as to be able to effectively block light rays having an incident angle of 30 ° from the front, it is sufficient in a region where the incident angle is about 20 ° substantially.
  • the transmitted light is low. When limited to light rays in this area, only light rays in an area showing good display of a general liquid crystal display device are transmitted. ⁇ Although there are fluctuations due to conditions such as the type of liquid crystal in the cell of the liquid crystal display, the alignment state, the pretilt angle, etc., but the grayscale inversion does not occur. Is the level used. A larger retardation value of the retardation layer may be used to narrow down to only the front light, or a smaller retardation value may be used on the assumption that the compensating retardation plate is combined with the liquid crystal to make the focusing narrower. .
  • the material of the retardation layer (bl) is not particularly limited as long as it has the above optical characteristics.
  • a fixed cholesteric liquid crystal having a selective reflection wavelength other than the visible light region (380 nm to 780 nm) has a fixed planar alignment state, a rod-shaped liquid crystal having a fixed homeotropic aperture alignment state, and a discotic liquid crystal columnar alignment state.
  • examples thereof include those using nematic orientation, those in which negative uniaxial crystals are oriented in-plane, and those in which biaxially oriented polymer films are used.
  • the C plate for example, a C plate in which the cholesteric liquid crystal having a selective reflection wavelength other than the visible light region (380 nm to 780 nm) has a fixed planar state of the cholesteric liquid crystal has a visible reflection wavelength of the cholesteric liquid crystal. Desirably, there is no coloring in the light area. Therefore, it is necessary that the selective reflection light is not in the visible region. Selective reflection is uniquely determined by the cholesteric chiral pitch and the refractive index of the liquid crystal. The value of the central wavelength of the selective reflection may be in the near-infrared region, but it is more desirably in the ultraviolet region of 350 nm or less because it is affected by optical rotation and causes a somewhat complicated phenomenon.
  • the cholesteric liquid crystal layer is formed in the same manner as in the formation of the cholesteric layer in the reflective polarizer.
  • the C-plate with a fixed homeotropic aperture alignment state is exposed to a liquid crystalline thermoplastic resin or liquid crystal monomer that exhibits nematic liquid crystallinity at high temperature and an alignment aid, if necessary, by irradiation with ionizing radiation such as electron beams or ultraviolet rays.
  • ionizing radiation such as electron beams or ultraviolet rays.
  • Polymerizable liquid crystal polymerized by heat or heat, or a mixture thereof is used.
  • the liquid crystal properties may be either lyotropic or thermopic, but from the viewpoint of easy control and easy formation of a monodomain, it is desirable that the liquid crystal be a thermopic.
  • the homeotropic aperture alignment can be obtained, for example, by applying the birefringent material on a film on which a vertical alignment film (such as a long-chain alkylsilane) is formed, and developing
  • the C plate utilizing the biaxial orientation of the polymer film has a method of biaxially stretching a polymer film having a positive refractive index anisotropy, a method of pressing a thermoplastic resin, and a method of performing a parallel orientation. Crystal force can be obtained by a method such as cutting out.
  • the retardation layer (bl) has a phase difference of almost zero in the front direction, and is incident on incident light at an angle of 30 ° from the normal direction. Those having a phase difference of at least / 4 are used.
  • linear polarization is once converted into circular polarization by using an / 4 plate (b2) having a front phase difference of approximately ⁇ / 4, and then a method similar to that of the circular polarization plate described above. Can be turned into parallel light.
  • the configuration cross section and the arrangement of each layer in this case are as shown in FIG. 13, FIG. 14, and FIG.
  • the angle between the slow axis of the ⁇ / 4 plate (b2) and the polarization axis of the linear polarization type reflection polarizer (a2) is as described above, and the axis angle between the ⁇ ⁇ 4 plates (b2) is arbitrary. Can be set to
  • a ⁇ 4 plate As the retardation layer (b2), specifically, a ⁇ 4 plate is used.
  • the ⁇ / 4 plate an appropriate retardation plate according to the purpose of use is used.
  • the ⁇ / 4 plate can control optical characteristics such as phase difference by laminating two or more kinds of phase difference plates.
  • the retardation film include polycarbonate, norbornene-based resin, polyvinyl alcohol, polystyrene, and polymethyl methacrylate.
  • Birefringent film obtained by stretching a film made of a suitable polymer such as polylate, polyarylate, polyarylate, or polyamide, an alignment film made of a liquid crystal material such as a liquid crystal polymer, and an alignment layer made of a liquid crystal material. The ones that are supported by are mentioned.
  • a retardation plate that functions as a ⁇ / 4 plate in a wide wavelength range such as a visible light region and a wavelength range is, for example, a retardation layer that functions as a ⁇ / 4 plate for light-color light having a wavelength of 550 nm and another position.
  • the force S can be obtained by a method of superimposing a retardation layer exhibiting retardation characteristics, for example, a retardation layer functioning as a half-wave plate. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may be composed of one or more retardation layers.
  • a similar effect can be obtained by arranging two biaxial retardation layers (b3) having a front retardation of approximately ⁇ / 4 and a thickness direction retardation of ⁇ / 2 or more. be able to.
  • the biaxial retardation layer (b3) satisfies the above requirements if the Nz coefficient is about 2 or more.
  • the configuration cross section and the arrangement of each layer in this case are as shown in FIGS.
  • the slow axis with the biaxial retardation layer (b3) and the polarization axis of the linear polarization type reflective polarizer (a2) are as described above, and the axial angle between the biaxial retardation layers (b3) Can be set arbitrarily.
  • the front phase difference of approximately ⁇ / 4 is preferably about / 4 ⁇ 40 ⁇ m for light having a wavelength of 550 nm, and more preferably within a range of ⁇ 15 nm. .
  • a similar effect can be obtained by using one biaxial retardation layer (b4) having a front retardation of approximately ⁇ / 2 and a thickness direction retardation of ⁇ / 2 or more.
  • the biaxial retardation layer (b4) satisfies the above requirements if the Nz coefficient is approximately 1.5 or more.
  • the configuration cross section and the arrangement of each layer in this case are as shown in FIGS. In this case, the relationship between the upper and lower linearly polarizing reflective polarizers (a2) and the central biaxial retardation layer (b4) is the same as the specified angle, and is uniquely determined.
  • the front phase difference is approximately ⁇ / 2 for light having a wavelength of 550 nm; l Z2 ⁇ 40 nm, and more preferably those within the range of ⁇ 15 nm.
  • the biaxial retardation layers (b3) and (b4) are biaxially stretched birefringent plastic materials such as polycarbonate / polyethylene terephthalate, or a liquid crystal material in the planar direction.
  • biaxially stretched birefringent plastic materials such as polycarbonate / polyethylene terephthalate, or a liquid crystal material in the planar direction.
  • An oriented one is used.
  • a liquid crystal material which is uniaxially homeotropically pick-aligned and it is carried out in the same manner as in the method of forming a cholesteric liquid crystal film.
  • a circularly polarizing (al) or linearly polarizing (a2) reflective polarizer that is, a reflective polarizer of the same type ( a) was used.
  • a circularly polarizing reflective polarizer (al) when used, the polarization direction in the normal direction force of one reflective polarizer (al) in a diagonal direction is greatly disrupted, and the degree of polarization is reduced. There is. In this case, the collimated light was greatly colored when the angle from the normal direction of the light source was large (60 ° or more).
  • the linear polarization type reflection polarizer (a2) When the linear polarization type reflection polarizer (a2) is used, the polarization state in the oblique direction is very good, but a phase difference layer having a front phase difference is provided between the reflection polarizers. In this case, the anisotropy in the axial direction due to the viewing angle increases. As a result, depending on the orientation of the screen, the light condensing ability was high, the orientation was low, and the orientation was mixed.
  • the polarizing element (A) used as the transmittance angle-dependent polarizing layer (T2) at least one layer of the reflective polarizer (a) transmits certain circularly polarized light and reverses circularly polarized light.
  • a circularly polarized reflective polarizer (al) that selectively reflects light
  • at least one layer of the reflective polarizer (a) transmits one of orthogonal linearly polarized light and selectively reflects the other.
  • the polarization type reflective polarizer (a2), and the retardation layer (b) has an incident light that has a front phase difference (normal direction) of approximately ⁇ / 4 and is inclined by 30 ° or more with respect to the normal direction.
  • the layer (b1) having a phase difference value of ⁇ / 8 or more will be described.
  • At least one or more circularly polarizing reflective polarizers (al) and at least one linearly polarizing reflective polarizer (a2) were used, and a retardation layer (bl) was arranged between these differently shaped reflective polarizers.
  • the optical element can effectively block transmitted light even with respect to incident light in oblique directions, has excellent luminance characteristics, and can be controlled by coloring.
  • FIG. 9 is a cross-sectional view of an optical element in which a layer (bl) which is I Z4 and has a phase difference value of ⁇ 8 or more with respect to incident light incident at an angle of 30 ° or more with respect to the normal direction is arranged.
  • the lower side of Fig. 21 and Fig. 22 This is the side of the backlight light guide plate (L).
  • the circular polarization type reflection polarizer (al) and the linear polarization type reflection polarizer (a2) those similar to the above can be used.
  • the retardation layer (b 1) has a front phase difference (normal direction) in the visible light region of approximately ⁇ / 4, and has a ⁇ / It has a phase difference value of 8 or more.
  • the front phase difference is preferably about ⁇ / 4 ⁇ 40 nm for light having a wavelength of 550 nm, and more preferably within a range of ⁇ 15 nm.
  • the polarization axis of the linear polarization type reflective polarizer (a2) and the slow axis direction of the retardation layer (bl) are arranged at an angle of 45 ° ( ⁇ 45 °) ⁇ 5 °.
  • the purpose of the front phase difference is to convert vertically incident polarized light from linearly polarized light to circularly polarized light or from circularly polarized light to linearly polarized light, approximately ⁇ ⁇ 4, preferably ⁇ ⁇ 4 in the entire visible region. Desirably, it will be about.
  • the incident light from the oblique direction is appropriately determined by the angle of total reflection so as to be efficiently polarized and converted.
  • the phase difference measured at 60 ° should be determined to be about ⁇ / 2.
  • the transmitted light from the reflective polarizer changes its polarization state due to the birefringence of the reflective polarizer itself, which is like the C-plate. Fly, a value smaller than / 2. Since the phase difference of the C-plate monotonically increases as the incident light tilts, the effective total reflection occurs when the light is tilted at an angle of 30 ° or more. If you have more than that,
  • the retardation layer (bl) may be a single layer or a combination of two or more layers.
  • a single retardation layer (bl) for example, a biaxial retardation layer in which the front retardation (normal direction) is approximately; I Z4 and the Nz coefficient is 2.0 or more, or 1.
  • a biaxial retardation layer having a value of 0 or less is exemplified.
  • the slow axis direction of the biaxial retardation layer is arranged at an angle of 45 ° ( ⁇ 45 °) ⁇ 5 ° with respect to the polarization axis of the linear polarization type reflection polarizer (a2).
  • the retardation layer (bl) has almost zero front retardation (normal direction), For incident light incident at an angle of 30 ° or more with respect to the direction; the layer (bl l) having a phase difference value of I Z8 or more, and the front phase difference (normal direction)
  • one uniaxial retardation layer (bl2) and one or more retardation in the frontal direction are almost zero, and the normal force is the phase when inclined.
  • a C plate (bl l) that produces a difference may be combined.
  • the front phase difference is desirably ⁇ / 10 or less because the purpose is to maintain polarized light that is vertically incident.
  • the slow axis direction of the uniaxial retardation layer (bl2) is arranged at an angle of 45 ° (-45 °) ⁇ 5 ° with respect to the polarization axis of the linear polarization type reflection polarizer (a2). Have been.
  • the retardation layer (bl) is a composite of the layer (bl1) and the uniaxial retardation layer (bl2), as shown in FIGS. It is preferable to arrange so that the child (al) side is a layer (bl l).
  • the material of the retardation layer (bl) is not particularly limited as long as it has the above optical characteristics.
  • the biaxial retardation layer and the uniaxial retardation layer (bl2) are not particularly limited as long as they are formed by stretching a birefringent plastic material.
  • a liquid crystal material in which the homeotropic aperture is uniaxially orientated can be used, and the method is performed in the same manner as the method of forming a cholesteric liquid crystal film.
  • Retardation layer (bll) As the C plate, the C plate exemplified above can be used.
  • an optical layer (D) having depolarization ability is applied.
  • a retardation plate can be suitably used. It is preferable that the retardation plate has a local retardation value / axial displacement.
  • a general biaxially stretched polyester film can be exemplified. Specific examples include Toray's Lumirror.
  • the light source device of the present invention When the light source device of the present invention is applied to a liquid crystal display, the light source device is disposed on the liquid crystal cell side where the transmittance angle dependent layer (T1) or the transmittance angle dependent polarizing layer (T2) is disposed and on the outside.
  • a chromatic linear polarizer (P) is laminated.
  • the transmittance angle-dependent polarizing layer (T2) the transmittance angle-dependent polarizing layer (T2) If the polarized light after passing through is the linearly polarized light, the polarization axis of the dichroic linear polarizer (P) should be coincident with the polarization axis. If the polarized light after passing through the transmittance angle-dependent polarizing layer (T2) is circularly polarized light, the light is converted from circularly polarized light to linearly polarized light. ).
  • the ⁇ 4 plate may be the same as the IZ4 layer similar to the retardation layer (bl2) or the like, but preferably has an Nz coefficient of -1.0-1 -2.0. desirable.
  • the layers may be stacked only by stacking, but from the viewpoint of workability and light use efficiency, it is desirable to stack the layers using an adhesive or a pressure-sensitive adhesive.
  • the adhesive or pressure-sensitive adhesive is transparent, has no absorption in the visible light region, and the refractive index is preferably as close as possible to the refractive index of each layer from the viewpoint of suppressing surface reflection. From this viewpoint, for example, an acrylic pressure-sensitive adhesive is preferably used.
  • Each layer separately forms a monodomain in the form of an alignment film, and is successively laminated by a method such as transfer to a light-transmitting substrate. It is also possible to appropriately form a film or the like and directly form each layer sequentially.
  • Each layer and the (viscosity) adhesive layer may be further provided with particles for adjusting the degree of diffusion and adjustment as necessary to impart isotropic scattering, or may be provided with an ultraviolet absorber, an antioxidant, or the like.
  • an ultraviolet absorber for the purpose of imparting leveling property during film formation, a surfactant or the like can be appropriately added.
  • An appropriate diffusion plate can be provided.
  • Haze is less than 80%, preferably less than 70%.
  • Kimoto Light Up 100TL4 (Haze 46%), 100TL2 (Haze 29%) and the like can be suitably used.
  • the prism sheet since the prism sheet is not disposed immediately below the liquid crystal display device, moire caused by the prism sheet is not visually recognized. In addition, it is arranged below the light guide plate of the reflecting plate having the inclined structure. Therefore, the total light transmittance is low. It is advantageous to use a diffuser having a low haze and a high transmittance, while avoiding the use of a high-haze diffuser which lowers the light-collecting characteristics in the front direction. This is because the light reuse efficiency is increased by scattering the obliquely incident and reflected light near the backlight light guide plate and scattering a part of the light in the vertical incidence direction.
  • the diffusion plate can be obtained by, for example, embedding fine particles having different refractive indices in a resin, in addition to a material having a surface unevenness.
  • This diffuser may be sandwiched between the backlight and the transmittance angle-dependent layer (T1) or the transmittance angle-dependent polarizing layer (T2), or the transmittance angle-dependent layer (T1) or the transmittance angle-dependent polarization It may be bonded to the layer (T2).
  • a Newton ring is formed in a gap between the film surface and the backlight.
  • a Newton ring is generated by disposing a diffusion plate having surface irregularities on the light guide plate side surface of the transmittance angle dependent layer (T1) or the transmittance angle dependent polarizing layer (T2) in the present invention. Can be suppressed.
  • a layer having both a concavo-convex structure and a light diffusion structure may be formed on the surface of the transmittance angle dependent layer (T1) or the transmittance angle dependent polarizing layer (T2) itself.
  • the light source device is suitably applied to a liquid crystal display device in which polarizing plates are disposed on both sides of a liquid crystal cell.
  • a diffusion plate on the liquid crystal cell viewing side with no backscattering and depolarization on the liquid crystal display device combined with the above-mentioned parallelized backlight By stacking a diffusion plate on the liquid crystal cell viewing side with no backscattering and depolarization on the liquid crystal display device combined with the above-mentioned parallelized backlight, a favorable near-front area can be obtained.
  • the viewing angle can be expanded by diffusing the light beam having the display characteristics and obtaining uniform and good display characteristics within the entire viewing angle.
  • a diffusion plate having substantially no backward scattering is used.
  • the diffusion plate can be provided as a diffusion adhesive.
  • the placement location is on the viewing side of the liquid crystal display device, but it can be used either above or below the polarizing plate.
  • a film that does not substantially eliminate polarized light is desirable.
  • JP-A-2000-347006 Japanese Patent Application Laid-Open No. 2000-347007 discloses a fine particle-dispersed diffusion plate.
  • the viewing angle widening film When the viewing angle widening film is positioned outside the polarizing plate, the light parallelized to the liquid crystal layer and the polarizing plate is transmitted. Therefore, in the case of a TN liquid crystal cell, a viewing angle compensating retardation plate is particularly used. It is not necessary. In the case of an STN liquid crystal cell, it is only necessary to use a retardation film in which only the front characteristics are well compensated. In this case, since the viewing angle widening film has an air surface, it is possible to adopt a type using a refraction effect due to the surface shape.
  • a viewing angle widening film having a regular structure inside such as an existing microlens array film or hologram film, a black matrix of a liquid crystal display device or a conventional parallel light conversion system of a backlight.
  • This method interfered with microstructures such as microlens array / prism array / louver / micromirror array and caused moire.
  • the regular structure is not visually recognized in the plane, and there is no regular modulation in the emitted light. Therefore, it is not necessary to consider the compatibility with the viewing angle widening film and the arrangement order. Therefore, the viewing angle widening film is not particularly limited as long as it does not cause interference / moire with the pixel black matrix of the liquid crystal display device, and the options are wide.
  • substantially no backscattering and no depolarization are described in JP-A-2000-347006 and JP-A-2000-347007.
  • Haze 80 with a light scattering plate like / o—90. / o is preferably used.
  • it can be used as long as it does not form interference / moire with the pixel black matrix of the liquid crystal display device.
  • the liquid crystal display device is manufactured by appropriately using various optical layers and the like according to a conventional method.
  • a retardation plate that functions as a 1Z4 wavelength plate in a wide wavelength range such as the visible light region has, for example, a retardation layer that functions as a 1Z4 wavelength plate for light-colored light having a wavelength of 550 nm and other retardation characteristics. It can be obtained by, for example, a method of superimposing a retardation layer shown, for example, a retardation layer functioning as a half-wave plate. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may be composed of one or more retardation layers.
  • a polarizing plate having a protective film on one or both sides of a polarizer is generally used.
  • the polarizer is not particularly limited, and various types can be used.
  • polarizers include hydrophilic polymer films such as polyvinyl alcohol-based films, partially formalized polyvinyl alcohol-based films, and ethylene / vinyl acetate copolymer-based partially cured films; and polarizers such as iodine and dichroic dyes. Examples thereof include a uniaxially stretched material in which a coloring material is adsorbed, a polyene oriented finolem such as a dehydrated product of polyvinyl alcohol and a dehydrochlorinated product of polyvinyl chloride, and the like. Among these, a polarizer composed of a polybutyl alcohol-based film and a dichroic substance such as iodine is preferred.
  • the thickness of these polarizers is not particularly limited, but is generally about 5 to 80 x m.
  • washing the polyvinyl alcohol-based film with water not only removes stains and anti-blocking agents on the surface of the polyvinyl alcohol-based film, but also prevents unevenness such as uneven dyeing by swelling the polyvinyl alcohol-based film. There is also an effect. Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching. The film can be stretched even in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • a material for forming the transparent protective film provided on one or both surfaces of the polarizer a material having excellent transparency, mechanical strength, heat stability, moisture shielding property, isotropy, and the like is preferable.
  • polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cenorellose polymers such as diacetinoresenorelose and triacetinoresenololose, acrylic polymers such as polymethyl methacrylate, polystyrene and atalylonitrino styrene Styrene-based polymers such as copolymers (AS resins), polycarbonate-based polymers, and the like.
  • polyethylene, polypropylene, polyolefin having a cyclo- or norbornane structure polyolefin-based polymers such as ethylene-propylene copolymer, biel chloride-based polymers, amide-based polymers such as nylon and aromatic polyamide, imide-based polymers, and sulfone-based polymers
  • Polymer, polyethersulfone polymer, polyetheretherketone polymer, polyphenylene sulfide polymer, bier alcohol polymer, vinylidene chloride polymer, butylbutyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer Or blends of the above polymers are also examples of the polymer forming the transparent protective film.
  • the transparent protective film can also be formed as a cured layer of a thermosetting or ultraviolet curable resin such as an acrylic, urethane, acrylic urethane, epoxy, or silicone resin.
  • Japanese Patent Application Laid-Open No. 2001-343529 (WO01 / 37007) (Polymer finolem described herein, for example, (A) a thermoplastic resin having a substituted and Z or unsubstituted imide group in a side chain, (B) A resin composition containing a thermoplastic resin having a substituted or Z- or unsubstituted phenyl and a nitrile group in the side chain, such as isobutylene and N-methyl.
  • the film include a resin composition film containing an alternating copolymer of lumaleimide and an acrylonitrile-styrene copolymer.
  • a film made of a mixed extruded product of a resin composition or the like can be used.
  • the thickness of the protective film can be determined as appropriate, but is generally about 11 to 500 zm due to the workability such as strength and handleability and the thickness of the thin layer. In particular, it is preferably 1 to 300 x m, more preferably 5 to 200 z m.
  • nx and ny are the main refractive indices in the film plane, nz is the refractive index in the finolem thickness direction, and d is the film thickness direction
  • a protective film having a retardation of 90 nm- + 75 nm is preferably used.
  • the thickness direction retardation value (Rth) is more preferably _80 nm-+60 nm, and particularly preferably _70 nm-+45 nm.
  • the protective film a cellulosic polymer such as triacetyl cellulose is preferred from the viewpoints of polarization characteristics and durability. Particularly, a triacetyl cellulose film is preferable.
  • the protective film made of the same polymer material may be used on both sides thereof, or a protective film made of a different polymer material may be used.
  • the polarizer and the protective film are usually in close contact with each other via an aqueous pressure-sensitive adhesive or the like.
  • water-based adhesive examples include an isocyanate-based adhesive, a polyvinyl alcohol-based adhesive, a gelatin-based adhesive, a vinyl-based latex-based, a water-based polyurethane, and a water-based polyester.
  • the surface of the transparent protective film on which the polarizer is not adhered may be subjected to a hard coat layer, an anti-reflection treatment, a treatment for preventing sticking, and a treatment for the purpose of diffusion or anti-glare.
  • the hard coat treatment is performed for the purpose of preventing the surface of the polarizing plate from being scratched, and is, for example, a cured film made of an appropriate ultraviolet-curable resin such as an acrylic or silicone resin and having excellent hardness and sliding properties.
  • the anti-reflection treatment is performed for the purpose of preventing reflection of external light on the polarizing plate surface, and can be achieved by forming an anti-reflection film or the like according to the related art.
  • the anti-sticking treatment is performed for the purpose of preventing adhesion to the adjacent layer.
  • the anti-glare treatment is performed for the purpose of preventing external light from being reflected on the surface of the polarizing plate and hindering the visibility of the light transmitted through the polarizing plate.
  • the transparent protective film can be formed by imparting a fine uneven structure to the surface of the transparent protective film by an appropriate method such as a surface roughening method or a method of blending transparent fine particles.
  • the fine particles to be contained in the formation of the surface fine uneven structure include, for example, a conductive material composed of silica, anoremina, titania, zirconia, tin oxide, indium oxide, cadmium oxide, antimony oxide, or the like having an average particle size of 0.5 to 50 zm.
  • Transparent fine particles such as inorganic fine particles which may be used, and organic fine particles formed of a crosslinked or uncrosslinked polymer or the like are used.
  • the amount of fine particles used is generally about 2 to 50 parts by weight, preferably 5 to 25 parts by weight, per 100 parts by weight of the transparent resin forming the fine surface unevenness structure. Les ,.
  • the anti-glare layer may also serve as a diffusion layer (viewing angle expanding function, etc.) for expanding the viewing angle by diffusing the light transmitted through the polarizing plate.
  • the anti-reflection layer, anti-staking layer, diffusion layer, anti-glare layer and the like can be provided on the transparent protective film itself, and can be separately provided as an optical layer separately from the transparent protective finolem. It can also be provided.
  • the retardation film is laminated on a polarizing plate as a viewing angle compensation film and used as a wide viewing angle polarizing plate.
  • the viewing angle compensation film is a film for widening the viewing angle so that an image can be seen relatively clearly even when the screen of the liquid crystal display device is viewed from a slightly oblique direction, not perpendicular to the screen.
  • Examples of such a viewing angle compensating retardation film include a biaxially stretched film, a birefringent film stretched in two orthogonal directions, etc., and a bidirectionally stretched film such as an obliquely oriented film.
  • Examples of the obliquely oriented film include a film obtained by bonding a heat shrinkable film to a polymer film and subjecting the polymer film to a stretching treatment or a Z and shrinkage treatment under the action of the shrinkage force caused by heating, or a film obtained by obliquely orienting a liquid crystal polymer.
  • the viewing angle compensation film is colored by a change in the viewing angle based on the phase difference between the liquid crystal cells. Can be combined as appropriate for the purpose of preventing image blurring and expanding the viewing angle for good visibility.
  • an optically anisotropic layer composed of a liquid crystal polymer alignment layer, particularly a tilted alignment layer of a discotic liquid crystal polymer, is supported by a triacetyl cellulose film because of achieving a wide viewing angle with good visibility.
  • the optically-compensated phase difference plate is preferably used.
  • the optical layers to be laminated in practical use are not particularly limited.
  • one or two optical layers which may be used for forming a liquid crystal display device such as a reflector or a semi-transmission plate are provided.
  • the above can be used.
  • a reflective polarizing plate or a semi-transmitting polarizing plate in which a reflecting plate or a semi-transmitting reflecting plate is further laminated on an elliptically polarizing plate or a circular polarizing plate is exemplified.
  • the reflective polarizing plate is a polarizing plate provided with a reflective layer, and is used to form a liquid crystal display device or the like that reflects and reflects incident light from the viewing side (display side).
  • a built-in light source such as a backlight can be omitted, and the liquid crystal display device can be easily made thin.
  • the reflective polarizing plate can be formed by an appropriate method such as a method in which a reflective layer made of metal or the like is provided on one side of the polarizing plate via a transparent protective layer or the like as necessary.
  • the reflective polarizing plate include a protective film that has been subjected to mat treatment as required, and a reflective layer formed by attaching a foil made of a reflective metal such as aluminum or the like to a vapor deposition film on one surface.
  • a protective film that has been subjected to mat treatment as required
  • a reflective layer formed by attaching a foil made of a reflective metal such as aluminum or the like to a vapor deposition film on one surface.
  • a reflective layer having a fine unevenness structure thereon.
  • the reflection layer having the fine uneven structure described above has an advantage that the incident light is diffused by irregular reflection to prevent a directional glare and to suppress uneven brightness.
  • the protective film containing fine particles also has an advantage that the incident light and its reflected light are diffused when passing through the protective film, so that uneven brightness can be further suppressed.
  • the reflection layer having a fine uneven structure reflecting the fine uneven structure on the surface of the protective film is formed by depositing a metal by an appropriate method such as a vapor deposition method such as a vacuum evaporation method, an ion plating method, or a sputtering method or a plating method. It can be carried out by, for example, directly attaching to the surface of the transparent protective layer.
  • a vapor deposition method such as a vacuum evaporation method, an ion plating method, or a sputtering method or a plating method. It can be carried out by, for example, directly attaching to the surface of the transparent protective layer.
  • the transparent plate is used as the reflecting plate. It can also be used as a reflection sheet or the like in which a reflection layer is provided on an appropriate film conforming to the film. Since the reflective layer is usually made of a metal, its use in a state where the reflective surface is covered with a protective film, a polarizing plate, or the like is intended to prevent a decrease in reflectance due to oxidation, and to maintain the initial reflectance over a long period of time. It is more preferable to avoid separately providing a protective layer.
  • the transflective polarizing plate can be obtained by forming a transflective reflective layer such as a half mirror that reflects and transmits light with the reflective layer in the above.
  • a transflective polarizing plate is usually provided on the back side of a liquid crystal cell.
  • a liquid crystal display device or the like When a liquid crystal display device or the like is used in a relatively bright atmosphere, an image is displayed by reflecting incident light from the viewing side (display side). However, in a relatively dark atmosphere, it is possible to form a liquid crystal display device or the like that displays an image using a built-in light source such as a backlight built in the back side of the transflective polarizing plate.
  • the transflective polarizing plate can save energy for using a light source such as a backlight in a bright atmosphere, and can be used to form a liquid crystal display device that can be used with a built-in light source even in a relatively dark atmosphere. Useful.
  • the polarizing plate may be formed by laminating a polarizing plate such as the above-mentioned polarized light separating type polarizing plate and two or three or more optical layers. Therefore, a reflective elliptically polarizing plate or a transflective elliptically polarizing plate obtained by combining the above-mentioned reflective polarizing plate, transflective polarizing plate and retardation plate may be used.
  • the above-mentioned elliptically polarizing plate or reflective elliptically polarizing plate is obtained by laminating a polarizing plate or a reflective polarizing plate and a retardation plate in an appropriate combination.
  • a strong elliptically polarizing plate or the like can be formed by sequentially laminating (reflection type) polarizing plates and retardation plates separately in the manufacturing process of a liquid crystal display device so as to form a combination.
  • the use of an optical film such as an elliptically polarizing plate has the advantage that the stability of quality and laminating workability are excellent and the production efficiency of a liquid crystal display device or the like can be improved.
  • the optical element of the present invention may be provided with an adhesive layer or an adhesive layer.
  • the adhesive layer can be used for attaching to a liquid crystal cell and also for laminating an optical layer.
  • their optical axes can be set at an appropriate arrangement angle according to the target retardation characteristics and the like.
  • the adhesive and the pressure-sensitive adhesive are not particularly limited.
  • acrylic polymer silicone Polymers based on polymers such as polyester, polyurethane, polyamide, polyvinyl ether, vinyl acetate / biel chloride copolymer, modified polyolefin, epoxy, fluorine, natural rubber, synthetic rubber, etc. It can be used selectively.
  • those having excellent optical transparency, exhibiting appropriate wettability, cohesiveness and adhesive tackiness, and having excellent weather resistance and heat resistance are preferably used.
  • the adhesive or pressure-sensitive adhesive may contain a crosslinking agent according to the base polymer.
  • Adhesives include, for example, natural and synthetic resins, in particular, tackifier resins, fillers, pigments, coloring agents made of glass fibers, glass beads, metal powders, and other inorganic powders. An additive such as an inhibitor may be contained. Further, an adhesive layer containing fine particles and exhibiting light diffusibility may be used.
  • the adhesive or pressure-sensitive adhesive is usually used as an adhesive solution having a solid content concentration of about 1050% by weight obtained by dissolving or dispersing a base polymer or a composition thereof in a solvent.
  • a solvent an organic solvent such as toluene or ethyl acetate or a solvent corresponding to the kind of the adhesive such as water can be appropriately selected and used.
  • the pressure-sensitive adhesive layer or the adhesive layer may be provided on one side or both sides of a polarizing plate or an optical film as a superposed layer of different compositions or types.
  • the thickness of the pressure-sensitive adhesive layer can be appropriately determined depending on the purpose of use, adhesive strength, and the like, and is generally about 500 ⁇ , preferably 5 to 200 / im force S, and particularly preferably 10 to 100 ⁇ m. .
  • a separator is temporarily attached to the exposed surface of the adhesive layer or the like for the purpose of preventing contamination or the like until it is put to practical use, and covered. This can prevent the adhesive layer from coming into contact with the adhesive layer in a normal handling state.
  • a suitable thin leaf such as a plastic film, a rubber sheet, paper, cloth, nonwoven fabric, a net, a foamed sheet, a metal foil, or a laminate thereof may be used as a separator, if necessary, and a silicone-based separator.
  • Any suitable material according to the related art such as a material coated with a suitable release agent such as a long mirror alkyl-based or fluorine-based molybdenum sulfide, or the like can be used.
  • each layer such as the adhesive layer may be provided with, for example, a salicylate compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, and a nickel complex salt compound.
  • Treat with UV absorber such as For example, a material having an ultraviolet absorbing ability by a method such as a method described above may be used.
  • the front phase difference is defined as a refractive index in each of the axial directions, where the direction in which the in-plane refractive index is maximum is the X axis, the direction perpendicular to the X axis is the Y axis, and the thickness direction of the film is the Z axis.
  • the reflection wavelength band was determined by measuring the reflection spectrum with a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., instantaneous multi-photometry system MCPD-2000), and was defined as a reflection wavelength band having a reflectance of half the maximum reflectance. .
  • the front luminance of the light source devices obtained in the examples and comparative examples was measured with a luminance meter BM7 manufactured by Topcon.
  • the total integrated light quantity of the emitted light was measured using an LCD viewing angle measuring device Ez contrast manufactured by ELIM. In the evaluation, it was represented by (measured value of Example / measured value of Comparative Example) ⁇ 100 (%).
  • Light guide plate (U: A ⁇ edge type side light light guide plate taken out from a 15-inch TFT liquid crystal panel manufactured by IBM Corporation was used.
  • the peak angle ( ⁇ ) in the emitted light direction is about 80 degrees.
  • Reflector (R) A 100 ⁇ m-pitch PET substrate (Toray, Noremirror T600) was fabricated by cutting with an epoxy UV curable resin (KR400) manufactured by Asahi Denka Co., Ltd. Brass mold The surface shape was transferred. Silver was vapor-deposited thereon to obtain a reflection plate having surface irregularities. It is a silver-evaporated reflector, with a smooth surface and a symmetrical line type (equivalent to Fig. 4). The average inclination angle ( ⁇ ) of the surface irregularities (inclined structure) is about 40 degrees.
  • Transmittance angle-dependent polarizing layer (T2) A polarizing element (A) having a retardation plate (bl) provided between two circularly polarizing reflective polarizers (al) was used. A cholesteric liquid crystal layer of PCF400 manufactured by Nitto Denko Corporation was used as the circular polarization type reflective polarizer (al). [0200] Next, a retardation layer (bl: negative C plate) having a front retardation of approximately 0 and generating a retardation in an oblique direction was prepared using a polymerizable liquid crystal by the following method. As a polymerizable mesogen compound, LC242 manufactured by BASF was used. The specific production method is as follows.
  • the polymerizable meso Geni ⁇ was dissolved in cyclopentane (20 wt 0/0), initiator (Chibasu Bae Shanore Tikemikanorezu Co. Irugakyua 184, 1 wt% relative to the mixture) was ⁇ Ka ⁇ the A solution was prepared.
  • As the alignment substrate a polyethylene terephthalate film manufactured by Toray: Lumirror (thickness: 75 ⁇ m) which was subjected to an alignment treatment with a rubbing cloth was used.
  • the solution was applied with a wire bar at a coating thickness of 1. when dried, dried at 90 ° C for 2 minutes, heated once to the isotropic transition temperature, and then gradually cooled. While maintaining a uniform alignment state, the composition was cured by ultraviolet irradiation (10 mWZcm 2 ⁇ 2 minutes) at 80 ° C to obtain a negative C plate.
  • the phase difference of this negative C plate was measured, the phase difference in the front direction was about 2 nm for light having a wavelength of 550 ⁇ m, and the phase difference when tilted by 30 ° was about 140 nm.
  • Four layers were stacked and a negative phase difference plate (bl) with a phase difference of 540 nm when tilted by 30 ° was obtained.
  • a translucent acrylic adhesive manufactured by Nitto Denko Corporation, NO. 7, 23 / im thickness
  • a negative C plate was used. After bonding (bl), the substrate was peeled off and removed.
  • a circularly polarizing reflective polarizer (al) was further laminated and transferred on this to obtain a polarizing element (A).
  • the polarizing element (A) functioned as a transmittance angle-dependent polarizing layer (T2) that transmits circularly polarized light in the front direction but reflects all light rays in the oblique direction.
  • Example 2 The same light guide plate (L) as in Example 1 was used. Instead of the reflector (R) of Example 1, a flat white PET (E60LL, about 190 xm thickness) manufactured by Toray was used as the reflector. Further, a prism sheet was used instead of the transmittance angle-dependent polarizing layer ( ⁇ 2) in Example 1. The prism sheets used were two 3 mm BEF films (thickness: about 180 xm, made of polyethylene terephthalate film, vertex angle: about 90 °, prism pitch: 50 xm). A diffusion plate was added on top of it, and a PCF400 was placed on the outermost surface to obtain a light source device. [0205] (Evaluation)
  • Example 1 the front luminance and the amount of light emitted from the light-emitting device were all higher than those in Comparative Example 1. In Example 1, the light was condensed within ⁇ 30 degrees from the front with a configuration that did not use a prism sheet.
  • the transmittance angle-dependent polarizing layer (T2) is a laminate, when applied to a liquid crystal display device, it could be bonded to the lower polarizing plate of the liquid crystal cell.
  • Light guide plate (L) A ⁇ edge type side light light guide plate taken out from a 15.1 inch LCD housing manufactured by Hitachi, Ltd. was used.
  • the peak angle ( ⁇ ) of the emitted light direction is about 70 degrees.
  • Reflector (R) An embossing roll was applied to the surface of a base material of a hard resin-made Shimadzu Bul plate (thickness lmm) made of Mitsubishi resin as a base material to produce a surface-shaped plate shown in FIG. The pitch is about 100 / im. Aluminum was vacuum-deposited (0.1 / m) on the obtained surface shape to obtain a reflector having surface irregularities. The average inclination angle ( ⁇ ) of the surface irregularities (inclined structure) is about 35 degrees.
  • the linear polarization type reflective polarizer (a2) 3M DBEF was used.
  • the retardation plate (bl) the negative C plate obtained in Example 1 was used.
  • a retardation plate (b2) for sandwiching the negative C plate a ⁇ / 4 plate (Nitto Denko NRF film, front retardation 135 nm, thickness 50 ⁇ m) made of a polycarbonate uniaxially stretched film was arranged.
  • a linear polarization type reflective polarizer (a2) was arranged on both outer sides of the polarizer. With respect to the transmitted polarization axis of 0 ° of the linearly polarized reflective polarizer (a2) on the incident side: I Z4 retardation plate: 45 °, C plate (no axial direction), ⁇ / 4 plate: one 45 °
  • the polarizing element is formed by laminating each layer with a translucent acrylic adhesive (N ⁇ .7 thickness, manufactured by Nitto Denko) in an axial arrangement where the transmission axis of the linear polarization type reflective polarizer (a2) on the output side is 90 °. (A) was obtained.
  • the polarizing element (A) functions as a transmittance angle-dependent polarizing layer (T2) that transmits circularly polarized light in the front direction and reflects all rays in the oblique direction. did.
  • Light source device The light guide plate (L), the reflector (R), and the transmittance angle-dependent polarizing layer (T2) were arranged as shown in FIG. 8, to obtain a light source device.
  • Example 2 The same light guide plate (L) as in Example 2 was used. Instead of the reflector (R) of Example 2, a flat white PET (E60LL, about 190 ⁇ m thickness) was used as the reflector. Further, a prism sheet was used instead of the transmittance angle-dependent polarizing layer ( ⁇ 2) in Example 1. The prism sheets used were two 3 mm BEF films (thickness approx. 180 x m, made of polyethylene terephthalate film, apex angle approx. 90 °, prism pitch 50 x m). A diffusion plate was added on top of it, and a DBEF was further placed on the outermost surface to obtain a light source device.
  • BEF films thickness approx. 180 x m, made of polyethylene terephthalate film, apex angle approx. 90 °, prism pitch 50 x m.
  • Example 2 both the front luminance and the amount of light of the emitted light were improved as compared with Comparative Example 2.
  • the light was condensed within ⁇ 40 degrees from the front with the configuration without using the prism sheet.
  • the transmittance angle-dependent polarizing layer ( ⁇ 2) is a laminate, when applied to a liquid crystal display device, it could be used by being bonded to a lower polarizing plate on the lower surface of a liquid crystal cell.
  • the vapor-deposited surface is bonded to the aluminum substrate side, and the PET substrate functions as an optical layer (D) that can impart retardation due to its non-uniform birefringence and has depolarization ability. .
  • the optical layer (D) is provided, the light is reflected multiple times at different locations as shown in FIG. Since the light passes through the light guide plate (L) that has been processed, coloring due to local phase difference fluctuation does not pose a practical problem.
  • Transmittance angle-dependent polarizing layer (T2): A cholesteric liquid crystal bandpass filter manufactured by thin-film coating of a cholesteric liquid crystal polymer was used. This is a combination of a three-wavelength band-pass filter that reflects right circularly polarized light and a three-wavelength band-pass filter that reflects left circularly polarized light. The rays are reflected.
  • the selective reflection circle that reflects right-hand circularly polarized light has a selective reflection wavelength range of 440 490 nm, 540 600 nm, and 615—700 nm with respect to the emission spectrum of a three-wavelength cold-cathode tube of 435 nm, 535 nm, and 610 nm.
  • a polarizing bandpass filter was manufactured.
  • the liquid crystal material used three kinds of cholesteric liquid crystal polymers having selective reflection central wavelengths of 480 nm, 550 nm, and 655 nm were produced based on European Patent Application Publication No. 0834754.
  • the cholesteric liquid crystal polymer has the following formula 1:
  • a polymerizable nematic liquid crystal monomer A represented by the following formula:
  • the polymerizable chiral agent B represented by the following ratio (weight ratio)
  • Each of the liquid crystal mixtures was made into a 33% by weight solution dissolved in tetrahydrofuran, and then purged with nitrogen under an environment of 60 ° C. to prepare a reaction initiator (azobisisobutyronitrile, 0% with respect to the mixture). (5% by weight).
  • a reaction initiator azobisisobutyronitrile, 0% with respect to the mixture.
  • the obtained polymer was purified by reprecipitation separation with ethyl ether.
  • a broadband circularly polarizing plate reflecting left circularly polarized light was obtained from Nitto Denko PCF400 film.
  • a transmittance angle-dependent polarizing layer (T2) that transmits left circularly polarized light in the front direction and reflects all light rays in the oblique direction was obtained.
  • Light Source Device The light guide plate (L), the reflector (R), and the transmittance angle-dependent polarizing layer (T2) were arranged as shown in FIG. 8, to obtain a light source device.
  • Example 3 The same light guide plate (L) as in Example 3 was used.
  • a PCF400 cholesteric liquid crystal film was disposed in place of the transmittance angle dependent polarizing layer (T2) of Example 1, and a light source device for emitting circularly polarized light was obtained.
  • Example 3 both the front luminance and the amount of light of the emitted light were higher than those in Comparative Example 3.
  • the front luminance was greatly improved due to the light condensing characteristic on the front.
  • Comparative Example 3 showed a larger value, but the emitted light component at a shallow oblique angle was large. Was small.
  • Light guide plate (L) An edge type side light light guide plate taken out of a 15.1-inch LCD housing manufactured by Hitachi, Ltd. was used.
  • the peak angle ( ⁇ ) of the emitted light direction is about 70 degrees.
  • Reflector (R) Cut a PET substrate with a slope pitch of 100 xm (Toray, Noremirror S27, 75 ⁇ m) with an epoxy UV curable resin (KR400) manufactured by Asahi Denka Co., Ltd. The surface shape of the brass mold produced by was transferred. Aluminum was vacuum-deposited on this surface (0.1 ⁇ 0 ⁇ thick) to obtain a reflector. It is an asymmetric type (corresponding to Fig. 6). The average inclination angle ( ⁇ ) of the inclined structure is about 40
  • Transmittance angle-dependent layer (T1) 21 layers of TiO / SiO thin films were deposited and deposited.
  • a bandpass filter that has a high transmission function for the three wavelengths of the emission spectrum of such a three-wavelength emission line type cold-cathode tube and reflects other wavelength light was manufactured.
  • the base material used was PET film (Toray's Noremirror 75 / im thick).
  • PET film Toray's Noremirror 75 / im thick.
  • Light Source Device The light guide plate (L), the reflection plate (R), and the transmittance angle dependent layer (T1) were arranged as shown in FIG. 1 to obtain a light source device.
  • Example 4 The same light guide plate (L) as in Example 4 was used. The same layer as in Example 4 was used for the transmittance angle dependent layer (T1). Instead of the reflector (R) of Example 4, a light source device was obtained by using a flat white PET (manufactured by Toray, E60LL, about 190 ⁇ m thickness) as the reflector.
  • a flat white PET manufactured by Toray, E60LL, about 190 ⁇ m thickness
  • Example 4 both the front luminance and the amount of light of the emitted light were improved as compared with Comparative Example 4, and high light use efficiency was confirmed.
  • Example 2 The same light guide plate (L), reflection plate (R), and transmittance angle dependent polarizing layer (T2) as in Example 1 were used.
  • Light source device The light guide plate (L), the reflector (R), and the transmittance angle-dependent polarizing layer (T2) were arranged. As shown in Fig. 10 (b), an optical layer (D) having depolarization ability is arranged between the light guide plate (L) and the reflector (R). A light source device was obtained by placing a PET film (50 ⁇ m).
  • Example 1 The same light guide plate (L) as in Example 1 was used.
  • the optical layer (D) was the same as that in Example 1, and was disposed in the same manner as in Example 1.
  • flat white PET E60LL, about 190 ⁇ thick
  • T2 transmittance angle-dependent polarizing layer
  • the prism sheets used were two 3M BEF films (thickness: about 180 ⁇ , made of polyethylene terephthalate film, apex angle: about 90 °, prism pitch: 50 ⁇ ).
  • a diffusion plate was added thereon, and a PCF400 was further arranged on the outermost surface to obtain a light source device.
  • Example 5 both the front luminance and the amount of light of the emitted light were higher than those in Comparative Example 5. In Example 5, the light was condensed within ⁇ 30 degrees from the front without using the prism sheet.
  • the transmittance angle-dependent polarizing layer (T2) is a laminate, when applied to a liquid crystal display device, it could be bonded to the lower polarizing plate of the liquid crystal cell.
  • Example 6 Transmittance angle-dependent polarizing layer (T2): A polarizing element (A) having a retardation plate (bl) provided between two circularly polarizing reflective polarizers (al) was used.
  • the circularly polarized reflective polarizer (al) is a linearly polarized reflective polarizer (a2). It is a quarter-plate (Teijin WRF film, front phase difference 140 nm) with respect to the polarization axis of the 3M DBEF. ) was bonded using an atalinole-based adhesive (Nitto Denko Corporation, NO. 7, 25 zm thickness) so that the slow axis of the layer was at an angle of 45 degrees.
  • the retardation plate (bl) the one obtained by stacking five layers of the negative C plate obtained in Example 1 and having a retardation of 660 nm when tilted by 30 ° was used.
  • Acrylic adhesive Nito Denki, NO. 7, 23 zm thickness
  • the polarization axis of the linear polarization type reflection polarizer (a2) in the circular polarization type reflection polarizer (al) and the slow axis of the ⁇ 4 ⁇ plate are arranged on both sides of the retardation plate (bl) so that they are parallel to each other. did.
  • the polarizing element ( ⁇ ) functioned as a transmittance angle-dependent polarizing layer ( ⁇ 2) that reflected all the light rays in the oblique direction because of the force transmitting the polarized light in the front direction.
  • the half width of the obtained transmittance was equivalent to that of Example 1.
  • the degree of polarization in the front direction was about 95%, which was about 10% higher than that used in Example 1.
  • the polarizing element ( ⁇ ) was applied to a light source device using the same light guide plate (L) and reflector (R) as in Example 1.
  • the front luminance of the obtained light source device was 5% brighter than that of Example 1.
  • Transmittance angle dependent polarizing layer ( ⁇ 2) Circularly polarizing reflective polarizer (al) on one side of retardation plate (bl) and linearly polarizing reflective polarizer (a2) on the other side
  • the provided polarizing element (A) was used.
  • the obtained retardation film (bl) had a front retardation of about 140 nm, and the ⁇ 4 ⁇ plate had an oblique retardation of about 540 nm in the axial direction / in the direction perpendicular to the axial direction.
  • the circularly-polarized reflective polarizer (al) has the following cholesteric liquid crystal layer on the negative C-plate side of the retardation plate (bl), and the linearly-polarized reflective polarizer (a2) has a 3M DBEF.
  • the adhesive was placed on the 4 ⁇ plate side.
  • Cholesteric liquid crystal layer A cholesteric liquid crystal polymer having a selective reflection wavelength range of 30 to 490, 480 to 550, 540 to 620, 620 to 810 and 700 to 900 was prepared.
  • liquid crystal material used five types of cholesteric liquid crystal polymers having wavelength powers of S460 nm, 510 nm, 580 nm, 660 nm, and 750 nm during selective reflection were produced based on European Patent Application No. 0834754.
  • the cholesteric liquid crystal polymer is represented by the following formula 3:
  • CH 2 CHCO ⁇ CH 9 CH 2 0 -C C0
  • CH 2 CHC0 2 CH 2 CH ⁇ 0-CO
  • the polymerizable chiral agent ⁇ represented by the following ratio (weight ratio)
  • Each of the liquid crystal mixtures was made into a 33% by weight solution dissolved in tetrahydrofuran, and then purged with nitrogen under an environment of 60 ° C., and a reaction initiator (azobisisobutyronitrile, 0.5% by weight) was added to the mixture to carry out a polymerization treatment.
  • the obtained polymer was purified by reprecipitation separation with ethyl ether.
  • the cholesteric liquid crystal polymer was dissolved in methylene chloride to prepare a 10% by weight solution.
  • the solution was applied to an alignment substrate with a wire bar so that the thickness when dried was about lzm.
  • As the alignment base material a polyethylene terephthalate film having a thickness of 75 ⁇ m was used, and a substrate rubbed with a rubbing cloth made of rayon was used. After coating, it was dried at 140 ° C. for 15 minutes. After the completion of the heat treatment, the liquid crystal was cooled and fixed at room temperature to obtain a thin film.
  • the obtained cholesteric liquid crystal circularly polarizing reflective polarizer had a selective reflection function at 430 nm and 900 nm. This sample was used as a cholesteric liquid crystal layer.
  • the polarizing element (A) functioned as a transmittance angle-dependent polarizing layer (T2) for transmitting polarized light in the front direction and for reflecting all light rays in oblique directions.
  • the half width of the obtained transmittance was equivalent to that of Example 1.
  • the half width of the obtained transmittance was equivalent to that of Example 1.
  • the degree of polarization of the emitted light in the front direction was about 95%, which was about 10% higher than that used in Example 1.
  • the polarizing element (A) was applied to a light source device using the same light guide plate (L) and reflector (R) as in Example 1 so that the cholesteric liquid crystal layer was disposed on the light source side.
  • the front luminance of the obtained light source device was 5% brighter than that of Example 1.
  • the light source device of the present invention is suitably used for a liquid crystal display device in which a transmittance angle dependent layer is applied to a sidelight type backlight light guide plate and absorption loss due to repetition of reflection or the like is small.
  • FIG. 2 is an example of a cross-sectional view of a repeating inclined structure of a reflector of the present invention.
  • FIG. 3 is an example of a cross-sectional view of a repeating inclined structure of a reflector according to the present invention.
  • FIG. 4 is an example of a repeating inclined structure of the reflector of the present invention.
  • FIG. 5 is an example of a repeating inclined structure of the reflector of the present invention.
  • FIG. 6 is an example of a sectional view of a repeating inclined structure of a reflector of the present invention.
  • FIG. 7 is an example of a cross-sectional view of a repeating inclined structure of a reflector of the present invention.
  • FIG. 8 is a cross-sectional view of a light source device of the present invention and an example of transmission and reflection of light rays.
  • 9 is an example showing transmission and reflection of polarized light in the light source device of FIG. 8.
  • FIG. 11 is a conceptual diagram showing an example of a basic principle of parallel light conversion of a polarizing element (A).
  • FIG. 12 illustrates the state of each light ray shown in FIGS. 1, 3, 4, 6, and 8.
  • FIG. 13 is a conceptual diagram showing circular polarization of linearly polarized light.
  • FIG. 14 is a conceptual diagram showing an example of a basic principle of parallelizing a polarizing element (A).
  • FIG. 15 is an example showing an arrangement angle of each layer for parallel light conversion using a linear polarization type reflection polarizing element (a2).
  • FIG. 16 is a conceptual diagram showing an example of a basic principle of parallelizing a polarizing element (A).
  • FIG. 18 is a conceptual diagram showing an example of a basic principle of making a polarizing element (A) parallel light.
  • FIG. 19 is an example showing an arrangement angle of each layer for parallel light conversion using a linear polarization type reflection polarizing element (a2).
  • FIG. 21 is an example of a sectional view of a polarizing element (A).
  • FIG. 22 is an example of a cross-sectional view of a polarizing element (A).
  • FIG. 23 is an example of a cross-sectional view of a polarizing element (A).
  • FIG. 25 is a graph showing a wavelength characteristic of the bandpass filter of the third embodiment.
  • FIG. 26 is a graph showing a wavelength characteristic of the bandpass filter of the fourth embodiment.
  • FIG. 27 is a cross-sectional view of a conventional light source device and an example of transmission and reflection of light rays.
  • FIG. 28 is a cross-sectional view of a conventional light source device and an example of transmission and reflection of light rays.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

 サイドライト型バックライト導光板(L)の片面には、垂直入射光線を透過し、斜め入射光線を反射する透過率角度依存性層(T1)が配置されており、サイドライト型バックライト導光板(L)のもう一方の片面には、繰り返し傾斜構造を有する反射板(R)が配置されている光源装置。反射等の繰り返しによる吸収損失が少ない光源装置である。

Description

明 細 書
光源装置および液晶表示装置
技術分野
[0001] 本発明は、光源装置および液晶表示装置に関する
背景技術
[0002] 市場で主流の光源装置としては、図 27に示すように、下部に拡散反射板 ( )を 配置したサイドライト型導光板 (L)にプリズムシート(P)等を組み合わせて正面方向 への入射成分を増やす設計となっている。図 27の光源装置では、プリズムシート上 に拡散板 (Y)が配置されている。一般的にサイドライト型導光板の出射光角度は上 面側/下面側が近い角度であり正面より 60度以上、多くの場合には 70度以上の浅 レ、角度に分布してレ、る。この種の導光板は臨界角を利用して樹脂板中に光を導波さ せ、これの臨界条件を崩して光を取り出す手法を用いている関係上、斜め方向の浅 い角度で出射する光線が圧倒的に多い。このためプリズムシートを用いて正面方向 に集光する工夫が一般的に用いられてレ、る。
[0003] 力、かる光源装置は、上記の通りその構造上、垂直出射光成分が最初から多い設計 の物は少ない。また構造上、その製造コストも高いものが多かった。さらには、巿場で 一般的に用いられている導光板とプリズムシートの組み合わせでは、プリズムシート が導光板上面側に配置される関係上、プリズムシートに傷が付きやすぐ取り扱い上 の問題点も有していた。そのため、ハンドリング性の改善も強く求められていた。
[0004] 一方、ブリュースター角を利用した蒸着型バンドパスフィルターや、ブラッグ反射を 利用したコレステリック液晶の選択反射特性のような、透過率と反射率に関して角度 依存性のある光学層 (T)を用いて、拡散光源を正面方向へ集光する技術が知られ ている。力かる技術を用いた光源装置を図 28に示す。その代表的な例としては、輝 線光源とバンドパスフィルターを組み合わせる方法がある(たとえば、特許文献 1、特 許文献 2、特許文献 3、特許文献 4、特許文献 5、特許文献 6、特許文献 7、特許文献 8、特許文献 9等参照。)。また CRTやエレクト口ルミネッセンスのように輝線発行する 光源と表示装置上にバンドパスフィルターを配置して集光'平行光化する方法等が 提案されている (たとえば、特許文献 10、特許文献 11、特許文献 12、特許文献 13 等参照。)。
[0005] しかし、これらの透過率と反射率に角度依存性を有する光学層を用いると垂直入射 光は高透過率で利用できる力 S、斜め入射光は反射されて透過しないため光源側に 戻されてしまう。戻された光線は導光板、散乱板、反射板などを通過、反射して再び 出射側に戻されるが、反射等を繰り返すため吸収損失が少なくなかった。例えば一 般的に用いられている反射偏光子を光源装置に用いた液晶表示装置は理論上は 2 倍の明るさが期待できるはずであるが、現実には 1. 5倍程度が限度であり、残りは利 用できない吸収損失として失われてレ、た。
[0006] そこで再利用効率を高めるために、反射、散舌し、透過などの損失機会を極力減らし 、少ない光路にて出射側に戻される工夫が考えられる。たとえば、前記透過率角度 依存性層に組み合わせる導光板として垂直出射光成分が多レ、ものを用いれば、出 射光そのものの利用効率は向上する。しかし、透過率角度依存性層はリサイクルされ る反射光成分の光路は考慮されておらず、繰り返し反射回数が増大すると迷光化し 、利用されないまま吸収損失されてしまった。また、プリズムシートを組み合わせた導 光板には前記問題がある。このため透過率角度依存性層と組み合わせる導光板の 選択肢が著しく狭力 た。
特許文献 1:特開平 6 - 235900号公報
特許文献 2:特開平 2 - 158289号公報
特許文献 3:特開平 10 - 321025号公報
特許文献 4 :米国特許第 6307604号明細書
特許文献 5 :独国特許出願公開第 3836955号明細書
特許文献 6 :独国特許出願公開第 422028号明細書
特許文献 7:欧州特許出願公開第 578302号明細書
特許文献 8:米国特許出願公開第 2002/34009号明細書
特許文献 9:国際公開第 02/25687号パンフレット
特許文献 10 :米国特許出願公開第 2001/521643号明細書
特許文献 11 :米国特許出願公開第 2001/516066号明細書 特許文献 12:米国特許出願公開第 2002/036735号明細書
特許文献 13:特開 2002 - 90535号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、サイドライト型バックライト導光板に透過率角度依存性層を適用した光源 装置であって、反射等の繰り返しによる吸収損失が少ない光源装置を提供することを 目的とする。
[0008] さらには、本発明は前記光源装置を用いた液晶表示装置を提供することを目的と する。
課題を解決するための手段
[0009] 本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、下記光源装置を見 出し本発明を完成するに至った。すなわち、本発明は、下記の通りである。
[0010] 1.サイドライト型バックライト導光板 (L)を用いる光源装置において、
サイドライト型バックライト導光板 (L)の片面には、垂直入射光線を透過し、斜め入 射光線を反射する透過率角度依存性層(T1)が配置されており、
サイドライト型バックライト導光板 (L)のもう一方の片面には、繰り返し傾斜構造を有 する反射板 (R)が配置されてレ、ることを特徴とする光源装置。
[0011] 2.透過率角度依存性層(T1)が、近赤外線反射フィルターであることを特徴とする 上記 1記載の光源装置。
[0012] 3.透過率角度依存性層(T1)力 バンドパスフィルターであることを特徴とする上記
1記載の光源装置。
[0013] 4.バンドパスフィルタ一は、光源の輝線スぺタトノレに対応していることを特徴とする 上記 3記載の光源装置。
[0014] 5.透過率角度依存性層 (T1)が、屈折率の異なる蒸着多層薄膜であることを特徴 とする上記 2 4のいずれかに記載の光源装置。
[0015] 6.透過率角度依存性層 (T1)が、屈折率の異なる樹脂材料の薄層多層積層体で あることをと特徴とする上記 2— 4のいずれかに記載の光源装置。
[0016] 7.透過率角度依存性層 (T1)が、屈折率の異なる樹脂材料の多層積層体の延伸 体であることを特徴とする上記 2— 4のいずれかに記載の光源装置。
[0017] 8.サイドライト型バックライト導光板 (L)を用いる光源装置において、
サイドライト型バックライト導光板 (L)の片面には、垂直入射光線の一方向の偏光成 分を透過しかつ他方の偏光成分は選択的に反射し、斜め入射光線は偏光の方向に 関わりなく反射する透過率角度依存性偏光層 (T2)が配置されており、
サイドライト型バックライト導光板 (L)のもう一方の片面には、繰り返し傾斜構造を有 する反射板 (R)が配置されてレ、ることを特徴とする光源装置。
[0018] 9.透過率角度依存性偏光層 (T2)が、ある円偏光を透過し、逆の円偏光を選択的 に反射することを特徴とする上記 8記載の光源装置。
[0019] 10.透過率角度依存性偏光層(T2)力 少なくとも 1層のコレステリック液晶ポリマ 一層であることを特徴とする上記 9記載の光源装置。
[0020] 11.透過率角度依存性偏光層(T2)力 コレステリック液晶バンドパスフィルターで あることを特徴とする上記 10記載の光源装置。
[0021] 12.透過率角度依存性偏光層(T2)が、直交する直線偏光の内の一方を透過し、 他方を選択的に反射することを特徴とする上記 8記載の光源装置。
[0022] 13.透過率角度依存性偏光層(T2)力 複屈折異方体の多層積層物であることを 特徴とする上記 12記載の光源装置。
[0023] 14.透過率角度依存性偏光層(T2)力 偏光の選択反射の波長帯域が互いに重 なっている少なくとも 2層の反射偏光子(a)の間に、位相差層(b)が配置されている 偏光素子 (A)であることを特徴とする上記 8記載の光源装置。
[0024] 15.反射偏光子(a)が、ある円偏光を透過し、逆の円偏光を選択的に反射する円 偏光型反射偏光子 (al)であり、
位相差層(b)が、正面位相差 (法線方向)が略ゼロで、法線方向に対し 30° 以上 傾けて入射した入射光に対して λ /8以上の位相差層(bl)を有することを特徴とす る上記 14記載の光源装置。
[0025] 16.反射偏光子(a)が、直交する直線偏光の内の一方を透過し、他方を選択的に 反射する直線偏光型反射偏光子(a2)であり、かつ、
位相差層(b) 、正面位相差 (法線方向)が略ゼロで、法線方向に対し 30° 以上 傾けて入射した入射光に対して λ /4以上の位相差層(b l )を有し、 位相差層(b l )の両側には、直線偏光型反射偏光子(a2)との間に、正面位相差が 略え /4である層(b2)を有し、
入射側の層(b2)は、入射側の直線偏光型反射偏光子(a2)の偏光軸に対して、 4 5° (一 45° ) ± 5° の角度で、
出射側の層(b2)は、出射側の直線偏光型反射偏光子(a2)の偏光軸に対して、 - 45° ( + 45° ) ± 5° の角度で、
入射側の層(b2)と出射側の層(b2)は、相互の遅相軸の成す角度が任意の角度 で、配置していることを特徴とする上記 14記載の光源装置。
[0026] 1 7.反射偏光子(a)が、直交する直線偏光の内の一方を透過し、他方を選択的に 反射する直線偏光型反射偏光子(a2)であり、かつ、
位相差層(b)は、正面位相差が略 λ /4であり、 Νζ係数が 2以上である 2軸性位相 差層(b3)を 2層有し、
入射側の層(b3)は、遅層軸方向が、入射側の直線偏光型反射偏光子 (a2)の偏 光軸に対して、 45° (— 45° ) ± 5° の角度で、
出射側の層(b3)は、遅層軸方向が、出射側の直線偏光型反射偏光子 (a2)の偏 光軸に対して、一 45° ( + 45° ) ± 5° の角度で、
入射側の層(b3)と出射側の層(b3)は、相互の遅相軸の成す角度が任意の角度 で、配置していることを特徴とする上記 14記載の光源装置。
[0027] 18.反射偏光子(a)が、直交する直線偏光の内の一方を透過し、他方を選択的に 反射する直線偏光型反射偏光子(a2)であり、かつ、
位相差層(b)は、正面位相差が略 λ /2であり、 Νζ係数が 1 . 5以上である 2軸性 位相差層(b4)を 1層有し、
入射側の層の遅層軸方向が、入射側の直線偏光型反射偏光子 (a2)の偏光軸に 対して、 45° (— 45° ) ± 5° の角度で、
出射側の層の遅層軸方向が、出射側の直線偏光型反射偏光子 (a2)の偏光軸に 対して、一 45° ( + 45。 ) ± 5° の角度で、
前記 2つの直線偏光型反射偏光子(a2)の偏光軸は略直交で、 配置していることを特徴とする上記 14記載の光源装置。
[0028] 19.少なくとも 1層の反射偏光子 (a)が、ある円偏光を透過し、逆の円偏光を選択 的に反射する円偏光型反射偏光子 (al)であり、
少なくとも 1層の反射偏光子(a) 、直交する直線偏光の内の一方を透過し、他方 を選択的に反射する直線偏光型反射偏光子(a2)であり、
位相差層(b)が、正面位相差 (法線方向)がほぼ λ /4であり、かつ法線方向に対 し 30° 以上傾けて入射した入射光に対して λ /8以上の位相差値を有する層(bl) であることを特徴とする上記 14記載の光源装置。
[0029] 20.透過率角度依存性偏光層 (T2)とサイドライト型バックライト導光板 (L)との間、 および/またはサイドライト型バックライト導光板 (L)と反射板 (R)との間に、
透過率角度依存性偏光層 (T2)により反射された偏光を解消する機能を有する光 学層(D)が配置されていることを特徴とする上記 8 19のいずれかに記載の光源装 置。
[0030] 21.偏光解消能を有する光学層(D)が、反射板 (R)の繰り返し傾斜構造の表面に 配置されていることを特徴とする上記 20記載の光源装置。
[0031] 22.偏光解消能を有する光学層(D)として、位相差板を用いたことを特徴とする上 記 20または 21記載の光源装置。
[0032] 23.サイドライト型バックライト導光板 (L)の出射光方向ピーク角度 Θ に対する、前
1
記導光板 (L)の片面に配置される反射板 (R)の繰り返し傾斜構造の平均傾斜角 Θ
2 が、
θ = ( θ /2) ± 10°
2 1
であることを特徴とする上記 1一 22のいずれかに記載の光源装置。
[0033] 24.上記 1一 23記載のいずれかに記載の光源装置と、液晶セルと、液晶セルの両 側に配置された偏光板と、を少なくとも含有していることを特徴とする透過型液晶表 発明の効果
[0034] 図 28に示すように、従来より用いられている、安価で、斜め方向への出射光量が多 いサイドライト型導光板 (L)に、垂直入射方向には高透過性を有し、斜め方向には高 反射率特性を有する透過率角度依存性層 (T)を組み合わせる場合、透過率角度依 存性層(T)への斜め方向の入射光線は全て反射され、導光板 (L)上面側からの斜 め出射光は全て導光板 (L)側に戻される。下面側に出射した光線と、透過率角度依 存性層(T)によって反射された光線はおおよそ同じ程度の角度を有しているので、 導光板 (L)の出射光はほとんど斜め下方向の浅い角度に出射する物とみなしてよい
[0035] そこで、本発明では、図 1に示すように、サイドライト型バックライト導光板 (L)の下部 に、下面側に出射、反射した光線が、透過率角度依存性層 (T1)に対して垂直入射 方向になるように設計された、繰り返し傾斜構造を有する反射板 (R)を配置している 。繰り返し傾斜構造を有する反射板 (R)で反射した光線は、反射を何回も繰り返すこ となぐ透過率角度依存性層(T1)を透過して、集光される。図 1では、透過率角度依 存性層(T1)で反射した後に透過する光のみを矢印で示している。
[0036] ここで光源からの出射光の出射角を Θ とすると、導光板 (L)下面側に配置する反
1
射板 (R)の平均傾斜角 Θ を、 θ = Θ /2となるように設計すれば、反射光線は全て
2 2 1
透過率角度依存性層(T1)への正面方向に反射されることが分かる。この光線は垂 直入射なので透過率角度依存性層(T1)を透過し、正面方向のみ明るくすることがで きる。
[0037] 上記のように、サイドライト型バックライト導光板 (L)に透過率角度依存性層(T1)を 適用し、その反射光等に対して、繰り返し傾斜構造を有する反射板 (R)配置した本 発明の光源装置によれば、従来から広く用いられているドット印刷ゃシボ加工型のサ イドライト型導光板に手を加えることなく低コストで歩留まり高い、明るい光源装置を得 ること力 Sできる。
[0038] また傾斜構造を有する反射板 (R)は、光学系の最下面に位置するのでハンドリング において傷つき等の問題は生じにくい。また、シボ加工やドット印刷された導光板 (L )の下にあるので表面性状の傷や欠陥が目立ち難いという特徴を有する。また液晶セ ルに近い側に規則性の高いプリズム構造を有さないために、従来ではモアレ防止と して多く用いられてきたプリズムシートと液晶表示装置間に挿入される高ヘイズで吸 収損失の大きな光拡散板は用いる必要が無レ、、または低ヘイズで吸収損失の少な レ、ものを用いれば足りる。これはコストと明るさの両面で高い有用性である。
[0039] 透過率角度依存性層(T1)の代わりに、透過光線が高偏光度を有する透過率角度 依存性偏光層(T2)を用いる場合(図 8)には、垂直入射光線の約 50%が反射されて 反射板 (R)側に戻される。この場合、反射光は元来た光路を再度通過し、さらに反射 板 (R)で反射した後、斜め方向で透過率角度依存性偏光層 (T2)に入射し、再度、 反射されて再び反射板 (R)方向に戻される。
[0040] 図 8は透過率角度依存性偏光層(T2)で反射した後に透過する光線のみを矢印で 示している。
(1)は光源から導光板 (L)上面側への斜め出射光である。
(2)は前記(1)の斜め出射光が、透過率角度依存性偏光層 (T2)で反射された下面 側への出射光である。また光源から導光板 (U下面側への斜め出射光である。
(3)は、(2)の出射光が、繰り返し構造の反射板 (R)で正面方向へ反射され、透過率 角度依存性偏光層(T2)を透過した透過光である。
(4)は透過率角度依存性偏光層 (T2)で反射された反射光である。
(5)は (4)の反射光が反射板 (R)で斜め方向に反射された反射光である。
(6)は(5)の反射光が透過率依存性反射偏光層 (T2)で反射された反射光である。
(7)は(6)の反射光が、反射板 (R)で正面方向へ反射された反射光であり、透過率 角度依存性偏光層 (T2)を透過する。
[0041] 前記の通り、光源からの斜め出射光で、透過率角度依存性偏光層 (T2)で反射さ れ光は、再び正面方向に戻され、透過率角度依存性偏光層(T2)に垂直入射するこ とが可能であるが、この経路上の偏光状態を考えると以下の 2通りとなる。
[0042] (直線偏光の場合)
透過率角度依存性偏光層 (T2)が直線偏光を反射する場合には、反射板 (R)が普 通の金属反射板などでは反射光の偏光軸方向は基本的に保持される。このため反 射経路を繰り返しても透過率角度依存性偏光層 (T2)に再び到着する際には反射さ れる方向の偏光軸を保持している成分が多い。そのため、反射した偏光は透過率角 度依存性偏光層(T2)を透過できなレ、。従ってリサイクルが機能しないと分かる。これ を図 9 (a)に示す。図 9 (a)中、 (1)、 (2)はいずれも自然光であり、 (3)は直線偏光で あり、(4)、(5)、(6)、 (7)はいずれも(3)とは直交方向の直線偏光である。すなわち 、 (7)の直線偏光は透過率角度依存性偏光層(T2)を透過できないことがわかる。
[0043] (円偏光の場合)
透過率角度依存性偏光層 (T2)が円偏光を反射する場合 (多くはコレステリック液 晶の選択反射特性を利用した場合)には、反射板 (R)が普通の金属反射面などの場 合には逆円偏光に変換される。一方でコレステリック液晶層での反射の場合には円 偏光の向きは変わらないことが知られている。従って本発明の光路の場合、再度垂 直入射する時には再び反射される方向の円偏光に戻されており透過できない。従つ てリサイクルが機能しないと分かる。これを図 9 (b)に示す。図 9 (b)中、(1)、 (2)はい ずれも自然光であり、(3)は円偏光であり、(4)、 (7)はいずれも(3)とは逆向きの円 偏光であり、(5)、 (6)は(3)と同じ向きの円偏光である。すなわち(7)の円偏光は透 過率角度依存性偏光層(T2)を透過できないことがわかる。
[0044] そこで、上記のように、透過率角度依存性偏光層(T2)を用いる場合には、透過率 角度依存性偏光層 (T2)とサイドライト型バックライト導光板 (L)との間、および/また はサイドライト型バックライト導光板 (L)と反射板 (R)との間に、透過率角度依存性偏 光層 (T2)により反射された偏光を解消する機能を有する光学層(D)を配置するの が好ましい。前記偏光解消能を有する光学層(D)は、サイドライト型バックライト導光 板 (L)と反射板 (R)との間にあれば、反射板 (R)の繰り返し傾斜構造の表面に配置 することちでさる。
[0045] 図 10 (a)が、透過率角度依存性偏光層(T2)とサイドライト型バックライト導光板 (L) との間に偏光解消能を有する光学層(D)を配置した場合である。図 10 (b)が、サイド ライト型バックライト導光板 (L)と反射板 (R)との間に偏光解消能を有する光学層(D) を配置した場合である。図 10 (c)が、反射板 (R)の繰り返し傾斜構造の表面に偏光 解消能を有する光学層(D)を形成した場合の例である。この偏光解消能を有する光 学層(D)の組み込みにより、透過率角度依存性偏光層 (T2)を用いた場合にも、光 利用効率が向上し、吸収損失や利用できない角度方向への迷光化等の不具合を根 本的に解消し、明るく高効率の光源を安価に作製することができる。
発明を実施するための最良の形態 [0046] 以下に図面を参照しながら本発明の光源装置を説明する。
[0047] 図 1は、サイドライト型バックライト導光板 (L)の液晶セル (LC)側に、垂直入射光線 を透過し、斜め入射光線を反射する透過率角度依存性層(T1)が配置されており、 他の側に繰り返し傾斜構造を有する反射板 (R)が配置されてレ、る光源装置の概略 図である。反射板 (R)は、繰り返し傾斜構造側がサイドライト型バックライト導光板 (L) の向きに配置される。サイドライト型バックライト導光板 (L)には、冷陰極管 (X)が配 置されている。
[0048] (サイドライト型バックライト導光板 (L) )
サイドライト型バックライト導光板 (L)は従来より使用されているものを特に制限なく 使用することができ、ドット印刷ゃシボ加工型のサイドライト型導光板をそのまま使用 すること力 Sできる。またバックライト導光板はゥエッジ型導光板を用いることができる。
[0049] (透過率角度依存性層(T1) )
透過率角度依存性層(T1)は、垂直入射光線を透過し、斜め入射光線を反射する ものである。透過率角度依存性層(T1)としては、近赤外線反射フィルター、バンドパ スフィルター、干渉フィルターがあげられる。バンドパスフィルターを用いる場合には、 輝線スペクトルを有する光源と組み合わせることが好ましレ、。前記透過率角度依存性 層 (T1)は、具体的には、屈折率の異なる蒸着多層薄膜、屈折率の異なる樹脂材料 の薄層多層積層体、屈折率の異なる樹脂材料の多層積層体の延伸体があげられる
[0050] (反射板 (R) )
反射板 (R)は、繰り返し傾斜構造を有する。反射板 (R)は傾斜構造がサイドライト 型バックライト導光板 (L)側になるように配置される。
[0051] 反射板 (R)の傾斜構造は、前述のように、平均傾斜角( Θ )が、光源からの出射方
2
向ピーク角度(Θ )に対して、 θ = θ Z2またはその近傍となるように設計するのが
1 2 1
好ましレ、。前記式から離れた角度になるに従レ、、再利用される光線の導光板への入 射角が垂直方向から離れてしまい、透過率角度依存性を有する光学素子への透過 率が低下するからである。
[0052] しかし、透過率角度依存性を有する光学素子からの出射光から、モアレや輝度ムラ などを除去するために平均傾斜角( Θ )をある程度の範囲内で分布させることは有効
2
な手段である。この場合の角度分布形状は各傾斜ごとに変えてもよいし、傾斜面を凹 凸化することで傾斜面そのものに傾斜角分布構造を形成してもよい。この場合、 Θ
2
= ( θ Ζ2) ± 10° 、の範囲であるのが好ましレ、。さらには、 θ = ( θ /2) ± 5° 、
1 2 1 の範囲であるのが好ましい。
[0053] また導光板の設計によっては、光源からの距離が異なる箇所では出射角( Θ )が変
1 化する場合がある。この場合には本来は各箇所での Θ に応じた傾斜角を設定し、光
1
源側からの距離に応じて傾斜角が変化する反射板を設計するのが望ましいが、製造 の簡略化のために、 Θ の最大値と最小値の平均値を用いることができる。
1
[0054] 平均傾斜角 ( Θ )は、触針式表面粗さ計 (テーラーホブソン社製タリサーフ)にて計
2
測したものである。本装置によれば、図 3、図 5のような構造の場合にも計測できる。な お、図 6のような構造の場合には、小さい方の角度が Θ である。出射角 ( Θ )は、 EL
2 1
DIM社製 Εζコントラストにて計測される。
[0055] 繰り返し傾斜構造は、図 2に示すように傾斜面が平面であってもよぐ図 3に示すよ うに曲面であってもよい。また繰り返し傾斜構造は、図 4に示すようにライン状構造で あってもよいし、図 5に示すようにマイクロプリズムドットアレイ状であってもよレ、。また 繰り返し傾斜構造は、対称型であってもよいし、図 6に示すように非対称型であっても よい。さらには、バックライト導光板がゥエッジ型導光板の場合には、出射光角度が光 源近傍と光源より遠い側では出射角度が異なる場合がある。このような場合には、図 7に示すように光源近傍側と光源より遠い側で繰り返し構造の角度を変化させて、そ れぞれ出射角( Θ )に対して傾斜角を最適化してもよいし、両者の平均値で全面を
1
近似してもよい。
[0056] 反射板 (R)の繰り返し傾斜構造は、たとえば、所望の傾斜構造を形成した金型を作 成し、これに転写する方法等があげられる。金型の作成は、真鍮金型等に精密研削 加工を施すことにより行なわれる。転写方法は、紫外線硬化型樹脂等を前記金型に 塗布し、紫外線照射して硬化させて転写物を得る方法、熱硬化方樹脂を前記金型上 に塗布して加熱硬化して転写物を得る方法、熱可塑性樹脂を注入し金型形状を転 写する方法、溶媒に溶力、した樹脂を金型上に塗布し乾燥して転写する方法等があげ られる。また傾斜構造を金属ロール上に作成し、その構造をエンボス加工にてフィル ム基材表面に転写する方法等があげられる。また、繰り返し傾斜構造は、樹脂基材を 直接研削加工して作成することができる。また、繰り返し傾斜構造は、レジストのような 光硬化性樹脂を基材上に塗布し、透過率が連続変化する繰り返し構造を有するマス クして露光、現像処理を行って直接作成することができる。
[0057] 図 8は、サイドライト型バックライト導光板 (L)の液晶セル (LC)側に、垂直入射光線 を透過しかつ他方の偏光成分は選択的に反射し、斜め入射光線は偏光の方向に関 わりなく反射する透過率角度依存性偏光層(T2)が配置されており、他の側に繰り返 し傾斜構造を有する反射板 (R)が配置されてレ、る光源装置の概略図である。図 8で は液晶セル (LC)は省略している。サイドライト型バックライト導光板 (L)、繰り返し傾 斜構造を有する反射板 (R)は、前記と同様のものを用いることができる。透過率角度 依存性偏光層(T2)としては以下のものを例示できる。
[0058] 透過率角度依存性偏光層 (T2)は、偏光状態を、ある円偏光を透過し、逆の円偏 光を選択的に反射するタイプと、直交する直線偏光の内の一方を透過し、他方を選 択的に反射するタイプがある。円偏光タイプの透過率角度依存性偏光層(T2)として は、少なくとも 1層のコレステリック液晶ポリマー層を用いたものがあげられる。当該コ レステリック液晶ポリマー層は、 2層以上を積層したコレステリック液晶バンドパスフィ ルタ-とすることができる。バンドパス型フィルタ一は輝線スペクトルを有する光源と組 み合わせるのが好ましい。一方、直線偏光タイプの透過率角度依存性偏光層(T2) としては、複屈折異方体の多層積層物を用いることができる。
[0059] また透過率角度依存性偏光層(T2)としては、偏光の選択反射の波長帯域が互い に重なっている少なくとも 2層の反射偏光子(a)の間に、位相差層(b)が配置されて レ、る偏光素子 (A)を用いることができる。偏光素子 (めについても、円偏光タイプと 直線偏光タイプとがある。以下に、偏光素子 (A)について説明する。偏光素子 (A)を 用いた場合の、集光性と輝度向上の同時発現のメカニズムについて、本発明を、以 下理想的なモデルで説明すると以下のようになる。
[0060] 図 11は反射偏光子(a)として円偏光型反射偏光子 (al)を用いた場合の原理を示 す説明図である。図 10では、偏光素子 (A)として、バックライト側(下側)から、円偏光 型反射偏光子 (al)、位相差層 (bl)、円偏光型反射偏光子 (al)がこの順に配置さ れている。
[0061] 作動原理は、 1)一 3)の通りである。
1)偏光を反射で分離する円偏光型反射偏光子 (al)により、入射光線を偏光の向き によって透過光と反射光に分ける。したがって、吸収損失は無い。
2)正面位相差が略ゼロ、斜め方向は位相差を持つ特殊な位相差板 (bl)を用い、正 面の入射光線は素通りさせる。
3)斜め方向の入射光線は吸収させず、反射光として戻す。反射光は、透過光線にな るまで繰り返し反射される。
[0062] ここで用レ、る位相差板 (bl)は、ネガティブ Cプレート (負の位相差板)またはポジテ イブ Cプレート(正の位相差板)と一般的に呼ばれる。これら位相差板 (bl)は垂直方 向(法線方向)は位相差が 0に近ぐ傾けると位相差が生じる性質を持つ。代表的な ネガティブ Cプレートとしては、具体的には 2軸延伸したポリカーボネートフィルムゃポ リエチレンテレフイタレートフィルム、またはコレステリック液晶を選択反射波長帯域を 可視光より短く設定した膜やディスコティック液晶を面に平行配向させた膜、または負 の位相差を有する無機結晶化合物を面内配向させることで得られるものなどがあげ られる。代表的なポジティブ Cプレートとして具体的にはホメオト口ピック配向した液晶 膜があげられる。
[0063] 円偏光型反射偏光子(al)は主にコレステリック液晶を配向させ、選択反射波長帯 域が可視光域/光源発光波長帯域をカバーするように捻れピッチを調整したもの( たとえば、選択反射中心波長の異なる複数の膜の積層物、または単層でピッチが厚 み方向で変化した膜)を固定したもの等が用レ、られる。図 11の位相差板 (b 1 )の両側 に配置される円偏光型反射偏光子 (al)は、透過する円偏光の方向が同一方向のも のが好適に用いられる。
[0064] 円偏光型反射偏光子 (al)と位相差層(bl)はそれぞれ面内方向には軸は殆ど存 在しないので貼り合わせ方向を指定することなく用いることができる。このため平行光 化の絞り込みの角度範囲は等方的/対称的な特性を有する。
[0065] なお、以降、図面により説明するが、各図における、符合 (r)は図 12に示す通り、 (i )は自然光、(ii)は円偏光、(iii)は直線偏光を示す。 (ii)円偏光は、(ii) _lと- 2では 矢印が逆である。これは回転方向が逆であることを意味する。 (iii) -1と- 2はそれぞ れ偏光軸が直交してレ、ることを意味する。
図 11に示した、反射偏光子 (a)として円偏光型反射偏光子(al)を用いた場合の平 行光化の各光線の変化を追って説明する。
(1)バックライトから供給された自然光 (rl)のなかで、円偏光型反射偏光子(al)に 垂直入射したものは、透過光 3)と反射光 (r2)に偏光分離される。透過光と反射光 は、それぞれの円偏光の回転方向は反対である。
(2)透過光 (r3)は位相差層(bl)を素通りする。
(3)さらに透過光 (r4)は円偏光型反射偏光子(al)を素通りする。
(4)透過光 (r5)はこの上に配置される液晶表示装置に用いられる。
(5)一方、バックライトから供給される自然光 (r6)のなかで、円偏光型反射偏光子 (a 1)に斜め入射したものは、透過光 (r8)と反射光 (r7)にそれぞれ偏光分離される。透 過光と反射光は、それぞれの円偏光の回転方向は反対である。
(6)透過光 (r8)は位相差層 (bl)を通過する際に位相差の影響を受ける。位相差値 力 S 1/2波長与えられると、円偏光は向きが反対に回って逆方向になる。このため透 過光 (r8)は位相差層(bl)を透過後、回転が反転する。
(7)透過光 (r9)は位相差の影響で回転が反転して出射される。
(8)逆回転した透過光 (r9)は円偏光型反射偏光子(al)で反射される。円偏光は一 般的には反射する際に回転方向が逆転することが知られている。 (「偏光とその応用」 W. A.シャ' ~~クリフ著 WA Shurcliff, Polarized Light: Production and Us e, (Harvard University Press, Cambridge, Mass, . , 1966) )。 7こ し、 ^ [列外 としてコレステリック液晶層での反射の場合には回転方向が変わらないことが知られ ている。ここでは反射がコレステリック液晶面で行われるために、透過光 (r9)と反射 光 (rlO)の円偏光の回転方向は変化しない。
(9)反射光 (rlO)は位相差層 (bl)を通過する際に位相差の影響を受ける。
(10)透過光 (rl 1)は位相差の影響で回転が反転している。
(11)逆回転し、透過光 8)と同じ方向に戻った透過光 (rl l)は円偏光型反射偏光 子(al)を素通りする。
(12)反射光 (r2、 r7、 rl 2)はバックライト側に戻り、リサイクルされる。これらの戻り光 線はバックライトに配置された拡散板などで進行方向や偏光の向きをランダムに変え ながら再び、偏光素子 (A)の法線方向近傍を透過できる光線となるまで反射を繰り 返し、輝度向上に貢献する。
(13)透過した円偏光 (r5)は λ Ζ4板を配置することで直線偏光に変換できるので液 晶表示装置に吸収損失を生じることなく利用できる。
[0067] コレステリック液晶を用いた円偏光型反射偏光子(al)の透過率と反射率は、斜め 方向の入射光線に対して透過光線の波長特性が短波長側にシフトする。従って、深 レ、角度で入射する光線に対して十分機能させるためには可視光域外長波長側に十 分な偏光特性/位相差特性を有する必要がある。本システムで理想的'理論的には 用いる位相差層(bl)は斜め方向で正確に 1Z2波長の位相差を有していれば良い はずであるが、現実に用いる円偏光型反射偏光子(al:コレステリック液晶層)は負の 位相差板としての性質をある程度持っている。このため本発明の機能を得るには位 相差層(bl)は、斜め方向で 1/8波長程度以上の位相差を有しておれば光学機能 を発現すること力 Sできる。
[0068] 反射偏光子 (a)が直線偏光型反射偏光子 (a2)である場合、位相差層(b)として、 例えば Cプレート (位相差層(bl) )を単独で用いた場合には、 Cプレートに斜め方向 力 入射する光線に対する光軸は常に光線方向と直交する。そのため位相差が発 現せず偏光変換されなレ、。そこで直線偏光型反射偏光子(a2)を用いる場合には、 Cプレートの両側に直線偏光型反射偏光子(a2)の偏光軸に対して、 45° または一 4 5° の角度に遅相軸方向を有する λ /4板 (b2)を配置する。これにより、直線偏光を 、 λ /4板 (b2)で円偏光に変換した後、 Cプレートの位相差で逆円偏光に変換し、 再び円偏光を λ Ζ4板 (b2)で直線偏光に変換することができるようになる。
[0069] 図 13は、 自然光が直線偏光型反射偏光子 (a2)によって、直線偏光に偏光分離さ れ、さらに λ Ζ4板 (b2)により円偏光に変換される概念図である。
[0070] 図 14は、反射偏光子 (a)として直線偏光型反射偏光子(a2)を用いた場合の概念 図である。図 14では、偏光素子 (A)として、バックライト側(下側)から、直線偏光型反 射偏光子 (a2)、 λ /4板 (b2)、位相差層 (bl)、 え /4板 (b2)、直線偏光型反射偏 光子(a2)がこの順に配置されてレ、る。
[0071] 図 15は、図 14に示す平行光化システムにおける各フィルムの貼り合わせ角度の一 例である。直線偏光型反射偏光子 (a2)に示す両矢印は偏光軸、 λ Ζ4板 (b2)に示 す両矢印は遅相軸である。 Cプレート:位相差層(bl)の両側で、直線偏光型反射偏 光子(a2)の偏光軸と λ /4板 (b2)の遅相軸とは、角度 45° (— 45° ) ± 5° で配置 される。これらの組み合わせを、それぞれ setl、 set2として示す。なお、入射側と出 射側の λ Ζ4板 (b2)の軸が成す角度は任意である。
[0072] 直線偏光型反射偏光子 (a2)の偏光軸と λ /4板 (b2)の遅相軸が成す角度 45° ( -45° )を維持していれば、 setl、 set2を回転させても良レ、。 Cプレート:位相差層(b 1)は面内に軸方向が無いので角度指定なく配置することができる。
[0073] 図 14、図 15に示す、平行光化の各光線の変化を追って説明する。
(1)バックライトから供給された自然光 (rl4)の一部は、直線偏光型反射偏光子(a2) に垂直入射する。
(2)直線偏光型反射偏光子(a2)は、直線偏光 (rl 5)を透過し、その直交方向の直 線偏光 (Π6)は反射する。
(3)直線偏光 (rl5)は、 え /4板 (b2)を透過し、円偏光 (rl7)に変換される。
(4)円偏光 (rl7)は位相差層(bl)を素通りする。
(5)円偏光 (rl8)は λ /4板 (b2)を透過し、直線偏光 (rl9)に変換される。
(6)直線偏光 (rl9)は直線偏光型反射偏光子 (a2)を素通りする。
(7)直線偏光 (r20)はこの上に配置される液晶表示装置に入射し、損失無く伝送さ れる。
(8)—方、バックライトから供給された自然光 (r21)の一部は、直線偏光型反射偏光 子(a2)に斜め入射する。
(9)直線偏光型反射偏光子(a2)は、直線偏光 (r22)を透過し、その直交方向の直 線偏光 (r23)は反射する。
(10)直線偏光 (r22)は λ /4板 (b2)を透過し、円偏光 (r24)に変換される。
(11)位相差層(bl)を通過時に円偏光 (r24)は 1/2波長の位相差を受け、回転が 逆転する。
(12)逆転した円偏光 (r25)はえ /4板 (b2)を透過し、直線偏光 (r26)に変換される
(13)直線偏光 (r26)は直線偏光型反射偏光子(a2)で、反射され、直線偏光 (r27) となる。
(14)直線偏光 (r27)は λ /4板 (b2)を透過し、円偏光 (r28)に変換される。
(15)位相差層(bl)を通過時に円偏光 (r28)は 1/2波長の位相差を受け、回転が 逆転する。
(16)逆転した円偏光 (r29)は λ Ζ4板 (b2)を透過し、直線偏光 (r30)に変換される
(17)直線偏光 (r30)は直線偏光型反射偏光子 (a2)を素通りする。
(18)反射光 (rl6、 r23、 r31)はバックライト側に戻され、リサイクルされる。
[0074] 理想的な系での理論上では本来、ここの記載にある λ /4板(b2)の遅相軸と直線 偏光型反射偏光子(a2)の偏光軸のなす角は 45° であるが、現実の直線偏光型反 射偏光子 (a2)やえ /4板 (b2)の特性は可視光域で完全ではなく、波長ごとに微妙 な変化がある。これを無視して 45° で積層すると着色が見られる場合がある。
[0075] そこで若干角度を振って色調を補償すると合理的に系全体の最適化が可能である 。一方、大きく角度が外れると透過率の低下等の他の問題が生じてしまう。そこで現 実には ± 5度程度の範囲での調整に止めることが望ましい。
[0076] 直線偏光型反射偏光子(a2)の透過率と反射率は、斜め方向の入射光線に対して 透過光線の波長特性が短波長側にシフトする点はコレステリック液晶を用いた円偏 光型反射偏光子 (al)と同じである。従って、深い角度で入射する光線に対して十分 機能させる為には可視光域外長波長側に十分な偏光特性 Z位相差特性を有する必 要がある。
[0077] 直線偏光型反射偏光子(a2)はコレステリック液晶と比べて、自身が有する負の位 相差特性が小さい。従って、直線偏光型反射偏光子 (a2)の間に挟んで用いる位相 差層(bl)の斜め方向(30° 傾斜)の位相差はコレステリック液晶を用いた円偏光型 反射偏光子 (al)の場合より若干大きぐ 1/4波長以上が好ましい。 [0078] 上記の他に、反射偏光子(a)が直線偏光型反射偏光子(a2)である場合には、 2枚 のえ /4板 (b2)で Cプレート:位相差層(bl)を挟み込んだ構造物を用いる代わりに 、正面位相差が略え /4であり、厚み方向位相差が略え /2以上であるような 2軸性 位相差層(b3)を 2枚配置することでも同様な効果を得ることができる。このような 2軸 性位相差層(b3)は、 Nz係数が 2以上であれば上記要件を満たす。
[0079] 図 16は、反射偏光子 (a)として直線偏光型反射偏光子(a2)を用レ、、 2軸性位相差 層(b3)を用いた場合の概念図である。図 16では、偏光素子 (A)として、バックライト 側(下側)から、直線偏光型反射偏光子 (a2)、 2軸性位相差層 (b3)、 2軸性位相差 層(b3)、直線偏光型反射偏光子 (a2)が順に配置されてレ、る。
[0080] 図 17は、図 16に示す平行光化システムにおける各フィルムの貼り合わせ角度の一 例である。直線偏光型反射偏光子 (a2)に示す両矢印は偏光軸、位相差層(bl)に 示す両矢印は遅相軸である。直線偏光型反射偏光子 (a2)の偏光軸と 2軸性位相差 層(b3)の遅相軸とは、角度 45° (— 45° ) ± 5° で配置される。これらの組み合わせ を、それぞれ setl、 set2として示す。
[0081] 光路の説明が容易のため、上下の直線偏光型反射偏光子 (a2)の偏光軸は平行、 2軸性位相差層(b3)の遅相軸は直交させた場合を例にして示す。なお、上下の 2軸 性位相差層(b3)の遅相軸の成す角度は任意である。直線偏光型反射偏光子 (a2) の偏光軸と 2軸性位相差層(b3)の遅相軸が成す角度 45° (— 45° )を維持してい れば、 setl、 set2を回転させても良い。
[0082] 図 16、図 17に示す、上記例の平行光化の各光線の変化を追って説明する。
(1)バックライトから供給された自然光 32)の一部は、直線偏光型反射偏光子(a2) に垂直入射する。
(2)直線偏光型反射偏光子(a2)は、直線偏光 (r33)を透過し、その直交方向の直 線偏光 (r34)は反射する。
(3)直線偏光 (r33)は、正面位相差が略 1/4波長の二軸性位相差層(b3)を 2層を 透過する。ここで、上下 2層の二軸性位相差層(b3)は各々の遅相軸は 90° 直交し ているので正面位相差は 0である。従って、直線偏光 (r35)が素通りする。
(4)直線偏光 (r35)は直線偏光型反射偏光子 (a2)を素通りする。 (5)直線偏光 (r36)は液晶表示装置に入射し、損失無く伝送される。
(6)—方、バックライトから供給された自然光 37)の一部は、直線偏光型反射偏光 子(a2)へ斜め入射する。
(7)直線偏光型反射偏光子 (a2)は、直線偏光 (r38)を透過し、その直交方向の直 線偏光 (r39)は反射する。
(8)直線偏光 (r38)は 2層の二軸性位相差層(b3)に斜め入射する。二軸性位相差 層(b3)は、正面位相差 1Z4波長、 Nz係数 2以上であるため、厚み方向の位相差変 化により、 2層の二軸性位相差層(b3)を透過した直線偏光 (r40)は偏光軸方向が 9 0° 変化する。
(9)直線偏光 (r40)は、直線偏光型反射偏光子(a2)に入射する。
(10)上下の直線偏光型反射偏光子(a2)は偏光軸の方向が同じなので直線偏光 (r 40)は反射光 (r41)となる。
(11)反射光 (r41)は 2層の二軸性位相差層 (b3)を通過する際に、(8)と同様に位 相差の影響を受け、偏光軸方向が 90° 回転した直線偏光 (r42)となる。
(12)直線偏光 42)は直線偏光型反射偏光子 (a2)を素通りする。
(13)反射光 (r34、 r39、 r43)はバックライト側に戻され、リサイクルされる。
[0083] 図 16、図 17で示した偏光素子 (A)は、正面位相差が略 1/4波長の位相差を有し 、 Nz係数 2以上の二軸性位相差層(b3)を 2枚積層したものであり、図 14、図 15に示 すような、 2枚の λ /4板 (b2)で Cプレート:位相差層(bl)を挟み込んだ構造の 3層 の積層物を用いる場合とほとんど同じ特性を発生できる。したがって、前述の偏光素 子 (A)に比べて積層数が少なぐ生産性が若干優れる。
[0084] 理想的な系での理論上では本来、ここの記載にある位相差層(b3)の遅相軸と直線 偏光型反射偏光子 (a2)の偏光軸のなす角は 45° であるが、現実の直線偏光型反 射偏光子 (a2)や位相差層 (b3)の特性は可視光域で完全ではなく、波長ごとに微妙 な変化がある。これを無視して 45° で積層すると着色が見られる場合がある。
[0085] そこで若干角度を振って色調を補償すると合理的に系全体の最適化が可能である 。一方、大きく角度が外れると透過率の低下等の他の問題が生じてしまう。そこで現 実には ± 5° 程度の範囲での調整に止めることが望ましい。 [0086] 直線偏光型反射偏光子(a2)の透過率と反射率は、斜め方向の入射光線に対して 透過光線の波長特性が短波長側にシフトする点はコレステリック液晶を用いた円偏 光型反射偏光子 (al)と同じである。従って、深い角度で入射する光線に対して十分 機能させる為には可視光域外長波長側に十分な偏光特性 Z位相差特性を有する必 要がある。
[0087] また、反射偏光子 (a)が直線偏光型反射偏光子(a2)である場合には、位相差層(b )として、正面位相差が略 λ Ζ2であり、厚み方向位相差が λ Ζ2以上であるような 2 軸性位相差層(b4)を配置することでも同様な効果を得ることができる。このような 2軸 性位相差層(b4)は、 Nz係数は 1. 5以上であれば上記要件を満たす。
[0088] 図 18は、反射偏光子 (a)として直線偏光型反射偏光子(a2)を用レ、、 2軸性位相差 層(b4)を用いた場合の概念図である。図 18では、偏光素子 (A)として、バックライト 側(下側)から、直線偏光型反射偏光子 (a2)、二軸性位相差層 (b4)、直線偏光型 反射偏光子(a2)がこの順に配置されてレ、る。
[0089] 図 19は、図 18に示す平行光化システムにおける各フィルムの貼り合わせ角度の一 例である。直線偏光型反射偏光子 (a2)に示す両矢印は偏光軸、位相差層(b4)に 示す両矢印は遅相軸である。上下の直線偏光型反射偏光子(a2)の偏光軸は略直 交させて配置する。二軸性位相差層(b4)の遅相軸と、直線偏光型反射偏光子(a2) の偏光軸とは、角度 45° (— 45° ) ± 5° で配置される。
[0090] 図 18、図 19に示す、上記例の平行光化の各光線の変化を追って説明する。
(1)バックライトから供給された自然光 47)の一部は、直線偏光型反射偏光子(a2) に垂直入射する。
(2)直線偏光型反射偏光子 (a2)は、直線偏光 (r48)を透過し、その直交方向の直 線偏光 (r49)は反射する。
(3)直線偏光 (r48)は正面位相差が略 1Z2波長の二軸性位相差層(b4)を透過し、 直線偏光 (r50)に変換され偏光軸の方向が 90° 回転する。
(4)直線偏光 (r50)は直線偏光型反射偏光子 (a2)を素通りする。
(5)透過した直線偏光 (r51)は液晶表示装置に入射し、損失無く伝送される。
(6)—方、バックライトから供給された自然光 (r52)の一部は、直線偏光型反射偏光 子(a2)へ斜め入射する。
(7)直線偏光型反射偏光子(a2)は、直線偏光 (r53)を透過し、その直交方向の直 線偏光 (r54)は反射する。
(8)直線偏光 (r53)は二軸性位相差層(b4)に斜め入射する。二軸性位相差層(b4 )は、正面位相差が略 1/2波長、 Nz係数 2以上であるため、厚み方向の位相差の 影響で、偏光軸の方向が直線偏光 (r53)と同じ状態の直線偏光 (r55)で透過する。
(9)透過した直線偏光 (r55)は直線偏光型反射偏光子(a2)で反射され、反射光 (r5 6)となる。
(10)反射光 (r56)は位相差層(b4)に入射する。これも軸方向は変わらないまま透 過する。
(11)透過した直線偏光 (r57)は直線偏光型反射偏光子(a2)を素通りして直線偏光 (r58)となる。
(12)反射光(r49、 r54、 r58)はバックライト側に戻され、リサイクルされる。
[0091] 図 18、図 19で示した偏光素子 (A)は、正面位相差が略 1/4波長の位相差を有し 、 Nz係数 1. 5以上の二軸性位相差層(b4)を 1枚配置したものであり、図 14、図 15 に示すような、 2枚の λ /4板 (b2)で Cプレート:位相差層(bl)を挟み込んだ構造の 3層の積層物を用いる場合とほとんど同じ特性を発生できる。したがって、前述の偏 光素子 (A)に比べて積層数が少なぐ生産性が若干優れる。さらには、図 16、図 17 に示すような、 2層の積層物を用いる場合よりも生産性に優れる。
[0092] 理想的な系での理論上では本来、ここの記載にある位相差層(b4)の遅相軸と直線 偏光型反射偏光子(a2)の偏光軸のなす角は 45° であるが、現実の直線偏光型反 射偏光子 (a2)や位相差層 (b4)の特性は可視光域で完全ではなく、波長ごとに微妙 な変化がある。これを無視して 45° で積層すると着色が見られる場合がある。
[0093] そこで若干角度を振って色調を補償すると合理的に系全体の最適化が可能である 。一方、大きく角度が外れると透過率の低下等の他の問題が生じてしまう。そこで現 実には ± 5° 程度の範囲での調整に止めることが望ましい。
[0094] 直線偏光型反射偏光子(a2)の透過率と反射率は、斜め方向の入射光線に対して 透過光線の波長特性が短波長側にシフトする点はコレステリック液晶を用いた円偏 光型反射偏光子 (al)と同じである。従って、深い角度で入射する光線に対して十分 機能させる為には可視光域外長波長側に十分な偏光特性/位相差特性を有する必 要がある。
[0095] 上記の図 10 図 19に示すように偏光素子 (A)は、法線方向から 30° の入射角で 入射した光線を、 2枚の反射偏光子(a)で反射される軸方向の偏光に変換する位相 差層(b)を有しており、当該偏光素子 (A)は入射角 30° で全反射機能を有し入射 角 30° 近傍では光線は透過しない。実質的には当該偏光素子 (A)は、法線方向か ら ± 15— 20° 程度の範囲に高い透過率を有し、それ以上の入射角の光線は反射し 再利用に回る。このため光源からの透過光線は、上記範囲内に集中し、集光と平行 光化がなされる。
[0096] このようにして得られた平行光化バックライトは従来技術に比べ薄型であり平行度 の高レ、光源を容易に得られる特徴を有する。しかも本質的に吸収損失を有さなレヽ偏 光反射による平行光化であるので、反射された非平行光成分はバックライト側に戻り 、散乱反射し、その中の平行光成分だけが取り出されるリサイクルが繰り返され、実質 的に高い透過率と高い光利用効率を得ることができる。
[0097] 上述の前記位相差異方性制御型平行光化手段は光学観察で面方向から見て面 内微細構造が視認されることはなぐ液晶画素やブラックマトリクス、平行光化手段に 用いられる微細構造を有するフィルム、液晶表示装置の最外面のグレア処理面など との干渉が一切無く、モアレの要因にならなレ、特徴を有する。
[0098] モアレは図 20に示すように、異なる層に形成された格子が角度を持って重ね合わ されたときに視認される格子より低い周波数を有する濃淡模様のことである。
[0099] モアレ縞のピッチは、下記式 1
[0100] [数 1]
2 cosひ
S 3 /
Figure imgf000024_0001
S 1 X S 2 [0101] で表される。数 1中、 S1 :第一格子ピッチ、 S2 :第二格子ピッチ、 S3 :モアレ縞ピッチ 、 a:第一格子と第二格子のなす角度、である。
[0102] このように異なる格子を重ね合わせて得られるモアレ縞の強度 Iの最大値を Imax、 最小値を Iminとして、モアレ縞の可視度(V sibility)を計算すると、数式: V= (I max_Imin) / (Imax + Imin)、で表される。このコントラストを低減するには格子同 士が成す角度が十分に大きぐ直交に近いことが望まれる。しかし、格子を有する層 力 ¾層以上では要件を満たすことが困難になる。従って、モアレ現象を抑制するには 格子構造を有する層の削減が効果的であることが分かる。
[0103] (反射偏光子 (a) )
輝度向上の観点よりは視感度の高い 550nm付近の波長の光に対して、その全反 射が達成されることが望ましぐ少なくとも 550nm± 10nmの波長領域で反射偏光子 (a)の選択反射波長が重なっていることが望ましい。更に、色付きの観点や、液晶表 示装置などにおける RGB対応の観点よりは可視光全波長領域 380nm— 780nmに ぉレ、て反射波長帯域が重なってレ、ることがより望ましレ、。
[0104] 例えば液晶表示装置に多く用いられているゥエッジ型導光板を用いたバックライト では導光板からの出射光の角度は法線方向から 60° 前後の角度である。この角度 でのブルーシフト量は約 lOOnmにも及ぶ。従ってバックライトに 3波長冷陰極管が用 レ、られている場合には赤の輝線スペクトルが 610nmであるので選択反射波長は少 なくとも 710nmより長波長側に達する必要があると分かる。この長波長側に必要な選 択反射波長帯域幅は上記のように光源からの入射光線の角度と波長に大きく依存 するので要求仕様に応じて任意に長波長端を設定する。
[0105] バックライト光源が特定の波長しか発光しない場合、例えば色付き冷陰極管のよう な場合には得られる輝線のみ遮蔽できればよい。
[0106] また、バックライトからの出射光線が動向体表面に加工されたマイクロレンズやドット 、プリズムなどの設計で正面方向に最初からある程度絞られている場合には大きな入 射角での透過光は無視できるので選択反射波長を大きく長波長側に延ばさなくても 良レ、。組み合わせ部材 ·光源種に合わせて適宜設計できる。
[0107] 力、かる観点より反射偏光子(a)は全く同一の組み合わせでも良いし、一方が可視光 全波長で反射を有するもので、他方が部分的に反射するものでも良い。
[0108] (円偏光型反射偏光子 (al) )
円偏光型反射偏光子(al)としては、たとえば、コレステリック液晶材料が用いられる 。円偏光型反射偏光子(al)においては選択反射の中心波長は λ =npで決定され る(nはコレステリック材料の屈折率、 pはカイラルピッチ)。斜め入射光に対しては、選 択反射波長がブルーシフトするため、前記重なっている波長領域はより広い方が好 ましい。
[0109] 円偏光型反射偏光子 (al)がコレステリック材料の場合、異なるタイプ (右ねじれと 左ねじれ)の組み合わせでも同様の考え方で正面位相差が λ Ζ2で傾けると位相差 がゼロまたは λであれば同様の偏光子が得られるが、傾斜する軸の方位角による異 方性や色付きの問題が発生するため好ましくない。かかる観点より同じタイプ同士の 組み合わせ (右ねじれ同士、左ねじれ同士)が好ましいが、上下のコレステリック液晶 分子、あるいは Cプレートの波長分散特性が異なる物の組み合わせで相殺すること で色づきを押さえることもできる。
[0110] 円偏光型反射偏光子(al)を構成するコレステリック液晶には、適宜なものを用いて よぐ特に限定はない。例えば、高温でコレステリック液晶性を示す液晶ポリマー、ま たは液晶モノマーと必要に応じてのカイラル剤および配向助剤を電子線や紫外線な どの電離放射線照射や熱により重合せしめた重合性液晶、またはそれらの混合物な どがあげられる。液晶性はリオトロピックでもサーモト口ピック性のどちらでもよいが、制 御の簡便性およびモノドメインの形成しやすさの観点よりサーモト口ピック性の液晶で あることが望ましい。
[0111] コレステリック液晶層の形成は、従来の配向処理に準じた方法で行うことができる。
例えば、トリァセチルセルロースやアモルファスポリオレフインなどの複屈折位相差が 可及的に小さな支持基材上に、ポリイミド、ポリビュルアルコール、ポリエステル、ポリ ァリレート、ポリアミドイミド、ポリエーテルイミド等の膜を形成してレーヨン布等でラビン グ処理した配向膜、または SiOの斜方蒸着層、またはポリエチレンテレフタレートや ポリエチレンナフタレートなどの延伸基材表面性状を配向膜として利用した基材、ま たは上記基材表面をラビング布ゃベンガラに代表される微細な研磨剤で処理し、表 面に微細な配向規制力を有する微細凹凸を形成した基材、または上記基材フィルム 上にァゾベンゼン化合物など光照射により液晶規制力を発生する配向膜を形成した 基材、等からなる適当な配向膜上に、液晶ポリマーを展開してガラス転移温度以上、 等方相転移温度未満に加熱し、液晶ポリマー分子がブラナー配向した状態でガラス 転移温度未満に冷却してガラス状態とし、当該配向が固定化された固化層を形成す る方法などがあげられる。
[0112] また配向状態が形成された段階で紫外線やイオンビーム等のエネルギー照射で構 造を固定してもよレ、。上記基材で複屈折が小さなものは液晶層支持体としてそのまま 用いてもよい。複屈折が大きなもの、または偏光素子 (A)の厚みに対する要求が厳し い場合には配向基材より液晶層を剥離して適宜に用いることもできる。
[0113] 液晶ポリマーの製膜は、例えば液晶ポリマーの溶媒による溶液をスピンコート法、口 ールコート法、フローコート法、プリント法、ディップコート法、流延成膜法、バーコート 法、グラビア印刷法等で薄層展開し、さらに、それを必要に応じ乾燥処理する方法な どにより行うことができる。前記の溶媒としては例えば塩化メチレン、トリクロロエチレン 、テトラクロロェタンのような塩素系溶媒;アセトン、メチルェチルケトン、シクロへキサ ノンのようなケトン系溶媒;トルエンのような芳香族溶媒;シクロヘプタンのような環状ァ ルカン;または N—メチルピロリドンゃテトラヒドロフラン等を適宜に用いることができる。
[0114] また液晶ポリマーの加熱溶融物、好ましくは等方相を呈する状態の加熱溶融物を 前記に準じ展開し、必要に応じその溶融温度を維持しつつ更に薄層に展開して固 化させる方法などを採用することができる。当該方法は、溶媒を使用しない方法であ り、従つて作業環境の衛生性等が良好な方法によつても液晶ポリマーを展開させるこ とができる。なお、液晶ポリマーの展開に際しては、薄型化等を目的に必要に応じて 配向膜を介したコレステリック液晶層の重畳方式なども採ることができる。
[0115] さらに必要に応じ、これらの光学層を成膜時に用いる支持基材/配向基材から剥 離し、他の光学材料に転写して用いることもできる。
[0116] また、本発明の円偏光型反射偏光子 (al)としては、後述の直線偏光型反射偏光 子(a2)と; I Z4板を組み合わせたものを用いることができる。これらは:!枚用いてもよ ぐ 2枚以上を用いてもよい。円偏光型反射偏光子(al)は全部が直線偏光型反射偏 光子と λ /4板を組み合わせたものでもよい。最下層(たとえば、バックライト側から 1 枚目)に用いる場合には、ノ ックライト側から、直線偏光型反射偏光子、次いでえ /4 板の順で配置する。最上層に用いる場合には、バックライト側から、 λ /4板、次いで 直線偏光型反射偏光子の順で配置する。中間層(たとえば、 3枚積層する場合のバ ックライト側から 2枚目)に用いる場合には、直線偏光型反射偏光子の両側に λ /4 板を配置する。
[0117] (直線偏光型反射偏光子 (a2) )
直線偏光型反射偏光子 (a2)としては、グリッド型偏光子、屈折率差を有する 2種以 上の材料による 2層以上の多層薄膜積層体、ビームスプリツターなどに用いられる屈 折率の異なる蒸着多層薄膜、複屈折を有する 2種以上の材料による 2層以上の複屈 折層多層薄膜積層体、複屈折を有する 2種以上の樹脂を用いた 2層以上の樹脂積 層体を延伸したもの、直線偏光を直交する軸方向で反射 Z透過することで分離する ものなどがあげられる。
[0118] 例えばポリエチレンナフタレート、ポリエチレンテレフタレート、ポリカーボネートに代 表される延伸により位相差を発生する材料やポリメチルメタタリレートに代表されるァ クリル系樹脂、 JSR社製のアートンに代表されるノルボルネン系樹脂等の位相差発現 量の少ない樹脂を交互に多層積層体として一軸延伸して得られるものを用いることが できる。
[0119] (位相差層 (b) )
円偏光型反射偏光子 (al)または直線偏光型反射偏光子 (a2)の間に配置する位 相差層(bl)は、正面方向の位相差が略ゼロであり、法線方向から 30° の角度の入 射光に対して λ Ζ8以上の位相差を有するものである。正面位相差は垂直入射され た偏光が保持される目的であるので、 λ ΖΐΟ以下であることが望ましい。
[0120] 斜め方向からの入射光に対しては効率的に偏光変換されるべく全反射させる角度 などによって適宜決定される。例えば、法線からのなす角 60° 程度で完全に全反射 させるには 60° で測定したときの位相差が λ /2程度になるように決定すればよい。 ただし、円偏光型反射偏光子(al )による透過光は、円偏光型反射偏光子 (al)自身 の Cプレート的な複屈折性によっても偏光状態が変化しているため、通常挿入される Cプレートのその角度で測定したときの位相差は λ /2よりも小さな値でよレ、。 Cプレ ートの位相差は入射光が傾くほど単調に増加するため、効果的な全反射を 30° 以 上のある角度傾斜した時に起こさせる目安として 30° の角度の入射光に対して λ / 8以上有すればよい。
[0121] 本発明の偏光素子 (Α)にて正面より 30° の入射角を有する光線に対して有効な 遮蔽を行い得る設計の場合、実質的には入射角 20° 前後の領域で十分に透過光 線が低下している。この領域の光線に限定される場合、一般的な ΤΝ液晶表示装置 の良好な表示を示す領域の光線のみが透過する。用レ、る ΤΝ液晶表示装置のセル 内液晶種や配向状態、プレティルト角などの条件により変動があるが階調反転ゃコン トラストの急激な劣化は生じないため、本発明における視野角拡大のためには用いら れる水準となる。より正面光のみに絞り込むために位相差層の位相差値をより大きく 取ったり、 ΤΝ液晶に補償位相差板を組み合わせることを前提に位相差値を小さくし て絞り込みを穏やかにして用いても良い。
[0122] 位相差層(bl)の材質は上記のような光学特性を有するものであれば特に制限は なレ、。例えば、可視光領域(380nm— 780nm)以外に選択反射波長を有するコレス テリック液晶のブラナー配向状態を固定したものや、棒状液晶のホメオト口ピック配向 状態を固定したもの、ディスコティック液晶のカラムナー配向ゃネマチック配向を利用 したもの、負の 1軸性結晶を面内に配向させたもの、 2軸性配向したポリマーフィルム などがあげられる。
[0123] Cプレートとしては、たとえば、可視光領域(380nm— 780nm)以外に選択反射波 長を有するコレステリック液晶のブラナー配向状態を固定した Cプレートは、コレステ リック液晶の選択反射波長としては、可視光領域に色付きなどがないことが望ましレ、 。そのため、選択反射光が可視領域にない必要がある。選択反射はコレステリックの カイラルピッチと液晶の屈折率によって一義的に決定される。選択反射の中心波長 の値は近赤外領域にあっても良いが、旋光の影響などを受けるため、やや複雑な現 象が発生するため、 350nm以下の紫外部にあることがより望ましい。コレステリック液 晶層の形成については、前記した反射偏光子におけるコレステリック層形成と同様に 行われる。 [0124] ホメオト口ピック配向状態を固定した Cプレートは、高温でネマチック液晶性を示す 液晶性熱可塑樹脂または液晶モノマーと必要に応じての配向助剤を電子線や紫外 線などの電離放射線照射や熱により重合せしめた重合性液晶、またはそれらの混合 物が用いられる。液晶性はリオトロピックでもサーモト口ピック性のいずれでもよいが、 制御の簡便性やモノドメインの形成しやすさの観点より、サーモト口ピック性の液晶で あることが望ましい。ホメオト口ピック配向は、例えば、垂直配向膜 (長鎖アルキルシラ ンなど)を形成した膜上に前記複屈折材料を塗設し、液晶状態を発現させ固定する ことによって得られる。
[0125] ディスコティック液晶を用いた Cプレートとしては、液晶材料として面内に分子の広 力^を有したフタロシアニン類やトリフエ二レン類化合物のごとく負の 1軸性を有するデ イスコティック液晶材料を、ネマチック相やカラムナー相を発現させて固定したもので ある。負の 1軸性無機層状化合物としては、たとえば、特開平 6 - 82777号公報など に詳しい。
[0126] ポリマーフィルムの 2軸性配向を利用した Cプレートは、正の屈折率異方性を有する 高分子フィルムをバランス良く 2軸延伸する方法、熱可塑樹脂をプレスする方法、平 行配向した結晶体力 切り出す方法などにより得られる。
[0127] 直線偏光型反射偏光子(a2)を用いる場合には、位相差層(bl)として、正面方向 の位相差が略ゼロであり、法線方向から 30° の角度の入射光に対してえ /4以上の 位相差を有するものが用いられる。前記位相差層(bl)の両側に、正面位相差が略 λ /4であるえ /4板 (b2)を用いて直線偏光を一度円偏光に変換した後に前述の 円偏光板と同様な方法で平行光化することができる。この場合の構成断面と各層の 配置は図 13、図 14、図 15に示した通りである。この場合、 λ /4板 (b2)の遅相軸と 直線偏光型反射偏光子(a2)の偏光軸の成す角度は前述の通りであり、 λ Ζ4板 (b 2)同士の軸角度は任意に設定できる。
[0128] 前記位相差層(b2)としては、具体的には、 λ Ζ4板が用いられる。 λ /4板は、使 用目的に応じた適宜な位相差板が用いられる。 λ /4板は、 2種以上の位相差板を 積層して位相差等の光学特性を制御することができる。位相差板としては、ポリカー ボネート、ノルボルネン系樹脂、ポリビュルアルコール、ポリスチレン、ポリメチルメタク リレート、ポリプロピレンやその他のポリオレフイン、ポリアリレート、ポリアミドの如き適 宜なポリマーからなるフィルムを延伸処理してなる複屈折性フィルムや液晶ポリマー などの液晶材料からなる配向フィルム、液晶材料の配向層をフィルムにて支持したも のなどがあげられる。
[0129] 可視光域等の広レ、波長範囲で λ /4板として機能する位相差板は、例えば波長 5 50nmの淡色光に対して λ /4板として機能する位相差層と他の位相差特性を示す 位相差層、例えば 1/2波長板として機能する位相差層とを重畳する方式などにより 得ること力 Sできる。従って、偏光板と輝度向上フィルムの間に配置する位相差板は、 1 層又は 2層以上の位相差層からなるものであってよい。
[0130] また、正面位相差が略 λ /4であり、厚み方向位相差が λ /2以上であるような 2軸 性位相差層(b3)を 2枚配置することでも同様な効果を得ることができる。 2軸性位相 差層(b3)は、 Nz係数が略 2以上であれば上記要件を満たす。この場合の構成断面 と各層の配置は図 16、図 17に示した通りである。この場合、 2軸性位相差層(b3)と の遅相軸と直線偏光型反射偏光子(a2)の偏光軸は前述の通りであり、 2軸性位相 差層(b3)同士の軸角度は任意に設定できる。
[0131] なお、正面位相差が略 λ /4であることは、 550nm波長の光に対してえ /4 ±40η m程度、さらには ± 15nmの範囲に入るものであることが好ましレ、。
[0132] また、正面位相差が略 λ /2であり、厚み方向位相差が λ /2以上であるような 2軸 性位相差層(b4)を 1枚用いることでも同様な効果を得ることができる。 2軸性位相差 層(b4)は、 Nz係数が略 1. 5以上であれば上記要件を満たす。この場合の構成断面 と各層の配置は図 18、図 19に示した通りである。この場合、上下の直線偏光型反射 偏光子 (a2)と中央の 2軸性位相差層(b4)の軸角度の関係は指定したとおりの角度 となり一義的に決定される。
[0133] なお、正面位相差が略 λ /2であることは、 550nm波長の光に対して; l Z2±40n m程度、さらには ± 15nmの範囲に入るものが好ましレ、。
[0134] 具体的に前記 2軸性位相差層(b3)、 (b4)としては、ポリカーボネートゃポリエチレ ンテレフタレート等の複屈折性を有するプラスチック材料を 2軸延伸したもの、または 液晶材料を平面方向では一軸配向させ、厚み方向にさらに配向させたハイブリッド 配向したものが用いられる。液晶材料を 1軸性にホメオト口ピック配向させたものも可 能であり、前記コレステリック液晶を製膜した方法と同様に行われる。ただし、コレステ リック液晶ではなくネマチック液晶材料を用いる必要がある。
[0135] 上記では、透過率角度依存性偏光層 (T2)として用いる偏光素子 (A)において、 円偏光型 (al)または直線偏光型 (a2)の反射偏光子、すなわち同型の反射偏光子( a)が使用されていた。しかし、円偏光型反射偏光子 (al)を用いた場合には、 1枚の 反射偏光子 (al)の法線方向力 斜め方向での偏光状態が大きく崩れるために、偏 光度が低下する問題がある。この場合、平行光化された光は、光源の法線方向から の角度が大きい(60° 以上)ときに、大きく色付いていた。また、直線偏光型反射偏 光子 (a2)を用いた場合には、斜め方向の偏光状態は非常に良好であるが、反射偏 光子間には、正面位相差を有する位相差層を、偏光軸に対して 45° に配置するた めに、視角による軸方向の異方性が大きくなる。この結果、画面の方位によっては、 集光性が高レ、方位と低レ、方位が混在してレ、た。
[0136] 以下は、透過率角度依存性偏光層(T2)として用いる偏光素子 (A)として、少なくと も 1層の反射偏光子 (a)が、ある円偏光を透過し、逆の円偏光を選択的に反射する 円偏光型反射偏光子 (al)であり、少なくとも 1層の反射偏光子 (a)が、直交する直線 偏光の内の一方を透過し、他方を選択的に反射する直線偏光型反射偏光子(a2)で あり、位相差層(b)が、正面位相差 (法線方向)がほぼ λ /4であり、かつ法線方向に 対し 30° 以上傾けて入射した入射光に対して λ /8以上の位相差値を有する層(b 1)であるものについて説明する。
[0137] 円偏光型反射偏光子 (al)と直線偏光型反射偏光子 (a2)をそれぞれ少なくとも 1 枚以上用い、かつ、これら異型の反射偏光子間に、位相差層 (bl)を配置した光学 素子は、斜め方向の入射光線に対しても、透過光線を効果的に遮蔽することができ 優れた輝度特性を有し、かつ、着色により制御できる。
[0138] 図 21、図 22は、円偏光型反射偏光子(al)と、直線偏光型反射偏光子(a2)の間 に、可視光波長領域において、正面位相差 (法線方向)がほぼ I Z4であり、かつ法 線方向に対し 30° 以上傾けて入射した入射光に対して λ Ζ8以上の位相差値を有 する層(bl)が配置されている光学素子の断面図である。図 21、図 22の下側が、サ イドライト型バックライト導光板 (L)側である。円偏光型反射偏光子 (al)、直線偏光 型反射偏光子(a2)は上記と同様のものを用いることができる。
[0139] (位相差層(bl) )
位相差層(b 1 )は、可視光領域における正面位相差 (法線方向)がほぼ λ /4であ り、かつ法線方向に対し 30° 以上傾けて入射した入射光に対して λ /8以上の位相 差値を有するものである。一般的には正面位相差は、 550nm波長の光に対して λ /4±40nm程度、さらには ± 15nmの範囲に入るものが好ましレ、。その配置は直線 偏光型反射偏光子 (a2)の偏光軸と該位相差層(bl)の遅層軸方向が 45° (— 45° ) ± 5° の角度で配置される。
[0140] 正面位相差は垂直入射された偏光を直線偏光から円偏光への変換、あるいは円 偏光から直線偏光の変換が目的であるので、 λ Ζ4程度,望ましくは全可視領域に おいて λ Ζ4程度となるのが望ましレ、。
[0141] 斜め方向からの入射光に対しては効率的に偏光変換されるべく全反射させる角度 などによって適宜決定される。例えば、法線からのなす角 60° 程度で完全に全反射 させるには 60° で測定したときの位相差が λ /2程度になるように決定すればよい。 ただし、反射偏光子による透過光は、反射偏光子自身の Cプレート的な複屈折性に よっても偏光状態が変化しているため、通常挿入される Cプレートのその角度で測定 したときの位相差はえ /2よりも小さな値でよレ、。 Cプレートの位相差は入射光が傾く ほど単調に増加するため、効果的な全反射を 30° 以上のある角度傾斜した時に起 こさせる目安として 30° の角度の入射光に対して λ /4以上有すれば良レ、。
[0142] 位相差層(bl)は 1層でもよぐまた 2層以上の組み合わせでもよい。 1層の位相差 層(bl)としては、たとえば、正面位相差(法線方向)がほぼ; I Z4であり、 Nz係数が 2 . 0以上である二軸性位相差層、または一 1. 0以下である二軸性位相差層があげら れる。前記二軸性位相差層の遅層軸方向は、直線偏光型反射偏光子 (a2)の偏光 軸に対して 45° (— 45° ) ± 5° の角度で配置されている。
[0143] また、 2層の位相差層(bl)としては、図 23、図 24に示すように、位相差層 (bl)は、 正面位相差 (法線方向)がほぼゼロで、法線方向に対し 30° 以上傾けて入射した入 射光に対して; I Z8以上の位相差値を有する層(bl l)と、正面位相差 (法線方向) がほぼえ /4であり、かつ Nz係数が 1. 0である一軸性位相差層(bl 2)との複合体が あげられる。すなわち、 2層以上の場合は、 1枚の 1軸性位相差層(bl2)と、 1枚ある いはそれ以上の正面方向の位相差はほぼゼロ 0で、法線方向力 傾斜した時に位相 差が生じる Cプレート(bl l)を組み合わせればよい。正面位相差は垂直入射された 偏光が保持される目的であるので、 λ /10以下であることが望ましい。
[0144] 前記一軸性位相差層(bl 2)の遅層軸方向は、直線偏光型反射偏光子 (a2)の偏 光軸に対して 45° (— 45° ) ± 5° の角度で配置されている。なお、前記位相差層( bl)が、層(bl l)と一軸性位相差層(bl 2)との複合体の場合には、図 3、図 4に示す ように、円偏光型反射偏光子(al)側が、層(bl l)となるように配置するのが好ましレヽ
[0145] 位相差層(bl)の材質は上記のような光学特性を有するものであれば、特に制限は ない。 2軸性位相差層および 1軸性位相差層(bl 2)は、複屈折性を有するプラスチッ ク材料を延伸処理したものであれば特に制限されなレ、。あるいは液晶材料を 1軸性 にホメオト口ピック配向させたものも可能であり、前記コレステリック液晶を製膜した方 法と同様に行われる。ただし、コレステリック液晶ではなくネマチック液晶材料を用い る必要がある。位相差層(bl l): Cプレートとしては、上記で例示の Cプレートを用い ること力 Sできる。
[0146] 透過率角度依存性偏光層 (T2)を用いる場合には、偏光解消能を有する光学層( D)が適用される。光学層(D)としては、位相差板を好適に用いることができる。当該 位相差板としては、局所的に位相差値/軸の変位が存在するようなものが好ましい。 たとえば、一般的な二軸延伸ポリエステルフィルム等を例示できる。具体的には、東 レ製のルミラー等があげられる。図 10 (c)のように、光学層(D)を反射板 (R)の繰り返 し傾斜構造の表面に配置する場合には、繰り返し傾斜構造を有する光学層(D)に反 射層を形成することにより前記配置を行なうことができる。
[0147] 本発明の光源装置を、液晶ディスプレイへ応用する場合には、透過率角度依存性 層(T1)または透過率角度依存性偏光層(T2)を配置した液晶セル側に、外側に二 色性直線偏光子 (P)が積層される。
[0148] 透過率角度依存性偏光層 (T2)の場合において、透過率角度依存性偏光層 (T2) を透過した後の偏光が直線偏光の場合には、その偏光軸と二色性直線偏光子 (P) の偏光軸が一致するようにする。透過率角度依存性偏光層 (T2)を透過した後の偏 光が円偏光である場合には、円偏光から直線偏光に変換するため、 λ /4板を介し 二色性直線偏光子 (Ρ)を配置する。この; Ι Ζ4板は、前記位相差層(bl2)等と同様 の I Z4層と同じであってもよレ、が、好ましくは Nz係数が— 1. 0一— 2. 0であるものが 望ましい。
[0149] (各層の積層)
偏光素子 (A)の作製等にあたり、各層の積層は、重ね置いただけでも良いが、作 業性や、光の利用効率の観点より各層を接着剤や粘着剤を用いて積層することが望 ましい。その場合、接着剤または粘着剤は透明で、可視光領域に吸収を有さず、屈 折率は、各層の屈折率と可及的に近いことが表面反射の抑制の観点より望ましい。 かかる観点より、例えば、アクリル系粘着剤などが好ましく用レ、うる。各層は、それぞ れ別途配向膜状などでモノドメインを形成し、透光性基材へ転写などの方法によって 順次積層していく方法や、接着層などを設けず、配向のために、配向膜などを適宜 形成し、各層を順次直接形成して行くことも可能である。
[0150] 各層および (粘)接着層には、必要に応じて拡散度合レ、調整用に更に粒子を添カロ して等方的な散乱性を付与することや、紫外線吸収剤、酸化防止剤、製膜時のレべ リング性付与の目的で界面活性剤などを適宜に添加することができる。
[0151] (光源装置)
本発明の光源装置においては特に必要ではないが、透過率角度依存性層(T1)ま たは透過率角度依存性偏光層(T2)とサイドライト型バックライト導光板 (L)の間には 適当な拡散板を設置することができる。ただし、本発明では出射光の正面ピークを高 めるために高ヘイズを有するものを用いることは好ましくなレ、。ヘイズは 80%以下、好 ましくは 70%以下である。たとえば、きもと製ライトアップ 100TL4 (ヘイズ 46%)や 10 0TL2 (ヘイズ 29%)等は好適に用いうる。
[0152] 本発明では液晶表示装置直下にプリズムシートを配置しないので、プリズムシート 起因のモアレは視認されない。また傾斜構造の反射板導光板の下に配置され、これ による輝度ムラやモアレは視認されにくい特徴を有する。このため全光線透過率を低 下させ、正面方向への集光特性を低下させる高ヘイズの拡散板の使用は避け、低へ ィズで高透過率を有するものをもちいるのが有益である。斜め入射し、反射された光 線をバックライト導光板近傍にて散乱させ、その一部を垂直入射方向へ散乱せしめる ことで光の再利用効率が高まるためである。拡散板としては、表面凹凸形状による物 の他、屈折率が異なる微粒子を樹脂中に包坦する等の方法で得られる。この拡散板 は透過率角度依存性層 (T1)または透過率角度依存性偏光層 (T2)とバックライト間 に挟み込んでも良いし、透過率角度依存性層 (T1)または透過率角度依存性偏光 層(T2)に貼り合わせてもよい。
[0153] 透過率角度依存性層 (T1)または透過率角度依存性偏光層 (T2)を貼り合わせた 液晶セルをバックライトと近接して配置する場合、フィルム表面とバックライトの隙間で ニュートンリングが生じる恐れがある力 本発明における透過率角度依存性層(T1) または透過率角度依存性偏光層 (T2)の導光板側表面に表面凹凸を有する拡散板 を配置することによってニュートンリングの発生を抑制することができる。また、透過率 角度依存性層 (T1)または透過率角度依存性偏光層 (T2)の表面そのものに凹凸構 造と光拡散構造を兼ねた層を形成しても良い。
[0154] (液晶表示装置)
上記光源装置は、液晶セルの両側に偏光板が配置されてレ、る液晶表示装置に好 適に適用される。
[0155] 上記平行光化されたバックライトと組み合わされた液晶表示装置に、後方散乱、偏 光解消を有さなレ、拡散板を液晶セル視認側に積層することにより、正面近傍の良好 な表示特性の光線を拡散し、全視野角内で均一で良好な表示特性を得ることによつ て視野角拡大化ができる。
[0156] ここで用いられる視野角拡大フィルムは実質的に後方散舌しを有さない拡散板が用 いられる。拡散板は、拡散粘着材として設けることができる。配置場所は液晶表示装 置の視認側であるが偏光板の上下いずれでも使用可能である。ただし画素のにじみ 等の影響やわずかに残る後方散乱によるコントラスト低下を防止するために偏光板 一液晶セル間など、可能な限りセルに近い層に設けることが望ましい。またこの場合 には実質的に偏光を解消しないフィルムが望ましい。例えば特開 2000—347006号 公報、特開 2000-347007号公報に開示されているような微粒子分散型拡散板が 好適に用いられる。
[0157] 偏光板より外側に視野角拡大フィルムを位置する場合には液晶層 -偏光板まで平 行光化された光線が透過するので TN液晶セルの場合は特に視野角補償位相差板 を用いなくともよい。 STN液晶セルの場合には正面特性のみ良好に補償した位相差 フィルムを用いるだけでよい。この場合には視野角拡大フィルムが空気表面を有する ので表面形状による屈折効果によるタイプの採用も可能である。
[0158] 一方で偏光板と液晶層間に視野角拡大フィルムを揷入する場合には偏光板を透 過する段階では拡散光線となっている。 TN液晶の場合、偏光子そのものの視野角 特性は補償する必要がある。この場合には偏光子の視野角特性を補償する位相差 板を偏光子と視野角拡大フィルムの間に揷入する必要がある。 STN液晶の場合に は STN液晶の正面位相差補償に加えて偏光子の視野角特性を補償する位相差板 を挿入する必要がある。
[0159] 従来力 存在するマイクロレンズアレイフィルムやホログラムフィルムのように、内部 に規則性構造体を有する視野角拡大フィルムの場合、液晶表示装置のブラックマトリ タスや従来のバックライトの平行光化システムが有するマイクロレンズアレイ/プリズム アレイ/ルーバー/マイクロミラーアレイ等の微細構造と干渉しモアレを生じやすか つた。し力し本発明における平行光化フィルムは面内に規則性構造が視認されず、 出射光線に規則性変調が無いので視野角拡大フィルムとの相性や配置順序を考慮 する必要はない。従って視野角拡大フィルムは液晶表示装置の画素ブラックマトリク スと干渉/モアレを発生しなければ特に制限はなく選択肢は広い。
[0160] 本発明においては視野角拡大フィルムとして実質的に後方散乱を有さなレ、、偏光 を解消しなレ、、特開 2000-347006号公報、特開 2000— 347007号公報に記載さ れているような光散乱板で、ヘイズ 80。/o— 90。/oの物が好適に用いられる。その他、 ホログラムシート、マイクロプリズムアレイ、マイクロレンズアレイ等、内部に規則性構 造を有していても液晶表示装置の画素ブラックマトリクスと干渉/モアレを形成しなけ れば使用可能である。
[0161] (その他の材料) なお、液晶表示装置には、常法に従って、各種の光学層等が適宜に用いられて作 製される。
[0162] 前記 λ /4波長板は、使用目的に応じた適宜な位相差板が用いられる。 1/4波長 板は、 2種以上の位相差板を積層して位相差等の光学特性を制御することができる。 位相差板としては、ポリカーボネート、ノルボルネン系樹脂、ポリビュルアルコール、 ポリスチレン、ポリメチルメタタリレート、ポリプロピレンやその他のポリオレフイン、ポリ ァリレート、ポリアミドの如き適宜なポリマーからなるフィルムを延伸処理してなる複屈 折性フィルムや液晶ポリマーなどの液晶材料からなる配向フィルム、液晶材料の配向 層をフィルムにて支持したものなどがあげられる。 1Z4波長板の厚さは、通常 0. 5 200 μ mであることが好ましぐ特に 1一 100 μ mであることが好ましい。
[0163] 可視光域等の広い波長範囲で 1Z4波長板として機能する位相差板は、例えば波 長 550nmの淡色光に対して 1Z4波長板として機能する位相差層と他の位相差特 性を示す位相差層、例えば 1/2波長板として機能する位相差層とを重畳する方式 などにより得ることができる。従って、偏光板と輝度向上フィルムの間に配置する位相 差板は、 1層又は 2層以上の位相差層からなるものであってよい。
[0164] 偏光板は、通常、偏光子の片側または両側に保護フィルムを有するものが一般に 用いられる。
[0165] 偏光子は、特に制限されず、各種のものを使用できる。偏光子としては、たとえば、 ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィル ム、エチレン.酢酸ビニル共重合体系部分ケンィ匕フィルム等の親水性高分子フィルム に、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニル アルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリェン系配向フィノレ ム等があげられる。これらのなかでもポリビュルアルコール系フィルムとヨウ素などの 二色性物質からなる偏光子が好適である。これら偏光子の厚さは特に制限されない が、一般的に、 5— 80 x m程度である。
[0166] ポリビュルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、たとえば 、ポリビュルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の 3— 7倍に延伸することで作製することができる。必要に応じてホウ酸や硫酸亜鉛、塩ィ匕 亜鉛等を含んでいてもよいヨウ化カリウムなどの水溶液に浸漬することもできる。さら に必要に応じて染色の前にポリビュルアルコール系フィルムを水に浸漬して水洗して もよレ、。ポリビニルアルコール系フィルムを水洗することでポリビエルアルコール系フィ ルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビュルァ ルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もあ る。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸してもよいし、ま た延伸してからヨウ素で染色してもよレ、。ホウ酸やヨウ化カリウムなどの水溶液中や水 浴中でも延伸すること力 Sできる。
[0167] 前記偏光子の片面または両面に設けられる透明保護フィルムを形成する材料とし ては、透明性、機械的強度、熱安定性、水分遮蔽性、等方性などに優れるものが好 ましい。例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエス テノレ系ポリマー、ジァセチノレセノレロースやトリァセチノレセノレロース等のセノレロース系 ポリマー、ポリメチルメタタリレート等のアクリル系ポリマー、ポリスチレンやアタリロニトリ ノぃスチレン共重合体 (AS樹脂)等のスチレン系ポリマー、ポリカーボネート系ポリマ 一などがあげられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネ ン構造を有するポリオレフイン、エチレン 'プロピレン共重合体の如きポリオレフイン系 ポリマー、塩化ビエル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、 イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテ ノレエーテルケトン系ポリマー、ポリフエ二レンスルフイド系ポリマー、ビエルアルコール 系ポリマー、塩化ビニリデン系ポリマー、ビュルブチラール系ポリマー、ァリレート系ポ リマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、または前記ポリマーのブ レンド物なども前記透明保護フィルムを形成するポリマーの例としてあげられる。透明 保護フィルムは、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン 系等の熱硬化型、紫外線硬化型の樹脂の硬化層として形成することもできる。
[0168] また、特開 2001—343529号公幸艮(WO01/37007) (こ記載のポリマーフイノレム、 たとえば、(A)側鎖に置換および Zまたは非置換イミド基を有する熱可塑性樹脂と、 (B)側鎖に置換および Zまたは非置換フエニルならびに二トリル基を有する熱可塑 性樹脂を含有する樹脂組成物があげられる。具体例としてはイソブチレンと N—メチ ルマレイミドからなる交互共重合体とアクリロニトリル 'スチレン共重合体とを含有する 樹脂組成物のフィルムがあげられる。フィルムは樹脂組成物の混合押出品などからな るフィルムを用いることができる。
[0169] 保護フィルムの厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、 薄層十生などの^^より 1一 500 z m程度である。特に 1一 300 x mカ好ましく、 5— 200 z mがより好ましい。
[0170] また、保護フィルムは、できるだけ色付きがなレ、ことが好ましレ、。したがって、 Rth=
[ (nx + ny) /2_nz] . d (ただし、 nx、 nyはフィルム平面内の主屈折率、 nzはフィノレ ム厚方向の屈折率、 dはフィルム厚みである)で表されるフィルム厚み方向の位相差 値カ 90nm— + 75nmである保護フィルムが好ましく用いられる。かかる厚み方向 の位相差値(Rth)が _90nm + 75nmのものを使用することにより、保護フィルムに 起因する偏光板の着色 (光学的な着色)をほぼ解消することができる。厚み方向位相 差値(Rth)は、さらに好ましくは _80nm— + 60nm、特に _70nm— + 45nmが好ま しい。
[0171] 保護フィルムとしては、偏光特性や耐久性などの点より、トリァセチルセルロース等 のセルロース系ポリマーが好ましレ、。特にトリァセチルセルロースフィルムが好適であ る。なお、偏光子の両側に保護フィルムを設ける場合、その表裏で同じポリマー材料 力 なる保護フィルムを用いてもよぐ異なるポリマー材料等からなる保護フィルムを 用いてもよい。前記偏光子と保護フィルムとは通常、水系粘着剤等を介して密着して いる。水系接着剤としては、イソシァネート系接着剤、ポリビニルアルコール系接着剤 、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリウレタン、水系ポリエステル等を 例示できる。
[0172] 前記透明保護フィルムの偏光子を接着させない面には、ハードコート層や反射防 止処理、ステイツキング防止や、拡散ないしアンチグレアを目的とした処理を施したも のであってもよい。
[0173] ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例 えばアクリル系、シリコーン系などの適宜な紫外線硬化型樹脂による硬度や滑り特性 等に優れる硬化皮膜を透明保護フィルムの表面に付加する方式などにて形成するこ とができる。反射防止処理は偏光板表面での外光の反射防止を目的に施されるもの であり、従来に準じた反射防止膜などの形成により達成することができる。また、ステ イツキング防止処理は隣接層との密着防止を目的に施される。
[0174] またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を 阻害することの防止等を目的に施されるものであり、例えばサンドブラスト方式ゃェン ボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式にて透 明保護フィルムの表面に微細凹凸構造を付与することにより形成することができる。 前記表面微細凹凸構造の形成に含有させる微粒子としては、例えば平均粒径が 0. 5— 50 z mのシリカ、ァノレミナ、チタニア、ジルコユア、酸化錫、酸化インジウム、酸化 カドミウム、酸化アンチモン等からなる導電性のこともある無機系微粒子、架橋又は未 架橋のポリマー等からなる有機系微粒子などの透明微粒子が用いられる。表面微細 凹凸構造を形成する場合、微粒子の使用量は、表面微細凹凸構造を形成する透明 樹脂 100重量部に対して一般的に 2— 50重量部程度であり、 5— 25重量部が好まし レ、。アンチグレア層は、偏光板透過光を拡散して視角などを拡大するための拡散層( 視角拡大機能など)を兼ねるものであってもよい。
[0175] なお、前記反射防止層、ステイツキング防止層、拡散層やアンチグレア層等は、透 明保護フィルムそのものに設けることができるほか、別途光学層として透明保護フィノレ ムとは別体のものとして設けることもできる。
[0176] また位相差板は、視角補償フィルムとして偏光板に積層して広視野角偏光板として 用いられる。視角補償フィルムは、液晶表示装置の画面を、画面に垂直でなくやや 斜めの方向から見た場合でも、画像が比較的鮮明にみえるように視野角を広げるた めのフィルムである。
[0177] このような視角補償位相差板としては、他に二軸延伸処理や直交する二方向に延 伸処理等された複屈折を有するフィルム、傾斜配向フィルムのような二方向延伸フィ ルムなどが用いられる。傾斜配向フィルムとしては、例えばポリマーフィルムに熱収縮 フィルムを接着して加熱によるその収縮力の作用下にポリマーフィルムを延伸処理又 は Z及び収縮処理したものや、液晶ポリマーを斜め配向させたものなどが挙げられる 。視角補償フィルムは、液晶セルによる位相差に基づく視認角の変化による着色等 の防止や良視認の視野角の拡大などを目的として適宜に組み合わせることができる
[0178] また良視認の広い視野角を達成する点などより、液晶ポリマーの配向層、特にディ スコティック液晶ポリマーの傾斜配向層からなる光学的異方性層をトリアセチルセル ロースフィルムにて支持した光学補償位相差板が好ましく用レ、うる。
[0179] 前記のほか実用に際して積層される光学層については特に限定はないが、例えば 反射板や半透過板などの液晶表示装置等の形成に用いられることのある光学層を 1 層または 2層以上用いることができる。特に、楕円偏光板または円偏光板に、更に反 射板または半透過反射板が積層されてなる反射型偏光板または半透過型偏光板が あげられる。
[0180] 反射型偏光板は、偏光板に反射層を設けたもので、視認側 (表示側)からの入射光 を反射させて表示するタイプの液晶表示装置などを形成するためのものであり、バッ クライト等の光源の内蔵を省略できて液晶表示装置の薄型化を図りやすいなどの利 点を有する。反射型偏光板の形成は、必要に応じ透明保護層等を介して偏光板の 片面に金属等からなる反射層を付設する方式などの適宜な方式にて行うことができ る。
[0181] 反射型偏光板の具体例としては、必要に応じマット処理した保護フィルムの片面に 、アルミニウム等の反射性金属からなる箔ゃ蒸着膜を付設して反射層を形成したもの などがあげられる。また前記保護フィルムに微粒子を含有させて表面微細凹凸構造 とし、その上に微細凹凸構造の反射層を有するものなどもあげられる。前記した微細 凹凸構造の反射層は、入射光を乱反射により拡散させて指向性ゃギラギラした見栄 えを防止し、明暗のムラを抑制しうる利点などを有する。また微粒子含有の保護フィ ルムは、入射光及びその反射光がそれを透過する際に拡散されて明暗ムラをより抑 制しうる利点なども有している。保護フィルムの表面微細凹凸構造を反映させた微細 凹凸構造の反射層の形成は、例えば真空蒸着方式、イオンプレーティング方式、ス パッタリング方式等の蒸着方式ゃメツキ方式などの適宜な方式で金属を透明保護層 の表面に直接付設する方法などにより行うことができる。
[0182] 反射板は前記の偏光板の保護フィルムに直接付与する方式に代えて、その透明フ イルムに準じた適宜なフィルムに反射層を設けてなる反射シートなどとして用いること もできる。なお反射層は、通常、金属からなるので、その反射面が保護フィルムや偏 光板等で被覆された状態の使用形態が、酸化による反射率の低下防止、ひいては 初期反射率の長期持続の点や、保護層の別途付設の回避の点などより好ましい。
[0183] なお、半透過型偏光板は、上記において反射層で光を反射し、かつ透過するハー フミラー等の半透過型の反射層とすることにより得ることができる。半透過型偏光板は 、通常液晶セルの裏側に設けられ、液晶表示装置などを比較的明るい雰囲気で使 用する場合には、視認側 (表示側)からの入射光を反射させて画像を表示し、比較的 暗い雰囲気においては、半透過型偏光板のバックサイドに内蔵されているバックライ ト等の内蔵光源を使用して画像を表示するタイプの液晶表示装置などを形成できる 。すなわち、半透過型偏光板は、明るい雰囲気下では、バックライト等の光源使用の エネルギーを節約でき、比較的暗い雰囲気下においても内蔵光源を用いて使用でき るタイプの液晶表示装置などの形成に有用である。
[0184] また、偏光板は、上記の偏光分離型偏光板の如ぐ偏光板と 2層又は 3層以上の光 学層とを積層したものからなっていてもよい。従って、上記の反射型偏光板や半透過 型偏光板と位相差板を組み合わせた反射型楕円偏光板や半透過型楕円偏光板な どであってもよい。
[0185] 上記の楕円偏光板や反射型楕円偏光板は、偏光板又は反射型偏光板と位相差板 を適宜な組み合わせで積層したものである。力かる楕円偏光板等は、(反射型)偏光 板と位相差板の組み合わせとなるようにそれらを液晶表示装置の製造過程で順次別 個に積層することよって形成することができるが、予め積層して楕円偏光板等の光学 フィルムとしたのものは、品質の安定性や積層作業性等に優れて液晶表示装置など の製造効率を向上させうる利点がある。
[0186] 本発明の光学素子には、粘着層または接着層を設けることもできる。粘着層は、液 晶セルへの貼着に用いることができる他、光学層の積層に用いられる。前記光学フィ ルムの接着に際し、それらの光学軸は目的とする位相差特性などに応じて適宜な配 置角度とすることができる。
[0187] 接着剤や粘着剤としては特に制限されない。例えばアクリル系重合体、シリコーン 系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビエルエーテル、酢酸ビニル /塩化ビエルコポリマー、変性ポリオレフイン、エポキシ系、フッ素系、天然ゴム、合成 ゴム等のゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いるこ と力 Sできる。特に、光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特 性を示して、耐候性や耐熱性などに優れるものが好ましく用レ、うる。
[0188] 前記接着剤や粘着剤にはベースポリマーに応じた架橋剤を含有させることができる 。また接着剤には、例えば天然物や合成物の樹脂類、特に、粘着性付与樹脂や、ガ ラス繊維、ガラスビーズ、金属粉、その他の無機粉末等からなる充填剤や顔料、着色 剤、酸化防止剤などの添加剤を含有していてもよい。また微粒子を含有して光拡散 性を示す接着剤層などであってもよい。
[0189] 接着剤や粘着剤は、通常、ベースポリマーまたはその組成物を溶剤に溶解又は分 散させた固形分濃度が 10 50重量%程度の接着剤溶液として用いられる。溶剤と しては、トルエンや酢酸ェチル等の有機溶剤や水等の接着剤の種類に応じたものを 適宜に選択して用いることができる。
[0190] 粘着層や接着層は、異なる組成又は種類等のものの重畳層として偏光板や光学フ イルムの片面又は両面に設けることもできる。粘着層の厚さは、使用目的や接着力な どに応じて適宜に決定でき、一般に ίま 1一 500 μ ΐηであり、 5— 200 /i m力 S好ましく、 特に 10— 100 μ mが好ましい。
[0191] 粘着層等の露出面に対しては、実用に供するまでの間、その汚染防止等を目的に セパレータが仮着されてカバーされる。これにより、通例の取扱状態で粘着層に接触 することを防止できる。セパレータとしては、上記厚さ条件を除き、例えばプラスチック フィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネー ト体等の適宜な薄葉体を、必要に応じシリコーン系や長鏡アルキル系、フッ素系ゃ硫 化モリブデン等の適宜な剥離剤でコート処理したものなどの、従来に準じた適宜なも のを用いうる。
[0192] なお本発明において、上記光学素子等、また粘着層などの各層には、例えばサリ チル酸エステル系化合物やべンゾフエノール系化合物、ベンゾトリアゾール系化合物 ゃシァノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理す る方式などの方式により紫外線吸収能をもたせたものなどであってもよい。
実施例
[0193] 以下に本発明を実施例および比較例をあげて具体的に説明するが、本発明は、こ れらの実施例により何ら制限されるものではない。
[0194] なお、正面位相差は、面内屈折率が最大となる方向を X軸、 X軸に垂直な方向を Y 軸、フィルムの厚さ方向を Z軸とし、それぞれの軸方向の屈折率を nx、 ny、 nzとして、 550nmにおける屈折率 nx、 ny、 nzを自動複屈折測定装置(王子計測機器株式会 社製, 自動複屈折計 KOBRA21ADH)により計測した値と、位相差層の厚さ d (nm) から、正面位相差: (nx-ny) X d、を算出した。また、傾斜位相差は、フィルムを任意 の角度に傾けたときの位相差値を測定した。
[0195] 反射波長帯域は、反射スペクトルを分光光度計 (大塚電子株式会社製、瞬間マル チ測光システム MCPD-2000)にて測定し、最大反射率の半分の反射率を有する 反射波長帯域とした。
[0196] また、実施例および比較例で得られた光源装置についての正面輝度の測定は、ト プコン製輝度計 BM7にて計測した。また、出射光線の積算光量の合計の計測は、 E LDIM製 LCD視野角測定装置 Ezコントラストにて計測した。評価では、 (実施例の計 測値/比較例の計測値) X 100 (%)で表した。
[0197] 実施例 1
導光板 (U: IBM社製の 15インチ TFT液晶パネルより取り出したゥエッジ型サイド ライト導光板を用いた。出射光方向ピーク角度(Θ )は約 80度である。
1
[0198] 反射板(R):ピッチ 100 μ mの PET基材上(東レ製,ノレミラー T600)に対して、旭電 化社製のエポキシ系 UV硬化樹脂 (KR400)にて切削加工により作製した真鍮金型 表面形状を転写した。この上に銀蒸着して表面凹凸を有する反射板を得た。銀蒸着 反射板、表面平滑、対称構造のライン型(図 4に相当)である。表面凹凸 (傾斜構造) の平均傾斜角( Θ )は約 40度である。
2
[0199] 透過率角度依存性偏光層 (T2) : 2枚の円偏光型反射偏光子(al)の間に位相差 板 (bl)を設けた偏光素子 (A)を用いた。円偏光型反射偏光子 (al)としては、 日東 電工社製の PCF400のコレステリック液晶層を用いた。 [0200] 次いで、下記方法にて、正面位相差が略 0、斜め方向で位相差を発生する位相差 層(bl:ネガティブ Cプレート)を重合性液晶にて作製した。重合性メソゲン化合物とし て、 BASF社製の LC242を用いた。具体的な製法は、以下の通りである。重合性メソ ゲンィ匕合物をシクロペンタンにて溶解(20重量0 /0)し、反応開始剤(チバスぺシャノレ ティケミカノレズ社製のィルガキュア 184,前記混合物に対して 1重量%)を添カ卩した溶 液を調製した。配向基板は、東レ製のポリエチレンテレフタレートフィルム:ルミラー( 厚さ 75 μ m)をラビング布にて配向処理したものを用いた。
[0201] 前記溶液をワイヤーバーにて乾燥時塗布厚みが 1. 厚にて塗布し、 90°Cで 2 分間乾燥した後、等方性転移温度まで一旦加熱した後、徐冷した。均一な配向状態 を保持し、 80°Cの環境にて紫外線照射(10mWZcm2 X 2分間)にて硬化してネガ ティブ Cプレートを得た。このネガティブ Cプレートの位相差を測定したところ、 550η mの波長の光に対して正面方向の位相差は約 2nm、 30° 傾斜させた時の位相差は 約 140nmであった。これを 4層積層して 30° 傾斜させた時の位相差 540nmの負の 位相差板 (bl)を得た。
[0202] 上記で得られた円偏光型反射偏光子 (al)の上部に透光性アクリル系粘着剤(日 東電工社製, NO. 7, 23 /i m厚)を用いて、ネガティブ Cプレート(bl)を接着した後 、基材を剥離除去した。この上に、さらに円偏光型反射偏光子 (al)を積層転写し、 偏光素子 (A)を得た。当該偏光素子 (A)は正面方向には円偏光を透過するが、斜 め方向には全光線を反射する透過率角度依存性偏光層 (T2)として機能した。
[0203] 光源装置:上記導光板 (L)、反射板 (R)および透過率角度依存性偏光層 (T2)を 図 8に示すように配置して、光源装置を得た。
[0204] 比較例 1
導光板 (L)は実施例 1と同じものを用いた。実施例 1の反射板 (R)の代わりに、反射 板として平板白 PET (東レ製, E60LL,約 190 x m厚)を用いた。また、実施例 1の 透過率角度依存性偏光層(Τ2)の代わりに、プリズムシートを用いた。プリズムシート は 3Μ製の BEFフィルム(厚み約 180 x m,ポリエチレンテレフタレートフィルム製,頂 角約 90° ,プリズムピッチ 50 x m)を 2枚用いた。その上に拡散板を加え、さらに最 表面に PCF400を配置して光源装置を得た。 [0205] (評価)
(実施例 1の正面輝度/比較例 1の正面輝度) X 100 = 107%
(実施例 1の積算光量/比較例 1の積算光量) X 100 = 105%
実施例 1では、正面輝度、出射光線の積層光量が、比較例 1よりもいずれも向上し た。実施例 1では、プリズムシートを用いない構成で、正面から ± 30度以内に集光さ れていた。また、透過率角度依存性偏光層 (T2)は積層体であるため、液晶表示装 置に適用した場合には、液晶セルの下面側偏光板に貼り合わせて用レ、ることができ た。
[0206] 実施例 2
導光板 (L) :日立製作所製の 15. 1インチ LCDハウジングより取り出したゥエッジ型 サイドライト導光板を用いた。出射光方向ピーク角度(Θ )は約 70度である。
1
[0207] 反射板 (R):基材である三菱樹脂製の硬質塩ィ匕ビュル板 (厚み lmm)の表面に、 エンボスロール力卩ェを施し、図 3に示す表面形状板を作製した。ピッチ約 100 /i mで ある。得られた表面形状に対し、アルミを真空蒸着(0. 1 / m)行い、表面凹凸を有 する反射板を得た。表面凹凸 (傾斜構造)の平均傾斜角( Θ )は約 35度である。
2
[0208] 透過率角度依存性偏光層 (T2):直線偏光型反射偏光子 (a2)の間に、位相差板 ( bl)を有し、位相差板 (bl)の両側には、正面位相差が略 λ /4である層(b2)を有す る偏光素子 (A)を用いた。
[0209] 直線偏光型反射偏光子(a2)としては、 3M製の DBEFを用いた。位相差板 (bl)は 、実施例 1で得られたネガティブ Cプレートを用いた。このネガティブ Cプレートをサン ドイッチする位相差板 (b2)として、ポリカーボネート製一軸延伸フィルムからなる、 λ /4板(日東電工製 NRFフィルム,正面位相差 135nm, 50 μ m厚)を配置した。
[0210] これの両外側に直線偏光型反射偏光子 (a2)を配置した。入射側の直線偏光型反 射偏光子(a2)の透過偏光軸 0° に対して、 ; I Z4位相差板: 45° 、Cプレート(軸方 位無し)、 λ /4板:一 45° 、出射側の直線偏光型反射偏光子(a2)の透過軸 90° と なる軸配置にて各層を透光性のアクリル系粘着材(日東電工製 N〇. 7 厚) で積層して偏光素子 (A)を得た。当該偏光素子 (A)は正面方向には円偏光を透過 する力 斜め方向には全光線を反射する透過率角度依存性偏光層 (T2)として機能 した。
[0211] 光源装置:上記導光板 (L)、反射板 (R)および透過率角度依存性偏光層 (T2)を 図 8に示すように配置して、光源装置を得た。
[0212] 比較例 2
導光板 (L)は実施例 2と同じものを用いた。実施例 2の反射板 (R)の代わりに、反射 板として平板白 PET (東レ製, E60LL,約 190 x m厚)を用いた。また、実施例 1の 透過率角度依存性偏光層(Τ2)の代わりに、プリズムシートを用いた。プリズムシート は 3Μ製の BEFフィルム(厚み約 180 x m,ポリエチレンテレフタレートフィルム製,頂 角約 90° ,プリズムピッチ 50 x m)を 2枚用いた。その上に拡散板を加え、さらに最 表面に DBEFを配置して光源装置を得た。
[0213] (評価)
(実施例 2の正面輝度 Ζ比較例 2の正面輝度) X 100 = 1 10%
(実施例 2の積算光量/比較例 2の積算光量) X 100 = 108%
実施例 2では、正面輝度、出射光線の積層光量が、比較例 2よりもいずれも向上し た。実施例 2では、プリズムシートを用いない構成で、正面から ± 40度以内に集光さ れていた。また、透過率角度依存性偏光層(Τ2)は積層体であるため、液晶表示装 置に適用した場合には、液晶セルの下面側偏光板に貼り合わせて用いることができ た。
[0214] 実施例 3
導光板 (U:ハクバ製のライトボックス (ライトピュア- 7000pro)より取り出した 2灯式 サイドライト導光板を用いた。出射光方向ピーク角度(Θ )は約 70度である。
1
[0215] 反射板(R):銀蒸着 PETフィルム(尾池工業製, BLフイノレム, 50 μ m)を 5mmピッ チにて折り曲げ、所定の角度の繰り返し構造を有する切削アルミ基材上に貼り合わ せて図 4に相当する表面構造の反射板を得た。表面構造 (傾斜構造)の平均傾斜角 ( Θ )は約 35度である。当該反射板は、銀蒸着 PETフィルムの PET基材層を表側、
2
蒸着面をアルミ基材側に面して貼り合わせており、 PET基材は、その不均一な複屈 折性にて位相差を付与でき、偏光解消能を有する光学層(D)として機能した。なお、 光学層(D)を付与した場合にも、図 10のように異なる箇所で複数回反射し、さらにシ ボ加工された導光板 (L)を通過するため局所的な位相差変動による着色は実用上 問題にならなかった。
[0216] 透過率角度依存性偏光層(T2):コレステリック液晶ポリマーの薄膜塗工によって作 製した、コレステリック液晶バンドパスフィルターを用いた。これは、右円偏光反射の 3 波長対応バンドパスフィルターと左円偏光反射の 3波長対応バンドパスフィルターの 組み合わせであり、 目的とする 3波長のみ垂直方向近傍に対し、光を透過し、斜め入 射光線は反射するものである。
[0217] 詳しくは、 3波長冷陰極管の発光スペクトル 435nm、 535nm、 610nmに対して、 選択反射波長域力 440 490nm、 540 600nm、 615— 700nmとなる、右円偏 光を反射する選択反射円偏光バンドパスフィルターを作製した。用いた液晶材料は、 欧州特許出願公開第 0834754号明細書に基づき、選択反射中心波長が 480nm、 550nm、 655nmとなる 3種のコレステリック液晶ポリマーを作製した。
[0218] コレステリック液晶ポリマーは、下記化 1 :
[0219] [化 1] C N
Figure imgf000049_0001
[0220] で表される重合性ネマチック液晶モノマー Aと、下記化 2 :
[0221] [化 2]
C H9 = G H C 02 C H2 C H20- ■C O;
Figure imgf000049_0002
[0222] で表される重合性カイラル剤 Bを、下記に示す割合 (重量比)
選択反射中心波長 (nm) モノマー A/カイラル剤 B (配合比)
480nm 9. 81/1
550nm 11. 9 /1 665應 14. 8 /1
で配合した液晶混合物を重合することにより作製した。
[0223] 前記液晶混合物は、それぞれはテトラヒドロフランに溶解した 33重量%溶液にした 後、 60°C環境下にて窒素パージし、反応開始剤(ァゾビスイソプチロニトリル,前記 混合物に対して 0. 5重量%)を添加して重合処理を行った。得られた重合物はジェ チルエーテルにて再沈分離し精製した。
[0224] 上記コレステリック液晶ポリマーを塩化メチレンに溶解して 10重量%溶液を調製し た。当該溶液を、配向基材に、乾燥時の厚みが約 l z mになるようワイヤーバーで塗 ェした。配向基材として、 75 x m厚のポリエチレンテレフタレートフィルムを用レ、、そ の表面にポリビュルアルコール層を約 0. 塗工し、レーヨン製ラビング布でラビ ングしたものを用いた。塗工後、 140°Cで 15分間乾燥した。この加熱処理終了後、液 晶を室温にて冷却固定し薄膜を得た。
[0225] 上記各コレステリック液晶ポリマーを用いて、上記同様の工程を経て RGB各色の液 晶薄膜を作製したのち、イソシァネート系接着剤 (AD244,特殊色料工業製)にて貼 り合わせた。 R色と G色の液晶面同士を貼り合わせ、 G側の PET基材を剥離し、同様 にして B色を G色液晶面に貼り合わせ、 R側の PET基材を剥離した。これにより、各 液晶層を短波長側から順に 3層を積層した約 5 β m厚の液晶複合層(バンドパスフィ ルター)を得た。得られたフィルムの波長特性は図 25の通りである。
[0226] 一方、左円偏光を反射する広帯域円偏光板を日東電工製 PCF400フィルムより得 た。。これを前述のバンドパスフィルターと積層することで正面方向は左円偏光を透 過し、斜め方向は全光線を反射する透過率角度依存性偏光層 (T2)を得た。
[0227] 光源装置:上記導光板 (L)、反射板 (R)および透過率角度依存性偏光層 (T2)を 図 8に示すように配置して、光源装置を得た。
[0228] 比較例 3
導光板 (L)は実施例 3と同じものを用いた。反射板 (R)は実施例 3と同じものを用い た。また、実施例 1の透過率角度依存性偏光層(T2)の代わりに、 PCF400コレステ リック液晶フィルムを配置し、円偏光を出射する光源装置を得た。
[0229] (評価) (実施例 3の正面輝度/比較例 3の正面輝度) X 100 = 107%
(実施例 3の積算光量/比較例 3の積算光量) X 100 = 105%
実施例 3では、正面輝度、出射光線の積層光量が、比較例 3よりもいずれも向上し た。実施例 3では正面への集光特性により正面輝度の向上が大きかった。積算光量 で比較すると比較例 3の方が大きな値を示したが斜め方向の浅い角度での出射光成 分が大きぐ正面近傍の実際に利用される範囲での出射光量では比較例 3の方が小 さかった。
[0230] 実施例 4
導光板 (L) :日立製作所製の 15. 1インチ LCDハウジングより取りだしたゥエッジ型 サイドライト導光板を用いた。出射光方向ピーク角度(Θ )は約 70度である。
1
[0231] 反射板(R):斜面ピッチ 100 x mの PET基材上(東レ製,ノレミラー S27, 75 μ m)に 対して、旭電化社製のエポキシ系 UV硬化樹脂 (KR400)にて切削加工により作製 した真鍮金型表面形状を転写した。この表面にアルミを真空蒸着(0. Ι μ ΐη厚)して 反射板を得た。非対称型(図 6に相当)である。傾斜構造の平均傾斜角(Θ )は約 40
2 度 /80度である。
[0232] 透過率角度依存性層(T1): TiO /SiOの薄膜を 21層蒸着積層し、図グラフ 1に示
2 2
すような 3波長輝線型冷陰極管の発光スペクトルの 3波長に対して高い透過機能を 有し、その他の波長光線を反射するバンドパスフィルターを作製した。基材は PETフ イルム(東レ製,ノレミラー 75 /i m厚)を用いた。このようなバンドパスフィルターを用い るとバックライトの出射光線は垂直方向から ± 20度程度で反射され、光源側に戻さ れる集光特性を有する。
[0233] 光源装置:上記導光板 (L)、反射板 (R)および透過率角度依存性層 (T1)を図 1に 示すように配置して、光源装置を得た。
[0234] 比較例 4
導光板 (L)は実施例 4と同じものを用いた。透過率角度依存性層(T1)は実施例 4 と同じものを用いた。実施例 4の反射板 (R)の代わりに、反射板として平板白 PET ( 東レ製, E60LL,約 190 x m厚)を用いて光源装置を得た。
[0235] (評価) (実施例 4の正面輝度/比較例 4の正面輝度) X 100 = 117%
(実施例 4の積算光量/比較例 4の積算光量) X 100 = 110%
実施例 4では、正面輝度、出射光線の積層光量が、比較例 4よりもいずれも向上し 、光利用効率の高さが確認できた。
[0236] 実施例 5
導光板 (L)、反射板 (R)、透過率角度依存性偏光層 (T2)は、いずれも実施例 1と 同じものを用いた。
[0237] 光源装置:上記導光板 (L)、反射板 (R)および透過率角度依存性偏光層 (T2)を 配置した。図 10 (b)に示すように、導光板 (L)と反射板 (R)の間には、偏光解消能を 有する光学層(D)を配置を行なレ、、東レ製の二軸延伸 PETフィルム(50 μ m)を配 置して、光源装置を得た。
[0238] 比較例 5
導光板 (L)は実施例 1と同じものを用いた。光学層(D)は実施例 1と同様のものを 実施例 1と同様に配置した。実施例 5の反射板 (R)の代わりに、反射板として平板白 PET (東レ製, E60LL,約 190 μ ΐη厚)を用いた。また、実施例 1の透過率角度依存 性偏光層(T2)の代わりに、プリズムシートを用いた。プリズムシートは 3M製の BEF フィルム(厚み約 180 μ ΐη,ポリエチレンテレフタレートフィルム製,頂角約 90° ,プリ ズムピッチ 50 μ ΐη)を 2枚用いた。その上に拡散板を加え、さらに最表面に PCF400 を配置して光源装置を得た。
[0239] (評価)
(実施例 5の正面輝度/比較例 5の正面輝度) X 100 = 107%
(実施例 5の積算光量 Z比較例 5の積算光量) X 100 = 105%
実施例 5では、正面輝度、出射光線の積層光量が、比較例 5よりもいずれも向上し た。実施例 5では、プリズムシートを用いない構成で、正面から ± 30度以内に集光さ れていた。また、透過率角度依存性偏光層 (T2)は積層体であるため、液晶表示装 置に適用した場合には、液晶セルの下面側偏光板に貼り合わせて用レ、ることができ た。
[0240] 実施例 6 透過率角度依存性偏光層 (T2) : 2枚の円偏光型反射偏光子 (al)の間に位相差 板 (bl)を設けた偏光素子 (A)を用いた。円偏光型反射偏光子 (al)としては、直線 偏光型反射偏光子(a2)である、 3M製の DBEFの偏光軸に対して、 1/4え板(帝人 製 WRFフィルム,正面位相差 140nm)の遅層軸が 45度の角度となるようにアタリノレ 系粘着剤(日東電工社製, NO. 7, 25 z m厚)を用いて貼り合わせたものを用いた。 位相差板 (bl)は、実施例 1で得られた、ネガティブ Cプレートを 5層積層して、 30° 傾斜させた時の位相差 660nmを有するものを用いた。円偏光型反射偏光子(al)に おける 1/4 λ板側が、位相差板 (bl)の両側になるようにアクリル系粘着剤(日東電 ェ社製, NO. 7, 23 z m厚)を用いて接着した。位相差板 (bl)の両側に配置した、 円偏光型反射偏光子 (al)における直線偏光型反射偏光子 (a2)の偏光軸、 ΐΖ4 λ 板の遅層軸は両者が平行になるようにした。
[0241] 当該偏光素子 (Α)は正面方向には偏光を透過する力 斜め方向からは全光線を 反射する透過率角度依存性偏光層 (Τ2)として機能した。得られた透過率の半値幅 は実施例 1と同等であった。ただし、正面方向での偏光度は約 95%で、実施例 1で 用いたものよりも約 10%偏光度が高かった。
[0242] 上記偏光素子 (Α)を実施例 1と同様の導光板 (L)、反射板 (R)を用いた光源装置 に適用した。得られた光源装置の正面輝度は実施例 1よりも、さらに 5%明るかった。
[0243] 実施例 7
透過率角度依存性偏光層 (Τ2):位相差板 (bl)の一方の側には、円偏光型反射 偏光子 (al)、もう一方の側には直線偏光型反射偏光子 (a2)を設けた偏光素子 (A) を用いた。位相差板 (bl)としては、実施例 1で得られたネガティブ Cプレートに 1/4 λ板(帝人製 WRFフィルム,正面位相差 140nm)を、特殊色材化学製のジョイタック AD 175接着材を用レ、ラミネータにて貼り合わせたものを用レ、た。接着層厚みは数 μ mであった。得られた位相差板(bl)は正面位相差約 140nm、 ΐΖ4 λ板の軸方向 /軸方向と垂直方向での斜め方向の位相差は約 540nmとなった。円偏光型反射偏 光子(al)は、下記に示すコレステリック液晶層を位相差板 (bl)におけるネガティブ Cプレート側に、直線偏光型反射偏光子(a2)としては、 3M製の DBEFを ΐ/4 λ板 側に、前記接着材を用いて配置した。 [0244] コレステリック液晶層:選択反射波長域力 30— 490應、 480— 550應、 540— 6 20應、 620— 810應、 700— 900應となる、コレステリック液晶ポリマーを作製し た。用いた液晶材料は、欧州特許出願公開第 0834754号明細書に基づき、選択反 射中 、波長力 S460nm、 510nm、 580nm、 660nm、 750nmとなる 5種のコレステリ ック液晶ポリマーを作製した。
[0245] コレステリック液晶ポリマーは、下記化 3:
[0246] [化 3]
CH2=CHCOゥ CH9CH20 -く C0
Figure imgf000054_0001
[0247] で表される重合性ネマチック液晶モノマーひと、下記化 4:
[0248] [化 4]
CH2=CHC02CH2CHゥ 0- •CO;
Figure imgf000054_0002
[0249] で表される重合性カイラル剤 βを、下記に示す割合 (重量比)
選択反射中心波長 (nm) モノマー α /カイラル剤 β (配合比) 460nm 9. 2/1
510nm 10. 7/1
580nm 12. 8/1
660nm 14. 9/1
750nm 17. 0/1
で配合した液晶混合物を重合することにより作製した。
[0250] 前記液晶混合物は、それぞれはテトラヒドロフランに溶解した 33重量%溶液にした 後、 60°C環境下にて窒素パージし、反応開始剤(ァゾビスイソプチロニトリル,前記 混合物に対して 0. 5重量%)を添加して重合処理を行った。得られた重合物はジェ チルエーテルにて再沈分離し精製した。
[0251] 上記コレステリック液晶ポリマーを塩化メチレンに溶解して 10重量%溶液を調製し た。当該溶液を、配向基材に、乾燥時の厚みが約 l z mになるようワイヤーバーで塗 ェした。配向基材として、 75 x m厚のポリエチレンテレフタレートフィルムを用レ、、レ 一ヨン製ラビング布でラビングしたものを用いた。塗工後、 140°Cで 15分間乾燥した 。この加熱処理終了後、液晶を室温にて冷却固定し薄膜を得た。
[0252] 得られたコレステリック液晶円偏光型反射偏光子は 430nm 900nmで選択反射 機能を有した。本サンプノレをコレステリック液晶層として用いた。
[0253] 当該偏光素子 (A)は正面方向には偏光を透過する力 斜め方向からは全光線を 反射する透過率角度依存性偏光層 (T2)として機能した。得られた透過率の半値幅 は実施例 1と同等であった。得られた透過率の半値幅は実施例 1と同等であった。た だし、光源側にコレステリック液晶層を配した場合の正面方向での出射光の偏光度 は約 95 %で、実施例 1で用いたものよりも約 10 %偏光度高かつた。
[0254] 上記偏光素子 (A)を、光源側にコレステリック液晶層が配置されるように、実施例 1 と同様の導光板 (L)、反射板 (R)を用いた光源装置に適用した。得られた光源装置 の正面輝度は実施例 1よりも、さらに 5 %明るかった。
産業上の利用可能性
[0255] 本発明の光源装置は、サイドライト型バックライト導光板に透過率角度依存性層を 適用し、反射等の繰り返しによる吸収損失が少なぐ液晶表示装置に好適に用いら れる。
図面の簡単な説明
[0256] [図 1]本発明の光源装置の断面図および光線の透過、反射の一例である。
[図 2]本発明の反射板の繰り返し傾斜構造の断面図の一例である。
[図 3]本発明の反射板の繰り返し傾斜構造の断面図の一例である。
[図 4]本発明の反射板の繰り返し傾斜構造の一例である。
[図 5]本発明の反射板の繰り返し傾斜構造の一例である。
[図 6]本発明の反射板の繰り返し傾斜構造の断面図の一例である。 [図 7]本発明の反射板の繰り返し傾斜構造の断面図の一例である。
[図 8]本発明の光源装置の断面図および光線の透過、反射の一例である。
[図 9]図 8の光源装置における、偏光の透過、反射を示す一例である。
[図 10]本発明の光源装置に光学層(D)が配置された場合の断面図の例である。
[図 11]偏光素子 (A)の平行光化の基本原理の一例を示す概念図である。
[図 12]図 1、 3、 4、 6、 8に示す、各光線の状態を説明するものである。
[図 13]直線偏光の円偏光化を示す概念図である。
[図 14]偏光素子 (A)の平行光化の基本原理の一例を示す概念図である。
[図 15]直線偏光型反射偏光素子 (a2)を用いた平行光化の各層の配置角度を示す 一例である。
[図 16]偏光素子 (A)の平行光化の基本原理の一例を示す概念図である。
[図 17]直線偏光型反射偏光素子 (a2)を用いた平行光化の各層の配置角度を示す 一例である。
[図 18]偏光素子 (A)の平行光化の基本原理の一例を示す概念図である。
[図 19]直線偏光型反射偏光素子 (a2)を用いた平行光化の各層の配置角度を示す 一例である。
[図 20]モアレの直接解を示す概念図である。
[図 21]偏光素子 (A)の断面図の一例である。
[図 22]偏光素子 (A)の断面図の一例である。
[図 23]偏光素子 (A)の断面図の一例である。
[図 24]偏光素子 (A)の断面図の一例である。
[図 25]実施例 3のバンドパスフィルターの波長特性を示すグラフである。
[図 26]実施例 4のバンドパスフィルターの波長特性を示すグラフである。
[図 27]従来の光源装置の断面図および光線の透過、反射の一例である。
[図 28]従来の光源装置の断面図および光線の透過、反射の一例である。
符号の説明
L サイドライト型バックライト導光板
R 繰り返し傾斜構造を有する反射板 Tl 透過率角度依存性層
T2 透過率角度依存性偏光層 al 円偏光型反射偏光子 a2 直線偏光型反射偏光子 b
A 偏光素子
D 偏光解消能を有する光学層

Claims

請求の範囲
[1] サイドライト型バックライト導光板 (L)を用いる光源装置において、
サイドライト型バックライト導光板 (L)の片面には、垂直入射光線を透過し、斜め入 射光線を反射する透過率角度依存性層 (T1)が配置されており、
サイドライト型バックライト導光板 (L)のもう一方の片面には、繰り返し傾斜構造を有 する反射板 (R)が配置されてレ、ることを特徴とする光源装置。
[2] 透過率角度依存性層 (T1)が、近赤外線反射フィルターであることを特徴とする請 求項 1記載の光源装置。
[3] 透過率角度依存性層(Tl) 1 バンドパスフィルターであることを特徴とする請求項 1記載の光源装置。
[4] バンドパスフィルタ一は、光源の輝線スペクトルに対応していることを特徴とする請 求項 3記載の光源装置。
[5] 透過率角度依存性層 (T1)が、屈折率の異なる蒸着多層薄膜であることを特徴とす る請求項 2— 4のレ、ずれかに記載の光源装置。
[6] 透過率角度依存性層 (T1)が、屈折率の異なる樹脂材料の薄層多層積層体である ことをと特徴とする請求項 2 4のいずれかに記載の光源装置。
[7] 透過率角度依存性層 (T1)が、屈折率の異なる樹脂材料の多層積層体の延伸体 であることを特徴とする請求項 2— 4のいずれかに記載の光源装置。
[8] サイドライト型バックライト導光板 (L)を用いる光源装置において、
サイドライト型バックライト導光板 (L)の片面には、垂直入射光線の一方向の偏光成 分を透過しかつ他方の偏光成分は選択的に反射し、斜め入射光線は偏光の方向に 関わりなく反射する透過率角度依存性偏光層 (T2)が配置されており、
サイドライト型バックライト導光板 (L)のもう一方の片面には、繰り返し傾斜構造を有 する反射板 (R)が配置されてレ、ることを特徴とする光源装置。
[9] 透過率角度依存性偏光層 (T2)が、ある円偏光を透過し、逆の円偏光を選択的に 反射することを特徴とする請求項 8記載の光源装置。
[10] 透過率角度依存性偏光層(T2)力 S、少なくとも 1層のコレステリック液晶ポリマー層 であることを特徴とする請求項 9記載の光源装置。
[11] 透過率角度依存性偏光層(T2) 1 コレステリック液晶バンドパスフィルターである ことを特徴とする請求項 10記載の光源装置。
[12] 透過率角度依存性偏光層(T2)が、直交する直線偏光の内の一方を透過し、他方 を選択的に反射することを特徴とする請求項 8記載の光源装置。
[13] 透過率角度依存性偏光層 (T2)が、複屈折異方体の多層積層物であることを特徴 とする請求項 12記載の光源装置。
[14] 透過率角度依存性偏光層 (T2)が、偏光の選択反射の波長帯域が互いに重なつ ている少なくとも 2層の反射偏光子 (a)の間に、位相差層(b)が配置されている偏光 素子 (A)であることを特徴とする請求項 8記載の光源装置。
[15] 反射偏光子 (a)が、ある円偏光を透過し、逆の円偏光を選択的に反射する円偏光 型反射偏光子 (al)であり、
位相差層(b)が、正面位相差 (法線方向)が略ゼロで、法線方向に対し 30° 以上 傾けて入射した入射光に対して λ /8以上の位相差層(bl)を有することを特徴とす る請求項 14記載の光源装置。
[16] 反射偏光子(a) I 直交する直線偏光の内の一方を透過し、他方を選択的に反射 する直線偏光型反射偏光子(a2)であり、かつ、
位相差層(b)力 正面位相差 (法線方向)が略ゼロで、法線方向に対し 30° 以上 傾けて入射した入射光に対して λ /4以上の位相差層(bl)を有し、
位相差層(bl)の両側には、直線偏光型反射偏光子(a2)との間に、正面位相差が 略え /4である層(b2)を有し、
入射側の層(b2)は、入射側の直線偏光型反射偏光子(a2)の偏光軸に対して、 4 5° (一 45° ) ± 5° の角度で、
出射側の層(b2)は、出射側の直線偏光型反射偏光子(a2)の偏光軸に対して、 - 45° ( + 45° ) ± 5° の角度で、
入射側の層(b2)と出射側の層(b2)は、相互の遅相軸の成す角度が任意の角度 で、配置していることを特徴とする請求項 14記載の光源装置。
[17] 反射偏光子 (a)が、直交する直線偏光の内の一方を透過し、他方を選択的に反射 する直線偏光型反射偏光子(a2)であり、かつ、 位相差層(b)は、正面位相差が略 λ /4であり、 Νζ係数が 2以上である 2軸性位相 差層(b3)を 2層有し、
入射側の層(b3)は、遅層軸方向が、入射側の直線偏光型反射偏光子 (a2)の偏 光軸に対して、 45° (— 45° ) ± 5° の角度で、
出射側の層(b3)は、遅層軸方向が、出射側の直線偏光型反射偏光子 (a2)の偏 光軸に対して、一 45。 ( + 45。 )± 5。 の角度で、
入射側の層(b3)と出射側の層(b3)は、相互の遅相軸の成す角度が任意の角度 で、配置していることを特徴とする請求項 14記載の光源装置。
[18] 反射偏光子 (a)が、直交する直線偏光の内の一方を透過し、他方を選択的に反射 する直線偏光型反射偏光子(a2)であり、かつ、
位相差層(b)は、正面位相差が略 λ /2であり、 Νζ係数が 1. 5以上である 2軸性 位相差層(b4)を 1層有し、
入射側の層の遅層軸方向が、入射側の直線偏光型反射偏光子 (a2)の偏光軸に 対して、 45。 (一 45° ) ± 5° の角度で、
出射側の層の遅層軸方向が、出射側の直線偏光型反射偏光子 (a2)の偏光軸に 対して、一 45° ( + 45° ) ± 5° の角度で、
前記 2つの直線偏光型反射偏光子(a2)の偏光軸は略直交で、
配置していることを特徴とする請求項 14記載の光源装置。
[19] 少なくとも 1層の反射偏光子 (a)が、ある円偏光を透過し、逆の円偏光を選択的に 反射する円偏光型反射偏光子 (al)であり、
少なくとも 1層の反射偏光子(a) I 直交する直線偏光の内の一方を透過し、他方 を選択的に反射する直線偏光型反射偏光子(a2)であり、
位相差層(b)が、正面位相差 (法線方向)がほぼ λ /4であり、かつ法線方向に対 し 30° 以上傾けて入射した入射光に対して λ /8以上の位相差値を有する層(bl) であることを特徴とする請求項 14記載の光源装置。
[20] 透過率角度依存性偏光層 (T2)とサイドライト型バックライト導光板 (L)との間、およ び/またはサイドライト型バックライト導光板 (L)と反射板 (R)との間に、
透過率角度依存性偏光層 (T2)により反射された偏光を解消する機能を有する光 学層(D)が配置されていることを特徴とする請求項 8— 19のいずれかに記載の光源
[21] 偏光解消能を有する光学層(D)が、反射板 (R)の繰り返し傾斜構造の表面に配置 されてレ、ることを特徴とする請求項 20記載の光源装置。
[22] 偏光解消能を有する光学層(D)として、位相差板を用いたことを特徴とする請求項 20または 21記載の光源装置。
[23] サイドライト型バックライト導光板 (L)の出射光方向ピーク角度 Θ に対する、前記導
1
光板 (L)の片面に配置される反射板 (R)の繰り返し傾斜構造の平均傾斜角 Θ 力
2 θ = ( θ /2) ± 10°
2 1
であることを特徴とする請求項 1一 22のいずれかに記載の光源装置。
[24] 請求項 1一 23記載のいずれかに記載の光源装置と、液晶セルと、液晶セルの両側 に配置された偏光板と、を少なくとも含有していることを特徴とする透過型液晶表示
PCT/JP2004/012007 2003-09-02 2004-08-20 光源装置および液晶表示装置 WO2005024295A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/570,141 US7841730B2 (en) 2003-09-02 2004-08-20 Light source device and crystal display device
US12/912,011 US8373829B2 (en) 2003-09-02 2010-10-26 Light source and liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003310012A JP4248974B2 (ja) 2003-09-02 2003-09-02 光源装置および液晶表示装置
JP2003-310012 2003-09-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10570141 A-371-Of-International 2004-08-20
US12/912,011 Division US8373829B2 (en) 2003-09-02 2010-10-26 Light source and liquid crystal display

Publications (1)

Publication Number Publication Date
WO2005024295A1 true WO2005024295A1 (ja) 2005-03-17

Family

ID=34269630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012007 WO2005024295A1 (ja) 2003-09-02 2004-08-20 光源装置および液晶表示装置

Country Status (3)

Country Link
US (2) US7841730B2 (ja)
JP (1) JP4248974B2 (ja)
WO (1) WO2005024295A1 (ja)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4251483B2 (ja) * 2003-06-24 2009-04-08 日東電工株式会社 光学素子、集光バックライトシステムおよび液晶表示装置
EP1654585B1 (en) * 2003-08-14 2013-07-24 LG Chemical, Ltd. Liquid crystal display comprising complex light-compensation c plate with two or more of c plates different in dispersion ratio value
JP4248974B2 (ja) * 2003-09-02 2009-04-02 日東電工株式会社 光源装置および液晶表示装置
JP4923671B2 (ja) 2006-03-29 2012-04-25 ソニー株式会社 液晶表示装置
TWI347471B (en) * 2006-05-10 2011-08-21 Chimei Innolux Corp Lcd apparatus and method for enhancing luminance efficiency of lcd apparatus
CN101473168B (zh) * 2006-06-20 2012-04-18 日本电气株式会社 照明设备、照明方法和显示设备
US7905650B2 (en) 2006-08-25 2011-03-15 3M Innovative Properties Company Backlight suitable for display devices
JP2008052090A (ja) * 2006-08-25 2008-03-06 Ricoh Co Ltd 照明装置および投射画像表示装置
EP2131099A4 (en) * 2007-03-20 2011-04-06 Panasonic Corp SURFACE LIGHTING DEVICE AND LIQUID CRYSTAL DISPLAY
JP2008268466A (ja) * 2007-04-19 2008-11-06 Fujinon Corp 位相差補償素子及びその製造方法
CN101334558B (zh) * 2007-06-29 2011-04-20 群康科技(深圳)有限公司 背光模组及液晶显示器
US20110205750A1 (en) * 2007-08-16 2011-08-25 Koninklijke Philips Electronics N.V. Lighting assembly
US7379130B1 (en) 2007-10-03 2008-05-27 Vitera Llc LCD with hetero polar light guide
KR20090059996A (ko) * 2007-12-07 2009-06-11 삼성전자주식회사 백라이트유닛 및 이를 갖는 평판표시장치
KR100989311B1 (ko) * 2008-05-15 2010-10-25 제일모직주식회사 휘도향상을 위한 광학적층 필름
KR20090128890A (ko) * 2008-06-11 2009-12-16 삼성전자주식회사 반사 투과형 디스플레이 패널 및 이를 채용한 디스플레이장치
US8169386B2 (en) * 2008-08-19 2012-05-01 Samsung Mobile Display Co., Ltd. Organic light emitting diode display
US8870436B2 (en) * 2008-09-17 2014-10-28 3M Innovative Properties Company Patterned adhesives for reflectors
KR101548673B1 (ko) * 2008-11-21 2015-09-14 삼성디스플레이 주식회사 확산판을 포함하는 표시 장치 및 확산판 제조 방법
WO2010061691A1 (ja) * 2008-11-27 2010-06-03 シャープ株式会社 面光源装置
US8531627B2 (en) * 2008-12-25 2013-09-10 Dai Nippon Printing Co., Ltd. Optical rotation plate and liquid crystal display device using the same
DE102010018034A1 (de) 2010-04-23 2011-10-27 Osram Opto Semiconductors Gmbh Flächenlichtleiter und Flächenstrahler
KR20120102443A (ko) * 2011-03-08 2012-09-18 삼성전자주식회사 조명 장치 및 그를 구비하는 디스플레이 장치
JP5218931B2 (ja) * 2011-03-29 2013-06-26 東レ株式会社 エッジライト型バックライト用白色反射フィルム及びそれを用いた液晶ディスプレイ用バックライト
JP2013065521A (ja) * 2011-09-20 2013-04-11 Minebea Co Ltd 配光制御部材及びそれを用いた照明装置
US8585268B2 (en) 2011-10-21 2013-11-19 Ergophos, Llc Light-guide panel for display with laser backlight
TWI470322B (zh) * 2012-06-18 2015-01-21 Wistron Corp 背光模組及其顯示設備
TW201409096A (zh) * 2012-08-17 2014-03-01 財團法人車輛研究測試中心 模組化微結構導光裝置
BR112015008057A2 (pt) * 2012-10-12 2017-07-04 Asahi Kasei E Mat Corporation substrato óptico, dispositivo emissor de luz semicondutor, e, método de fabricação do mesmo
CN103062708A (zh) * 2013-01-11 2013-04-24 北京京东方光电科技有限公司 反射膜及应用其的背光源
DE202014000264U1 (de) * 2014-01-10 2015-04-13 Novomatic Ag Leuchtvorrichtung
US9614724B2 (en) 2014-04-21 2017-04-04 Microsoft Technology Licensing, Llc Session-based device configuration
US9384335B2 (en) 2014-05-12 2016-07-05 Microsoft Technology Licensing, Llc Content delivery prioritization in managed wireless distribution networks
US9384334B2 (en) 2014-05-12 2016-07-05 Microsoft Technology Licensing, Llc Content discovery in managed wireless distribution networks
US10111099B2 (en) 2014-05-12 2018-10-23 Microsoft Technology Licensing, Llc Distributing content in managed wireless distribution networks
US9430667B2 (en) 2014-05-12 2016-08-30 Microsoft Technology Licensing, Llc Managed wireless distribution network
US9874914B2 (en) 2014-05-19 2018-01-23 Microsoft Technology Licensing, Llc Power management contracts for accessory devices
US10037202B2 (en) 2014-06-03 2018-07-31 Microsoft Technology Licensing, Llc Techniques to isolating a portion of an online computing service
US9367490B2 (en) 2014-06-13 2016-06-14 Microsoft Technology Licensing, Llc Reversible connector for accessory devices
US9720548B2 (en) 2014-06-27 2017-08-01 Microsoft Technology Licensing, Llc See-through IR frontlight with embedded partially reflective facets
JP6114728B2 (ja) * 2014-09-29 2017-04-12 富士フイルム株式会社 投映像表示用部材および投映像表示システム
KR101759343B1 (ko) * 2014-10-22 2017-07-18 엘지이노텍 주식회사 조명장치 및 이를 포함하는 차량용 램프
JP6385882B2 (ja) * 2014-12-18 2018-09-05 俊一 朝野 印刷物および照明装置
JP6476291B2 (ja) * 2015-05-29 2019-02-27 富士フイルム株式会社 バックライトユニット
CN208737792U (zh) * 2016-01-20 2019-04-12 Agc株式会社 镜面显示装置、光反射透射型部件和窗材
KR102602158B1 (ko) * 2016-03-10 2023-11-14 삼성디스플레이 주식회사 광학 필름 및 이를 포함하는 액정표시장치
WO2017214287A1 (en) * 2016-06-10 2017-12-14 3M Innovative Properties Company Recycling backlight including structured reflector
KR101918352B1 (ko) 2016-09-30 2018-11-14 현대자동차주식회사 라이트가이드가 구비된 차량용 광원 모듈
KR20180060288A (ko) * 2016-11-28 2018-06-07 삼성전자주식회사 디스플레이장치
CN108345139B (zh) * 2017-01-25 2022-04-22 中强光电股份有限公司 视角可切换显示装置
KR102126681B1 (ko) * 2017-04-20 2020-06-25 주식회사 엘지화학 반사 방지용 광학 필터 및 유기 발광 장치
JP2019028373A (ja) 2017-08-02 2019-02-21 スリーエム イノベイティブ プロパティズ カンパニー 表示装置、及び赤外光カットフィルム
KR20190041049A (ko) * 2017-10-11 2019-04-22 삼성디스플레이 주식회사 백라이트 유닛
JP2019101056A (ja) * 2017-11-28 2019-06-24 株式会社ジャパンディスプレイ 表示装置およびヘッドアップ表示装置
KR102183674B1 (ko) * 2018-04-17 2020-11-27 주식회사 엘지화학 타원 편광판 및 유기발광장치
CN110308586A (zh) * 2019-06-28 2019-10-08 深圳市隆利科技股份有限公司 背光模组及电子设备
US11917121B2 (en) * 2019-06-28 2024-02-27 Interdigital Madison Patent Holdings, Sas Optical method and system for light field (LF) displays based on tunable liquid crystal (LC) diffusers
CN112213883A (zh) * 2019-07-10 2021-01-12 群创光电股份有限公司 电子装置
CN111338124A (zh) * 2020-04-13 2020-06-26 武汉华星光电技术有限公司 一种量子点显示面板、量子点显示装置及其制备方法
US11795831B2 (en) 2020-04-17 2023-10-24 Rtx Corporation Multi-material vane for a gas turbine engine
US11572796B2 (en) 2020-04-17 2023-02-07 Raytheon Technologies Corporation Multi-material vane for a gas turbine engine
KR102165201B1 (ko) * 2020-06-22 2020-10-13 주식회사 세화 프라이버시 필터

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242202A (ja) * 1989-03-15 1990-09-26 Toppan Printing Co Ltd 多層干渉フィルターおよびその製造方法
JPH09146092A (ja) * 1995-11-22 1997-06-06 Hitachi Ltd 照明装置およびそれを用いた液晶表示装置
JPH09506985A (ja) * 1993-12-21 1997-07-08 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー 明るさを強化した反射偏光子
JPH1054909A (ja) * 1996-08-09 1998-02-24 Nitto Denko Corp 円偏光分離層、光学素子、偏光光源装置及び液晶表示装置
JP2000214460A (ja) * 1999-01-25 2000-08-04 Sharp Corp バックライト装置
JP2001215505A (ja) * 2000-02-02 2001-08-10 Omron Corp 液晶表示装置及び携帯情報端末機
JP2003043460A (ja) * 2001-07-26 2003-02-13 Fuji Photo Film Co Ltd 液晶表示素子
JP2003222725A (ja) * 2002-01-31 2003-08-08 Dainippon Printing Co Ltd 偏光素子およびそれを備えた液晶表示装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3836955A1 (de) 1988-10-29 1990-05-03 Philips Patentverwaltung Farbfernsehprojektionsanordnung
DE4222028A1 (de) 1992-07-04 1994-01-05 Philips Patentverwaltung Lichtquelle mit einer lumineszierenden Schicht
US6025897A (en) * 1993-12-21 2000-02-15 3M Innovative Properties Co. Display with reflective polarizer and randomizing cavity
JP3935936B2 (ja) * 1995-06-26 2007-06-27 スリーエム カンパニー 反射偏光型半透過反射体を備えた半透過反射型ディスプレイ
GB2306741A (en) * 1995-10-24 1997-05-07 Sharp Kk Illuminator
US6104454A (en) 1995-11-22 2000-08-15 Hitachi, Ltd Liquid crystal display
KR100237218B1 (ko) 1996-12-30 2000-01-15 손욱 형광체 발광을 이용한 액정 표시장치
US6266473B1 (en) 1997-02-07 2001-07-24 Alliedsignal Inc. Reflective display
GB9708468D0 (en) 1997-04-25 1997-06-18 Screen Tech Ltd Collimator
JP4015228B2 (ja) * 1997-05-19 2007-11-28 日東電工株式会社 円偏光分離層、光学素子、偏光光源装置及び液晶表示装置
GB9717394D0 (en) 1997-08-15 1997-10-22 Screen Tech Ltd Light filtering for emissive displays
JPH11242908A (ja) 1998-02-25 1999-09-07 Hitachi Ltd 照明装置およびそれを用いた液晶表示装置
KR100634712B1 (ko) 1998-04-17 2006-10-17 니또 덴꼬 코포레이션 도광판, 표면 광원 장치 및 반사형 액정 디스플레이
JP2000048617A (ja) 1998-07-28 2000-02-18 Nitto Denko Corp 導光板、面光源装置及び反射型液晶表示装置
WO2000014597A1 (fr) * 1998-09-03 2000-03-16 Matsushita Electric Industrial Co., Ltd. Affichage a cristaux liquides, son procede de fabrication et sa commande
US6403223B1 (en) * 1999-01-05 2002-06-11 Telspan Services Inc. Circular polarizer comprising anti-reflection material
JP3423702B2 (ja) 2000-08-29 2003-07-07 創輝株式会社 金属めっき方法
JP4814419B2 (ja) 2000-09-18 2011-11-16 日東電工株式会社 光学素子、面光源装置及び液晶表示装置
TW535011B (en) 2000-09-21 2003-06-01 Koninkl Philips Electronics Nv Improvement of the luminance-contrast performance of a display by an in-tube reflective polarizer
JP2002169026A (ja) 2000-09-25 2002-06-14 Fuji Photo Film Co Ltd コリメータ及びバックライトシステム
JP2002182207A (ja) * 2000-12-18 2002-06-26 Nippon Zeon Co Ltd 液晶表示装置用照明ユニット
JP2002258048A (ja) 2001-03-05 2002-09-11 Nitto Denko Corp 光学素子、面光源装置及び液晶表示装置
JP2002324420A (ja) * 2001-04-18 2002-11-08 Internatl Business Mach Corp <Ibm> 面状光源装置、表示装置、及び、反射シート
JPWO2003032073A1 (ja) * 2001-09-27 2005-01-27 株式会社ツジデン 反射フイルム
US7046320B2 (en) 2002-03-14 2006-05-16 Nitto Denko Corporation Optical element and surface light source device using the same, as well as liquid crystal display
US20040090577A1 (en) 2002-03-20 2004-05-13 Kazutaka Hara Bandpass filter for a liquid crystal display, liquid crystal display using the bandpass filter and method of manufacturing the bandpass filter
JP4043285B2 (ja) 2002-05-21 2008-02-06 シチズン電子株式会社 バックライトユニット
JP4073250B2 (ja) 2002-05-21 2008-04-09 シチズン電子株式会社 バックライトユニット
JP4170084B2 (ja) * 2002-12-04 2008-10-22 三菱電機株式会社 面状光源装置及び表示装置
JP4248974B2 (ja) * 2003-09-02 2009-04-02 日東電工株式会社 光源装置および液晶表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242202A (ja) * 1989-03-15 1990-09-26 Toppan Printing Co Ltd 多層干渉フィルターおよびその製造方法
JPH09506985A (ja) * 1993-12-21 1997-07-08 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー 明るさを強化した反射偏光子
JPH09146092A (ja) * 1995-11-22 1997-06-06 Hitachi Ltd 照明装置およびそれを用いた液晶表示装置
JPH1054909A (ja) * 1996-08-09 1998-02-24 Nitto Denko Corp 円偏光分離層、光学素子、偏光光源装置及び液晶表示装置
JP2000214460A (ja) * 1999-01-25 2000-08-04 Sharp Corp バックライト装置
JP2001215505A (ja) * 2000-02-02 2001-08-10 Omron Corp 液晶表示装置及び携帯情報端末機
JP2003043460A (ja) * 2001-07-26 2003-02-13 Fuji Photo Film Co Ltd 液晶表示素子
JP2003222725A (ja) * 2002-01-31 2003-08-08 Dainippon Printing Co Ltd 偏光素子およびそれを備えた液晶表示装置

Also Published As

Publication number Publication date
JP4248974B2 (ja) 2009-04-02
US8373829B2 (en) 2013-02-12
JP2005079008A (ja) 2005-03-24
US7841730B2 (en) 2010-11-30
US20070014127A1 (en) 2007-01-18
US20110037927A1 (en) 2011-02-17

Similar Documents

Publication Publication Date Title
WO2005024295A1 (ja) 光源装置および液晶表示装置
KR100763291B1 (ko) 시야각 확대 액정표시장치
JP4233431B2 (ja) 光学素子、偏光素子、照明装置および液晶表示装置
JP6321052B2 (ja) 輝度向上フィルム、光学シート部材および液晶表示装置
JP4237544B2 (ja) 光学素子、集光バックライトシステムおよび液晶表示装置
TWI468743B (zh) A light diffusing element and a polarizing plate with a light diffusing element
JP4342821B2 (ja) 光学素子、液晶セル、照明装置および液晶表示装置
EP1582893A1 (en) Broad-band-cholesteric liquid-crystal film, process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display
US20070064168A1 (en) Optical element, light condensation backlight system, and liquid crystal display
JP3834012B2 (ja) 視野角拡大液晶表示装置
JP4103112B2 (ja) 集光システムおよび透過型液晶表示装置
WO2003091794A1 (fr) Systeme de convergence lumineuse et affichage a cristaux liquides de transmission
JP4251483B2 (ja) 光学素子、集光バックライトシステムおよび液晶表示装置
JP2006133385A (ja) 平行光化システム、集光バックライトシステム及び液晶表示装置
US7746421B2 (en) Optical element, light condensation backlight system, and liquid crystal display
JP2005308988A (ja) 円偏光型反射偏光板、光学素子、集光バックライトシステムおよび液晶表示装置
JP2006024519A (ja) 直下型バックライトおよび液晶表示装置
JP2004219559A (ja) 偏光素子および液晶表示装置
WO2023176661A1 (ja) 表示システムおよび積層フィルム
WO2023176655A1 (ja) レンズ部および積層フィルム
JP2006024518A (ja) 直下型バックライトおよび液晶表示装置
JP2005049586A (ja) 光学素子、集光バックライトシステムおよび液晶表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007014127

Country of ref document: US

Ref document number: 10570141

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10570141

Country of ref document: US