WO2010061691A1 - 面光源装置 - Google Patents

面光源装置 Download PDF

Info

Publication number
WO2010061691A1
WO2010061691A1 PCT/JP2009/067735 JP2009067735W WO2010061691A1 WO 2010061691 A1 WO2010061691 A1 WO 2010061691A1 JP 2009067735 W JP2009067735 W JP 2009067735W WO 2010061691 A1 WO2010061691 A1 WO 2010061691A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
light guide
light source
reflector
Prior art date
Application number
PCT/JP2009/067735
Other languages
English (en)
French (fr)
Inventor
龍男 内田
芳人 鈴木
徹 川上
隆宏 石鍋
麦 片桐
佳拡 橋本
將市 石原
修一 神崎
裕 石井
Original Assignee
シャープ株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 国立大学法人東北大学 filed Critical シャープ株式会社
Priority to US13/130,758 priority Critical patent/US20110228558A1/en
Priority to CN2009801475645A priority patent/CN102227587A/zh
Priority to JP2010540422A priority patent/JP5071827B2/ja
Publication of WO2010061691A1 publication Critical patent/WO2010061691A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide

Definitions

  • the present invention relates to a surface light source device, and more particularly to a surface light source device applied to a backlight of a transmissive LCD (LCD is an abbreviation for a liquid crystal display) or a transflective LCD.
  • LCD transmissive LCD
  • transflective LCD transflective LCD
  • the following are known as surface light source devices aimed at increasing the utilization rate of light from the light source.
  • Patent Document 1 in a light source device using a sidelight-type backlight light guide plate, a transmittance angle-dependent layer that transmits normal incident light and reflects oblique incident light on one side of the sidelight-type backlight light guide plate. Is disposed, and the other one side of the sidelight type backlight light guide plate is provided with a reflector having a repeated inclined structure. This is intended to reduce absorption loss due to repeated reflection and the like.
  • Patent Document 2 discloses a second transparent substrate that also serves as a light guide plate, a first low-refractive-index layer provided on the liquid crystal layer side of the second transparent substrate, and a non-transmission of the second transparent substrate.
  • a second low refractive index layer provided on the liquid crystal layer side, and the refractive index of the second transparent substrate is n0, and the refractive indexes of the first and second low refractive index layers are n1 and
  • a liquid crystal display device that satisfies the inequality, n1 ⁇ n2 ⁇ n0, when n2 is described.
  • the light is emitted from the low refractive index layer toward the polarizing plate, thereby increasing the utilization factor of light from the light source.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2005-79008 (published March 24, 2005)” Japanese Patent Publication “JP 2007-47303 A (published on February 22, 2007)”
  • the surface light source device described in Patent Document 1 requires a transmittance angle-dependent layer that transmits normal incident light and reflects oblique incident light.
  • the reflectance of the obliquely incident light to the transmittance angle-dependent layer is low, the obliquely incident light is transmitted and becomes stray light, resulting in deterioration of angular characteristics (for example, variation in light irradiated to the liquid crystal panel) Therefore, it is considered very difficult to properly express the angle characteristics of the transmittance angle dependent layer (for example, the distribution of light irradiated to the liquid crystal panel).
  • the light reflected by the transmittance angle-dependent layer is reflected in the vertical direction by the reflection plate having a repetitive tilt structure, and irradiates the liquid crystal panel.
  • the angular distribution of light extracted from the surface light source device is very narrow.
  • the display quality is significantly lowered. That is, in the surface light source device described in Patent Document 2, normal light reaches the liquid crystal panel only in the vertical direction, so the viewing angle is narrow, and non-polarized light is incident on the liquid crystal panel, so that the oblique viewing angle decreases the display quality. To do.
  • the conventional surface light source device has a problem that the angle distribution of light becomes very narrow when the light utilization rate is increased.
  • the present invention has been made in view of the above problems, and can efficiently extract light from the upper surface of the light guide plate, and the extracted light is centered in the outward normal direction with respect to the light guide plate on the upper surface of the light guide plate.
  • An object of the present invention is to provide a surface light source device having an appropriate angular distribution.
  • the surface light source device of the present invention has a light source, a light incident surface for allowing the emitted light from the light source to enter the inside, and a top surface and a bottom surface that are a pair of light exit surfaces for emitting the light incident on the inside.
  • a light source side reflector that reflects the emitted light from the light source that does not directly enter the light guide plate from the light incident surface toward the light incident surface, and Reflecting light emitted from the lower surface and re-entering the inside of the light guide plate, a reflecting member disposed opposite the lower surface, and a path of the light emitted from the upper surface outward from the light guide plate on the upper surface
  • An optical member disposed opposite to the upper surface that is changed to a direction within 10 ° with respect to the normal direction, and a plurality of reflectors are provided between the lower surface and the lower surface. The light source so that the angle is in the range of 5 ° -60 °.
  • the optical path arrange
  • the optical member is formed to have an apex angle toward the upper surface, and the angle ⁇ 2 (°) of the apex angle is equal to the emission direction of the light emitted from the upper surface. Since the maximum angle ⁇ 1 (°) between the upper surface and the upper surface is defined by the following formula (1), the light emitted from the upper surface enters the optical member and is totally reflected in the optical member. Thus, the emission angle when emitted from the upper surface of the optical member is within ⁇ 10 ° with respect to the vertical upper direction, and stray light can be effectively reduced.
  • the light source device includes a reflective member disposed to face the lower surface, which reflects light emitted from the lower surface and re-enters the light guide plate, and on the reflective member.
  • the plurality of reflectors are provided upright from the proximal end from the light source so that the angle between the reflector and the lower surface is in the range of 5 ° to 60 °.
  • the reflected light is reflected almost vertically upward by the reflecting member, passes through the light guide plate with almost no change in the course direction, and is incident on the optical member in a direction different from the direction that can be said to be substantially vertically upward.
  • the course can be changed.
  • the surface light source device of the present invention can efficiently extract light from the upper surface of the light guide plate, and can have a certain degree of angular distribution centered on the vertically upward azimuth angle.
  • the surface light source device of the present invention has at least one light source and at least one end in the length direction of the plate as a light guide plate incident surface, and one of the two ends in the thickness direction of the plate is guided to the top surface of the light guide plate and the other is guided.
  • the lower surface of the light plate is used, the upper surface of the light guide plate and the lower surface of the light guide plate are used as light emission surfaces, and the light emitted from the light source is incident on the light guide plate with the outward normal direction perpendicular to the light guide plate on the upper surface of the light guide plate.
  • a surface light source device having a light source side reflector that reflects light and irradiates the light guide plate incident surface, further, a lower surface reflector that makes light emitted from the lower surface of the light guide plate enter the light guide plate again, and Incident from the incident surface of the light guide plate
  • a plurality of small reflection surfaces are formed on the lower surface reflector, and the lower surface of the light guide plate approaches the lower surface of the light guide plate as the plurality of small reflection surfaces move away from the light incident surface of the light guide plate.
  • (°) is expressed by the following formula (1) with respect to the maximum angle ⁇ 1 (°) formed by the emission direction of the first light emitted from the upper surface of the light guide plate and the upper surface of the light guide plate.
  • ⁇ 2 90 ° ⁇ 1 ⁇ 10 ° (1) It is characterized by satisfying.
  • the optical member which changes the course of the 1st light which is the light which entered from the above-mentioned light-guide plate entrance plane, passed through the inside of the above-mentioned light-guide plate, and was emitted from the above-mentioned light guide plate upper surface substantially perpendicularly,
  • the optical member is formed so as to have an apex angle on the side facing the upper surface of the light guide plate, and the apex angle ⁇ 2 (°) of the optical member is the first angle emitted from the upper surface of the light guide plate.
  • the above formula (1) is satisfied with respect to the maximum angle ⁇ 1 (°) formed by the light emission direction of 1 with respect to the upper surface of the light guide plate, the first light is incident on the optical member, and When the light is totally reflected in the optical member and emitted from the upper surface of the optical member, the emission angle is within ⁇ 10 ° with respect to the vertical upper direction, and stray light can be effectively reduced.
  • the lower surface reflector that causes the light emitted from the lower surface of the light guide plate to enter the light guide plate again, and the lower surface reflector faces the lower surface of the light guide plate
  • a plurality of small reflection surfaces are formed on the lower surface reflector, and the plurality of small reflection surfaces are closer to the lower surface of the light guide plate so as to be closer to the lower surface of the light guide plate as they are separated from the incident surface of the light guide plate.
  • the light emitted from the lower surface of the light guide plate is reflected almost vertically upward by the lower surface reflector, passes through the light guide plate with almost no change in the course direction, and When entering the optical member, it is possible to change the light path in a direction different from the direction that can be said to be substantially vertically upward.
  • the surface light source device of the present invention can efficiently extract light from the upper surface of the light guide plate, and can have a certain degree of angular distribution centered on the vertically upward azimuth angle.
  • the optical member enters from the light guide plate incident surface, passes through the light guide plate, exits from the light guide plate lower surface, is reflected by the lower surface reflector, and again from the light guide plate lower surface.
  • Second light which is light that enters the light guide plate and passes through the light guide plate and exits from the upper surface of the light guide plate, is inclined at an angle within a range of greater than 0 ° and 60 ° or less with respect to the vertical upper direction. The course is changed in the direction.
  • the surface light source device of the present invention can give the extracted light an angular distribution of ⁇ 60 ° centered on the vertical upward azimuth angle.
  • the surface light source device of the present invention is characterized in that the lower reflector is inclined at an angle of 20 ° to 50 ° with respect to the lower surface of the light guide plate.
  • the surface light source device of the present invention can further increase the utilization factor of light.
  • the surface light source device of the present invention is characterized in that the optical member is a prism sheet.
  • the surface light source device of the present invention can change the light path more efficiently, can extract light more efficiently from the upper surface of the light guide plate, and is perpendicular to the extracted light. It is possible to easily provide a certain degree of angle distribution around the upper azimuth angle.
  • the prism sheet is a prism sheet in which the width of one prism is 300 ⁇ m or less, and the area facing the upper surface of the light guide plate is greater than or equal to the area of the upper surface of the light guide plate. It is characterized by.
  • the surface light source device of the present invention makes it difficult for the uneven brightness to be visually recognized, and the proportion of the light emitted from the upper surface of the light guide plate that does not enter the prism sheet is reduced, improving the light utilization rate. Can be made.
  • the surface light source device of the present invention further includes an antireflection film on the lower surface of the light guide plate.
  • the surface light source device of the present invention can reduce the loss reflected from the lower surface of the light guide plate out of the light emitted from the lower surface of the light guide plate and reflected by the lower surface reflector, further increasing the light utilization rate. Can be improved.
  • the surface light source device of the present invention further includes an antireflection film on the light guide plate incident surface.
  • the surface light source device of the present invention can reduce the loss of light emitted from the light source that is reflected by the light guide plate entrance surface and absorbed by the light source, and the light utilization rate is further improved. Can do.
  • the lower surface reflector is configured such that the width of one small reflecting surface is 300 ⁇ m or less, and the area facing the lower surface of the light guide plate is equal to or larger than the area of the lower surface of the light guide plate. It is characterized by being a child.
  • the surface light source device of the present invention makes it difficult for the spatial luminance unevenness to be visually recognized, and the proportion of the light that is not incident on the lower surface reflector out of the light emitted from the lower surface of the light guide plate is reduced. Can be improved.
  • the present invention light is efficiently extracted from the upper surface of the light guide plate of the surface light source device, and the extracted light has a certain degree of angular distribution with the azimuth angle vertically above as the center.
  • the surface light source device of the present invention can efficiently extract light from the upper surface of the light guide plate, and can give the extracted light an appropriate angular distribution centering on the outward normal direction with respect to the light guide plate.
  • Embodiments of the present invention will be described with reference to FIGS. 1 to 11 as follows. Note that the present invention is not limited to this.
  • FIG. 1 is a schematic sectional view showing an example of the present invention.
  • the surface light source device of the present invention mainly includes a light source 1, a light guide plate 2, a light source side reflector 3, a prism sheet (optical member) 4, and a lower surface reflector (reflective member) 5.
  • the light source 1 may be either a point light source or a surface light source.
  • point light sources all of white LED (light emitting diode) light sources, RGB-LED (light emitting diodes in which R, G, and B chips are molded in one package) light source, multi-color LED light source, and laser light source are all used. It can be preferably used.
  • surface light source an organic EL (electroluminescence) light source can be preferably used.
  • the light guide plate 2 preferably has a wedge-shaped cross section perpendicular to the plate width direction (direction perpendicular to the D1 direction and D2 direction in FIG. 1) (wedge shaped light guide plate).
  • the light guide plate 2 at least one end portion in the plate length direction (D1 direction in FIG. 1) is defined as a light guide plate incident surface (light guide plate 2 incident surface), and one of both end portions in the plate thickness direction (D2 direction in FIG. 1).
  • the (the prism sheet 4 side) is the upper surface of the light guide plate (the upper surface of the light guide plate 2), and the other (the lower surface reflector 5 side) is the lower surface of the light guide plate (the lower surface of the light guide plate 2).
  • the light guide plate 2 introduces (emits) light emitted from the light source 1 from the incident surface of the light guide plate 2 and spreads it to almost the entire area of the light emission surface (for example, 90% or more of the total area in the entire area). Designed and manufactured to make Since this design / manufacturing can be easily performed by using a normal light guide plate design / manufacturing technique, description thereof is omitted.
  • the light guide plate 2 entrance surface is disposed in front of the light source 1 so that light emitted (radiated) from the light source 1 is introduced from the light guide plate 2 entrance surface.
  • the light source side reflector 3 reflects the light emitted from the light source 1 and the light reflected from the light incident surface of the light guide plate 2 and irradiates the light incident surface of the light guide plate 2.
  • the light source side reflector 3 is configured by, for example, a housing (reflector) that surrounds the light source 1 and the light guide plate 2 incident surface with the inner surface side as a reflection surface.
  • the casing (reflector) is designed and manufactured by a normal method.
  • the prism sheet 4 is included in the present invention even if it is changed to an optical member other than the prism sheet as long as it changes the light path as described later.
  • Examples of the prism sheet used in the present invention include an asymmetric prism sheet shown in FIG. 8B, in addition to the (symmetric) prism sheet shown in FIG.
  • the first light can be condensed more vertically above the upper surface of the light guide plate, and the light transmittance can be improved.
  • the angular distribution when the second light passes becomes asymmetric due to the asymmetry of the prism.
  • a typical off-the-shelf prism sheet is a total reflection prism sheet ("Diaart" manufactured by Mitsubishi Rayon Co., Ltd.).
  • the lower surface reflector (reflecting member) 5 makes light emitted from the lower surface of the light guide plate 2 enter the light guide plate 2 again.
  • the lower surface reflector 5 is configured, for example, by arranging a plurality of small reflection surfaces (a plurality of reflectors) on the surface facing the lower surface of the light guide plate 2.
  • the plurality of small reflection surfaces are arranged in an inclined state so as to be closer to the lower surface of the light guide plate 2 as the distance from the light incident surface of the light guide plate 2 is increased.
  • the angle is 5 ° to 60 ° with respect to the lower surface.
  • a plurality of small reflective surfaces are erected from the proximal end from the light source 1 so that the angle between the lower reflective surface and the lower surface of the light guide plate 2 is 5 ° to 60 °. Is provided. Thereby, the light emitted from the lower surface of the light guide plate 2 can be reflected, and almost all of the reflected light can enter the light guide plate 2 again.
  • FIG. 7 is a graph showing the relationship between the angle ⁇ formed between the lower reflector and the lower surface of the light guide plate and the relative intensity of light emitted from the upper surface of the light guide plate.
  • an angle ⁇ formed by a small reflection surface of the lower surface reflector 5 and a surface parallel to the lower surface of the light guide plate 2 (dotted line portion in FIG. 1) and a relative intensity of light emitted from the upper surface of the light guide plate 2 It is a graph which shows a relationship. This is because the total amount of light emitted from the upper surface of the light guide plate 2 when the angle ⁇ between the lower reflector 5 and the lower surface of the light guide plate 2 in the range of 0 ° to 89.99 ° in FIG.
  • FIG. 7 also shows that it is preferable to limit ⁇ to a narrower range of 20 ° to 50 ° because the light utilization rate is further increased.
  • the prism sheet 4 emits the first light 10 that is incident from the light incident surface of the light guide plate 2 and passes through the light guide plate 2 and exits from the upper surface of the light guide plate 2 substantially vertically upward (the angle of deviation from the vertical upper direction is, for example, ⁇
  • the direction is changed to a direction within 10 °.
  • This is configured by arranging a shape in which a plurality of prisms are arranged on one side of a sheet and arranging the prism surface directly above the upper surface of the light guide plate 2 with the prism surface facing the upper surface of the light guide plate 2.
  • the light 10 that enters from the light incident surface of the light guide plate 2 and passes through the light guide plate 2 and exits from the upper surface of the light guide plate 2 is referred to as the first light 10 and enters the light guide plate 2 from the light guide plate 2 incident surface.
  • the light is emitted from the lower surface of the light guide plate 2 through the light guide plate 2, is reflected by the lower reflector 5, enters the light guide plate 2 again from the lower surface of the light guide plate 2, and is emitted from the upper surface of the light guide plate 2 through the light guide plate 2.
  • Light 11 is referred to as second light 11.
  • the path of the first light 10 is changed substantially vertically upward by the prism sheet.
  • the second light 11 exits from the lower surface of the light guide plate and is then reflected almost vertically upward by the lower surface reflector 5 inclined at an angle of 5 ° to 60 ° with respect to the lower surface of the light guide plate.
  • the light path is changed in a direction different from the direction that can be said to be substantially vertically upward.
  • the surface light source device of the present invention changes the course of the second light 11 in a direction inclined at an angle in the range of greater than 0 ° and 60 ° or less with respect to the vertical upper direction.
  • the angle at which the second light 11 is emitted will be described in detail with reference to FIG.
  • the refractive index of air is n a
  • the refractive index of the prism sheet is n p
  • the vertically upward direction in which the light (second light) reflected by the lower reflector and emitted from the upper surface of the light guide plate enters the prism sheet Is an angle with respect to the vertical direction of the direction in which the second light exits from the prism sheet, ⁇ out
  • an angle of the incident direction of the second light with respect to the normal direction of the light incident surface of the prism sheet is ⁇
  • the prism The angle of the traveling direction of the second light in the prism sheet with respect to the normal direction of the light incident surface of the sheet is ⁇
  • the direction of the second light emitting direction with respect to the normal direction (vertically upward) of the light emitting surface of the prism sheet the angle gamma, showing the vertical angle of the prism sheet as theta 2.
  • ⁇ out is derived by the following equation (2).
  • 90 ° ⁇ in ⁇ ( ⁇ 2 ) / 2 From Snell's law
  • n a ⁇ sin ( ⁇ out ) n p ⁇ sin ( ⁇ ) (2)
  • ⁇ in depends on the angle between the lower reflector and the lower surface of the light guide plate
  • ⁇ out changes depending on the design condition of the apex angle of the prism sheet ⁇ 2 and the angle between the lower reflector and the lower surface of the light guide plate To do.
  • the angular distribution can be controlled within the range of (within ⁇ 20 °) to (within ⁇ 60 °) with respect to the second light 11 vertically upward.
  • the prism sheet 4 has a shape having an apex angle on the side facing the upper surface of the light guide plate 2 as shown in FIGS.
  • the vertical angle ⁇ 2 (°) of the prism is expressed by the following equation (1) with respect to the maximum angle ⁇ 1 (°) formed by the emission direction of the first light 10 from the upper surface of the light guide plate 2 with the upper surface of the light guide plate 2.
  • ⁇ 2 90 ° ⁇ 1 ⁇ 10 ° (1) Will be satisfied.
  • Formula (1) is following Formula (1A) 80 ° ⁇ 1 ⁇ ⁇ 2 ⁇ 100 ° ⁇ 1 (1A) It is synonymous with.
  • Formula (1) is following Formula (1A) 80 ° ⁇ 1 ⁇ ⁇ 2 ⁇ 100 ° ⁇ 1 (1A) It is synonymous with.
  • the theory for deriving equation (1) will be described in detail with reference to FIG.
  • the refractive index of air is n a
  • the refractive index of the prism sheet is n p
  • the angle of the first light exiting from the prism sheet is ⁇ out
  • the light emitted from the upper surface of the light guide plate (first 1) and the light reflecting surface of the prism sheet is ⁇
  • the angle between the light emitted from the upper surface of the light guide plate (first light) and the upper surface of the light guide plate is ⁇ 1
  • the apex angle of the prism sheet is ⁇ Shown as 2 .
  • Equation (1) 90 ° ⁇ ( ⁇ 2 ) / 2 ⁇ 1
  • ⁇ 1 90 ° ⁇ (180 ° ⁇ 2 ⁇ 2 ⁇ 1 )
  • ⁇ 1 90 ° ⁇ (180 ° ⁇ 2 ⁇ 2 ⁇ 1 )
  • the emission angle ⁇ out when the first light 10 enters the prism sheet 4 and is totally reflected in the prism and emitted from the upper surface of the prism sheet 4 is Since the first light 10 is emitted almost vertically upward, the stray light can be effectively reduced.
  • the prism sheet 4 preferably has a width W 1 (see FIG. 3) of one prism of 300 ⁇ m or less. This is because when W 1 exceeds 300 ⁇ m, spatial luminance unevenness is easily recognized, which is not preferable.
  • W 1 is more preferably 100 ⁇ m or less, and further preferably 50 ⁇ m or less.
  • the area of the prism sheet 4 on the side facing the upper surface of the light guide plate 2 (the total area of the plurality of prism surfaces) is preferably equal to or larger than the area of the upper surface of the light guide plate 2.
  • the proportion of the light that is not incident on the prism sheet 4 out of the light emitted from the upper surface of the light guide plate 2 increases. This is because the utilization rate decreases.
  • an antireflection film 6 on the lower surface of the light guide plate 2 as shown in FIG.
  • the antireflection film 6 By having the antireflection film 6 on the lower surface of the light guide plate 2, it is possible to reduce the amount of light reflected from the lower surface of the light guide plate 2 out of the light emitted from the lower surface of the light guide plate 2 and reflected by the lower surface reflector 5. The rate is further improved.
  • the antireflection film 6 prevents the light emitted from the lower surface of the light guide plate 2 and reflected by the lower surface reflector 5 from being reflected by the lower surface of the light guide plate 2.
  • This for example, a MgF 2, SiO 2, Sb 2 O 5, TiO 2 or the like.
  • an antireflection film 6A on the incident surface of the light guide plate 2 as shown in FIG.
  • the antireflection film 6A prevents light emitted from the light source 1 from being reflected by the incident surface of the light guide plate 2. This is configured similarly to the antireflection film 6.
  • the lower surface side reflector 5 it is preferable that the width W 2 of one small reflective surfaces is 300 ⁇ m or less. This is because when W 2 exceeds 300 ⁇ m, spatial luminance unevenness is easily recognized, which is not preferable.
  • W 2 is more preferably 100 ⁇ m or less, and further preferably 50 ⁇ m or less.
  • the area on the side facing the lower surface of the light guide plate 2 (the total area of the plurality of small reflective surfaces) is preferably equal to or larger than the area of the lower surface of the light guide plate 2.
  • the ratio of the portion of the light emitted from the lower surface of the light guide plate 2 that does not enter the lower surface reflector 5 increases, and the light utilization rate increases. It is because it falls.
  • the surface light source device of the present invention may have a configuration in which “both ends in the plate length direction are light guide plate incident surfaces”. Even in that case, the surface light source device of the present invention mainly includes the light source 1, the light guide plate 2, the light source side reflector 3, the prism sheet (optical member) 4, and the lower surface reflector (reflective member) 5. Each configuration is the same as that of the surface light source device having the configuration of “one end portion in the plate length direction as the light guide plate incident surface” shown in FIG.
  • a surface light source device having the form shown in FIG. 1 is prototyped, and a light beam emitted from the upper surface of the prism sheet 4 by turning on a point light source 1 composed of an LED Manufactured by LE-5100). Further, the light distribution of the light emitted from the upper surface of the prism sheet 4 was measured with a diffusion angle characteristic measurement device (manufactured by autoronic Co., Ltd.).
  • the light source side reflector 3 has a reflector structure, and encloses the light source 1 and the light guide plate 2 incident surface with the inside as a reflection surface.
  • PMMA polymethyl methacrylate
  • the prism sheet 4 is a prism sheet having an apex angle of about 60 ° and a width of one prism of about 50 ⁇ m.
  • the size of the prism sheet 4 (the total area of the plurality of prism surfaces in the prism sheet 4) is guided. It is larger than the upper surface of the optical plate 2 (the area of the upper surface of the light guide plate 2 in the light guide plate 2).
  • the size of the lower reflector 5 (the total area of the plurality of small reflective surfaces in the lower reflector 5) is larger than the lower surface of the light guide plate 2 (the area of the lower surface of the light guide plate 2 in the light guide plate 2).
  • the shape of the reflecting surface of the bottom reflector 5 was such that ⁇ was about 38 ° and the width of one small reflecting surface was about 100 ⁇ m.
  • the surface shape of the lower reflector 5 is changed from the repetitive shape of the small reflecting surface to the planar shape of the large reflecting surface, and the lower surface reflector having this planar shape is changed to the light guide plate 2.
  • a surface light source device having the same form as that of the example of the present invention except that it was arranged in parallel with the lower surface was prototyped, and the luminous flux and the light distribution were measured by the same measurement method as that of the example of the present invention.
  • the measured light flux of the example of the present invention was about 3% higher than that of the comparative example.
  • the light distribution of the example of the present invention was confirmed to be equal to or greater than that of the comparative example. Therefore, according to the examples and comparative examples of the present invention, it was confirmed that the effect of the present invention, that is, light was extracted efficiently and the extracted light had a certain degree of angular distribution.
  • the present invention can be applied to a surface light source device used as a backlight of a liquid crystal display device, a liquid crystal display device including the surface light source device, and the like.
  • Light source for example, point light source
  • Light guide plate (wedge-shaped light guide plate whose cross-sectional shape is wedge-shaped)
  • Light source side reflector 4
  • Prism sheet optical member
  • Bottom reflector (reflective member)
  • Anti-reflective coating 10
  • First light (light entering the light guide plate from the light guide plate incident surface, passing through the light guide plate and exiting from the upper surface of the light guide plate)
  • Second light (enters the light guide plate through the light guide plate entrance surface, exits through the light guide plate, exits from the bottom surface of the light guide plate, reflects off the bottom reflector, enters the light guide plate again from the bottom surface of the light guide plate, and enters the light guide plate.
  • Second light enters the light guide plate again from the bottom surface of the light guide plate, and enters the light guide plate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

 従来の面光源装置では、光の利用率を上げようとすると光の角度分布が非常に狭くなる。本発明では、光源(1)と、光源からの光を導光板入射面から導入し光射出面のほぼ全域に広げて射出させる導光板(2)と、光源からの光、および光源からの光のうち導光板入射面で反射された光、を反射して導光板入射面へ照射する光源側反射子(3)とを有する面光源装置において、さらに、導光板下面から射出した光を再度導光板内へ入射させる下面反射子(5)と、導光板入射面から入射し導光板内を通って導光板上面から射出した光である第1の光(10)をほぼ垂直上方へ進路変更させる光学部材(4)とを有し、下面反射子は、導光板下面に対し5°~60°の角度で傾斜し、光学部材の頂角の角度θは、導光板上面から射出した第1の光の射出方向が導光板上面となす最大角度θに対して、θ=90°-θ±10°を満足している。

Description

面光源装置
 本発明は、面光源装置に関し、詳しくは、透過型LCD(LCDは液晶ディスプレイの略称である)や半透過LCDのバックライトなどに適用される面光源装置に関する。
 光源からの光の利用率を高めることを目的とした面光源装置としては、次のようなものが知られている。
 特許文献1には、サイドライト型バックライト導光板を用いる光源装置において、サイドライト型バックライト導光板の片面には、垂直入射光線を透過し、斜め入射光線を反射する透過率角度依存性層が配置されており、サイドライト型バックライト導光板のもう一方の片面には、繰り返し傾斜構造を有する反射板が配置されているものが記載されている。これは、反射等の繰り返しによる吸収損失を少なくしようとするものである。
 また、特許文献2には、導光板を兼用させた第2の透明基板と、第2の透明基板の液晶層側に設けられた第1の低屈折率層と、第2の透明基板の非液晶層側に設けられた第2の低屈折率層とを設置し、さらに、第2の透明基板の屈折率をn0とし、第1及び第2の低屈折率層の屈折率をそれぞれn1及びn2としたときに、不等式、n1<n2<n0を満足させる液晶表示装置が記載されている。これは、透明基板の内部に導入された光源からの光が第1の低屈折率層を介して液晶層側に直接的に出射されるのを抑えつつ、光源からのほとんどの光を第2の低屈折率層から偏光板側に出射させることで、光源からの光の利用率を高めようとするものである。
日本国公開特許公報「特開2005-79008号公報(2005年3月24日公開)」 日本国公開特許公報「特開2007-47303号公報(2007年2月22日公開)」
 特許文献1に記載されている面光源装置では、垂直入射光を透過し、かつ斜め入射光を反射させる透過率角度依存性層を必要としている。しかし、透過率角度依存性層への斜め入射光線の反射率が低ければ、該斜め入射光線が透過し、迷光となって角度特性の劣化をもたらす(例えば、液晶パネルへ照射される光にばらつきが生じる)ため、透過率角度依存性層の角度特性(例えば、液晶パネルへ照射される光の分布)を適正に発現させるのは非常に困難であると考えられる。また、透過率角度依存性層にて反射した光は、繰り返し傾斜構造を有する反射板にて垂直方向に反射し、液晶パネルへ照射する。導光板から直接反射板に照射する光も存在し、この光も反射板にて垂直方向に反射し、液晶パネルへ照射する。よって、この面光源装置から取り出される光の角度分布(詳しくは光の進路方向を表す角度の分布)は非常に狭いものとなる。
 また、特許文献2に記載されている面光源装置では、導光板に該当する部分の下面から射出した光は、傾斜している反射板にて垂直方向に反射し、液晶パネルへ照射する。導光板に該当する部分の上下に屈折率の異なる2つの層を形成しているため、反射板にて垂直方向に反射してきた光は多くの界面を通過することになり、数%の界面反射が発生し、透過率が低下する。また、特許文献2には、導光板に該当する部分の上面からは光は出ない旨の記載があるが、実際は、上面からも光は通過して直接液晶層に入射する。このような経路で入射した光は偏光子を通過していない光であるため、表示品位を著しく低下させる。つまり、特許文献2に記載されている面光源装置では、垂直方向のみ正常な光が液晶パネルに届くため、視野角は狭く、また無偏光が液晶パネルへ入射するため斜め視角は表示品位が低下する。
 上述のように、従来の面光源装置では、光の利用率を上げようとすると光の角度分布が非常に狭くなるという課題があった。
 本発明は、前記課題に鑑みてなされたものであり、導光板上面から光を効率良く取り出すことができ、かつ取り出された光が導光板上面における導光板に対して外向き法線方向を中心として適正な角度分布を有している面光源装置を提供することを目的としている。
 発明者らは前記課題を解決するために、導光板の上面から効率良く光を取り出すとともに、取り出した光に対してある程度の角度分布をもたせる手段を考究し、その結果、以下に記載される本発明をなした。
 本発明の面光源装置は、光源と、前記光源からの放射光を内部へ入射させる光入射面、ならびに、内部に入射された光を出射させる一対の光射出面である上面および下面を有している導光板と、前記光入射面から前記導光板の内部へ直接的に入射しない前記光源からの放射光を、該光入射面へ向けて反射する光源側反射子とを備えており、前記下面から出射した光を反射して前記導光板の内部へ再度入射させる、該下面に対向して配置された反射部材と、前記上面から出射した光の進路を該上面における前記導光板から外向き法線方向に対して10°以内の方向へ変更させる、該上面に対向して配置された光学部材とをさらに備え、前記反射部材上には、複数の反射子が、前記下面との間の角度が5°~60°の範囲となるように、前記光源からの近位端を起点として起立して設けられており、前記光学部材が、前記上面に向けて頂角を有するように形成されており、前記頂角の角度θ(°)が、前記上面から出射した光の出射方向と該上面との間の最大角度θ(°)に対して、下記式(1)
  θ=90°-θ±10°   ‥‥(1)
で規定されることを特徴とする。
 上記の構成によれば、前記上面から出射した光の進路を該上面における前記導光板から外向き法線方向に対して10°以内の方向へ変更させる、該上面に対向して配置された光学部材を備えており、かつ前記光学部材が、前記上面に向けて頂角を有するように形成されており、前記頂角の角度θ(°)が、前記上面から出射した光の出射方向と該上面との間の最大角度θ(°)に対して、下記式(1)で規定されているので、前記上面から出射した光が前記光学部材に入射し、前記光学部材内で全反射して前記光学部材の上面から射出するときの射出角度が垂直上方に対して±10°以内となり、迷光を有効に削減することができる。
 また、上記の構成によれば、前記下面から出射した光を反射して前記導光板の内部へ再度入射させる、該下面に対向して配置された反射部材を備え、かつ前記反射部材上には、複数の反射子が、前記下面との間の角度が5°~60°の範囲となるように、前記光源からの近位端を起点として起立して設けられているので、前記下面から射出した光が前記反射部材でほぼ垂直上方に反射され、進路方向をほとんど変えずに前記導光板を通過し、前記光学部材に入射した際に、ほぼ垂直上方といえる方向とは異なる方向へ光の進路を変更させることができる。
 その結果、本発明の面光源装置は、導光板上面から光を効率良く取り出すことができ、かつ取り出された光に垂直上方の方位角度を中心としたある程度の角度分布をもたせることができる。
 本発明の面光源装置は、少なくとも一つの光源と、板の長さ方向の少なくとも一端部を導光板入射面とし、前記板の厚さ方向の両端部のうち一方を導光板上面、他方を導光板下面とし、前記導光板上面および前記導光板下面を光射出面とし、前記導光板上面における導光板に対して外向き法線方向を垂直上方として、前記光源から発した光を前記導光板入射面から導入し、前記光射出面のほぼ全域に広げて射出させる前記板からなる導光板と、前記光源から発した光、および前記光源から発した光のうち前記導光板入射面で反射された光、を反射して前記導光板入射面へ照射する光源側反射子とを有する面光源装置において、さらに、前記導光板下面から射出した光を再度前記導光板内へ入射させる下面反射子と、前記導光板入射面から入射し前記導光板内を通って前記導光板上面から射出した光である第1の光をほぼ垂直上方へ進路変更させる光学部材とを有し、前記下面反射子が、前記導光板下面と対向しており、前記下面反射子上には、複数の小反射面が形成されており、前記複数の小反射面は、前記導光板入射面から離れるほど前記導光板下面に近づくように、前記導光板下面に対し5°~60°の角度で傾斜しており、前記光学部材が、前記導光板上面に対向する側に頂角を有するように形成されており、前記光学部材の頂角の角度θ(°)は、前記導光板上面から射出した前記第1の光の射出方向が前記導光板上面となす最大角度θ(°)に対して、下記式(1)
  θ=90°-θ±10°   ‥‥(1)
を満足することを特徴とする。
 上記の構成によれば、前記導光板入射面から入射し前記導光板内を通って前記導光板上面から射出した光である第1の光をほぼ垂直上方へ進路変更させる光学部材を有し、かつ前記光学部材は、前記導光板上面に対向する側に頂角を有するように形成されており、前記光学部材の頂角の角度θ(°)は、前記導光板上面から射出した前記第1の光の射出方向が前記導光板上面となす最大角度θ(°)に対して、上記式(1)を満足しているので、前記第1の光が前記光学部材に入射し、前記光学部材内で全反射して前記光学部材の上面から射出するときの射出角度が垂直上方に対して±10°以内となり、迷光を有効に削減することができる。
 また、上記の構成によれば、前記導光板下面から射出した光を再度前記導光板内へ入射させる下面反射子を有し、かつ前記下面反射子は、前記導光板下面と対向しており、前記下面反射子上には、複数の小反射面が形成されており、前記複数の小反射面は、前記導光板入射面から離れるほど前記導光板下面に近づくように、前記導光板下面に対し5°~60°の角度で傾斜しているので、前記導光板下面から射出した光が前記下面反射子でほぼ垂直上方に反射され、進路方向をほとんど変えずに前記導光板を通過し、前記光学部材に入射した際に、ほぼ垂直上方といえる方向とは異なる方向へ光の進路を変更させることができる。
 その結果、本発明の面光源装置は、導光板上面から光を効率良く取り出すことができ、かつ取り出された光に垂直上方の方位角度を中心としたある程度の角度分布をもたせることができる。
 本発明の面光源装置は、前記光学部材が、前記導光板入射面から入射し前記導光板内を通って前記導光板下面から射出し、前記下面反射子で反射して前記導光板下面から再度前記導光板に入射し前記導光板内を通って前記導光板上面から射出した光である第2の光を、垂直上方に対し0°よりも大きく、60°以下の範囲内の角度で傾斜した方向に進路変更させることを特徴とする。
 これにより、本発明の面光源装置は、取り出された光に、垂直上方の方位角度を中心とした±60°の角度分布をもたせることができる。
 本発明の面光源装置は、前記下面反射子が、前記導光板下面に対し20°~50°の角度で傾斜していることを特徴とする。
 これにより、本発明の面光源装置は、光の利用率をより一層高くすることができる。
 本発明の面光源装置は、前記光学部材が、プリズムシートであることを特徴とする。
 これにより、本発明の面光源装置は、光の進路をより効率的に変更させることができるようになり、導光板上面から光をより一層効率良く取り出すことができ、かつ取り出された光に垂直上方の方位角度を中心としたある程度の角度分布をもたせ易くすることができる。
 本発明の面光源装置は、前記プリズムシートが、1つのプリズムの幅を300μm以下とされ、前記導光板上面に対向する側の面積を前記導光板上面の面積以上とされたプリズムシートであることを特徴とする。
 これにより、本発明の面光源装置は、空間的な輝度ムラが視認され難くなり、かつ導光板上面からの射出光のうちプリズムシートに入射しない部分の割合が小さくなって光の利用率を向上させることができる。
 本発明の面光源装置は、さらに、前記導光板下面に反射防止膜を有することを特徴とする。
 これにより、本発明の面光源装置は、導光板下面から射出して下面反射子で反射された光のうち導光板下面で反射されるロス分を低減することができ、光の利用率をさらに向上させることができる。
 本発明の面光源装置は、さらに、前記導光板入射面に反射防止膜を有することを特徴とする。
 これにより、本発明の面光源装置は、光源から発した光のうち導光板入射面で反射されて光源に吸収されるロス分を低減することができ、光の利用率がより一層向上させることができる。
 本発明の面光源装置は、前記下面反射子が、1つの小反射面の幅を300μm以下とされ、前記導光板下面に対向する側の面積を前記導光板下面の面積以上とされた下面反射子であることを特徴とする。
 これにより、本発明の面光源装置は、空間的な輝度ムラが視認され難くなり、かつ導光板下面からの射出光のうち下面反射子に入射しない部分の割合が小さくなって光の利用率を向上させることができる。
 本発明によれば、面光源装置の導光板上面から、光が効率良く取り出され、該取り出された光は垂直上方の方位角度を中心としてある程度の角度分布を有するものになる。
 すなわち、本発明の面光源装置は、導光板上面から光を効率良く取り出すことができ、かつ取り出された光に導光板に対する外向き法線方向を中心として適正な角度分布をもたせることができる。
本発明の1例を示す断面模式図である。 本発明における下面反射子の作用を示す説明図である。 本発明におけるプリズムシート(光学部材)の作用を示す説明図である。 本発明の1例(既出例とは異なる)を示す断面模式図である。 本発明の1例(既出例とは異なる)を示す断面模式図である。 本発明の1例(既出例とは異なる)を示す断面模式図である。 下面反射子と導光板下面とのなす角度αと、導光板上面から射出する光の相対強度との関係を示すグラフである。 本発明におけるプリズムシート(光学部材)を示す断面模式図である。 本発明における第2の光が射出される角度を示す説明図である。 本発明における第1の光が射出される角度を示す説明図である。 本発明の1例(既出例とは異なる)を示す断面模式図である。
 本発明の実施形態について図1~図11に基づいて説明すると以下の通りである。なお、本発明はこれに限定されるものではない。
 図1は、本発明の1例を示す断面模式図である。図1に示すように、本発明の面光源装置は、主として、光源1、導光板2、光源側反射子3、プリズムシート(光学部材)4、下面反射子(反射部材)5を有する。
 光源1は、点光源、面発光光源のいずれであってもよい。点光源としては、白色LED(発光ダイオード)光源、RGB-LED(R、G、Bのチップがそれぞれ1つのパッケージ内にモールドされている発光ダイオード)光源、マルチカラーLED光源、レーザー光源のいずれも好ましく用いうる。面発光光源としては、有機EL(エレクトロルミネッセンス)光源を好ましく用いうる。
 導光板2は、板幅方向(図1におけるD1方向およびD2方向と直交する方向)に垂直な断面形状が楔形をなすもの(楔形導光板)が好ましい。導光板2において、板長さ方向(図1におけるD1方向)の少なくとも一端部を導光板入射面(導光板2入射面)とし、板厚方向(図1におけるD2方向)の両端部のうち一方(プリズムシート4側)を導光板上面(導光板2上面)、他方(下面反射子5側)を導光板下面(導光板2下面)とし、これら両面を光射出面とする。導光板2上面における導光板2に対して外向き法線方向を垂直上方と称する。また、導光板2上面における導光板2に対して外向き法線方向から±10°以内の方向を「ほぼ垂直上方」と称する。導光板2は、光源1から発した(放射された)光を導光板2入射面から導入し、光射出面のほぼ全域(例えば全域中の全面積における90%以上の部分)に広げて射出させるように設計・製造される。この設計・製造については、通常の導光板の設計・製造技術を用いて容易に実施できるので、説明を省略する。光源1から発した(放射された)光が導光板2入射面から導入されるように、導光板2入射面は光源1の正面に配置される。
 光源側反射子3は、光源1から発した光、および光源1から発した光のうち導光板2入射面で反射された光、を反射して導光板2入射面へ照射するものである。光源側反射子3は、例えば、内面側を反射面として光源1と導光板2入射面とを囲う筐体(リフレクタ)等で構成される。筐体(リフレクタ)は、通常の方法で設計・製造される。
 プリズムシート4は、光の進路を後述のように変更させるものであれば、プリズムシート以外の光学部材に変更しても本発明に含まれる。本発明に用いられるプリズムシートとしては、図8の(a)に示す(対称な)プリズムシート以外に、図8の(b)に示す非対称なプリズムシートが挙げられる。非対称なプリズムシートを用いる利点としては、第1の光を導光板上面の垂直上方に、より集光させることができ、かつ光の透過率も向上させることができる。ただし、第2の光が通過した際の角度分布が、プリズムの非対称性の影響により、非対称になる。非対称なプリズムシートの代表的な既製品としては、全反射プリズムシート(三菱レイヨン社製、「ダイヤアート」)が挙げられる。
 下面反射子(反射部材)5は、導光板2下面から射出した光を再度導光板2内へ入射させるものである。下面反射子5は、例えば、導光板2下面と対向する面上に複数の小反射面(複数の反射子)を連ねたもの等を配置して構成される。下面反射子5において、前記複数の小反射面は、導光板2入射面から離れるほど導光板2下面に近づくように傾斜状態で配置され、この傾斜の角度(αと記す)は、導光板2下面に対して5°~60°とされる。すなわち、下面反射子5上には、複数の小反射面が、導光板2下面との間の角度が5°~60°の範囲となるように、光源1からの近位端を起点として起立して設けられている。これにより、導光板2下面から射出した光を反射させ、該反射した光のほぼ全部を再度導光板2内へ入射させることができる。
 この点について、図7を用いて説明する。図7は、下面反射子と導光板下面とのなす角度αと、導光板上面から射出する光の相対強度との関係を示すグラフである。具体的には、下面反射子5における小反射面と導光板2下面に平行な面(図1における点線部分)とのなす角度αと、導光板2上面から射出する光の相対強度と、の関係を示すグラフである。これは、図1において下面反射子5と導光板2下面とのなす角度αが0°~89.99°の範囲で変化したときの導光板2上面から射出する光の全光束量を光学シミュレータにて計算し、その結果を整理したものである。図7より、αが5°未満であると、下面反射子5からの反射光のうち楔形先端側(導光板入射面と反対側)の外界へ向かうロス分が多くなり、また、αが60°を超えると、下面反射子5からの反射光のうち楔形根元側(導光板入射面側)の外界へ向かうロス分が多くなり、いずれにおいても光の利用率が低下して好ましくない。また、αが5°未満の場合、および、αが60°を超える場合、下面反射子5によって反射され、導光板2下面に再入射する光において、光の入射角度が導光板2下面に対して非常に浅くなり、導光板2へ透過する光の割合が低下するため、導光板2に再入射する場合においても光の利用率が低下して好ましくない。
 また、図7より、αをさらに狭い20°~50°の範囲に制限すると、光の利用率がよりいっそう高くなって好ましいことがわかる。
 プリズムシート4は、導光板2入射面から入射し導光板2内を通って導光板2上面から射出した光である第1の光10をほぼ垂直上方(垂直上方からのずれの角度が例えば±10°以内の方向)へ進路変更させるものである。これは、シートの片面にプリズムを複数連ねた形状をもたせたものを、該プリズム面側を導光板2上面と対向させて、導光板2上面の直上に配置して構成される。
 本発明の面光源装置の作用を、図2を用いて説明する。説明の便宜上、導光板2入射面から入射し導光板2内を通って導光板2上面から射出した光10を第1の光10と呼び、また、導光板2入射面から導光板2に入射し導光板2内を通って導光板2下面から射出し、下面反射子5で反射して導光板2下面から再度導光板2に入射し導光板2内を通って導光板2上面から射出した光11を第2の光11と呼ぶ。第1の光10はプリズムシートによってほぼ垂直上方へ進路変換される。一方、第2の光11は、導光板下面から射出した後、導光板下面に対し5°~60°の角度で傾斜している下面反射子5でほぼ垂直上方に反射され、進路方向をほとんど変えずに導光板2を通過し、プリズムシート4に入射した際にほぼ垂直上方といえる方向とは異なる方向へ光の進路が変更される。
 具体的には、本発明の面光源装置は、第2の光11を垂直上方に対し0°よりも大きく、60°以下の範囲内の角度で傾斜した方向に進路変更させる。第2の光11が射出される角度について、図9を用いて詳細に説明する。
 図9において、空気の屈折率をn、プリズムシートの屈折率をn、下面反射子で反射され導光板上面より射出した光(第2の光)がプリズムシートに入射する方向の垂直上方に対する角度をθin、第2の光がプリズムシートから射出する方向の垂直上方に対する角度をθout、プリズムシートにおける光入射面の法線方向に対する第2の光の入射方向の角度をα、プリズムシートにおける光入射面の法線方向に対する第2の光のプリズムシート内での進行方向の角度をβ、プリズムシートにおける光射出面の法線方向(垂直上方)に対する第2の光の射出方向の角度をγ、プリズムシートの頂角をθとして示す。
 このとき、以下の式(2)により、θoutが導出される。
α=90°-θin-(θ)/2
スネルの法則より、n×sin(α)=n×sin(β)
γ=90°-(θ)/2-β
スネルの法則より、n×sin(θout)=n×sin(γ)   ‥‥(2)
 例えば、空気の屈折率をn=1.0、プリズムシートの屈折率をn=1.5、プリズムシートの頂角をθ=90°、下面反射子で反射され導光板上面より射出した光の垂直上方に対する角度をθin=0°~20°とすると、θoutは、θout=26°~46°となる。
 上記条件のうちθ=60°~120°とすると、θoutは、θout=16°~58°となる。
 θinの角度は、下面反射子と導光板下面との角度に依存するため、θoutは、プリズムシートの頂角をθ、および下面反射子と導光板下面との角度の設計条件によって変化する。
 現実的な設計範囲によれば、第2の光11を垂直上方に対し、(±20°以内)~(±60°以内)の範囲内で角度分布を制御することができる。
 よって、この面光源装置からは光を高い利用率で取り出すことかでき、かつ、取り出された光の角度分布はある程度の範囲、すなわち垂直上方に対し±60°以内となる。
 本発明では、プリズムシート4は、図1~6に示すように、導光板2上面に対向する側に頂角を有する形状であり、プリズムシート4の頂角(詳しくはプリズムシート4内における個々のプリズムの頂角)θ(°)は、導光板2上面からの第1の光10の射出方向が導光板2上面となす最大角度θ(°)に対して、次式(1)
  θ=90°-θ±10°   ‥‥(1)
を満足することとする。
 なお、式(1)は次式(1A)
  80°-θ≦θ≦100°-θ   ‥‥(1A)
と同義である。式(1)を導出する理論について、図10を用いて詳細に説明する。
 図10において、空気の屈折率をn、プリズムシートの屈折率をn、第1の光がプリズムシートから射出する方向の垂直上方に対する角度をθout、導光板上面より射出した光(第1の光)とプリズムシートにおける光反射面とのなす角度をβ、導光板上面より射出した光(第1の光)と導光板上面とのなす角度をθ、プリズムシートの頂角をθとして示す。
 ここで、n≒nの場合、以下の近似が成立する。
β=90°-(θ)/2-θ
θout=90°-2β-θ
   =90°-2×(90°-(θ)/2-θ)-θ
   =90°-(180°-θ-2θ)-θ
   =90°-(180°-θ-2θ)-θ
   =θ+θ-90°
θout=±10°より、
θ=90°-θ±10°
 式(1)を満たす場合に、θoutが±10°以内となる理由としては、式(1)自体がθout=±10°という条件より導出された式だからである。
 上記計算式は、空気の屈折率nとプリズムシートの屈折率nとが同じであると仮定した場合であるが、実際の屈折率を用いても、ほぼ同様の結果となる。
 これにより、例えば図3に示すように、第1の光10がプリズムシート4に入射し、プリズム内で全反射してプリズムシート4の上面から射出するときの射出角度θoutが垂直上方に対して±10°以内となり、第1の光10がほぼ垂直上方に射出するので、迷光を有効に削減することができる。
 また、プリズムシート4は、1つのプリズムの幅W(図3参照)が300μm以下であることが好ましい。Wが300μmを超えると、空間的な輝度ムラが視認されやすくなり、好ましくないからである。なお、Wは100μm以下であることがより好ましく、50μm以下であることがさらに好ましい。そして、プリズムシート4の、導光板2上面に対向する側の面積(複数のプリズム面の総面積)は、導光板2上面の面積以上とすることが好ましい。プリズムシート4において、複数のプリズム面の総面積が、導光板2上面の面積よりも小さいと、導光板2上面からの射出光のうちプリズムシート4に入射しない部分の割合が大きくなって光の利用率が低下するからである。
 また、本発明では、例えば図4に示すように、導光板2下面に反射防止膜6を有することが好ましい。導光板2下面に反射防止膜6を有することで、導光板2下面から射出して下面反射子5で反射された光のうち導光板2下面で反射されるロス分を低減でき、光の利用率がさらに向上する。
 ここで、反射防止膜6は、導光板2下面から射出して下面反射子5で反射された光が導光板2下面で反射されるのを防止するものである。これは、例えば、MgF、SiO、Sb、TiO等で構成される。
 また、本発明ではさらに、例えば図5に示すように、導光板2入射面にも反射防止膜6Aを有することが、より好ましい。導光板2入射面にも反射防止膜6Aを有することで、光源1から発した光のうち導光板2入射面で反射されて光源1に吸収されるロス分を低減でき、光の利用率がより一層向上する。
 ここで、反射防止膜6Aは、光源1から発した光が導光板2入射面で反射されるのを防止するものである。これは、反射防止膜6と同様に構成される。
 また、本発明では、例えば図6に示すように、下面反射子5において、1つの小反射面の幅Wが300μm以下であることが好ましい。Wが300μmを超えると、空間的な輝度ムラが視認されやすくなり、好ましくないからである。なお、Wは100μm以下であることがより好ましく、50μm以下であることがさらに好ましい。そして、下面反射子5において、導光板2下面に対向する側の面積(複数の小反射面の総面積)は、導光板2下面の面積以上とすることが好ましい。複数の小反射面の総面積が、導光板2下面の面積よりも小さいと、導光板2下面からの射出光のうち下面反射子5に入射しない部分の割合が大きくなって光の利用率が低下するからである。
 なお、図11に示すように、本発明の面光源装置は、「板の長さ方向の両端部を導光板入射面とする」構成であってもよい。その場合にも、本発明の面光源装置は、主として、光源1、導光板2、光源側反射子3、プリズムシート(光学部材)4、下面反射子(反射部材)5を有する。各構成については、図1に示す「板の長さ方向の一端部を導光板入射面とする」構成を備えた面光源装置の場合と同じであるため、その説明を省略する。
 以下に、本発明の効果について、実施例および比較例を用いて具体的に検証した結果を示す。しかしながら、本発明は、以下の実施例にのみ限定されるものではない。
 本発明の実施例として、図1に示した形態の面光源装置を試作し、LEDで構成した点光源1を点灯してプリズムシート4上面から射出する光束を、全光束測定システム(大塚電子社製、LE-5100)で測定した。また、プリズムシート4上面から射出する光の配光分布を、拡散角度特性測定装置(オートロニック社製、コノスコープ)で測定した。
 光源側反射子3はリフレクタ構造をしており、内側を反射面として光源1と導光板2入射面とを囲った。
 導光板2はポリメチルメタクリレート(PMMA)からなる素材(屈折率=1.4835)を使用し、導光板2入射面は、光源1から発した光を導光板2入射面から導入し、光射出面のほぼ全域に広げて出射させるように設計・製造した。
 プリズムシート4は、プリズムシートの頂角が約60°、1つのプリズムの幅が約50μmのものを使用し、プリズムシート4の大きさ(プリズムシート4における複数のプリズム面の総面積)は導光板2上面(導光板2における導光板2上面の面積)よりも大きい。
 下面反射子5は、ポリメチルメタクリレート(PMMA)からなる素材(屈折率=1.4835)を下地として使用し、小反射面となる面にアルミニウムを薄膜蒸着し、反射面を形成した。下面反射子5の大きさ(下面反射子5における複数の小反射面の総面積)は導光板2下面(導光板2における導光板2下面の面積)よりも大きい。下面反射子5の反射面形状は、αが約38°、1つの小反射面の幅が約100μmになる形状とした。
 一方、比較例として、本発明の実施例において下面反射子5の面形状を小反射面の繰り返し形状から大反射面の平面形状に変更して、この平面形状を有する下面反射子を導光板2下面に平行に配置したこと以外は、本発明の実施例と同じ形態とした面光源装置を試作し、本発明の実施例のときと同様の測定方法で光束および配光分布を測定した。
 その結果、本発明の実施例の光束測定値は、比較例のそれに比べ、約3%高い値を示した。また、本発明の実施例の配光分布は、比較例のそれに比べ、同等以上の広がりが確認された。よって、本発明の実施例および比較例によれば、本発明の効果、すなわち光が効率良く取り出され、かつ取り出された光はある程度の角度分布を有するということが確認された。
 なお、上述した具体的な実施形態および実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内において、いろいろと変更して実施することができるものである。
 本発明は、液晶表示装置のバックライト等として利用される面光源装置、その面光源装置を備えた液晶表示装置などに適用することができる。
 1 光源(例えば点光源)
 2 導光板(断面形状が楔形をなす楔形導光板)
 3 光源側反射子
 4 プリズムシート(光学部材)
 5 下面反射子(反射部材)
 6,6A 反射防止膜
 10 第1の光(導光板入射面から導光板に入射し導光板内を通って導光板上面から射出した光)
 11 第2の光(導光板入射面から導光板に入射し導光板内を通って導光板下面から射出し、下面反射子で反射して導光板下面から再度導光板に入射し導光板内を通って導光板上面から射出した光)

Claims (9)

  1.  光源と、
     前記光源からの放射光を内部へ入射させる光入射面、ならびに、内部に入射された光を出射させる一対の光射出面である上面および下面を有している導光板と、
     前記光入射面から前記導光板の内部へ直接的に入射しない前記光源からの放射光を、該光入射面へ向けて反射する光源側反射子と
    を備えており、
     前記下面から出射した光を反射して前記導光板の内部へ再度入射させる、該下面に対向して配置された反射部材と、
     前記上面から出射した光の進路を該上面における前記導光板から外向き法線方向に対して10°以内の方向へ変更させる、該上面に対向して配置された光学部材と
    をさらに備え、
     前記反射部材上には、複数の反射子が、前記下面との間の角度が5°~60°の範囲となるように、前記光源からの近位端を起点として起立して設けられており、
     前記光学部材が、前記上面に向けて頂角を有するように形成されており、前記頂角の角度θ(°)が、前記上面から出射した光の出射方向と該上面との間の最大角度θ(°)に対して、下記式(1)
      θ=90°-θ±10°   ‥‥(1)
    で規定されることを特徴とする面光源装置。
  2.  少なくとも一つの光源と、
     板の長さ方向の少なくとも一端部を導光板入射面とし、前記板の厚さ方向の両端部のうち一方を導光板上面、他方を導光板下面とし、前記導光板上面および前記導光板下面を光射出面とし、前記導光板上面における導光板に対して外向き法線方向を垂直上方として、前記光源から発した光を前記導光板入射面から導入し、前記光射出面のほぼ全域に広げて射出させる前記板からなる導光板と、
     前記光源から発した光、および前記光源から発した光のうち前記導光板入射面で反射された光、を反射して前記導光板入射面へ照射する光源側反射子とを有する面光源装置において、
     さらに、前記導光板下面から射出した光を再度前記導光板内へ入射させる下面反射子と、
     前記導光板入射面から入射し前記導光板内を通って前記導光板上面から射出した光である第1の光をほぼ垂直上方へ進路変更させる光学部材とを有し、
     前記下面反射子は、前記導光板下面と対向しており、前記下面反射子上には、複数の小反射面が形成されており、前記複数の小反射面は、前記導光板入射面から離れるほど前記導光板下面に近づくように、前記導光板下面に対し5°~60°の角度で傾斜しており、
     前記光学部材は、前記導光板上面に対向する側に頂角を有するように形成されており、
     前記光学部材の頂角の角度θ(°)は、前記導光板上面から射出した前記第1の光の射出方向が前記導光板上面となす最大角度θ(°)に対して、下記式(1)を満足することを特徴とする面光源装置。
      θ=90°-θ±10°   ‥‥(1)
  3.  前記光学部材は、前記導光板入射面から入射し前記導光板内を通って前記導光板下面から射出し、前記下面反射子で反射して前記導光板下面から再度前記導光板に入射し前記導光板内を通って前記導光板上面から射出した光である第2の光を、垂直上方に対し0°よりも大きく、60°以下の範囲内の角度で傾斜した方向に進路変更させることを特徴とする請求項1または2に記載の面光源装置。
  4.  前記下面反射子は、前記導光板下面に対し20°~50°の角度で傾斜していることを特徴とする請求項1~3のいずれか1項に記載の面光源装置。
  5.  前記光学部材は、プリズムシートであることを特徴とする請求項1~4のいずれか1項に記載の面光源装置。
  6.  前記プリズムシートは、1つのプリズムの幅を300μm以下とされ、前記導光板上面に対向する側の面積を前記導光板上面の面積以上とされたプリズムシートであることを特徴とする請求項5に記載の面光源装置。
  7.  さらに、前記導光板下面に反射防止膜を有することを特徴とする請求項1~6のいずれか1項に記載の面光源装置。
  8.  さらに、前記導光板入射面に反射防止膜を有することを特徴とする請求項7に記載の面光源装置。
  9.  前記下面反射子は、1つの小反射面の幅を300μm以下とされ、前記導光板下面に対向する側の面積を前記導光板下面の面積以上とされた下面反射子であることを特徴とする請求項1~8のいずれか1項に記載の面光源装置。
PCT/JP2009/067735 2008-11-27 2009-10-13 面光源装置 WO2010061691A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/130,758 US20110228558A1 (en) 2008-11-27 2009-10-13 Planar light source device
CN2009801475645A CN102227587A (zh) 2008-11-27 2009-10-13 面光源装置
JP2010540422A JP5071827B2 (ja) 2008-11-27 2009-10-13 面光源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008302925 2008-11-27
JP2008-302925 2008-11-27

Publications (1)

Publication Number Publication Date
WO2010061691A1 true WO2010061691A1 (ja) 2010-06-03

Family

ID=42225571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067735 WO2010061691A1 (ja) 2008-11-27 2009-10-13 面光源装置

Country Status (4)

Country Link
US (1) US20110228558A1 (ja)
JP (1) JP5071827B2 (ja)
CN (1) CN102227587A (ja)
WO (1) WO2010061691A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9423553B2 (en) * 2011-09-20 2016-08-23 3M Innovative Properties Company Backlight device
KR102030412B1 (ko) 2013-05-31 2019-10-10 엘지디스플레이 주식회사 라운드 다각패턴을 가진 도광판 및 이를 구비한 액정표시소자
CN206247120U (zh) 2016-10-19 2017-06-13 扬升照明股份有限公司 光源模组
CN106547048B (zh) 2017-02-10 2019-08-06 京东方科技集团股份有限公司 导光装置及其制造方法、背光模组和显示装置
JP7117836B2 (ja) 2017-09-28 2022-08-15 タカノ株式会社 電磁弁
CN212338969U (zh) * 2020-07-03 2021-01-12 苏州欧普照明有限公司 侧发光平板灯
JP2022156921A (ja) * 2021-03-31 2022-10-14 株式会社ジャパンディスプレイ 照明装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118417A (ja) * 1999-10-19 2001-04-27 Enplas Corp 面光源装置及び該面光源装置を備えた画像表示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202950A (en) * 1990-09-27 1993-04-13 Compaq Computer Corporation Backlighting system with faceted light pipes
KR100654220B1 (ko) * 1999-08-03 2006-12-05 삼성전자주식회사 액정표시장치
JP2002139630A (ja) * 2000-10-31 2002-05-17 Alps Electric Co Ltd 導光板およびその製造方法、面発光装置並びに液晶表示装置
US6595652B2 (en) * 2000-12-12 2003-07-22 International Manufacturing And Engineering Services Co., Ltd. Surface lighting device
JP2003295183A (ja) * 2002-03-29 2003-10-15 Citizen Watch Co Ltd 液晶表示装置の平面照明装置
KR100926299B1 (ko) * 2002-11-13 2009-11-12 삼성전자주식회사 백라이트 어셈블리용 반사판 및 이를 사용하는 백라이트어셈블리
JP4248974B2 (ja) * 2003-09-02 2009-04-02 日東電工株式会社 光源装置および液晶表示装置
JP2006108033A (ja) * 2004-10-08 2006-04-20 Mitsubishi Rayon Co Ltd タンデム型面光源装置
JP2006134748A (ja) * 2004-11-08 2006-05-25 Mitsubishi Rayon Co Ltd タンデム型面光源装置
JP4672006B2 (ja) * 2005-03-01 2011-04-20 シャープ株式会社 バックライトユニットおよび液晶表示装置
US7311431B2 (en) * 2005-04-01 2007-12-25 Avago Technologies Ecbu Ip Pte Ltd Light-emitting apparatus having a plurality of adjacent, overlapping light-guide plates
TWI331694B (en) * 2005-10-20 2010-10-11 Ind Tech Res Inst Back-lighted structure
US20070097710A1 (en) * 2005-10-31 2007-05-03 Jee-Gong Chang Light guide plate having micro-reflectors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118417A (ja) * 1999-10-19 2001-04-27 Enplas Corp 面光源装置及び該面光源装置を備えた画像表示装置

Also Published As

Publication number Publication date
JP5071827B2 (ja) 2012-11-14
US20110228558A1 (en) 2011-09-22
JPWO2010061691A1 (ja) 2012-04-26
CN102227587A (zh) 2011-10-26

Similar Documents

Publication Publication Date Title
JP6598121B2 (ja) 偏光光源装置
JP5071827B2 (ja) 面光源装置
TWI382245B (zh) 背光模組
US9465156B2 (en) Backlight module and display device
US20080089093A1 (en) Backlight unit using particular direct backlight assembly
JP2008288195A (ja) 偏光転向フィルムを含む、低減された色分解を有するバックライトユニット
US20170023724A1 (en) Optical Module And Reflective Display Apparatus
TW201506503A (zh) 扁平光導
JP2006146241A (ja) プリズムシート及びそれを採用したバックライトユニット
US20200159071A1 (en) Back light unit and display device having the same
US10571735B2 (en) Display device
WO2018166154A1 (zh) 一种光源器件及显示装置
WO2010010694A1 (ja) 液晶表示装置
US8094260B2 (en) Back light module and liquid crystal display
WO2012144409A1 (ja) 照明装置および表示装置
KR20210004032A (ko) 디스플레이 장치 및 이에 구비되는 확산판
JP2009003412A (ja) 低減された色分解を有する偏光転向フィルム
TWM559421U (zh) 背光模組及顯示裝置
KR102591781B1 (ko) 디스플레이 장치
WO2016002883A1 (ja) 照明装置および表示装置
JP4395197B1 (ja) 液晶表示装置
US20190204496A1 (en) Backlight unit and display device including the same
US8260100B2 (en) Light guiding layer with integrated mixing and light extracting region
US9864124B2 (en) Light generation member including light diffusion member and display apparatus having the same
JP4606135B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980147564.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010540422

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13130758

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09828940

Country of ref document: EP

Kind code of ref document: A1