WO2005004304A1 - 昇圧装置 - Google Patents

昇圧装置 Download PDF

Info

Publication number
WO2005004304A1
WO2005004304A1 PCT/JP2004/009993 JP2004009993W WO2005004304A1 WO 2005004304 A1 WO2005004304 A1 WO 2005004304A1 JP 2004009993 W JP2004009993 W JP 2004009993W WO 2005004304 A1 WO2005004304 A1 WO 2005004304A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
circuit
booster
booster circuit
energy
Prior art date
Application number
PCT/JP2004/009993
Other languages
English (en)
French (fr)
Inventor
Yasuyuki Kanai
Masato Mino
Satoshi Matsumoto
Kazuya Akiyama
Kousuke Katsura
Junichi Ohwaki
Satoshi Nakayama
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to EP14177241.8A priority Critical patent/EP2806531B1/en
Priority to EP14177239.2A priority patent/EP2806529B1/en
Priority to JP2005511444A priority patent/JP4223041B2/ja
Priority to US10/526,928 priority patent/US7345458B2/en
Priority to EP14177240.0A priority patent/EP2806530B1/en
Priority to EP04747459.8A priority patent/EP1643611B1/en
Publication of WO2005004304A1 publication Critical patent/WO2005004304A1/ja
Priority to US11/925,481 priority patent/US7449866B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/901Starting circuits

Definitions

  • the present invention relates to a booster, and more particularly, to a booster that uses energy of a fuel cell output and energy of a solar cell output.
  • a fuel cell is a power generation system that utilizes the chemical reaction between hydrogen and oxygen, and is a clean energy source that does not emit noise from exhaust gas such as nitrogen oxides (NOx). It is said that fuel cells have a weight energy density, one of the indices for measuring battery performance, that is ten times that of lithium-ion batteries. In other words, this means that a 5-hour notebook personal computer can be used for 50 hours, which is expected to dramatically improve the convenience of portable devices.
  • NOx nitrogen oxides
  • solar cells are clean energy sources that do not emit exhaust gas or noise, and have the advantage that they do not require replenishment of energy compared to secondary batteries such as lithium-ion batteries and Nikkad batteries. Therefore, application to portable equipment using only solar cells or a configuration combined with fuel cells is expected.
  • the output voltage of a single cell of a solar cell having a size used as a battery for a portable device is as low as about 0.5 V.
  • a solid polymer electrolyte fuel cell (PEFC) which is expected to be used as a battery for portable equipment, and a direct meta-cell
  • the output voltage of each single cell in a direct fuel cell (DMF C) is 0.6 V to 0.7 V with no load, at the rated output. Then it is as low as 0.3 V.
  • the fuel cell and the solar cell have the following problems.
  • the problem with fuel cells is the increase in manufacturing costs due to the structure that distributes fuel and oxygen (air) evenly to all cells.
  • the output current obtained from this configuration is the current of the cell that supplies the least amount of fuel or oxygen, or the cell that generates the least amount of current due to an improper mixing ratio. Limited by value. For this reason, measures such as digging grooves in the fuel cell and oxygen flow paths of the fuel cell to distribute the fuel and the like evenly are taken, but materials that can withstand humor must be used in these flow path grooves. And increased costs.
  • the first is an electrical problem. If some of the single cells that make up the solar cell module are shaded, the output voltage will drop significantly. In particular, when mounted on a portable device, it is difficult for the entire solar cell module to receive light at all times, and forcing the entire solar cell module to receive light makes users dissatisfied with its use. Leave;
  • the second is cost.
  • a solar cell module by connecting solar cells in series, in addition to a filter with a bypass diode, It is essential to take measures to insulate the wiring between the solar cell back surface and the cell adjacent to the solar cell front surface and between cells.
  • Patent Document 1 A solar cell device for charging has been disclosed (for example, Patent Document 1). ⁇ Patent Document 1
  • a tandem-type solar cell is used in which the solar cell is multi-layered and the output voltage is increased by directly connecting each layer in the cell.
  • this tandem solar cell can provide an output voltage of slightly less than 2 V, it is possible to start a booster circuit using a CMOS type oscillation circuit with a minimum starting voltage of about 1.4 V.
  • tandem-type solar cell has reduced the manufacturing cost only when compared to a solar cell in which the single cells are connected in series, but is still in comparison with a normal single-cell solar cell.
  • the complexity of the manufacturing process remained, and did not significantly reduce manufacturing costs, nor did it reduce solar cell utilization costs.
  • the solar cell device disclosed in Patent Document 1 described above is provided with a booster circuit.
  • the booster circuit In order to operate the solar cell device, it is necessary to start the booster circuit first, It was necessary to apply a predetermined starting energy to the booster circuit. Therefore, there has been a problem that the booster circuit cannot be started if the energy of the power supply means is lost or insufficient.
  • the present invention provides a manufacturing cost resulting from using a special battery. It is a first object of the present invention to provide a booster capable of suppressing an increase in cost and reducing costs by using a general-purpose battery.
  • a second object of the present invention is to provide a booster that can start a booster circuit without depending on the presence or absence of start-up energy from a power supply unit.
  • the boosting energy that is supplied with the starting energy required for the self-starting operation and the operating energy necessary for the continuation of the self-operation and generates the boosted output obtained by boosting the input voltage to be boosted is provided.
  • the start-up energy required for self-starting or the operating energy required for continuation of the self-operation is supplied, or either of them is supplied, and the input voltage to be boosted is boosted.
  • a booster circuit that generates a boosted output; a power supply unit that supplies the start-up energy; and a selection circuit that outputs one of the start-up energy and the operating energy to the booster circuit. Is characterized in that all or a part of the boosted output is output to the selection circuit as the operating energy.
  • the selection circuit includes: a rectifying element sequentially connected between the power supply unit and the boosting circuit; And a rectifier element connected in a direction in which the section is fed back to the booster circuit itself.
  • the booster further includes an output control circuit provided at a subsequent stage of the booster and performing output control on a boosted output obtained by the booster. It is characterized by.
  • the booster circuit has a means for controlling a boosting capability based on a control output of the output control circuit. And specially.
  • the booster circuit is driven by power supply means different from the first battery as the main power supply, so that the output voltage of the main power supply is low-voltage power. Highly efficient boosted voltage can be obtained, and it is not necessary to use multiple batteries connected in series as the main power supply, so that unstable output voltage can be eliminated and cost can be reduced. It becomes.
  • the output voltage from the power supply means and a part of the boosted output obtained from the first battery to be boosted are selectively output by the rectifying element or the rectifying element having the same rectifying characteristics (
  • the starting energy required for the self-start and the operating energy necessary for the continuation of the self-operation are supplied, and the boosted output is generated by boosting the input voltage to be boosted.
  • the boosting circuit feeds back all or part of the boosted output to itself as the operating energy. It is characterized by
  • the booster circuit is supplied with the low-voltage output to be boosted, and the starting energy is input from the power supply means.
  • the booster circuit itself can continue its operation. The required operating energy is fed back by itself, so that a boosted output for operating portable equipment can be obtained using the energy of the low-voltage output.
  • the boosting device In the boosting device according to the next invention, either one of the starting energy required for starting the device itself and the operating energy required for continuing the operation of the device is supplied, and the input voltage to be boosted is boosted.
  • the signal is output to a selection circuit and the power supply unit.
  • the low-voltage output to be boosted is supplied to the booster circuit, and the selection circuit to which both the start-up energy and the operation energy are input selects one of the start-up energy and the operation energy.
  • Output to the booster circuit enables the use of low-voltage energy to obtain boosted output for operating portable devices, etc., and to achieve efficient use of boosted output energy .
  • the starting energy required for the self-start and the operating energy necessary for the continuation of the self-operation are supplied, and the boosted output is generated by boosting the input voltage to be boosted.
  • a booster circuit that stores the boosted output to generate a constant voltage output and feeds the constant voltage output to the booster circuit as the start-up energy and the operating energy. This is a special feature. '
  • the booster circuit is supplied with the low-voltage output to be boosted, and the start-up energy required to start itself and the operating energy required to continue the operation of the booster circuit are stored in the storage battery to which the boosted output is input. Since the output is made from the element, it is possible to obtain boosted output for operating portable equipment etc. by using the energy of low voltage power. ⁇ It realizes efficient use of boosted and output energy ⁇ Can be.
  • step-up device In the step-up device according to the next invention, either one of the starting energy required for the self-start or the operating energy required for the continuation of the self-operation is supplied, and the step-up output obtained by stepping up the input voltage to be stepped up
  • a booster circuit that generates a constant voltage output by storing the boosted output that is input through a rectifying element that is connected in series between the booster circuit and itself, and outputs the startup energy.
  • a charge storage element; and a selection circuit that outputs one of the start energy and the operation energy to the booster circuit.
  • the booster circuit is supplied with a low-voltage output to be boosted, and the selection circuit to which both the start-up energy as the output of the storage element and the operating energy as the output of the booster circuit are input, Either the start-up energy or the operating energy is output to the booster circuit-so it is possible to obtain boosted output for operating portable equipment using low-voltage power energy.
  • the load on the element can be reduced and the boosted output energy can be efficiently used.
  • the boosting energy required to start up the device and the operating energy required to continue the operation of the device are supplied, and the boosting device generates a boosted output by boosting the input voltage to be boosted
  • the boosted output is supplied to the switching means as a line stop signal for the activation energy source, and the switching means outputs an activation signal based on power generation control of a low-voltage output input as the boosted object. And controlling whether or not to output the starting energy to the booster circuit based on the supply stop signal. And performing.
  • the booster circuit is supplied with the low-voltage output to be boosted, and the selection circuit is provided with the startup energy and the booster circuit via the switching means operating based on the startup signal output from the detection means. Both the starting energy and the operating energy are output to the step-up circuit, and the energy of the low voltage power is used for portable equipment.
  • a boost output can be obtained to operate the booster, and the start-up energy can be output only when the booster circuit needs to be started, so that the start-up energy can be used efficiently.
  • a boosting circuit that generates a boosted output by boosting an input voltage to be compressed; a power supply unit that supplies the start-up energy; a switching unit that controls output of the start-up energy; A selection circuit that outputs one of the boosted outputs to the booster circuit, wherein the booster circuit outputs all or a part of the boosted output to the select circuit and the power supply unit, and the switching unit includes: It is characterized in that it is controlled whether or not to output the starting energy to the selection circuit based on a starting signal based on a low-voltage output power generation control that is input as a target.
  • the booster circuit is supplied with the low-voltage output to be boosted, and the selection circuit is provided with the start-up energy and the output of the booster circuit via the switching means operating based on the start-up signal.
  • Operating energy is input and either the startup energy or the operating energy is output to the booster circuit, so that portable equipment is operated using low-voltage energy. Pressure output can be obtained.
  • the starting energy can be output only when the booster circuit needs to be started, and the starting energy can be used efficiently. Further, since all or a part of the boosted output is output to the power supply means and stored, the consumed starting energy can be effectively supplemented.
  • step-up device In the step-up device according to the next invention, either one of the starting energy required for the self-start or the operating energy required for the continuation of the self-operation is supplied, and the step-up output obtained by stepping up the input voltage to be stepped up
  • a boosting circuit for generating the starting energy; a power supply unit for supplying the starting energy; a switching unit for controlling the output of the starting energy; and outputting one of the starting energy and the operating energy to the boosting circuit.
  • the booster circuit outputs all or a part of the boosted output to the selection circuit and the power supply unit, and the switching unit performs the activation based on the delay signal. It is characterized in that control is performed as to whether or not force is to output energy to the selection circuit.
  • the booster circuit is supplied with the low-voltage output to be boosted, and the selection circuit is provided with the start-up energy and the output of the booster circuit via the switching means operating based on the delayed output of the power generation request signal.
  • Operating energy is input, and either one of the starting energy and operating energy is output to the booster circuit.
  • a boost output can be obtained to operate equipment, etc.
  • start-up energy can be output only when it is necessary to start up the booster circuit, and the start-up energy can be used efficiently. Since all or part of the boosted output is output to the power supply means and stored, the consumed start-up energy can be effectively replenished. .
  • the boosting device In the boosting device according to the next invention, either one of the starting energy required for starting the device itself and the operating energy necessary for continuing the operation of the device is supplied, and the input voltage to be boosted is boosted.
  • the booster circuit started by the auxiliary booster circuit that outputs the start-up energy generated based on the low-voltage output to the booster circuit feeds back a part of the boosted output output by itself as operating energy to itself.
  • the self-startup or the self-boosting operation can be performed without depending on the power supply means other than the power-generating element that outputs low-voltage output.
  • the generated power generation energy can be reliably boosted.
  • a first step-up device which suppresses an increase in manufacturing cost due to the use of a special battery and reduces costs by using a general-purpose battery. The goal can be achieved.
  • FIG. 1 is a block diagram showing a configuration of a booster according to a first embodiment of the present invention
  • FIG. 2 is a block diagram showing a configuration of a booster according to a second embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration of a booster circuit according to the first embodiment of the present invention
  • FIG. 4 is a diagram showing a configuration of a booster circuit according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a configuration of a booster circuit for a solar cell output having a boost converter configuration according to Embodiment 2
  • FIG. 5 is a block diagram illustrating a configuration of a booster according to Embodiment 3 of the present invention
  • FIG. 7 is a block diagram showing a configuration of a booster according to a fourth embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of a booster circuit for solar cell output according to a third embodiment of the present invention.
  • FIG. 8 has an output control function according to the fourth embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a configuration of a booster circuit for a solar cell output that is not connected in series in a boost compander configuration, and FIG.
  • FIG. 9 is a block diagram illustrating a configuration of a booster according to a fifth embodiment of the present invention.
  • FIG. 10 is a block diagram showing a configuration of a booster according to a sixth embodiment of the present invention.
  • FIG. 11 is a block diagram showing a configuration of the booster according to the sixth embodiment of the present invention.
  • FIG. 12 is a block diagram showing a configuration of a booster according to an eighth embodiment of the present invention.
  • FIG. 13 is a block diagram showing a configuration of a booster according to a ninth embodiment of the present invention.
  • FIG. 14 is a block diagram showing the configuration of the booster according to the tenth embodiment of the present invention.
  • FIG. 15 is a block diagram showing the switching means 27 of FIG.
  • FIG. 16 is a block diagram showing the configuration of a booster according to Embodiment 11 of the present invention.
  • FIG. 17 is a block diagram showing the configuration of a booster according to Embodiment 12 of the present invention.
  • FIG. 18 is a block diagram showing the configuration of the device.
  • FIG. 18 is a block diagram showing the configuration of the booster according to the thirteenth embodiment of the present invention.
  • FIG. 19 is a block diagram showing the operation principle of the switched capacitor type.
  • FIG. 20 is a principle diagram for explanation.
  • FIG. 21 is a diagram for explaining a circuit configuration and an operation principle of a pump type.
  • FIG. 21 is a block diagram showing a configuration of a booster according to Embodiment 14 of the present invention.
  • FIG. 23 is a block diagram illustrating a configuration of a booster according to Embodiment 15 of the present invention.
  • FIG. 23 is a diagram illustrating an example of a configuration example of an output control circuit 16a.
  • FIG. 25 is a diagram showing another example of the configuration of the output control circuit 16a.
  • FIG. 25 is a block diagram showing the configuration of the booster according to the embodiment 16 of the present invention.
  • FIG. 6 is a diagram showing an example of a configuration example of an output control circuit 16b
  • FIG. 27 is a block diagram showing a configuration of a booster according to Embodiment 17 of the present invention.
  • FIG. 28 is a block diagram showing a configuration of a booster according to Embodiment 18 of the present invention.
  • FIG. 29 is a block diagram of Embodiment 19 of the present invention. That is a block diagram showing a configuration of a booster, 3 0 illustration Ru Proc view showing a configuration of a booster according to Embodiment 2 0 embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of the booster according to the first embodiment of the present invention.
  • the booster of the solar cell output shown in FIG. 1 targets the output of the solar cell 11 which is not a component of the present apparatus, and includes a solar cell 14 as a power supply means and a booster circuit 12. Power is supplied to the load (secondary battery) 19 as a load.
  • the solar cell 11 When light enters the solar cell 11 that is not boosted and is not connected in series, an electromotive force is generated.
  • a cell that is generally widely used such as a cell using monocrystalline silicon, polycrystalline silicon, amorphous silicon, or a semiconductor compound, can be used.
  • the output voltage of a single cell of these solar cells is a little over 0.5 V.
  • the electric power generated by the solar cell 11 is boosted by the booster circuit 12 and the load (secondary power Pond) supplied to 19.
  • the load (secondary battery) 19 As the load (secondary battery) 19, an electric or electronic circuit or a secondary battery is connected.
  • the booster circuit 12 cannot operate at a voltage lower than 0.6 V, it cannot be driven by the solar cell 11, but is connected to an amorphous solar cell or a series connection that can be produced at an equivalent cost. In this configuration, power is supplied from the solar cell 14.
  • the area of the solar cell 14 only needs to cover the power consumption of the booster circuit 12, and a small element of about 1 to 3.3 square centimeters can be used.
  • Amorphous solar cells have a feature that they can be connected in series in a semiconductor process, and can solve the various problems that have been problems in the above-described conventional technology.
  • a boost type booster circuit configuration is effective, and the switch element uses a MOS FET, which has a feature of extremely low drive power.
  • a multivibrator oscillation circuit using CMOS logic IC is used for the driving section of the MOS FET.
  • the oscillation frequency of the multivibrator is determined by the power consumption of the oscillation circuit and the inductance of the boost converter coil divided by the rated current.
  • the oscillation frequency of the multivibrator, the inductance value of the coil of the boost converter, and the rated current value of the coil are design items that are determined by the power generation capacity of the solar cell 11 to be boosted. I do. '
  • the power consumption of the booster circuit 12, which is configured as a minimum, is extremely small, and can operate with power of 10 W or less at 10 kHz operation.
  • the minimum voltage of the start-up and operating voltage of the booster circuit using the CM S logic IC 74HC1 for the multi-vibrator circuit was 1.2 V.
  • a boost operation was confirmed at a brightness of about 1100 lux or more.
  • the booster circuit 12 In this basic configuration, if a large MOSFET is used as a switch element or a plurality of MOSFETs are connected in parallel in order to improve the boosting capability, the booster circuit 12 will be turned off. The power consumption increases, which causes the minimum illuminance at which the booster circuit 12 starts to increase.
  • the solar cell 11 as the first cell is a single-cell solar cell that is a low-voltage output type and can be manufactured without a complicated manufacturing process such as a series connection configuration.
  • a single-cell fuel cell which is a low-voltage output type and can be configured without being connected in series may be used.
  • a parallel-connected fuel cell or solar cell that can be realized without a complicated manufacturing process may be used.
  • the solar cell 14 which is the second cell, has a role as an energy source for providing starting energy (operating energy), but it is sufficient if it can supply energy, for example, a lithium storage battery. Can be used.
  • a primary battery such as a dry battery, which cannot be charged, or a storage element such as an ordinary capacitor / electric double layer capacitor may be used.
  • FIG. 2 is a block diagram showing a configuration of a booster according to a second embodiment of the present invention.
  • the booster device shown in FIG. 2 is configured to improve the boosting capability of the booster circuit and not to raise the minimum illuminance for starting the booster circuit.
  • a selection circuit 15 having rectifying elements 32 and 33 is added to the configuration of FIG. '
  • the booster circuit 12 shown in the figure uses the power of the solar cell 14 as a power supply means at the time of startup, and after the boosting operation is started, a part of the boosted power is used as the booster circuit 12 To boost the boosting capacity dramatically. Since the selected output of the power of the solar cell 14 and a part of the boosted output is supplied to the booster circuit 12, the power of the solar cell 14 is supplied only to the booster circuit 12, and the load (secondary) Since the battery is not supplied to the battery 19, it is possible to prevent the starting illuminance from decreasing.
  • the booster circuit 12 starts when it receives power supply from the solar cell 14, and when boosting operation starts, supplies power to the booster circuit 12 from the boosted output through the rectifier 33. As a result, the boosting capability of the booster circuit 12 Increase.
  • rectifiers 32 and 33 rectifiers having the same rectification characteristics (such as between the base of a transistor and an emitter) may be used. It will be described later in Examples.
  • the solar cell 11 as the first cell is a single-cell solar cell that is a low-voltage output type and can be manufactured without a complicated manufacturing process such as a series connection configuration.
  • a single-cell fuel cell which is a low-voltage output type and can be configured without being connected in series may be used.
  • a parallel-connected fuel cell or solar cell that can be realized without a complicated manufacturing process may be used.
  • the solar cell 14 which is the second battery, has a role as an energy source that provides starting energy (operating energy), but any one that can supply energy may be used.
  • a lithium storage battery may be used.
  • a primary battery such as a rechargeable battery or a dry battery may be used, or a storage element such as a normal capacitor or an electric double layer capacitor may be used.
  • FIG. 3 is a diagram illustrating a configuration of a booster circuit for a solar cell output having a boost converter configuration according to the first embodiment of the present invention.
  • the boosting target of the booster circuit 202 is a solar cell 201 that is not connected in series, and the output terminal 211 of the booster circuit 202 has a constant current and constant voltage control as a load 203.
  • Connected electronic load (Fujitsu Transmission EUL a XL150).
  • the solar cell 201 used was a polycrystalline silicon of 36 square centimeters and generated an open-ended output voltage of 0.56 V under the condition of AM 1.5.
  • the booster circuit 202 As the coil 206, a DC resistance of 20 mOhm, a rated current of 2 A, and an inductance value of 22 microhenry was used.
  • Si 9948DY manufactured by Silicon Data was used as the MOSFET.
  • the oscillation circuit 224 is composed of a multivibrator oscillation circuit using a Schmitt trigger type inverter 74HC14, which is a general-purpose CMOS logic gate, and a drive circuit for enhancing output current.
  • the multivibrator circuit includes a capacitor 210 for determining an oscillation time constant, a resistor 211, and a Schmitt trigger type inverter 213.
  • a general low power consumption type rectangular wave oscillation circuit can be used.
  • Schmitt trigger inverters 212 and 214 were used in parallel.
  • a general low power consumption inverter-buffer type mouth-gate can be used.
  • the number of parallel circuits may be determined based on the current driving capability and the weight of the load.
  • As a power supply for the booster circuit 202 it is necessary to supply power to the power supply terminal 215 of the schmitt trigger type inverter 74HC14 of the oscillation circuit 224, and the solar cell 204 and the capacitor 216 connected in series are connected here.
  • the solar cell 204 used was a Sanyo Amorphous solar cell with a 5-cell rated output of 3.0 V, 3.2 mA, model number AMI156.
  • For the capacitors 2-6, Sanyo OS electrolytic capacitors with 220 microfarads were used.
  • the solar cell 201 and the solar cell 204 are arranged close to each other and on a plane.
  • the illuminance was measured using a luminometer 510-02 manufactured by Yokogawa Electric Corporation so that the distance from the light source to the surface of the solar cell was equal to the distance from the light source to the light receiving ball of the illuminometer.
  • the boost operation started at an illuminance of 1100 lux.
  • Adjusting the oscillation frequency of the oscillation circuit 224 changed the boosting start voltage, and the boosting start voltage was the most sensitive when the oscillation frequency was about 1 to 30 kHz.
  • the output voltage of the solar cell 204 used as the drive source of the boost circuit exceeds 1. IV, the oscillation circuit 224 Oscillation starts, but does not lead to drive of switch element 208.
  • the above-mentioned 74 HC14 is a standard package that integrates six inverter logics and the power supply and supply terminals for the logics.
  • the oscillation circuit 2 24 is configured using three inverter logics 2 1 2, 2 1 3, 2 1 4 of 7 4 HC 14, a resistor 2 1 1, and a capacitor 2 10. .
  • FIG. 4 is a diagram illustrating a configuration of a booster circuit for a solar cell output having a boost converter configuration according to a second embodiment of the present invention.
  • the solar cell 204 and the boosted output of the booster circuit are connected to the power supply terminal 215 of the Schmitt trigger type inverter 74 and the boosted output of the booster circuit in the circuit configuration of the first embodiment.
  • the configuration is such that the voltage is applied via an OR circuit composed of a diode 218 and a Schottky diode 219.
  • the output of the solar cell 204 is supplied only to the booster circuit 202 and is not supplied to the load 203 by the diode 219, the starting illuminance is deteriorated compared to the first embodiment. I will not.
  • the booster circuit was activated by light irradiation of more than 1200 lux, and boosted output from the solar cell 201 was obtained.
  • the boosted output is supplied to the load 203, and at the same time, a part of the output is supplied to the booster circuit 202 via the current limiting resistor 220 and the diode 219. That is, a Schmitt trigger inverter that constitutes the oscillation circuit 7 4 H Power was supplied to the power terminal 2 15 of C 14.
  • the booster circuit 202 When the energy supply from the boosted output is started to the booster circuit 202, the voltage of the power supply terminal 214 of the HC HC 14 rises, and the operation of the oscillation circuit 222 is stabilized, and at the same time, the booster circuit Since the switching elements 208 and 221 of the 202 start to be driven with sufficient driving capability, the on-resistance of the switching elements 208 and 221 can be reduced.
  • Si 9948 DY was used as the switch elements 208 and 221, but the combined value of the on-resistance was 10 mOhm.
  • the DC resistance of the coil 206 is 20 milliohms
  • the DC resistance of the booster circuit is about 30 milliohms
  • the maximum value is obtained when the power generation voltage of the solar cell 201 is 0.3 V. This means that the generated current up to 10 A can be taken from the solar cell 201 to the booster circuit 202.
  • the booster circuit of the present embodiment once the booster circuit 202 is activated, a part of the boosted output is supplied to the booster circuit 202, so that the solar cell 204 used for activation is unnecessary.
  • the electronic load used as the load 203 was set to 5.00 V for constant voltage operation.
  • the boosted output was measured from the output voltage and output current at the output terminal 217 of the booster circuit. From this result, it can be seen that a boosted output is obtained even when the output voltage of the solar cell 201 is 0.4, and that a high conversion efficiency on the order of 80% is obtained.
  • the rectangular oscillation circuit using the multivibrator does not have a configuration in which the duty ratio is changed, for example, the supply current I from the solar cell 201 when the output voltage Vin of the solar cell 201 is 0.5 V in is 330 mA. You can adjust the duty ratio.
  • the above-mentioned 74HC14 is a standard package that integrates six inverter logics and power supply terminals to the corresponding port.
  • the oscillating circuit 224 is composed of three inverter logics 224, 214, 213, 214 of 74 HC14, a resistor 211, and a capacitor 210.
  • FIG. 5 is a block diagram showing a configuration of a booster according to a third embodiment of the present invention.
  • FIG. 5 shows a configuration of a solar cell output booster provided with an output control circuit.
  • the output control circuit 16 is added to the booster of FIG. 2 in the second embodiment described above. Configuration.
  • the power generated by the solar cell 11 to be boosted is boosted by the booster circuit 12, and is subjected to constant voltage ⁇ constant current and output control for charging by the output control circuit 16.
  • the electric power is supplied through 4 to the electronic circuit or to the load (secondary battery) 19 which is a secondary battery. Part of the boosted power is supplied to the output control circuit 16 and the booster circuit 12. Since the power of the solar cell 14 for starting the booster circuit 12 is supplied only to the booster circuit 12 by the operation of the rectifying element 33, it is possible to prevent a decrease in the starting illuminance.
  • the output control circuit 16 may use a three-terminal series regulator or use a constant voltage diode. A simple configuration may be used. The details of the circuit configuration of the booster circuit will be described later in an embodiment.
  • the solar cell 11 as the first cell is a single-cell solar cell that is a low-voltage output type and can be manufactured without a complicated manufacturing process such as a series connection configuration.
  • a single-cell fuel cell which is a low-voltage output type and can be configured without being connected in series may be used.
  • a parallel-connected fuel cell or solar cell that can be realized without a complicated manufacturing process may be used.
  • the solar cell 14 which is the second cell, has a role as an energy source for providing starting energy (operating energy), but it is sufficient if it can supply energy, for example, a lithium storage battery. Can be used. Also, it may be a primary battery such as a non-rechargeable dry battery, or a storage element such as a normal capacitor or an electric double layer capacitor. '
  • FIG. 6 is a block diagram showing a configuration of a booster according to a fourth embodiment of the present invention.
  • the boosting device shown in the figure shows a configuration of a boosting device for a solar cell output for varying the boosting capability.
  • FIG. 6 is a diagram for explaining a configuration for achieving a control target by sending a control signal from 16 to a booster circuit 12 to vary the boosting capability.
  • the booster of the solar cell output shown in the figure receives the electric power from the solar cell 14 when the booster circuit 12 starts, and starts.
  • the control signal from the output control circuit 16 does not exist or operates indefinitely. For this reason, there is a possibility that the booster circuit that has started to start due to an undesired control signal state is stopped and normal operation is not performed.
  • a circuit configuration having the following features must be provided.
  • control signal output stage of the output control circuit 16 it is effective for the control signal output stage of the output control circuit 16 to have an open-drain configuration in which a resistor is connected in parallel with the open-collector gate-source to make it a current-driven type. .
  • the details of the circuit configuration of the booster circuit will be described later in Examples. ,
  • the solar cell 11 as the first cell is a single-cell solar cell that is a low-voltage output type and can be manufactured without a complicated manufacturing process such as a series connection configuration.
  • a single-cell fuel cell which is a low-voltage output type and can be configured without being connected in series may be used.
  • a parallel-connected fuel cell or solar cell which can be realized without a complicated manufacturing process may be used.
  • the solar cell 14 which is the second cell, has a role as an energy source for providing starting energy (operating energy), but it is sufficient if it can supply energy, for example, a lithium storage battery. Can be used. Further, it may be a primary battery such as a dry battery that cannot be charged, or may be a storage element such as a normal capacitor or an electric double layer capacitor.
  • FIG. 7 is a diagram showing a configuration of a booster circuit for a solar cell output according to a third embodiment of the present invention. It is.
  • the short-wave oscillation circuit in the booster circuit 244 consists of a multivibrator oscillation circuit using a smit-trigger type 2-input NAND (74HC 132), which is a general-purpose CMOS logic gate, and a drive circuit for enhancing output current.
  • the multi-biplate oscillator circuit is composed of a capacitor 233 that determines the oscillation time constant, a resistor 232, and a Schmitt trigger 2-input NAND 234.
  • low power consumption that allows the oscillation state to be controlled from outside the oscillation circuit A power-type rectangular wave oscillation circuit can be used.
  • a low power consumption inverter-type logic gate having excellent current driving capability may be used.
  • the number of parallels may be determined according to the weight of the load. Since a power supply to the power supply terminal 230 of the Schmitt trigger type 2-input NAND 74HC 132 is required as the power supply of the booster circuit 244, the solar cells 20 connected in series are connected via the diode 218 here.
  • the solar cell 204 used was a Sanyo amorphous solar cell with a size of 3.3 square centimeters, a rated output of 3.0 V, 3.2 mA and a model number of AMI 156 in a 5-cell configuration.
  • As the capacitor 216 a Sanyo low ESR type electrolytic capacitor of 220 microfarads was used.
  • the power output of the solar cell 204 and the boosted output of the booster circuit 244 are connected to the power supply terminal 230 by diodes 218 and 219 as in the second embodiment.
  • the power generation output of the solar cell 204 can be supplied only to the power supply terminal 230, and a part of the boosted output can be supplied to the power supply terminal 230 without flowing backward from the boosted output to the solar cell 204.
  • inserting a current limiting resistor 220 prevents excessive power from being supplied to the power supply terminal 230 and improves the conversion efficiency of the booster circuit can do.
  • a Schottky barrier diode having a small forward voltage drop. In this example, Toshiba CMSO 6 was used. Next, the output control circuit will be described.
  • This embodiment is not connected in series! / ⁇
  • the output voltage of the solar cell 201 to be boosted is about 0.4 V, at most a little over 0.5 V. It is impossible to drive a comparator / reference voltage source that constitutes a general output control circuit at such a low voltage.
  • the solar cell 204 which is another energy source, is for supplying the energy required for the start-up operation of the booster circuit 244, and is based on the use of a solar cell having a very small area. If energy is diverted from the solar cell 204, the output voltage of the solar cell 204 will be reduced, and the power to significantly reduce the low-illumination operation characteristics of the booster circuit cannot be started. It will lead to a situation.
  • the output control circuit only needs to function when the booster circuit 244 generates a boosted output. Therefore, as shown in Fig. 7, by connecting so as to obtain a voltage from the boosted output of the solar cells 201 that are not connected in series, the characteristics of the low-intensity operation of the present booster circuit can be completely degraded. No known output control means can be used.
  • Output control such as constant voltage control and constant current control is realized by controlling the boosting capability by acting on the boosting operation of the booster circuit 244.
  • the output control means operates by obtaining power from the boosted output of the booster circuit 244
  • the output control means cannot operate until the boosted output is obtained from the booster circuit 244.
  • the oscillation circuit in the booster circuit oscillates by receiving an oscillation enable signal other than zero-port from the output control means and controls the boosting operation, the following problem occurs.
  • the booster circuit 244 starts oscillation and performs a boosting operation by receiving the oscillation enable signal corresponding to the logic high level from the oscillation control terminal 264.
  • the oscillation control terminal 260 is connected to the power supply terminal 23 via an integrating circuit composed of a resistor 231, and a capacitor 2445. Also, in order to increase the impedance of the output terminal of the output control circuit when the oscillation enable signal is not output, the circuit configuration of the control signal output terminal should be an open drain configuration or an open collector configuration. In this circuit configuration, the voltage of the oscillation control terminal 260 at the time of startup is substantially equal to the power supply voltage of the power supply terminal 230, so that a logic high level can be stably obtained.
  • the constant voltage control circuit consists of an open drain output configuration comparator 2 41, a reference voltage source 2 42, a bias resistor 2 39, and output voltage resistors 2 40 and 2 43 for setting the output voltage value. And connected as shown in Fig. 7.
  • Comparator 241 can be connected to the oscillation control terminal 260 via an N-type MOS SFET or NPN-type bipolar transistor to the comparator output terminal even in cases other than open drain output or open collector configuration .
  • the output voltage is set by the aforementioned dividing resistors 240 and 243.
  • the open drain output circuit of the comparator is turned off, and the voltage of the oscillation control pin 260 rises through the integration circuit.
  • the booster circuit 244 resumes oscillation. Step up the voltage to control the output voltage to be constant.
  • solar cell 201 and solar cell 204 were placed close to each other and on a plane. The illuminance was measured using a Yokogawa 5110_02 illuminometer so that the distance from the light source to the surface of the solar cell was equal to the distance from the light source to the light-receiving bulb of the illuminometer. .
  • the oscillating operation started at an illuminance of 8.00 lux. Adjusting the oscillation frequency of the oscillator circuit changed the boosting start voltage, and the boosting start voltage was the most sensitive when the oscillation frequency was about 1 to 30 k ⁇ .
  • the output voltage of the solar cell 204 used as the drive source of the booster circuit exceeds 0.95 V, the oscillation circuit starts oscillating.
  • the power switch element 208 is not driven.
  • the illuminance was 110 lux
  • the output voltage of the solar cell 204 reached 1 ; 2 V, indicating that the boosting operation started.
  • Sufficient boost operation was obtained by the window and under sunlight, and the output voltage set by the dividing resistors 240 and 243 was obtained from the output terminal 217.
  • FIG. 8 is a diagram showing a configuration of a booster circuit for a solar cell output which is not connected in series using a boost converter configuration having an output control function according to a fourth embodiment of the present invention. .
  • the boosting capability is adjusted through the oscillation control terminal 260 of the booster circuit 244 by the control output of the output control circuit, thereby controlling the constant voltage.
  • This implements an output operation.
  • the oscillation circuit operates when the oscillation control terminal 260 of the booster circuit 244 is at a logic low level, thereby operating the booster circuit. This eliminates the need for a bypass circuit from the existing power supply terminal 230.
  • the operation of the oscillation circuit stops when the oscillation control pin 260 is at the logic high level, so a level shift circuit with a PNP transistor 272 or a P-type MOS FET is added after the comparator output.
  • Resistors 273 and 274 are the bias resistors for PNP transistor 272.
  • the resistor 270 is a resistor for the oscillation control pin 260, and the resistor 271 is for preventing overcurrent from the PNP transistor 272 and preventing latch-up due to application of overvoltage to the oscillation circuit control pin. is there.
  • the capacitor 275 is for improving the noise resistance of the oscillation circuit control pin.
  • the comparator 241 compares the voltage obtained by dividing the boosted output voltage by the dividing resistors 240 and 243 with the voltage of the reference voltage source 242, and when the boosted output voltage is the higher voltage, The comparator 241 connects the positive input terminal and the negative input terminal so as to turn on the subsequent PNP transistor 272.
  • the transistor 272 is turned on, a current flows from the boosted output to the pull-down resistor 270, the oscillation circuit control terminal becomes a logic high level, the oscillation operation stops, and the boosting operation stops.
  • the comparator output turns off and the PNP transistor 272 turns off, so that the oscillation control terminal 260 goes to a logic low level.
  • the oscillation circuit operates and the boosting operation is restarted, so that the output voltage is controlled to a constant voltage.
  • the output voltage of the solar cell is 0.1. Even at a voltage lower than 15 V, it is possible to obtain a boosted voltage with high efficiency without any problem. Therefore, it is not necessary to connect a large number of solar cells in series, and if some of the constituent solar cells are shadowed, which is a problem with conventional solar cells connected in series, some of the entire solar cell module will be shadowed. This has the same effect as the one described above, and if the output drops significantly, the ray problem can be determined.
  • the senole shape was square and it was difficult to devise a design, but since there is no need to connect solar cells, which are power generation targets, in series, the present invention has As a result, various shapes of solar cells can be used in parallel, and the shape of the solar cell module is free from restrictions.
  • FIG. 9 is a block diagram showing a configuration of a booster according to a fifth embodiment of the present invention.
  • the booster shown in the figure is a single-cell fuel cell 21 (first battery) that outputs a low voltage of about 0.6 V to 0.7 V (no load).
  • Circuit 12 that boosts the voltage to a predetermined voltage (for example, a voltage at which a load can operate) as a target for boosting, and a lithium storage battery 23 that is a power supply means for supplying startup energy to the booster circuit 12 (Second battery).
  • the fuel cell 21 simply supplies a low-voltage output to be boosted to the booster circuit 12, and is not a component of the booster.
  • the fuel cell 21 is a single-cell fuel cell that is a low-voltage output type and can be manufactured without a complicated manufacturing process such as a series connection configuration.
  • Lithium storage battery 23 charge It is a possible secondary battery, and has a role as an energy source that provides starting energy.
  • the booster circuit 12 is composed of, for example, a boost-convert type circuit whose circuit configuration is easy, and is stored in a storage element such as a capacitor by performing on / off control of a switching element provided in the booster circuit. The voltage can be boosted. Note that it is preferable to use a CMOS type circuit as the oscillation circuit for performing the on / off control of the switching element.
  • the operation of the booster will be described with reference to FIG.
  • a chemical reaction is performed by the delivered fuel and oxygen (air), and electric energy is generated by the chemical reaction.
  • the output generated at this time is generally a low voltage, for example, 6 V to 0.7 V when there is no load (no load connected), and at most 0.3 V when the rated output is used. Output voltage around V. Therefore, the output from the fuel cell 21 cannot directly operate a portable device such as a notebook computer or a mobile phone.
  • the low voltage output from the fuel cell 21 is input to the booster circuit 12.
  • boosted electric energy is stored in a storage element such as a capacitor (not shown).
  • a predetermined starting energy is required.
  • the lithium storage battery 23 supplies startup energy to the booster circuit 12.
  • the booster circuit 12 requires a certain amount of energy at the time of start-up, but after start-up, can operate with less energy than the energy given at the time of start-up.
  • a boost converter type booster circuit requires an input voltage of about 1.4 V at startup, but after startup, the booster circuit 12 itself even at a small input voltage of about 0.4 V Operation can be continued. Therefore, in the booster of this embodiment, the startup energy is output from the lithium storage battery 23 to the booster circuit 12 only at the time of startup, and the output of the booster circuit 12 itself is used as the operating energy after startup. By performing the feedback, the operation of the booster circuit 12 itself is continued, and a predetermined boosted output is obtained. Further, the output of the booster circuit 12, that is, the boosted output can be set to an arbitrary predetermined voltage in accordance with the operating voltage of the connected portable device or the like. It is possible to obtain boosted output for operating portable devices using energy.
  • the booster circuit receives the low-voltage output to be boosted from the first battery and the start-up energy from the second battery.
  • the boosting circuit itself obtains a predetermined boosted output by feeding back the operating energy necessary for the continuation of its own operation, so that a low voltage output cannot be obtained.
  • Step-up output for operating portable equipment can be obtained by using the energy of the battery in (1) .
  • use of a general-purpose battery can be suppressed by suppressing an increase in manufacturing costs due to the use of a special battery. Thus, it is possible to provide a booster capable of reducing the cost.
  • the fuel cell 21 as the first cell is a single-cell fuel cell that is a low-voltage output type and can be manufactured without a complicated manufacturing process such as a series connection configuration. It is also possible to use a single-cell solar cell, which is also a low-voltage output type and can be configured without connecting in series. When it is desired to increase the output to the booster circuit 12, a parallel-connected fuel cell or solar cell that can be realized without a complicated manufacturing process may be used.
  • the lithium storage battery 23 which is the second battery, is a rechargeable secondary battery and has a role as an energy source for providing starting energy.
  • a primary battery such as a non-rechargeable dry battery may be used. Further, it may be a storage element such as a normal capacitor or an electric double layer capacitor. .
  • CMOS oscillation circuit As an oscillation circuit for performing on / off control of the switching element in the booster circuit.
  • other circuits for example, a bipolar oscillation circuit are used.
  • this bipolar oscillator circuit has the disadvantage of high power consumption, it has the advantage of a low minimum operating voltage. And a circuit configuration utilizing this advantage can be provided.
  • FIG. 10 is a block diagram showing a configuration of a booster according to a sixth embodiment of the present invention.
  • the booster shown in the figure has the same configuration as that of the fifth embodiment shown in the ninth excavation, and also uses a part of the output of the booster circuit 12 as an energy storage used for the next and subsequent startups. And a rectifying element 35 for outputting to the rectifier 3.
  • the other configuration is the same as or equivalent to the configuration shown in FIG. 9, and those portions are denoted by the same reference numerals.
  • the boosting circuit uses a low-voltage output from a single-cell fuel cell, a single-cell fuel cell, a starting energy from the lithium storage battery, and an operating energy obtained by feeding back part of its own output. This is the same as in the fifth embodiment, and a description thereof will not be repeated.
  • all or a part of the boosted output of the booster circuit 12 is output to the lithium storage battery 23 via the rectifier 35.
  • the energy output at this time is energy for restarting its own operation, and is stored in the lithium storage battery 23.
  • a new start-up energy is required to restart the booster circuit 12.
  • all or a part of the output of the booster circuit 12 is stored in the lithium storage battery 23, and when the booster circuit 12 is restarted, this energy is output to the booster circuit 12. I have.
  • the rectifying element 35 is provided to prevent a current from flowing from the lithium storage battery 23 to the output (boost circuit 12) side when the storage voltage of the lithium storage battery 23 is higher than the boosted output. Has been. .
  • the booster circuit receives the low-voltage output to be boosted from the first battery, and the starting energy from the second battery.
  • the booster circuit itself obtains a predetermined boosted output by feeding back the operation energy necessary for continuation of its own operation, so that a low voltage output is obtained.
  • the booster circuit outputs the boosted output to the second battery as the start-up energy for restarting its own operation and stores the power, so that the booster circuit is useless. Power consumption can be suppressed. Also, even if the boosted output decreases due to the overload, and the self-boosting operation cannot be continued, the energy stored in the second battery enables the restart. Therefore, it is possible to easily realize a configuration that allows easy continuous operation.
  • the lithium storage battery 23 may be a primary battery such as a non-rechargeable dry battery, but in this embodiment, it is necessary to store energy for restarting the booster circuit. is there. Therefore, in addition to a rechargeable secondary battery, a storage element such as a normal capacitor or an electric double-layer capacitor may be used.
  • FIG. 11 is a block diagram showing a configuration of a booster according to a seventh embodiment of the present invention.
  • the booster shown in FIG. 10 has the configuration of the sixth embodiment shown in FIG. 10 and a rectifier for selecting whether to output any one of the starting energy and the operating energy to the booster circuit 12.
  • a selection circuit 25 including elements 36 and 37 is provided.
  • the other configuration is the same as or equivalent to the configuration shown in FIG. 1 and those parts are denoted by the same reference numerals.
  • a low voltage output from a fuel cell 21 is input to a booster circuit 12.
  • both the starting energy and the operating energy are boosted.
  • the booster circuit 12 of this embodiment is configured to input either the start-up energy or the operation energy via the selection circuit 25. The reason is as follows.
  • the booster circuit 12 needs to supply a certain amount of input voltage at the time of startup, but once started up, the operation can be continued with a small input voltage.
  • the energy efficiency can be improved. This is because it can be effectively used.
  • the booster circuit 12 can be restarted. It is also possible to easily realize a high system configuration.
  • the rectifying element 35 is provided to prevent a current from flowing from the lithium storage battery 23 to the output side when the storage voltage of the lithium storage battery 23 is higher than the boosted output. . ''
  • the rectifiers 36 and 37 use the selection circuit 25 as a means for supplying the superior output (output having a high output voltage) of the output of the start-up energy and the operation energy to the booster circuit 12. It is provided in.
  • the booster circuit receives the low-voltage output to be boosted from the first battery, and receives both the startup energy and the operation energy. Since the selection circuit outputs either the start-up energy or the operating energy to the booster circuit, the operation of a portable device or the like using the energy of the first battery that can only obtain a low voltage output is performed. It is possible to provide a booster that can obtain a boosted output, suppresses an increase in manufacturing cost due to the use of a special battery, and can reduce the cost by using a general-purpose battery. In addition, efficient use of boosted output energy can be realized, and a highly operable system configuration can be easily realized.
  • the fuel cell 21 as the first cell is a single-cell fuel cell, as in the other embodiments.
  • single-cell solar cells can be used.
  • a fuel cell or a solar cell connected in parallel may be used.
  • the lithium storage battery 23 as the second battery only needs to be able to store the energy for restart as described in the sixth embodiment, and in addition to the rechargeable secondary battery, a normal capacitor or the like. This includes using electric storage elements such as electric double-layer capacitors.
  • FIG. 12 is a block diagram showing a configuration of a booster according to Embodiment 8 of the present invention.
  • the booster shown in FIG. 9 has the same configuration as that of the fifth embodiment shown in FIG. 9 except that it has a storage element 24 for storing the outputs of the booster circuits 1 and 2 and a lithium storage battery 23. It does not have a configuration.
  • the other configuration is the same as or equivalent to the configuration shown in FIG. 9, and those portions are denoted by the same reference numerals.
  • a low voltage output from a single-cell fuel cell 21 is input to a booster circuit 12.
  • the starting energy is output from the lithium storage battery 23 and the operating energy is output from itself.
  • the starting energy is output. Both the start-up energy supplied during operation and the operating energy supplied during operation are both output from the storage element 24. 'By the way, when this boost output is directly supplied to a load with large load fluctuation, the load current changes greatly and the boost output fluctuates greatly.
  • a constant voltage circuit is incorporated in the booster circuit 12 as shown in FIG. 12 or a constant voltage such as a storage element 24 is connected between the booster circuit 12 and a load (not shown). Equipment is often provided.
  • the storage element 24 that supplies such a constant voltage
  • the start-up energy and the operating energy that have been output to the booster circuit 12 are output from the storage element 24 so that the booster circuit 12 is At the same time as starting up, the operation of the booster circuit 12 after startup can be continued, and a configuration close to the actual system configuration can be obtained. Further, the booster circuit 12 can be made compact. Further, by using the storage element 24, a booster having a relatively large power supply capacity can be realized.
  • the booster circuit receives the low-voltage output to be boosted from the first battery, and the start-up energy required for the self-startup and the self- The operating energy required for continuation of operation is output from the storage element to which the boosted output is input.
  • a constant voltage output for operating equipment can be obtained.
  • a booster having a relatively large power supply capacity can be realized.
  • a single-cell solar cell can be used for the fuel cell 21 as the first cell, in addition to a single-cell fuel cell. Further, a fuel cell or a solar cell connected in parallel may be used.
  • the storage element 24 a storage element such as a normal capacitor or an electric double layer capacitor can be used.
  • booster circuit 12 and storage element 24 are configured differently, but it is also possible to configure storage element 24 in a form in which booster circuit 12 is incorporated. .
  • FIG. 13 is a block diagram showing a configuration of a booster according to a ninth embodiment of the present invention.
  • the booster shown in FIG. 12 has the configuration of the eighth embodiment shown in FIG. 12 and a rectifier for selecting whether or not to output any one of the starting energy and the operating energy to the booster circuit 12.
  • the configuration includes a selection circuit 26 having elements 45 and 46 and a rectifying element 44 for preventing backflow from the storage element 24 to the booster circuit 12.
  • the other configurations are the same as or equivalent to the configurations shown in FIG. 1'2, and those portions are denoted by the same reference numerals.
  • a low voltage output from a single-cell fuel cell 21 is input to a booster circuit 12.
  • the starting energy supplied at the time of starting and the In this embodiment only the operating energy is supplied from the booster circuit 12. In this embodiment, only the operating energy is supplied from the booster circuit 12.
  • the superior output of the starting energy and the operating energy is supplied to the booster circuit 12 via the selection circuit 26. That is, at the time of start-up, the booster circuit 12 normally stops operating. Therefore, the output voltage (starting energy) of the storage element 24 is higher than the output voltage (operating energy-1) of the booster circuit 12. Since the starting energy is high, the starting energy is supplied to the booster circuit 12 via the rectifying element 46. 'On the other hand, during operation, the output voltage (operating energy) of the booster circuit 12 is higher than the output voltage (operating energy) of the storage element 24, so that this operating energy is transmitted through the rectifying element 45. The booster circuit 12 is supplied to itself.
  • the booster circuit 12 is configured to supply operating energy for continuing the operation of the booster circuit 12 from the booster circuit 12 itself. Therefore, the load on the storage element 24 can be reduced.
  • the booster circuit receives the low-voltage output to be boosted from the first battery, and the start-up energy, which is the output of the storage element, and the booster circuit. Since the selection circuit, to which both the operation energy and the output of the operation energy are input, outputs either the start-up energy or the operation energy to the booster circuit, the first battery which cannot output power due to low voltage output Energy can be used to obtain boosted output for operating portable devices, etc., while suppressing the increase in manufacturing costs due to the use of special batteries, and reducing costs by using general-purpose batteries. Can be provided. In addition, the load on the storage element can be reduced, and the boosted output energy can be efficiently used. Note that, as in the other embodiments, a single-cell solar cell can be used for the fuel cell 21 as the first cell, in addition to a single-cell fuel cell. Further, a fuel cell or a solar cell connected in parallel may be used.
  • the storage element 24 five storage elements such as a normal capacitor and an electric double-layer capacitor can be used.
  • the booster circuit 12 and the storage element 24 are configured differently, but the storage element 24 and the rectifier 44 are incorporated in the booster circuit 12. Is also possible.
  • FIG. 14 is a block diagram showing a configuration of a booster according to Embodiment 10 of the present invention.
  • the booster shown in FIG. 9 has the same configuration as that of the fifth embodiment shown in FIG. 9 but also includes a fuel supply detecting means 29 that detects that fuel or oxygen (air) has been supplied to the fuel cell 21. And a switching element 51 connected between the lithium storage battery 23 and the booster circuit 12 to receive the start-up signal from the fuel supply detecting means 29 and the supply stop signal from the booster circuit 12. Provided switching means 27.
  • the other configuration is the same as or similar to the configuration shown in FIG. 9, and those portions are denoted by the same reference numerals.
  • the fuel supply detecting means 29 detects that fuel or oxygen (air) (hereinafter referred to as “fuel”) has been supplied to the fuel cell 21 and outputs a start signal. I do.
  • the booster circuit 12 generates a boosted output ′ by boosting the low voltage output from the fuel cell 21.
  • the switching means 27 converts the start-up energy supplied from the lithium storage battery 23 into a booster circuit based on the start-up signal output from the fuel supply detector 29 and the supply stop signal output from the booster circuit 12. Control whether to output to 1 or 2 is performed.
  • the self-boosting operation can be continued by feeding the output of the boosting circuit 12 into the boosting circuit 12 itself.
  • the fuel supply detection means 29 is activated while fuel is supplied to the fuel cell 21. Output a signal.
  • This start signal is output while the fuel or the like is being supplied (start signal “ON”), and acts to make the switching element 51 of the switching means 27 ′ conductive.
  • the supply stop signal is the boosted output itself of the booster circuit 12, and when the boosted output voltage is equal to or higher than a predetermined voltage (supply stop signal “ON”), the switching element 51 of the switching means 27 is cut off.
  • supply stop signal “OFF” when the voltage is equal to or lower than a predetermined voltage
  • the relationship between the start signal and the supply stop signal and the switching means 27 is as follows. That is, when the start signal is on and the supply stop signal is off, the switching element 51 conducts and the start-up energy is supplied from the lithium storage battery 23 to the booster circuit 12. You. -On the other hand, when either the start signal is in the off state or the supply stop signal is in the on state, the switching element 51 is shut off, and the start-up energy to the step-up circuit 12 is reduced. No supply. '
  • the fuel and the like are supplied to the fuel cell, and when the booster circuit 12 is not activated, the booster circuit 1
  • the starting energy is output to 2.
  • the start-up energy is controlled so as to be output, so that the start-up energy can be used efficiently.
  • FIG. 15 is a block diagram in the case where the switching means 27 of FIG. 14 is constituted by serially connected switching elements 51a and 51b. As shown in the figure, by connecting the start signal to the switching element 51a and connecting the supply stop signal to the switching element 51b, the function of the switching means 27 in FIG. 14 can be achieved. It can be easily realized.
  • the switching means connected to the booster circuit to which the low-voltage output from the first battery has been input activates the switching means output from the fuel supply detection means. Signal and the supply stop signal which is the boost output itself. And control whether or not the startup energy supplied from the second battery is output to the booster circuit.
  • portable energy can be obtained by using the energy of the first battery, which provides only low-voltage output.
  • Providing a booster that can obtain boosted output for operating equipment, etc. suppresses an increase in manufacturing costs due to the use of special batteries, and can reduce costs by using general-purpose batteries can do.
  • starting energy can be output only when it is necessary to start the booster circuit, and the starting energy can be used efficiently.
  • the control as to whether or not to output the start energy to the boost circuit is performed.
  • the configuration to be performed can be applied to the eighth and ninth embodiments, and the same effect as that of this embodiment can be obtained.
  • the lithium storage battery 23 which is the second battery, is a rechargeable secondary battery and has a role as an energy source for providing start-up energy.
  • any battery can be used as long as it can supply energy.
  • a primary battery such as a non-rechargeable dry battery may be used. Further, it may be a storage element such as a normal capacitor or an electric double layer capacitor.
  • FIG. 16 is a block diagram showing a configuration of a booster according to Embodiment 11 of the present invention.
  • the booster shown in FIG. 14 has the configuration of the embodiment 10 shown in FIG. 14 and selects whether or not to output any one of the starting energy and the operating energy to the booster circuit 12.
  • a rectifying element 35 for outputting all or a part of the output of the booster circuit 12 to the lithium storage battery 23.
  • the other configuration is the same as or equivalent to the configuration shown in FIG. 14, and those portions are denoted by the same reference numerals.
  • the operation of the booster will be described with reference to FIG.
  • the operation of the fuel etc. supply detecting means 29 to output a start signal and the operation of the fuel cell 21 to supply a low voltage output to the booster circuit 12 are the same as those of the embodiment 10. Therefore, the description here is omitted.
  • all or a part of the boosted output of the booster circuit 12 is output to the lithium storage battery 23 via the rectifier 35.
  • Rectifier element 35 is provided to prevent current from flowing backward from lithium storage battery 23 to the side of booster circuit 12, as in the sixth embodiment.
  • the switching means 27 controls whether or not to output the starting energy supplied from the lithium storage battery 23 to the booster circuit 12 based on the starting signal output from the fuel supply detecting means 29.
  • This start signal outputs a start signal (“ON” signal) for turning on the switching means 27 while fuel or the like is being supplied.
  • the energy from the lithium storage battery 23 is selected by the selection circuit 25.
  • the selection circuit 25 outputs, to the booster circuit 12, the superior output of the start-up energy output from the switching means 27 and the operating energy that is the boosted output of the booster circuit 12, as in the seventh embodiment. .
  • the booster circuit 12 supplied with the starting energy or the operating energy generates and outputs a predetermined boosted output.
  • the booster circuit receives the low-voltage output to be boosted from the first battery and the selection circuit outputs the low-voltage output from the fuel supply detecting means.
  • Both the start-up energy via the switching means operating based on the start-up signal and the operating energy output from the booster circuit are input, and either one of the start-up energy or the operating energy is output to the booster circuit.
  • the energy of the first battery which cannot be obtained due to low voltage output, to obtain a boosted output for operating a portable ⁇ , etc.
  • the starting energy can be output only when the booster circuit needs to be started, and the starting energy can be used efficiently.
  • the starting energy is output based on the starting signal output from the fuel or the like supply detecting means, which is a feature of this embodiment.
  • the configuration for controlling whether or not to output one of the gears to the booster circuit can also be applied to the eighth and ninth embodiments, and the same effect as that of this embodiment can be obtained.
  • the lithium storage battery 23, which is the second battery is a rechargeable secondary battery and has a role as an energy source for providing start-up energy, but may be any one that can supply energy.
  • a primary battery such as a non-rechargeable dry battery may be used. Further, it may be a storage element such as a normal capacitor or an electric double layer capacitor.
  • FIG. 17 is a block diagram showing a configuration of a booster according to Embodiment 12 of the present invention.
  • the booster shown in FIG. 17 has the same structure as that of the embodiment 11 shown in FIG. 17 except that the starting signal output to the switching means 27 is supplied to the fuel cell 21 by fuel and oxygen (air).
  • a power generation request signal to be applied to the control vane levbs 42 and 43 for performing control is output via a signal delay circuit 28.
  • the other configuration is the same as or equivalent to the configuration shown in FIG. 16, and those portions are denoted by the same reference numerals.
  • a power generation request signal is input to the control valves 42 and 43, the control valves 42 and 43 are opened, and fuel and oxygen are supplied to the fuel cell 21.
  • the power generation request signal is input to the signal delay circuit 28.
  • the signal delay circuit 28 outputs a signal delayed by a predetermined time from the input power request signal to the switching means 27 as a start signal.
  • the output of the fuel cell 21 is output to the booster circuit 12 by delaying the timing at which the switching means 27 is turned on by a predetermined time after the timing at which fuel or oxygen is sent to the fuel cell 21.
  • the start timing is synchronized with the timing at which the start-up energy is output to the booster circuit 12, so that the start-up energy can be used efficiently.
  • the delay time delayed by the signal delay circuit 28 may be set to the time from when the power generation request signal is input to when fuel or the like spreads inside the fuel cell 21, and may be set according to the fuel cell system. The time can be set.
  • the subsequent operation is the same as that of Embodiment 11, and a predetermined boosted output can be obtained by boosting circuit 12.
  • the low-voltage output to be boosted from the first battery is input to the booster circuit, and the selection circuit is configured based on the delayed output of the power generation request signal.
  • Both the start-up energy through the switching means that operates and the operating energy that is the output of the booster circuit are input, and either the start-up energy or the operating energy is output to the booster circuit.
  • starting energy can be output only when it is necessary to start the booster circuit, and the starting energy can be used efficiently.
  • a feature of this embodiment is that the starting energy is output based on the delayed output of the power generation request signal, and the control as to whether or not any of the starting energy or the operating energy is output to the booster circuit is performed.
  • the configuration to be performed can be applied to the eighth and ninth embodiments, and the same effect as that of this embodiment can be obtained.
  • the lithium storage battery 23 which is the second battery, is a rechargeable secondary battery and has a role as an energy source for providing start-up energy, but may be any one that can supply energy.
  • a primary battery such as a non-rechargeable dry battery may be used. It may also be a storage element such as a normal capacitor or an electric double layer capacitor.
  • FIG. 18 is a block diagram showing a configuration of a booster according to Embodiment 13 of the present invention.
  • the booster shown in FIG. 1 includes a booster circuit 12 that boosts a low voltage output from the power generating element 20 to a predetermined voltage (for example, a voltage at which a connected load can operate) with a boost target.
  • a predetermined voltage for example, a voltage at which a connected load can operate
  • an auxiliary booster circuit 13 provided for giving startup energy to the booster circuit 12.
  • the power generating element 20 simply supplies a low-voltage output to be boosted to the booster circuit 12, and is not a component of the present booster.
  • the power generating element 20 may be, for example, a single-cell fuel cell that outputs a low voltage of about 0.6 V to 0.7 V at no load, or a low-
  • a single-cell solar cell having a composition such as single-crystal silicon, polycrystalline silicon, ammono-reflective silicon, or a semiconductor having a voltage output is used.
  • the booster circuit 12 is configured by, for example, a switching-regulated circuit whose circuit configuration is easy, and uses the energy of the back electromotive force generated in the coil by on / off control of the switching element provided therein.
  • a boosted output can be obtained by storing electric charge in a storage element such as a capacitor inside the device.
  • the auxiliary booster circuit 13 is composed of, for example, a switched capacitor type circuit or a charge pump type circuit.
  • the feature of the auxiliary booster circuit 13 is that it can be started at a low voltage of about 0.2 V to 0.3 V. Depending on the number of connected storage elements, the output voltage of 1.2 V to 3 V can be increased. To supply. Therefore, the booster circuit 12 can be started based on the start-up energy supplied by the auxiliary booster circuit 13.
  • the details of the switched capacitor type circuit and the charge pump type circuit, which are specific examples of the auxiliary booster circuit 13, will be described later. ⁇
  • electric energy is generated in the power generating element 20.
  • the output based on this generated electrical energy is generally low voltage.
  • the voltage when there is no load (when no load is connected), the voltage is about 0.6 V to 0.7 V, and at rated output, it is at most about 0.3 V.
  • the maximum value of solar cells is just over 0.5 V even in clear weather, and around 0.3 V in cloudy weather. In other words, The output from the child 20 cannot directly operate a portable device such as a notebook computer or a mobile phone.
  • the low voltage output from the power generating element 20 is input to the booster circuit 12.
  • boosted electric energy is stored in a storage element such as a capacitor (not shown).
  • a predetermined starting energy is required.
  • the auxiliary booster circuit 13 supplies a starting voltage to the booster circuit 12.
  • the booster circuit 12 requires a starting voltage of about IV at the time of starting, but has a feature that the starting current may be small. Therefore, in the booster of this embodiment, at the time of startup, the booster circuit 12 is started with the start-up voltage from the auxiliary booster circuit 13, and the startup 3 ⁇ 4 is used as operating energy for continuing the operation of the booster circuit 12. They are trying to obtain boosted output while feeding back their own output.
  • a general switching regulator type booster circuit requires an input voltage of about 0.9 V to 1.2 V at startup. However, after startup, the operation of the booster circuit 12 itself can be continued even with a small input voltage of about 0.4 IV.
  • the output of the booster circuit 12, ie, the boosted output can be set to any predetermined voltage according to the operating voltage of the connected portable device or the like. Therefore, it is possible to obtain a predetermined boosted output for operating a portable device or the like by using the energy of the power generating element 20 that outputs a low voltage and cannot be disturbed.
  • auxiliary booster circuit 13 As a specific example of the auxiliary booster circuit 13, the operating principle of a switched capacitor type circuit and a charge pump type circuit will be described.
  • FIG. 19 is a principle diagram for explaining the operation principle of the switched capacitor type.
  • Vdd is a DC voltage, which corresponds to the low voltage output from the power generating element 20 shown in FIG.
  • S Wu SW and, SW 2 1 ⁇ SW 2 8 is a switching element such as MOSFET, shown Shinare is controlled in any of the control circuit such as the on state or off state.
  • Ko Reference numeral 5 denotes a power storage element for storing electric charges.
  • the capacitor C 15 is a power storage element for storing start-up energy (output of an auxiliary booster circuit) for starting the booster circuit 12.
  • FIG. 20 is a diagram for explaining a charge pump type circuit configuration and an operation principle.
  • V dd is a DC voltage, which corresponds to a low voltage output from the power generating element 20 shown in FIG.
  • SW 31 ⁇ SW 35, SW 41 ⁇ SW 48 is a switching element such as M_ ⁇ _S FET, is controlled in any of the like control circuit (not shown) turned on or off, state.
  • the capacitor CU C is a power storage element for storing electric charge.
  • the capacitor 5 is a power storage element for storing starting energy (output of an auxiliary boosting circuit) ′ for starting the boosting circuit 12.
  • the charge pump type circuit can be composed of only the capacitor and the switching element, as in the case of the switched capacitor type circuit. it can.
  • SW 31, SW 33, SW 35 is in the ON state
  • SW 32, SW 34 is in an off state.
  • SW 41, SW 44, SW 45 , SW 48 is turned on, SW 42, SW 43, SW 46)
  • SW 47 is in a state of OFF.
  • the capacitor C 3 i is charged to a voltage of approximately V dd (charge accumulation), the upper end of the potential of the capacitor C 31 is substantially v dd.
  • the capacitor C 32, C 33, C 34 are each approximately 2V dd, 3 V dd, since it is charged to a voltage of '4 V dd, the capacitor C 32 , the potential V 2, V 3, V 4 , V 5 of each upper end of the C 33, C 34, as shown, respectively, substantially 3V dd, 3V dd, 5V dd , becomes 5V dd.
  • the state shown in the lower part of the figure is obtained.
  • the first stage, the second stage (capacitor C 32 ) and the third stage (capacitor C 33 ), and the fourth stage (capacitor C 34 ) and the fifth stage (capacitor C 34 ) from the power generating element (V dd ) charge between the capacitor C 35) is transferred.
  • the charge-pump type circuit shown in FIG. 20 secures a predetermined voltage and a predetermined current capacity, similarly to the switched-capacitor type circuit, by alternately repeating such a bucket-relay type charge transfer. I am trying to.
  • the switched capacitor type circuit used as the auxiliary booster circuit 13 and the charge pump type circuit have higher boosting capability and booster efficiency than the switching regulated type circuit used as the booster circuit 12. Low.
  • the regulated circuit is a high-efficiency, high-power boost circuit
  • Sita-type circuits and charge-pump-type circuits are low-efficiency, low-power boosters.
  • a switched capacitor type circuit and a charge pump type circuit can be composed of only a capacitor and a switching element such as a MOSFET.
  • a switching element such as M ⁇ S FET can perform a switching operation with a slight voltage of about 0.2 V to 0.3 V.
  • switching-regulated circuits require a startup voltage of 0.9 V or more at startup, but do not require much startup current. Therefore, if a switched-capacitor-type circuit or a charge-pump-type circuit is used for starting the switching-regulation-type circuit, the characteristics of the user can be effectively utilized.
  • a low-efficiency, low-power booster circuit is a circuit between a power-generating element that cannot generate a large generated voltage and a high-efficiency, high-power booster circuit that requires a predetermined start-up voltage that requires a small starting current Intervening to operate to complement the disadvantages of both.
  • the booster circuit 12 receives the output of the auxiliary booster circuit, which is the start-up energy required for its own startup, or continues its own operation.
  • the operating energy required for power supply is fed back from itself, and a boosted output is generated based on the low-voltage output supplied as a boost target, so it must depend on the starting energy from power supply means other than the power generating element.
  • the booster circuit can be started without the need.
  • FIG. 21 is a block diagram showing a configuration of a booster according to Embodiment 14 of the present invention.
  • the booster shown in the figure is a configuration for efficiently using the energy generated by the power generating element.
  • the booster circuit 12 outputs a control signal to the auxiliary booster circuit 13 for determining whether or not to stop the activation of the auxiliary booster circuit 13.
  • the first embodiment is characterized in that the boosting operation is performed using either the starting energy from the auxiliary boosting circuit 13 or the operating energy obtained by feeding back a part of its own output. The description is omitted here.
  • the booster of this embodiment is configured to stop the supply of the operating energy output from the auxiliary booster circuit 13 to the booster circuit 12 after the booster circuit 12 is started.
  • a control signal As the control signal, the boosted output itself output from the booster circuit 12 can be used.
  • the determination as to whether or not to stop supplying the operation energy may be made based on the level of the boosted output. For example, if the level of the boosted output exceeds a predetermined value, the supply of the operating energy is stopped, and if the level of the boosted output is less than the predetermined value, the supply of the operating energy may be controlled to be continued. Ray.
  • the control of the internal operation Z of the auxiliary booster circuit 13 can be performed by stopping the oscillation circuit that switches the switched capacitor circuit in response to the control signal.
  • the booster circuit controls the activation of the auxiliary booster circuit based on the boosted output. All of the energy can be devoted to power generation, which can promote efficient use of generated energy.
  • FIG. 22 is a block diagram showing a configuration of a booster according to Embodiment 15 of the present invention.
  • the booster shown in the figure shows a configuration of a booster in which an output control circuit 16a connected in series to the output stage of the booster circuit 12 is added.
  • the other configuration is the same as or similar to the configuration of the embodiment 14, and these portions are denoted by the same reference numerals as those of the respective circuits shown in FIG.
  • Embodiments 1 and 2 are different from Embodiments 1 and 2 in that the booster circuit 12 performs boosting operation using either the start-up energy from the auxiliary booster circuit 13 or the operating energy obtained by feeding back part of its own output. The description is omitted here.
  • the boosted output boosted by the booster circuit 12 is output as, for example, a constant voltage output by the output control circuit 16a, and a stable constant voltage output is supplied to a load (not shown). Also, as in Embodiment 14, when a predetermined boosted output is being output, the start-up energy from auxiliary booster circuit 13 is determined based on a control signal (start-stop control signal) from booster circuit 12. Output stops.
  • the output of the output control circuit 16a is a constant current output, and a secondary battery for storing this energy is directly supplied to the output control circuit 16a. You may connect. Further, a rectifier may be connected between the output control circuit 16a and the secondary battery. With such a configuration, it is possible to prevent the current from flowing backward from the secondary battery to the output control circuit 16a, so that unnecessary discharge of the secondary battery can be prevented.
  • FIG. 23 is a diagram showing a configuration in which a constant voltage element (Zener diode) is used as an example of the output control circuit 16a.
  • FIG. 24 is a diagram showing a constant voltage element as an example of the output control circuit 16a.
  • FIG. 9 is a diagram showing a configuration in a case where an element 61 (Zener diode) and a constant current element 62 are used. As shown in these figures, since a constant voltage output or a constant current output can be easily configured, a booster having an output control function can be realized at a small cost and in a compact size. Further, as another configuration of the output control circuit 16, a three-terminal series regulator can be used. In this case, the stability of the output voltage can be improved.
  • FIG. 25 is a block diagram showing a configuration of a booster according to Embodiment 16 of the present invention.
  • FIG. The booster shown in FIG. 1 shows a configuration of a booster provided with an output control circuit 16 b connected in parallel with the booster circuit 12.
  • the other configuration is the same as or equivalent to the configuration of the embodiment 14, and these portions are denoted by the same reference numerals as those of the circuits shown in FIG.
  • the booster circuit 12 performs boosting operation using either the start-up energy from the auxiliary booster circuit 13 or operating energy obtained by feeding back a part of its own output, or a predetermined boosted output is output
  • the point that the output of the start-up energy from the auxiliary booster circuit 13 is stopped based on the control signal from the booster circuit 12 during the operation is the same as in the embodiment 15 and will be described here. Is omitted.
  • the boosted output boosted by the booster circuit 12 is feedback-controlled by the output control circuit 16b and output as a constant voltage variable output. That is, the booster of this embodiment maintains the output of the booster circuit 12 at a predetermined constant voltage under the control of the output control circuit 16b, and changes the output voltage according to the load capacity. It has the function to do.
  • the booster circuit 12 is composed of a switching circuit, and the output control circuit 16b controls the booster circuit 12 such as PWM control and PFM control. It can be realized by doing.
  • FIG. 26 is a diagram showing an example of a configuration example of the output control circuit 16b.
  • the output control circuit 16b shown in the figure includes a time ratio modulation circuit 64, an oscillation circuit 65, and a comparison circuit 66, and operates as follows.
  • the comparison circuit 66 compares the output of the booster circuit 12 with a predetermined reference voltage value 67, and outputs a difference output voltage between the outputs to the duty ratio modulation circuit 6.
  • the time-ratio modulation circuit 64 for example, a PWM control signal or the like is generated based on the differential output voltage output from the comparison circuit 66 with respect to the triangular wave output from the oscillation circuit 65, and output to the booster circuit 12 Is done.
  • the boosted output of the booster circuit 12 is configured to be feedback-controlled by the output control circuits 1 and 6b, the output voltage is stabilized. You. Also, output based on the reference voltage value 6 7 Since the output voltage is configured to be variable, a variable output of a constant voltage can be obtained. As described above, according to the booster of this embodiment, the boosted output of the booster circuit 12 is feedback-controlled by the output control circuit 16b, and the output voltage is varied based on the reference voltage. Therefore, in addition to the effects of the first to third embodiments, a variable and stable output can be supplied according to the load capacity.
  • FIG. 27 is a block diagram showing a configuration of a booster according to Embodiment 17 of the present invention.
  • the booster shown in FIG. 12 transmits a control signal from the output control circuit 16 to the booster circuit 12 in the booster circuit of the embodiment 15 shown in FIG. This shows a configuration that achieves the control target.
  • the other configurations are the same as or equivalent to the configuration of the fifteenth embodiment, and these components are denoted by the same reference numerals as those of the circuits shown in FIG. 22. I have.
  • the booster circuit 12 receives the start-up energy from the auxiliary booster circuit 13 at the time of start-up, as described above, and starts. At this point, no boost output has occurred or the minimum operating voltage of the output control circuit 16 has not been reached. Therefore, at this point, there is no control signal from the 'output control. Circuit 16', or there is an undefined control signal. For this reason, there is a possibility that the booster circuit 12 that has started to be activated is stopped due to an unintended control signal state, and a normal operation is not performed. To solve this problem, a circuit configuration having the following features must be used.
  • a current driving element such as a bipolar transistor in the control signal output stage. If the element is used, a predetermined current is required to turn on the element, When the booster circuit 12 is started or immediately after the start, the element can be prevented from being erroneously driven. Also, by setting the output terminal to high impedance, it is possible to prevent a current from flowing from the booster circuit 12 to the control output terminal of the output control circuit 16a, thereby preventing the startup characteristic of the booster circuit from deteriorating. Therefore, it is effective for the control signal output stage of the output control circuit 16a to have an open drain configuration in which a resistor is connected in parallel between the open collector, the gate, and the source to make the current drive type.
  • the booster circuit since the booster circuit controls the boosting capability based on the control output of the output control circuit, an unstable state such as immediately after the start-up is obtained. In this case, it is possible to prevent the output control circuit from performing unintentional control on the boosting circuit that has started to be activated.
  • FIG. 28 is a block diagram showing a configuration of a booster according to Embodiment 18 of the present invention.
  • the booster shown in FIG. 18 is a storage element for storing a part of the output of the booster circuit 12 in Embodiment 13 shown in FIG. 5 and a rectifying element 68 for preventing backflow to prevent the output of the storage element 58 from flowing to the load side.
  • the output source of the starting energy is either the auxiliary booster circuit 13 or the storage element 58.
  • the other configuration is the same as or equivalent to the configuration shown in FIG. 18, and those portions are denoted by the same reference numerals.
  • the operation of the booster will be described with reference to FIG. However, the point that the booster circuit 12 performs boosting operation using the operating energy obtained by feeding back part of its output after startup is the same as in the other embodiments described above. Is omitted.
  • the booster circuit 12 starts upon receiving either the start-up energy from the auxiliary booster circuit 13 or the start-up energy from the storage element 58.
  • the selection circuit 70 including the rectifiers 72, 73 the higher output of the output voltage of the auxiliary booster circuit 13 or the output voltage of the storage element 58 is selected, and the booster circuit 1 Two Is output to After startup, the booster circuit 12 supplies a predetermined boosted output to a load (not shown) or the like. Further, a part of the boosted output is stored in the storage element 58 as energy for restarting the booster circuit 12 via the rectifying element 24.
  • the booster circuit 12 when a predetermined output (power generation energy) is not supplied from the power generating element 20 to the booster circuit 12, the operation of the booster circuit 12 becomes unstable, and the booster circuit 12 becomes unstable. Need to stop 1 2 On the other hand, in order to restart the booster circuit 12 after the booster circuit 12 stops, new starting energy is required. At this time, if all or a part of the output of the booster circuit 12 is stored in the storage element 58 as energy for restarting itself, when the booster circuit '12 is restarted, The startup energy from the storage element 58 can be used instead of the startup energy of the auxiliary ascent circuit 13.
  • the booster circuit 12 can be restarted by using the start-up energy from the storage element 58, the start-up time of the booster circuit 12 can be reduced as compared with the case where the auxiliary booster circuit 13 is used. In addition, the booster circuit 12 can be reliably started.
  • a predetermined boosted output is output from booster circuit 12, as in Embodiment 14, based on the control signal of booster circuit 12, auxiliary booster circuit 13 and power storage element 58 are controlled based on the control signal of booster circuit 12. It is only necessary to stop the output of the starting energy.
  • the booster of the present embodiment all or part of the boosted output is stored in the storage element (power storage means) as starting energy for restarting its own operation.
  • the storage element power storage means
  • the first startup energy which is the startup energy output from the auxiliary booster circuit
  • the second startup energy which is the startup energy output from the storage element
  • a storage element is used as an element for storing start-up energy for restarting, but a secondary battery or the like may be used. If a secondary battery is used, the booster circuit can be started more reliably.
  • FIG. 29 is a block diagram showing a configuration of a booster according to Embodiment 19 of the present invention.
  • a voltage judging unit 8 2a and a switching unit 8 3 that control the timing of output to the booster circuit 12 based on the output value (voltage) of the output of the auxiliary booster circuit output to the booster circuit 12 It shows the configuration of a booster to which a is added.
  • the other configuration is the same as or equivalent to the configuration of the embodiment 13, and these parts are denoted by the same reference numerals.
  • the booster circuit 12 performs the boosting operation by using either the startup energy which is the output of the auxiliary booster circuit of the auxiliary booster circuit 13 or the operating energy fed back by a part of its own output is the other This is the same as the embodiment, and the description here is omitted.
  • the output from the auxiliary booster circuit 13 (output of the auxiliary booster circuit) is stored in the capacitor 86 of the voltage determining section 82a, and the stored voltage is compared by the comparison circuit 84. It is compared with a reference voltage value (V 0 ) generated by a constant voltage element 85 such as a Zener diode.
  • the switching element such as the MOS FET 87 provided in the switching section 83a conducts, and the output of the auxiliary booster circuit is output. (Starting energy) is output to the booster circuit 12.
  • the switching element of the switching section 83 a does not conduct, and the supply of the auxiliary booster circuit output to the booster circuit 12 is suspended. Is done.
  • the reference voltage value (V.) determined by the capacitor 86 and the constant voltage element 85 is, for example, the switched capacitor type circuit shown in FIG. 19 or the charge voltage shown in FIG.
  • the output current output from the auxiliary booster circuit 13 may be lower than the current value required for starting the booster circuit 12.
  • the current (start-up) for starting the booster circuit 12 is used. If the current) is insufficient, the output voltage of the auxiliary booster circuit 13 immediately after the start-up may drop instantaneously, and the booster circuit 12 may not be able to start.
  • the reference voltage value (V 0 ) is set so that the output of the auxiliary booster circuit 13 is supplied to the booster circuit 12 when it reaches the threshold voltage. Therefore, even when the power generation amount of the power generation element 20 is weak, although the storage time in the capacitor becomes longer, sufficient startup energy is stored over time, and the booster circuit 12 starts up. Can be performed reliably.
  • the power generating element 20 is a solar cell
  • a boosted output can be obtained from lower illuminance.
  • the illuminance of an outdoor solar cell gradually increases from sunrise, so the booster automatically Start up, and boost output can be obtained for a long time.
  • the voltage determination unit includes the comparator that compares the output of the auxiliary booster circuit with the predetermined reference voltage, and the switching unit based on the comparison result of the comparator. Since the switching element provided in the power generation device is configured to be controlled, it is possible to reliably start the booster without depending on the power generation state of the power generation element.
  • the voltage booster of Embodiment 13 shown in FIG. 18 is different from the booster of the embodiment 13 in that a voltage judging section 82a and a switching section 8. 3a, but an equivalent configuration can be applied to the boosting devices of Embodiments 14 to 5, and the same effect as the boosting device of this embodiment can be obtained.
  • a voltage judging section 82a and a switching section 8. 3a an equivalent configuration can be applied to the boosting devices of Embodiments 14 to 5, and the same effect as the boosting device of this embodiment can be obtained.
  • FIG. 30 is a block diagram showing a configuration of a booster according to Embodiment 20 of the present invention.
  • the booster shown in FIG. 29 includes a voltage judging unit 82 b and a switching unit having equivalent functions instead of the voltage judging unit 82 a and the switching unit 83 a shown in FIG. It is configured to have 8 3 b.
  • a voltage judging unit 82 b and a switching unit having equivalent functions instead of the voltage judging unit 82 a and the switching unit 83 a shown in FIG. It is configured to have 8 3 b.
  • For other configurations, Are the same as or equivalent to the configuration of the nineteenth embodiment, and these portions are denoted by the same reference numerals.
  • the voltage judging section 8 2 b includes a resistor, a capacitor 50, and Darlington-connected transistors 91, 92, and the like.
  • Suitsuchingu element 9 3 conducts to booster circuit 1 2 is supplied with start-up energy.
  • the voltage determination section 82b Darlington-connected transistors 91 and 92 are used.
  • the present invention is not limited to this connection. The configuration may be such that a voltage drop is used.
  • the booster of this embodiment also has the same effect as the booster of Embodiment 19, but does not require a comparator unlike the voltage determiner 82 a of Embodiment 19.
  • the voltage determination unit includes the Darlington-connected transistor that conducts when the output of the auxiliary booster circuit reaches a predetermined voltage. Based on the output and the voltage drop between the base and emitter of the Darlington connected transistor, the switching section Since the switching element provided in the power generation device is configured to be controlled, it is possible to reliably start the booster without depending on the power generation state of the power generation device.
  • the voltage booster of the embodiment 13 shown in FIG. 18 is different from the booster of the embodiment 13 in that a voltage determining section 82 b and a switching section 83 are provided between the auxiliary booster circuit and the booster circuit.
  • a voltage determining section 82 b and a switching section 83 are provided between the auxiliary booster circuit and the booster circuit.
  • an equivalent configuration can be applied to the boosting devices of Embodiments 14 to 17 as well, and the same effect as the booster of this embodiment can be obtained.
  • the booster according to the present invention is useful as a booster used in a power supply for a portable device.
  • a fuel cell output or a solar cell output is used as an energy source. Suitable for you.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Electrical Variables (AREA)
  • Photovoltaic Devices (AREA)

Abstract

昇圧回路(12)は、昇圧対象として供給された低電圧出力を昇圧した昇圧出力を生成するとともに、自身の出力である昇圧出力の一部を動作エネルギーとして自己にフィードバックする。一方、補助昇圧回路(13)は、低電圧出力に基づいて生成した起動エネルギーを昇圧回路(12)の起動に必要な起動エネルギーとして昇圧回路(12)に対して出力する。

Description

技術分野
本発明は、 昇圧装置に関するものであり、 特に、 燃料電池出力のエネルギーや、 太陽電池出力のエネルギーを利用した昇圧装置に関するものである。
明 背景技術 田 ' 近時、 燃料電池や太陽電池を、 携帯機器用電源として利用するための研究が進 展している。 その理由は、 単位重量あたりのエネルギー密度が大である燃料電池 の大容量性や、 太陽電池が有する軽量、 薄型構造による携帯性などの利点に目が 向けられているからである。
燃料電池は、 水素と酸素の化学反応を利用した発電システムであり、 窒素酸ィ匕 物 (NOx) などの排気ガスゃ騷音を出さないク.リーンなエネルギー源である。 また、 燃料電池は、 電池の性能を計る指標の一つである重量エネルギー密度が、 リチウムイオン電池の 10倍にもなると言われている。 つまり、 5時間駆動のノ ートパソコンが 50時間使用できることを意味しており、 携帯機器の利便性を飛 躍的に高めるものとして期待されている。
また、 太陽電池は、 排気ガスや騒音を出さないクリーンなエネルギー源であり、 リチウムィオン電池や、 ニツカド電池のような二次電池と比較してエネルギーを 補充する必要がないという利点を有しているため、 太陽電池のみ、 あるいは、 燃 料電池と組み合わせた構成による携帯機器への適用が期待されている。
ところで、 携帯機器用電池として用いられるようなサイズの太陽電池において、 その単セルの出力電圧は、 0. 5 V程度と低い。 また、 携帯機器用電池として用 、いられることが期待されている固体高分子電解質型燃料電池 (PEFC: P o 1 yme r E l e c t r o l y t e Fu e l C e l l) や、 ダイレクトメタ ノール型燃料電池 (DMF C: D i r e c t M e t h a n o l F u e l C e l l ) において、 その単セルの出力電圧は、 それ'ぞれ、 無負荷で 0 . 6 V〜0 . 7 Vであり、 定格出力時では 0 . 3 V前後と低い。 これらの出力電圧は、 燃料電 池や太陽電池の発電原理に基づいて決定される要素であり、 単セルの電池のみで、 この値以上の出力電圧を得ることは困難である。
したがって、 単セルの電池を単独で用いて、 電気 ·電子機器を直接動作させた り、 ニツカド電池やリチゥム電池などの二次電池を充電することはできない。 こ のため、 電気'電子機器の動作、 あるいは二次電池の充電動作に必要な電圧を得 るためには、 これらの電池を直列に接続した電池モジュールを構成するなどの手 法を用いなければならない。 ·
し力 しながら、 上記の手法においては、 燃料電池および太陽電池には、 以下に 示すような問題点があった。
まず、 燃料電池における問題点とは、 燃料や酸素 (空気) をすベてのセルに均 等分配するための構造に起 aずる製造上のコスト上昇である。 .上述の直列接続構 成をとるとき、 この構成から得られる出力電流は、 燃料や酸素の供給が最も少な いセルか、 あるいは混合比が不適切となることにより発電電流が最も少ないセル の電流値に制限される。 このため、 燃料電池の燃料と酸素の流路に溝を掘るなど 燃料等が均一に分配されるような対策を行ってはいるが、 この流路溝には腐禽に 耐えうる材料を用いなければならないなど、 コスト上昇の原因となっていた。 また、 太陽電池においては、 つぎの 2つの問題点が存在する。 1つ目は、 電気 '的な問題点であり、 太陽電池モジュールを構成する単セルの何割かが影になると、 出力電圧が大幅に低下してしまうことにある。 特に、 携帯機器に搭載した場合、 太陽電池モジュール全体が常に光を受光するのは難しく、 また、 太陽電池モジュ ール全体が光を受光するように強いることは、 利用者に利用に際しての不満を残 す;とになる。
. 2つ目は、 コストの問題である。 太陽電池単セルを直列接続して太陽電池モジ ユールを構成するには、 バイパスダイオードの付カ卩に加え、 直列接続するための 太陽電池表面に隣接する太陽電池裏面を繋ぐ配線やセル間の絶縁対策が必要不可 欠である。 また、 モジュール効率を高めるために、 太陽電池セル間の配線や、 セ ル間絶縁のための隙間を小さくする必要があり、 高精度なセル配置技術が必要と される。 これらのセル間絶縁対策や、 -高精度なセル配置技術の適用がコスト上昇 の一因となっている。
上述の問題点を解決する従来技術として、 出力電圧が比較的高い 2 V弱の電圧 を出力するタンデム型太陽電池を使用することで、 直列接続を回避し、 昇圧回路 を用いて二次電池を充電する太陽電池機器が開示されている (例えば、 特許文献 1など) 。 ― 特許文献 1
' 特許第 3 0 2 5 1 0 6号明細書 (第 3頁、 第 1図 5など)
この特許文献 1に示された太陽電池機器では、 太陽電池を多層化するとともに、 セル内で各層を直接接続することで出力電圧を昇圧したタンデム型太陽電池が用 いられている。 また、 このタンデム型太陽電池では 2 V弱の出力電圧が得られる ため、 最低起動電圧が 1 . 4 V程度である CMO S型の発振回路を用いた昇圧回 路を起動させることができる。
しかしながら、 このタンデム型太陽電池は、 単セルを直列接続した太陽電池と 比較レた場合に限って言えば製造コストを低減したことになるが、 通常の単セル の太陽電池との比較では、 依然として製造工程の複雑さは残っており、 製造コス トを大幅に低下させるには至らず、 太陽電池利用にかかるコストを低減したこと にはならなかった。
また、 上記の特許文献 1に示された太陽電池機器には昇圧回路が備えられてお り、 太陽電池機器を作動させるためには昇圧回路を最初に起動させる必要があり、 電力供給手段からの所定の起動エネルギーを当該昇圧回路に付与する必要があつ た。 したがって、 電力供給手段のエネルギーがなくなった場合、 あるいは不足し ている場合には、 昇圧回路を起動できないといった課題があった。
このような状況に鑑み、 本発明は、 特殊な電池を用いることに起因する製造コ ストの增加を抑制し、 汎用的な電池の利用によるコスト低減を可能とした昇圧装 置を提供することを第 1の目的とするものである。
また、 本発明は、 電力供給手段からの起動エネルギーの有無に依存せずに昇圧 回路を起動することができる昇圧装置を提供することを第 2の目的とするもので あ 。 発明の開示 '
本発明にかかる昇圧装置にあっては、 自己の起動に必要な起動エネルギーおよ ぴ自己の動作の継続に必要な動作エネルギーが供給され、 昇圧対象の入力電圧を 昇圧した昇圧出力を生成する昇圧回路と、 前記起動エネルギーおよび前記動作ェ ネルギーを前記昇圧回路に供給する電力供給手段と、 を備えたことを特徴とする。 つぎの発明にかかる昇圧装置にあっては、 自己の起動に必要な起動エネルギー または自己の動作の継続に必要な動作エネルギーのレ、ずれか一方が供給され、 昇 圧対象の入力電圧を昇圧した昇圧出力を生成する昇圧回路と、 前記起動エネルギ 一を供給する電力供給手段と、 前記起動エネルギーまたは前記動作エネルギーの 'いずれか一方を前記昇圧回路に出力する選択回路と、 を備え、 記昇圧回路は、 前 記昇圧出力の全部または一部を前記動作エネルギーとして前記選択回路に出力す ることを特 ί敷とする。
つぎの発明にかかる昇圧装置にあっては、 上記の発明において、 前記選択回路 は、 前記電力供給手段と前記昇圧回路との間に順接続された整流素子と、 前記昇 圧出力の全部または一部が該昇圧回路自身にフィードバックされる方向に順接続 された整流素子と、 を有することを特徴とする。
つぎの発明にかかる昇圧装置にあっては、 上記の発明において、 前記昇圧回路 の後段に設けられ、 該昇圧回路により得られた昇圧出力に対して出力制御を行う 出力制御回路をさらに備えたことを特徴とする。
' つぎの発明にかかる昇圧装置にあっては、 上記の発明において、 前記昇圧回路 は、 前記出力制御回路の制御出力に基づいて昇圧能力を制御する手段を有するこ とを特敷とする。
上記のように、 これらの発明では、 昇圧回路を本電源である第 1の電池とは異 なる電力供給手段で駆動する構成とすることにより、 本電源の出力電圧が低電圧 電力であっても高効率に昇圧した電圧-を得ることができ、 本電源として直列接続 した複数の電池を用いる必要がないため、 出力電圧の不安定を解消でき、 また、 コスト的にも低減を図ることが可能となる。
また、 これらの発明では、 電力供給手段からの発電電圧と昇圧対象である第 1 の電池から得られた昇圧出力の一部とを整流素子による選択出力または、 同等の 整流特性を有する整流素子 (パイポーラトランジスタのベースーェミッタ間等) を用いた選択出力から昇圧回路の起動および動作に必要な電力を供給することで、 昇圧回路の昇圧能力を向上させることが可能となる。 また、 出力制御回路を用い ることにより、 昇圧回路の起動時には、 昇圧回路の動作が当該出力制御回路の制 御出力の影響を受けず、 安定した起動特性を得ることが可能となる。
• つぎの発明にかかる昇圧装置にあっては、 自己の起動に必要な起動エネルギー および自己の動作の継続に必要な動作エネルギーが供給され、,昇圧対象の入力電 圧を昇圧した昇圧出力を生成する昇圧回路と、 前記起動エネルギーを前記昇圧回 路に供給する電力供給手段と、 を備え、 前記昇圧回路は、 前記昇圧出力の全部ま ' たは一部を前記動作エネルギーとして自己にフィードバックすることを特徴とす る。
この発明によれば、 昇圧回路には、 昇圧対象の低電圧出力が供給されるととも に、 電力供給手段から起動エネルギーが入力され、 その一方で、 昇圧回路自身に も自己の動作の継続に必要な動作エネルギーが自身によってフィードバックされ ることで、 低電圧出力のエネルギーを利用して携帯機器などを動作させるための 昇圧出力を得ることができる。
つぎの発明にかかる昇圧装置にあっては、 自己の起動に必要な起動エネルギー または自己の動作の継続に必要な動作エネルギーのいずれか一^ "が供給され、 昇 圧対象の入力電圧を昇圧した昇圧出力を生成する昇圧回路と、 前記起動エネルギ 一を供給する電力供給手段と、 前記起動エネルギーまたは前記動作エネルギーの いずれか一方を前記昇圧回路に出力する選択回路と、 を備え、 前記昇圧回路は、 前記昇庄出力の全部または一部を前記選択回路および前記電力供給手段に出力す ることを特徴とする。 - この発明によれば、'昇圧回路には、 昇圧対象の低電圧出力が供給され、 起動ェ ネルギ一および動作エネルギーの双方が入力された選択回路が、 起動エネルギー または動作エネルギーのいずれか一方を昇圧回路に出力するようにしているので、 低電圧電力のエネルギーを利用して携帯機器などを動作させるための昇圧出力を 得ることができ、 昇圧出力エネルギーの効率的な利用を実現することができる。 つぎの発明にかかる昇圧装置にあっては、 自己の起動に必要な起動エネルギー およぴ自己の動作の継続に必要な動作エネルギーが供給され、 昇圧対象の入力電 圧を昇圧した昇圧出力を生成して出力する昇圧回路と、 前記昇圧出力を蓄電して 定電圧出力を生成するとともに、 該定電圧出力を前記起動エネルギーおよび前記 動作エネルギーとして前記昇圧回路にフィードパックする蓄電素子と、 を備えた ことを特 ί敷とする。 '
この発明によれば、 昇圧回路には、 昇圧対象の低電圧出力が供給され、 自己の 起動に必要な起動エネルギーと自己の動作の継続に必要な動作エネルギーとが、 昇圧出力が入力された蓄電素子から出力されるようにしているので、 低電圧電力 のエネルギーを利用して携帯機器などを動作させるための昇圧出力を得ることが ■でき、 昇圧,出力エネルギーの効率的な利用を実現する ^とができる。
つぎの発明にかかる昇圧装置にあっては、 自己の起動に必要な起動エネルギー または自己の動作の継続に必要な動作エネルギーのいずれ力一方が供給され、 昇 圧対象の入力電圧を昇圧した昇圧出力を生成する昇圧回路と、 前記昇圧回路と自 己との間に順接続された整流素子を介して入力された前記昇圧出力を蓄電して定 電圧出力を生成するとともに、 前記起動エネルギーを出力する蓄電素子と、 前記 起動エネルギーおよび前記動作エネルギーのレ、ずれか一方を前記昇圧回路に出力 する選択回路と、 を備えたことを特徴とする。 ' この発明によれば、 昇圧回路には、 昇圧対象の低電圧出力が供給され、 蓄電素 子の出力である起動エネルギーと昇圧回路の出力である動作エネルギーとの双方 が入力された選択回路が、 起動エネルギーまたは動作エネルギーのいずれか一方 を昇圧回路に出力するようにしている-ので、 低電圧電力のエネルギーを利用して 携帯機器などを動作させるための昇圧出力を得ることができ、 また、 蓄電素子に かかる負担を軽減するとともに、 昇圧出力エネルギーの効率的な利用を実現する ことができる。
つぎの発明にかかる昇圧装置にあっては、 自己の起動に必要な起動エネルギー および自己の動作の継続に必要な動作エネルギーが供給され、 昇圧対象の入力電 圧を昇圧した昇圧出力を生成する昇圧回路と、 前記起動エネルギーを供給する電 力供給手段と、 前記起動エネルギーの出力制御を行うスイッチング手段と、 を備 え、 前記昇圧回路は、 前記昇圧出力の全部または一部を前記動作エネルギーとし て自己にフィードバックするとともに、 該昇圧出力を前記起動エネノレギ一の供,袷 停止信号として前記スィツチング手段に出力し、 前記スィツチング手段は、 前記 昇圧対象として入力される低電圧出力の発電制御に基づく起動信号および前記供 給停止信号に基づいて前記起動エネルギーを前記昇圧回路に出力させる力否かの 制御を行うことを特徴とする。
この発明によれば、 昇圧回路には、 昇圧対象の低電圧出力が供給され、 選択回 路には、 検出手段から出力される起動信号に基づいて動作するスィツチング手段 を介した起動エネルギーと昇圧回路の出力である動作エネルギーとの双方が入.力 され、 これらの起動エネルギーまたは動作エネルギーのいずれか一方を昇圧回路 に出力するようにしているので、 低電圧電力のエネルギーを利用して携帯機器な どを動作させるための昇圧出力を得ることができ、 また、 昇圧回路を起動させる 必要があるときのみ起動エネルギーを出力することができ、 起動エネルギーの効 率的な使用が可能となる。
つぎの発明にかかる昇圧装置にあっては、 自己の起動に必要な起動エネルギー または自己の動作の継続に必要な動作エネルギーのいずれか一方が供給され、 昇 圧対象の入力電圧を昇圧した昇圧出力を生成する昇圧回路と、 前記起動エネルギ 一を供給する電力供給手段と、 前記起動エネルギーの出力制御を行うスィッチン グ手段と、 前記起動エネルギーおよび前記動作エネルギーのいずれか一方を前記 昇圧回路に出力する選択回路と、 を備え、 前記昇圧回路は、 前記昇圧出力の全部 または一部を前記選択回路および前記電力供給手段に出力し、 前記スイッチング 手段は、 前記昇圧対象として入力される低電圧出力の発電制御に基づく起動信号 に基づいて前記起動エネルギーを前記選択回路に出力させるか否かの制御を行う ことを特 ί敷とする。
この発明によれば、 昇圧回路には、 昇圧対象の低電圧出力が供給され、 選択回 路には、 起動信号に基づいて動作するスイッチング手段を介した起動エネ _ /レギ一 と昇圧回路の出力である動作エネルギーとの双方が入力され、 これらの起動エネ ルギーまたは動作エネルギーのいずれか一方を昇圧回路に出力するようにしてい るので、 低電圧電力のエネルギーを利用して携帯機器などを動作させるための昇 圧出力を得ることができる。 また、 昇圧回路を起動させる必要があるときのみ起 動エネルギーを出力することができ、 起動エネルギーの効率的な使用が可能とな る。 さらに、 昇圧出力の全部または一部を電力供給手段に出力して蓄積するよう にしているので、 消費した起動エネルギーを効果的に補充することができる。 つぎの発明にかかる昇圧装置にあっては、 自己の起動に必要な起動エネルギー または自己の動作の継続に必要な動作エネルギーのいずれ力一方が供給され、 昇 圧対象の入力電圧を昇圧した昇圧出力を生成する昇圧回路と、 前記起動エネルギ 一を供給する電力供給手段と、 前記起動エネルギーの出力制御を行うスィッチン グ手段と、 前記起動エネルギーおよび前記動作エネルギーのいずれか一方を前記 昇圧回路に出力する選択回路と、 前記昇圧対象として入力される低電圧出力の発 電制御のために送出される発電要求信号を所定時間だけ遅延させた遅延信号を生 成して出力する信号遅延回路と、 を備え、
前記昇圧回路は、 前記昇圧出力の全部または一部を前記選択回路おょぴ前記電力 供給手段に出力し、 前記スイッチング手段は、 前記遅延信号に基づいて前記起動 エネルギーを前記選択回路に出力させる力否かの制御を行うことを特徴とする。 この発明によれば、 昇圧回路には、 昇圧対象の低電圧出力が供給され、 選択回 路には、 発電要求信号の遅延出力に基づいて動作するスィツチング手段を介した 起動エネルギーと昇圧回路の出力である動作エネルギーとの双方が入力され、 こ れらの起動エネルギーまたは動作エネルギーのいずれか一方を昇圧回路に出力す るようにしているので、 低電圧電力のエネ^"ギーを利用して携帯機器などを動作 させるための昇圧出力を得ることができる。 また、 昇圧回路を起動させる必要が あるときのみ起動エネルギーを出力することができ、 起動エネルギーの効率的な 使用が可能となる。 さらに、 昇圧出力の全部または一部を電力供給手段に出力し て蓄積するようにしているので、 消費した起動エネルギ を効果的に補充するこ とができる。
また、 つぎの発明にかかる昇圧装置にあっては、 自己の起動に必要な起動エネ ルギーまたは自己の動作の継続に必要な動作エネルギーのいずれか一方が供給さ れ、 昇圧対象の入力電圧を昇圧した昇圧出力を生成する昇圧回路と、 前記低電圧 出力に基づいて生成した前記起動エネルギーを前記昇圧回路に出力する補助昇圧 回路と、 を備え、 前記昇圧回路は、 前記昇圧出力の一部を前記動作エネルギーと して自己にフィードバックすることを特^ [とする。
この発明によれば、 低電圧出力に基づいて生成した起動エネルギーを昇圧回路 に出力する補助昇圧回路によって起動された昇圧回路は、 自身が出力した昇圧出 力の一部を動作エネルギーとして自己にフィードバックするようにしているので、 低電圧出力を出力する発電素子以外の電力供給手段に依存することなく、 自己を 起動し、 あるいは自己の昇圧動作を継?^させることができるので、 発電素子から 出力された発電エネルギーの昇圧を確実に行うことができる。
このように、 上述した発明によれば、 特殊な電池を用いることに起因する製造 コストの増加を抑制し、 汎用的な電池の利用によるコスト低減を可能とした昇圧 装置を提供するという第 1の目的を達成することができる。
また、 上述した発明によれば、 電力供給手段からの起動エネルギーの有無に依 存せずに昇圧回路の起動が可能な昇圧装置を提供するという第 2の目的を達成す ることができる。 図面の簡単な説明 - 第 1図は、 本発明の実施の形態 1にかかる昇圧装置の構成を示すブロック図で あり、 第 2図は、 本発明の実施の形態 2にかかる昇圧装置の構成を示すプロック 図であり、 第 3図は、 この発明の実施例 1にかかるブーストコンバータ構成の太 陽電池出力の昇] £回路の構成を示す図であり、 第 4図は、 この発明の実施例 2に かかるブーストコンバータ構成の太陽電池出力の昇圧回路の構成を示す図であり、 第 5図は、 本発明の実施の形態 3にかかる昇圧装置の構成を示すプロック図であ り、 第 6図は、 本発明の実施の形態 4にかかる昇圧装置の構成を示すプロック図 であり、 第 7図は、 本発明の実施例 3にかかる太陽電池出力の昇圧回路の構成を 示す図であり、 第 8図は、 本発明の実施例 4にかかる出力制御機能を有するブー ストコンパーダ構成の直列接続されていない太陽電池出力の昇圧回路の溝成を示 す図であり、 第 9図は、 本発明の実施の形態 5にかかる昇圧装置の構成を示すブ ロック図であり、 第 1 0図は、 本発明の実施の形態 6にかかる昇圧装置の構成を 示すプロック図であり、 第 1 1図は、 本発明の実施の形態マにかかる昇圧装置の 構成を示すブロック図であり、 第 1 2図は、 本発明の実施の形態 8にかかる昇圧 装置の構成を示すプロック図であり、 第 1 3図は、 本発明の実施の形態 9にかか る昇圧装置の構成を示すプロック図であり、 第 1 4図は、 本発明の実施の形態 1 0にかかる昇圧装置の構成を示すプロック図であり、 第 1 5図は、 第 1 4図のス ィツチング手段 2 7を、 直列接続のスィツチング素子 5 1 a, 5 1 bで構成した 場合のブロック図であり、 第 1 6図は、 .本発明の実施の形態 1 1にかかる昇圧装 置の構成を示すプロック図であり、 第 1 7図は、 本発明の実施の形態 1 2にかか る昇圧装置の構成を示すブロック図であり、 第 1 8図は、 本発明の実施の形態 1 3にかかる昇圧装置の構成を示すプロック図であり、 第 1 9図は、 スィツチドキ ャパシタ型の動作原理を説明するための原理図であり、 第' 2 0図は、 チャージポ ンプ型の回路構成および動作原理を説明するための図であり、 第 2 1図は、 本発 明の実施の形態 1 4にかかる昇圧装置の構成を示すプロック図であり、 第 2 2図 は、 本発明の実施の形態 1 5にかかる昇圧装置の構成を示すブロック図であり、 第 2 3図は、 出力制御回路 1 6 aの構成例の一例を示す図であり、 第 2 4図は、 出力制御回路 1 6 aの構成例の他の例を示す図であり、 第 2 5図は、 本発明の実 施の形態 1 6にかかる昇圧装置の構成を示すプロック図であり、 第 2 6図は、 出 力制御回路 1 6 bの構成例の一例を示す図であり、 第 2 7図は、 本発明の実施の 形態 1 7にかかる昇圧装置の構成を示すプロック図であり、 第 2 8図は、 本発明 の実施の形態 1 8にかかる昇圧装置の構成を示すプロック図であり、 第 2 9図は、 本発明の実施の形態 1 9にかかる昇圧装置の構成を示すブロック図であり、 第 3 0図は、 本発明の実施の形態 2 0にかかる昇圧装置の構成を示すプロック図であ る。 発明を実施するための最良の形態
以下に添付図面を参照して、 本発明にかかる昇圧装置の好適な実施の形態を詳 細に説明する。 なお、 この実施の形態により本発明が限定されるものではない。
[実施の形態 1 ]
第 1図は、 本発明の実施の形態 1にかかる昇圧装置の構成を示すブロック図で ある。
第 1図に示す太陽電池出力の昇圧装置は、 本装置の構成要件ではない太陽電池 1 1の出力を昇圧対象とし、 電力供給手段としての太陽電池 1 4と、 昇圧回路 1 2とを備え、 負荷としての負荷 (二次電池) 1 9に電力を供給する。
昇圧対象である直列接続されていない太陽電池 1 1に光が入射すると起電力が 生じる。 太陽電池 1 1としては、 単結晶シリコン、 多結晶シリコン、 ァモルファ スシリコン、 ィ匕合物半導体を用いたものなど、 一般に広く普及しているものが使 用できる。 これらの太陽電池の単一セルの出力電圧は、 最大で 0 . 5 V強である。 太陽電池 1 1で発電された電力は、 昇圧回路 1 2により昇圧されて負荷 (二次電 池) 19に供給される。 負荷 (二次電池) 19としては、 電気'電子回路や二次 電池が接続される。 昇圧回路 12は、 0. 6 V未満の電圧では動作することはで きないので、 太陽電池 11にて駆動することができないが、 アモルファス太陽電 池もしくは、 同等のコストで作成可能な直列接続された太陽電池 14から電力の '供給を受ける構成にする。 太陽電池 14の面積は、 昇圧回路 12の消費電力を賄 うだけでよく、 1〜3. 3平方センチメートル程度の小さな素子を用いることが できる。
昇圧回路 12の電源としては、 直列接続したアモルファス太陽電池 14を用い ることが有効である。 アモルファス太陽電池は、 半導体プロセスにおいて、 直'列 接続できる特徴があり、 上記の従来の技術で課題となっていた種々の課題を解決 することができる。 ■ 昇圧回路 12は、 ブース ト型の昇圧回路構成が有効で、 スィッチ素子には駆動 電力が極めて小さい特徴を有する MO S FE Tを用いる。 この MO S FE Tの駆 動部には、 CMOSロジック I Cによるマルチバイブレータ発振回路を用いる。 マルチバイブレータの発振周波数は、 発振回路の消費電力とブーストコンパータ のコイルのィンダクタンスゃ定格電流から決定する。 マルチバイブレータの発振 周波数とブーストコンバータのコィルのィンダクタンス値とコィルの定格電流値 は昇圧対象である太陽電池 1 1の発電能力によって決まる設計上の項目であり、 公知の技術であるので説明は省略する。 '
必要最小限で構成されたこの昇圧回路 12の消費電力は極めて少なく 10 k H z動作時に 10 W以下の電力で動作できる。 CM〇 Sロジック I C 74HC 1 をマルチパイブレータ回路に用レヽた昇圧回路の起動およぴ動作電圧の最低電圧 は 1. 2 Vであった。 大きさ 33mmX 1 Omm、 5セルが内部で直列接続さ れたァモルファス太陽電池を太陽電池 14に用いた場合、 1 100ルクス程度の 明るさ以上で昇圧動作が確認できた。
この基本構成では、 昇圧能力を向上する目的でスィツチ素子として大型の MO S F E Tを用いたり、 複数の MO SFETを並列接続すると、 昇圧回路 12の消 費電力が増加して昇圧回路 1 2の起動する最低照度を上昇させる原因となる。 なお、 この実施の形態において、 第 1の電池である太陽電池 1 1は、 低電圧出 力型であり直列接続構成などの複雑な製造工程を経ずに製造できる単セルの太陽 電池としているが、 同じく低電圧出力型であり、 直列接続せずに構成できる単セ ルの燃料電池を用いてもよい。 また、 昇圧回路 1 2への出力を増加させたい場合 には、 複雑な製造工程を経ずに実現できる並列接続の燃料電池または太陽電池を 用いてもよい。
一方、 第 2の電池である太陽電池 1 4は、 起動エネルギー (動作エネルギー) を与えるエネルギー源としての役割を有しているが、 エネルギーを供給できるも のであればよく、 例えば、 リチウム蓄電池などを用いることができる。 また、 充 電ができなレ、乾電池のよ.うな一次電池でもよく、 通常のコンデンサゃ電気 2重層 コンデンサなどの蓄電素子であってもよい。
[実施の形態 2 ]
第 2図は、 本発明の実施の形態 2にかかる昇圧装置の構成を示すブロック図で ある。
第 2図に示す昇圧装置は、 昇圧回路の昇圧能力の向上を実現するとともに、 昇 圧回路を起動する最低照度の上昇を招かない構成である。 同図の構成では、 前述 の実施の形態 1における第 1図の構成に整流素子 3 2, 3 3を有する選択回路 1 5を付力 tlしてレ、る。 '
同図に示す昇圧回路 1 2は、 起動時は、 電力供給手段である太陽電池 1 4の電 力を用い、 昇圧動作が開始された後は、 昇圧された電力の一部を昇圧回路 1 2に 供給することで昇圧能力を飛躍的に向上させている。 太陽電池 1 4の電力と昇圧 出力の一部との選択出力を昇圧回路 1 2·に供給しているので、 太陽電池 1 4の電 力は昇圧回路 1 2のみに供給され、 負荷 (二次電池) 1 9に供給されることはな いので、 起動照度の低下を防ぐことができる。 昇圧回路 1 2は太陽電池 1 4がら 電力の供給を受けると起動し、 昇圧動作が始まると、 昇圧出力から整流素子 3 3 を通じて、 昇圧回路 1 2に電力を供給する。 この結果、 昇圧回路 1 2の昇圧能力 が増加する。 太陽電池 1 1による発電電力が大きくなればなるほど、 昇圧される 電力が増加し、 整流素子 3 3を通じて昇圧回路 1 2に供給される電力も増えるの で、 昇圧回路 1 2の昇圧能力が増強されることとなり、 好循環が生まれる。 なお、 整流素子 3 2, 3 3に替えて同等の整流特性を有する整流素子 (パイポ^"ラトラ ンジスタのベース 'ェミッタ間等) を用いてもよい。 なお、 昇圧回路の回路構成 の詳細については、 実施例において後述する。
なお、 この実施の形態において、 第 1の電池である太陽電池 1 1は、 低電圧出 力型であり直列接続構成などの複雑な製造工程を経ずに製造できる単セルの太陽 電池としているが、 同じく低電圧出力型であり、 直列接続せずに構成できる単セ ルの燃料電池を用いてもよい。 また、 昇圧回路 1 2への出力を増加させたい場合 には、 複雑な製造工程を経ずに実現できる並列接続の燃料電池または太陽電池を 用いてもよい。
一方、 第 2の電池である太陽電池 1 4は、 起動エネルギー (動作エネルギー) を与えるエネルギー源としての役割を有しているが、 エネルギーを供給できるも のであれぽよく、 例えば、 リチウム蓄電池などを用いることができる。 また、 充 電ができなレ、乾電池のような一次電池でもよく、 通常のコンデンサゃ電気 2重層 コンデンサなどの蓄電素子であってもよい。
つぎに、 図面とともに本発明の実施例を説明する。 '
隱例 1〕
まず、 実施例 1では、 ブーストコンバータ構成の昇圧回路について説明する。 第 3図は、 この発明の実施例 1にかかるブーストコンバータ構成の太陽電池出 力の昇圧回路の構成を示す図である。
昇圧回路 2 0 2の昇圧対象は、 直列接続されていない太陽電池 2 0 1であり、 また、 昇圧回路 2 0 2の出力端子 2 1 7には、 負荷 2 0 3として定電流 ·定電圧 制御が可能な電子負荷 (富士通伝送 E U L a X L l 5 0 ) を接続した。 太陽電池 2 0 1は、 3 6平方センチメ一トルのシリコン多結晶で AM 1 . 5の状況下にて 開放端出力電圧が 0 . 5 6 V発生するものを用いた。 昇圧回路 2 0 2には、 コィ ル 206として、 直流抵抗 20ミリオーム、 定格電流 2 A、 ィンダクタンス値 2 2マイクロヘンリーのものを用いた。 スィッチ素子 208には、 MOSFETと してシリコ二タス製 S i 9948DYを用いた。 ダイォード 207には、 ショ ト キーバリアダイォード東芝製 CMSひ 6を用いた。 コンデンサ 209には、 三洋 製電解コンデンサで E SRが 20ミリオーム、 キャパシタンス 220マイクロフ アラドのものを用いた。 発振回路 224は、 汎用 CMOSロジックゲートである シュミットトリガ型ィンバータ 74HC 14によるマルチバイブレータ発振回路 と出力電流強化のためのドライブ回路から構成した。
マルチバイブレータ回路は、 発振時定数を決定するコンデンサ 210と抵抗 2 11とシュミットトリガ型インバータ 213から構成したが、 ここには、 一般的 な低消費電力型の矩形波発振回路を用いることができる。
ドライバ回路は、 シュミットトリガ型ィンバータ 212, 214を並列にして 用レ、た。 ここでは、 一般的な低消費電力型のィンバータゃバッファタィプの口ジ ックゲートを用いることができる。 並列数は、 電流騍動能力と負荷の重さから決 定すればよい。 昇圧回路 202の電源として、 前述の発振回路 224のシュミッ トトリガ型ィンバータ 74 H C 14の電源端子 215への電力供給が必要である ので、 ここに直列接続された太陽電池 204とコンデンサ 216を接続した。 太 陽電池 204には、 三洋製ァモルファス太陽電池で 5セル構成の定格出力 3. 0 V、 3. 2 mA、 型番 AMI 156を用いた。 コンデンサ 2 Ί 6には三洋製 O S 電解コンデンサ 220マイクロファラドのものを用いた。 太陽電池 201と太陽 電池 204は近接し、 かつ、 平面上に配置した。
照度の測定は、 照度計横河電機製 510— 02を用い、 光源から太陽電池表面 までの距離と光源から照度計の受光球までの距離が等しくなるようにして行った。 実験の結果、 照度が 1 100ルクスから昇圧動作が始まることが確認された。 発振回路 224の発振周波数を調整することで昇圧開始電圧が変化し、 発振周波 数が 1〜30 kHz程度で昇圧開始電圧が最も高感度であった。 昇圧回路の駆動 源に用いた太陽電池 204の出力電圧が 1. IVを超えると発振回路 224は、 発振を始めるが、 スィッチ素子 2 0 8の駆動には至らない。 太陽電池 2 0 4の出 力電圧が 1 . 4 Vを超えると昇圧動作が始まることがわかつた。 照度が 1 1 0 0 ルクスのときに太陽電池 2 0 4の出力電圧が 1 . 4 Vに達していた。 窓際または、 太陽光下では、 十分な昇圧動作が得られ、 出力端子 2 1 7には、 2 0 V以上の電 圧が得られるが太陽電池 2 0 4の出力電圧は 1 . 9 V程度であり、 '定格の 3 . 0 Vには到達しないため、 つぎに、 昇圧回路起動後の昇圧回路へのエネルギー供給 の補強を行った。
なお、 上記の 7 4 H C 1 4は、 インバータロジック 6個と当該ロジックへの電 源、供給端子をひとまとめにした標準パッケージである。 また、 発振回路 2 2 4は、 7 4 H C 1 4の 3個のインパータロジック 2 1 2, 2 1 3 , 2 1 4と抵抗 2 1 1 とコンデンサ 2 1 0を使用して構成されている。
[実施例 2 ] '
.本実施例では、 前述の実施例 1とは異なるブーストコンバータ構成の昇圧回路 'について説明する。
第 4図は、 この発明の実施例 2にかかるブーストコンバータ構成の太陽電池出 力の昇圧回路の構成を示す図である。
同図に示す構成は、 前述の実施例 1の回路構成における、 シュミットトリガ型 インタバータ 7 4 H C 1 4の電源端子 2 1 5に、 太陽電池 2 0 4と昇圧回路の昇 圧出力とをショットキーダイォード 2 1 8とショットキーダイオード 2 1 9によ るオア回路を介して印加する構成とした。
太陽電池 2 0 4の出力は、 昇圧回路 2 0 2にのみ供給され、 ダイオード 2 1 9 により負荷 2 0 3に供給されることはないので、 前述の実施例 1に比べ、 起動照 度が劣化することはない。
実験では、 1 2 0 0ルクス以上の光照射により昇圧回路が起動し、 太陽電池 2 0 1からの昇圧出力が得られた。 昇圧出力は、 負荷 2 0 3に供 ί合されると同時に 出力め一部を電流制限抵抗 2 2 0とダイオード 2 1 9を介して昇圧回路 2 0 2に 供給する。 すなわち、 発振回路を構成するシュミットトリガ型ィンバータ 7 4 H C 1 4の電源端子 2 1 5に供給した。 昇圧出力からのエネルギー供給が昇圧回路 2 0 2に開始されると、 7 4 H C 1 4の電源端子 2 1 5の電圧が上昇し、 発振回 路 2 2 4の動作が安定すると同時に、 昇圧回路 2 0 2のスィツチ素子 2 0 8, 2 2 1を十分な駆動能力で駆動し始めるため、 スィツチ素子 2 0 8, 2 2 1のオン 抵抗を低くすることができる。 この実験では、 スィッチ素子 2 0 8 , 2 2 1とし て S i 9 9 4 8 DYを用いたが、 オン抵抗の合成値は 1 0ミリオームを得た。 これは、 コイル 2 0 6の直流抵抗が 2 0ミリオームの場合、 昇圧回路の直流的 な-抵抗値は 3 0ミリオーム程度となり、 太陽電池 2 0 1の発電電圧が 0 . 3 Vの ときに最大 1 0 Aまでの発電電流を太陽電池 2 0 1から昇圧回路 2 0 2に取り'込 めることを意味している。 ,
本実施例の昇圧回路では、 一旦、 昇圧回路 2 0 2が起動すると、 昇圧出力の一 部を昇圧回路 2 0 2に供給するため、 起動に用いた太陽電池 2 0 4は不要となる。
■5 0 0 0ルクス程度の光照射において、 昇圧出力は 7 Vを超えるため、 負荷 2 0 3に富士通電装電子負荷 E U L « X L 1 5 0を接続し、 定電圧動作に設定した。 以下に示す表 1は、 照度を変えて、 昇圧対象である直列接続されていない太陽 電池 2 0 1の出力電圧 V i nを変化させたときの実験結果の一例である。 ,
【表 1】
表 1
Figure imgf000019_0001
この実験では、 負荷 2 0 3として用いた電子負荷は、 定電圧動作の 5 . 0 0 V に設定した。 昇圧回路の出力端子 2 1 7における出力電圧と出力電流から昇圧出 力を測定した。 この結果から、 太陽電池 2 0 1の出力電圧が 0 . I Vでも昇圧出 力が得られ、 また、 8割台の高い変換効率が得られることがわかる。 実験に用い たマルチバイブレータによる矩形発振回路は、 ディユーティ比を変化させる構成 としなかったので、 例えば、 太陽電池 2 0 1の出力電圧 V i nが 0 . 5 Vのとき の太陽電池 2 0 1からの供給電流 I i nが 3 3 0ミリアンペアとなっている。 し 力^、 ディユーティ比を調節できる。別な矩形波発振回路による実験において、 ディユーティ比を増加させることで、 太陽電池 2 0 1からの出力電流 I i n力 S 1 5 0 0ミリアンペアを超えても昇圧回路 2 0 2が取り込めることを確認した。 な お、 上記の 7 4 H C 1 4は、 ィンバータロジック 6個と当該口ジックへの電源供 給端子をひとまとめにした標準パッケージである。 また、 発振回路 2 2 4は、 7 4 H C 1 4の 3個のインバータロジック 2 1 2, 2 1 3, 2 1 4と抵抗 2 1 1と コンデンサ 2 1 0を使用して構成されている。
[実施の形態 3 ]
第 5図は、 本発明の実施の形態 3にかかる昇圧装置の構成を示すブロック図で ある。
第 5図では、 出力制御回路を設けた太陽電池出力の昇圧装置の構成を示してお り、 Ιίί述の実施の形態 2における第 2図の昇圧装置に出力制御回路 1 6を付カロし た構成である。
昇圧対象である太陽電池 1 1にて発電した電力は、 昇圧回路 1 2により昇圧さ れ、 出力制御回路 1 6により定電圧ゃ定電流や充電のための出力制御を受けた後 に整流素子 3 4を通じて電気 ' ·電子回路あるいは、 二次電池である負荷 (二次電 池) 1 9に供給される。 昇圧された電力の一部は出力制御回路 1 6と昇圧回路 1 2に供給される。 昇圧回路 1 2を起動するための太陽電池 1 4の電力は、 整流素 子 3 3の働きにより昇圧回路 1 2にのみ供給されるため、 起動照度の低下を防ぐ ことができる。 整流素子 3 4により負荷 (二次電池) 1 9から出力制御回路 1 6 の方向に電流が逆流することはないので、 負荷 (二次電池) 1 9に二次電池を用 いた場合は、 二次電池の不要な放電を防ぐことができる。 負荷 (二次電池) 1 9 が二次電池でない場合は、 整流素子 3 4を省略してもよい。 また、 出力制御回路 1 6は、 3端子シリーズレギユレータを用いてもよいし、 定電圧ダイオードを用 いた簡単な構成でもよい。 なお、 昇圧回路の回路構成の詳細については、 実施例 において後述する。
なお、 この実施の形態において、 第 1の電池である太陽電池 1 1は、 低電圧出 力型であり直列接続構成などの複雑な製造工程を経ずに製造できる単セルの太陽 電池としているが、 同じく低電圧出力型であり、 直列接続せずに構成できる単セ ルの燃料電池を用いてもよい。 また、 昇圧回路 1 2への出力を増加させたい場合 には、 複雑な製造工程を経ずに実現できる並列接続の燃料電池または太陽電池を 用いてもよい。
一方、 第 2の電池である太陽電池 1 4は、 起動エネルギー (動作エネルギー) を与えるエネルギー源としての役割を有しているが、 エネルギーを供給できるも のであればよく、 例えば、 リチウム蓄電池などを用いることができる。,また、 充 電ができない乾電池のような一次電池でもよく、 通常のコンデンサゃ電気 2重層 ンデンサなどの蓄電素子であってもよい。 '
[実施の形態 4 ]
第 6図は、 本発明の実施の形態 4にかかる昇圧装置の構成を示すプロック.図で ある。 同図に示す昇圧装置は、 昇圧能力を可変にするための太陽電池出力の昇圧 装置の構成を示すものであり、 また、 前述の実施の形態 3における第 5図の昇圧 回路において、 出力制御回路 1 6から昇圧回路 1 2に制御信号を送り、 昇圧能力 を可変とすることで、 制御目標を達成する構成について説明するための図である。 同図に示す太陽電池出力の昇圧装置は、 昇圧回路 1 2の起動時に太陽電池 1 4 から電力を受けて起動する。 この時点では、 昇圧出力が発生していないか、 出力 制御回路 1 6の最低動作電圧に達していないため、 出力制御回路 1 6からの制御 信号は存在しなかったり、 不定な動作をする。 このため、 不本意な制御信号状態 により起動し始めた昇圧回路が停止して、 正常な動作が行われないおそれがある。 この問題を解決するには、 以下の特徴を有する回路構成にする必要がある。
( 1 ) 起動時に出力制御回路 1 6から昇圧回路 1 2に不定な制御出力を与え ないこと。 ( 2 ) 起動時に出力制御回路 1 6の制御信号出力端子はハイインピーダンス であること。 - 出力制御回路 1 6が不定な制御信号を出力しないようにするためには、 制御信 号出力段にバイポーラトランジスタなどの電流駆動素子を用いることが有効であ る。 当該素子では、 オンするのに電流が必要であり、 昇圧回路起動時は、 出力制 御回路 1 6は、 電流駆動素子を駆動するだけの能力を持っていない。 また、 出力 端子をハイインピーダンスにすることで、 昇圧回路 1 2から出力制御回路 1 6に 電流が流れ、 昇圧回路の起動特性が劣化するのを防止することができる。 したが つて、 出力制御回路 1 6の制御信号出力段には、 オープンコレクタゃゲ一ト ·ソ ース問に抵抗を並列接続して電流駆動型にしたオープンドレイン構成をとるのが 有効である。 なお、 昇圧回路の回路構成の詳細については、 実施例において後述 する。 ,
なお、 この実施の形態において、 第 1の電池である太陽電池 1 1は、 低電圧出 力型であり直列接続構成などの複雑な製造工程を経ずに製造できる単セルの太陽 電池としているが、 同じく低電圧出力型であり、 直列接続せずに構成できる単セ ルの燃料電池を用いてもよい。 また、 昇圧回路 1 2への出力を増加させたレ、場合 には、 複雑な製造工程を経ずに実現できる並列接続の燃料電池または太陽電池を 用いてもよい。
一方、 第 2の電池である太陽電池 1 4は、 起動エネルギー (動作エネルギー) を与えるエネルギー源としての役割を有しているが、 エネルギーを供給できるも のであればよく、 例えば、 リチウム蓄電池などを用いることができる。 また、 充 電ができない乾電池のような一次電池でもよく、 通常のコンデンサや電気 2重層 コンデンサなどの蓄電素子であってもよい。
[実施例 3〕
本実施例では、 出力制御機能を有するブーストコンバータ構成の昇圧回路につ いて説明する。
第 7図は、 本発明の実施例 3にかかる太陽電池出力の昇圧回路の構成を示す図 である。
昇圧回路 244内の短形波発振回路は、 汎用 CMO Sロジックゲートであるシ ュミットトリガ型 2入力 NAND (74HC 132) によるマルチバイブレータ 発振回路と出力電流強化のためのドライブ回路から構成した。 マルチバイプレー タ発振回路は、 発振時定数を決定するコンデンサ 233と抵抗 232とシュミツ トトリガ型 2入力 NAND 234から構成したが、 この他にも、 発振回路外部か ら発振状態の制御が可能な低消費電力型の矩形波発振回路を用いることができる。 ドライブ回路は、 シュミットトリガ型 2入力 NANDゲート 235, 236, 2 37を並列にして用いた。 ここには、 電流駆動能力の優れた低消費電力型のィ―ン バータタイプのロジックゲートを用いるとよい。 並列数は負荷の重さに応じて決 定すればよい。 昇圧回路 244の電源としてシュミットトリガ型 2入力 NAND 74HC 132の電源端子 230への電力供給が必要であるので、 ここに直列接 続された太陽電池 20 をダイォード 218を介して接続した。 太陽電池 204 には、 三洋製アモルファス太陽電池で大きさが 3. 3平方センチメートル、 5セ ル構成の定格出力 3. 0V、 3. 2 mA、 型番 AMI 156を用いた。 コンデン サ 216には、 三洋製低 E S R型電解コンデンサ 220マイクロファラドのもの を用いた。 前述の電源端子 230には、 前述の実施例 2と同様に太陽電池 204 の発電出力と昇圧回路 244の昇圧出力とをダイオード 218および 219によ る; ァネ冓成として接続した。
本構成により、 太陽電池 204の発電出力は電源端子 230にのみ供給でき、 また、 昇圧出力から太陽電池 204に逆流することなく電源端子 230に昇圧出 力の一部を供給することができる。 昇圧出力から電源端子 230に昇圧出力の一 部を供給する際に、 電流制限抵抗 220を揷入することで電源端子 230に過大 な電力が供給されるのを防ぎ、 昇圧回路の変換効率を向上することができる。 ダイオード 218 , 219, 207, 238には、 順方向降下電圧が小さ ヽ特 徴を持つショットキーバリァダイォードを用いるとよい。 本実施例では、 東芝製 CMSO 6を用いた。 つぎに、 出力制御回路について説明する。
本実施例は、 直列接続していな!/ヽ太陽電池出力を昇圧回路 2 4 4により昇圧す る際に昇圧出カを定電圧ィ匕するための回路溝成例である。 昇圧出力を一定電圧に 制御するか、 あるいは、 一定電流に制御するかは、 この昇圧回路の本質ではなく、 公知の出力制御技術が利用可能である。 ここで、 必要なのは、 これら出力制御回 路が必要とする電力をどこから得ているかということと制御信号のィンタフエー ス方法である。 昇圧対象である太陽電池 2 0 1の出力電圧は、 0 . 4 V程度、 最 大でも 0 . 5 V強である。 このような低電圧で一般的な出力制御回路を構成する コンパレータゃ基準電圧源を駆動することは不可能である。 もう一つのエネルギ 一源である太陽電池 2 0 4は、 昇圧回路 2 4 4の起動動作に必要なエネルギーを 供給するためのものであり、 ごく小面積の太陽電池の利用を前提にしている。 仮に、 太陽電池 2 0 4からエネルギーを流用すると、 太陽電池 2 0 4の出力電 圧低下を招き、 本昇圧回路の低照度動作の特性を著しく低下させる力、 昇圧回路 2 4 4の起動ができない事態を招くこととなる。 出力制御回路は、 昇圧回路 2 4 4から昇圧出力が発生しているときのみ機能すれば良い。 したがって、.第 7図の ように、 直列接続されていない太陽電池 2 0 1の昇圧出力から電圧を得るように 接続することで、 本昇圧回路の低照度動作の特性を全く劣ィヒさせることなく、 公 知の出力制御手段を利用することができる。
つぎに、 制御信号のインタフェース方法について説明する。 定電圧制御や定電 流制御などの出力制御は、 昇圧回路 2 4 4の昇圧動作に働きかけて昇圧能力を調 節することで実現する。 ここで、 出力制御手段が昇圧回路 2 4 4の昇圧出力から 電力を得て動作している場合、 昇圧回路 2 4 4から昇圧出力が得られるまでは、 出力制御手段は動作することができない。 昇圧回路内の発振回路がこの出力制御 手段からゼロポルトでない発振許可信号を受けて発振し、 昇圧動作を制御する場 合、 以下の問題が発生する。 ' 昇圧回路 2 4 4は、 発振制御端子 2 6 0をロジックのハイレベルに相当する発 振許可信号を受信することで、 発振を開始し昇圧動作が行われる。 昇圧回路 2 4 4が起動する際には、 昇圧出力はまだ発生していないため、 出力制御手段から発 振許可信号を得ることができないので、 発振回路は発振することができない。 し たがって、 昇圧動作ができず昇圧出力が得られない。 そこで、 第 7図のように、 発振制御端子 2 6 0を電源端子 2 3ひに抵抗 2 3 1とコンデンサ 2 4 5による積 分回路を介して接続する。 また、 発振許可信号出力時以外の出力制御回路の出力 端子のインピーダンスを高くするため、 制御信号の出力端子の回路構成をオーブ ンドレイン構成かオープンコレクタ構成になるようにする。 この回路構成では、 起動時の発振制御端子 2 6 0の電圧は、 電源端子 2 3 0の電源電圧とほぼ等しい ため、 ロジックハイレベルを安定して得られる特徴を持つ。
また、 本昇圧回路の低照度特性を劣ィ匕させる電力消費要因は存在しない。 上記 の問題を克服する直列接続されていない太陽電池出力の昇圧装置のための出力制 御方法として、 定電圧出力制御の例を本実施例において示し、 定電圧制御動作に ついて説明する。
定電圧制御回路は、 オープンドレイン出力構成のコンパレータ 2 4 1と基準電 '圧源 2 4 2とバイアス抵抗 2 3 9および出力電圧値設定のための出力電圧抵抗 2 4 0および 2 4 3から溝成され、 第 7図のように結線した。 コンパレータ 2 4 1 は、 オープンドレイン出力もしくは、 オープンコレクタ構成以外の場合でもコン パレータ出力端子に N型 MO S F E Tか N P N型パイポーラトランジスタを介し て発振制御端子 2 6 0に接続することも可能である。
つぎに、 動作について説明する。
大陽光照射による起動時は、 昇圧出力が得られていないため、 コンパレータ' 2 4 1の出力段の N型 MO S F E Tあるいは、 N P Nトランジスタはオフ状態にあ り、 発振制御端子 2 6 0の電圧が上昇して、 昇圧回路内のマルチバイブレータが 発振を開始し、 昇圧出力が得られる。 0分割抵抗 2 4 0と 2 4 3による昇圧電圧 の分割電圧が基準電圧源 2 4 2の電圧より高くなると、 コンパレータの出力は電 流を引き込むので発振制御端子 2 6 0は、 ロジックローレベルになり、 発振を停 止し、 昇圧動作が停止する。 出力電圧が前述の分割抵抗 2 4 0と 2 4 3による設 定値以下になるとコンパレータのオープンドレイン出力回路はオフし、 発振制御 端子 2 6 0の電圧が積分回路を介して電圧を上昇し、 ロジックハイレベルになる と、 昇圧回路 2 4 4が発振を再開して昇圧動作を行い、 出力電圧が一定になるよ うに制 ί卸さ iflる。 - 実験では、 太陽電池 2 0 1と太陽電池 2 0 4は近接し、 かつ、 平面上に配置し た。 照度の測定は、 照度計に横河電機製 5 1 0 _ 0 2を用レ、、 光源から太陽電池 表面までの距離と光源から照度計の受光球までの距離が等しくなるようにして行 つた。 実験の結果、 照度が 8 .0 0ルクスから発振動作が始まることが確認された。 発振回路の発振周波数を調整することで昇圧開始電圧が変化し、 発振周波数が 1 〜 3 0 k Η ζ程度で昇圧開始電圧が最も高感度であった。 昇圧回路の駆動源に用 いた太陽電池 2 0 4の出力電圧が 0 . 9 5 Vを超えると発振回路は発振を始める 力 スィッチ素子 2 0 8の駆動には至らない。 照度が 1 1 0 0ルクスのときに太 陽電池 2 0 4の出力電圧が 1 ; 2 Vに達し、 昇圧動作が始まることがわかった。 窓際や太陽光下では十分な昇圧動作が得られ、 分割抵抗 2 4 0と 2 4 3で設定し た出力電圧が出力端子 2 1 7から得られた。
[実施例 4 ]
本実施例では、 出力制御機能を有するブーストコンバータ構成の昇圧回路につ いて説明する。 '
第 8図は、 本発明の実施例 4にかかる出力制御機能を有するブーストコンバー タ構成を用いた直列接続されていなレ、太陽電池出力の昇圧回路の構成を示す図で める。 .
本実施例では、 第 7図に示す実施例 3の回路構成同様に、 出力制御回路の制御 出力により、 昇圧回路 2 4 4の発振制御端子 2 6 0を介して昇圧能力を調節して 定電圧出力動作を実現するものである。 前述の実施例 3との差異は、 昇圧回路 2 4 4の発振制御端子 2 6 0がロジックローレベルのときに発振回路が動作し、 昇 圧回路を動作させることで、 実施例 3では必要であった電源端子 2 3 0からのバ ィァス回路を不要とするものである。 また、 発振制御端子 2 6 0がロジックハイ'レベルのときに発振回路の動作が停 止する.ので、 コンパレータ出力の後に P N Pトランジスタ 2 7 2あるいは、 P型 MO S F E Tによるレベルシフト回路を付加する。 抵抗 2 7 3と 2 7 4は、 P N Pトランジスタ 2 7 2のバイァス抵抗である。
抵抗 2 7 0は、 発振制御端子 2 6 0のブルダゥン抵抗、 抵抗 2 7 1は、 : P N P トランジスタ 2 7 2からの過電流防止と発振回路制御端子への過電圧印加による ラッチアップを防止するものである。 コンデンサ 2 7 5は、 発振回路制御端子の 耐ノイズ特性を向上するためのものである。
つぎに、 上記の構成における動作を説明する。 ' 太陽電池に光が照射され、 太陽電池 2 0 4から出力電圧が発生すると、 電源端 子 2 3 0の電圧が上昇し、 シュミツトトリガ型 2入力 N AN Dロジックゲート 7 4 H C 1 3 2が動作可能な状態となる。 昇圧出力はないので、 発振制御端子 2 6 0.は、 プノレダゥン抵抗 2 7 0によりロジックローレベルにあり、 発振回路は発振 •を開始し、 昇圧回路が起動し昇圧出力が発生する。 昇圧出力電圧が分割抵抗 2 4 0と 2 4 3により分割された電圧と基準電圧源 2 4 2の電圧とをコンパレータ 2 4 1にて比較し、 昇圧出力電圧の方が高圧電圧であるときは、 コンパレータ 2 4 1は、 後段の P N Pトランジスタ 2 7 2をオンするように正入力端子と負入力端 子を接続する。 トランジスタ 2 7 2が、 オンすると昇圧出力からプルダウン抵抗 2 7 0に電流が流れ、 発振回路制御端子がロジックハイレベルとなり、 発振動作 が停止して昇圧動作が停止する。
また、 出力電圧が設定電圧以下になると、,コンパレータ出力はオフとなり、 P N Pトランジスタ 2 7 2は、 オフするので発振制御端子 2 6 0は、 ロジックロー レベルとなる。 このため、 発振回路が動作して昇圧動作が再開されるので出力電 圧は一定電圧に制御される。
なお、 本発明は、 上記の実施例に限定されることなく、 特許請求の範囲内にお いて種々の変更または応用が可能である。
以上説明したように、 本発明の昇圧装置によれば、 太陽電池の出力電圧が 0 . 1 5 V下であっても何等問題なく、 高効率に昇圧した電圧を得ることができる。 したがって、 太陽電池を多数直列接続する必要がないため、 従来の直列接続した 太陽電池で問題であった、 構成する太陽電池の何割かが影になると、 太陽電池モ ジュール全体の何割かが影になつたのと同じ効果となり、 出力が大幅に低下して しまうとレヽぅ問題を角军決することができる。
また、 従来、 直列接続された太陽電池モジュールを作成するには、 バイパスダ ィォードの付加に加え、 太陽電池表面と隣接する太陽電池裏面を繋ぐ配線やセル 問の絶縁対策が必要であり、 モジュール効率を高めるためには、 各太陽電池セル において、 配線のための隙間やセル間絶縁のための隙間を小さくし、 かつ、 精 よくセルを配置する技術が要求されるため、 コスト高の太陽電池モジュールとな つていた。 これに対し、 本発明を適用することで、 直列接続する必要がないので、 太陽電池モジュールのコストを低減できる。
さらに、 従来はモジュール効率を高めるため、 セノレ形状は四角形となり、 意匠 的な工夫を凝らすことが困難であつたが、 発電対象である太陽電池を直列接続す る必要がないので、 本発明に'より、 様々な形状の太陽電池を並列接続して用いる ことができ、 太陽電池モジュールの形状の制約から解放される。
[実施の形態 5 ]
第 9図は、 本発明の実施の形態 5にかかる昇圧装置の構成を示すプロック図で ある。 同図に示す昇圧装置は、 0. 6 V〜0 . 7 V (無負荷) 程度の低電圧を出 力する単セルの燃料電池 2 1 (第 1の電池) 力 ら出力された低電圧出力を昇圧対 象として所定の電圧 (例えば、 負荷が動作可能な電圧) 程度に昇圧する昇圧回路 1 2と、 昇圧回路 1 2に起動エネルギーを与えるための電力供給手段であるリチ ゥム蓄電池 2 3 (第 2の電池) とを備えている。 なお、 燃料電池 2 1は、 単に昇 圧対象となる低電圧出力を昇圧回路 1 2に供給しているものであり、 本昇圧装置 の構成要件ではない。
ここで、 燃料電池 2 1は、 低電圧出力型であり直列接続構成などの複雑な製造 工程を経ずに製造できる単セルの燃料電池である。 リチウム蓄電池 2 3は、 充電 可能な二次電池であり、 起動エネルギーを与えるエネルギー源としての役割を有 している。 昇圧回路 1 2は、 例えば、 回路構成の容易なブーストコンバート型の 回路で構成され、 この昇圧回路内に備えられるスィツチング素子のオン Zオフ制 御を行うことで、 コンデンサなどの蓄電素子に蓄えられる電圧の昇圧を行うこと ができる。 なお、 スイッチング素子のオン Zオフ制御を行うための発振回路とし ては、 CMO S型の回路を用いるのが好適である。
つぎに、 第 9図を用いて、 この昇圧装置の動作について説明する。 同図におい て、 燃料電池 2 1では、 送出された燃料や酸素 (空気) によって化学反応が行わ れ、 この化学反応によって電気エネルギーが生成される。 このとき生成される出 力は、 一般的に低電圧であり、 例えば、 無負荷 (負荷が接続されていない) とき では 6 V〜0 . 7 Vであり、 定格出力時では、 せいぜい 0 . 3 V前後の出力 電圧である。 したがって、 燃料電池 2 1からの出力では、 ノートパソコンや携帯 電話などの携帯機器を直接動作させることはできない。
燃料電池 2 1からの低電圧出力は昇圧回路 1 2に入力される。 昇圧回路 1 2で は、 図示を省略したコンデンサなどの蓄電素子に昇圧された電気エネルギーが蓄 積される。 昇圧回路 1 2を動作させるためには、 所定の起動エネルギーが必要と される。 リチウム蓄電池 2 3は、 昇圧回路 1 2に起動エネルギーを供給する。 昇 圧回路 1 2は、 起動時にはある程度のエネルギーを必要とするが、 起動後は起動 時に与えられるエネルギーよりも小さなエネルギーにて動作を継続させることが できる。
例えば、 ブース卜コンバート型の昇圧回路であれば、 起動時に 1 . 4 V程度の 入力電圧が必要であるが、 起動後は、 0 . I V程度の小さな入力電圧であっても 昇圧回路 1 2自身の動作を継続させるこができる。 したがって、 この実施の形態 の昇圧装置では、 昇圧回路 1 2に対して、 起動時のみ、 リチウム蓄電池 2 3から 起動エネルギーを出力し、 起動後は昇圧回路 1 2自身の出力を動作エネルギーと してフィードバックさせることで、 昇圧回路 1 2自身の動作を継続させ、 所定の 昇圧出力を得ている。 また、 昇圧回路 1 2の出力、 すなわち昇圧出力は、 接続される携帯機器などの 動作電圧に応じて任意の所定電圧に設定することができるので、 低電圧出力しか 得られない燃料電池 2 1のエネルギーを利用して携帯機器などを動作させるため の昇圧出力を得ることが可能となる。 - 以上説明したように、 この実施の形態の昇圧装置によれば、 昇圧回路には、 第 1の電池から昇圧対象の低電圧出力が入力されるとともに、 第 2の電池から起動 エネルギーが入力され、 その一方で、 昇圧回路自身にも自己の動作の継続に必要 な動作エネルギーが自身によってフィードバックされることで、 所定の昇圧出力 を得るようにしているので、 低電圧出力し力得られない第 1の電池のエネルギー を利用して携帯機器などを動作させるための昇圧出力を得ることができ、 また、 特殊な電池を用いることに起因する製造コストの増加を抑制し、 汎用的な電池の 利用によるコス十低減を可能とした昇圧装置を提供することができる。
なお、 この実施の形態において、 第 1の電池である燃料電池 2 1は、 低電圧出 力型であり直列接続構成などの複雑な製造工程を経ずに製造できる単セルの燃料 電池としているが、 同じく低電圧出力型であり、'直列接続せずに構成できる単セ ルの太陽電池を用いてもよレ、。 また、 昇圧回路 1 2への出力を増加させたい場合 には、 複雑な製造工程を経ずに実現できる並列接続の燃料電池または太陽電池を 用いてもよい。
一方、 第 2の電池であるリチウム蓄電池 2 3は、 充電可能な二次電池であり、 起動エネルギーを与えるエネルギー源としての役割を有しているが、 エネルギー を供給できるものであればよく、 例えば、 充電ができない乾電池のような一次電 池でもよい。 また、 通常のコンデンサや電気 2重層コンデンサなどの蓄電素子で あってもよい。 .
また、 この昇圧回路内のスィツチング素子のオン/"オフ制御を行うための発振 回路として CMO S型の発振回路を用いることを好適としているが、 他の回路、 例えば、 バイポーラ型の発振回路を用いてもよい。 このパイポーラ型の発振回路 は、 消費電力が大きいという欠点はあるものの、 最低動作電圧が低いという利点 も有しており、 この利点を生かした回路構成とすることもできる。
[実施の形態 6 ]
第 1 0図は、 本発明の実施の形態 6にかかる昇圧装置の構成を示すプロック図 である。 同図に示す昇圧装置は、 第 9掘に示す実施の形態 5の構成に加え、 昇圧 回路 1 2の出力の一部を次回以降の起動の際に利用されるエネノレギ一としてリチ ゥム蓄電池 2 3に出力するための整流素子 3 5を備えている。 なお、 その他の構 成は、 第 9図に示す構成と同一あるいは同等であり、 それらの部分には、 同一符 号を付して示している。
つぎに、 第 1 0図を用いて、 この昇圧装置の動作について説明する。 ただし'、 昇圧回路 1 2力 単セルの燃料電池 2 1力 らの低電圧出力と、 リチゥム蓄電池 2 3から起動エネルギーと、 自身の出力の一部をフィードバックした動作エネルギ 一とを用いて昇圧動作を行う点は、 実施の形態 5と同一であり、 ここでの説明は 省略する。
この実施の形態では、 昇圧回路 1 2の昇圧出力の全部または一部を整流素子 3 5を介してリチウム蓄電池 2 3に出力する。 このとき出力されるエネルギーは、 自己の動作を再開させるためのエネルギーであり、 リチウム蓄電池 2 3に蓄電さ れる。 例えば、 昇圧回路 1 2に燃料電池 2 1から低電圧出力が供給されない場合 には、 無駄な電力消費を抑制するために昇圧回路 1 2の動作を停止させたい場合 がある。 この墙合、 昇圧回路 1 2を再起動させるためには、 新たな起動エネルギ 一が必要となる。 このとき、 昇圧回路 1 2の出力の全部または一部をリチウム蓄 電池 2 3に蓄電しておき、 昇圧回路 1 2を再起動させる場合に、 このエネルギー を昇圧回路 1 2に出力するようにしている。
また、 整流素子 3 5は、 リチウム蓄電池 2 3の蓄電電圧が昇圧出力に比べて高 い場合に、 リチウム蓄電池 2 3から出力 (昇圧回路 1 2 ) 側に電流が流れ込むの を防止するために備えられている。 .
以上説明したように、 この実施の形態の昇圧装置によれば、 昇圧回路には、 第 1の電池から昇圧対象の低電圧出力が入力され、 第 2の電池から起動エネルギー が入力され、 その一方で、 昇圧回路自身にも自己の動作の継続に必要な動作エネ ルギ が自身によってフィードバックされることで、 所定の昇圧出力を得るよう にしているので、 低電圧出力し力得られない第 1の電池のエネルギーを利用して 携帯機器などを動作させるための昇圧出力を得ることができ、 また、 特殊な電池 を用いることに起因する製造コストの増加を抑制し、 汎用的な電池の利用による コスト低減を可能とした昇圧装置を提供することができる。
また、 この実施の形態の昇圧装置によれば、 昇圧回路は、 自己の動作を再開さ せるための起動エネルギーとして昇圧出力を第 2の電池に出力して蓄電するよう にしているので、 無駄な電力消費を抑制することができる。 また、 過負荷によつ て昇圧出力が低下して、 自己の昇圧動作を継続することができないような状態に 陥っても、 第 2の電池に蓄電されたエネルギーによって、 再起動が可能となるの で、 継続動作が容易な構成を簡易に実現することができる。
なお、 実施の形態 5では、 リチウム蓄電池 2 3は、 充電ができない乾電池のよ うな一次電池でもよいとしているが、 この実施の形態では、 昇圧回路を再起動さ せるためのエネルギーを蓄電する必要がある。 したがって、 充電可能な二次電池 のほかに、 通常のコンデンサや電気 2重層コンデンサなどの蓄電素子を用いるよ うにすればよい。
[実施の形態 7 ]
第 1 1図は、 本発明の実施の形態 7にかかる昇圧装置の構成を示すプロック図 である。 同図に示す昇圧装置は、 第 1 0図に示す実施の形態 6の構成に加え、 起 動エネルギーおよび動作エネルギーのいずれか一つのエネルギーを昇圧回路 1 2 に出力するか否かを選択する整流素子 3 6, 3 7を具備する選択回路 2 5を備え ている。 なお、 その他の構成は、 第 1ひ図に示す構成と同一あるいは同等であり、 それらの部分には、 同一符号を付して示している。
つぎに、 第 1 1図を用いて、 この昇圧装置の動作について説明する。 同図にお いて、 昇圧回路 1 2には、 燃料電池 2 1からの低電圧出力が入力される。 ここで、 第 5, 実施の形態 6では、 起動エネルギーおよび動作エネルギーの両者を昇圧回 路に入力させるようにしていたが、 この実施の形態の昇圧回路 1 2では、 選択回 路 2 5を介して起動エネルギーと動作エネルギーのいずれかを入力させる構成と している。 その理由は、 つぎのとおりである。
昇圧回路 1 2は、 上記で説明したように、 起動時にはある程度の入力電圧を供 給する必要があるが、 一旦起動してしまえば、 僅かな入力電圧で動作を継続する ことができる。 つまり、 この実施の形態の構成のように、 起動エネルギーと動作 エネルギーの出力のうちの優位な出力を選択回路 2 5.を介して昇圧回路 1 2に入 力するようにすれば、 エネルギーの効率的な利用が実現できるからである。 また、 過負荷による昇圧出力の低下や、 リチウム蓄電池 2 3に蓄電されたェ'ネ ルギ一の低下の両者が同時に起こらない限り、 昇圧回路 1 2の再起動が可能とな るので、 稼働性の高いシステム構成を容易に実現することもできる。
なお、 整流素子 3 5は、 リチウム蓄電池 2 3の蓄電電圧が昇圧出力に比べて高 い場合に、 リチウム蓄電池 2 3から出力側に電流が流れ込むのを防止するために 備えられているものである。 '' また、 整流素子 3 6 , 3 7は、 起動エネルギーおよび動作エネルギーの出力の うち優位な出力 (出力電圧の高い出力) を昇圧回路 1 2へ供給するための手段と して選択回路 2 5に備えられているものである。
以上説明したように、 この実施の形態の昇圧装置によれば、 昇圧回路には、 第 1の電池から昇圧対象の低電圧出力が入力され、 起動エネノレギーおよび動作エネ ルギ一の双方が入力された選択回路が、 起動エネルギーまたは動作エネルギーの いずれ力一方を昇圧回路に出力するようにしているので、 低電圧出力しか得られ ない第 1の電池のエネルギーを利用して携帯機器などを動作させるための昇圧出 力を得ることができるとともに、 特殊な電池を用いることに起因する製造コスト の増加を抑制し、 汎用的な電池の利用によるコスト低減を可能とした昇圧装置を 提供することができる。 また、 昇圧出力エネルギーの効率的な利用を実現すると ともに、 稼働性の高いシステム構成を容易に実現することができる。
なお、 第 1の電池である燃料電池 2 1は、 他の実施の形態と同様に、 単セルの 燃料電池のほかに、 単セルの太陽電池を用いることができる。 また、 並列接続の 燃料電池または太陽電池を用いてもよい。
さらに、 第 2の電池であるリチウム蓄電池 2 3は、 実施の形態 6と同様に、 上 述の再起動のためのエネルギーを蓄電できればよく、 充電可能な二次電池のほか に、 通常のコンデンサや電気 2重層コンデンサなどの蓄電素子を用いることがで 含る。
[実施の形態 8 ] .
第 1 2図は、 本発明の実施の形態 8にかかる昇圧装置の構成を示すプロック図 である。 同図に示す昇圧装置は、 第 9図に示す実施の形態 5の構成において、 —昇 圧回路 1 , 2の出力を蓄電するための蓄電素子 2 4を備える一方で、 リチウム蓄電 池 2 3を備えない構成としている。 なお、 その他の構成は、 第 9図に示す構成と 同一あるいは同等であり、 それらの部分には、 同一符号を付して示している。 つぎに、 第 1 2図を用いて、 この昇圧装置の動作について説明する。 同図にお いて、 昇圧回路 1 2には、 単セルの燃料電池 2 1からの低電圧出力が入力される。 ここで、 第 5, 実施の形態 6では、 起動エネルギーをリチウム蓄電池 2 3から出 力させ、 動作エネルギーを自身から出力させるようにしていたが、 この実施の形 態の昇圧回路 1 2では、 起動時に供給する起動エネルギーや、 動作中に供給し続 ける動作エネルギーの両者ともに蓄電素子 2 4から出力する構成としている。 ' ところで、 負荷変動の大きい負荷にこの昇圧出力を直接的に供給するような場 合、 負荷電流が大きく変化し、 昇圧出力が大きく変動してしまう。 このような場 合、 第 1 2図に示すように昇圧回路 1 2内に定電圧回路を組み込むか、 昇圧回路 1 2と負荷 (図示省略) との間に蓄電素子 2 4のような定電圧装置を設けること がよく行われる。
このような定電圧を供給する蓄電素子 2 4を備えることで、 昇圧回路 1 2に出 力していた起動エネルギーと動作エネルギーとを、 蓄電素子 2 4から出力させる ことで、 昇圧回路 1 2を起動させるとともに、 起動後の昇圧回路 1 2の動作を継 続させることができ、 実際のシステム構成に近い形の構成とすることができ、 ま た、 昇圧回路 1 2をコンパクトにすることができる。 さらに、 蓄電素子 2 4を用 いるこ.とで、 電源容量の比較的大きな昇圧装置を実現することができる。
以上説明したように、 この実施の形態の昇圧装置によれば、 昇圧回路には、 第 1の電池から昇圧対象の低電圧出力が入力され、 自己の起動に必要な起動エネル ギ一と自己の動作の継続に必要な動作エネルギーとが、 昇圧出力が入力された蓄 電素子から出力されるようにしているので、 低電圧出力し力得られない第 1の電 池のエネルギーを利用して携帯機器などを動作させる定電圧出力を得ることがで きる。 また、 電源容量の比較的大きな昇圧装置を実現することができる。
なお、 第 1の電池である燃料電池 2 1は、 他の実施の形態と同様に、 単セルの 燃料電池のほかに、 単セルの太陽電池を用いることができる。 また、 並列接続の 燃料電池または太陽電池を用いてもよい。
また、 蓄電素子 2 4は、 通常のコンデンサや電気 2重層コンデンサなどの蓄電 素子を用いることができる。
また、 この実施の形態では、 昇圧回路 1 2と蓄電素子 2 4とを異なる構成とし ているが、 蓄電素子 2 4を昇圧回路 1 2内に組み込んだ形態で構成するこ'とも可 能である。
[実施の形態 9 ]
第 1 3図は、 本発明の実施の形態 9にかかる昇圧装置の構成を示すプロック図 である。 同図に示す昇圧装置は、 第 1 2図に示す実施の形態 8の構成に加え、 起 動エネルギーおよび動作エネルギーのいずれか一つのエネルギーを昇圧回路 1 2 に出力するか否かを選択する整流素子 4 5, 4 6を具備する選択回路 2 6と、 蓄 電素子 2 4から昇圧回路 1 2への逆流を防止する整流素子 4 4とを備えた構成と している。 なお、 その他の構成は、 第 1 ' 2図に示す構成と同一あるいは同等であ り、 それらの部分には、 同一符号を付して示している。
つぎに、 第 1 3図を用いて、 この昇圧装置の動作について説明する。 同図にお いて、 昇圧回路 1 2には、 単セルの燃料電池 2 1からの低電圧出力が入力される。 ここで、 実施の形態 8では、 起動時に供給する起動エネルギーや、 動作中に供給 し続ける動作エネルギーの両者ともに蓄電素子 2 4から出力するようにしていた 、 この実施の形態では、 動作エネルギーだけは昇圧回路 1 2から供給するよう にしている。
第 1 3図に示す選択回路 2 6において、 起動エネルギーと動作エネルギーのう ちの優位な出力が選択回路 2 6を介して昇圧回路 1 2に供給される。 すなわち、 起動時においては、 通常、 昇圧回路 1 2は動作を停止しているので、 蓄電素子 2 4の出力電圧 (起動エネルギー) の方が昇圧回路 1 2の出力電圧 (動作エネルギ 一) よりも高いので、 この起動エネルギーが整流素子 4 6を介して昇圧回路 1 2 に供給される。 ' 一方、 動作時においては、 蓄電素子 2 4の出力電圧 (起動エネルギー) よりも 昇圧回路 1 2の出力電圧 (動作エネルギー) の方が高いので、 この動作エネルギ 一が整流素子 4 5を介して昇圧回路 1 2自身に供給される。
.これらの構成において、 例えば、 蓄電素子 2 4に負荷変動の大きな負荷が接続 されている場合、 蓄電素子 2 4にかかる負担が増大する。 このような場合であつ ても、 この実施の形態の選択回路 2 6のように、 昇圧回路 1 2の動作を継続させ るための動作エネルギーを昇圧回路 1 2自身から供給するように構成しているの で、 蓄電素子 2 4にかかる負担を軽減することができる。
以上説明したように、 この実施の形態の昇圧装置によれば、 昇圧回路には、 第 1の電池から昇圧対象の低電圧出力が入力され、 蓄電素子の出力である起動エネ ルギ一と昇圧回路の出力である動作エネルギーとの双方が入力された選択回路が、 起動エネルギーまたは動作エネルギーのいずれか一方を昇圧回路に出力するよう にしているので、 低電圧出力し力得られない第 1の電池のエネルギーを利用して 携帯機器などを動作させるための昇圧出力を得ることができるとともに、 特殊な 電池を用いることに起因する製造コストの増加を抑制し、 汎用的な電池の利用に よるコスト低減を可能とした昇圧装置を提供することができる。 また、 蓄電素子 にかかる負担を軽減するとともに、 昇圧出力エネルギーの効率的な利用を実現す ることができる。 なお、 第 1の電池である燃料電池 2 1は、 他の実施の形態と同様に、 単セルの 燃料電池のほかに、 単セルの太陽電池を用いることができる。 また、 並列接続の 燃料電池または太陽電池を用レ、てもよい。
また、 蓄電素子 2 4.は、 通常のコンデンサゃ電気 2重層コンデンサなどの蓄電 5 素子を用いることができる。
また、 この実施の形態では、 昇圧回路 1 2と蓄電素子 2 4とを異なる構成とし ているが、 蓄電素子 2 4と整流素子 4 4とを昇圧回路 1 2内に組み込んだ形態で 構成することも可能である。
[実施の形態 1 0 ] ― 第 1 4図は、 本発明の実施の形態 1 0にかかる昇圧装置の構成を示すプロック 図である。 同図に示す昇圧装置は、 第 9図に示す実施の形態 5の構成に加え、 燃 料や酸素 (空気) が燃料電池 2 1に供給されたことを検出する燃料等供給検出手 段 2 9と、 リチウム蓄電池 2 3と昇圧回路 1 2との間に接続されて燃料等供給検 出手段 2 9からの起動信号および昇圧回路 1 2からの供給停止信号が入力される5 スイッチング素子 5 1を備えたスイッチング手段 2 7とを備えている。 なお、 そ の他の構成は、 第 9図に示す構成と同一あるいは同等であり、 それらの部分には、 同一符号を付して示している。
つぎに、 第 1 4図を用いて、 この昇圧装置の動作について説明する。 同図にお • . いて、 燃料等供給検出手段 2 9は、 燃料電池 2 1に燃料や酸素 (空気) (以下 「 燃料等」 と称する) が供給されたことを検出し、 起動信号を出力する。 昇圧回路 1 2は、 燃料電池 2 1からの低電圧出力を昇圧した昇圧出力'を生成する。 スイツ チング手段 2 7は、 燃料等供給検出手段 2 9から出力される起動信号と昇圧回路 1 2から出力される供給停止信号とに基づいて、 リチウム蓄電池 2 3から供給さ れる起動エネルギーを昇圧回路 1 2に出力するか否かの制御を行う。 その一方で、5 昇圧回路 1 2の出力を昇圧回路 1 2自身にフィードパックさせることで、 自己の 昇圧動作を継続させることができる。
燃料等供給検出手段 2 9は、 燃料等が燃料電池 2 1に供給されている間、 起動 信号を出力する。 この起動信号は、 燃料等が供給されている間に出力され (起動 信号 「オン」 ) 、 スイッチング手段 2 7'のスイッチング素子 5 1を導通させるよ うに作用する。 一方、 供給停止信号は、 昇圧回路 1 2の昇圧出力自身であり、 昇 圧出力電圧が所定の電圧以上 (供給停止信号 「オン」 ) のときに、 スイッチング 手段 2 7のスィツチング素子 5 1を遮断するように作用し、 逆に、 所定の電圧以 下 (供給停止信号 「オフ」 ) のときにスイッチング素子 5 1を導通させるように 作用する。
また、 これらの起動信号および供給停止信号とスィツチング手段 2 7との関係 は、 つぎのとおりである。 すなわち、 起動信号がオンの状態であり、 かつ、 供'給 停止信号がオフの状態のときには、:スイッチング素子 5 1は導通し、 リチウム蓄 電池 2 3から起動エネルギーが昇圧回路 1 2に供給される。 - 一方、 起動信号がオフの状態であるか、 あるいは、 供給停止信号がオンの状態 であるかのいずれかのときには、 スイッチング素子 5 1は遮断され、 昇圧回路 1 2への起動エネルギ^"の供給はない。 '
このように、 この実施の形態の昇圧装置では、 燃料等が燃料電池に供給される 状態にあり、 力、つ、 昇圧回路 1 2が起動していないときに、 リチウム蓄電池 2 3 から昇圧回路 1 2に対して起動エネルギーを出力するようにしている。 つまり、 昇圧回路 1 2を起動させる必要があるときのみ、 起動エネ ギーを出力するよう に制御することで、 起動エネルギーの効率的な使用を可能としている。
第 1 5図は、 第 1 4図のスィツチング手段 2 7を、 直列接続のスィツチング素 子 5 1 a, 5 1 bで構成した場合のブロック図である。 同図に示すように、 起動 信号をスイッチング素子 5 1 aに接続し、 供給停止信号をスイッチング素子 5 1 bに接続するように構成することで、 第 1 4図のスィツチング手段 2 7の機能を 簡易に実現することができる。
以上説明したように、 この実施の形態の昇圧装置によれば、 第 1の電池からの 低電圧出力が入力された昇圧回路に接続されたスィツチング手段が、 燃料等供給 検出手段から出力される起動信号および昇圧出力自身である供給停止信号に基づ いて、 第 2の電池から供給される起動エネルギーを昇圧回路に出力させるか否か の制御を行うようにしているので、 低電圧出力しか得られない第 1の電池のエネ ルギーを利用して携帯機器などを動作させるための昇圧出力を得ることができる とともに、 特殊な電池を用いることに起因する製造コストの増加を抑制し、 汎用 的な電池の利用によるコスト低減を可能とした昇圧装置を提供することができる。 また、 昇圧回路を起動させる必要があるときのみ起動エネルギーを出力すること ができ、 起動エネルギーの効率的な使用が可能となる。
なお、 この実施の形態の特敷である、 燃料等供給検出手段から出力される起動 信号および昇圧出力自身である供給停止信号に基づいて、 起動エネルギーを昇圧 回路に出力させる力否かの制御を行う構成を、 第 8, 実施の形態 9に適用するこ ともでき、 この実施の形態と同様な効果を得ることができる。
また、 第 2の電池であるリチゥム蓄電池 2 3は、 充電可能な二次電池であり、 起動エネルギーを与えるエネルギー源としての役割を有しているが、 エネルギー を供給できるものであればよく、 例えぱ、 充電ができない乾電池のような一次電 池でもよい。 また、 通常のコンデンサや電気 2重層コンデンサなどの蓄電素子で あってもよい。
[実施の形態 1 1 ]
第 1 6図は、 本発明の実施の形態 1 1にかかる昇圧装置の構成を示すブロック 図である。.同図に示す昇圧装置は、 第 1 4図に示す実施の形態 1 0の構成に加え、 起動エネルギーおよび動作エネルギーのいずれか一つのエネルギーを昇圧回路 1 2に出力するカゝ否かを選択する整流素子 3 6 , 3 7を具備する選択回路 2 5と、 昇圧回路 1 2の出力の全部または一部をリチウム蓄電池 2 3に出力するための整 流素子 3 5とを備えている。 なお、 その他の構成は、 第 1 4図に示す構成と同一 あるいは同等であり、 それらの部分には、 同一符号を付して示している。
つぎに、 第 1 6図を用いて、 この昇圧装置の動作について説明する。 ただし、 燃料等供給検出手段 2 9が起動信号を出力する動作や、 燃料電池 2 1が昇圧回路 1 2に対して低電圧出力を供給する動作については、 実施の形態 1 0と同一であ り、 ここでの説明は省略する。
この実施の形態では、 昇圧回路 1 2の昇圧出力の全部または一部を整流素子 3 5を介してリチウム蓄電池 2 3に出力する。 整流素子 3 5は、 実施の形態 6と同 様に、 リチウム蓄電池 2 3から昇圧回路 1 2側への電流の逆流を防止するために 備えられている。
スイッチング手段 2 7は、 燃料等供給検出手段 2 9から出力される起動信号に 基づいて、 リチウム蓄電池 2 3から供給される起動エネルギーを昇圧回路 1 2に 出力する力否かの制御を行う。 この起動信号は、 燃料等が供給されている間にス イッチング手段 2 7を導通させるための起動信号 ( 「オン」 信号) を出力する このとき、 リチウム蓄電池 2 3からのエネルギーが選択回路 2 5に出力される。 選択回路 2 5は、 実施の形態 7と同様に、 スイッチング手段 2 7から出力され る起動エネルギーと昇圧回路 1 2の昇圧出力である動作エネルギーのうちの優位 な出力を昇圧回路 1 2に出力する。 これらの起動エネルギーまたは動作エネルギ 一が供給された昇圧回路 1 2は、 所定の昇圧出力を生成して出力する。
以上説明したように、 この実施の形態の昇圧装置によれば、 昇圧回路には、 第 1の電池から昇圧対象の低電圧出力が入力され、 選択回路には、 燃料等供給検出 手段から出力される起動信号に基づいて動作するスイッチング手段を介した起動 エネルギーと昇圧回路の出力である動作エネルギーとの双方が入力され、 これら の起動エネルギーまたは動作エネルギーのいずれか一方を昇圧回路に出力するよ うにしているので、 低電圧出力し力得られない第 1の電池のエネルギーを利用し て携帯 ίβなどを動作させるための昇圧出力を得ることができるとともに、 特殊 な電池を用いることに起因する製造コストの増加を抑制し、 汎用的な電池の利用 によるコスト低減を可能とした昇圧装置を提供することができる。 また、 昇圧回 路を起動させる必要があるときのみ起動エネルギーを出力することができ、 起動 エネルギーの効率的な使用が可能となる。
なお、 この実施の形態の特徴である、 燃料等供給検出手段から出力される起動 信号基づいて起動エネルギーを出力させ、 この起動エネルギーまたは動作エネル ギ一のいずれかを昇圧回路に出力させる力否かの制御を行う構成を、 実施の形態 8, 9に適用することもでき、 この実施の形態と同様な効果を得ることができる。 また、 第 2の電池であるリチウム蓄電池 2 3は、 充電可能な二次電池であり、 起動エネルギーを与えるエネルギー源としての役割を有しているが、 エネルギー を供給できるものであればよく、 例えば、 充電ができない乾電池のような一次電 池でもよい。 また、 通常のコンデンサや電気 2重層コンデンサなどの蓄電素子で あってもよい。
[実施の形態 1 2 ]
第 1 7図は、 本発明の実施の形態 1 2にかかる昇圧装置の構成を示すブロック 図である。 同図に示す昇圧装置は、 第 1 7図に示す実施の形態 1 1の構成におい て、 スィツチング手段 2 7に出力する起動信号を燃料電池 2 1に供給する燃料お ょぴ酸素 (空気) の制御をそれぞれ行うための制御バノレブ 4 2, 4 3に付与する 発電要求信号を信号遅延回路 2 8を介して出力するように構成している。 なお、 その他の構成は、 第 1 6図に示す構成と同一あるいは同等であり、 それらの部分 には、 同一符号を付して示している。
つぎに、 第 1 7図を用いて、 この昇圧装置の動作について説明する。 発電要求 信号が制御バルブ 4 2, 4 3に入力されると、. これらの制御バルブ 4 2 , 4 3が 開かれ、 燃料および酸素が燃料電池 2 1に供給される。 また、 この発電要求信号 は信号遅延回路 2 8に入力される。 信号遅延回路 2 8は、 入力された 電要求信 号に対して所定時間だけ遅延させた信号を起動信号としてスィツチング手段 2 7 に出力する。 '
ところで、 燃料や酸素が燃料電池に行き渡るには、 多少の時間が必要となる。 したがって、 スイッチング手段 2 7をオンさせるタイミングを、 燃料や酸素が燃 料電池 2 1に送出されるタイミングょりも所定時間だけ遅延させることで、 燃料 電池 2 1による出力が昇圧回路 1 2に出力されるタイミングと、 起動エネルギー が昇圧回路 1 2に出力されるタイミングと力 同期し、 起動エネルギーの効率的 な使用が可能となる。 また、 信号遅延回路 2 8が遅延させる遅延時間は、 発電要求信号が入力されて から燃料等が燃料電池 2 1の内部に行き渡るまでの時間に設定すればよく、 燃料 電池のシステムに応じた任意の時間に'設定することができる。 なお、 その後の動 作は、 実施の形態 1 1と同様であり、 昇圧回路 1 2によって所定の昇圧出力を得 ることができる。
以上説明したように、 この実施の形態の昇圧装置によれば、 昇圧回路には、 第 1の電池から昇圧対象の低電圧出力が入力され、 選択回路には、 発電要求信号の 遅延出力に基づレ、て動作するスィツチング手段を介した起動エネルギーと昇圧回 路の出力である動作エネルギーとの双方が入力され、 これらの起動エネルギーま たは動作エネルギーのいずれ力、一方を昇圧回路に出力するようにしているので、 低電圧出力し力 4辱られない第 1の電池のエネルギーを利用して携帯機器などを動 作させるための昇圧出力を得ることができるとともに、 特殊な電池を用いること に起因する製造コストの増加を抑制し、 汎用的な電池の利用によるコスト低減を 可能とした昇圧装置を提供することができる。 また、 昇圧回路を起動させる必要 があるときのみ起動エネルギーを出力することができ、 起動エネルギーの効率的 な使用が可能となる。
なお、 この実施の形態の特徴である、 発電要求信号の遅延出力を基づいて起動 エネルギーを出力させ、 この起動エネルギーま'たは動作エネルギーのいずれかを 昇圧回路に出力させるか否かの制御を行う構成を、 実施の形態 8, 9に適用する こともでき、 この実施の形態と同様な効果を得ることができる。
また、 第 2の電池であるリチウム蓄電池 2 3は、 充電可能な二次電池であり、 起動エネルギーを与えるエネルギー源としての役割を有しているが、 エネルギー を供給できるものであればよく、 例えば、 充電ができない乾電池のような一次電 池でもよい。 また、 通常のコンデンサや電気 2重層コンデンサなどの蓄電素子で あってもよレヽ。
[実施の形態 1 3 ]
第 1 8図は、 本発明の実施の形態 1 3にかかる昇圧装置の構成を示すブロック 図である。 同図に示す昇圧装置は、 発電素子 2 0から出力された低電圧出力を昇 圧対象として所定の電圧 (例えば、 接続される負荷が動作可能な電圧) 程度に昇 圧する昇圧回路 1 2と、.昇圧回路 1 2に起動エネルギーを与えるために設けられ た補助昇圧回路 1 3とを備えている。 -なお、 発電素子 2 0は、 単に昇圧対象とな る低電圧出力を昇圧回路 1 2に供給するものであり、 本昇圧装置の構成要件では ない。 ,
第 1 8図において、 発電素子 2 0としては、 例えば、 無負荷時に 0 . 6 V〜 0 . 7 V程度の低電圧を出力する単セルの燃料電池や、 最大で 0 . 5 V強の低電圧を 出力する単結晶シリコン、 多結晶シリコン、 ァモノレファスシリコン、 ィ匕合物半導 体などの組成を有する単セルの太陽電池などが用いられる。
昇圧回路 1 2は、 例えば、 回路構成の容易なスイッチングレギュレート型の回 路で構成され、 自身に備えられるスィツチング素子のオン/オフ制御によってコ ィルに発生させた逆起電力のエネルギーを自身の内部のコンデンサなどの蓄電素 ■ 子に電荷として蓄えることで昇圧出力を得ることができる。
一方、 補助昇圧回路 1 3は、 例えば、 スィッチドキャパシタ型の回路や、 チヤ ージポンプ型の回路で構成される。 補助昇圧回路 1 3の特徴は、 0. 2 V〜0 . 3 V程度の低電圧で起動することができ、 蓄電素子の接続段数にもよるが、 1 . 2 V〜 3 Vの出力電圧を供給することにある。 したがって、 補助昇圧回路 1 3が 供給する起動エネルギーに基づいて昇圧回路 1 2を起動することができる。 なお、 補助昇圧回路 1 3の具体例である、 スィッチドキャパシタ型の回路と、 チャージ ポンプ型の回路の詳細については、 後述する。 ■
つぎに、 第 1 8図を用いて、 この昇圧装置の動作について説明する。 同図にお いて、 発電素子 2 0では、 電気エネルギーが生成される。 この生成された電気工 ネルギ一に基づく出力は、 一般的に低電圧である。 例えば、 燃料電池では、 無負 荷時 (負荷が接続されていないとき) では 0 . 6 V〜0 . 7 V程度であり、 定格 出力時では、 たかだか 0 . 3 V前後である。 また、 太陽電池では、 晴天時でも最 大 0 . 5 V強であり、 曇天時ではたかだか 0 . 3 V前後である。 つまり、 発電素 子 2 0からの出力では、 ノートパソコンや携帯電話などの携帯機器を直接動作さ せるこ.とはできない。
発電素子 2 0からの低電圧出力は昇圧回路 1 2に入力される。 昇圧回路 1 2で は、 図示を省略したコンデンサなどの蓄電素子に昇圧された電気エネルギーが蓄 積される。 一方、 昇圧回路 1 2を動作させるためには、 所定の起動エネルギーが 必要とされる。 補助昇圧回路 1 3は、 昇圧回路 1 2に起動電圧を供給する。 昇圧 回路 1 2は、,起動時には I V程度の起動電圧を必要とするが、 起動電流は少なく てもよいという特徴を有している。 したがって、 この実施の形態の昇圧装置では、 起動時には補助昇圧回路 1 3からの起動電圧にて昇圧回路 1 2を起動し、 起動 ¾ は、 昇圧回路 1 2の動作を継続させるための動作エネルギーとして自身の出力を フィードバックさせつつ、 昇圧出力を得るようにしている。 このような構成にす れば、 昇圧回路を起動するための電力供給手段が不要になるという利点を有する。 昇圧回路の具体的な例を挙げると、 例えば、 一般的なスイッチングレギユレ一 ト型の昇圧回路であれば、 起動時では、 0 . 9 V〜1 . 2 V程度の入力電圧を必 要とするが、 起動後は、 0 . I V程度の小さな入力電圧であっても昇圧回路 1 2 自身の動作を継続させることができる。
なお、 昇圧回路 1 2の出力、 すなわち昇圧出力は、 接続される携帯機器などの 動作電圧に応じて任意の所定電圧に設定することができる。 したがって、 低電圧 出力し力 4辱られない発電素子 2 0のエネルギーを利用して携帯機器などを動作さ せるための所定の昇圧出力を得ることが可能となる。
つぎに、 補助昇圧回路 1 3の具体例として、 スィッチドキャパシタ型の回路や、 チヤ一ジポンプ型の回路の ¾作原理などについて説明する。
第 1 9図は、 スィッチドキャパシタ型の動作原理を説明するための原理図であ る。 同図において、 V d dは直流電圧であり、 第 1 8図に示す発電素子 2 0が出 力する低電圧出力に相当する。 また、 S Wu SW や、 SW2 1〜SW2 8は、 M O S F E Tなどのスイッチング素子であり、 図示しなレ、制御回路などによって オンの状態、 あるいはオフの状態のいずれかに制御される。 コ 5は電荷を蓄積するための蓄電素子であり、 特に、 コンデンサ C15は昇圧回 路 12を起動するための起動エネルギー (補助昇圧回路出力) を蓄積する蓄電素 子である。
つぎに、 第 19図を用いて、 このスィッチドキャパシタ型回路の動作について 説明する。 まず、 同図の上段に示す状態では、 SW21〜SW28のすべてがオン (閉) の状態にあり、 SWu SW のすべてがオフ (開) の状態にある。 こ のとき、 直流電圧 V d dから見るとコンデンサ C i i C i 5が並列に接続された状 態にあり、 コンデンサ Cu C は、 略 Vddの電圧まで充電 (電荷が蓄積) さ れる。
この状態から、 同図の下段に示すように、 sw21〜sw28のすベてをオフの 状態にし、 SWu SW のすベてをオンの状態に設定すれば、 直流電圧 vdd 力 ^見てコンデンサ。 〜じ"が直列に接続された状態となる。 このとき、 コ ンデンサ C 14の上端の電位は 5 V d dとなっているので、 コンデンサ C! 5の両端 に 5Vddの電圧 (補助昇圧回路出力) を発生させることができる。 なお、 接続 段数を増やせば、 出力電圧をさらに増加させるこ.ともできる。 一方、 これらの一 往復のスィッチング動作では、 昇圧回路 12を動作させるための電流容量を確保 することができないので、 これらのスイッチング動作を繰り返し行うことで、 所 定の電流容量を確保することができる。
また、 第 20図は、 チャージポンプ型の回路構成および動作原理を説明するた めの図である。 同図において、 Vddは直流電圧であり、 第 18図に示す発電素 子 20が出力する低電圧出力に相当する。 また、 SW31〜SW35や、 SW41〜 SW48は、 M〇S FETなどのスイッチング素子であり、 図示しない制御回路 などによってオンの状態、 あるいはオフの状態のいずれかに制御される。 コンデ ンサ CU C は電荷を蓄積するための蓄電素子であり、 特に、 コンデンサじェ 5は昇圧回路 12を起動するための起動エネルギー (補助昇圧回路出力) 'を蓄積 する蓄電素子である。 このように、 チャージポンプ型の回路も、 スィッチドキヤ パシタ型の回路と同様に、 コンデンサとスィツチング素子だけで構成することが できる。
つぎに、 第 20図を用いて、 このチャージポンプ型の回路の動作について説明 する。 まず、 同図の上段に示す状態では、 SW31, SW33, SW35がオンの状 態にあり、 SW32, SW34がオフの状態にある。 また、 SW41, SW44, SW 45, SW48がオンの状態にあり、 SW42, SW43, SW46) SW47がオフの状 態にある。 このとき、 コンデンサ C 3 iは略 Vddの電圧まで充電 (電荷が蓄積) され、 コンデンサ C31の上端の電位 は略 vddとなる。 また、 これ以後の動作 で明らかになるが、 コンデンサ C32, C33, C34は、 それぞれが、 略 2Vdd, 3 Vdd, '4 Vddの電圧まで充電されているので、 コンデンサ C32, C 33, C34 の各上端の電位 V2, V3, V4, V5は、 図示のように、 それぞれ、 略 3Vdd, 3Vdd, 5Vdd, 5Vddとなる。
この状態から、 上記のスイッチング素子のすべての状態を反転すれば、 同図の 中段に示すような状態になる。 このとき、 コンデンサ C31の上端の電位 は、 SW42がオンの状態にあるとともに、 SW32, SW43もオンの状態なので、 コ ンデンサ C32は略 2 Vddの電圧まで充電され、 コンデンサ C32の上端の電位 V 2は略 2Vddとなる。 すなわち、 第 20図に示す上段の状態から中段の状態への 遷移によって、. 1段目 (コンデンサ C31) かち 2段目 (コンデンサ C32) へと 電荷が転送されたことになる。 この関係は、 3段目 (コンデンサ' C33) と 4段 目 (コンデンサ C34) との間でも同様である。
この状態から、 上記のスイッチング素子のすべての状態を反転 (つまり、 上段 の状態と同じスィッチ状態) する'と、 同図の下段に示すような状態になる。 この 状態では、 発電素子 (Vdd) から 1段目、 2段目 (コンデンサ C32) と 3段目 (コンデンサ C33) との間、 および 4段目 (コンデンサ C34) と 5段目 (コン デンサ C35) との間で電荷が転送される。 第 20図に示すチャージポンプ型の 回路は、 このようなバケツリレー式の電荷転送を交互に繰り返すことで、 スィッ チドキャパシタ型の回路と同様に、 所定の電圧、 および所定の電流容量を確保す るようにしている。 ところで、 補助昇圧回路 1 3として用いられるスィッチドキャパシタ型の回路 や、 チャージポンプ型の回路は、 昇圧回路 1 2として用いられるスイッチングレ ギュレート型の回路などに比べて、 昇圧能力や、 昇圧効率も低い。
レギュレート型の回路を高効率大電力型の昇圧回路とすれば、
シタ型の回路や、 チャージポンプ型の回路は、 低効率小電力型の昇圧回路である。 しかしながら、 スィッチドキャパシタ型の回路や、 チャージポンプ型の回路は、 コンデンサと、 MO S F E Tなどのスィツチング素子だけで構成することができ る。 また、 M〇 S F E Tなどのスイッチング素子は、 0 . 2 V〜0 . 3 V程度の 僅かな電圧でスイッチング動作させることができる。 一方、 スイッチングレギュ レート型の回路は、 起動時には 0 . 9 V以上の起動電圧が必要であるが、 起動電 流はあまり必要ではない。 したがって、 スイッチングレギュレート型の回路の起 動にスィツチドキャパシタ型の回路や、 チャージポンプ型の回路を用いるように すれば、 两者の特徴を効果的に活用することができる。
すなわち、 低効率小電力型の昇圧回路は、 発電電圧をあまり大きくできない発 電素子と、 起動電流は小さくてよいものめ所定の起動電圧を必要とする高効率大 電力型の昇圧回路との間に介在して、 両者の欠点を相補う役目を果たすように動 作させることができる。
以上説明したように、 この実施の形態の昇圧装置によれば、 昇圧回路 1 2には、 自己の起動に必要な起動エネルギーである補助昇圧回路出力が入力され、 あるい は自己の動作の継続に必要な動作エネルギーが自身からフィードバックされ、 昇 圧対象として供給された低電圧出力に基づいて昇圧出力を生成するようにしてい るので、 発電素子以外の電力供給手段からの起動エネルギーに依存することなく 昇圧回路を起動することができる。
[実施の形態 1 4 ]
第 2 1図は、 本発明の実施の形態 1 4にかかる昇圧装置の構成を示すプロック 図である。 同図に示す昇圧装置は、 発電素子の発電エネルギーを効率的に利用す るための構成である。 同図の構成では、 前述の実施の形態 1 3における第 1 8図 の構成に補助昇圧回路 1 3の起動を停止するか否かを判断するための制御信号を 昇圧回路 1 2から補助昇圧回路 1 3に対して出力するようにしている。
つぎに、 第 2 1図を用いて、 この昇圧装置の動作について説明する。 ただし、 昇圧回路 1 2力 補助昇圧回路 1 3からの起動エネルギー、 または自身の出力の 一部をフィ一ドバックした動作エネルギーのいずれかを用いて昇圧動作を行う点 は、 第 1の実施の形態と同一であり、 ここでの説明は省略する。
この実施の形態の昇圧装置は、 昇圧回路 1 2の起動後に補助昇圧回路 1 3から 昇圧回路 1 2に出力されている動作エネルギーの供給を停止するため、 昇圧回路 1 2から補助昇圧回路 1 3に対して制御信号を出力するようにしている。 この制 御信号としては、 昇圧回路 1 2から出力される昇圧出力自身を用いることができ る。 このとき、 動作エネルギーの供給を停止するか否かの判定は、 昇圧出力のレ ベルに基づいて行えばよい。 例えば、 昇圧出力のレベルが所定値を超えていれば、 動作エネルギーの供給を停止し、 一方、 昇圧出力のレベルが所定値未満であれば、 動作エネルギーの供給を継続するように制御すればよレヽ。 また、 補助昇圧回路 1 3の内部の動作 Z非動作の制御は、 当該制御信号を受けて、 スィッチドキャパシ タ回路をスィツチングする発振回路を停止するようにすればよレ、。
以上説明したように、 この実施の形態の昇圧装置によれば、 昇圧回路は、 昇圧 出力に基づいて補助昇圧回路の起動を制御するようにしそいるので、 昇圧回路の 起動後は発電素子の発電エネルギーのすべてを発電に振り向けることができるの で、 発電エネルギーの効率的な利用を促進することができる。
[実施の形態 1 5 ]
第 2 2図は、 本発明の実施の形態 1 5にかかる昇圧装置の構成を示すブロック 図である。 同図に示す昇圧装置では、 昇圧回路 1 2の出力段に直列に接続される '出力制御回路 1 6 aを付加した昇圧装置の構成を示すものである。 なお、 その他 の構成については、 実施の形態 1 4の構成と同一、 あるいは同等であり、 これら の部分については、 第 2 1図に示す各回路と、 同一の符号を付して示している。 つぎに、 第 2 2図を用いて、 この昇圧装置の動作について説明する。 ただし、 昇圧回路 1 2が、 補助昇圧回路 1 3からの起動エネルギー、 または自身の出力の 一部をフィ一ドバックした動作エネルギーのいずれかを用いて昇圧動作を行う点 は、 実施の形態 1, 2と同一であり、 ここでの説明は省略する。
第 2 2図において、 昇圧回路 1 2で昇圧された昇圧出力は、 出力制御回路 1 6 aによって、 例えば、 定電圧出力として出力され、 図示しない負荷に安定した定 電圧出力が供給される。 また、 実施の形態 1 4と同様に、 所定の昇圧出力が出力 されているときは、 昇圧回路 1 2からの制御信号 (起動停止制御信号) に基づい て補助昇圧回路 1 3からの起動エネルギーの出力が停止する。
なお、 発電素子 2 0が太陽電池などのエネルギー源であれば、 出力制御回路 1 6 aの出力を定電流出力とし、 このエネルギーを蓄積するための二次電池を出力 制御回路 1 6 aに直接接続してもよい。 また、 出力制御回路 1 6 aと二次電池と の間に整流素子を介して接続してもよい。 このような構成にすれば、 二次電池か ら出力制御回路 1 6 aへの電流の逆流を防止することができるので、 二次電池の 不要な放電を防ぐことができる。
第 2 3図は、 出力制御回路 1 6 aの一例として定電圧素子 (ツエナーダイォー ド) を用いた場合の構成を示す図であり、 第 2 4図は、 出力制御回路 1 6の一例 として定電圧素子 6 1 (ツエナーダイオード) および定電流素子 6 2を用いた場 合の構成を示す図である。 これらの図に示すように、 定電圧出力、 あるいは定電 流出力を簡易に構成することができるので、 出力制御機能を有する昇圧装置を口 一コストで、 かつコンパクトに実現することができる。 また、 出力制御回路 1 6 の他の構成として、 3端子シリーズレギユレータなども用いることができる。 こ の場合には、 出力電圧の安定度を高めることができる。
以上説明したように、 この実施の形態の昇圧装置によれば、 定電圧や定電流の ための出力制御を行うようにしているので、 実施の形態 1 , 2の効果に加え、 負 荷に対して安定した出力を供給することができる。
[実施の形態 1 6 ]
第 2 5図は、 本発明の実施の形態 1 6にかかる昇圧装置の構成を示すプロック 図である。 同図に示す昇圧装置では、 昇圧回路 1 2と並列に接続された出力制御 回路 1 6 bを付カ卩した昇圧装置の構成を示すものである。 なお、 その他の構成に ついては、 実施の形態 1 4の構成と同一、 あるいは同等であり、 これらの部分に ついては、 第 2 1図に示す各回路と、 同一の符号を付して示している。
つぎに、 第 2 5図を用いて、 この昇圧装置の動作について説明する。 ただし、 昇圧回路 1 2が、 補助昇圧回路 1 3からの起動エネルギー、 または自身の出力の 一部をフィードバックした動作エネルギーのいずれかを用いて昇圧動作を行う点 や、 所定の昇圧出力が出力されているときに、 昇圧回路 1 2からの制御信号に基 づいて補助昇圧回路 1 3からの起動エネルギーの出力が停止する点については—実 施の形態 1 5と同一であり、 ここでの説明は省略する。
第 2 5図において、 昇圧回路 1 2で昇圧された昇圧出力は、 出力制御回路 1 6 bによってフィードバック制御され、 定電圧可変出力として出力される。 すなわ ち、 この実施の形態の昇圧装置は、 出力制御回路 1 6 bの制御にて昇圧回路 1 2 の出力を所定の定電圧に維持するとともに、 その出力電圧を負荷容量に応じて可 変する機能を有している。 この定電圧可変出力機能は、 例えば、 昇圧回路 1 2を スイッチング型の回路で構.成し、 出力制御回路 1 6 bから昇圧回路 1 2に対して P WM制御や、 P F M制御などの制御を行うことで実現することができる。
第 2 6図は、 出力制御回路 1 6 bの構成例の一例を示す図である。 同図に示す 出力制御回路 1 6 bは、 時比率変調回路 6 4、 発振回路 6 5および比較回路 6 6 を備えており、 つぎのように動作する。 出力制御回路 1 6 bにおいて、'比較回路 6 6では、 昇圧回路 1 2の出力と所定の基準電圧値 6 7とが比較され、 当該出力 間の差分出力電圧が時比率変調回路 6 に出力される。 時比率変調回路 6 4では、 例えば、 発振回路 6 5から出力される三角波に対して比較回路 6 6から出力され る差分出力電圧に基づいて PWM制御信号などが生成され、 昇圧回路 1 2に出力 される。 なお、 この実施の形態の回路構成では、 上述したように、 昇圧回路 1 2 の昇圧出力が出力制御回路 1, 6 bによってフィードバック制御されるように構成 されているので、 出力電圧が安定化される。 また、 基準電圧値 6 7に基づいて出 力電圧を可変する構成としているので、 定電圧の可変出力を得ることができる。 以上説明したように、 この実施の形態の昇圧装置によれば、 昇圧回路 1 2の昇 圧出力を出力制御回路 1 6 bにてフィードバック制御するとともに、 基準電圧に 基づいて出力電圧を可変するようにしているので、 実施の形態 1〜 3の効果に加 え、 負荷容量に応じ、 可変の、 かつ安定した出力を供給することができる。
[実施の形態 1 7 ]
第 2 7図は、 本発明の実施の形態 1 7にかかる昇圧装置の構成を示すブロック 図である。 同図に示す昇圧装置は、 第 2 2図に示す実施の形態 1 5の昇圧回路に おいて、 出力制御回路 1 6から昇圧回路 1 2に制御信号を送信し、 昇圧能力を可 変とすることで、 制御目標を達成する構成を示すものである。 なお、 その他の構 成については、 実施の形態 1 5の構成と同一、 あるいは同等であり、 これらの部 分については、 第 2 2図に示す各回路と、 同一の符号を付して示している。
つぎに、 第 2 7図を用いて、 この昇圧装置の動作について説明する。 同図にお いて、 昇圧回路 1 2は、 前述のように起動時に捕助昇圧回路 1 3から起動エネル ギーを受けて起動する。 この時点では、 昇圧出力が発生していないか、 出力制御 回路 1 6の最低動作電圧に達していない。 したがって、 この時点では、'出力制御. 回路 1 6からの制御信号は存在しないか、 あるいは、 不定な制御信号が存在する。 このため、 起動し始めた昇圧回路 1 2が不本意な制御信号状態により停止して、 正常な動作が行われないおそれがある。 この問題を解決するには、 以下の特徴を 有する回路構成にする必要がある。
( 1 ) 起動時に出力制御回路 1 6 aから昇圧回路 1 2に対して不定な制御出 力を与えないこと。
( 2 ) 起動時に出力制御回路 1 6 aの制御信号出力端子はハイインピーダン スであること。
出力制御回路 1 6 aが不定な制御信号を出力しないようにするためには、 制御 信号出力段にパイポーラトランジスタなどの電流駆動素子を用いることが有効で ある。 当該素子を用いれば、 当該素子をオンするのに所定の電流が必要であり、 昇圧回路 1 2の起動時、 あるいは起動直後では、 当該素子が誤って駆動されるの を防止することができる。 また、 出力端子をハイインピーダンスにすることで、 昇圧回路 1 2から出力制御回路 1 6 aの制御出力端子に電流が流れ、 昇圧回路の 起動特性が劣化するのを防止することができる。 したがって、 出力制御回路 1 6 aの制御信号出力段には、 オープンコレクタゃゲ一ト ·ソース問に抵抗を並列接 続して電流駆動型にしたオープンドレイン構成をとるのが有効である。
以上説明したように、 この実施の形態の昇圧装置によれば、 昇圧回路は、 出力 制御回路の制御出力に基づいて昇圧能力を制御するようにしているので、 起動直 後などの不安定な状態において、 起動し始めた昇圧回路に対して出力制御回路か ら不本意な制御が行われるのを防止することができる。
[実施の形態 1 8 ]
第 2 8図は、 本発明の実施の形態 1 8にかかる昇圧装置の構成を示すブロック 図である。 同図に示す昇圧装置は、 第 1 8図に示す実施の形態 1 3において、 昇 圧回路 1 2の出力 一部を次回以降の起動の際に利用されるエネルギーとして蓄 積するための蓄電素子 5 8と、 蓄電素子 5 8の出力が負荷側に流れないようにす る逆流防止用の整流素子 6 8とを備え、 起動エネルギーの出力元を補助昇圧回路 1 3または蓄電素子 5 8のいずれかを選択するための整流素子 7 2, 7 3を具備 する選択回路 7 0を備えている。 なお、 その他の構成は、 第 1 8図に示す構成と 同一あるいは同等であり、 それらの部分には、 同一符号を付して示している。 つぎに、 第 2 8図を用いて、 この昇圧装置の動作について説明する。 ただし、 昇圧回路 1 2が、 起動後に自身の出力の一部をフィ一ドバックした動作エネルギ 一を用いて昇圧動作を行う点は、 上述の他の実施の形態と同一であり、 ここでの 説明は省略する。
第 2 8図において、 昇圧回路 1 2は、 補助昇圧回路 1 3からの起動エネルギー、 または蓄電素子 5 8からの起動エネルギーのいずれかを受けて起動する。 整流素 子 7 2 , 7 3を具備する選択回路 7 0では、 補助昇圧回路 1 3の出力電圧、 また は蓄電素子 5 8の出力電圧のいずれか高い方の出力が選択されて、 昇圧回路 1 2 に出力される。 昇圧回路 1 2は、 起動後、 所定の昇圧出力を図示しない負荷など に供給する。 また、 蓄電素子 5 8には、 昇圧出力の一部が整流素子 2 4を介して 昇圧回路 1 2を再起動させるためのエネルギーとして蓄電される。
上述の他の実施の形態の昇圧装置では、 昇圧回路 1 2に発電素子 2 0から所定 の出力 (発電エネルギー) が供給されない場合には、 昇圧回路 1 2の動作が不安 定になり、 昇圧回路 1 2を停止させる必要がある。 一方、 昇圧回路 1 2の停止後、 昇圧回路 1 2を再起動させる めには、 新たな起動エネルギーが必要となる。 こ のとき、 昇圧回路 1 2の出力の全部または一部を自己を再起動させるためのエネ ルギ一として蓄電素子 5 8に蓄電しておけば、 昇圧回路' 1 2を再起動させる場合 に、 補助昇庄回路 1 3カゝらの起動エネルギーではなく、 蓄電素子 5 8からの起動 エネルギーを用いることができる。 蓄電素子 5 8からの起動エネルギーを用いて 昇圧回路 1 2を再起動することができれば、 捕助昇圧回路 1 3を用いる場合に比 ベて、 昇圧回路 1 2の起動時間を短縮させることができるのとともに、 昇圧回路 1 2を確実に起動することができる。 なお、 昇圧回路 1 2から所定の昇圧出力が 出力されているときは、 実施の形態 1 4と同様に、 昇圧回路 1 2の制御信号に基 づいて補助昇圧回路 1 3および蓄電素子 5 8からの起動エネルギーの出力を停止 すればよい。
以上説明したように、 この実施の形態の昇圧装置によれば、 蓄電素子 (電力蓄 積手段) には、 自己の動作を再開させるための起動エネルギーとして昇圧出力の 全部または一部が蓄積され、 補助昇圧回路から出力される起動エネルギーである 第 1の起動エネルギーまたは蓄電素子から出力される起動エネルギーである第 2 の起動エネルギーのいずれか一方を昇圧回路に出力するようにしているので、 昇 圧回路の起動を確実に行うことができる。
なお、 この実施の形態では、 再起動のための起動エネルギーを蓄電するための 素子として蓄電素子を用いているが、 二次電池などを用いてもよい。 二次電池を 用いれば、 昇圧回路の起動をさらに確実に行うことができる。
[実施の形態 1 9 ] 第 2 9図は、 本発明の実施の形態 1 9にかかる昇圧装置の構成を示すブロック 図である。 同図に示す昇圧装置では、 昇圧回路 1 2に出力する補助昇圧回路出力 の出力値 (電圧) に基づいて昇圧回路 1 2に出力するタイミングを制御する電圧 判定部 8 2 aおよびスィツチング部 8 3 aを付加した昇圧装置の構成を示すもの である。 なお、 その他の構成については、 実施の形態 1 3の構成と同一あるいは 同等であり、 これらの部分にっレ、ては同一の符号を付して示している。
つぎに、 第 2 9図を用いて、 この昇圧装置の動作について説明する。 ただし、 昇圧回路 1 2が、 補助昇圧回路 1 3の補助昇圧回路出力である起動エネルギー、 または自身の出力の一部がフィードバックした動作エネルギーのいずれかを用い て昇圧動作を行う点は、 他の実施の形態と同一であり、 ここでの説明は省略する。 第 2 9図において、 補助昇圧回路 1 3からの出力 (補助昇圧回路出力) は、 電 圧判定部 8 2 aのコンデンサ 8 6に蓄積され、 当該蓄積された電圧が比較回路 8 4.にてツエナーダイオードなどの定電圧素子 8 5が発生する基準電圧値 (V 0) と比較される。 このとき、 コンデンサ 8 6の蓄積電圧が基準電圧値 (V。) を超 えているときは、 スイッチング部 8 3 aに具備される MO S F E T 8 7などのス イッチング素子が導通して補助昇圧回路出力 (起動エネルギー) が昇圧回路 1 2 に対して出力される。 一方、 コンデンサ 8 6の蓄積電圧が基準電圧値 (V。) を 超えていないときは、 スイッチング部 8 3 aのスイッチング素子が導通せず、 昇 圧回路 1 2に対する補助昇圧回路出力の供給が保留される。 なお、 コンデンサ 8 6と定電圧素子 8 5とによって決定される基準電圧値 (V。) は、 例えば、 第 1 9図に示したスィツチドキャパシタ型の回路や、 第 2◦図に示したチャージボン プ型の回路の最終段のコンデンサに蓄積されたエネルギーが昇圧回路 1 2を起動 させることができる所定のエネルギー量に達したときに、 MO S F E T 8 7など のスィツチング素子がターンオンするような最適値に調整すればよい。
発電素子 2 0の発電量が少ない場合、 補助昇圧回路 1 3から出力される出力電 流が昇圧回路 1 2の起動に必要な電流値を下回ることがある。 実施の形態 1〜 5 までの昇圧装置による回路構成では、 昇圧回路 1 2を起動するための電流 (起動 電流) が不足する場合には、 起動をかけた直後の補助昇圧回路 1 3の出力電圧が 瞬時に低下して、 昇圧回路 1 2を起動できない場合が生じる可能性がある。
しかしながら、 この実施の形態の昇圧装置では、 コンデンサ 8 6 (キャパシタ ンス C x) に蓄積されるエネルギー量- E = (C XV 2) Z 2が昇圧回路 1 2を起動 可能にするエネルギー量に達したときに、 補助昇圧回路 1 3の出力が昇圧回路 1 2に供給されるように基準電圧値 (V 0) を設定するようにしている。 したがつ て、 発電素子 2 0の発電量が微弱な場合であっても、 コンデンサへの蓄積時間は 長くなるものの、 時間の経過とともに充分な起動エネルギーが蓄積され、 昇圧回 路 1 2の起動を確実に行うことができる。
発電素子 2 0が太陽電池であれば、 より低照度から昇圧出力を得ることができ、 特に、 屋外設置した太陽電池では、 日の出から徐々に照度が増してくるので、 昇 圧装置が自動的に起動し、 長時間にわたって昇圧出力を得ることができる。
以上説明したように、 この実施の形態の昇圧装置によれば、 電圧判定部には、 補助昇圧回路出力を所定の基準電圧と比較するコンパレータが備えられ、 コンパ レータの比較結果に基づいてスイッチング部に具備されるスイッチング素子が制 御されるように構成されているので、 発電素子の発電状態に依存することなく昇 圧装置の起動を確実に行うことができる。
また、 この実施の形態の昇圧装置では、 第 1 8図に示す実施の形態 1 3の昇圧 装置において、 補助昇圧回路と昇圧回路との間に電圧判定部 8 2 aと、 スィツチ ング部 8. 3 aとを備える構成としているが、 これと同等の構成を実施の形態 1 4 〜 5の昇圧装置に対しても適用することができ、 この実施の形態の昇圧装置と同 様な効果が得られる。 '
[実施の形態 2 0 ] .
第 3 0図は、 本発明の実施の形態 2 0にかかる昇圧装置の構成を示すプロック 図である。 同図に示す昇圧装置は、 第 2 9図に示す電圧判定部 8 2 aおよぴスィ ツチング部 8 3 aのそれぞれに替えて同等の機能を有する電圧判定部 8 2 bおよ ぴスィツチング部 8 3 bを備えるように構成している。 なお、 その他の構成につ いては、 実施の形態 1 9の構成と同一あるいは同等であり、 これらの部分につい ては同一の符号を付して示している。
つぎに、 第 3 0図を用いて この昇圧装置の動作について説明する。 なお、 基 本的な動作は、 実施の形態 1 9と同一であり、 それらの部分の詳細な説明は省略 する。
第 3 0図において、 電圧判定部 8 2 bは、 抵抗や、 コンデンサ 5 0や、 ダーリ ントン接続されたトランジスタ 9 1, 9 2などを備えており、 補助昇圧回路 1 3 内の最終段の'コンデンサ 9 0に蓄積された蓄積電圧が、 ダーリントン接続のトラ ンジスタ 9 1 , 9 2の¥ 13 11 1 - 2 V) を超えると、 スイッチング部 8 3 b のスィツチング素子 9 3が導通して昇圧回路 1 2に起動エネルギーが供給される。 なお、 電圧判定部 8 2 bでは、 ダーリントン接続されたトランジスタ 9 1, 9 2 を用いているが、 この接続に限定されるものではなく、 抵抗と整流素子などを組 み合わせ、 整流素子に発生する電圧降下を利用するような構成としてもよい。 なお、 この実施の形態の昇圧装置においても、 電圧判定部 8 2 bおよぴスイツ チング部 8 3 bの抵抗値を所定の値に設定することで、 実施の形態' 1 9の昇圧装 置と同様にコンデンサ 9 0 (容量を C。とす ¾) に蓄積されるエネルギー量 E = (C。V 2) / 2が昇圧回路 1 2を起動可能にするエネルギー量に達したときに、 補助昇圧回路 1 3の出力が昇圧回路 1 2に供給されるように動作させることがで き、 発電素子 2 0の発電量が微弱な場合であっても、 昇圧回路 1 2の起動を確実 に行うことができる。 なお、 この実施の形態の昇圧装置も、 実施の形態 1 9の昇 圧装置と同等の効果が得られるが、 実施の形態 1 9の電圧判定部 8 2 aのように コンパレータを必要としないので、 消費電力が削滅でき、 蓄電素子へのエネルギ 一蓄積効率が改善されるとともに、 コス十が下げられるという利点が生じる。 以上説明したように、 この実施の形態の昇圧装置によれば、 電圧判定部には、 補助昇圧回路出力が所定の電圧に達したときに導通するダーリントン接続された トランジスタが備えられ、 補助昇圧回路出力と、 ダーリントン接続されたトラン ジスタのベースーェミッタ間に発生する降下電圧とに基づいて、 スィツチング部 に具備されるスィッチング素子が制御されるように構成されているので、 発電素 子の発電状態に依存することなく昇圧装置の起動を確実に行うことができる。 また、 この実施の形態の昇圧装置では、 第 1 8図に示す実施の形態 1 3の昇圧 装置において、 補助昇圧回路と昇圧回路との間に電圧判定部 8 2 bと、 スィッチ ング部 8 3 bとを備える構成としているが、 これと同等の構成を実施の形態 1 4 〜1 7の昇圧装置に対しても適用することができ、 この実施の形鶴の昇圧装置と 同様な効果が得られる。 産業上の利用可能性 ' 以上のように、 本発明にかかる昇圧装置は、 携帯機器用電源に用いられる昇圧 装置として有用であり、 特に、 エネルギー源として燃料電池出力や、 太陽電池出 力を利用する場合に適している。

Claims

請 求 の 範 囲
1 . 自己の起動に必要な起動エネルギーおよび自己の動作の ,摧続に必要な動作 エネルギーが供給され、 昇圧対象の入力電圧を昇圧した昇圧出力を生成する昇圧 回路と、
前記起動エネルギーおよび前記動作エネルギーを前記昇圧回路に供給する電力 供給手段と、
を備えたことを特徴とする昇圧装置。
2 . 自己の起動に必要な起動エネルギーまたは自己の動作の継続に必要な動作 エネルギーのいずれか一方が供給され、 昇圧対象の入力電圧を畀圧した昇圧出力 を生成する昇圧回路と、
前記起動エネルギーを供給する電力供給手段と、
前記起動エネルギーまたは前記動作エネルギーのいずれか一方を前記昇庄回路 に出力する選択回路と、
を備え、
前記昇圧回路は、 前記昇圧出力の全部または一部を前記動作エネルギーとして 前記選択回路に出力することを特徴とする昇圧装置。
3 . 前記選択回路は、
前記電力供給手段と前記昇圧回路との間に順接続された整流素子と、 前記昇圧出力の全部または一部が該昇圧回路自身にフィードバックされる方向 に順接続された整流素子と、 ' .
を有することを特徴とする請求の範囲第 2項に記載の昇圧装置。
4 . 前記昇圧回路の後段に設けられ、 該昇圧回路により得られた昇圧出力に対 して出力制御を行う出力制御回路をさらに備えたことを特徴とする請求の範囲第 2項に記載の昇圧装置。
5 . 前記昇圧回路は、 ,
前記出力制御回路の制御出力に基づいて昇圧能力を制御する手段を有すること 5 を特徴とする請求の範囲第 4項に記載の昇圧装置。
6 . 自己の起動に必要な起動エネルギーおよび自己の動作の継続に必要な動作 エネルギーが供給され、 昇圧対象の入力電圧を昇圧した昇圧出力を生成する昇圧 回路と、
0 前記起動エネルギーを前記昇圧回路に供給する電力供給手段と、
を備え、 ' 前記昇圧回路は、 前記昇圧出力の全部または一部を前記動作エネルギーとして , 自己にフィードバックすることを特徴とする昇圧装置。 5
7 . 前記昇圧回路は、 自己の出力端と前記電力供給手段との間に電気的伝達経 路を有することを特徴とする請求の範囲第 6項に記載の昇圧装置。
8 . 前記昇圧回路の出力端と前記電力供給手段との間に整流素子が順接続され ' ることを特徴とする請求の範囲第 7項に記載の昇圧装置。
0
9 . 自己の起動に必要な起動エネルギーまたは自己の動作の継続に必要な動作 エネルギーのいずれか一方が供給され、 昇圧対象の入力電圧を昇圧した昇圧出力 を生成する昇圧回路と、
前記起動エネルギーを供給する電力供給手段と、
5 前記起動エネルギーまたは前記動作エネルギーのレ、ずれか一方を前記昇圧回路 に出力する選択回路と、
を備え、 前記昇圧回路は、 前記昇圧出力の全部または一部を前記選択回路おょぴ前記電 力供給手段に出力することを特徴とする昇圧装置。
1 0 . 前記昇圧回路と前記電力供給手段との間に整流素子が順接続されること を特徴とする請求の範囲第 9項に記載の昇圧装置。
1 1 . 前記選択回路は、
前記電力供給手段と前記昇圧回路との間に順接続された整流素子と、 前記昇圧出力が前記昇圧回路自身にフィードバックされる方向に順接続された 整流素子と、
を備えたことを特徴とする請求の範囲第 1· 0項に記載の昇圧装置。
1 2 . 自己の起動に必要な起動エネルギーおよび自己の動作の継続に必要な動 作エネルギーが供給され、 昇圧対象の入力電圧を昇圧した昇圧出力を生成して出 力する昇圧回路と、
前記昇圧出力を蓄電して定電圧出力を生成するとともに、 該定電圧出力を前記 起動エネルギーおよび前記動作エネルギーとして前記昇圧回路にフィードバック する蓄電素子と、
を備えたことを特徴とする昇圧装置。
1 3 . 自己の起動に必要な起動エネ^/ギーまたは自己の動作の継続に必要な動 作エネルギーのいずれか一方が供給され、 昇圧対象の入力電圧を昇圧した昇圧出 力を生成する昇圧回路と、 ■
前記昇圧回路と自己との間に順接続された整流素子を介して入力された前記昇 圧出力を蓄電して定電圧出力を生成するとともに、 前記起動エネルギーを出力す る蓄電素子と、
前記起動エネルギーおよぴ前記動作エネルギーのいずれか一方を前記昇圧回路 に出力する選択回路と、
を備えたことを特徴とする昇圧装置。
1 4 . 前記選択回路は、 ·
前記蓄電素子と前記昇圧回路との間に順接続された整流素子と、
前記昇圧出力が前記昇圧回路自身にフィードバックされる方向に順接続された 整流素子と、
を備^たことを特徴とする請求の範囲第 1 3項に記載の昇圧装置。
1 5 . 自己の起動に必要な起動エネルギーおよび自己の動作の継続に必要な動 作エネルギーが供給され、 昇圧対象の入力電圧を昇圧した昇圧出力を生成する昇 圧回路と、
前記起動エネノレギーを供給する電力供給手段と、
• 前記起動エネルギーの出力制御を行うスィツチング手段と、
を備え、
前記昇圧回路は、 前記昇圧出力の全部または一部を前記動作エネルギーとして 自己にフィードバックするとともに、 該昇圧出力を前記起動エネルギーの供給停 止信号として前記スィツチング手段に出力し、
前記スィツチング手段は、 前記昇圧対象として入力される低電圧出力の発電制 御に基づく起動信号および前記供給停止信号に基づいて前記起動エネルギーを前 記昇圧回路に出力させるか否かの制御を行うことを特徴とする昇圧装置。
1 6 . 前記スィツチング手段は、
前記起動信号が入力される第 1のスィツチング素子と、
前記供給停止信号が入力され、 前記第 1のスィツチング素子に直列に接続され た第 2のスイッチング素子と、
を備え、 前記起動信号がオンのときに前記第 1のスィツチング素子を導通させ、 オフの ときに該第 1のスィッチング素子を遮断し、
前記供給停止信号がオンのときに前記第 2のスィツチング素子を遮断し、 オフ のときに該第 1のスィツチング素子を導通させることを特徴とする請求の範囲第 1 5項に記載の昇圧装置。
1 7 . 自己の起動に必要な起動エネルギーまたは自己の動作の継続に必要な動 作エネルギーのいずれか一方が供給され、 昇圧対象の入力電圧を昇圧した昇圧出 力を生成する昇圧回路と、 ' 前記起動エネルギーを供給する電力供給手段と、
前記起動エネルギーの出力制御を行うスィツチング手段と、
前記起動エネルギーおよぴ前記動作エネルギーのいずれか一方を前記昇圧回路 に出力する選択回路と、
を備え、
前記昇圧回路は、 前記昇圧出力の全部または一部を前記選択回路および前記電 力供給手段に出力し、
前記スィツチング手段は、 前記昇圧刘-象として入力される低電圧出力の発電制 御に基づく起動信号に基づいて前記起動エネルギーを前記選択回路に出力させる 力否かの制御を行うことを特徴とする昇圧装置。
1 8 . 前記昇圧回路と前記電力供給手段との間に整流素子が順接続されること を特徴とする請求の範囲第 1 7項に記載の昇圧装置。
1 9 . 自己の起動に必要な起動エネルギーまたは自己の動作の継続に必要な動 作エネルギーのいずれか一方が供給され、 昇圧対象の入力電圧を昇圧した昇圧出 力を生成する昇圧回路と、
前記起動エネルギーを供給する電力供給手段と、 前記起動エネルギーの出力制御を行うスィツチング手段と、 前記起動エネルギーおよび前記動作エネルギーのいずれか一方を前記昇圧回路 に出力する選択回路と、
前記昇圧対象として入力される低電圧出力の発電制御のために送出される発電 要求信号を所定時間だけ遅延させた遅延信号を生成して出力する信号遅延回路と、 を備え、
前記昇圧回路は、 前記昇圧出力の全部または一部を前記選択回路および前記電 力供給手段に出力し、
前記スィツチング手段は、 前記遅延信号に基づいて前記起動エネルギーを前記 選択回路に出力させるか否かの制御を行うことを特徴とする昇圧装置。
' 2 0 . 前記選択回路は、
前記蓄電素子と前記昇圧回路との間に順接続された整流素子と、
前記昇圧出力が前記昇圧回路自身にフィードバックされる方向に順接続された 整流素子と、
を備えたことを特徴とする請求の範囲第 1 9項に記載の昇圧装置。
2 1 . 前記昇圧対象の低電圧出力が、 太陽電池より供給されることを特徴とす る請求の範囲第 1項に記載の昇圧装置。
2 2 . 前記昇圧対象の低電圧出力が、 燃料電池より供給されることを特徴とす る請求の範囲第 1項に記載の昇圧装置。
2 3 . 前記電力供給手段が、 太陽電池であることを特徴とする請求の範囲第 1 項に記載の昇圧装置。
2 4 . 前記電力供給手段が、 リチウム型蓄電池であることを特徴とする請求の 範囲第 1項に記載の昇圧装置。
2 5 . 自己の起動に必要な起動エネルギーまたは自己の動作の継続に必要な動 作エネルギーのいずれか一方が供給され、 昇圧対象の入力電圧を昇圧した昇圧出 5 力を生成する昇圧回路と、
前記低電圧出力に基づいて生成した前記起動エネルギ^ ·を前記昇圧回路に出力 する補助昇圧回路と、 ,
を備え、
前記昇圧回路は、 前記昇圧出力の一部を前記動作エネルギーとして自己にフィ 10 一ドバックすることを特徴とする昇圧装置。
2 6 . 前記昇圧回路は、 前記昇圧出力に基づいて前記補助昇圧回路の起動を制 御する手段を有することを特徴とする請求の範囲第 2 5項に記載の昇圧装置。
15 2 7 . 前記昇圧回路の周辺に設けられ、 該昇圧回路により得られた昇圧出力に , 対して出力制御を行う出力制御回路をさらに備えたことを特徴とする請求の範囲 第 2 6項に記載の昇圧装置。 .
• 2 8 . 前記出力制御回路は、 定電圧素子を備えたことを特徴とする請求の範囲 20 第 2 7項に記載の昇圧装置。
2 9 . 前記出力制御回路は、 定電圧素子おょぴ定電流素子を備えたことを特徴 とする請求の範囲第 2 7項に記載の昇圧装置。
25 3 .0 . 前記出力制御回路は、 前記昇圧回路の昇圧能力を制御することを特徴と する請求の範囲第 2 7項に記載の昇圧装置。
3 1 . 前記出力制御回路は、 前記昇圧回路に対して時比率変調制御を行うこと を特徴とする請求の範囲第 2 7項に記載の昇圧装置。
3 2 . 前記昇圧出力の全部または一部を蓄電する電力蓄積手段をさらに備え、 5 . 前記昇圧回路は、 前記昇圧出力の一部を前記動作エネルギーとして自己にフィ ードバックするとともに、 該昇圧出力に基づいて前記補助昇圧回路および前記電 力蓄積手段の起動をそれぞれ制御し、
前記選択回路は、 前記補助昇圧回路から出力される起動エネルギーまたは前記 電力蓄積手段から出力される起動エネルギーのいずれか一方を前記昇圧回路に出 10 力することを特徴とする請求の範囲第 2 5項に記載の昇圧装置。
' 3 3 . 前記選択回路は、
' ' 前記補助昇圧回路と前記昇圧回路との間に順接続された整流素子と、
前記電力蓄積手段と前記昇圧回路との間に順接続された整流素子と、
15 を有することを特徴とする請求の範囲第 3 2項に記載の昇圧装置。
3 4. 前記昇圧回路と前記電力蓄積手段との間に整流素子が順接続されること を特徴とする請求の範囲第 3 2項に記載の昇圧装置。
20 3 5 . 前記補助昇圧回路と前記昇圧回路との間に、
前記補助昇圧回路の出力である補助昇圧回路出力の出力電圧を判定する電圧判 定部と、 '
前記電圧判定部の判定結果に基づいて前記昇圧回路に前記補助昇圧回路出力の 供給/停止を切り換えるスィツチング部と、
25 をさらに備えたことを特徴とする請求の範囲第 2 5項に記載の昇圧装置。
3 6 . 前記電圧判定部は、 前記捕助昇圧回路出力を所定の基準電圧と比較する コンパレータを備え、
前記コンパレータの比較結果に基づいて前記スィッチング部に具備されるスィ '素子が制御されることを特徴とする請求の範囲第 3 5項に記載の昇圧装
3 7 . 前記電圧判定部は、 前記補助昇圧回路出力が所定の電圧に達したときに 導通するダーリントン接続されたトランジスタを镛え、
前記補助昇圧回路出力と、 該ダーリントン接続されたトランジスタのベース一 ェミッタ間に発生する降下電圧とに基づいて、 前記スィツチング部に具備される
>'素子が制御されることを特徴とする請求の範囲第 3 5項に記載の昇
3 8 . 前記補助昇圧回路が、 スィッチドキャパシタ型の回路で構成されている ことを特徴とする請求の範囲第 2 5項に記載の昇圧装置。
3 9 . 前記補助昇圧回路が、 チャージポンプ型の回路で構成されていることを 特徴とする請求の範囲第 2 5項に記載の昇圧装置。
PCT/JP2004/009993 2003-07-07 2004-07-07 昇圧装置 WO2005004304A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP14177241.8A EP2806531B1 (en) 2003-07-07 2004-07-07 Booster
EP14177239.2A EP2806529B1 (en) 2003-07-07 2004-07-07 Booster
JP2005511444A JP4223041B2 (ja) 2003-07-07 2004-07-07 昇圧装置
US10/526,928 US7345458B2 (en) 2003-07-07 2004-07-07 Booster that utilizes energy output from a power supply unit
EP14177240.0A EP2806530B1 (en) 2003-07-07 2004-07-07 Booster
EP04747459.8A EP1643611B1 (en) 2003-07-07 2004-07-07 Booster
US11/925,481 US7449866B2 (en) 2003-07-07 2007-10-26 Booster that utilizes energy output from a power supply

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-193185 2003-07-07
JP2003193185 2003-07-07
JP2004-170957 2004-06-09
JP2004170957 2004-06-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10526928 A-371-Of-International 2004-07-07
US11/925,481 Continuation US7449866B2 (en) 2003-07-07 2007-10-26 Booster that utilizes energy output from a power supply

Publications (1)

Publication Number Publication Date
WO2005004304A1 true WO2005004304A1 (ja) 2005-01-13

Family

ID=33566769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009993 WO2005004304A1 (ja) 2003-07-07 2004-07-07 昇圧装置

Country Status (4)

Country Link
US (2) US7345458B2 (ja)
EP (4) EP2806530B1 (ja)
JP (2) JP4223041B2 (ja)
WO (1) WO2005004304A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094246A1 (en) * 2006-02-15 2007-08-23 Ricoh Company, Ltd. Charging circuit for secondary battery, power supply switching method in charging circuit for secondary battery, and power supply unit
JP2008199745A (ja) * 2007-02-09 2008-08-28 Matsushita Electric Works Ltd 電源回路
JP2009124934A (ja) * 2007-10-23 2009-06-04 Seiko Instruments Inc 電源装置
JP2009165227A (ja) * 2007-12-28 2009-07-23 Nec Electronics Corp 電圧変換回路
JP2010220351A (ja) * 2009-03-16 2010-09-30 Nippon Telegr & Teleph Corp <Ntt> 昇圧制御回路の制御方法および昇圧制御回路
JP2012109555A (ja) * 2010-10-29 2012-06-07 Semiconductor Energy Lab Co Ltd 光電変換装置
JP2012119529A (ja) * 2010-12-01 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> 太陽光発電装置
JP2015089180A (ja) * 2013-10-29 2015-05-07 ヤマハ株式会社 スタンバイ回路
JP2016219273A (ja) * 2015-05-21 2016-12-22 矢崎エナジーシステム株式会社 電力供給システム
JP2017208917A (ja) * 2016-05-18 2017-11-24 日本電信電話株式会社 電源回路
CN113300440A (zh) * 2021-07-28 2021-08-24 苏州贝克微电子有限公司 一种电池供电装置及其供电方法

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2806530B1 (en) * 2003-07-07 2021-04-28 Nippon Telegraph And Telephone Corporation Booster
US8013583B2 (en) * 2004-07-01 2011-09-06 Xslent Energy Technologies, Llc Dynamic switch power converter
JP4628172B2 (ja) * 2005-04-28 2011-02-09 セイコーインスツル株式会社 昇圧型dc−dc、および、昇圧型dc−dcを有する半導体装置
JP4533328B2 (ja) * 2006-02-28 2010-09-01 株式会社リコー 充電制御用半導体集積回路、その充電制御用半導体集積回路を使用した充電装置及び2次電池接続検出方法
TWM298838U (en) * 2006-03-14 2006-10-01 Syspotek Corp Voltage regulator for fuel cell
JP2008109843A (ja) * 2006-09-29 2008-05-08 Sanyo Electric Co Ltd 回路装置
US8723438B2 (en) * 2007-03-12 2014-05-13 Cirrus Logic, Inc. Switch power converter control with spread spectrum based electromagnetic interference reduction
US7852017B1 (en) * 2007-03-12 2010-12-14 Cirrus Logic, Inc. Ballast for light emitting diode light sources
US8018171B1 (en) 2007-03-12 2011-09-13 Cirrus Logic, Inc. Multi-function duty cycle modifier
US8076920B1 (en) 2007-03-12 2011-12-13 Cirrus Logic, Inc. Switching power converter and control system
US7667408B2 (en) 2007-03-12 2010-02-23 Cirrus Logic, Inc. Lighting system with lighting dimmer output mapping
US7554473B2 (en) 2007-05-02 2009-06-30 Cirrus Logic, Inc. Control system using a nonlinear delta-sigma modulator with nonlinear process modeling
US8102127B2 (en) 2007-06-24 2012-01-24 Cirrus Logic, Inc. Hybrid gas discharge lamp-LED lighting system
KR101376760B1 (ko) 2008-01-22 2014-03-26 삼성전자주식회사 인러쉬 전류를 제어할 수 있는 부스팅 회로 및 이를 이용한이미지 센서
US8008898B2 (en) * 2008-01-30 2011-08-30 Cirrus Logic, Inc. Switching regulator with boosted auxiliary winding supply
US8022683B2 (en) 2008-01-30 2011-09-20 Cirrus Logic, Inc. Powering a power supply integrated circuit with sense current
US8576589B2 (en) 2008-01-30 2013-11-05 Cirrus Logic, Inc. Switch state controller with a sense current generated operating voltage
US20110012517A1 (en) * 2008-03-31 2011-01-20 Pioneer Corporation Organic electroluminescent device
US8008902B2 (en) * 2008-06-25 2011-08-30 Cirrus Logic, Inc. Hysteretic buck converter having dynamic thresholds
US8344707B2 (en) 2008-07-25 2013-01-01 Cirrus Logic, Inc. Current sensing in a switching power converter
US8279628B2 (en) * 2008-07-25 2012-10-02 Cirrus Logic, Inc. Audible noise suppression in a resonant switching power converter
US8212491B2 (en) 2008-07-25 2012-07-03 Cirrus Logic, Inc. Switching power converter control with triac-based leading edge dimmer compatibility
TW201008078A (en) * 2008-08-08 2010-02-16 Wistron Corp A holding device with charging function
US8487546B2 (en) 2008-08-29 2013-07-16 Cirrus Logic, Inc. LED lighting system with accurate current control
US8222872B1 (en) 2008-09-30 2012-07-17 Cirrus Logic, Inc. Switching power converter with selectable mode auxiliary power supply
US8179110B2 (en) 2008-09-30 2012-05-15 Cirrus Logic Inc. Adjustable constant current source with continuous conduction mode (“CCM”) and discontinuous conduction mode (“DCM”) operation
JP5160371B2 (ja) * 2008-10-17 2013-03-13 本田技研工業株式会社 交流電力供給装置及びその制御方法
US8288954B2 (en) 2008-12-07 2012-10-16 Cirrus Logic, Inc. Primary-side based control of secondary-side current for a transformer
US8362707B2 (en) 2008-12-12 2013-01-29 Cirrus Logic, Inc. Light emitting diode based lighting system with time division ambient light feedback response
US8299722B2 (en) 2008-12-12 2012-10-30 Cirrus Logic, Inc. Time division light output sensing and brightness adjustment for different spectra of light emitting diodes
US7994863B2 (en) 2008-12-31 2011-08-09 Cirrus Logic, Inc. Electronic system having common mode voltage range enhancement
US20100301670A1 (en) * 2009-03-01 2010-12-02 William Wilhelm Dc peak power tracking devices, methods, and systems
JP5275096B2 (ja) * 2009-03-18 2013-08-28 株式会社東芝 昇圧回路
DE102009015707B4 (de) * 2009-03-31 2012-01-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Konzept zur Inbetriebnahme eines Spannungswandlers
US8482223B2 (en) 2009-04-30 2013-07-09 Cirrus Logic, Inc. Calibration of lamps
US8212493B2 (en) * 2009-06-30 2012-07-03 Cirrus Logic, Inc. Low energy transfer mode for auxiliary power supply operation in a cascaded switching power converter
US8248145B2 (en) 2009-06-30 2012-08-21 Cirrus Logic, Inc. Cascode configured switching using at least one low breakdown voltage internal, integrated circuit switch to control at least one high breakdown voltage external switch
US8198874B2 (en) * 2009-06-30 2012-06-12 Cirrus Logic, Inc. Switching power converter with current sensing transformer auxiliary power supply
US8963535B1 (en) 2009-06-30 2015-02-24 Cirrus Logic, Inc. Switch controlled current sensing using a hall effect sensor
US9155174B2 (en) 2009-09-30 2015-10-06 Cirrus Logic, Inc. Phase control dimming compatible lighting systems
US9178415B1 (en) 2009-10-15 2015-11-03 Cirrus Logic, Inc. Inductor over-current protection using a volt-second value representing an input voltage to a switching power converter
US8654483B2 (en) 2009-11-09 2014-02-18 Cirrus Logic, Inc. Power system having voltage-based monitoring for over current protection
WO2011096806A2 (en) * 2010-02-05 2011-08-11 Marijn Bartold Berk Battery charger
NL2004202C2 (nl) * 2010-02-05 2011-08-08 Marijn Bartold Berk Batterijlader.
JP5537180B2 (ja) * 2010-02-16 2014-07-02 株式会社東芝 静電型アクチュエータ装置
DE102010028149B4 (de) * 2010-04-23 2015-02-19 Puls Gmbh Redundanzmodul mit Selbstversorgung des aktiven Entkoppelbauelements aus einer in weitem Bereich variablen und auch niedrigen Eingangsspannung
FR2959600B1 (fr) * 2010-04-30 2012-12-21 Rene Marie Pierre Bouleau Ensemble generateur photovoltaique
CN102332825B (zh) * 2010-07-13 2014-02-26 安凯(广州)微电子技术有限公司 一种dc-dc转换器控制电路及转换器
CN102340151B (zh) * 2010-07-21 2016-03-09 神讯电脑(昆山)有限公司 笔记本电脑电池充电器
US8536799B1 (en) 2010-07-30 2013-09-17 Cirrus Logic, Inc. Dimmer detection
US8729811B2 (en) 2010-07-30 2014-05-20 Cirrus Logic, Inc. Dimming multiple lighting devices by alternating energy transfer from a magnetic storage element
US8569972B2 (en) 2010-08-17 2013-10-29 Cirrus Logic, Inc. Dimmer output emulation
EP3573208B1 (en) 2010-10-04 2024-10-23 Versitech, Ltd. A power control circuit and method for stabilizing a power supply
US9559235B2 (en) 2010-12-17 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
JP5709163B2 (ja) * 2011-03-07 2015-04-30 セイコーインスツル株式会社 熱発電装置および熱発電装置を備える電子機器
WO2012152799A2 (en) * 2011-05-10 2012-11-15 Technische Universiteit Eindhoven Photo-voltaic maximum power point trackers
JP5794115B2 (ja) 2011-11-07 2015-10-14 ソニー株式会社 電源供給装置および電力制御システムならびに電気機器の起動方法
US9484832B2 (en) 2011-12-14 2016-11-01 Koninklijke Philips N.V. Isolation of secondary transformer winding current during auxiliary power supply generation
CN102588864A (zh) * 2012-01-10 2012-07-18 洛阳沃德节电科技开发有限公司 一种利用太阳光能用于高层公寓照明的方法及太阳能灯
TW201517458A (zh) * 2013-10-28 2015-05-01 Yun Shan Chang 用於太陽能集電裝置的電力儲存裝置
KR20160130222A (ko) * 2014-01-17 2016-11-10 유니버시티 오브 버지니아 페이턴트 파운데이션, 디/비/에이 유니버시티 오브 버지니아 라이센싱 & 벤처스 그룹 오프셋 보상된 제로 검출 및 피크 인덕터 전류 제어를 구비한 낮은 입력 전압 부스트 컨버터
US9161401B1 (en) 2014-03-20 2015-10-13 Cirrus Logic, Inc. LED (light-emitting diode) string derived controller power supply
CN105048800B (zh) * 2015-06-30 2017-12-05 中山大学 一种光伏发电系统的双扰动mppt控制方法
US10044218B2 (en) 2015-11-10 2018-08-07 Eugen Tiefnig Micro-energy harvester for battery free applications
JP6770412B2 (ja) * 2016-11-25 2020-10-14 エイブリック株式会社 電源装置
KR101815859B1 (ko) * 2017-01-04 2018-01-08 한국과학기술원 전원 제어 장치
EP3491726B1 (en) * 2017-06-22 2020-03-25 e-peas S.A. Power management integrated circuit with programmable cold start
JPWO2019221166A1 (ja) * 2018-05-15 2021-07-08 国立研究開発法人科学技術振興機構 測定器、収納装置および測定システム
US11855455B2 (en) * 2020-04-23 2023-12-26 Corning Research & Development Corporation Systems and methods for power start up in a multi-unit power distribution network
US11233450B2 (en) 2020-05-11 2022-01-25 Hamilton Sundstrand Corporation Multi-output power supply with dual power-on control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196540A (ja) * 1997-12-26 1999-07-21 Seiko Instruments Inc 電子機器
JP2002063923A (ja) * 2000-08-14 2002-02-28 Equos Research Co Ltd 燃料電池回路

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180372A (en) * 1981-04-25 1982-11-06 Fujitsu Ltd Dc/dc converter
US4691159A (en) * 1985-08-30 1987-09-01 Hughes Aircraft Company Partial shunt switching limiter for a spacecraft solar-panel or like power-source array
JPS63171160A (ja) * 1987-01-07 1988-07-14 Nikon Corp Dc−dcコンバ−タ
JPH0626477B2 (ja) * 1987-01-21 1994-04-06 株式会社日立製作所 スイツチング電源
JPS63186536A (ja) * 1987-01-26 1988-08-02 セイコーインスツルメンツ株式会社 電子腕時計
US5027051A (en) * 1990-02-20 1991-06-25 Donald Lafferty Photovoltaic source switching regulator with maximum power transfer efficiency without voltage change
JP2812824B2 (ja) * 1990-11-14 1998-10-22 三菱電機株式会社 直流−直流変換器
JP2752796B2 (ja) * 1991-02-08 1998-05-18 日本電気アイシーマイコンシステム株式会社 スイッチング電源回路
JP3025106B2 (ja) 1992-06-29 2000-03-27 キヤノン株式会社 充電機器、太陽電池使用機器及び太陽電池モジュール
JP2894187B2 (ja) * 1993-11-26 1999-05-24 モトローラ株式会社 昇圧電源ic
ZA948676B (en) * 1993-12-10 1995-07-04 Divwatt Proprietary Limited Natural energy powered motor starter
JP3601142B2 (ja) * 1995-11-06 2004-12-15 株式会社安川電機 太陽光発電用電力変換装置の起動方法
JPH09215323A (ja) * 1996-02-06 1997-08-15 Fuji Electric Co Ltd スイッチング電源装置
US5801519A (en) * 1996-06-21 1998-09-01 The Board Of Trustees Of The University Of Illinois Self-excited power minimizer/maximizer for switching power converters and switching motor drive applications
JPH1042553A (ja) * 1996-07-25 1998-02-13 Rohm Co Ltd 電源装置
JPH10146045A (ja) * 1996-11-11 1998-05-29 Toshiba Corp 安定化電源装置の誤動作防止回路
US5751139A (en) * 1997-03-11 1998-05-12 Unitrode Corporation Multiplexing power converter
JPH1118419A (ja) * 1997-06-20 1999-01-22 Nippon Motorola Ltd Dc/dcコンバータ
US6122185A (en) * 1997-07-22 2000-09-19 Seiko Instruments R&D Center Inc. Electronic apparatus
JP3650269B2 (ja) * 1997-10-07 2005-05-18 セイコーインスツル株式会社 発電素子を有する電子時計
US5949222A (en) * 1997-12-08 1999-09-07 Buono; Robert N. Self-oscillating switch mode DC to DC conversion with current switching threshold hystersis
JP3581547B2 (ja) * 1997-12-15 2004-10-27 セイコーインスツルメンツ株式会社 電子機器
JP3084521B2 (ja) * 1998-02-05 2000-09-04 セイコーインスツルメンツ株式会社 発電器付き電子機器
US6037756A (en) * 1999-03-05 2000-03-14 Pong; Ta-Ching Power supply with mixed mode batteries
JP2001037212A (ja) * 1999-07-14 2001-02-09 Nec Corp 低電圧入力dc−dcコンバータ
US6201717B1 (en) * 1999-09-04 2001-03-13 Texas Instruments Incorporated Charge-pump closely coupled to switching converter
US6177736B1 (en) * 1999-11-12 2001-01-23 General Motors Corporation DC/DC converter for a fuel cell providing both a primary and auxiliary output voltage
US6300820B1 (en) * 2000-02-07 2001-10-09 Exar Corporation Voltage regulated charge pump
US6275013B1 (en) * 2000-07-21 2001-08-14 Funai Electric Co., Ltd. Switching power supply employing an internal resistance in series with a zener diode to stabilize a DC output
ATE279043T1 (de) * 2001-01-30 2004-10-15 True Solar Autonomy Holding B Spannungswandlerschaltung
JP3945169B2 (ja) * 2001-02-07 2007-07-18 オムロン株式会社 パワーコンディショナ及びこのパワーコンディショナを用いた太陽光発電システム
JP3591496B2 (ja) * 2001-08-13 2004-11-17 ソニー株式会社 電源装置
JP3994729B2 (ja) * 2001-12-07 2007-10-24 株式会社ニコン カメラシステム及び閃光装置
EP2806530B1 (en) * 2003-07-07 2021-04-28 Nippon Telegraph And Telephone Corporation Booster

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196540A (ja) * 1997-12-26 1999-07-21 Seiko Instruments Inc 電子機器
JP2002063923A (ja) * 2000-08-14 2002-02-28 Equos Research Co Ltd 燃料電池回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1643611A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094246A1 (en) * 2006-02-15 2007-08-23 Ricoh Company, Ltd. Charging circuit for secondary battery, power supply switching method in charging circuit for secondary battery, and power supply unit
JP2007221872A (ja) * 2006-02-15 2007-08-30 Ricoh Co Ltd 二次電池の充電回路、二次電池の充電回路における電源切換方法及び電源装置
KR100969615B1 (ko) * 2006-02-15 2010-07-14 가부시키가이샤 리코 2차 전지용 충전 회로, 2차 전지용 충전 회로에서의 전원전환 방법, 및 전원 유닛
US8008889B2 (en) 2006-02-15 2011-08-30 Ricoh Company, Ltd. Charging circuit for secondary battery, power supply switching method in charging circuit for secondary battery, and power supply unit
JP2008199745A (ja) * 2007-02-09 2008-08-28 Matsushita Electric Works Ltd 電源回路
JP2009124934A (ja) * 2007-10-23 2009-06-04 Seiko Instruments Inc 電源装置
JP2009165227A (ja) * 2007-12-28 2009-07-23 Nec Electronics Corp 電圧変換回路
JP2010220351A (ja) * 2009-03-16 2010-09-30 Nippon Telegr & Teleph Corp <Ntt> 昇圧制御回路の制御方法および昇圧制御回路
JP2012109555A (ja) * 2010-10-29 2012-06-07 Semiconductor Energy Lab Co Ltd 光電変換装置
US9413289B2 (en) 2010-10-29 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
JP2012119529A (ja) * 2010-12-01 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> 太陽光発電装置
JP2015089180A (ja) * 2013-10-29 2015-05-07 ヤマハ株式会社 スタンバイ回路
JP2016219273A (ja) * 2015-05-21 2016-12-22 矢崎エナジーシステム株式会社 電力供給システム
JP2017208917A (ja) * 2016-05-18 2017-11-24 日本電信電話株式会社 電源回路
CN113300440A (zh) * 2021-07-28 2021-08-24 苏州贝克微电子有限公司 一种电池供电装置及其供电方法
CN113300440B (zh) * 2021-07-28 2021-10-15 苏州贝克微电子有限公司 一种电池供电装置及其供电方法

Also Published As

Publication number Publication date
EP2806529B1 (en) 2023-05-03
EP2806531B1 (en) 2019-10-23
EP2806529A2 (en) 2014-11-26
EP2806531A3 (en) 2015-01-07
JP2009038967A (ja) 2009-02-19
EP1643611A4 (en) 2013-09-04
JPWO2005004304A1 (ja) 2006-08-17
EP2806530B1 (en) 2021-04-28
EP2806531A2 (en) 2014-11-26
US7345458B2 (en) 2008-03-18
EP2806529A3 (en) 2015-01-07
US20080062729A1 (en) 2008-03-13
EP1643611B1 (en) 2020-04-22
JP4223041B2 (ja) 2009-02-12
US20060152200A1 (en) 2006-07-13
US7449866B2 (en) 2008-11-11
EP1643611A1 (en) 2006-04-05
EP2806530A3 (en) 2015-01-07
EP2806530A2 (en) 2014-11-26
JP4890520B2 (ja) 2012-03-07

Similar Documents

Publication Publication Date Title
WO2005004304A1 (ja) 昇圧装置
Zhou et al. A high efficiency, soft switching DC-DC converter with adaptive current-ripple control for portable applications
KR101436774B1 (ko) 업 유도성 스위칭 프리-레귤레이터 및 용량성 스위칭 포스트-컨버터를 포함한 dc/dc 전압 컨버터
US9461546B2 (en) Power device and method for delivering power to electronic devices
US7839130B2 (en) Switching regulator capable of preventing reverse current
US20110006727A1 (en) Solar battery charger
JP2003528560A (ja) 動的に制御され固有に調整されるチャージポンプ電力コンバータ
WO2001001553A1 (en) Dynamically-switched power converter
JP2007221872A (ja) 二次電池の充電回路、二次電池の充電回路における電源切換方法及び電源装置
JP2006020491A (ja) 昇圧回路を有する電子機器
JP2004508788A (ja) 多出力の動的に調整されるチャージポンプ電力コンバータ
Lu et al. 21.3 A 200nA single-inductor dual-input-triple-output (DITO) converter with two-stage charging and process-limit cold-start voltage for photovoltaic and thermoelectric energy harvesting
JP2010186338A (ja) 充放電装置、及び集積回路素子
JP4101212B2 (ja) 電源回路
CN116526961B (zh) 光伏电池旁路电路、光伏接线盒以及光伏组件
Wang et al. A 450-mV Single-Fuel-Cell Power Management Unit With Switch-Mode Quasi-${\rm V}^ 2$ Hysteretic Control and Automatic Startup on 0.35-$\mu $ m Standard CMOS Process
JP2006114486A (ja) 燃料電池電源システム
CN101232199B (zh) 升压装置
JP4320995B2 (ja) 太陽電池出力の昇圧回路
An et al. Design of a single-switch DC-DC converter for PV-battery powered pump system
JP4098203B2 (ja) 電源システム
CN219041630U (zh) 一种输入耐高压的升降压电路
JP2024114594A (ja) 電力供給システムおよびスイッチング電源装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005511444

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref document number: 2006152200

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2004747459

Country of ref document: EP

Ref document number: 10526928

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048010417

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004747459

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10526928

Country of ref document: US