WO2004114453A1 - リチウム二次電池及びその製造方法 - Google Patents

リチウム二次電池及びその製造方法 Download PDF

Info

Publication number
WO2004114453A1
WO2004114453A1 PCT/JP2004/007831 JP2004007831W WO2004114453A1 WO 2004114453 A1 WO2004114453 A1 WO 2004114453A1 JP 2004007831 W JP2004007831 W JP 2004007831W WO 2004114453 A1 WO2004114453 A1 WO 2004114453A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
carbon dioxide
battery according
active material
Prior art date
Application number
PCT/JP2004/007831
Other languages
English (en)
French (fr)
Inventor
Shouichirou Sawa
Hiroshi Minami
Mariko Torimae
Atsushi Fukui
Yasuyuki Kusumoto
Katsunobu Sayama
Maruo Kamino
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to EP04745607A priority Critical patent/EP1635417B1/en
Priority to US10/531,047 priority patent/US8211569B2/en
Publication of WO2004114453A1 publication Critical patent/WO2004114453A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • Lithium secondary battery and method of manufacturing the same Lithium secondary battery and method of manufacturing the same
  • the present invention relates to a lithium secondary battery and a method for manufacturing the same.
  • a negative electrode for a lithium secondary battery a negative electrode using a material alloyable with lithium as a negative electrode active material has been studied.
  • a material to be alloyed with lithium for example, a silicon material is being studied.
  • the volume of the active material expands and contracts when inserting and extracting lithium, so that the active material becomes finer with charging and discharging, or the active material is collected. Detach from conductor. For this reason, there was a problem that the current collecting property in the electrode was lowered and the charge / discharge cycle characteristics were deteriorated.
  • the present applicant has proposed a negative electrode for a lithium secondary battery that solves such a problem by forming a mixture layer containing active material particles containing silicon and Z or a silicon alloy and a binder on the surface of a current collector.
  • a negative electrode for a lithium secondary battery obtained by sintering it after placing it on top is proposed (Patent Document 1).
  • the lithium secondary battery proposed by the present applicant is a battery having a large charge / discharge capacity and excellent cycle characteristics.However, the active material particles of the negative electrode become porous due to repetition of charge / discharge, and the thickness of the negative electrode increases. There was a problem that increases.
  • Patent Document 1 International Publication No. 02Z21616 pamphlet
  • Patent Document 2 U.S. Pat.No. 4,853,304
  • Patent Document 3 JP-A-6-150975
  • Patent Document 4 JP-A-6-124700
  • Patent Document 5 JP-A-7-176323
  • Patent Document 6 JP-A-7-249431
  • Patent Document 7 JP-A-8-64246
  • Patent Document 8 JP-A-9-63649
  • Patent Document 9 JP-A-10-40958
  • Patent Document 10 JP 2001-307771 A
  • Patent Document 11 JP-A-2002-329502
  • Patent Document 12 JP-A-2003-86243
  • An object of the present invention is to provide a lithium secondary battery using a negative electrode containing active material particles containing silicon and Z or a silicon alloy, which has a large charge / discharge capacity, excellent cycle characteristics, and high charge / discharge capacity.
  • a lithium secondary battery and a method for manufacturing the same which can suppress the porosity of active material particles due to the above, and can reduce an increase in the thickness of the electrode after charge and discharge.
  • a mixture layer containing active material particles containing silicon and Z or a silicon alloy and a binder is fired on the surface of a current collector made of conductive metal foil.
  • a lithium secondary battery including a negative electrode, a positive electrode, and a non-aqueous electrolyte, which are connected and arranged, and characterized by dissolving carbon dioxide in the non-aqueous electrolyte.
  • the dissolution of carbon dioxide in the non-aqueous electrolyte in the present invention means that carbon dioxide is intentionally dissolved in the non-aqueous electrolyte. That is, in the ordinary lithium secondary battery manufacturing process, the dissolution of carbon dioxide inevitably dissolved in the nonaqueous electrolyte is not included. Carbon dioxide is generally dissolved in a non-aqueous electrolyte solvent. Accordingly, the non-aqueous electrolyte may be dissolved in the non-aqueous electrolyte in which the solute is dissolved, or the non-aqueous electrolyte may be prepared by dissolving the solute in a solvent in which the di-oxide is dissolved in advance. .
  • the negative electrode obtained by sintering a mixture layer containing active material particles containing silicon and Z or a silicon alloy and a binder on the surface of a current collector made of conductive metal foil has a charge / discharge capacity of Excellent in charge / discharge cycle characteristics.
  • the present inventors have found that, in such a negative electrode, when the charge / discharge reaction is repeated, the surface force of the active material particles is gradually increased toward the inside thereof, and a porous film is gradually generated. Such a porous layer increases the thickness of the electrode and decreases the volume energy density. It is considered that such porous porosity in the active material is caused by the irreversible reaction of silicon, which is the active material, and that the quality of the silicon deteriorates.
  • the present invention by dissolving dioxide carbon in the non-aqueous electrolyte, it is possible to suppress the porous diversion of the active material particles. Therefore, the increase in the thickness of the electrode can be reduced, and the volume energy density can be increased. It is not clear why the carbon dioxide is dissolved in the non-aqueous electrolyte and the porosity of the active material particles can be suppressed.
  • the sintering of the negative electrode is preferably performed in a non-oxidizing atmosphere.
  • the amount of the carbon dioxide dissolved in the non-aqueous electrolyte is preferably 0.001% by weight or more, more preferably 0.01% by weight or more, and still more preferably 0.01% by weight or more. It is at least 05% by weight, more preferably at least 0.1% by weight.
  • the dissolved amount of carbon dioxide does not include carbon dioxide which is inevitably dissolved in the non-aqueous electrolyte. That is, it does not include carbon dioxide dissolved in the non-aqueous electrolyte in a normal production process.
  • the amount of dissolved carbon dioxide can be determined, for example, by measuring the weight of the non-aqueous electrolyte after dissolving carbon dioxide and the weight of the non-aqueous electrolyte before dissolving carbon dioxide. Can be obtained. Specifically, it can be obtained by the following equation.
  • voids inside the battery contain carbon dioxide.
  • the space inside the battery is formed, for example, between an electrode body formed by facing a positive electrode and a negative electrode with a separator interposed therebetween, and a battery exterior body.
  • This void contains dioxide carbon by, for example, performing it in an atmosphere of dioxide carbon when assembling the battery, or by releasing dioxide oxide carbon dissolved in the electrolyte also from the electrolyte. Can be made.
  • the carbon dioxide in the electrolyte is consumed due to charging and discharging, the carbon dioxide in the voids dissolves in the electrolyte, and the carbon dioxide in the electrolyte can be replenished.
  • the non-aqueous electrolyte contains a fluorine-containing compound.
  • a fluorine-containing compound is contained in the non-aqueous electrolyte, the cycle characteristics can be further improved.
  • Examples of the fluorine-containing compound include a fluorine-containing lithium salt and a fluorine-containing solvent.
  • LiXF (where X is P, As, Sb, B, Bi, Al, Ga, or In, and X is P, As or Sby
  • q and r are each independently an integer of 1-4).
  • fluorine-containing solvent examples include cyclic carbonates such as butylene carbonate and propylene carbonate, and disulfide compounds in which hydrogen atoms of chain carbonates such as dimethyl carbonate and getyl carbonate are substituted with fluorine atoms.
  • cyclic carbonates such as butylene carbonate and propylene carbonate
  • disulfide compounds in which hydrogen atoms of chain carbonates such as dimethyl carbonate and getyl carbonate are substituted with fluorine atoms.
  • trifluoromethylated propylene carbonate in which the hydrogen atom of propylene carbonate has been replaced with a fluorine atom 1,1,1-trifluoroethyl carbonate (CF CH OCOOC
  • ether solvents such as 1,2-dimethoxyethane and 1,2-diethoxytan
  • cyclic esters such as ⁇ -petit mouth rataton, etc.
  • hydrogen atoms by fluorine atoms.
  • Compounds may be used.
  • Such a material includes, for example, bis 1,2- (2,2,2-trifluoroethoxy) ethane (CF CH OCH CH OCH CF).
  • the fluorine-containing lithium salt is added so as to have a concentration of 0.1 to 2 mol Z liter with respect to the non-aqueous electrolyte. .
  • the total amount of the lithium salt is preferably 0.5 to 2 mol Z liter. If the concentration is less than 0.1 mol Z liter, it is not preferable because the effect of containing fluorine cannot be sufficiently obtained. On the other hand, when the total amount of the lithium salt is less than 0.5 mol Z liter, the lithium ion conductivity of the non-aqueous electrolyte cannot be sufficiently obtained.
  • the concentration exceeds 2 mol / L, the viscosity of the non-aqueous electrolyte increases, the ionic conductivity of the non-aqueous electrolyte decreases, and salts are precipitated at low temperatures, which is not preferable.
  • a fluorine-containing compound is used as the solvent of the non-aqueous electrolyte, it is preferable to use 1% by volume or more in all the solvents. When the concentration power is less than ⁇ vol%, the effect of containing fluorine may not be sufficiently obtained.
  • a fluorine-containing conjugate which is hardly soluble in an electrolytic solution may be contained in a separator in advance. Further, a fluorine-containing compound may be added to the negative electrode mixture layer in advance. Examples of such a fluorine-containing compound include lithium fluoride.
  • a fluorine-containing compound When a fluorine-containing compound is added to the negative electrode mixture layer, it is preferable to add 0.05 to 5% by weight of the fluorine-containing compound to the total amount of the mixture. If the content is less than 0.05% by weight, the effect of containing fluorine may not be sufficiently obtained. Further, when the content is more than 5% by weight, the resistance in the active material layer is increased, which is not preferable.
  • the active material particles used in the present invention include silicon and Z or silicon alloy particles.
  • Silicon alloys include solid solutions of silicon with one or more other elements, intermetallic compounds of silicon with one or more other elements, and eutectics of silicon with one or more other elements. Alloys and the like.
  • Examples of the method for producing the alloy include an arc melting method, a liquid quenching method, a mechanical alloying method, a sputtering method, a chemical vapor deposition method, and a firing method.
  • liquid quenching methods include single-roll quenching, twin-roll quenching, and gas atomization.
  • various atomizing methods such as a water atomizing method and a disk atomizing method.
  • the active material particles used in the present invention particles obtained by coating the surfaces of silicon and Z or silicon alloy particles with a metal or the like may be used.
  • the coating method include electroless plating, electrolytic plating, chemical reduction, vapor deposition, sputtering, and chemical vapor deposition.
  • the metal covering the particle surface is preferably the same metal as the metal foil used as the current collector.
  • the active material particles used in the present invention may include particles having a material strength capable of alloying with lithium.
  • Materials for alloying lithium include germanium, tin, lead, zinc, magnesium, sodium, aluminum, gallium, indium, and alloys thereof.
  • the average particle diameter of the active material particles used in the present invention is not particularly limited, but is preferably 100 m or less, more preferably 50 m or less, most preferably, for effective sintering. Preferably it is 10 m or less. As the particle size of the active material particles is smaller, better cycle characteristics tend to be obtained.
  • the average particle size of the conductive powder used in the mixture layer is not particularly limited, but is preferably 100 m or less, more preferably 50 ⁇ m or less, and most preferably. Is less than 10 ⁇ m.
  • the surface of the active material particles can be stably provided with high lithium ion conductivity.
  • active material particles having a small average particle diameter a film having a high lithium ion conductivity is densely present in the mixture layer. Therefore, since a dense lithium ion conduction path is formed in the mixture layer, it is considered that the uniformity of the distribution of the charge / discharge reaction in the electrode is further improved.
  • the particle size distribution of the active material particles is preferably as narrow as possible. If the width is wide and the particle size distribution is large, there will be a large difference in the absolute amount of expansion and contraction of the volume due to occlusion and release of lithium between active material particles having greatly different particle sizes. Distortion occurs, causing nodal destruction. For this reason, the current collecting property in the electrode is reduced, and the charge / discharge cycle characteristics are reduced.
  • the current collector according to the present invention preferably has an arithmetic average roughness Ra force of 0.2 ⁇ m or more on the surface.
  • Ra force arithmetic average roughness Ra surface
  • the contact area between the mixture layer and the current collector can be increased, and the adhesion between the mixture layer and the current collector can be improved. Can be improved. For this reason, the current collection in the electrode can be further improved.
  • the arithmetic average roughness Ra on both sides of the current collector is preferably 0.2 ⁇ m or more! / ⁇ .
  • Arithmetic mean roughness Ra is defined in Japanese Industrial Standards (JIS B 0601-1994).
  • the arithmetic average roughness Ra can be measured by, for example, a surface roughness meter.
  • the thickness of the current collector is not particularly limited, but is preferably in the range of 10 to 100 ⁇ m.
  • the upper limit of the arithmetic average roughness Ra of the current collector surface is not particularly limited, but the thickness of the current collector is preferably in the range of 10 to 100 ⁇ m.
  • the upper limit of the arithmetic average roughness Ra of the current collector surface is preferably substantially 10 m or less.
  • the current collector in the present invention is made of a conductive metal foil.
  • a conductive metal foil include metals such as copper, nickel, iron, titanium, and cobalt, and alloys having a combination thereof.
  • those containing a metal element which is easily diffused in the active material are preferable.
  • Examples of such a material include a metal foil containing a copper element, particularly a copper foil or a copper alloy foil. Copper is easily diffused into the silicon material as an active material by heat treatment, so that the adhesion between the current collector and the active material can be expected to be improved by sintering. The purpose of this sintering is to improve the adhesion between the current collector and the active material.
  • a metal foil having a layer containing a copper element on the surface of the current collector in contact with the active material may be used as the current collector. Therefore, when a metal foil made of a metal element other than copper is used, it is preferable to form a copper or copper alloy layer on the surface.
  • the copper alloy foil it is preferable to use a heat-resistant copper alloy foil.
  • the heat-resistant copper alloy means a copper alloy having a tensile strength of 300 MPa or more after annealing at 200 ° C. for 1 hour.
  • a heat-resistant copper alloy for example, those listed in Table 1 can be used.
  • the current collector used in the present invention preferably has large irregularities on its surface. Therefore, when the arithmetic average roughness Ra of the heat-resistant copper alloy foil surface is not sufficiently large, large irregularities may be provided on the surface by providing electrolytic copper or an electrolytic copper alloy on the foil surface. .
  • the electrolytic copper layer and the electrolytic copper alloy layer can be formed by an electrolytic method.
  • a roughening treatment may be performed to form large irregularities on the surface of the current collector. Examples of such a roughening treatment include a vapor deposition method, an etching method, and a polishing method.
  • Examples of the vapor phase growth method include a sputtering method, a CVD method, and an evaporation method.
  • Examples of the etching method include a method using physical etching and chemical etching.
  • Examples of the polishing method include sandpaper polishing and blasting.
  • the thickness X of the mixture layer preferably has a relationship of 5Y ⁇ X and 250Ra ⁇ X with the thickness Y of the current collector and the arithmetic average roughness Ra of the surface thereof. .
  • the thickness X of the mixture layer exceeds 5Y or 250Ra, the mixture layer may peel off from the current collector.
  • the thickness X of the mixture layer is not particularly limited, but is preferably 1000 ⁇ m or less, and more preferably 10 ⁇ m to 100 ⁇ m.
  • a conductive powder can be mixed into the mixture layer.
  • a conductive network of the conductive powder is formed around the active material particles, so that the current collection in the electrode can be further improved.
  • the conductive powder those having the same material as that of the current collector can be preferably used. Specifically, it is a metal such as copper, nickel, iron, titanium, cobalt or the like, or an alloy or a mixture having a combined power thereof.
  • copper powder is preferably used as the metal powder.
  • conductive carbon powder can also be preferably used.
  • the amount of the conductive powder added to the mixture layer is preferably 50% by weight or less of the total weight with the active material particles. If the amount of the conductive powder is too large, the mixing ratio of the active material particles becomes relatively small, so that the charge / discharge capacity of the electrode becomes small.
  • the binder used in the present invention remains without completely decomposing even after heat treatment for sintering! Since the binder remains without being decomposed even after the heat treatment, the adhesiveness between the active material particles and the current collector and between the active material particles is improved by sintering, and the binding force by the solder is also added. Adhesion can be further enhanced. In addition, when a metal foil with an arithmetic average roughness Ra of 0.2 m or more is used as a current collector, the binder penetrates into the irregularities on the surface of the current collector, and the anchor effect between the binder and the current collector is obtained. And the adhesion is further improved. For this reason, the active material when absorbing and releasing lithium It is possible to suppress the detachment of the active material layer due to the current collector power due to the expansion and contraction of the volume of the material, and it is possible to obtain good charge / discharge cycle characteristics.
  • polyimide is preferably used as the binder in the present invention.
  • the polyimide include a thermoplastic polyimide and a thermosetting polyimide. Note that polyimide can also be obtained by subjecting a polyamic acid to a heat treatment.
  • the polyimide obtained by heat treatment of the polyamic acid is obtained by dehydration-condensation of the polyamic acid by the heat treatment to form a polyimide.
  • the imidation ratio of the polyimide is preferably 80% or more.
  • the imidation ratio is a mol% of the produced polyimide with respect to the polyimide precursor (polyamic acid).
  • the imidazole ratio of 80% or more can be obtained, for example, by heat-treating a polyamic acid N-methyl-2-pyrrolidone (NMP) solution at a temperature of 100 to 400 ° C. for 1 hour or more. For example, when heat treatment is performed at 350 ° C, the imidization rate becomes 80% in about 1 hour and 100% in about 3 hours.
  • NMP N-methyl-2-pyrrolidone
  • the binder remains without being completely decomposed even after the heat treatment for sintering. Therefore, when polyimide is used as the binder, the polyimide is not completely decomposed.
  • the sintering treatment is performed at 600 ° C. or lower.
  • the amount of the binder in the mixture layer is preferably at least 5% by weight of the total weight of the mixture layer.
  • the volume occupied by the binder is preferably at least 5% of the total volume of the mixture layer. If the amount of the binder in the mixture layer is too small, the adhesiveness of the binder in the electrode may be insufficient. On the other hand, if the amount of the binder in the mixture layer is too large, the resistance in the electrode increases, which may make initial charging difficult. Therefore, it is preferable that the amount of the binder in the mixture layer is 50% by weight or less of the total weight, and the volume occupied by the binder is 50% or less of the total volume of the mixture layer.
  • the mixture layer containing the active material particles and the binder, which progresses from the surface toward the inside by charging and discharging, and the binder are formed of conductive metal foil.
  • a lithium secondary battery including a negative electrode, a positive electrode, and a non-aqueous electrolyte disposed on the surface of a current collector made of such a material, characterized in that carbon dioxide is dissolved in the non-aqueous electrolyte.
  • Examples of the active material particles whose porosity progresses from the surface toward the inside by charge / discharge include silicon particles and silicon alloy particles. Dissolve carbon dioxide in non-aqueous electrolyte By doing so, the porosity of the active material particles due to charge and discharge can be suppressed, and an increase in the electrode thickness due to charge and discharge can be suppressed. Therefore, the volume energy density of the battery can be increased.
  • the solvent of the nonaqueous electrolyte used in the lithium secondary battery of the present invention is not particularly limited, but cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, and dimethyl carbonate And chain carbonates such as methylethyl carbonate and getyl carbonate.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate
  • chain carbonates such as methylethyl carbonate and getyl carbonate.
  • the cyclic carbonate is preferably used.
  • ethylene carbonate and propylene carbonate are preferably used.
  • a mixed solvent of a cyclic carbonate and a chain carbonate can be preferably used. As such a mixed solvent, it is particularly preferable to include ethylene carbonate or propylene carbonate and getyl carbonate!
  • a mixed solvent of the above cyclic carbonate an ether solvent such as 1,2-dimethoxyethane, 1,2-dietoxetane or a chain ester such as ⁇ -petit mouth rataton, sulfolane, methyl acetate, etc.
  • an ether solvent such as 1,2-dimethoxyethane, 1,2-dietoxetane or a chain ester such as ⁇ -petit mouth rataton, sulfolane, methyl acetate, etc.
  • the solutes of the non-aqueous electrolyte include LiPF, LiBF, LiCFSO, LiN (CFSO), Li
  • Examples include F, LiClO, LiBCI, LiBCI, and the like, and mixtures thereof.
  • Li Li
  • XF (where X is P, As, Sb, B, Bi, Al, Ga, or In, and X is y of P, As or Sb
  • y is 6 when y is 6, y is 4 when X is B, Bi, Al, Ga, or In) and lithium perfluoroalkylsulfonimide LiN (CF SO) (CF SO) (where m And n are m 2m + l 2 n 2n + l 2
  • LiPF LiPF
  • an electrolyte a gel polymer electrolyte obtained by impregnating an electrolyte with a polymer electrolyte such as polyethylene oxide and polyacrylonitrile, and an inorganic solid electrolyte such as Lil and LiN are used.
  • a gel polymer electrolyte obtained by impregnating an electrolyte with a polymer electrolyte such as polyethylene oxide and polyacrylonitrile, and an inorganic solid electrolyte such as Lil and LiN are used.
  • the electrolyte of the lithium secondary battery of the present invention may be used as long as the lithium compound as a solute that develops ionic conductivity and the solvent that dissolves and retains the lithium compound do not decompose at the time of charging, discharging, or storing the battery. , Can be used without restrictions.
  • Lithium-containing transition metal oxides such as MnO, LiCo Ni O, and LiNi Co Mn O
  • metal oxides containing no lithium such as MnO. Also, besides this
  • Any substance can be used without limitation as long as it is a substance that electrochemically inserts and removes lithium.
  • the production method of the present invention is a method capable of producing the lithium secondary battery of the present invention, and includes a mixture layer containing active material particles containing silicon and Z or a silicon alloy and a binder. On the surface of a current collector made of a conductive metal foil and sintering to produce a negative electrode, dissolving carbon dioxide in a non-aqueous electrolyte, and removing the negative electrode, the positive electrode, and the non-aqueous electrolyte. And assembling a lithium secondary battery using the same.
  • the sintering of the negative electrode is preferably performed in a non-oxidizing atmosphere.
  • a method for dissolving the carbon dioxide in the non-aqueous electrolyte there is a method in which the carbon dioxide is dissolved by bringing the carbon dioxide into contact with the non-aqueous electrolyte.
  • a method of blowing gaseous carbon dioxide into a non-aqueous electrolyte may be mentioned.
  • a non-aqueous electrolyte in which carbon dioxide is dissolved can be efficiently and easily obtained.
  • Other methods include a method of stirring a non-aqueous electrolyte in carbon dioxide, a method of bringing high-pressure carbon dioxide into contact with the non-aqueous electrolyte, and the like.
  • carbon dioxide may be dissolved in the non-aqueous electrolyte by adding a substance that generates carbon dioxide to the non-aqueous electrolyte.
  • a substance that generates carbon dioxide examples include bicarbonate and carbonate.
  • dry ice or the like may be used.
  • the amount of diacid carbon dissolved in the nonaqueous electrolyte is stably controlled. Is preferred. Therefore, it is preferable to assemble the lithium secondary battery in an atmosphere containing carbon dioxide. For example, a step of injecting a non-aqueous electrolyte in which carbon dioxide is dissolved into a battery And the subsequent steps are preferably performed in an atmosphere containing carbon dioxide. Further, it is preferable to stabilize the dissolved amount of carbon dioxide by injecting a non-aqueous electrolyte in which carbon dioxide is dissolved into the battery and then exposing the battery to a high-pressure carbon dioxide atmosphere. Since the saturated dissolved amount of carbon dioxide changes depending on the temperature of the nonaqueous electrolyte, it is necessary to control the temperature of the lithium secondary battery in the manufacturing process so that the temperature of the lithium secondary battery does not change as much as possible. preferable.
  • Carbon dioxide may be dissolved in the non-aqueous electrolyte by producing the lithium secondary battery of the present invention in an atmosphere containing carbon dioxide.
  • carbon dioxide may be dissolved in the nonaqueous electrolyte by leaving the battery before sealing in an atmosphere containing carbon dioxide and sealing after a predetermined time has elapsed.
  • the mixture layer is formed on the surface of the metal foil current collector by applying a slurry in which active material particles are dispersed in a binder solution onto the surface of the metal foil current collector. It can be placed.
  • the mixture layer is rolled together with the metal foil current collector before sintering. preferable.
  • the packing density in the mixture layer is increased, and the adhesion between the active material particles and the adhesion between the mixture layer and the current collector can be increased. Therefore, better charge / discharge cycle characteristics can be obtained.
  • the sintering in the present invention is preferably performed under a non-oxidizing atmosphere, for example, under a vacuum, a nitrogen atmosphere, or an inert gas atmosphere such as argon. Alternatively, the treatment may be performed under a reducing atmosphere such as a hydrogen atmosphere.
  • the heat treatment temperature at the time of sintering is preferably a temperature equal to or lower than the melting points of the metal foil current collector and the active material particles.
  • the melting point of copper is preferably 1083 ° C or less, more preferably 200 to 500 ° C, and Preferably it is in the range of 300-450 ° C.
  • a spark plasma sintering method or a hot press method may be used as a sintering method.
  • the charge-discharge capacity is large, the cycle characteristics are excellent, the porosity of active material particles due to charge-discharge can be suppressed, and the increase in electrode thickness after charge-discharge is reduced.
  • Rechargeable lithium battery Rechargeable lithium battery.
  • FIG. 1 is a diagram showing a FIB-SIM image of a cross section of a negative electrode of a lithium secondary battery A1 according to the present invention.
  • FIG. 2 is a view showing a FIB-SIM image of a cross section of a negative electrode of a lithium secondary battery A1 according to the present invention.
  • FIG. 3 is a view showing a FIB-SIM image of a cross section of a negative electrode of a comparative battery B1.
  • FIG. 4 is a view showing a FIB-SIM image of a cross section of a negative electrode of a comparative battery B1.
  • FIG. 5 is a view showing a result of surface analysis (positive ions) of the negative electrode by TOF-SIMS.
  • FIG. 6 is a diagram showing the results of surface analysis (negative ions) of the negative electrode by TOF-SIMS.
  • FIG. 7 is a plan view showing a lithium secondary battery produced in an example according to the present invention.
  • FIG. 8 is a sectional view showing a section of the lithium secondary battery shown in FIG. 7.
  • FIG. 9 is a graph showing the relationship between the amount of dissolved carbon dioxide in the electrolyte and the cycle life. Explanation of reference numerals
  • Active Kei-containing powder having an average particle diameter of 3 m as material particles (purity 99.9%) 81. 8 parts by weight, containing a polyimide 18.2 parts by weight of the binder 8.6 wt 0/0 of N- methylpyrrolidone
  • the mixture was mixed with a negative electrode solution to obtain a negative electrode mixture slurry.
  • This negative electrode mixture slurry was applied to one side (rough surface) of an electrolytic copper foil (thickness 35 ⁇ m) (current collector al) having a surface arithmetic average roughness Ra of 0.5 ⁇ m and dried. did.
  • the obtained product was cut into a rectangular shape of 25 mm ⁇ 30 mm, rolled, heat-treated at 400 ° C.
  • the thickness of the sintered body was 50 m. Therefore, the thickness of the mixture layer was 15 m, the arithmetic mean roughness of the thickness Z copper foil surface of the mixture layer was 30, and the thickness Z copper foil thickness of the mixture layer was 0.43.
  • the density of the polyimide was 1. lgZcm 3 , and the volume occupied by the polyimide was 31.8% of the total volume of the mixture layer.
  • the Li: Co atomic ratio should be 1: 1
  • the mixture was weighed and mixed in a mortar, pressed with a mold having a diameter of 17 mm, pressed, and then fired in air at 800 ° C. for 24 hours to obtain a fired body of LiCoO. Crush this in a mortar,
  • the average particle diameter was adjusted to 20 ⁇ m.
  • NMP N- methylpyrrolidone
  • This positive electrode material mixture slurry was applied on an aluminum foil as a current collector, dried, and then rolled. The obtained product was cut into a square of 20 mm ⁇ 20 mm to obtain a positive electrode.
  • the solvent used was a mixture of ethylene carbonate and getyl carbonate in a volume ratio of 3: 7.
  • the above positive electrode, negative electrode, and electrolyte solution were inserted into an aluminum laminate exterior, to produce a lithium secondary battery A1.
  • the lithium secondary battery was manufactured in a carbon dioxide gas atmosphere at normal temperature and normal pressure.
  • FIG. 7 is a front view showing the manufactured lithium secondary battery.
  • FIG. 8 is a sectional view taken along line AA of FIG.
  • the positive electrode and the negative electrode are arranged so as to face each other with a polyethylene porous body interposed therebetween, and are inserted into an exterior body 1 made of aluminum-muramine as shown in FIG. 8 as an electrode body 5.
  • the positive electrode is provided with a positive electrode current collecting tab 3 which also has an aluminum force
  • the negative electrode is provided with a negative electrode current collecting tab 4 which is a nickel force.
  • the periphery of the exterior body 1 has a closed portion 2 formed by heat sealing.
  • the electrolyte solution X in Experiment 1 was added with 5% by weight of bilene carbonate without blowing the carbon dioxide gas to prepare an electrolyte solution bl.
  • a battery B1 was produced in the same manner as in Experiment 1, except that the battery was produced in an argon atmosphere.
  • the charge / discharge cycle characteristics of the batteries A1 and B1 were evaluated. Each battery was charged at a constant current of up to 4.2 V at a current value of 14 mA at 25 ° C, and then charged at a constant voltage of 0.7 mA at a voltage of 4.2 V, and then up to 2.75 V at a current value of 14 mA. The battery was discharged, and this was defined as one cycle of charge and discharge. The number of cycles required to reach 80% of the discharge capacity in the first cycle was measured and defined as the cycle life. Table 2 shows the results. The cycle life of each battery is an index with the cycle life of battery A1 as 100.
  • FIB-SIM observation means that a focused ion beam (FIB) is used to expose a cross section, and this cross section is observed with a scanning ion microscope (SIM).
  • FIB focused ion beam
  • FIG. 1 and FIG. 2 are SIM images of the negative electrode of the battery A1.
  • FIG. 2 is an enlarged view of FIG. 3 and 4 are SIM images of the negative electrode of the battery B1.
  • FIG. 4 is an enlarged view of FIG. Since the observation was made from a 45-degree angle with respect to the cross section, the actual length in the vertical direction in each figure was the scale of each figure (10 m in Figs. 1 and 3 and 1 m in Figs. 2 and 4). Double the length measured in m). Therefore, it can be seen that the thickness of the mixture layer is about 2 for the negative electrode of battery A1 (FIG. 1), and about 42 m for the negative electrode of battery B1 (FIG. 3).
  • the black portions in the mixture layer are portions where the active material particles are not porous, and the white portions are portions where the porous material is not porous. Therefore, in the battery A1, only the surface portion of the active material particles is porous.
  • the thickness of the mixture layer of battery B1 is greater than the thickness of the mixture layer of battery A1, and in the negative electrode of battery B1, the active material particles are porous. By making the dagger, the thickness of the mixture layer is increased, which makes it clear.
  • Battery A2 was produced in the same manner as in Experiment 1, except that silicon powder having an average particle diameter of 20 m was used in Experiment 1. Also, in Experiment 2, a battery B2 was fabricated in the same manner as in Experiment 2, except that silicon powder having an average particle diameter of 20 m was used.
  • the cycle characteristics of these batteries were evaluated in the same manner as in Experiment 2.
  • the cycle life is an index with the cycle life of battery A1 as 100.
  • Table 3 also shows the cycle life of batteries A1 and B1.
  • an electrolytic copper foil having a different arithmetic average roughness Ra was used as a current collector instead of the current collector al. Specifically, an electrolytic copper foil having an arithmetic average roughness Ra of 0. 1 and an electrolytic copper foil having an arithmetic average roughness Ra of 0.17 m were used. Batteries A3 and A4 were produced in the same manner as in Experiment 1 using these current collectors.
  • the batteries A1 and A3 using current collectors having an arithmetic average roughness Ra of 0.2 m or more have an arithmetic average roughness Ra of less than 0.2 m. It shows superior cycle characteristics compared to battery A4 using a current collector. This is because, by using a current collector having an arithmetic mean roughness Ra of 0 or more, the contact area between the active material particles and the current collector surface is increased, sintering occurs effectively, and the active material particles and the current collector are collected. This is probably because the adhesion to the conductor was improved. It is also considered that the anchor effect on the current collector surface due to the solder was larger, so that the adhesion between the mixture layer and the current collector was further improved, and the current collection inside the electrode was improved. .
  • a battery A5 was fabricated in the same manner as in experiment 1, except that the heat treatment of the electrode was performed at 600 ° C for 10 hours.
  • battery A5 heat-treated at 600 ° C for 10 hours may have significantly reduced cycle characteristics as compared to battery A1 heat-treated at 400 ° C for 30 hours. Powerful. This is presumably because the heat treatment at 600 ° C decomposes the binder, greatly reducing the adhesiveness of the binder inside the electrode and reducing the current collection.
  • nickel powder having an average particle diameter of 3 ⁇ m was added to the total amount of silicon powder and silicon powder by 20%.
  • a battery A6 was made in the same manner as in Experiment 1, except that the addition was performed so as to be the weight%.
  • the cycle characteristics of this battery were evaluated in the same manner as described above.
  • the cycle life is an index with the cycle life of battery A1 as 100.
  • Table 6 also shows the cycle life of battery A1.
  • the battery A6 in which the nickel powder was added to the mixture layer had a conductive powder added to the mixture layer, and the cycle characteristics were improved compared to the battery A1. I understand. This is considered to be because the conductive powder formed a conductive network around the active material particles, thereby improving the current collection in the mixture layer.
  • the mixture layer is provided only on one side of the current collector of the negative electrode, but the mixture layer may be provided on both sides of the current collector. In this case, it is preferable that uneven portions according to the present invention are formed on both surfaces of the current collector.
  • a negative electrode obtained by depositing an amorphous silicon thin film on a current collector made of a conductive metal foil by a sputtering method can provide a porous material of an active material by a charge / discharge cycle. It has been found that the occurrence of such a phenomenon and that such a porous film can be suppressed by using a non-aqueous electrolyte in which carbon dioxide is dissolved.
  • a silicon thin film electrode as a negative electrode, a battery XI, a battery Y1, and a battery Y2 were produced.
  • Battery XI uses a non-aqueous electrolyte in which carbon dioxide is dissolved
  • battery Y1 uses a non-aqueous electrolyte in which carbon dioxide is not dissolved
  • battery Y2 dissolves carbon dioxide.
  • a non-aqueous electrolyte containing 20% by weight of bicarbonate (VC) was used.
  • VC bicarbonate
  • the surface of the negative electrode was analyzed by TOF-SIMS (time-of-flight secondary ion mass spectrometry).
  • Fig. 5 shows the TOF-SIMS spectrum of the positive ion
  • Fig. 6 shows the TOF-SIMS spectrum of the negative ion.
  • Vector. 5 and 6 ⁇ LiPF6 + C02 '' shows the spectrum of battery XI
  • ⁇ LiPF6 '' shows the spectrum of battery Y1
  • ⁇ LiPF6 + VC20wt% '' shows the spectrum of battery Y2. ! /
  • the surface of the negative electrode in battery XI has significantly reduced Si ions and Si-containing ions, and has reduced LiF + ions, as compared with those of battery Y1 and battery Y2. Increase
  • a coating containing Si as an active material is formed on the negative electrodes of Battery Y1 and Battery Y2. It is also presumed that the formation of such a coating causes the surface of the active material to become porous. When a non-aqueous electrolyte in which carbon dioxide is dissolved is used, such a film is not formed, and it is considered that the porous material of the active material is suppressed.
  • a stable film having excellent lithium ion conductivity is formed on the surface of the active material particles, whereby lithium ions are absorbed and released into the active material particles. It is considered that in the course of charging and discharging, the transformation of the active material particles can be suppressed, and the porous material in the active material particles can be suppressed.
  • a positive electrode and a negative electrode were produced in the same manner as in Experiment 1.
  • Electrolyte X was prepared in the same manner as in Experiment 1, and the electrolyte X was added to this electrolyte X in the same manner as in Experiment 1.
  • Electrolyte al was prepared by blowing carbon gas.
  • electrolyte solution X and the electrolyte solution al were mixed at a volume ratio shown in Table 7, to prepare electrolyte solutions a2, a3, and a4.
  • the cycle life is an index when the cycle life of battery A1 is 100.
  • Table 8 also shows the cycle life of battery A1.
  • FIG. 9 shows the relationship between the dissolved amount of carbon dioxide in the electrolytic solution using each battery and the cycle life.
  • the amount of dissolution of carbon dioxide in the electrolytic solution is preferably 0.01% by weight or more, more preferably 0.05% by weight or more. 1% by weight or more.
  • electrolyte PO A 6 Z liter solution was prepared. This is designated as electrolyte PO.
  • the electrolytic solution PO was cooled to 5 ° C., and carbon dioxide gas was blown into the electrolytic solution in a carbon dioxide atmosphere at a volume of 300 mlZ. Blowing was continued until the weight of the electrolyte no longer changed (about 30 minutes). The temperature was raised to 25 ° C. to obtain an electrolyte P1. The weight of the electrolytic solution after the injection of carbon dioxide gas is measured in an atmosphere of the carbon dioxide gas, and the change in the weight of the electrolytic solution is examined to determine the amount of the carbon dioxide dissolved in the electrolytic solution. The result was 0.37% by weight.
  • Lithium salt of electrolyte PO Same as electrolyte PO except that LiBF is used instead of LiPF
  • An electrolytic solution was prepared, and used as an electrolytic solution BO. Carbon dioxide gas was blown into this electrolytic solution BO in the same manner as electrolytic solution P1 to obtain electrolytic solution B1.
  • An electrolytic solution was prepared in the same manner as in P0, and this was used as electrolytic solution NO. Dioxide carbon gas was blown into this electrolytic solution NO in the same manner as the electrolytic solution P1 to obtain an electrolytic solution N1.
  • Lithium salt of electrolyte PO Same as electrolyte PO except that LiCIO is used instead of LiPF
  • lithium secondary batteries APO, ABO, ANO, and ACO were formed under an argon gas atmosphere at normal temperature and normal pressure. Produced.
  • APO, ABO, and ACO are charged at a constant current of 14 mA up to 4.2 V at 25 ° C, and then at a voltage of 4.2 V, a constant voltage is charged up to a current of 0.7 mA.
  • the battery was discharged to 2.75 V at A, which was defined as one cycle of charge and discharge.
  • the cycle life A is an index when the cycle life of the battery API is 100. Further, the cycle life B is an index with the cycle life of the battery in each of the batteries in which the electrolyte contains dioxide carbon as 100. [0132] [Table 9]
  • batteries AP1, ABI, AN1, and AC1 using an electrolyte in which carbon dioxide was dissolved used an electrolyte in which carbon dioxide was not dissolved. It can be seen that the cycle life is longer compared to the batteries APO, ABO, ANO, and ACO.
  • the batteries API, AB1 and AN1 using the lithium salt containing fluorine have a greater cycle life improvement ratio than the battery AC1 using the lithium salt containing no fluorine. . From this, by including the fluorine-containing lithium salt, it is possible to promote the formation of a good-quality film made of dioxygenated carbon, or to make the film made of dioxygenated carbon a better quality film. It seems to be.
  • the negative electrode current collector having irregularities on only one side is used, and the active material layer is arranged on the irregular surface.
  • the present invention is not limited to this.
  • a current collector having irregularities on both surfaces may be used, and an anode having an active material layer disposed on both surfaces may be used.
  • LiPF was added to a solvent obtained by mixing ethylene carbonate (EC) and ethynolecarbonate (DEC) at a volume ratio of 3: 7.
  • the electrolytic solution EDO was cooled to 5 ° C, and carbon dioxide gas was blown into the electrolytic solution under an atmosphere of carbon dioxide at a flow rate of 300 mlZ until the weight of the electrolytic solution did not change. (Half an hour ). The temperature was raised to 25 ° C to obtain an electrolyte ED1. The weight of the electrolyte solution after the injection of the carbon dioxide gas was measured in an atmosphere of the carbon dioxide gas, and the weight change of the electrolyte solution before and after the injection of the carbon dioxide gas was examined. The gas amount of the carbon dioxide was calculated to be 0.37% by weight.
  • PC Propylene carbonate
  • DEC getyl carbonate
  • PC Propylene carbonate
  • MEC methyl ethyl carbonate
  • Ethylene carbonate (EC) was used as the cyclic carbonate in the electrolyte solution, and methyl ethyl carbonate (MEC) was used as the chain carbonate. Then, an electrolytic solution EM1 was produced.
  • Ethylene carbonate (EC) was used as the cyclic carbonate in the electrolyte, and dimethyl carbonate (DMC) was used as the chain carbonate. These were mixed at a volume ratio of 1: 1. And carbon dioxide are dissolved, and the electrolyte E
  • the gas amounts of carbon dioxide dissolved in the electrolytes PD1, PM1, EMI and EDM1 were 0.36% by weight, 0.64% by weight, 0.54% by weight and 0.46% by weight, respectively.
  • a lithium secondary battery was fabricated in the same manner as in Experiment 1.
  • the cathode, anode, and electrolyte should be aluminum at room temperature and atmospheric pressure in a carbon dioxide gas atmosphere. It was manufactured by inserting it into a laminate exterior body.
  • the electrolytic solution EDO is used by dissolving carbon dioxide
  • the positive electrode, the negative electrode, and the electrolytic solution are inserted into the aluminum laminate outer package at room temperature and normal pressure in an argon gas atmosphere. It was produced.
  • AEDO for batteries using electrolyte EDO
  • AED1 for batteries using electrolyte EDI
  • APD1 for batteries using electrolyte PD1
  • APM1 for batteries using electrolyte PM1
  • AEM for batteries using electrolyte EMI 1.
  • the battery using the electrolyte solution EDM 1 was designated as AEDM 1.
  • aqueous solution obtained by dissolving carboxymethylcellulose as a thickener in water, artificial graphite as a negative electrode active material and styrene-butadiene rubber as a binder were added, and the weight ratio of the active material, the binder, and the thickener was used. Were mixed in a ratio of 95: 3: 2, and then kneaded to prepare a negative electrode slurry. After applying the prepared slurry on a copper foil as a current collector, the slurry is dried and The negative electrode was prepared by rolling using a post-rolling roller and attaching a current collecting tab.
  • LiCoO powder 90 parts by weight of LiCoO powder and 5 parts by weight of artificial graphite powder as a conductive agent were used as a binder.
  • Polytetramethylene Full O b ethylene 5 parts by weight to 5 weight 0/0 of N- methylpyrrolidone aqueous solution containing the Te was a cathode mixture slurry. This slurry was applied to an aluminum foil as a positive electrode current collector by a doctor blade method, and then dried to form a positive electrode active material layer. A positive electrode tab was attached on the region of the aluminum foil to which the positive electrode active material was not applied, and a positive electrode was produced.
  • a solution was prepared by dissolving LiPF in a solution in which ethylene carbonate and getyl carbonate were mixed at a volume ratio of 3: 7 so that LiPF was 1 mol / L.
  • Dioxide carbon was blown into the non-aqueous electrolyte c2 at a temperature of 25 ° C. for 30 minutes to dissolve it until the carbon dioxide was saturated, and this was used as a non-aqueous electrolyte cl.
  • the dissolved amount of carbon dioxide was 0.37% by weight.
  • the nonaqueous electrolytes cl and c2 are as follows.
  • Non-aqueous electrolyte cl Non-aqueous electrolyte with CO dissolved
  • Non-aqueous electrolyte c2 Non-aqueous electrolyte without CO dissolved
  • a lithium secondary battery was manufactured using the above negative electrode, positive electrode, and nonaqueous electrolyte.
  • the above-mentioned positive electrode and negative electrode are wound around a separator which also has a porous polyethylene force between the positive electrode and the negative electrode, and the above-mentioned non-aqueous electrolyte is inserted into an outer casing made of aluminum laminate.
  • the battery was completed by heat shining around the exterior body so that the battery came out.
  • the battery prepared using the nonaqueous electrolyte cl was designated as Battery C1
  • the battery produced using the nonaqueous electrolyte c2 was designated as Battery C2.
  • the battery C1 was manufactured in an atmosphere of high-purity carbon dioxide gas.
  • a charge / discharge cycle test was performed on the lithium secondary batteries C1 and C2 manufactured as described above.
  • the charging and discharging conditions are as follows: at 25 ° C, constant current charging at a current value of 600 mA up to 4.2 V, then charging at a constant voltage of 4.2 V up to 30 mA, discharging to 2.75 V at a current value of 600 mA, This was defined as one cycle of charge and discharge.
  • Table 13 shows the capacity retention rate obtained by dividing the discharge capacity at the 500th cycle by the discharge capacity at the first cycle.
  • Table 13 shows the amount of increase in the thickness of the battery after 500 cycles and the amount of increase in the thickness of the active material per one electrode obtained from this amount.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 ケイ素及び/またはケイ素合金を含む活物質粒子とバインダーとを含む合剤層を導電性金属箔からなる集電体の表面上で焼結して配置した負極と、正極と、非水電解質とを備え、非水電解質に二酸化炭素を溶解させたことを特徴としている。

Description

明 細 書
リチウム二次電池及びその製造方法
技術分野
[0001] 本発明は、リチウム二次電池及びその製造方法に関するものである。
背景技術
[0002] 近年、高出力及び高エネルギー密度の新型二次電池の 1つとして、非水電解液を 用い、リチウムイオンを正極と負極との間で移動させて充放電を行うリチウム二次電池 が利用されている。
[0003] このようなリチウム二次電池用負極として、リチウムと合金化する材料を負極活物質 として用いたものが検討されている。リチウムと合金化する材料としては、例えばケィ 素材料が検討されている。しかしながら、ケィ素材料等のリチウムと合金化する材料 は、リチウムを吸蔵,放出する際に、活物質の体積が膨張,収縮するため、充放電に 伴い活物質が微粉化したり、活物質が集電体から脱離する。このため、電極内の集 電性が低下し、充放電サイクル特性が悪くなるという問題があった。
[0004] 本出願人は、このような問題を解決するリチウム二次電池用負極として、ケィ素及び Zまたはケィ素合金を含む活物質粒子とバインダーとを含む合剤層を集電体の表面 上に配置した後、焼結して得られるリチウム二次電池用負極を提案している(特許文 献 1)。
[0005] 一方、炭素材料または金属リチウムなどを負極活物質としたリチウム二次電池にお いては、非水電解質に二酸化炭素を溶解させること、または電池缶内に二酸化炭素 を封入することが提案されている(特許文献 2— 12)。
本出願人が提案している上記リチウム二次電池は、充放電容量が大きぐサイクル 特性に優れる電池であるが、充放電の繰り返しにより負極の活物質粒子が多孔質ィ匕 し、負極の厚みが増加するという問題があった。
[0006] 特許文献 1:国際公開第 02Z21616号パンフレット
特許文献 2 :米国特許第 4853304号明細書
特許文献 3 :特開平 6- 150975号公報 特許文献 4:特開平 6— 124700号公報
特許文献 5 :特開平 7-176323号公報
特許文献 6:特開平 7 - 249431号公報
特許文献 7:特開平 8— 64246号公報
特許文献 8:特開平 9- 63649号公報
特許文献 9:特開平 10-40958号公報
特許文献 10:特開 2001— 307771号公報
特許文献 11:特開 2002-329502号公報
特許文献 12:特開 2003— 86243号公報
発明の開示
[0007] 本発明の目的は、ケィ素及び Zまたはケィ素合金を含む活物質粒子を含む負極を 用いたリチウム二次電池であって、充放電容量が大きぐサイクル特性に優れ、充放 電による活物質粒子の多孔質ィ匕を抑制することができ、充放電後の電極の厚みの増 加を少なくすることができるリチウム二次電池及びその製造方法を提供することにある
[0008] 本発明のリチウム二次電池は、ケィ素及び Zまたはケィ素合金を含む活物質粒子 とバインダーとを含む合剤層を導電性金属箔カゝらなる集電体の表面上で焼結して配 置した負極と、正極と、非水電解質とを備えるリチウム二次電池であり、非水電解質 に二酸ィ匕炭素を溶解させたことを特徴として 、る。
[0009] 本発明における非水電解質への二酸化炭素の溶解は、意図的に非水電解質に二 酸ィ匕炭素を溶解させることを意味している。すなわち、通常のリチウム二次電池の製 造工程において、不可避的に非水電解質に溶解される二酸化炭素の溶解は含まれ ない。二酸化炭素は、一般に非水電解質の溶媒に溶解される。従って、溶質を溶解 した非水電解質に二酸ィ匕炭素を溶解させてもよいし、予め二酸ィ匕炭素を溶解させた 溶媒に溶質を溶解して非水電解質を調製してもよ ヽ。
[0010] 非水電解質に二酸化炭素を溶解させることにより、充放電反応に伴って生じる活物 質粒子の多孔質ィ匕を抑制することができる。従って、充放電による活物質粒子の層 の厚み増加を少なくすることができ、リチウム二次電池の体積エネルギー密度を高め ることがでさる。
[ooii] ケィ素及び Zまたはケィ素合金を含む活物質粒子とバインダーとを含む合剤層を 導電性金属箔カ なる集電体の表面上で焼結して得られる負極は、充放電容量が 大きぐ充放電サイクル特性に優れている。本発明者らは、このような負極において、 充放電反応を繰り返すと、活物質粒子の表面力 その内部に向力つて、徐々に多孔 質ィ匕が生じることを見出した。このような多孔質ィ匕により、電極の厚みが増加し、体積 エネルギー密度が低下する。このような活物質における多孔質ィ匕は、活物質であるケ ィ素の不可逆反応により、ケィ素が変質することによって生じるものであると考えられ る。
[0012] 本発明に従い、非水電解質に二酸ィ匕炭素を溶解させておくことにより、活物質粒子 の多孔質ィ匕を抑制することができる。このため、電極の厚みの増加を少なくすることが でき、体積エネルギー密度を高めることができる。非水電解質に二酸化炭素を溶解さ せておくことにより、活物質粒子の多孔質ィヒを抑制できる理由の詳細は明らかでない
1S 粒子の表面に、リチウムイオン伝導性の高い安定な膜が形成されるためであると 考えられる。
[0013] 本発明にお 、て、負極の焼結は、非酸ィ匕性雰囲気下で行うことが好ま U、。
本発明において、非水電解質に二酸ィ匕炭素を溶解させる量は、 0. 001重量%以 上であることが好ましぐさらに好ましくは 0. 01重量%以上であり、さらに好ましくは 0 . 05重量%以上であり、さらに好ましくは 0. 1重量%以上である。通常は、非水電解 質に二酸ィ匕炭素を飽和するまで溶解させることが好ましい。ここで、二酸化炭素の溶 解量には、不可避的に非水電解質に溶解されている二酸ィ匕炭素は含まれない。す なわち、通常の製造工程で非水電解質中に溶解する二酸ィ匕炭素は含まれない。従 つて、上記二酸化炭素の溶解量は、例えば、二酸ィ匕炭素を溶解させた後の非水電 解質の重量と、二酸化炭素を溶解させる前の非水電解質の重量を測定することによ り求めることができる。具体的には、以下の式により求めることができる。
[0014] 非水電解質中の二酸化炭素の溶解量 (重量%) =〔(二酸ィ匕炭素を溶解させた後 の非水電解質の重量) - (二酸化炭素を溶解させる前の非水電解質の重量)〕 Z (二 酸ィ匕炭素を溶解させた後の非水電解質の重量) X 100 [0015] 本発明においては、電池内部の空隙に二酸ィ匕炭素が含まれていることが好ましい 。電池内部の空隙は、例えばセパレータを介して正極と負極とを対向させて形成した 電極体と、電池外装体との間に形成される。この空隙には、例えば電池を組み立てる 際に二酸ィ匕炭素雰囲気下で行うことにより、あるいは電解質中に溶解した二酸ィ匕炭 素が電解質力も放出されることにより二酸ィ匕炭素を含ませることができる。充放電に 伴い電解質内の二酸ィ匕炭素が消費された場合には、この空隙中の二酸化炭素が電 解質に溶解し、電解質内の二酸ィ匕炭素を補給することができる。
[0016] 本発明にお ヽては、非水電解質にフッ素を含有する化合物が含まれて!/ヽることが 好ましい。このような化合物が非水電解質中に含有されることにより、サイクル特性を さらに向上させることができる。
[0017] フッ素を含有する化合物としては、フッ素含有リチウム塩及びフッ素含有溶媒などを 挙げることができる。
フッ素含有リチウム塩としては、 LiPF、 LiBF、 LiCF SO、 LiN (CF SO )、 LiN (
6 4 3 3 3 2 2
C F SO )、 LiN (CF SO )(C F SO )、 LiC (CF SO ) LiC (C Li F
2 5 2 2 3 2 4 9 2 3 2 3、 F SO )
2 5 2 3、 As
6、
LiXF (式中、 Xは P、 As、 Sb、 B、 Bi、 Al、 Ga、または Inであり、 Xが P、 Asまたは Sb y
のとき yは 6であり、 Xが B、 Bi、 Al、 Ga、または Inのとき yは 4である)、リチウムペルフ ルォロアルキルスルホン酸イミド LiN (C F SO )(C F SO ) (式中、 m及び nはそ m 2m+l 2 n 2n+l 2
れぞれ独立して 1一 4の整数である)、及びリチウムペルフルォロアルキルスルホン酸 メチド LiC (C F SO )(C F SO )(C F SO ) (式中、 p
p 2p+l 2 q 2q+l 2 r 2r+l 2 、 q及び rはそれぞれ独立 して 1一 4の整数である)などが挙げられる。
[0018] フッ素含有溶媒としては、ブチレンカーボネート及びプロピレンカーボネートなどの 環状カーボネート、並びにジメチルカーボネート及びジェチルカーボネートなどの鎖 状カーボネートの水素原子をフッ素原子に置換したィ匕合物が挙げられる。例えば、 プロピレンカーボネートの水素原子をフッ素原子で置換したトリフルォロメチル化プロ ピレンカーボネート、 1, 1, 1—トリフルォロジェチルカーボネート(CF CH OCOOC
3 2
H CH )、トリフルォロェチルメチルカーボネート(CF CH OCOOCH )などが挙げ
2 3 3 2 3
られる。また、 1, 2—ジメトキシェタン、 1, 2—ジエトキシェタンなどのエーテル系溶媒 や、 γ—プチ口ラタトンなどの環状エステル等の水素原子をフッ素原子で置換したィ匕 合物を用いてもよい。このようなものとして、例えば、ビス 1, 2- (2, 2, 2—トリフルォロ エトキシ)ェタン(CF CH OCH CH OCH CF )などが挙げられる。
3 2 2 2 2 3
[0019] 非水電解質の溶質としてフッ素含有リチウム塩を用いる場合、フッ素含有リチウム塩 は、非水電解質に対して 0. 1— 2モル Zリットルの濃度となるように添加することが好 ましい。また、リチウム塩の総量は 0. 5— 2モル Zリットルであることが好ましい。濃度 が 0. 1モル Zリットル未満である場合には、フッ素を含有することによる効果が十分 に得られないため好ましくない。また、リチウム塩の総量が 0. 5モル Zリットル未満の 場合は、非水電解質のリチウムイオン伝導性が十分に得られな ヽため好ましくな!/、。 また、濃度が 2モル Zリットルを超える場合には、非水電解質の粘度が上がり、非水 電解質のイオン伝導性が低くなるため、また低温時にぉ 、て塩が析出するため好ま しくない。
[0020] 非水電解質の溶媒にフッ素含有化合物を用いる場合には、全溶媒中において 1体 積%以上用いることが好ましい。濃度力 ^体積%未満である場合には、フッ素を含有 することによる効果が十分に得られな 、場合がある。
[0021] また、本発明においては、電解液に対し難溶性であるフッ素含有ィ匕合物を、予めセ パレータに含有させておいてもよい。また、負極合剤層中に、フッ素含有化合物を予 め添カ卩しておいてもよい。このようなフッ素含有ィ匕合物としては、例えばフッ化リチウム などが挙げられる。
[0022] 負極合剤層中にフッ素含有化合物を添加する場合には、フッ素含有化合物を全合 剤量に対し 0. 05— 5重量%添加することが好ましい。 0. 05重量%よりも少ないと、 フッ素を含有することによる効果が十分に得られない場合がある。また、 5重量%より も多 、と、活物質層内の抵抗が大きくなるため好ましくな 、。
[0023] 本発明にお 、て用いる活物質粒子としては、ケィ素及び Zまたはケィ素合金の粒 子が挙げられる。ケィ素合金としては、ケィ素と他の 1種以上の元素との固溶体、ケィ 素と他の 1種以上の元素との金属間化合物、ケィ素と他の 1種以上の元素との共晶 合金などが挙げられる。合金の作製方法としては、アーク溶解法、液体急冷法、メカ 二カルァロイング法、スパッタリング法、化学気相成長法、焼成法などが挙げられる。 特に、液体急冷法としては、単ロール急冷法、双ロール急冷法、及びガスアトマイズ 法、水アトマイズ法、ディスクアトマイズ法などの各種アトマイズ法が挙げられる。
[0024] また、本発明にお 、て用いる活物質粒子としては、ケィ素及び Zまたはケィ素合金 の粒子表面を金属等で被覆したものを用いてもよい。被覆方法としては、無電解めつ き法、電解めつき法、化学還元法、蒸着法、スパッタリング法、化学気相成長法など が挙げられる。粒子表面を被覆する金属としては、集電体として用いる金属箔と同じ 金属であることが好ましい。金属箔と同じ金属を被覆することにより、焼結の際の集電 体との結合性が大きく向上し、さらに優れた充放電サイクル特性を得ることができる。
[0025] 本発明において用いる活物質粒子には、リチウムと合金化する材料力もなる粒子が 含まれていてもよい。リチウムを合金化する材料としては、ゲルマニウム、錫、鉛、亜 鉛、マグネシウム、ナトリウム、アルミニウム、ガリウム、インジウム及びこれらの合金な どが挙げられる。
[0026] 本発明において用いる活物質粒子の平均粒子径は、特に限定されないが、効果的 な焼結を行うためには、 100 m以下であることが好ましぐさらに好ましくは 50 m 以下、最も好ましくは 10 m以下である。活物質粒子の粒子径が小さいほど、良好 なサイクル特性が得られる傾向にある。また、合剤層に添加して用いる導電性粉末の 平均粒子径も、特に限定されるものではないが、 100 m以下であることが好ましぐ さらに好ましくは 50 μ m以下であり、最も好ましくは 10 μ m以下である。
[0027] 平均粒子径の小さい活物質粒子を用いることにより、充放電反応でのリチウムの吸 蔵'放出に伴う活物質粒子の体積の膨張'収縮の絶対量が小さくなるため、充放電 反応時の電極内での活物質粒子間の歪みの絶対量も小さくなるので、ノインダ一の 破壊が生じず、電極内の集電性の低下を抑制することができ、良好な充放電特性を 得ることができる。
[0028] また、上述のように、本発明にお 、ては、非水電解質に二酸ィ匕炭素を溶解させてお くことにより、活物質粒子の表面に、リチウムイオン伝導性の高い安定な膜が形成さ れると思われる力 平均粒子径の小さい活物質粒子を用いることにより、このリチウム イオン伝導性の高い膜が合剤層中に緻密に存在することになる。従って、緻密なリチ ゥムイオン伝導経路が合剤層中に形成されるため、電極内の充放電反応の分布の 均一性がさらに向上すると考えられる。このため、活物質内でのリチウムの吸蔵 '放出 に伴う体積変化量の偏りにより発生する歪みによる活物質の割れが抑制されるので、 活物質粒子における新生面の発生も抑制され、充放電特性をさらに向上させること ができる。
[0029] また、活物質粒子の粒度分布は、できる限り狭 、ことが好ま 、。幅広 、粒度分布 であると、粒度が大きく異なる活物質粒子間において、リチウムの吸蔵'放出に伴う体 積の膨張 '収縮の絶対量に大きな差が存在することになるため、合剤層内で歪みが 生じ、ノインダ一の破壊が生じる。このため、電極内の集電性が低下し、充放電サイ クル特性が低下する。
[0030] 本発明における集電体は、その表面の算術平均粗さ Ra力 0. 2 μ m以上であるこ とが好ましい。このような算術平均粗さ Raの表面を有する集電体を用いることにより、 合剤層と集電体との接触面積を大きくすることができ、合剤層と集電体との密着性を 向上させることができる。このため、電極内の集電性をさらに向上させることができる。 集電体の両面に合剤層を配置する場合には、集電体の両面の算術平均粗さ Raが 0 . 2 μ m以上であることが好まし!/ヽ。
[0031] 算術平均粗さ Raは、日本工業規格 (JIS B 0601— 1994)に定められている。算 術平均粗さ Raは、例えば、表面粗さ計により測定することができる。
[0032] 本発明において、集電体の厚みは特に限定されるものではないが、 10— 100 μ m の範囲であることが好まし 、。
[0033] 本発明において、集電体表面の算術平均粗さ Raの上限は、特に限定されるもので はないが、集電体の厚みが 10— 100 μ mの範囲であることが好ましいので、集電体 表面の算術平均粗さ Raの上限は実質的には 10 m以下であることが好ましい。
[0034] 本発明における集電体は、導電性金属箔からなる。このような導電性金属箔として は、例えば、銅、ニッケル、鉄、チタン、コバルト等の金属またはこれらの組み合わせ 力もなる合金のものを挙げることができる。特に、活物質材料中に拡散しやすい金属 元素を含有するものが好ましい。このようなものとして、銅元素を含む金属箔、特に銅 箔または銅合金箔が挙げられる。銅は、熱処理によって活物質であるケィ素材料中 に拡散しやすいため、集電体と活物質材料との密着性が焼結により向上することが 期待できる。また、このような焼結による集電体と活物質材料の密着性の向上を目的 とする場合、活物質と接する集電体表面に銅元素を含む層が存在する金属箔を集 電体として用いればよい。従って、銅以外の金属元素からなる金属箔を用いる場合 には、その表面に銅または銅合金層を形成することが好ましい。
[0035] 銅合金箔としては、耐熱性銅合金箔を用いることが好ま ヽ。ここで、耐熱性銅合 金とは、 200°C1時間の焼鈍後の引張強度が 300MPa以上である銅合金を意味して いる。このような耐熱性銅合金としては、例えば、表 1に挙げたものを使用することが できる。
[0036] [表 1]
( %は重量%)
Figure imgf000010_0001
[0037] 上述のように、本発明において用いる集電体は、その表面に大きな凹凸を有するこ とが好ましい。このため、耐熱性銅合金箔表面の算術平均粗さ Raが十分に大きくな い場合には、その箔表面に電解銅または電解銅合金を設けることにより、その表面に 大きな凹凸を設けてもよい。電解銅層及び電解銅合金層は、電解法により形成する ことができる。 [0038] また、本発明においては、集電体の表面に大きな凹凸を形成するため、粗面化処 理を施してもよい。このような粗面化処理としては、気相成長法、エッチング法、及び 研磨法などが挙げられる。気相成長法としては、スパッタリング法、 CVD法、蒸着法 などが挙げられる。エッチング法としては、物理的エッチングや化学的エッチングによ る方法が挙げられる。研磨法としては、サンドペーパーによる研磨やブラスト法による 研磨などが挙げられる。
[0039] 本発明にお 、て、合剤層の厚み Xは、集電体の厚み Y及びその表面の算術平均 粗さ Raと、 5Y≥X、及び 250Ra≥Xの関係を有することが好ましい。合剤層の厚み X 力 5Yまたは 250Raを超える場合、合剤層が、集電体から剥離する場合がある。
[0040] 合剤層の厚み Xは、特に限定されるものではないが、 1000 μ m以下が好ましぐさ らに好ましくは 10 μ m— 100 μ mである。
本発明においては、合剤層に導電性粉末を混合することができる。導電性粉末を 添加することにより、活物質粒子の周囲に導電性粉末による導電性ネットワークが形 成されるので、電極内の集電性をさらに向上させることができる。導電性粉末としては 、上記集電体と同様の材質のものを好ましく用いることができる。具体的には、銅、二 ッケル、鉄、チタン、コバルト等の金属またはこれらの組み合わせ力もなる合金または 混合物である。特に、金属粉末としては銅粉末が好ましく用いられる。また、導電性力 一ボン粉末も好ましく用いることができる。
[0041] 合剤層への導電性粉末の添加量は、活物質粒子との合計重量の 50重量%以下 であることが好ま 、。導電性粉末の添加量が多過ぎると活物質粒子の混合割合が 相対的に少なくなるので、電極の充放電容量が小さくなる。
[0042] 本発明において用いるバインダーは、焼結のための熱処理後も完全に分解せずに 残存して!/、るものが好ま 、。熱処理後もバインダーが分解せずに残存して 、ること により、焼結による活物質粒子と集電体間及び活物質粒子間の密着性の向上にカロ え、ノインダ一による結着力も加わり、密着性をさらに高めることができる。また、算術 平均粗さ Raが 0. 2 m以上の金属箔を集電体として用いる場合、集電体の表面の 凹凸部分にバインダーが入り込むことにより、ノインダ一と集電体の間にアンカー効 果が発現し、さらに密着性が向上する。このため、リチウムの吸蔵 ·放出の際の活物 質の体積の膨張'収縮による集電体力もの活物質層の脱離を抑制することができ、 良好な充放電サイクル特性を得ることができる。
[0043] 本発明におけるバインダーとしては、ポリイミドが好ましく用いられる。ポリイミドとして は、熱可塑性ポリイミド、熱硬化性ポリイミドが挙げられる。なお、ポリイミドは、ポリアミ ド酸を熱処理すること〖こよっても得ることができる。
[0044] ポリアミド酸の熱処理により得られるポリイミドは、ポリアミド酸が熱処理により脱水縮 合してポリイミドとなるものである。ポリイミドのイミドィ匕率は 80%以上のものが好ましい 。イミドィ匕率とは、ポリイミド前駆体 (ポリアミド酸)に対する生成したポリイミドのモル% である。イミドィ匕率 80%以上のものは、例えば、ポリアミド酸の N—メチルー 2—ピロリド ン (NMP)溶液を 100— 400°Cの温度で 1時間以上熱処理することにより得ることが できる。例えば、 350°Cで熱処理する場合、熱処理時間が約 1時間でイミド化率 80% となり、約 3時間でイミド化率は 100%となる。
[0045] 本発明においては、焼結のための熱処理後もバインダーは完全に分解せずに残 存していることが好ましいので、ノインダ一としてポリイミドを用いる場合は、ポリイミド が完全に分解しな 、600°C以下で焼結処理を行うことが好ま 、。
[0046] 本発明において、合剤層中のノインダ一の量は、合剤層の総重量の 5重量%以上 であることが好ましい。また、バインダーの占める体積は、合剤層の総体積の 5%以 上であることが好ましい。合剤層におけるバインダー量が少な過ぎると、バインダーに よる電極内の密着性が不十分となる場合がある。また、合剤層中のバインダー量が 多過ぎると、電極内の抵抗が増加するため、初期の充電が困難になる場合がある。 従って、合剤層中のバインダー量は総重量の 50重量%以下であることが好ましぐバ インダ一の占める体積は、合剤層の総体積の 50%以下であることが好ましい。
[0047] 本発明の他の局面に従うリチウム二次電池は、充放電により表面から内部に向かつ て多孔質ィ匕が進行する活物質粒子とバインダーとを含む合剤層を導電性金属箔か らなる集電体の表面上に配置した負極と、正極と、非水電解質とを備えるリチウム二 次電池であり、非水電解質に二酸ィ匕炭素を溶解させたことを特徴としている。
[0048] 充放電により表面から内部に向かって多孔質ィ匕が進行する活物質粒子としては、 ケィ素粒子、ケィ素合金粒子などが挙げられる。非水電解質に二酸化炭素を溶解さ せることにより、充放電による活物質粒子の多孔質ィ匕を抑制することができ、充放電 による電極の厚みの増加を抑制することができる。このため、電池の体積エネルギー 密度を高めることができる。
[0049] 本発明のリチウム二次電池に用いる非水電解質の溶媒は、特に限定されるもので はないが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビ 二レンカーボネートなどの環状カーボネートや、ジメチルカーボネート、メチルェチル カーボネート、ジェチルカーボネートなどの鎖状カーボネートが挙げられる。非水電 解質の溶媒中に環状カーボネートが存在する場合、活物質粒子の表面において、リ チウムイオン導電性に優れた良質の被膜が特に形成されやすいため、環状カーボネ ートが好ましく用いられる。特に、エチレンカーボネート及びプロピレンカーボネート が好ましく用いられる。また、環状カーボネートと鎖状カーボネートの混合溶媒を好ま しく用いることができる。このような混合溶媒としては、エチレンカーボネートまたはプ ロピレンカーボネートとジェチルカーボネートとを含んで 、ることが特に好まし!/、。
[0050] また、上記環状カーボネートと、 1, 2—ジメトキシェタン、 1, 2—ジエトキシェタンなど のエーテル系溶媒や、 γ -プチ口ラタトン、スルホラン、酢酸メチル等の鎖状エステル 等との混合溶媒も例示される。
[0051] また、非水電解質の溶質としては、 LiPF、 LiBF、 LiCF SO、 LiN (CF SO )、 Li
6 4 3 3 3 2 2
N (C F SO )、 LiN (CF SO )(C F SO )、 LiC (CF SO )、 LiC (C F SO )、 LiAs
2 5 2 2 3 2 4 9 2 3 2 3 2 5 2 3
F、 LiClO、 Li B CI 、 Li B CI など及びそれらの混合物が例示される。特に、 Li
6 4 2 10 10 2 12 12
XF (式中、 Xは P、 As、 Sb、 B、 Bi、 Al、 Ga、または Inであり、 Xが P、 Asまたは Sbの y
とき yは 6であり、 Xが B、 Bi、 Al、 Ga、または Inのとき yは 4である)と、リチウムペルフ ルォロアルキルスルホン酸イミド LiN (C F SO )(C F SO ) (式中、 m及び nはそ m 2m+l 2 n 2n+l 2
れぞれ独立して 1一 4の整数である)またはリチウムペルフルォロアルキルスルホン酸 メチド LiC (C F SO )(C F SO )(C F SO ) (式中、 p、 q及び rはそれぞれ独立 p 2p+l 2 q 2q+l 2 r 2r+l 2
して 1一 4の整数である)との混合溶質が好ましく用いられる。これらの中でも、 LiPF
6 が特に好ましく用いられる。
[0052] さらに電解質として、ポリエチレンォキシド、ポリアクリロニトリルなどのポリマー電解 質に電解液を含浸したゲル状ポリマー電解質や、 Lil、 Li Nなどの無機固体電解質 が例示される。本発明のリチウム二次電池の電解質は、イオン導電性を発現させる溶 質としてのリチウム化合物とこれを溶解'保持する溶媒が電池の充電時や放電時ある いは保存時の電圧で分解しない限り、制約なく用いることができる。
[0053] 本発明のリチウム二次電池の正極材料としては、 LiCoO、 LiNiO、 LiMn O、 Li
2 2 2 4
MnO、 LiCo Ni O、 LiNi Co Mn Oなどのリチウム含有遷移金属酸化物や
2 0.5 0.5 2 0.7 0.2 0.1 2
、 MnOなどのリチウムを含有していない金属酸ィ匕物が例示される。また、この他にも
2
、リチウムを電気化学的に挿入、脱離する物質であれば、制限なく用いることができる
[0054] 本発明の製造方法は、上記本発明のリチウム二次電池を製造することができる方 法であり、ケィ素及び Zまたはケィ素合金を含む活物質粒子とバインダーとを含む合 剤層を導電性金属箔からなる集電体の表面上に配置し、焼結して負極を作製するェ 程と、非水電解質に二酸化炭素を溶解させる工程と、負極、正極、及び非水電解質 を用いてリチウム二次電池を組み立てる工程とを備えることを特徴として 、る。
[0055] 本発明の製造方法においては、負極の焼結を、非酸ィ匕性雰囲気下で行うことが好 ましい。
[0056] 非水電解質に二酸ィ匕炭素を溶解させる方法としては、非水電解質に二酸ィ匕炭素を 接触させることにより二酸ィ匕炭素を溶解させる方法が挙げられる。このような方法とし ては、非水電解質に気体状の二酸ィ匕炭素を吹き込む方法が挙げられる。この方法に より、効率的に容易に二酸ィ匕炭素を溶解した非水電解質を得ることができる。その他 の方法としては、二酸化炭素中で非水電解質を撹拌する方法、高圧の二酸化炭素 を非水電解質に接触させるなどの方法が挙げられる。また、二酸化炭素を発生する 物質を非水電解質に添加することにより、非水電解質に二酸化炭素を溶解させても よい。二酸ィ匕炭素を発生する物質としては、例えば、重炭酸塩及び炭酸塩などが挙 げられる。また、ドライアイスなどを用いてもよい。
[0057] また、二酸ィ匕炭素を溶解させた非水電解質を用いて、リチウム二次電池を製造する 際、非水電解質中における二酸ィ匕炭素の溶解量が安定して制御されていることが好 ましい。このため、二酸化炭素を含む雰囲気下でリチウム二次電池を組み立てること が好ましい。例えば、二酸化炭素を溶解させた非水電解質を電池内に注入する工程 、及びその後の工程を二酸ィ匕炭素を含む雰囲気下で行うことが好ましい。また、二酸 化炭素を溶解させた非水電解質を電池内に注入した後に、高圧の二酸化炭素雰囲 気下にさらすことによって、二酸ィ匕炭素の溶解量を安定させることが好ましい。二酸 化炭素の飽和溶解量は、非水電解質の温度によって変化するため、製造工程にお V、ては、できるだけリチウム二次電池の温度が変化しな 、ように制御されて 、ることが 好ましい。
[0058] また、本発明のリチウム二次電池の製造を、二酸ィ匕炭素を含む雰囲気下で行うこと により、非水電解質中に二酸化炭素を溶解させてもよい。例えば、封口前の電池を 二酸ィ匕炭素を含む雰囲気下に放置し、所定時間経過した後封口を行うことにより、非 水電解質中に二酸化炭素を溶解させてもょ ヽ。
[0059] 本発明において、合剤層は、活物質粒子をバインダーの溶液中に分散させたスラリ 一を金属箔集電体の表面上に塗布することにより、金属箔集電体の表面上に配置す ることがでさる。
[0060] また、本発明の製造方法においては、金属箔集電体の表面上に合剤層を形成した 後、焼結する前に、合剤層を金属箔集電体とともに圧延することが好ましい。このよう な圧延により、合剤層における充填密度が高まり、活物質粒子間の密着性及び合剤 層と集電体との密着性を高めることができる。このため、さらに良好な充放電サイクル 特性を得ることができる。
[0061] 本発明における焼結は非酸ィ匕性雰囲気下で行われることが好ましぐ例えば、真空 下または窒素雰囲気下またはアルゴンなどの不活性ガス雰囲気下で行うことができる 。また、水素雰囲気などの還元性雰囲気下で行ってもよい。焼結する際の熱処理温 度は、金属箔集電体及び活物質粒子の融点以下の温度であることが好ましい。例え ば、金属箔集電体として銅箔を用いた場合には、銅の融点である 1083°C以下であ ることが好ましぐさらに好ましくは 200— 500°Cの範囲内であり、さらに好ましくは 30 0— 450°Cの範囲内である。焼結する方法としては、放電プラズマ焼結法や、ホットプ レス法を用いてもよい。
[0062] 本発明によれば、充放電容量が大きぐサイクル特性に優れ、充放電による活物質 粒子の多孔質ィ匕を抑制することができ、充放電後の電極の厚みの増加を少なくする ことができるリチウム二次電池とすることができる。
図面の簡単な説明
[0063] [図 1]本発明に従うリチウム二次電池 A1の負極の断面の FIB— SIM像を示す図であ る。
[図 2]本発明に従うリチウム二次電池 A1の負極の断面の FIB— SIM像を示す図であ る。
[図 3]比較電池 B1の負極の断面の FIB— SIM像を示す図である。
[図 4]比較電池 B1の負極の断面の FIB— SIM像を示す図である。
[図 5]負極の TOF— SIMSによる表面分析結果 (正イオン)を示す図である。
[図 6]負極の TOF— SIMSによる表面分析結果 (負イオン)を示す図である。
[図 7]本発明に従う実施例において作製したリチウム二次電池を示す平面図である。
[図 8]図 7に示すリチウム二次電池の断面を示す断面図である。
[図 9]電解液中の二酸ィ匕炭素の溶解量とサイクル寿命との関係を示す図である。 符号の説明
[0064] 1…外装体
2…閉口部
3…正極集電タブ
4…負極集電タブ
5…電極体
発明を実施するための最良の形態
[0065] 以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は以下の実施 例に何ら限定されるものではなぐその要旨を変更しない範囲において適宜変更して 実施することが可能なものである。
[0066] (実験 1)
〔負極の作製〕
活物質粒子としての平均粒子径 3 mのケィ素粉末 (純度 99. 9%) 81. 8重量部 を、バインダーとしてのポリイミド 18. 2重量部を含む 8. 6重量0 /0の N—メチルピロリド ン溶液に混合して、負極合剤スラリーとした。 [0067] この負極合剤スラリーを、表面の算術平均粗さ Raが 0. 5 μ mである電解銅箔 (厚み 35 μ m) (集電体 al)の片面 (粗面)に塗布し乾燥した。得られたものを 25mm X 30 mmの長方形状に切り抜き、圧延した後、アルゴン雰囲気下で 400°C30時間熱処理 し、焼結して負極とした。焼結体の厚み (集電体を含む)は 50 mであった。従って、 合剤層の厚みは 15 mであり、合剤層の厚み Z銅箔表面の算術平均粗さは 30であ り、合剤層の厚み Z銅箔厚みは 0. 43であった。
[0068] また、この負極において、ポリイミドの密度は 1. lgZcm3であり、ポリイミドの占める 体積は、合剤層の総体積の 31. 8%であった。
[0069] 〔正極の作製〕
出発原料として、 Li CO及び CoCOを用いて、 Li: Coの原子比が 1 : 1となるように
2 3 3
秤量して乳鉢で混合し、これを直径 17mmの金型でプレスし、加圧成形した後、空気 中において 800°C24時間焼成し、 LiCoOの焼成体を得た。これを乳鉢で粉砕し、
2
平均粒子径 20 μ mに調製した。
[0070] 得られた LiCoO粉末 90重量部と、導電剤としての人工黒鉛粉末 5重量部を、結着
2
剤としてのポリフッ化ビ-リデン 5重量部を含む 5重量0 /0の N—メチルピロリドン(NMP
)溶液に混合し、正極合剤スラリーを調製した。
[0071] この正極合剤スラリーを、集電体であるアルミニウム箔の上に塗布し、乾燥した後、 圧延した。得られたものを 20mm X 20mmの正方形に切り抜き、正極とした。
[0072] 〔電解液の作製〕
電解液として、エチレンカーボネートとジェチルカーボネートを体積比 3: 7で混合し た溶媒に対し、 LiPF モル
6を 1 Zリットル溶解して電解液 Xを作製した。この電解液 Xを
5°Cまで冷却し、二酸化炭素雰囲気下で、二酸化炭素ガスを 300mlZ分の流量でこ の電解液 Xに、電解液の重量が変化しなくなるまで約 30分間吹き込んだ。これを 25 °Cまで昇温し、電解液 alとした。
[0073] 二酸化炭素ガス吹き込み前の電解液の重量と、二酸化炭素ガス吹き込み後の電解 液の重量を測定し、電解液 alにおける二酸ィ匕炭素の溶解量を測定したところ、 0. 3 7重量%であった。なお、二酸化炭素吹き込み後の電解液の重量は二酸化炭素ガス 雰囲気下で測定した。 [0074] 〔電池の作製〕
上記の正極、負極、及び電解液を、アルミニウムラミネートの外装体内に挿入し、リ チウムニ次電池 A1を作製した。なお、リチウム二次電池は、常温、常圧の二酸化炭 素ガス雰囲気下で作製した。
[0075] 図 7は、作製したリチウム二次電池を示す正面図である。図 8は、図 7の A— A線に 沿う断面図である。正極及び負極は、ポリエチレン製多孔質体力もなるセパレータを 介して対向するように配置され、電極体 5として、図 8に示すようにアルミ-ゥムラミネ ートからなる外装体 1内に挿入されている。正極にはアルミニウム力もなる正極集電タ ブ 3が取り付けられ、負極にはニッケル力 なる負極集電タブ 4が取り付けられ、これ らは外装体 1から外部に引き出されている。図 7及び図 8に示すように、外装体 1の周 辺は、ヒートシールにより閉口部 2が形成されている。
[0076] (実験 2)
実験 1における電解液 Xに、二酸ィ匕炭素ガスを吹き込まずに、 5重量%のビ-レン力 ーボネートを添カ卩し電解液 blを作製した。この電解液 blを用い、電池の作製をアル ゴン雰囲気下で行ったこと以外は、実験 1と同様にして、電池 B1を作製した。
[0077] 〔充放電サイクル特性の評価〕
上記の電池 A1及び B1について、充放電サイクル特性を評価した。各電池を、 25 °Cにおいて、電流値 14mAで 4. 2Vまで定電流充電後、電圧 4. 2Vで電流値 0. 7m Aまで定電圧充電を行った後、電流値 14mAで 2. 75Vまで放電し、これを 1サイクル の充放電とした。 1サイクル目の放電容量の 80%に達するまでのサイクル数を測定し 、サイクル寿命とした。結果を表 2に示す。なお、各電池のサイクル寿命は、電池 A1 のサイクル寿命を 100とした指数である。
[0078] [表 2] 電解液中の
電池 二酸化炭素溶解量 サイクル寿命
(重量%)
Al 0. 37 100
Bl 0 48
[0079] 表 2から明らかなように、二酸ィ匕炭素を溶解させた電解液 alを用いた電池 A1は、 二酸化炭素を溶解させて ヽな 、電解液 blを用いた電池 B1に比べ、サイクル寿命が 長くなつていることがわかる。なお、電解液 blにおいて、ビ-レンカーボネートを添カロ しているのは、二酸ィ匕炭素ガスを吹き込まず、かつビ-レンカーボネートを添カ卩して いない電解液を用いると、サイクル寿命が非常に短くなるため、活物質の多孔質化が 観察しに《なることを考慮したものである。
[0080] 〔FIB— SIM観察〕
上記の充放電サイクル試験後、電池 A1及び B1から負極をそれぞれ取り出し、それ ぞれの負極の断面を、 FIB— SIMで観察した。 FIB— SIM観察とは、収束イオンビー ム (FIB)で断面が露出するように加工し、この断面を走査イオン顕微鏡 (SIM)で観 察することを意味している。
[0081] 図 1及び図 2は、電池 A1の負極の SIM像である。図 2は、図 1を拡大して示してい る。図 3及び図 4は、電池 B1の負極の SIM像である。図 4は、図 3を拡大して示してい る。なお、断面に対して 45度の角度から観察しているので、各図における縦方向の 実際の長さは、各図のスケール(図 1及び図 3は 10 m、図 2及び図 4は 1 m)で測 定した長さの 2倍になる。従って、電池 A1の負極(図 1)では、合剤層の厚みが約 2 であり、電池 B1の負極(図 3)では、合剤層の厚みが約 42 mであることがわ かる。
[0082] 図 1において、合剤層中の黒い部分は、活物質粒子の多孔質ィ匕していない部分で あり、白い部分が多孔質ィ匕している部分である。従って、電池 A1においては、活物 質粒子の表面の部分のみが多孔質ィ匕していることがわかる。
[0083] これに対し、図 3に示すように、電池 B1の負極においては、黒い部分が少なくなつ ており、白い部分が多くなつている。従って、電池 B1の負極においては、多くの部分 が多孔質ィ匕して 、ることがわかる。
[0084] また、上述のように、電池 B1の合剤層の厚みは、電池 A1の合剤層の厚みよりも厚 くなつており、電池 B1の負極においては、活物質粒子が多孔質ィ匕することにより、合 剤層の厚みが増加して 、ることがわ力る。
[0085] 以上のことから、本発明に従い二酸ィ匕炭素を溶解した電解液を用いることにより、 活物質粒子の多孔質ィ匕を抑制することができ、電極の厚みの増加を抑制できること がわかる。従って、本発明によれば、充放電サイクル後の電池の厚みの増加を抑制 することができ、体積エネルギー密度の高 、電池とすることができる。
[0086] 本発明に従い二酸化炭素を溶解した非水電解質を用いることにより、活物質粒子 の多孔質ィ匕を抑制できる詳細な理由については明らかでないが、二酸化炭素を溶 解した非水電解質を用いることにより、活物質粒子の表面に、リチウムイオン伝導性 に優れた被膜が形成され、これによつて充放電反応に伴う活物質粒子の不可逆的な 変質が抑制され、多孔質化を抑制できるものと思われる。
[0087] (実験 3)
ここでは、サイクル特性に与えるケィ素粉末の平均粒子径の影響にっ 、て検討した
[0088] 実験 1において、平均粒子径 20 mのケィ素粉末を用いたこと以外は実験 1と同様 にして電池 A2を作製した。また、実験 2において、平均粒子径 20 mのケィ素粉末 を用いたこと以外は実験 2と同様にして電池 B2を作製した。
[0089] これらの電池にっ 、て、実験 2と同様にサイクル特性を評価した。なお、サイクル寿 命は、電池 A1のサイクル寿命を 100とした指数である。表 3には、電池 A1及び B1の サイクル寿命も併せて示す。
[0090] [表 3] 電解液中の ケィ素粉末
電池 二酸化炭素溶解量 平均粒子径 サイクル寿命
(重量%) ( m)
Al 0. 37 3 100
A2 0. 37 20 64
Bl 0 3 48
B2 0 20 22
[0091] 表 3から明らかなように、平均粒子径 10 m以下であるケィ素粉末を活物質として 用いた電池 A1は、電池 A2に比べ、優れたサイクル特性を示していることがわ力る。 従って、平均粒子径 10 m以下の活物質粉末を用いた場合に、二酸化炭素を溶解 した非水電解質を用いることによる充放電特性向上の効果が、より顕著に得られるこ とがわかる。
[0092] (実験 4)
ここでは、集電体表面の算術平均粗さ Raがサイクル特性に与える影響にっ 、て検
B、Jした。
[0093] 実験 1において、集電体 alの代わりに、算術平均粗さ Raが異なる電解銅箔を集電 体として用いた。具体的には、算術平均粗さ Raが 0. である電解銅箔、及び算 術平均粗さ Raが 0. 17 mである電解銅箔を用いた。これらの集電体を用い、実験 1 と同様にして、電池 A3及び A4を作製した。
[0094] 上記の各電池につ!、て、上記と同様にしてサイクル特性を評価した。なお、サイク ル寿命は、電池 A1のサイクル寿命を 100とした指数である。表 4には、電池 A1のサ イタル寿命も併せて示す。
[0095] [表 4] 集電体表面の算術平均粗さ
電池 サイクル寿命
A1 0. 5 100
A3 0. 80
A4 0. 17 63 [0096] 表 4から明らかなように、算術平均粗さ Raが 0. 2 m以上である集電体を用いた電 池 A1及び A3は、算術平均粗さ Raが 0. 2 m未満である集電体を用いた電池 A4に 比べ、優れたサイクル特性を示している。これは、算術平均粗さ Raが 0. 以上 の集電体を用いることにより、活物質粒子と集電体表面との接触面積が大きくなり、 焼結が効果的に起こり、活物質粒子と集電体との密着性が向上したことによるためと 考えられる。また、集電体表面に対するノインダ一によるアンカー効果がより大きく得 られるため、合剤層と集電体間の密着性がさらに向上し、電極内の集電性が向上し たためであると考えられる。
[0097] (実験 5)
ここでは、電極の焼結条件がサイクル特性に与える影響にっ 、て検討した。
実験 1において、電極の熱処理を 600°C10時間としたこと以外は、実験 1と同様に して電池 A5を作製した。
[0098] この電池にっ 、て、上記と同様にサイクル特性を評価した。なお、サイクル寿命は 電池 A1のサイクル寿命を 100とした指数である。表 5には、電池 A1のサイクル寿命 も併せて示す。
[0099] [表 5]
Figure imgf000022_0001
[0100] 表 5から明らかなように、 600°C10時間で熱処理を行った電池 A5は、 400°C30時 間で熱処理を行った電池 A1に比べ、サイクル特性が大きく低下して ヽることがわ力る 。これは、 600°Cの熱処理では、ノインダ一が分解されるためバインダーによる電極 内の密着性が大きく低下し、集電性が低下したためであると考えられる。
[0101] (実験 6)
ここでは、合剤層に添加した導電性粉末がサイクル特性に与える影響にっ 、て検
B、Jした。
[0102] 合剤層中に、平均粒子径 3 μ mのニッケル粉末をケィ素粉末との合計に対して 20 重量%となるように添加した以外は、実験 1と同様にして電池 A6を作製した。
[0103] この電池にっ 、て、上記と同様にサイクル特性を評価した。なお、サイクル寿命は 電池 A1のサイクル寿命を 100とした指数である。表 6には、電池 A1のサイクル寿命 も併せて示す。
[0104] [表 6]
Figure imgf000023_0001
[0105] 表 6から明らかなように、合剤層にニッケル粉末を添加した電池 A6の方力 合剤層 に導電性粉末を添加して 、な 、電池 A1に比べ、サイクル特性が向上して 、ることが わかる。これは、導電性粉末が、活物質粒子の周りで導電性ネットワークを形成する ことにより、合剤層内の集電性が向上したためと考えられる。
[0106] 上記の実施例においては、負極の集電体の片面のみに合剤層を設けているが、集 電体の両面に合剤層を設けてもよい。この場合、集電体の両面に本発明に従う凹凸 部が形成されて ヽることが好ま
[0107] 〔TOF— SIMS観察〕
本出願人は、導電性金属箔カ なる集電体の上にスパッタリング法により非晶質シ リコン薄膜を堆積して得られる負極においても、充放電サイクルにより、活物質の多 孔質ィ匕が生じること及びこのような多孔質ィ匕が二酸ィ匕炭素を溶解した非水電解質を 用いることにより抑制されることを見出している。このようなシリコン薄膜の電極を負極 として用い、電池 XI、電池 Y1及び電池 Y2を作製した。電池 XIは、二酸化炭素を溶 解させた非水電解質を用いており、電池 Y1は、二酸ィ匕炭素を溶解させていない非 水電解質を用いており、電池 Y2は、二酸化炭素を溶解させず、ビ-レンカーボネー HVC)を 20重量%添カ卩した非水電解質を用いている。初期充電後の電池 XI Y1 及び Y2について、 TOF-SIMS (飛行時間型二次イオン質量分析)により、負極の 表面分析を行った。
[0108] 図 5は正イオンの TOF— SIMSスペクトルであり、図 6は負イオンの TOF— SIMSス ベクトルである。図 5及び図 6において、「LiPF6 + C02」は、電池 XIのスペクトルを 示しており、「LiPF6」は電池 Y1のスペクトルを示しており、「LiPF6+VC20wt%」 は電池 Y2のスペクトルを示して!/、る。
[0109] 図 5及び図 6から明らかなように、電池 XIにおける負極の表面は、電池 Y1及び電 池 Y2のものに比べ、 Siイオン及び Siを含むイオンが大幅に減少し、 Li F+イオンが増
2
カロしていることがわかる。このこと力 、二酸ィ匕炭素を溶解させた非水電解質を用いる ことにより、ケィ素の表面における Siの濃度が大幅に減少していることがわかる。これ は、活物質であるケィ素の表面に Siを含まない被膜が形成されたことによるものと思 われる。この被膜は、リチウムイオン伝導性に優れた安定な被膜であり、このような被 膜がケィ素表面に形成されることにより、リチウムイオンがケィ素に吸蔵 '放出される 充放電の過程において、ケィ素の変質ィ匕を抑制し、ケィ素粒子が多孔質ィ匕するのを 抑制することができるものと考免られる。
[0110] また、電池 Y1及び電池 Y2の負極においては、活物質である Siを含む被膜が形成 されているものと思われる。また、このような被膜の生成が、活物質表面における多孔 質化の原因になっているものと推測される。二酸化炭素を溶解させた非水電解質を 用いると、このような被膜が形成されないため、活物質の多孔質ィ匕が抑制されている ものと考えられる。
[0111] 本発明においても、上記と同様に、活物質粒子の表面にリチウムイオン伝導性に優 れた安定な被膜が形成され、これによつてリチウムイオンが活物質粒子に吸蔵 '放出 される充放電の過程において、活物質粒子の変質ィ匕を抑制し、活物質粒子における 多孔質ィ匕を抑制することができるものと思われる。
[0112] (実験 7)
ここでは、電解液中の二酸ィ匕炭素の溶解量がサイクル特性に与える影響について 検討した。
[0113] 〔正極及び負極の作製〕
実験 1と同様にして正極及び負極を作製した。
〔電解液の作製〕
実験 1と同様にして、電解液 Xを作製し、この電解液 Xに実験 1と同様にして二酸ィ匕 炭素ガスを吹き込み、電解液 alを作製した。
[0114] アルゴンガス雰囲気下で、電解液 Xと電解液 alとを、表 7に示す体積比で混合し、 電解液 a2、 a3及び a4を作製した。
[0115] [表 7]
Figure imgf000025_0001
[0116] 〔電池の作製〕
実験 1と同様にして、電解液 alを用いたリチウム二次電池 A1を作製した。 電解液 a2を用いた電池 A7、電解液 a3を用いた電池 A8、電解液 a4を用いた電池 A9、及び電解液 Xを用いた電池 B3については、常圧のアルゴンガス雰囲気下で作 製する以外は、実験 1と同様にして作製した。
[0117] 〔充放電サイクル特性の評価〕
上記各電池について、上記と同様にサイクル特性を評価した。評価結果を表 8に示 す。
[0118] なお、サイクル寿命は、電池 A1のサイクル寿命を 100とした指数である。表 8には、 電池 A1のサイクル寿命も併せて示す。
また、図 9には、各電池を用いた電解液中の二酸ィ匕炭素溶解量とサイクル寿命との 関係を示す。
[0119] [表 8] 電解液中の
二酸化炭素溶解量 電池 電解液 サイクル寿命
0. 37 A1 al 100
0. 1 85 A7 a2 98
0. 0925 A8 a3 95
0. 037 A9 a4 71
0 B3 X 38
[0120] 表 8及び図 9から明らかなように、二酸化炭素が 0. 01重量%以上溶解している電 解液を用いた電池 A1及び A7— A9は、二酸化炭素が溶解して ヽな 、電解液 Xを用 いた電池 B3に比べ、サイクル寿命が長くなつていることがわかる。また、電解液中の 二酸化炭素の溶解量が 0. 05重量%以上になると、サイクル寿命がその飽和値のほ ぼ 80%を超えることがわかる。さらに、電解液中の二酸ィ匕炭素の溶解量が 0. 1重量 %になると、サイクル寿命がその飽和値にほぼ近づくことがわかる。
[0121] 以上のことから、電解液中の二酸ィ匕炭素の溶解量は、 0. 01重量%以上であること が好ましぐ 0. 05重量%以上であることがさらに好ましぐ 0. 1重量%以上であること 力 Sさらに好ましいことがわかる。
[0122] (実験 8)
ここでは、非水電解質にフッ素を含有することがサイクル特性に与える影響につ!ヽ て検討した。
[0123] 〔電解液の作製〕
エチレンカーボネートとジェチルカーボネートを体積比 3: 7の割合で混合した溶媒 に、 LiPFを 1モル
6 Zリットル溶解したものを作製した。これを電解液 POとする。この電 解液 POを 5°Cまで冷却し、二酸化炭素雰囲気下で、 300mlZ分となるように二酸ィ匕 炭素ガスをこの電解液に吹き込んだ。電解液の重量が変化しなくなるまで (約 30分 間)吹き込んだ。これを 25°Cまで昇温し、電解液 P1とした。二酸化炭素ガス吹き込み 後の電解液の重量を二酸ィ匕炭素ガス雰囲気下で測定し、電解液の重量変化を調べ ることにより、電解液に溶解している二酸ィ匕炭素ガス量を測定したところ、 0. 37重量 %であった。 [0124] 電解液 POのリチウム塩 LiPFの代わりに LiBFを用いる以外は、電解液 POと同様
6 4
に電解液を作製し、電解液 BOとした。この電解液 BOに電解液 P1と同じ方法で二酸 化炭素ガスを吹き込み、電解液 B1とした。
[0125] 電解液 POのリチウム塩 LiPFの代わりに LiN (C F SO )を用いる以外は、電解液
6 2 5 2 2
P0と同様にして電解液を作製し、これを電解液 NOとした。この電解液 NOに電解液 P 1と同じ方法で二酸ィ匕炭素ガスを吹き込み、電解液 N1とした。
[0126] 電解液 POのリチウム塩 LiPFの代わりに LiCIOを用いる以外は、電解液 POと同様
6 4
にして電解液を作製し、電解液 COとした。この電解液 COに電解液 P1と同じ方法で 二酸ィ匕炭素ガスを吹き込み、電解液 C1とした。
[0127] 〔電池の作製〕
実験 1と同様の正極、負極、及び電解液 Pl、 Bl、 Nl、及び CIを用い、常温及び 常圧の二酸化炭素ガス雰囲気下で、リチウム二次電池 AP1、 AB1、 AN1、及び AC 1を作製した。
[0128] 実験 1と同様の正極、負極、及び電解液 PO、 BO、 NO、及び COを用い、常温及び 常圧のアルゴンガス雰囲気下で、リチウム二次電池 APO、 ABO、 ANO、及び ACOを 作製した。
[0129] 〔充放電サイクル特性の評価〕
上記各電池について、充放電サイクル特性を評価した。電池 API、 AB1、 AC1、
APO、 ABO、及び ACOを、 25°Cにおいて、電流値 14mAで 4. 2Vまで定電流充電 した後、電圧 4. 2Vで電流値 0. 7mAまで定電圧充電を行い、その後、電流値 14m
Aで 2. 75Vまで放電し、これを 1サイクルの充放電とした。
[0130] 定電流充電を 4. OVまで行ったこと以外は上記の充放電と同様にして、電池 AN1 及び ANOの充放電を行った。
1サイクル目の放電容量の 80%に達するまでのサイクル数を測定し、サイクル寿命 とした。結果を表 9に示す。
[0131] なお、表 9においてサイクル寿命 Aは、電池 APIのサイクル寿命を 100とした指数 である。また、サイクル寿命 Bは、それぞれの電池において電解液に二酸ィ匕炭素を含 有させた電池のサイクル寿命を 100とした指数である。 [0132] [表 9]
Figure imgf000028_0001
[0133] 表 9から明らかなように、二酸ィ匕炭素が溶解している電解液を用いた電池 AP1、 A Bl、 AN1、及び AC1は、二酸化炭素が溶解していない電解液を用いた電池 APO、 ABO、 ANO、及び ACOに比べ、サイクル寿命が長いことがわかる。特に、フッ素含有 リチウム塩を用いた電池 API、 AB1、及び AN1は、フッ素を含有していないリチウム 塩を用いた電池 AC 1に比べ、サイクル寿命向上の割合が大きくなつて 、ることがわ かる。このことから、フッ素含有リチウム塩を含むことにより、二酸ィ匕炭素による良質な 被膜の形成を促進することができるか、あるいは二酸ィ匕炭素による被膜をさらに良質 な被膜にすることができるものと思われる。これは、充放電に伴うフッ素含有リチウム 塩の分解により、フッ化水素などが生成され、これが二酸ィ匕炭素に影響を及ぼして良 質な被膜が形成されるものと考えられる。このような被膜により、充放電反応に伴う活 物質の割合により生じる新生面での被膜の形成に消費されるリチウムイオンの量が減 るため、充放電効率の低下が抑制されると考えられる。また、活物質粒子表面で形成 される被膜は、リチウムイオン伝導性に優れた被膜であるため、活物質内の充放電反 応分布の均一性が向上されると考えられる。このため、活物質内でのリチウムの吸蔵 •放出に伴う体積変化の偏りにより発生する歪みが抑制され、充放電効率が向上する と考えられる。
[0134] なお、上記各実施例においては、負極集電体の片面にのみ凹凸を有したものを用 い、その凹凸面の上に活物質層を配置しているが、本発明はこれに限定されるもの ではなぐ両面に凹凸を有する集電体を用い、その両面の上に活物質層を配置した 負極を用いてもよい。
[0135] (実験 9) 〔電解液の作製〕
エチレンカーボネート (EC)とジェチノレカーボネート (DEC)を体積比 3: 7で混合し た溶媒に、 LiPF
6を 1モル Zリットル溶解したものを作製した。この電解液を EDOとす る。
[0136] 電解液 EDOを 5°Cまで冷却し、二酸化炭素の雰囲気下で、二酸ィ匕炭素ガスを 300 mlZ分の流量で、電解液の重量が変化しなくなるまで電解液中に吹き込んだ(30分 )。これを 25°Cまで昇温し電解液 ED1とした。二酸ィ匕炭素ガス吹き込み後の電解液 の重量を二酸ィ匕炭素ガス雰囲気下で測定し、二酸化炭素ガス吹き込み前後におけ る電解液の重量変化を調べることにより、電解液に溶解している二酸ィ匕炭素のガス量 を算出したところ、 0. 37重量%であった。
[0137] 電解液中の環状カーボネートとしてプロピレンカーボネート(PC)を用い、鎖状カー ボネートとしてジェチルカーボネート(DEC)を用い、それ以外は電解液 ED1と同様 にして二酸ィ匕炭素を溶解させ、電解液 PD1を作製した。
電解液中の環状カーボネートとしてプロピレンカーボネート(PC)を用い、鎖状カー ボネートとしてメチルェチルカーボネート(MEC)を用い、それ以外は電解液 ED1と 同様にして二酸ィ匕炭素を溶解させ、電解液 PM1を作製した。
[0138] 電解液中の環状カーボネートとしてエチレンカーボネート(EC)を用い、鎖状カー ボネートとしてメチルェチルカーボネート(MEC)を用い、それ以外は電解液 ED1と 同様にして二酸ィ匕炭素を溶解させ、電解液 EM1を作製した。
電解液中の環状カーボネートとしてエチレンカーボネート(EC)を用い、鎖状カー ボネートとしてジメチルカーボネート(DMC)を用い、これらを体積比 1: 1で混合した 溶媒に、上記電解液 ED1と同様にして LiPF及び二酸化炭素を溶解させ、電解液 E
6
DM 1を作製した。
電解液 PD1、 PM1、 EMI及び EDM1中に溶解している二酸化炭素のガス量は、 それぞれ 0. 36重量%、 0. 64重量%、 0. 54重量%及び 0. 46重量%であった。
[0139] 〔電池の作製〕
実験 1と同様の正極及び負極を用い、電解液として上記の EDO、 ED1、 PD1、 PM 1、 EMI及び EDM1を用い、実験 1と同様にして、リチウム二次電池を作製した。二 酸化炭素を溶解させた電解液 EDI、 PD1、 PM1、 EMI及び EDM 1を用いて電池 を作製する場合には、常温及び常圧の二酸化炭素ガス雰囲気下で、正極、負極及 び電解液をアルミニウムラミネート外装体内に挿入して作製した。
[0140] また、二酸化炭素を溶解して 、な!、電解液 EDOを用いる場合には、常温及び常圧 のアルゴンガス雰囲気下で、アルミニウムラミネート外装体内に正極、負極、及び電 解液を挿入して作製した。
電解液 EDOを用いた電池を AEDO、電解液 EDIを用いた電池を AED1、電解液 PD1を用いた電池を APD1、電解液 PM1を用いた電池を APM1、電解液 EMIを 用 、た電池を AEM 1、電解液 EDM 1を用 、た電池を AEDM 1とした。
以上のようにして作製した各電池の電解液及び二酸ィ匕炭素の溶解のあり及びなし を以下の表にまとめて示す。
[0141] [表 10]
Figure imgf000030_0001
〔充放電サイクル特性の評価〕
実験 1と同様にして、上記の各電池について、充放電サイクル特性を評価した。な お、各電池のサイクル寿命は、電池 AED1のサイクル寿命を 100とした指数である。 結果を表 11に示す。 [0143] [表 11]
Figure imgf000031_0001
[0144] 表 11に示す結果から明らかなように、環状カーボネートとしてプロピレンカーボネー トを用い、鎖状カーボネートとしてジェチルカーボネートを用いた電池 APD1が、環 状カーボネートとしてエチレンカーボネートを用い、鎖状カーボネートとしてジェチル カーボネートを用いた電池 AED1よりも優れたサイクル特性を示して!/、る。プロピレン カーボネートは、黒鉛負極の場合には一般に用いられないが、上記のようにケィ素負 極を用いる場合には良好な結果を示すことがわかった。これは、プロピレンカーボネ ートを用いた場合、電解液の粘度が低くなり、電極内に含浸されやすくなるため、ケィ 素表面に均質な被膜が形成され、サイクル初期の容量の低下を抑制することができ るためであると考えられる。
また、その他の電池 APM1、 AEM1、及び AEDM1においても、電解液に二酸ィ匕 炭素を溶解することによりサイクル寿命が改善される効果が認められている。
[0145] (参考実験)
〔炭素負極の作製〕
増粘剤であるカルボキシメチルセルロースを水に溶力した水溶液中に、負極活物 質として人造黒鉛と、結着剤としてのスチレン ブタジエンゴムとを、活物質と結着剤 と増粘剤の重量比が 95: 3: 2の比率になるようにしてカ卩えた後に混練して、負極スラ リーを作製した。作製したスラリーを集電体としての銅箔上に塗布した後、乾燥し、そ の後圧延ローラーを用いて圧延し、集電タブを取り付けることで、負極を作製した。
[0146] 〔正極の作製〕
LiCoO粉末 90重量部、及び導電剤としての人造黒鉛粉末 5重量部を、結着剤とし
2
てのポリテトラフルォロエチレン 5重量部を含む 5重量0 /0の N—メチルピロリドン水溶液 に混合し、正極合剤スラリーとした。このスラリーをドクターブレード法により、正極集 電体であるアルミニウム箔に塗布した後乾燥し、正極活物質層を形成した。正極活物 質を塗布しな力つたアルミニウム箔の領域の上に正極タブを取り付け、正極を作製し た。
[0147] 〔非水電解質の作製〕
エチレンカーボネートとジェチルカーボネートを 3: 7の体積比で混合した溶液に、 L iPFを 1モル/リットルとなるように溶解した液を調製した。
6
[0148] この液にビ-レンカーボネートを 2重量0 /0添カ卩し、非水電解質 c2とした。
非水電解質 c2に 25°Cの温度で 30分間二酸ィ匕炭素を吹き込み、二酸化炭素の飽 和量となるまで溶解させ、これを非水電解質 clとした。二酸ィ匕炭素の溶解量は、 0. 3 7重量%であった。
[0149] 非水電解質 cl及び c2は、以下の通りである。
非水電解質 cl : COを溶解させた非水電解質
2
非水電解質 c2 : COを溶解させていない非水電解質
2
[0150] 〔電池の作製〕
上記負極、正極、及び非水電解質を用いて、リチウム二次電池を作製した。
上記の正極、及び負極の間に多孔質ポリエチレン力もなるセパレータを挟んで卷 回した電極群、及び上記非水電解質を、アルミニウムラミネートからなる外装体内に 挿入し、正極集電タブ及び負極集電タブが外に出るように外装体の周囲をヒートシ一 ノレして、電池を完成させた。
作製した電池の仕様は、表 12に示す通りである。
[0151] [表 12] 厚み (ram) 3. 6
幅 (mm) 35
高さ (mm) 62
設計容量 (mAh) 600
巻き数 9
負極活物質層厚み (^ m) 53. 5
[0152] 非水電解質 clを用いて作製した電池を電池 C1とし、非水電解質 c2を用いて作製 した電池を電池 C2とした。なお、電池 C1は、高純度の二酸化炭素ガスの雰囲気中 で作製した。
[0153] 〔充放電サイクル試験〕
上記のようにして作製したリチウム二次電池 C1及び C2につ 、て、充放電サイクル 試験を行った。充放電の条件は、 25°Cにおいて、電流値 600mAで 4. 2Vまで定電 流充電した後、 30mAまで 4. 2Vで定電圧充電を行い、電流値 600mAで 2. 75Vま で放電し、これを 1サイクルの充放電とした。 500サイクル目の放電容量を 1サイクル 目の放電容量で割った容量維持率を、表 13に示す。また、表 13には、 500サイクル 後の電池の厚みの増加量及びこの量から求めた電極一層当りの活物質の厚みの増 加量を示す。
[0154] [表 13]
Figure imgf000033_0001
表 13に示す結果カゝら明らかなように、炭素材料を負極活物質とする場合には、非 水電解質に二酸ィヒ炭素を溶解させることによるサイクル劣化の抑制及び電池厚み増 加の抑制の効果は、ほとんど得られな 、ことがわかる。

Claims

請求の範囲
[I] ケィ素及び Zまたはケィ素合金を含む活物質粒子とバインダーとを含む合剤層を 導電性金属箔カ なる集電体の表面上で焼結して配置した負極と、正極と、非水電 解質とを備えるリチウム二次電池にぉ 、て、
前記非水電解質に二酸ィ匕炭素を溶解させたことを特徴とするリチウム二次電池。
[2] 前記負極の焼結が、非酸化性雰囲気下で行われることを特徴とする請求項 1に記 載のリチウム二次電池。
[3] 充放電により表面から内部に向かって多孔質ィ匕が進行する活物質粒子とバインダ 一とを含む合剤層を導電性金属箔カ なる集電体の表面上に配置した負極と、正極 と、非水電解質とを備えるリチウム二次電池において、
前記非水電解質に二酸ィ匕炭素を溶解させたことを特徴とするリチウム二次電池。
[4] 前記二酸化炭素の溶解量が 0. 001重量%以上であることを特徴とする請求項 1一
3の 、ずれか 1項に記載のリチウム二次電池。
[5] 前記二酸化炭素の溶解量が 0. 01重量%以上であることを特徴とする請求項 1一 3 の!、ずれか 1項に記載のリチウム二次電池。
[6] 前記二酸化炭素の溶解量が 0. 05重量%以上であることを特徴とする請求項 1一 3 の!、ずれか 1項に記載のリチウム二次電池。
[7] 電池内部の空隙に二酸ィ匕炭素が含まれていることを特徴とする請求項 1一 6のいず れか 1項に記載のリチウム二次電池。
[8] 前記非水電解質が、環状カーボネートを含むことを特徴とする請求項 1一 7のいず れか 1項に記載のリチウム二次電池。
[9] 前記非水電解質が、環状カーボネートと鎖状カーボネートの混合溶媒を含むことを 特徴とする請求項 1一 7のいずれ力 1項に記載のリチウム二次電池。
[10] 前記環状カーボネートとして、エチレンカーボネート及び Zまたはプロピレンカーボ ネートが含まれていることを特徴とする請求項 8または 9に記載のリチウム二次電池。
[II] 前記環状カーボネートがエチレンカーボネートであることを特徴とする請求項 8また は 9に記載のリチウム二次電池。
[12] 前記環状カーボネートがプロピレンカーボネートであることを特徴とする請求項 8ま たは 9に記載のリチウム二次電池。
[13] 前記鎖状カーボネートとして、ジメチルカーボネート、ジェチルカーボネート、及びメ チルェチルカーボネートのうちの少なくとも 1つが含まれていることを特徴とする請求 項 9一 12の!、ずれか 1項に記載のリチウム二次電池。
[14] 前記非水電解質にフッ素を含有する化合物が含まれていることを特徴とする請求 項 1一 13のいずれ力 1項に記載のリチウム二次電池。
[15] 前記フッ素を含有する化合物が、フッ素含有リチウム塩であることを特徴とする請求 項 14に記載のリチウム二次電池。
[16] 前記フッ素含有リチウム塩が、 LiXF (式中、 Xは P
y 、 As、 Sb、 B、 Bi、 Al、 Ga、また は Inであり、 Xが P、 Asまたは Sbのとき yは 6であり、 Xが B、 Bi、 Al、 Ga、または Inのと き yは 4である)、または LiN (C F SO )(C F SO ) (式中、 m及び nはそれぞれ m 2m+l 2 n 2n+l 2
独立して 1一 4の整数である)であることを特徴とする請求項 15に記載のリチウム二次 電池。
[17] 前記フッ素含有リチウム塩が、 LiPF、 LiBF、及び LiN (C F SO )から選ばれる
6 4 2 5 2 2
少なくとも 1種であることを特徴とする請求項 15に記載のリチウム二次電池。
[18] 前記活物質粒子の平均粒子径が、 10 μ m以下であることを特徴とする請求項 1一
17のいずれか 1項に記載のリチウム二次電池。
[19] 前記集電体表面の算術平均粗さ Raが、 0. 2 μ m以上であることを特徴とする請求 項 1一 18のいずれ力 1項に記載のリチウム二次電池。
[20] 前記集電体が、銅箔もしくは銅合金箔、または表面に銅層もしくは銅合金層を設け た金属箔であることを特徴とする請求項 1一 19のいずれ力 1項に記載のリチウム二次 電池。
[21] 前記集電体が、電解銅箔もしくは電解銅合金箔、または表面に電解銅層もしくは電 解銅合金層を設けた金属箔であることを特徴とする請求項 1一 19のいずれか 1項に 記載のリチウム二次電池。
[22] 前記バインダーが、焼結のための熱処理後にも残存していることを特徴とする請求 項 1一 21のいずれ力 1項に記載のリチウム二次電池。
[23] 前記バインダーが、ポリイミドであることを特徴とする請求項 1一 22のいずれ力 1項 に記載のリチウム二次電池。
[24] 前記活物質粒子が、ケィ素粒子であることを特徴とする請求項 1一 23のいずれか 1 項に記載のリチウム二次電池。
[25] 前記合剤層に導電性粉末が混合されて!ヽることを特徴とする請求項 1一 24の ヽず れか 1項に記載のリチウム二次電池。
[26] 負極と、正極と、非水電解質とを含むリチウム二次電池を製造する方法であって、 ケィ素及び Zまたはケィ素合金を含む活物質粒子とバインダーとを含む合剤層を 導電性金属箔カ なる集電体の表面上に配置し、焼結して前記負極を作製するェ 程と、
前記非水電解質に二酸ィ匕炭素を溶解させる工程と、
前記負極、前記正極、及び前記非水電解質を用いてリチウム二次電池を組み立て る工程とを備えることを特徴とするリチウム二次電池の製造方法。
[27] 前記負極の焼結を、非酸ィ匕性雰囲気下で行うことを特徴とする請求項 26に記載の リチウム二次電池の製造方法。
[28] 前記非水電解質に二酸化炭素を溶解させる工程が、前記非水電解質に気体状の 二酸ィ匕炭素を吹き込む工程を含むことを特徴とする請求項 26または 27に記載のリ チウムニ次電池の製造方法。
[29] 前記リチウム二次電池を組み立てる工程が、二酸化炭素を含む雰囲気下で前記リ チウムニ次電池を組み立てる工程を含むことを特徴とする請求項 26— 28のいずれ 力 1項に記載のリチウム二次電池の製造方法。
PCT/JP2004/007831 2003-06-19 2004-06-04 リチウム二次電池及びその製造方法 WO2004114453A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04745607A EP1635417B1 (en) 2003-06-19 2004-06-04 Lithium secondary battery and method for producing same
US10/531,047 US8211569B2 (en) 2003-06-19 2004-06-04 Lithium secondary battery including a negative electrode which is a sintered layer of silicon particles and/or silicon alloy particles and a nonaqueous electrolyte containing carbon dioxide dissolved therein and method for producing same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003-174672 2003-06-19
JP2003174672 2003-06-19
JP2003298906 2003-08-22
JP2003-298906 2003-08-22
JP2003402902 2003-12-02
JP2003-402902 2003-12-02
JP2004-071483 2004-03-12
JP2004071483A JP4610213B2 (ja) 2003-06-19 2004-03-12 リチウム二次電池及びその製造方法

Publications (1)

Publication Number Publication Date
WO2004114453A1 true WO2004114453A1 (ja) 2004-12-29

Family

ID=33545459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007831 WO2004114453A1 (ja) 2003-06-19 2004-06-04 リチウム二次電池及びその製造方法

Country Status (5)

Country Link
US (1) US8211569B2 (ja)
EP (1) EP1635417B1 (ja)
JP (1) JP4610213B2 (ja)
KR (1) KR100713037B1 (ja)
WO (1) WO2004114453A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1633013A1 (en) * 2003-06-09 2006-03-08 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395059B (en) 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
JP4829483B2 (ja) * 2004-05-27 2011-12-07 三井金属鉱業株式会社 無電解めっき物の製造方法
JP4958405B2 (ja) * 2005-03-29 2012-06-20 三洋電機株式会社 非水電解質二次電池
JP4744244B2 (ja) * 2005-08-31 2011-08-10 三洋電機株式会社 リチウム二次電池及びリチウム二次電池用負極の製造方法
JP2007095445A (ja) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd 非水電解質二次電池
JP2007194107A (ja) * 2006-01-20 2007-08-02 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
GB0601318D0 (en) * 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
JP5219339B2 (ja) * 2006-02-28 2013-06-26 三洋電機株式会社 リチウム二次電池
WO2007114168A1 (ja) * 2006-03-30 2007-10-11 Sanyo Electric Co., Ltd. リチウム二次電池及びその製造方法
JP4949904B2 (ja) * 2006-03-31 2012-06-13 三洋電機株式会社 非水電解液二次電池
JP4949905B2 (ja) * 2006-03-31 2012-06-13 三洋電機株式会社 非水電解液二次電池
JP2008226537A (ja) * 2007-03-09 2008-09-25 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
CN102623686B (zh) * 2007-06-22 2014-10-08 松下电器产业株式会社 全固体型聚合物电池
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
GB0713895D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Production
KR20090038309A (ko) * 2007-10-15 2009-04-20 삼성전자주식회사 이차전지용 전극, 그 제조방법 및 이를 채용한 이차전지
US10056602B2 (en) 2009-02-25 2018-08-21 Cf Traverse Llc Hybrid energy storage device production
US9412998B2 (en) 2009-02-25 2016-08-09 Ronald A. Rojeski Energy storage devices
US9966197B2 (en) 2009-02-25 2018-05-08 Cf Traverse Llc Energy storage devices including support filaments
US11233234B2 (en) 2008-02-25 2022-01-25 Cf Traverse Llc Energy storage devices
US9705136B2 (en) 2008-02-25 2017-07-11 Traverse Technologies Corp. High capacity energy storage
US9917300B2 (en) 2009-02-25 2018-03-13 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US10193142B2 (en) 2008-02-25 2019-01-29 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
US10727481B2 (en) 2009-02-25 2020-07-28 Cf Traverse Llc Energy storage devices
US9431181B2 (en) 2009-02-25 2016-08-30 Catalyst Power Technologies Energy storage devices including silicon and graphite
US10205166B2 (en) 2008-02-25 2019-02-12 Cf Traverse Llc Energy storage devices including stabilized silicon
US9362549B2 (en) 2011-12-21 2016-06-07 Cpt Ip Holdings, Llc Lithium-ion battery anode including core-shell heterostructure of silicon coated vertically aligned carbon nanofibers
US9349544B2 (en) 2009-02-25 2016-05-24 Ronald A Rojeski Hybrid energy storage devices including support filaments
US9979017B2 (en) 2009-02-25 2018-05-22 Cf Traverse Llc Energy storage devices
US9941709B2 (en) 2009-02-25 2018-04-10 Cf Traverse Llc Hybrid energy storage device charging
EP2312684B1 (en) * 2008-07-30 2016-03-23 Daikin Industries, Ltd. Solvent for dissolution of electrolytic salt of lithium secondary battery
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
JP4924852B2 (ja) 2009-04-24 2012-04-25 大日本印刷株式会社 非水電解液二次電池用電極板の製造方法
JP5136804B2 (ja) 2009-04-24 2013-02-06 大日本印刷株式会社 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、および非水電解液二次電池
JP5196197B2 (ja) 2009-04-24 2013-05-15 大日本印刷株式会社 非水電解液二次電池用電極板の製造方法
JP5212394B2 (ja) 2009-04-24 2013-06-19 大日本印刷株式会社 非水電解液二次電池用電極板の製造方法
JP4930733B2 (ja) 2009-04-24 2012-05-16 大日本印刷株式会社 非水電解液二次電池用負極板、非水電解液二次電池用負極板の製造方法、および非水電解液二次電池
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
US20120045670A1 (en) * 2009-11-11 2012-02-23 Amprius, Inc. Auxiliary electrodes for electrochemical cells containing high capacity active materials
WO2011060023A2 (en) * 2009-11-11 2011-05-19 Amprius Inc. Preloading lithium ion cell components with lithium
JP2013516746A (ja) * 2010-01-11 2013-05-13 アンプリウス、インコーポレイテッド 可変容量電池アセンブリ
US20110229767A1 (en) * 2010-03-19 2011-09-22 Dai Nippon Printing Co., Ltd. Electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US20110236760A1 (en) * 2010-03-24 2011-09-29 Dai Nippon Printing Co., Ltd. Electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5583447B2 (ja) 2010-03-26 2014-09-03 三洋電機株式会社 リチウム二次電池及びその製造方法
GB201005979D0 (en) 2010-04-09 2010-05-26 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
JP5717168B2 (ja) * 2010-09-03 2015-05-13 Necエナジーデバイス株式会社 非水電解液二次電池用負極およびその製造方法、ならびに非水電解液二次電池
JP5931749B2 (ja) * 2011-01-28 2016-06-08 三洋電機株式会社 非水電解液二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解液二次電池用正極、及び、当該正極を用いた非水電解液二次電池
US20140113175A1 (en) * 2011-06-02 2014-04-24 Panyi Zhang High capacity lithium ion battery containing metallic conducting materials
JP5917049B2 (ja) 2011-08-26 2016-05-11 株式会社東芝 非水電解質二次電池及びその製造方法
KR101201807B1 (ko) 2011-08-31 2012-11-15 삼성에스디아이 주식회사 리튬 이차 전지
GB2520946A (en) * 2013-12-03 2015-06-10 Nexeon Ltd Electrodes for Metal-Ion Batteries
JP2018530871A (ja) * 2016-08-02 2018-10-18 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG リチウムイオン電池
JPWO2021006302A1 (ja) * 2019-07-08 2021-01-14
US20220037699A1 (en) * 2020-07-28 2022-02-03 Apple Inc. Propylene Carbonate-Based Electrolyte For Lithium Ion Batteries With Silicon-Based Anodes
KR20230061509A (ko) * 2020-09-24 2023-05-08 가부시키가이샤 닛폰 쇼쿠바이 비수전해액, 2차전지 및 그 제조방법
CN115642316B (zh) * 2021-07-19 2024-10-11 比亚迪股份有限公司 电化学补锂装置、电化学补锂方法和锂离子电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124700A (ja) * 1992-10-08 1994-05-06 Matsushita Electric Ind Co Ltd 非水電解液二次電池並びにその製造方法
JPH06150975A (ja) * 1992-11-04 1994-05-31 Nippon Telegr & Teleph Corp <Ntt> 非水電解液二次電池
JPH07176323A (ja) * 1993-12-21 1995-07-14 Mitsubishi Cable Ind Ltd Li二次電池用電解液及び負極
JPH07249431A (ja) * 1994-03-09 1995-09-26 Toshiba Corp 非水電解液電池
JPH0864246A (ja) * 1994-08-22 1996-03-08 Sanyo Electric Co Ltd 密閉型の非水電解液二次電池
JPH1040958A (ja) * 1996-07-19 1998-02-13 Fuji Photo Film Co Ltd 非水電解液二次電池および製造法
JP2000012089A (ja) * 1998-06-19 2000-01-14 Kao Corp 非水系二次電池
JP2001006734A (ja) * 1999-06-23 2001-01-12 Kao Corp 非水系二次電池
US6235427B1 (en) 1998-05-13 2001-05-22 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery containing silicic material
WO2002021616A1 (fr) 2000-09-01 2002-03-14 Sanyo Electric Co., Ltd. Electrode negative pour accumulateur au lithium et procede de production

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853304A (en) 1988-01-21 1989-08-01 Honeywell, Inc. Electrolyte for secondary non-aqueous cells
JP2908719B2 (ja) * 1994-03-19 1999-06-21 日立マクセル株式会社 有機電解液二次電池
US5707756A (en) 1994-11-29 1998-01-13 Fuji Photo Film Co., Ltd. Non-aqueous secondary battery
JP3158981B2 (ja) 1995-08-17 2001-04-23 東ソー株式会社 非水系リチウム電池の製造法
JP2001307771A (ja) 2000-04-21 2001-11-02 Asahi Kasei Corp 非水系二次電池
KR100409017B1 (ko) * 2000-06-23 2003-12-06 주식회사 엘지화학 다성분계 복합 분리막 및 그의 제조방법
JP4212263B2 (ja) * 2000-09-01 2009-01-21 三洋電機株式会社 リチウム二次電池用負極及びその製造方法
US6593029B2 (en) * 2001-03-15 2003-07-15 Wilson Greatbatch Ltd. Manufacturing process for improved discharge of lithium-containing electrochemical cells
JP4015826B2 (ja) * 2001-06-19 2007-11-28 株式会社東芝 非水電解質空気電池
JP2003059536A (ja) * 2001-08-10 2003-02-28 Japan Storage Battery Co Ltd 非水電解質電池およびその製造方法
JP2003086243A (ja) 2001-09-06 2003-03-20 Sanyo Electric Co Ltd 非水電解液二次電池の製造方法および非水電解液二次電池
JP3631185B2 (ja) * 2001-09-19 2005-03-23 三洋電機株式会社 非水電解質二次電池およびその製造方法
EP1633013B1 (en) * 2003-06-09 2011-10-12 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
US8980214B2 (en) * 2005-06-20 2015-03-17 Mitsubishi Chemical Corporation Method for producing difluorophosphate, non-aqueous electrolyte for secondary cell and non-aqueous electrolyte secondary cell

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124700A (ja) * 1992-10-08 1994-05-06 Matsushita Electric Ind Co Ltd 非水電解液二次電池並びにその製造方法
JPH06150975A (ja) * 1992-11-04 1994-05-31 Nippon Telegr & Teleph Corp <Ntt> 非水電解液二次電池
JPH07176323A (ja) * 1993-12-21 1995-07-14 Mitsubishi Cable Ind Ltd Li二次電池用電解液及び負極
JPH07249431A (ja) * 1994-03-09 1995-09-26 Toshiba Corp 非水電解液電池
JPH0864246A (ja) * 1994-08-22 1996-03-08 Sanyo Electric Co Ltd 密閉型の非水電解液二次電池
JPH1040958A (ja) * 1996-07-19 1998-02-13 Fuji Photo Film Co Ltd 非水電解液二次電池および製造法
US6235427B1 (en) 1998-05-13 2001-05-22 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery containing silicic material
JP2000012089A (ja) * 1998-06-19 2000-01-14 Kao Corp 非水系二次電池
JP2001006734A (ja) * 1999-06-23 2001-01-12 Kao Corp 非水系二次電池
WO2002021616A1 (fr) 2000-09-01 2002-03-14 Sanyo Electric Co., Ltd. Electrode negative pour accumulateur au lithium et procede de production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1633013A1 (en) * 2003-06-09 2006-03-08 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
EP1633013A4 (en) * 2003-06-09 2009-02-25 Sanyo Electric Co LITHIUM ACCUMULATOR AND METHOD OF PRODUCTION
US8609279B2 (en) 2003-06-09 2013-12-17 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same

Also Published As

Publication number Publication date
EP1635417B1 (en) 2011-10-19
US8211569B2 (en) 2012-07-03
JP4610213B2 (ja) 2011-01-12
EP1635417A4 (en) 2009-02-25
JP2005190977A (ja) 2005-07-14
US20060003226A1 (en) 2006-01-05
KR100713037B1 (ko) 2007-05-04
KR20060021899A (ko) 2006-03-08
EP1635417A1 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
JP4610213B2 (ja) リチウム二次電池及びその製造方法
JP4027255B2 (ja) リチウム二次電池用負極及びその製造方法
JP5219339B2 (ja) リチウム二次電池
JP4212392B2 (ja) リチウム二次電池用負極及びリチウム二次電池
JP4033720B2 (ja) リチウム二次電池用負極及びリチウム二次電池
JP5219340B2 (ja) リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
KR100765053B1 (ko) 리튬 이차 전지 및 그의 제조 방법
US8334073B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
JP3895932B2 (ja) リチウム二次電池用負極及びその製造方法
JP4270894B2 (ja) リチウム二次電池用負極及びリチウム二次電池
JP2004127535A (ja) リチウム二次電池用負極及びリチウム二次電池
JP5030369B2 (ja) リチウム二次電池
JP2008117758A (ja) 非水電解質二次電池およびその負極の製造方法
WO2006103829A1 (ja) 非水電解質二次電池
JP5127888B2 (ja) リチウム二次電池及びその製造方法
JP2008235083A (ja) リチウム二次電池用負極及びリチウム二次電池
JP4436624B2 (ja) リチウム二次電池
JP4744244B2 (ja) リチウム二次電池及びリチウム二次電池用負極の製造方法
JP2007227239A (ja) リチウム二次電池用負極及びリチウム二次電池
JP4883894B2 (ja) リチウム二次電池用負極及びその製造方法
JP2005149786A (ja) リチウム二次電池及びその製造方法
JP2006092928A (ja) リチウム二次電池用負極及びリチウム二次電池
JP4798957B2 (ja) リチウム二次電池
JP4798952B2 (ja) リチウム二次電池の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006003226

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10531047

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004745607

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048018156

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057024231

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10531047

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057024231

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004745607

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020057024231

Country of ref document: KR