WO2004114318A1 - 半導体試験装置及びその制御方法 - Google Patents

半導体試験装置及びその制御方法 Download PDF

Info

Publication number
WO2004114318A1
WO2004114318A1 PCT/JP2004/008361 JP2004008361W WO2004114318A1 WO 2004114318 A1 WO2004114318 A1 WO 2004114318A1 JP 2004008361 W JP2004008361 W JP 2004008361W WO 2004114318 A1 WO2004114318 A1 WO 2004114318A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
semiconductor memory
memory devices
semiconductor
pattern
Prior art date
Application number
PCT/JP2004/008361
Other languages
English (en)
French (fr)
Inventor
Kazuhiko Sato
Sae-Bum Myung
Hiroyuki Chiba
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to EP04745915A priority Critical patent/EP1643509B1/en
Priority to DE602004025347T priority patent/DE602004025347D1/de
Publication of WO2004114318A1 publication Critical patent/WO2004114318A1/ja
Priority to US11/303,191 priority patent/US7356435B2/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • G11C29/56004Pattern generation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31917Stimuli generation or application of test patterns to the device under test [DUT]
    • G01R31/31928Formatter
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/10Test algorithms, e.g. memory scan [MScan] algorithms; Test patterns, e.g. checkerboard patterns 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • G11C2029/5602Interface to device under test
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • G11C2029/5606Error catch memory

Definitions

  • the present invention relates to a semiconductor test device and a control method therefor.
  • the present invention relates to a semiconductor test apparatus for simultaneously testing a plurality of semiconductor devices and a control method thereof.
  • This application is related to the following Japanese application. For those designated countries for which incorporation by reference to the literature is permitted, the contents described in the following application are incorporated into this application by reference and become a part of this application.
  • a semiconductor test apparatus for performing various tests on a semiconductor device such as a logic IC or a semiconductor memory device before shipment.
  • a general semiconductor test apparatus for testing semiconductor memory has a simultaneous measurement function for a large number of semiconductor devices, and the same test data pattern waveform is applied to the same pin of a plurality of semiconductor devices. You can enter and test.
  • the multiple simultaneous measurement function it is possible to measure a large number of semiconductor memories with a small resource, so that the device scale does not become extremely large and the cost can be reduced.
  • a part of a semiconductor memory device for example, some flash memories
  • at least a part of a storage area for example, a block
  • a defective storage area is provided with a defective storage area by a manufacturer.
  • the defective storage area is masked by writing defective area information for identifying the defective storage area.
  • a device that uses the semiconductor memory device does not use the storage area when certain storage area defect area information is read.
  • an object of the present invention is to provide a semiconductor test apparatus and a control method thereof that can solve the above-mentioned problems.
  • This object is achieved by a combination of features described in the independent claims.
  • the dependent claims define further advantageous embodiments of the present invention.
  • the first waveform generating means for generating a common pattern waveform corresponding to common information common to each of the plurality of semiconductor devices, and each of the plurality of semiconductor devices has A plurality of second waveform generating means for generating individual pattern waveforms corresponding to a plurality of individually prepared corresponding individual information, and the first waveform generating means for each of the plurality of semiconductor devices.
  • a semiconductor test apparatus comprising a switching unit.
  • Each of the plurality of semiconductor devices is a semiconductor memory device, and the waveform switching unit applies the common pattern waveform generated by the first waveform generation unit to each of the plurality of semiconductor memory devices.
  • An operation of inputting in common and an operation of individually inputting the individual pattern waveform generated by each of the plurality of second waveform generating means as a write address where data is to be written are selectively performed.
  • the semiconductor memory corresponds to the common pattern waveform or the individual pattern waveform.
  • Pass / fail determination means for performing a pass / fail determination of a test target location in the semiconductor memory device based on an output waveform output from the redevice, and a fail memory for storing a determination result by the pass / fail determination means May be further provided.
  • a memory for storing the individual information may be further provided, and the second waveform generating means may read the individual information stored in the memory to generate the individual pattern waveform.
  • Each of the plurality of semiconductor memory devices has an interface for inputting a write address and write data in a time-division manner, and the waveform switching means inputs a write address to each of the plurality of semiconductor memory devices.
  • each of the plurality of individual pattern waveforms is individually input to each of the plurality of semiconductor memory devices via the interface, and write data is written to each of the plurality of semiconductor memory devices.
  • the common pattern waveform generated by the first waveform generating means may be commonly input to each of the plurality of semiconductor memory devices via the interface.
  • Each of the interfaces of the plurality of semiconductor memory devices inputs a command, the write address and the write data in a time-division manner, and the waveform switching means outputs the command to each of the plurality of semiconductor memory devices.
  • the common pattern waveform generated by the first waveform generating means is commonly input to each of the plurality of semiconductor memory devices via the interface, and
  • each of the plurality of individual pattern waveforms is individually input to each of the plurality of semiconductor memory devices via the interface, and
  • the timing at which write data should be input to each of the memory devices In grayed, to each of the plurality of semiconductor memory devices, it may be input through the interface of the first of the common pattern waveform generated by the waveform generating means in common.
  • the plurality of semiconductor memories correspond to the first common pattern waveform generated by the first waveform generation means or the plurality of individual pattern waveforms generated by the plurality of second waveform generation means.
  • a plurality of pass / fail determination means for performing a pass / fail determination of the storage area to be tested in the semiconductor memory device; and a fail memory for storing a plurality of determination results by the plurality of pass / fail determination means.
  • a failure storage area selection unit that outputs information identifying a failure storage area for each of the plurality of semiconductor memory devices as each of the plurality of individual information based on the plurality of determination results stored in the fail memory.
  • the plurality of second waveform generating means each include a plurality of the individual pattern waveforms respectively identified by the plurality of individual information and indicating an address of the defective storage area in each of the plurality of semiconductor memory devices.
  • the first waveform generation means writes the write data for identifying that the storage area is defective.
  • Generating the second common pattern waveform indicating the data, and the waveform switching means outputs the individual write command to each of the plurality of semiconductor memory devices as the write address indicating the defective storage area of the semiconductor memory device.
  • a pattern waveform is individually input, the second common pattern waveform is commonly input as the write data indicating that the storage area corresponding to the write address is defective, and the write address is written in the write address. Data may be written.
  • the defective storage area selecting means outputs information for identifying one or more defective storage areas for each of the plurality of semiconductor memory devices as each of the plurality of individual information, and Each of the waveform generation means generates the individual pattern waveform indicating an address of one or a plurality of the defective storage areas in each of the plurality of semiconductor memory devices identified by each of the plurality of individual information;
  • the first waveform generating means generates the second common pattern waveform indicating write data for identifying that the storage area is defective, and the waveform switching means operates the respective ones of the plurality of semiconductor memory devices.
  • the individual pattern waveform is individually used as one or more write addresses indicating one or more defective storage areas of the semiconductor memory device.
  • the second common pattern waveform is commonly input as the write data indicating that one or a plurality of storage areas corresponding to one or a plurality of the write addresses is defective. Prohibiting writing to the semiconductor memory device that has finished writing the write data to all of the defective storage areas in the semiconductor memory device. In the state where the write data has not been written to all of the defective storage areas of the plurality of semiconductor memory devices, writing to the semiconductor memory device has not been completed. You can write it.
  • a method of controlling a semiconductor test apparatus for testing a plurality of semiconductor devices wherein a common pattern waveform corresponding to common information common to each of the plurality of semiconductor devices is generated.
  • a first waveform generating step for generating a plurality of individual waveforms corresponding to a plurality of individual information individually prepared for each of the plurality of semiconductor devices.
  • a waveform switching step of selectively performing the operation of individually inputting the individual pattern waveforms thus performed.
  • a semiconductor test apparatus for testing a plurality of semiconductor memory devices, wherein the plurality of semiconductor memory devices are tested based on test results of the plurality of semiconductor memory devices.
  • a defective storage area selecting means for outputting individual information for identifying a defective storage area for each of the plurality of semiconductor memory devices; and a pattern waveform corresponding to a command for writing data in parallel with the plurality of semiconductor memory devices,
  • a pattern waveform corresponding to the address of the defective storage area identified by the individual information of each semiconductor memory device is individually input as a write address, and it is determined that the storage area corresponding to the write address is defective.
  • Waveform output means for commonly inputting a pattern waveform corresponding to the data to be indicated as write data.
  • a method of controlling a semiconductor test apparatus for testing a plurality of semiconductor memory devices wherein the plurality of semiconductor memory devices are tested based on test results of the plurality of semiconductor memory devices.
  • the pattern waveform corresponding to the address of the defective storage area is individually input as a write address
  • the pattern waveform corresponding to the data indicating that the storage area corresponding to the write address is defective is defined as the write data.
  • the present invention provides a control method having a common input waveform output stage.
  • the operation of generating and inputting a plurality of individual information items different from each other can be performed in parallel with respect to each of the plurality of semiconductor devices, and separate operation can be performed for each of the plurality of semiconductor memory devices.
  • the time required for the test and / or the rescue operation when the input of the address based on the individual information is required can be reduced.
  • FIG. 1 shows a configuration of a semiconductor test apparatus according to one embodiment.
  • FIG. 2 shows a specific example of a test operation in which an individual write operation is performed as necessary.
  • FIG. 3 shows a specific example of a rescue operation in which an individual write operation is performed as needed.
  • FIG. 4 shows a configuration of a semiconductor test apparatus according to a modification of the present embodiment.
  • FIG. 1 is a diagram showing a configuration of a semiconductor test apparatus of the present embodiment.
  • the semiconductor test apparatus shown in FIG. 1 performs tests on a plurality of DUTs (Device Under Tests) 9 in parallel, and also performs relief operations on the plurality of DUTs 9 in parallel.
  • the semiconductor test apparatus of the present embodiment includes an ALPG (algorithmic 'pattern. Generator) 1, an AFM (address' fail' memory) 3, a 1-pin processing unit 5, a 1-channel 7, a test control unit. It is composed of ten.
  • the DUT 9 has a wide range of semiconductor devices such as semiconductor memory devices and logic ICs. In the following description, semiconductor memory devices are mainly tested.
  • the ALPG 1 generates pattern data (PAT) to be input to the 1 ⁇ pin of the DUT 9 for performing a test or a rescue operation.
  • the AFM 3 stores fail information, which is a judgment result obtained by a test on the DUT 9, in units of cells of the DUT 9. Specifically, as a result of a pass / fail test of a storage cell corresponding to one of the logical addresses X and Y of the DUT 9, the data is stored in an area specified by the addresses X and Y of the force AFM3.
  • the IO pin processing unit 5 generates data to be input to the 1 D pin of the DUT 9 and performs a pass / fail judgment of the data output from these IO pins.
  • the “IO pin” is a pattern waveform such as a pin of a semiconductor memory device for inputting a command and / or an address to the semiconductor memory device and a pin for inputting and outputting memory data to and from the semiconductor memory device. This is a pin for input and output.
  • the TG / main FC unit 50 performs a function as a timing generator for generating various timing edges included in the basic cycle of the test operation, and based on the timing edges and the pattern data output from the ALPG1, Generates actual data (common pattern waveform) input to DUT9. This data is input to one input terminal of an AND circuit 51 provided at a subsequent stage. To the other input terminal of the AND circuit 51, an individual write mode signal (MODE) is inverted and input. “Individual write mode” is an operation mode in which individual information is written in parallel to each of multiple DUTs 9 to be measured simultaneously. The individual write mode is specified by, for example, setting the individual write mode signal to a high level using the above-described ALPG1.
  • this mode signal is a signal that can be controlled by the ALPG1, and by using this mode signal, it is possible to switch between the common pattern waveform and the individual write pattern waveform in real time.
  • the memory 54 stores arbitrary pattern data.
  • 1 ⁇ pin processing unit 5 1 ⁇ pin processing unit 5
  • the sub FC unit 58 generates actual data (individual pattern waveform) to be input to each DUT 9 in the individual write mode based on the data to which the memory 54 is also input.
  • the output data of the sub FC unit 58 is input to the other end of the AND circuit 151 having the individual write mode signal (MODE) input to the negative end, and when the individual write mode signal is at the high level, It is input to the OR circuit 52 at the subsequent stage.
  • MODE individual write mode signal
  • each sub FC unit 58 individually has the function of the timing generator of the TG / main FC unit 50.
  • the OR circuit 52 receives data generated by the TG / main FC unit 50 and input via the AND circuit 51 or data generated by the sub FC unit 58 and input via the AND circuit 151. Output.
  • the output data of the OR circuit 52 is output to the IO channel 7 through a flip-flop 53 that generates a data pattern to be applied to the IO channel 7.
  • the logical comparator 59 compares data output from the 1 ⁇ pin of the DUT 9 with predetermined expected value data, and performs a pass determination if they match and a fail determination if they do not match. This judgment result is stored in AFM3.
  • the internal configuration of the 1 ⁇ pin processing unit 5 is such that the TG / main FC unit 50 and AND circuit 51 are provided in common for a plurality of DUTs 9, and the other sub FC unit 58, memory 54, Logical comparators 59 and the like are individually provided corresponding to each of the plurality of DUTs 9. Further, an IO pin processing unit 5 is individually provided for each of the plurality of IO pins of each DUT 9.
  • the IO channel 7 generates an actual pattern waveform applied to the pin 1 of the DUT 9, and converts a waveform actually output from the pin 1 into logical data.
  • the 1-channel 7 has a driver (DR) 70 and a comparator (CP) 71.
  • the dry loop 70 generates a normal waveform based on the data input to the flip-flop 53 in the corresponding 1-pin processing unit 5.
  • the comparator 71 determines the value of the logical data by comparing the voltage of the waveform appearing at the IO pin (I / O) of the DUT 9 with a predetermined reference voltage.
  • the test control unit 10 is an example of a defective storage area selection unit, and is provided for controlling a test by a semiconductor test device.
  • the test control unit 10 based on the determination result stored in the AFM 3, the test control unit 10 generates a plurality of pieces of individual information used for the test operation or the rescue operation of the plurality of DUTs 9, and outputs the individual information to the memory.
  • the test control unit 10 includes one or more EWSs (engineering's) to speed up the process of generating individual information from the judgment results. (Workstation).
  • the ALPG1, the AFM3, and the IO pin processing unit 5 operate as a waveform output unit that inputs a pattern waveform to a plurality of DUTs 9 in parallel.
  • the TG / main FC unit 50 operates as first waveform generation means for generating a common pattern waveform corresponding to common information supplied from the ALPG 1 and common to each of the plurality of DUTs 9.
  • the plurality of sub FC sections 58 operate as a plurality of second waveform generating means for generating individual pattern waveforms corresponding to a plurality of individual information individually prepared in the memory 54 corresponding to each of the plurality of DUTs 9. I do.
  • the AND circuits 51 and 151 and the OR circuit 52 perform an operation of commonly inputting the common pattern waveform generated by the first waveform generating means to each of the plurality of DUTs 9, and a plurality of second circuits. It operates as waveform switching means for selectively inputting individual pattern waveforms generated by each of the waveform generating means.
  • the waveform switching means selects an operation of individually inputting an individual pattern waveform to each of the plurality of DUTs 9. May be performed. More specifically, the waveform switching means may individually input the individual pattern waveform to each of the plurality of DUTs 9 as a write address where data such as defective area information is to be written.
  • the logical comparator 59 performs a pass / failure for performing a pass / fail judgment of a test target portion in the DUT 9 based on an output waveform output from the DUT 9 corresponding to the common pattern waveform or the individual pattern waveform. It operates as a determination means.
  • the AFM 3 operates as a fail memory for storing the result of the judgment by the pass / fail judgment means.
  • the semiconductor test apparatus of the present embodiment has such a configuration, and a test operation and a rescue operation for the DUT 9 will be described.
  • the pattern data output from ALPG1 is supplied to the IO pin processing unit 5 corresponding to the IO pin to which the pattern data is to be input.
  • the TGZ main FC unit 50 create test data according to the actual input timing.
  • the individual write mode signal maintains the low level
  • the output data of the TG / main FC unit 50 input to one input terminal is output from the AND circuit 51 as it is.
  • An output terminal of the AND circuit 51 is branched and connected to one input terminal of an OR circuit 52 provided corresponding to each of the plurality of DUTs 9. Therefore, common data output from the TG / main FC unit 50 is simultaneously input to the plurality of OR circuits 52 and input to the flip-flop 53.
  • the driver 70 In the IO channel 7, the driver 70 generates a normal waveform based on the data input to the flip-flop 53 in the IO pin processing unit 5. This normal waveform is input to the corresponding 1 ⁇ pin (IZO).
  • the normal waveform generated by the IO pin processing unit 5 and the IO channel 7 is input to the IO pin.
  • the comparator 71 compares the voltage of the waveform output from this IO pin with a predetermined reference voltage to generate logical data. Further, in the IO pin processing unit 5 corresponding to the 1 ⁇ pin, the logical comparator 59 performs pass / fail determination using the data input from the comparator 71 in the IO channel 7. This determination result is stored in AFM3.
  • pattern data corresponding to each IO pin of each DUT 9 stored in the memory 54 is read and input to the sub FC unit 58.
  • the sub FC unit 58 creates test data corresponding to the individual information for each DUT 9 in accordance with the actual input timing based on the input pattern data.
  • a normal waveform is generated based on the data input to the flip-flop 53 via the OR circuit 52.
  • the driver 70 In the IO channel 7, the driver 70 generates a normal waveform based on the data input to the flip-flop 53 in the IO pin processing unit 5.
  • a different normal waveform is generated for each DUT9 and input to the corresponding DUT9 IO pin (1 ⁇ ).
  • FIG. 2 is a timing diagram showing a specific example of a test operation in which an individual write operation is performed as necessary.
  • FIG. 2 shows an example of a timing when a plurality of flash memories are tested as a plurality of DUTs 9. ing.
  • each of the plurality of DUTs 9 is provided with an interface for inputting a command, a write address, and write data in a time-division manner at the time of a write operation at the 1st pin (1st).
  • This data has different contents set for each flash memory. For example, data D, D,... corresponding to DUT #a,
  • Data D ', D', ... are set as data D ", D", ... corresponding to DUT #n.
  • Input operation of individual information such as 0 0 0 is performed by generating individual data by the sub FC unit 58 in the IO pin processing unit 5 based on the individual information stored in the AFM 3 or the memory 54. Be done.
  • the waveform switching unit when performing a test of writing different write data to the same write address of each of the plurality of DUTs 9, the waveform switching unit inputs a command and a common write address to each of the plurality of DUTs 9.
  • the common pattern waveform generated by the first waveform generating means is commonly input to each of the plurality of DUTs 9 via the interface of each DUT 9.
  • the waveform switching means may output the plurality of individual patterns generated by the second waveform generation means to each of the plurality of DUTs 9 at a timing at which different write data is to be input to each of the plurality of DUTs 9.
  • Each of the waveforms is individually input via the respective DUT9 interface.
  • the DUT 9 Programming is performed in each of (DUT # a— # n). Then, based on the pattern data stored in ALPG1, a command to output a programming result is input to each of the plurality of DUTs 9 from the IO pin, and the programming result is output in a polling format. The result of this programming is input to the comparator 71 in the IO channel 7 and further passed to the logical comparator 59 in the 1 ⁇ pin processing unit 5 to make a pass / fail determination.
  • the semiconductor test apparatus switches the individual write mode signal from the low level to the high level during the test, thereby changing the test operation using the ALPG1 from the test operation using the memory 54 to the individual write mode. It can be changed at any time. Then, by returning the individual write mode signal from the high level to the low level as needed, the test operation using the ALPG1 can be returned.
  • the mode is switched to the individual write mode at the timing required in a series of test operations, or conversely, It is possible to return to the mode, and complicated control of switching timing is not required.
  • the semiconductor test apparatus supplies a common command, address, and / or data to at least a part of the command, address, and data to be supplied to the plurality of DUTs 9, and supplies the common command, address, and / or data to other parts.
  • Individual commands, addresses, and / or data can be provided to them.
  • the rescue operation it is necessary to input an address for specifying the defective storage area of each of the plurality of DUTs 9 as individual information to each DUT 9 and to commonly input the defective area information as write data. That is, the operation of inputting the individual information to the specific 1 pin is the same as the operation of the individual write mode in the test operation described above. The operation of inputting common information to the IO pins of each DUT 9 is the same as the operation in the test operation described above except for the individual write mode.
  • the setting of each part of the IO pin processing unit 5 at the time of the rescue operation is basically the same as the setting at the time of the individual writing mode in the test operation described above, and the individual indicating the rescue position of each DUT 9 is performed.
  • Write address is generated by the sub FC unit 58 in the IO pin processing unit 5. Input from IO channel 7 to the I ⁇ pin of each DUT9.
  • FIG. 3 is a timing chart showing a specific example of the rescue operation.
  • the semiconductor test equipment To rescue a DUT 9 containing a defective cell, the semiconductor test equipment first performs a test operation and stores individual information for identifying a defective storage area in a memory based on the test result stored in the test result AFM3. Write it in 54.
  • the plurality of logical comparators 59 include a first common pattern waveform generated by the first waveform generating means or a plurality of individual patterns generated by the plurality of second waveform generating means. Based on the output waveforms output from each of the plurality of DUTs 9 corresponding to the waveforms, a pass Z fail determination of the storage area to be tested in the DUT 9 is performed.
  • the AFM 3 stores the judgment results of the plurality of logical comparators 59 as test results of the plurality of DUTs 9 respectively.
  • the test control unit 10 determines the information for identifying the defective storage area for each of the plurality of DUTs 9 and the information for each of the plurality of individual information. Is output to each of the plurality of memories 54 and stored.
  • the first waveform generation means generates a common pattern waveform of common data (program) corresponding to the "command".
  • the waveform switching means commonly inputs a common pattern waveform corresponding to the command to each of the plurality of DUTs 9 via the interface of the IO pin at a timing when a command is to be input to each of the plurality of DUTs 9.
  • each of the plurality of second waveform generation units is identified by each of the plurality of individual information stored in the memory 54 and corresponding to the plurality of DUTs 9, respectively. Then, an individual pattern waveform indicating the address of the defective storage area is generated.
  • the waveform switching means inputs each of the plurality of individual pattern waveforms to each of the plurality of DUTs 9 individually via the 1 ⁇ pin interface at the timing when the write address is to be input to each of the plurality of DUTs 9.
  • the first waveform generation means generates a common pattern waveform indicating write data for identifying that the storage area is defective.
  • the waveform switching means uses the common pin waveform generated by the first waveform generating means to each of the plurality of DUTs 9 at the timing at which the write data is to be input to each of the plurality of DUTs 9, and the I / O pin interface. To enter through.
  • the waveform output means inputs a pattern waveform corresponding to a command for writing data in parallel to a plurality of DUTs 9 and identifies them by individual information for each of the plurality of DUTs 9.
  • the pattern waveform corresponding to the address of the defective storage area to be written is individually input as a write address, and the pattern waveform corresponding to the data indicating that the storage area corresponding to the write address is defective is used as the write data. Can be entered in common.
  • the waveform switching means individually inputs an individual pattern waveform as a write address indicating the defective storage area of the DUT 9 to each of the plurality of DUTs 9, and the storage area corresponding to the write address is A common pattern waveform can be commonly input as write data indicating failure, and write data can be written to a write address.
  • the semiconductor test apparatus can write the defective area information in parallel to the defective storage areas of different addresses of the plurality of DUTs 9, and can reduce the time required for the rescue operation.
  • the semiconductor test apparatus performs the following rescue operation.
  • the test control unit 10 outputs information identifying one or a plurality of defective storage areas for each of the plurality of DUTs 9 as each of a plurality of individual information based on the plurality of determination results stored in the AFM 3, and In each of the memories 54.
  • the first waveform generating means generates a common pattern waveform of common data (program) corresponding to “command” corresponding to one or a plurality of defective storage areas in each of the plurality of DUTs 9.
  • Each of the plurality of second waveform generation means generates an individual pattern waveform indicating the address of one or a plurality of defective storage areas in each of the plurality of DUTs 9 identified by each of the plurality of individual information stored in the memory 54. Generate sequentially.
  • the first waveform generation means generates a common pattern waveform indicating write data for identifying that the storage area is defective, corresponding to each of the one or more defective storage areas.
  • the waveform switching means commonly inputs a common pattern waveform of a command to each of the plurality of DUTs 9 corresponding to each of the defective storage areas of the DUT 9.
  • one or more documents indicating one or more defective storage areas of the DUT 9 are assigned to each of the plurality of DUTs 9.
  • the individual pattern waveform is individually input as the embedded address.
  • a common pattern waveform of the generated write data is commonly input as write data indicating that one or more storage areas corresponding to one or more write addresses are defective.
  • the plurality of DUTs 9 may each have a different number of defective storage areas.
  • the waveform switching means writes the DUT 9 that has finished writing the write data to all the defective storage areas among the plurality of DUTs 9. In the prohibited state, the writing of the write data to all the defective storage areas of the plurality of DUTs 9 which has not been completed is completed, and the write data is written.
  • the waveform switching unit writes the DUT 9 to the DUT 9 that has not finished writing the write data to all the defective storage areas.
  • the write data is written by enabling the enable signal pin (ZWE).
  • the writing of the write data is prohibited by setting the write enable signal pin (/ WE) of the DUT 9 to disabled.
  • the waveform switching means enables or disables the chip enable signal pin (/ CE) instead of the write enable signal pin, thereby selecting or deselecting the DUT 9 itself and writing. Data writing may be permitted or prohibited.
  • the operations of generating and inputting a plurality of pieces of individual information different from each other can be performed in parallel for each of the plurality of DUTs 9.
  • the time required for the test when the input of individual information is required can be reduced.
  • the expansion of the device scale can be minimized. Can be suppressed.
  • the memory 54 for storing the individual information is provided in the 1 ⁇ pin processing unit 5, the wiring routed outside the ASIC package is not required, and the wiring can be simplified. In addition, since unnecessary wiring is eliminated, timing shifts and the like hardly occur, and reading of individual information is prevented. Extrusion can be performed at high speed.
  • a sub FC section 58 in which some of these functions are omitted is provided.
  • the same number of TG / main FC units may be provided instead of the sub FC unit 58.
  • FIG. 4 is a diagram showing a configuration of a semiconductor test apparatus according to a modification of the present embodiment.
  • the semiconductor test apparatus shown in Fig. 4 performs tests on multiple DUTs 9 in parallel, and performs relief operations on these multiple DUTs 9 in parallel.
  • the members in FIG. 4 that are denoted by the same reference numerals as those in FIG. 1 have the same functions and configurations as the members denoted by the same reference numerals in FIG.
  • the semiconductor test apparatus includes a plurality of test modules 202 provided for each of a plurality of DUTs 9, an IO channel 7, and a test control unit 210.
  • the plurality of test modules 202 are an example of waveform output means, and input pattern data generated by the ALPG1 or PG (pattern 'generator) 201 to the DUT9 via the IO channel 7 in parallel with the plurality of DUT9. I do.
  • the test module 202 includes an ALPG1, a PG201, one or a plurality of IO pin processing units 205, and an AFM3.
  • the PG 201 includes a pattern memory for storing a test pattern to be output to the DUT 9, and sequentially supplies the test patterns stored in the pattern memory to the 1-pin processing unit 205.
  • a plurality of IO pin processing units 205 are provided corresponding to the plurality of 1-pins of the DUT 9 to which the test module 202 is connected, respectively, and are provided to the DUT 9 based on the pattern data supplied from the ALPG1 or PG201. Generates input data and performs pass / fail judgment of data output from the corresponding 1 ⁇ pin.
  • the IO pin processing unit 205 includes a TG / main FC unit 250, a flip-flop 53, and a logical comparator 59.
  • the TG / main FC unit 250 generates a pattern waveform to be input to the DUT 9 to which the test module 202 including the TGZ main FC unit 250 is connected, and supplies the pattern waveform to the flip-flop 53.
  • the TG / main FC unit 250 has the same function and configuration as the TGZ main FC unit 50 shown in FIG.
  • the test control unit 210 is an example of a defective storage area selection unit, and is provided to control a test using a semiconductor test apparatus.
  • the test control unit 210 Based on the judgment results stored in AFM3 as the test results for each of 9
  • a plurality of pieces of individual information used for the test operation or the rescue operation of the UT 9 are generated and output to the test control unit 210.
  • the multiple ALPGs 1 provided corresponding to the multiple DUTs 9 output the same pattern data based on the same algorithm.
  • the pattern data output from ALPG1 is supplied to a 1-pin processing unit 205 corresponding to a 1-pin to which the pattern data is to be input.
  • the TGZ main FC unit 50 creates test data according to the actual input timing based on the input pattern data.
  • the driver 70 In the IO channel 7, the driver 70 generates a normal waveform based on the data input to the flip-flop 53 in the IO pin processing unit 205. This normal waveform is input to the corresponding IO pin (I / O).
  • the normal waveform generated by the IO pin processing unit 205 and the IO channel 7 is input to the 1 ⁇ pin.
  • the comparator 71 compares the voltage of the waveform output from the 1 ⁇ pin with a predetermined reference voltage to generate logical data. Further, in the IO pin processing unit 5 corresponding to the IO pin, the logical comparator 59 performs pass / fail determination using the data input from the comparator 71 in the IO channel 7. This determination result is stored in AFM3.
  • the test control unit 210 stores different test patterns in the pattern memory provided in the PG 201 in the plurality of test modules 202 in accordance with the individual information.
  • the PG 201 reads out individual test patterns and supplies individual pattern data to the TG / main FC unit 250.
  • the TGZ main FC section 250 performs actual input based on the input pattern data.
  • the flip-flop 53 generates a normal waveform based on the input data.
  • the driver 70 generates a normal waveform based on the data input to the flip-flop 53 in the 1 ⁇ pin processing unit 205.
  • a different normal waveform is generated for each DUT9 and input to the corresponding 1 ⁇ pin (IO) of the DUT9.
  • the timing of the test operation in which the individual write operation is performed is the same as that in FIG. 2, for example, except for the individual write mode signal.
  • common pattern data corresponding to “command”, common pattern data corresponding to “address”, and individual pattern data corresponding to “data” are stored in a plurality of PGs 201 corresponding to a plurality of DUTs 9, respectively. Test patterns to be output sequentially are stored.
  • the plurality of test modules 202 write different data in parallel to the plurality of DUTs 9 based on the test patterns stored in the PG 201 in the test module 202. More specifically, the 1 ⁇ pin processing unit 205 inputs the write command and the pattern waveform corresponding to the write address, which are stored in common to all PGs 201, to the DUT 9 and individually inputs to each PG 201 By inputting the pattern waveform corresponding to the stored write data to the DUT 9 in common, different write data is written in parallel to the same write address of each of the multiple DUTs 9. In this way, the semiconductor test apparatus according to the present modification supplies the command, the address, and / or the data to be supplied to the plurality of DUTs 9 and the individual command, the address, and / or the other parts. Data can be supplied.
  • the rescue operation it is necessary to input an address for specifying the defective storage area of each of the plurality of DUTs 9 as individual information to each DUT 9 and to commonly input the defective area information as write data. That is, the operation of inputting the individual information to the specific 1 pin is the same as the individual writing operation in the test operation described above.
  • the operation of inputting common information to the 1 ⁇ pin of each DUT 9 is the same as the operation other than the individual write operation in the test operation described above.
  • each unit of the IO pin processing unit 205 during the rescue operation is basically described above. This is the same as the setting in the individual write operation in the test operation.
  • the individual write address indicating the rescue location of each DUT 9 is stored as a test pattern in the PG 201 corresponding to the DUT 9 and a pattern waveform is generated by the TG / main FC unit 250 in the IO pin processing unit 205 Then, it is input from IO channel 7 to pin 1 ⁇ of each DUT9.
  • the timing of the test operation in which the individual rescue operation is performed is the same as, for example, the one except for the individual write mode signal in FIG.
  • the test control unit 210 determines a failure for each of the plurality of DUTs 9 based on a plurality of determination results stored in the AFM 3, which are test results of the plurality of DUTs 9.
  • a test pattern including individual information for identifying a region is generated. This test pattern is a pattern for sequentially outputting common pattern data corresponding to “command”, individual pattern data corresponding to “address”, and common pattern data corresponding to “data”.
  • the test control unit 210 individually transmits the test pattern generated corresponding to each DUT 9 to each of the plurality of test modules 202 and stores the test pattern in the PG 201.
  • the plurality of test modules 202 write defect area information to different defect storage areas in parallel with respect to the plurality of DUTs 9 based on the test pattern stored in the PG 201 in the test module 202. More specifically, based on the test pattern stored in the PG 201, the IO pin processing unit 205 inputs a pattern waveform corresponding to the write command to a plurality of DUTs 9 in common, and A pattern waveform corresponding to the address of the defective storage area identified by the individual information is individually input as a write address to a plurality of DUTs 9 and a pattern corresponding to data indicating that the storage area corresponding to the write address is defective. Input the waveform as write data to multiple DUTs in common.
  • the semiconductor test apparatus according to the present modification can write different write data to the same write address of each of the plurality of DUTs 9 in parallel.
  • the semiconductor test apparatus according to the present modification can write defective area information in parallel to defective storage areas of different addresses of the plurality of DUTs 9, and can reduce the time required for the rescue operation.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.
  • a plurality of power logic ICs which have been described mainly with a semiconductor memory as the DUT 9 are simultaneously tested.
  • the present invention can be applied when conducting an experiment.
  • the operations of generating and inputting a plurality of pieces of individual information different from each other can be performed in parallel for each of a plurality of semiconductor devices.
  • the time required for a test and / or a rescue operation can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

 複数の半導体デバイスのそれぞれに共通する共通情報に対応する共通パターン波形を生成する第1の波形生成手段と、複数の半導体デバイスのそれぞれに対応して個別に用意された複数の個別情報に対応する個別パターン波形を生成する複数の第2の波形生成手段と、複数の半導体デバイスのそれぞれに、第1の波形生成手段によって生成された共通パターン波形を共通に入力する動作と、複数の第2の波形生成手段のそれぞれによって生成された個別パターン波形を個別に入力する動作とを選択的に行う波形切替手段とを備える半導体試験装置を提供する。

Description

明 細 書
半導体試験装置及びその制御方法
技術分野
[0001] 本発明は、半導体試験装置及びその制御方法に関する。特に本発明は、複数の 半導体デバイスに対して同時に試験を行う半導体試験装置及びその制御方法に関 する。本出願は、下記の日本出願に関連する。文献の参照による組み込みが認めら れる指定国については、下記の出願に記載された内容を参照により本出願に組み込 み、本出願の一部とする。
1.特願 2003— 174477 出願日 2003年 06月 19日
2.特願 2003— 185679 出願曰 2003年 06月 27曰
背景技術
[0002] 従来から、出荷前のロジック ICや半導体メモリデバイス等の半導体デバイスに対し て各種の試験を行うものとして、半導体試験装置が知られている。例えば、半導体メ モリに対して試験を行う一般的な半導体試験装置は、多数個同時測定機能を有して おり、複数個の半導体デバイスの同一ピンに対して、同一の試験データパターン波 形を入力して試験を行うことができるようになつている。この多数個同時測定機能を備 えることにより、小規模のリソースで多数個の半導体メモリに対する測定が可能になる ため、装置規模が極端に大きくならず、しかも、コストの低減が可能になる。
発明の開示
発明が解決しょうとする課題
[0003] 半導体メモリデバイスの一部(例えば一部のフラッシュメモリ)には、試験によって検 出された不良セルを含む記憶領域 (例えばブロック)の少なくとも一部に、製造業者 によって当該記憶領域が不良であることを識別する不良領域情報を書き込むことに より、この不良記憶領域をマスクするものがある。当該半導体メモリデバイスを使用す る機器は、ある記憶領域力 不良領域情報が読み出された場合に、当該記憶領域を 使用しない。
[0004] 複数の半導体メモリデバイスを試験した後それぞれの半導体メモリデバイスの不良 記憶領域に対して不良領域情報を書き込む場合、不良記憶領域を特定するアドレス 等を個別情報としてそれぞれの半導体メモリデバイスに個別に入力する必要がある ため、上述したフラッシュメモリ等の試験を行う場合と同様に、複数個の半導体メモリ デバイスに対して不良領域情報の書き込みを同時に行うことはできず、不良領域情 報を書き込む救済動作に時間力 Sかかるという問題があった。また、従来、このような救 済動作は専用のリペア装置を用いて行われている場合もある力 不良セルが検出さ れた半導体メモリデバイスを半導体試験装置からリペア装置に移し替える作業が必 要になるため、救済動作に要する時間はさらに長くなる。
[0005] そこで本発明は、上記の課題を解決することのできる半導体試験装置及びその制 御方法を提供することを目的とする。この目的は請求の範囲における独立項に記載 の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例 を規定する。
課題を解決するための手段
[0006] 本発明の第 1の形態によると、複数の半導体デバイスのそれぞれに共通する共通 情報に対応する共通パターン波形を生成する第 1の波形生成手段と、前記複数の半 導体デバイスのそれぞれに対応して個別に用意された複数の個別情報に対応する 個別パターン波形を生成する複数の第 2の波形生成手段と、前記複数の半導体デ バイスのそれぞれに、前記第 1の波形生成手段によって生成された前記共通パター ン波形を共通に入力する動作と、前記複数の第 2の波形生成手段のそれぞれによつ て生成された前記個別パターン波形を個別に入力する動作とを選択的に行う波形切 替手段とを備えることを特徴とする半導体試験装置を提供する。
[0007] 前記複数の半導体デバイスのそれぞれは、半導体メモリデバイスであり、前記波形 切替手段は、複数の前記半導体メモリデバイスのそれぞれに、前記第 1の波形生成 手段によって生成された前記共通パターン波形を共通に入力する動作と、前記複数 の第 2の波形生成手段のそれぞれによって生成された前記個別パターン波形を、デ ータを書き込むべき書込アドレスとして個別に入力する動作とを選択的に行ってもよ レ、。
[0008] 前記共通パターン波形あるいは前記個別パターン波形に対応して前記半導体メモ リデバイスから出力される出力波形に基づいて、前記半導体メモリデバイス内の試験 対象箇所のパス/フェイル判定を行うパス/フェイル判定手段と、前記パス/フェイ ル判定手段による判定結果を格納するフェイルメモリとをさらに備えてもよい。
[0009] 前記個別情報を格納するメモリをさらに備え、前記第 2の波形生成手段は、前記メ モリに格納されている前記個別情報を読み出して前記個別パターン波形を生成して あよい。
[0010] 前記複数の半導体メモリデバイスのそれぞれは、書込アドレス及び書込データを時 分割で入力するインターフェイスを備え、前記波形切替手段は、前記複数の半導体 メモリデバイスのそれぞれに書込アドレスを入力すべきタイミングにおいて、前記複数 の半導体メモリデバイスのそれぞれに、複数の前記個別パターン波形のそれぞれを 個別に前記インターフェイスを介して入力し、前記複数の半導体メモリデバイスのそ れぞれに書込データを入力すべきタイミングにおいて、前記複数の半導体メモリデバ イスのそれぞれに、前記第 1の波形生成手段により生成された前記共通パターン波 形を共通に前記インターフェイスを介して入力してもよい。
[0011] 前記複数の半導体メモリデバイスのそれぞれの前記インターフェイスは、コマンド、 前記書込アドレス及び前記書込データを時分割で入力し、前記波形切替手段は、前 記複数の半導体メモリデバイスのそれぞれにコマンドを入力すべきタイミングにおい て、前記複数の半導体メモリデバイスのそれぞれに、前記第 1の波形生成手段により 生成された前記共通パターン波形を共通に前記インターフェイスを介して入力し、前 記複数の半導体メモリデバイスのそれぞれに書込アドレスを入力すべきタイミングに おいて、前記複数の半導体メモリデバイスのそれぞれに、複数の前記個別パターン 波形のそれぞれを個別に前記インターフェイスを介して入力し、前記複数の半導体メ モリデバイスのそれぞれに書込データを入力すべきタイミングにおいて、前記複数の 半導体メモリデバイスのそれぞれに、前記第 1の波形生成手段により生成された前記 共通パターン波形を共通に前記インターフェイスを介して入力してもよい。
[0012] 前記第 1の波形生成手段により生成された第 1の前記共通パターン波形あるいは 前記複数の第 2の波形生成手段により生成された前記複数の個別パターン波形に 対応して前記複数の半導体メモリデバイスのそれぞれから出力される出力波形に基 づいて、当該半導体メモリデバイス内の試験対象の記憶領域のパス/フェイル判定 を行う複数のパス/フェイル判定手段と、前記複数のパス/フェイル判定手段による 複数の判定結果を格納するフェイルメモリと、前記フェイルメモリに格納された複数の 前記判定結果に基づいて、前記複数の半導体メモリデバイスのそれぞれについて不 良記憶領域を識別する情報を前記複数の個別情報のそれぞれとして出力する不良 記憶領域選択手段を更に備え、前記複数の第 2の波形生成手段のそれぞれは、前 記複数の個別情報のそれぞれにより識別される、前記複数の半導体メモリデバイス のそれぞれにおける前記不良記憶領域のアドレスを示す前記個別パターン波形を 生成し、前記第 1の波形生成手段は、記憶領域が不良であることを識別する書込デ ータを示す第 2の前記共通パターン波形を生成し、前記波形切替手段は、前記複数 の半導体メモリデバイスのそれぞれに、当該半導体メモリデバイスの前記不良記憶領 域を示す前記書込アドレスとして前記個別パターン波形を個別に入力し、前記書込 アドレスに対応する記憶領域が不良であることを示す前記書込データとして前記第 2 の共通パターン波形を共通に入力して、前記書込アドレスに前記書込データを書き 込ませてもよい。
前記不良記憶領域選択手段は、前記複数の半導体メモリデバイスのそれぞれにつ レ、て 1又は複数の不良記憶領域を識別する情報を前記複数の個別情報のそれぞれ として出力し、前記複数の第 2の波形生成手段のそれぞれは、前記複数の個別情報 のそれぞれにより識別される、前記複数の半導体メモリデバイスのそれぞれにおける 1又は複数の前記不良記憶領域のアドレスを示す前記個別パターン波形を生成し、 前記第 1の波形生成手段は、記憶領域が不良であることを識別する書込データを示 す第 2の前記共通パターン波形を生成し、前記波形切替手段は、前記複数の半導 体メモリデバイスのそれぞれに、当該半導体メモリデバイスの 1又は複数の前記不良 記憶領域を示す 1又は複数の前記書込アドレスとして、前記個別パターン波形を個 別に入力し、 1又は複数の前記書込アドレスに対応する 1又は複数の記憶領域が不 良であることを示す前記書込データとして前記第 2の共通パターン波形を共通に入 力し、前記複数の半導体メモリデバイスのうち全ての前記不良記憶領域に対する前 記書込データの書き込みを終えた前記半導体メモリデバイスへの書き込みを禁止し た状態で、前記複数の半導体メモリデバイスのうち全ての前記不良記憶領域に対す る前記書込データの書き込みを終えていない前記半導体メモリデバイスへ書き込み を終えてレ、なレ、前記書込データを書き込ませてもよレ、。
[0014] 本発明の第 2の形態によると、複数の半導体デバイスを試験する半導体試験装置 の制御方法であって、複数の半導体デバイスのそれぞれに共通する共通情報に対 応する共通パターン波形を生成する第 1の波形生成段階と、前記複数の半導体デバ イスのそれぞれに対応して個別に用意された複数の個別情報に対応する個別バタ ーン波形を生成する複数の第 2の波形生成段階と、前記複数の半導体デバイスのそ れぞれに、前記第 1の波形生成段階によって生成された前記共通パターン波形を共 通に入力する動作と、前記複数の第 2の波形生成段階のそれぞれによって生成され た前記個別パターン波形を個別に入力する動作とを選択的に行う波形切替段階とを 備えることを特徴とする制御方法を提供する。
[0015] 本発明の第 3の形態によると、複数の半導体メモリデバイスを試験する半導体試験 装置であって、複数の半導体メモリデバイスのそれぞれの試験結果に基づいて、前 記複数の半導体メモリデバイスのそれぞれについて不良記憶領域を識別する個別 情報を出力する不良記憶領域選択手段と、前記複数の半導体メモリデバイスに対し て並行に、データを書き込むコマンドに対応するパターン波形を共通に入力し、前記 複数の半導体メモリデバイスのそれぞれの前記個別情報により識別される前記不良 記憶領域のアドレスに対応するパターン波形を書込アドレスとして個別に入力し、前 記書込アドレスに対応する記憶領域が不良であることを示すデータに対応するパタ ーン波形を書込データとして共通に入力する波形出力手段とを備える半導体試験装 置を提供する。
[0016] 本発明の第 4の形態によると、複数の半導体メモリデバイスを試験する半導体試験 装置の制御方法であって、前記複数の半導体メモリデバイスのそれぞれの試験結果 に基づいて、前記複数の半導体メモリデバイスのそれぞれについて不良記憶領域を 識別する個別情報を出力する不良記憶領域選択段階と、前記複数の半導体メモリ デバイスに対して並行に、データを書き込むコマンドに対応するパターン波形を共通 に入力し、前記複数の半導体メモリデバイスのそれぞれの前記個別情報により識別 される前記不良記憶領域のアドレスに対応するパターン波形を書込アドレスとして個 別に入力し、前記書込アドレスに対応する記憶領域が不良であることを示すデータ に対応するパターン波形を書込データとして共通に入力する波形出力段階とを備え る制御方法を提供する。
[0017] なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなぐ これらの特徴群のサブコンビネーションもまた、発明となりうる。
発明の効果
[0018] 本発明によれば複数の半導体デバイスのそれぞれに対して、互いに異なる複数の 個別情報を生成して入力する動作を並行して行うことができ、複数の半導体メモリデ バイスのそれぞれに別々の個別情報に基づくアドレスの入力が必要な場合の試験及 び/又は救済動作に要する時間を短縮することができる。
図面の簡単な説明
[0019] [図 1]一実施形態の半導体試験装置の構成を示す。
[図 2]必要に応じて個別書き込み動作が行われる試験動作の具体例を示す。
[図 3]必要に応じて個別書き込み動作が行われる救済動作の具体例を示す。
[図 4]本実施形態の変形例に係る半導体試験装置の構成を示す。
符号の説明
[0020] 1 ALPG
3 AFM
5 IOピン処理部
7 IOチャネル
9 DUT
10 テスト制御部
50 TG/メイン FCき
51 アンド回路
52 オア回路
53 フリップフロップ
54 メモリ 55 アドレス.ポインタ.コントローラ
58 サブ FC部
59 論理比較器
151 アンド回路
201 PG
202 試験モジユーノレ
205 IOピン処理部
210 テスト制御部
250 TG/メイン FC咅 B
発明を実施するための最良の形態
[0021] 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の 範囲に力かる発明を限定するものではなぐまた実施形態の中で説明されている特 徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
[0022] 図 1は、本実施形態の半導体試験装置の構成を示す図である。図 1に示す半導体 試験装置は、複数の DUT(Device Under Test)9に対する試験を並行して行うととも に、これら複数の DUT9に対する救済動作を並行して行う。このために、本実施形態 の半導体試験装置は、 ALPG (アルゴリズミック 'パターン.ジェネレータ) 1、 AFM (ァ ドレス 'フェイル'メモリ) 3、 1〇ピン処理部 5、 1〇チャネル 7、テスト制御部 10を含んで 構成されている。なお、 DUT9としては、半導体メモリデバイスやロジック IC等の半導 体デバイスを広く含んでいる力 以下の説明では、主に半導体メモリデバイスを試験 対象としている。
[0023] ALPG1は、試験や救済動作を行うために DUT9の 1〇ピンに入力するパターンデ ータ(PAT)を生成する。 AFM3は、 DUT9に対する試験によって得られた判定結果 であるフェイル情報を DUT9のセル単位で記憶する。具体的には、 DUT9のいずれ かの論理アドレス X, Yに対応する記憶セルのパス、フェイルを試験した結果力 AF M3のアドレス X, Yで特定される領域に格納される。
[0024] IOピン処理部 5は、 DUT9の 1〇ピンに入力するデータを生成するとともにこれらの I Oピンから出力されるデータのパス、フェイル判定を行うために、 TG/メイン FC部 50 、メモリ 54、サブ FC部 58、論理比較器 59を含んで構成されている。ここで、 「IOピン 」とは、半導体メモリデバイスにコマンド及び/又はアドレスを入力する半導体メモリ デバイスのピンや、半導体メモリデバイスとの間でメモリのデータを入出力するピン等 のようにパターン波形の入力と出力を行うピンである。
[0025] TG/メイン FC部 50は、試験動作の基本周期内に含まれる各種のタイミングエッジ を生成するタイミングジェネレータとしての機能と、このタイミングエッジと ALPG1から 出力されるパターンデータとに基づいて、 DUT9に入力する実際のデータ(共通パタ ーン波形)を生成する。このデータは、後段に設けられたアンド回路 51の一方の入力 端子に入力される。アンド回路 51の他方の入力端子には個別書き込みモード信号( MODE)が反転入力されている。 「個別書き込みモード」とは、同時測定の対象とな る複数の DUT9のそれぞれに対して、並行して個別情報を書き込む動作モードであ る。個別書き込みモードの指定は、例えば上述した ALPG1によってこの個別書き込 みモード信号をハイレベルに設定することにより行われる。アンド回路 51の他方の入 力端子にはこのハイレベルの個別書き込みモード信号が反転入力されるため、結局 、個別書き込みモードが指定されたときには TG/メイン FC部 50の出力データがァ ンド回路 51で遮断される。なお、このモード信号は、 ALPG1によって制御可能な信 号であって、このモード信号を用いることにより、共通パターン波形と個別書き込みパ ターン波形とをリアルタイムで切り替えることが可能になる。
[0026] メモリ 54は、任意のパターンデータを格納する。例えば、 1〇ピン処理部 5は、 ASIC
(Application Specific Integrated Circuit)によって構成されている。このメモリ 54から のパターンデータの読み出しは、アドレス.ポインタ 'コントローラ(CONT) 55の制御 によって行われる。
[0027] サブ FC部 58は、メモリ 54力も入力されるデータに基づいて、個別書き込みモード において各 DUT9に入力する実際のデータ(個別パターン波形)を生成する。このサ ブ FC部 58の出力データは、個別書き込みモード信号 (MODE)がー方端に入力さ れたアンド回路 151の他方端に入力されており、個別書き込みモード信号がハイレ ベルのときに、後段のオア回路 52に入力される。
[0028] なお、上述した TGZメイン FC部 50において保持された波形情報の数に比べて、 サブ FC部 58におレ、て保持されてレ、る波形情報(多数個同時測定機能に必要な波 形情報のみが含まれる)の数は少なく設定されている。このため、サブ FC部 58は、個 別書き込みモードにおいて必要となる最小限の波形情報のみが保持されている波形 整形器を用いて構成することもできる。また、各サブ FC部 58には、 TG/メイン FC部 50が有するタイミングジェネレータの機能が個別に備わっているものとする。
[0029] オア回路 52は、 TG/メイン FC部 50によって生成されてアンド回路 51を介して入 力されたデータ、あるいはサブ FC部 58によって生成されてアンド回路 151を介して 入力されたデータを出力する。このオア回路 52の出力データは、 IOチャネル 7に印 加するデータパターンを生成するフリップフロップ 53を通して、 IOチャネル 7に向けて 出力される。
[0030] 論理比較器 59は、 DUT9の 1〇ピンから出力されるデータと所定の期待値データと を比較し、一致の場合にはパス判定を、不一致の場合にはフェイル判定を行う。この 判定結果は、 AFM3に格納される。なお、 1〇ピン処理部 5の内部構成は、 TG/メイ ン FC部 50およびアンド回路 51が複数の DUT9に対して共通に設けられており、そ れ以外のサブ FC部 58、メモリ 54、論理比較器 59等が複数の DUT9のそれぞれに 対応して個別に設けられている。また、各 DUT9の複数本の IOピンのそれぞれに対 応して、 IOピン処理部 5が個別に設けられている。
[0031] IOチャネル 7は、 DUT9の 1〇ピンに印加する実際のパターン波形を生成するととも に、 1〇ピンから実際に出力される波形を論理データに変換する。このために、 1〇チヤ ネノレ 7は、ドライバ(DR) 70とコンパレータ(CP) 71を有する。ドライノく 70は、対応す る 1〇ピン処理部 5内のフリップフロップ 53に入力されたデータに基づいて通常波形 を生成する。コンパレータ 71は、 DUT9の IOピン(I/O)に現れる波形の電圧と所定 の基準電圧とを比較することにより、論理データの値を決定する。
[0032] テスト制御部 10は、不良記憶領域選択手段の一例であり、半導体試験装置による 試験を制御するために設けられる。ここで、テスト制御部 10は、 AFM3に格納された 判定結果に基づいて、複数の DUT9の試験動作又は救済動作にそれぞれ用いる複 数の個別情報を生成し、メモリ 54へ出力する。テスト制御部 10は、判定結果から個 別情報を生成する処理を高速化するために、 1又は複数の EWS (エンジニアリング' ワークステーション)により並列処理を行ってもよい。
[0033] このように、 ALPG1、 AFM3、及び IOピン処理部 5は、複数の DUT9に対して並 行にパターン波形を入力する波形出力手段として動作する。また、 TG/メイン FC部 50は、 ALPG1から供給された、複数の DUT9のそれぞれに共通する共通情報に対 応する共通パターン波形を生成する第 1の波形生成手段として動作する。複数のサ ブ FC部 58は、複数の DUT9のそれぞれに対応してメモリ 54に個別に用意された複 数の個別情報に対応する個別パターン波形を生成する複数の第 2の波形生成手段 として動作する。
[0034] また、アンド回路 51、 151、オア回路 52は、複数の DUT9のそれぞれに、第 1の波 形生成手段によって生成された共通パターン波形を共通に入力する動作と、複数の 第 2の波形生成手段のそれぞれによって生成された個別パターン波形を個別に入力 する動作とを選択的に行なう波形切替手段として動作する。ここで、例えば複数の D UT9のそれぞれの不良領域に不良領域情報を書き込む場合等においては、波形 切替手段は、個別パターン波形を、複数の DUT9のそれぞれに対し個別に入力す る動作を選択して行なってもよい。より具体的には、波形切替手段は、個別パターン 波形を、不良領域情報等のデータを書き込むべき書込アドレスとして、複数の DUT9 のそれぞれに対し個別に入力してもょレ、。
[0035] また、論理比較器 59は、共通パターン波形あるいは個別パターン波形に対応して DUT9から出力される出力波形に基づいて、 DUT9内の試験対象箇所のパス/フ エイル判定を行うパス/フェイル判定手段として動作する。そして、 AFM3は、前記 パス/フェイル判定手段による判定結果を格納するフェイルメモリとして動作する。
[0036] 本実施形態の半導体試験装置はこのような構成を有しており、 DUT9に対する試 験動作と救済動作について説明する。
[0037] (1)試験動作
(1一 1)複数の DUT9に対して同じデータを書き込む場合
ALPG1から出力されたパターンデータは、このパターンデータの入力対象となる I Oピンに対応する IOピン処理部 5に供給される。
IOピン処理部 5では、 TGZメイン FC部 50は、入力されたパターンデータに基づい て、実際の入力タイミングに合わせた試験データを作成する。このとき、個別書き込 みモード信号はローレベルを維持しているので、アンド回路 51からは、一方の入力 端子に入力された TG/メイン FC部 50の出力データがそのまま出力される。このァ ンド回路 51の出力端子は、複数の DUT9のそれぞれに対応して設けられたオア回 路 52の一方の入力端子に分岐して接続されている。したがって、 TG/メイン FC部 5 0から出力された共通のデータが複数のオア回路 52に同時に入力され、フリップフロ ップ 53に入力される。
[0038] IOチャネル 7では、ドライバ 70は、 IOピン処理部 5内のフリップフロップ 53に入力さ れたデータに基づいて通常波形を生成する。この通常波形は、対応する 1〇ピン (IZ O)に入力される。
[0039] このようにして、 IOピン処理部 5および IOチャネル 7によって生成された通常波形が IOピンに入力される。この IOピンに対応する 1〇チャネル 7では、コンパレータ 71は、 この IOピンから出力される波形の電圧と所定の基準電圧を比較して論理データを生 成する。さらに、この 1〇ピンに対応する IOピン処理部 5では、論理比較器 59におい て、 IOチャネル 7内のコンパレータ 71から入力されたデータを用いたパス/フェイル 判定を行う。この判定結果は、 AFM3に格納される。
[0040] (1一 2)複数の DUT9のそれぞれに個別情報を書き込む場合
個別書き込みモードが指定され、個別書き込みモード信号 (MODE)が出力される と、アンド回路 51において、 TG/メイン FC部 50の出力データがマスクされ、代わり にメモリ 54に格納された個別パターンを用いた個別書き込み動作が開始される。
[0041] メモリ 54を用いた個別書き込み動作では、メモリ 54に格納されている各 DUT9の 各 IOピンに対応したパターンデータが読み出され、サブ FC部 58に入力される。サブ FC部 58は、入力されたパターンデータに基づいて、実際の入力タイミングに合わせ た各 DUT9毎の個別情報に対応した試験データを作成する。そして、オア回路 52を 介してフリップフロップ 53に入力されたデータに基づいて通常波形が生成される。 IO チャネル 7では、ドライバ 70は、 IOピン処理部 5内のフリップフロップ 53に入力された データに基づいて通常波形を生成する。個別書き込みモードにおいては、 DUT9毎 に異なる通常波形が生成されて、対応する DUT9の IOピン (1〇)に入力される。 [0042] 図 2は、必要に応じて個別書き込み動作が行われる試験動作の具体例を示すタイ ミング図であり、複数の DUT9として複数のフラッシュメモリを試験する場合のタイミン グの一例が示されている。本例において、複数の DUT9のそれぞれは、書き込み動 作時にコマンド、書込アドレス、及び書込データを時分割で入力するインターフェイス を 1〇ピン (1〇)に備える。
[0043] 図 2に示すように、フラッシュメモリを試験する場合には、まず、 IOピン (IO)に「コマ ンド」に対応する共通データ(プログラム)が入力される。この入力動作は、 ALPG1に 格納されたパターンデータに基づレ、て、 IOピン処理部 5内の TG/メイン FC部 50に よって共通のデータを生成することにより行われる。
[0044] 次に、(A、 A 、 A )で指定される特定のアドレスに個別情報としてのデータを入
L M H
力する必要がある。このデータは、それぞれのフラッシュメモリ毎に異なる内容が設定 されている。例えば、 DUT # aに対応してデータ D、 D、…が、 DUT # bに対応して
0 1
データ D '、 D '、…が、…、 DUT # nに対応してデータ D "、 D "、…がそれぞれ設
0 1 0 1 定される。具体的には、特定のアドレス(A、 A 、 A )についての入力動作は、 ALP
L M H
G1に格納されたパターンデータに基づいて、 1〇ピン処理部 5内の TG/メイン FC部 50によって共通のデータを生成することにより行われる。また、データ D、 D '、 D "
0 0 0 等の個別情報の入力動作は、 AFM3あるいはメモリ 54に格納された個別情報に基 づいて、 IOピン処理部 5内のサブ FC部 58によって個別のデータを生成することによ り行われる。
[0045] すなわち、複数の DUT9のそれぞれの同一の書込アドレスに異なる書込データを 書き込む試験を行う場合、波形切替手段は、複数の DUT9のそれぞれにコマンド及 び共通の書込アドレスを入力すべきタイミングにおレ、て、複数の DUT9のそれぞれに 、第 1の波形生成手段により生成された共通パターン波形を共通にそれぞれの DUT 9のインターフェイスを介して入力する。また、波形切替手段は、複数の DUT9のそ れぞれに異なる書込データを入力すべきタイミングにおいて、複数の DUT9のそれ ぞれに、第 2の波形生成手段により生成された複数の個別パターン波形のそれぞれ を個別にそれぞれの DUT9のインターフェイスを介して入力する。
[0046] このようにして、共通のコマンド及びアドレスと個別のデータが入力されると、 DUT9 (DUT # a— # n)のそれぞれにおいてプログラミングが実行される。そして、 ALPG1 に格納されたパターンデータに基づいて複数の DUT9のそれぞれにプログラミング 結果の出力を指示するコマンドを IOピンから入力し、プログラミング結果をポーリング の形式で出力させる。このプログラミング結果は、 IOチャネル 7内のコンパレータ 71 に入力され、さらに 1〇ピン処理部 5内の論理比較器 59におレ、てパス/フェイル判定 が行われる。
[0047] 以上の処理において、半導体試験装置は、試験途中で個別書き込みモード信号を ローレベルからハイレベルに切り替えることにより、 ALPG1を用いた試験動作からメ モリ 54を用いた個別書き込みモードの試験動作に任意のタイミングで変更することが できる。また、その後必要に応じて個別書き込みモード信号をハイレベルからローレ ベルに戻すことにより、 ALPG1を用いた試験動作に戻すことができる。特に、個別書 き込みモード信号の内容と切り替えタイミングを ALPG1によって生成されるパターン データによって指定する場合には、一連の試験動作において必要なタイミングで個 別書き込みモードに切り替えたり、反対に元の通常モードに戻したりすることができ、 切り替えタイミングの複雑な制御が不要となる。このような制御により、半導体試験装 置は、複数の DUT9に供給するコマンド、アドレス、及びデータの少なくとも一部に対 して共通のコマンド、アドレス、及び/又はデータを供給し、他の部分に対して個別 のコマンド、アドレス、及び/又はデータを供給することができる。
[0048] (2)救済動作
救済動作においては、複数の DUT9のそれぞれの不良記憶領域を特定するァドレ スを個別情報としてそれぞれの DUT9に入力するとともに、書込データとして不良領 域情報を共通に入力する必要がある。すなわち、特定の 1〇ピンに対して個別情報を 入力する動作は、上述した試験動作における個別書き込みモードの動作と同じであ る。またそれぞれの DUT9の IOピンに共通情報を入力する動作も、上述した試験動 作における個別書き込みモード以外の場合の動作と同じである。
[0049] したがって、救済動作時の IOピン処理部 5の各部の設定等は、基本的に上述した 試験動作における個別書き込みモード時のこれらの設定と同じであり、各 DUT9の 救済箇所を示す個別の書込アドレスが IOピン処理部 5内のサブ FC部 58によって生 成され、 IOチャネル 7から各 DUT9の I〇ピンに入力される。
[0050] 図 3は、救済動作の具体例を示すタイミング図である。不良セルを含む DUT9を救 済する場合には、半導体試験装置は、まず試験動作を行い、試験の結果 AFM3に 格納された試験の判定結果に基づいて、不良記憶領域を識別する個別情報をメモリ 54に書き込んでおく。
[0051] より具体的には、複数の論理比較器 59は、第 1の波形生成手段により生成された 第 1の共通パターン波形あるいは複数の第 2の波形生成手段により生成された複数 の個別パターン波形に対応して複数の DUT9のそれぞれから出力される出力波形 に基づいて、当該 DUT9内の試験対象の記憶領域のパス Zフェイル判定を行う。次 に、 AFM3は、複数の論理比較器 59による判定結果のそれぞれを、複数の DUT9 のそれぞれの試験結果として格納する。そして、テスト制御部 10は、 AFM3に格納さ れた複数の判定結果に基づレ、て、複数の DUT9のそれぞれにつレ、て不良記憶領域 を識別する情報を、複数の個別情報のそれぞれとして複数のメモリ 54のそれぞれに 出力し、格納させる。
[0052] 第 1の波形生成手段は、「コマンド」に対応する共通データ(プログラム)の共通パタ ーン波形を生成する。波形切替手段は、複数の DUT9のそれぞれにコマンドを入力 すべきタイミングにおいて、複数の DUT9のそれぞれにコマンドに対応する共通パタ ーン波形を共通に IOピンのインターフェイスを介して入力する。
[0053] 次に、複数の第 2の波形生成手段のそれぞれは、メモリ 54に格納された、複数の D UT9にそれぞれ対応する複数の個別情報のそれぞれにより識別される、複数の DU T9のそれぞれにおける不良記憶領域のアドレスを示す個別パターン波形を生成す る。波形切替手段は、複数の DUT9のそれぞれに書込アドレスを入力すべきタイミン グにおいて、複数の DUT9のそれぞれに、複数の個別パターン波形のそれぞれを個 別に 1〇ピンのインターフェイスを介して入力する。
[0054] 次に、第 1の波形生成手段は、記憶領域が不良であることを識別する書込データを 示す共通パターン波形を生成する。波形切替手段は、複数の DUT9のそれぞれに 書込データを入力すべきタイミングにおいて、複数の DUT9のそれぞれに、第 1の波 形生成手段により生成された共通パターン波形を共通に IOピンのインターフェイスを 介して入力する。
[0055] 以上の処理により、波形出力手段は、複数の DUT9に対して並行に、データを書き 込むコマンドに対応するパターン波形を共通に入力し、複数の DUT9のそれぞれに ついての個別情報により識別される不良記憶領域のアドレスに対応するパターン波 形を書込アドレスとして個別に入力し、書込アドレスに対応する記憶領域が不良であ ることを示すデータに対応するパターン波形を書込データとして共通に入力すること ができる。より具体的には、波形切替手段は、複数の DUT9のそれぞれに、当該 DU T9の前記不良記憶領域を示す書込アドレスとして個別パターン波形を個別に入力 し、書込アドレスに対応する記憶領域が不良であることを示す書込データとして共通 パターン波形を共通に入力して、書込アドレスに書込データを書き込ませることがで きる。この結果、半導体試験装置は、複数の DUT9の異なるアドレスの不良記憶領 域に対して並行して不良領域情報を書き込むことができ、救済動作に要する時間を 短縮すること力 Sできる。
[0056] ここで、複数の DUT9のそれぞれが、 1又は複数の不良記憶領域を有する場合、 半導体試験装置は、次に示す救済動作を行う。
テスト制御部 10は、 AFM3に格納された複数の判定結果に基づいて、複数の DU T9のそれぞれについて 1又は複数の不良記憶領域を識別する情報を複数の個別情 報のそれぞれとして出力し、複数のメモリ 54のそれぞれに格納させる。
[0057] 第 1の波形生成手段は、複数の DUT9のそれぞれにおける 1又は複数の不良記憶 領域に対応して、「コマンド」に対応する共通データ(プログラム)の共通パターン波形 を生成する。複数の第 2の波形生成手段のそれぞれは、メモリ 54に格納された複数 の個別情報のそれぞれにより識別される、複数の DUT9のそれぞれにおける 1又は 複数の不良記憶領域のアドレスを示す個別パターン波形を順次生成する。また、第 1 の波形生成手段は、記憶領域が不良であることを識別する書込データを示す共通パ ターン波形を、 1又は複数の不良記憶領域のそれぞれに対応して生成する。
[0058] 波形切替手段は、複数の DUT9のそれぞれに、当該 DUT9の不良記憶領域のそ れぞれに対応してコマンドの共通パターン波形を共通に入力する。また、複数の DU T9のそれぞれに、当該 DUT9の 1又は複数の不良記憶領域を示す 1又は複数の書 込アドレスとして、個別パターン波形を個別に入力する。また、 1又は複数の書込アド レスに対応する 1又は複数の記憶領域が不良であることを示す書込データとして、生 成した書込データの共通パターン波形を共通に入力する。
[0059] 上記の処理において、複数の DUT9は、それぞれ異なる数の不良記憶領域を有 する場合がある。この場合、例えば図 3における DUT # nの 2回目の書き込みに示し た様に、波形切替手段は、複数の DUT9のうち全ての不良記憶領域に対する書込 データの書き込みを終えた DUT9への書き込みを禁止した状態で、複数の DUT9 のうち全ての不良記憶領域に対する書込データの書き込みを終えていない DUT9 へ書き込みを終えてレ、なレ、書込データを書き込ませる。
[0060] より具体的には、波形切替手段は、メモリ 54に格納された個別情報に基づき、全て の不良記憶領域に対する書込データの書き込みを終えていない DUT9に対しては、 当該 DUT9のライトイネーブル信号ピン(ZWE)をイネ一ブルとすることによって書 込データを書き込む。一方、全ての不良記憶領域に対する書込データの書き込みを 終えた DUT9に対しては、当該 DUT9のライトイネーブル信号ピン(/WE)をデイセ 一ブルとすることによって書込データの書き込みを禁止する。
[0061] ここで、波形切替手段は、ライトイネーブル信号ピンに代えて、チップィネーブル信 号ピン (/CE)をィネーブル又はディセーブルすることによって、当該 DUT9自体を 選択又は非選択とし、書込データの書き込みを許可又は禁止してもよい。
[0062] このように、本実施形態の半導体試験装置では、複数の DUT9のそれぞれに対し て、互いに異なる複数の個別情報を生成して入力する動作を並行して行うことができ るため、別々の個別情報の入力が必要な場合の試験に要する時間を短縮することが できる。
[0063] また、 TGZメイン FC部 50において選択可能な波形の種類よりも、サブ FC部 58に おいて選択可能な波形の種類を少なく設定することにより、装置規模が拡大すること を最小限に抑えることができる。
[0064] また、 1〇ピン処理部 5内に個別情報を格納するメモリ 54を備えているため、 ASIC のパッケージの外部で引き回す配線が不要になり、配線の簡略化が可能になる。ま た、不要な配線がなくなるため、タイミングのズレ等が発生しにくくなり、個別情報の読 み出しを高速に行うことができるようになる。
[0065] また、上述した実施形態では、 TG/メイン FC部 50とは別にこれらの機能の一部を 省略したサブ FC部 58を備えるようにした力 装置規模の拡大が許容される場合には 、サブ FC部 58の代わりに同数の TG/メイン FC部を備えるようにしてもよい。
[0066] 図 4は、本実施形態の変形例に係る半導体試験装置の構成を示す図である。図 4 に示す半導体試験装置は、複数の DUT9に対する試験を並行して行うと共に、これ ら複数の DUT9に対する救済動作を並行して行う。ここで、図 4中における、図 1と同 一符号を付した部材は、図 1中の同一符号の部材と同様の機能及び構成をとるため 、以下相違点を除き説明を省略する。
[0067] 本変形例に係る半導体試験装置は、複数の DUT9のそれぞれに対応して設けら れた複数の試験モジュール 202と、 IOチヤネノレ 7と、テスト制御部 210とを備える。
[0068] 複数の試験モジュール 202は波形出力手段の一例であり、複数の DUT9に対して 並行に、 ALPG1又は PG (パターン 'ジェネレータ) 201が生成するパターンデータを IOチャネル 7を介して DUT9に入力する。試験モジュール 202は、 ALPG1と、 PG2 01と、 1又は複数の IOピン処理部 205と、 AFM3とを有する。 PG201は、 DUT9に 出力すべき試験パターンを格納するパターンメモリを含み、パターンメモリに格納さ れた試験パターンを 1〇ピン処理部 205に順次供給する。
[0069] IOピン処理部 205は、当該試験モジュール 202が接続される DUT9の複数の 1〇ピ ンのそれぞれに対応して複数設けられ、 ALPG1又は PG201から供給されたパター ンデータに基づいて DUT9に入力するデータを生成すると共に、対応する 1〇ピンか ら出力されるデータのパス、フェイル判定を行う。 IOピン処理部 205は、 TG/メイン F C部 250、フリップフロップ 53、及び論理比較器 59を含む。
TG/メイン FC部 250は、当該 TGZメイン FC部 250を含む試験モジュール 202が 接続される DUT9に入力するパターン波形を生成し、フリップフロップ 53に供給する 。 TG/メイン FC部 250は、図 1に示した TGZメイン FC部 50と同様の機能及び構成 をとるため、以下相違点を除き説明を省略する。
[0070] テスト制御部 210は、不良記憶領域選択手段の一例であり、半導体試験装置によ る試験を制御するために設けられている。ここで、テスト制御部 210は、複数の DUT 9のそれぞれの試験結果として AFM3に格納された判定結果に基づいて、複数の D
UT9の試験動作又は救済動作にそれぞれ用いる複数の個別情報を生成し、テスト 制御部 210へ出力する。
[0071] 以下に、本変形例に係る半導体試験装置による DUT9の試験動作及び救済動作 について説明する。
[0072] (1)試験動作
(1-1)複数の DUT9に対して同じデータを書き込む場合
複数の DUT9にそれぞれ対応して設けられた複数の ALPG1は、同一アルゴリズム に基づいて同一のパターンデータを出力する。 ALPG1から出力されたパターンデ ータは、このパターンデータの入力対象となる 1〇ピンに対応する 1〇ピン処理部 205 に供給される。
IOピン処理部 205では、 TGZメイン FC部 50は、入力されたパターンデータに基 づいて、実際の入力タイミングに合わせた試験データを作成する。
IOチャネル 7では、ドライバ 70は、 IOピン処理部 205内のフリップフロップ 53に入 力されたデータに基づいて通常波形を生成する。この通常波形は、対応する IOピン (I/O)に入力される。
[0073] このようにして、 IOピン処理部 205および IOチャネル 7によって生成された通常波 形が 1〇ピンに入力される。この 1〇ピンに対応する IOチャネル 7では、コンパレータ 71 は、この 1〇ピンから出力される波形の電圧と所定の基準電圧を比較して論理データ を生成する。さらに、この IOピンに対応する IOピン処理部 5では、論理比較器 59に おいて、 IOチャネル 7内のコンパレータ 71から入力されたデータを用いたパス/フエ ィル判定を行う。この判定結果は、 AFM3に格納される。
[0074] (1一 2)複数の DUT9のそれぞれに個別情報を書き込む場合
複数の DUT9のそれぞれに並行して個別情報を書き込む場合、テスト制御部 210 は、複数の試験モジュール 202内の PG201に設けられたパターンメモリに対して、 個別情報に対応してそれぞれ異なる試験パターンを格納する。 PG201は、個別の 試験パターンを読み出して、 TG/メイン FC部 250に個別のパターンデータを供給 する。 TGZメイン FC部 250は、入力されたパターンデータに基づいて、実際の入力 タイミングに合わせた各 DUT9毎の個別情報に対応した試験データを作成する。フリ ップフロップ 53は、入力されたデータに基づいて通常波形を生成する。 IOチャネル 7 では、ドライバ 70は、 1〇ピン処理部 205内のフリップフロップ 53に入力されたデータ に基づいて通常波形を生成する。個別書き込みモードにおいては、 DUT9毎に異な る通常波形が生成されて、対応する DUT9の 1〇ピン (IO)に入力される。
[0075] 本変形例に係る半導体試験装置において、個別書き込み動作が行われる試験動 作のタイミングは、例えば図 2における個別書込モード信号を除いたものと同様であ る。本変形例においては、複数の DUT9にそれぞれ対応する複数の PG201に、「コ マンド」に対応する共通パターンデータ、「アドレス」に対応する共通パターンデータ、 及び「データ」に対応する個別パターンデータを順次出力する試験パターンが格納さ れる。
[0076] 複数の試験モジュール 202は、当該試験モジュール 202内の PG201に格納され た試験パターンに基づいて、複数の DUT9に対して並行に異なるデータを書き込む 。より具体的には、 1〇ピン処理部 205は、全ての PG201に共通に格納された書込コ マンド及び書込アドレスに対応するパターン波形を DUT9に共通に入力し、各 PG2 01に個別に格納された書込データに対応するパターン波形を DUT9に共通に入力 することにより、複数の DUT9のそれぞれの同一書込アドレスに異なる書込データを 並行して書き込む。このようにして、本変形例に係る半導体試験装置は、複数の DU T9に供給するコマンド、アドレス、及び/又はデータを供給し、他の部分に対して個 別のコマンド、アドレス、及び/又はデータを供給することができる。
[0077] (2)救済動作
救済動作においては、複数の DUT9のそれぞれの不良記憶領域を特定するァドレ スを個別情報としてそれぞれの DUT9に入力すると共に、書込データとして不良領 域情報を共通に入力する必要がある。すなわち、特定の 1〇ピンに対して個別情報を 入力する動作は、上述した試験動作における個別書き込み動作と同じである。また それぞれの DUT9の 1〇ピンに共通情報を入力する動作も、上述した試験動作にお ける個別書き込み動作以外の動作と同じである。
[0078] したがって、救済動作時の IOピン処理部 205の各部の設定等は、基本的に上述し た試験動作における個別書き込み動作における設定と同じである。すなわち、各 DU T9の救済箇所を示す個別の書込アドレスが当該 DUT9に対応する PG201内の試 験パターンとして格納され、 IOピン処理部 205内の TG/メイン FC部 250によってパ ターン波形が生成されて、 IOチャネル 7から各 DUT9の 1〇ピンに入力される。
[0079] 本変形例に係る半導体試験装置において、個別救済動作が行われる試験動作の タイミングは、例えば図 3における個別書込モード信号を除いたものと同様である。
[0080] より具体的には、テスト制御部 210は、複数の DUT9のそれぞれの試験結果である 、 AFM3に格納された複数の判定結果に基づいて、複数の DUT9のそれぞれにつ レ、て不良領域を識別する個別情報を含む試験パターンを生成する。この試験パター ンは、「コマンド」に対応する共通パターンデータ、「アドレス」に対応する個別パター ンデータ、及び「データ」に対応する共通パターンデータを順次出力するためのバタ ーンである。テスト制御部 210は、複数の試験モジュール 202のそれぞれに、各 DU T9に対応して生成した試験パターンを個別に送信し、 PG201に格納させる。
[0081] 複数の試験モジュール 202は、当該試験モジュール 202内の PG201に格納され た試験パターンに基づいて、複数の DUT9に対して並行に異なる不良記憶領域に 不良領域情報を書き込む。より具体的には、 PG201に格納された試験パターンに基 づいて、 IOピン処理部 205は、書込コマンドに対応するパターン波形を複数の DUT 9に共通に入力し、複数の DUT9のそれぞれの個別情報により識別される不良記憶 領域のアドレスに対応するパターン波形を書込アドレスとして複数の DUT9に個別に 入力し、書込アドレスに対応する記憶領域が不良であることを示すデータに対応する パターン波形を書込データとして複数の DUT9に共通に入力する。これにより、本変 形例に係る半導体試験装置は、複数の DUT9のそれぞれの同一書込アドレスに異 なる書込データを並行して書き込むことができる。この結果、本変形例に係る半導体 試験装置は、複数の DUT9の異なるアドレスの不良記憶領域に対して並行して不良 領域情報を書き込むことができ、救済動作に要する時間を短縮することができる。
[0082] なお、本発明は上述した実施形態に限定されるものではなぐ本発明の要旨の範 囲内で種々の変形実施が可能である。例えば、上述した実施形態では、 DUT9とし て主に半導体メモリを考えて説明を行った力 ロジック ICであっても複数個同時に試 験を行う場合には本発明を適用することができる。
[0083] 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実 施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または 改良をカ卩えることが可能であることが当業者に明らかである。その様な変更または改 良をカ卩えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から 明らかである。
産業上の利用可能性
[0084] 上記説明から明ら力なように、本発明によれば複数の半導体デバイスのそれぞれ に対して、互いに異なる複数の個別情報を生成して入力する動作を並行して行うこと ができ、複数の半導体メモリデバイスのそれぞれに別々の個別情報に基づくアドレス の入力が必要な場合の試験及び/又は救済動作に要する時間を短縮することがで きる。

Claims

請求の範囲
[1] 複数の半導体デバイスのそれぞれに共通する共通情報に対応する共通パターン 波形を生成する第 1の波形生成手段と、
前記複数の半導体デバイスのそれぞれに対応して個別に用意された複数の個別 情報に対応する個別パターン波形を生成する複数の第 2の波形生成手段と、 前記複数の半導体デバイスのそれぞれに、前記第 1の波形生成手段によって生成 された前記共通パターン波形を共通に入力する動作と、前記複数の第 2の波形生成 手段のそれぞれによって生成された前記個別パターン波形を個別に入力する動作と を選択的に行う波形切替手段と
を備えることを特徴とする半導体試験装置。
[2] 前記複数の半導体デバイスのそれぞれは、半導体メモリデバイスであり、
前記波形切替手段は、複数の前記半導体メモリデバイスのそれぞれに、前記第 1 の波形生成手段によって生成された前記共通パターン波形を共通に入力する動作 と、前記複数の第 2の波形生成手段のそれぞれによって生成された前記個別パター ン波形を、データを書き込むべき書込アドレスとして個別に入力する動作とを選択的 に行う
ことを特徴とする請求項 1記載の半導体試験装置。
[3] 前記共通パターン波形あるいは前記個別パターン波形に対応して前記半導体メモ リデバイスから出力される出力波形に基づいて、前記半導体メモリデバイス内の試験 対象箇所のパス/フェイル判定を行うパス Zフェイル判定手段と、
前記パス/フェイル判定手段による判定結果を格納するフェイルメモリと をさらに備えることを特徴とする請求項 2記載の半導体試験装置。
[4] 前記個別情報を格納するメモリをさらに備え、
前記第 2の波形生成手段は、前記メモリに格納されている前記個別情報を読み出 して前記個別パターン波形を生成することを特徴とする請求項 2記載の半導体試験 装置。
[5] 前記複数の半導体メモリデバイスのそれぞれは、書込アドレス及び書込データを時 分割で入力するインターフェイスを備え、 前記波形切替手段は、
前記複数の半導体メモリデバイスのそれぞれに書込アドレスを入力すべきタイミン グにおいて、前記複数の半導体メモリデバイスのそれぞれに、複数の前記個別パタ ーン波形のそれぞれを個別に前記インターフェイスを介して入力し、
前記複数の半導体メモリデバイスのそれぞれに書込データを入力すべきタイミング において、前記複数の半導体メモリデバイスのそれぞれに、前記第 1の波形生成手 段により生成された前記共通パターン波形を共通に前記インターフェイスを介して入 力する
ことを特徴とする請求項 2記載の半導体試験装置。
[6] 前記複数の半導体メモリデバイスのそれぞれの前記インターフェイスは、コマンド、 前記書込アドレス及び前記書込データを時分割で入力し、
前記波形切替手段は、
前記複数の半導体メモリデバイスのそれぞれにコマンドを入力すべきタイミングに おいて、前記複数の半導体メモリデバイスのそれぞれに、前記第 1の波形生成手段 により生成された前記共通パターン波形を共通に前記インターフェイスを介して入力 し、
前記複数の半導体メモリデバイスのそれぞれに書込アドレスを入力すべきタイミン グにおいて、前記複数の半導体メモリデバイスのそれぞれに、複数の前記個別パタ ーン波形のそれぞれを個別に前記インターフェイスを介して入力し、
前記複数の半導体メモリデバイスのそれぞれに書込データを入力すべきタイミング において、前記複数の半導体メモリデバイスのそれぞれに、前記第 1の波形生成手 段により生成された前記共通パターン波形を共通に前記インターフェイスを介して入 力する
ことを特徴とする請求項 5記載の半導体試験装置。
[7] 前記第 1の波形生成手段により生成された第 1の前記共通パターン波形あるいは 前記複数の第 2の波形生成手段により生成された前記複数の個別パターン波形に 対応して前記複数の半導体メモリデバイスのそれぞれから出力される出力波形に基 づいて、当該半導体メモリデバイス内の試験対象の記憶領域のパス/フェイル判定 を行う複数のパス/フェイル判定手段と、
前記複数のパス/フェイル判定手段による複数の判定結果を格納するフェイルメモ リと、
前記フェイルメモリに格納された複数の前記判定結果に基づいて、前記複数の半 導体メモリデバイスのそれぞれについて不良記憶領域を識別する情報を前記複数の 個別情報のそれぞれとして出力する不良記憶領域選択手段を更に備え、
前記複数の第 2の波形生成手段のそれぞれは、前記複数の個別情報のそれぞれ により識別される、前記複数の半導体メモリデバイスのそれぞれにおける前記不良記 憶領域のアドレスを示す前記個別パターン波形を生成し、
前記第 1の波形生成手段は、記憶領域が不良であることを識別する書込データを 示す第 2の前記共通パターン波形を生成し、
前記波形切替手段は、前記複数の半導体メモリデバイスのそれぞれに、当該半導 体メモリデバイスの前記不良記憶領域を示す前記書込アドレスとして前記個別パタ ーン波形を個別に入力し、前記書込アドレスに対応する記憶領域が不良であること を示す前記書込データとして前記第 2の共通パターン波形を共通に入力して、前記 書込アドレスに前記書込データを書き込ませる
ことを特徴とする請求項 2記載の半導体試験装置。
[8] 前記不良記憶領域選択手段は、前記複数の半導体メモリデバイスのそれぞれにつ レ、て 1又は複数の不良記憶領域を識別する情報を前記複数の個別情報のそれぞれ として出力し、
前記複数の第 2の波形生成手段のそれぞれは、前記複数の個別情報のそれぞれ により識別される、前記複数の半導体メモリデバイスのそれぞれにおける 1又は複数 の前記不良記憶領域のアドレスを示す前記個別パターン波形を生成し、
前記第 1の波形生成手段は、記憶領域が不良であることを識別する書込データを 示す第 2の前記共通パターン波形を生成し、
前記波形切替手段は、
前記複数の半導体メモリデバイスのそれぞれに、当該半導体メモリデバイスの 1又 は複数の前記不良記憶領域を示す 1又は複数の前記書込アドレスとして、前記個別 パターン波形を個別に入力し、
1又は複数の前記書込アドレスに対応する 1又は複数の記憶領域が不良であること を示す前記書込データとして前記第 2の共通パターン波形を共通に入力し、 前記複数の半導体メモリデバイスのうち全ての前記不良記憶領域に対する前記書 込データの書き込みを終えた前記半導体メモリデバイスへの書き込みを禁止した状 態で、前記複数の半導体メモリデバイスのうち全ての前記不良記憶領域に対する前 記書込データの書き込みを終えていない前記半導体メモリデバイスへ書き込みを終 えてレ、なレ、前記書込データを書き込ませる
ことを特徴とする請求項 7記載の半導体試験装置。
[9] 複数の半導体デバイスを試験する半導体試験装置の制御方法であって、
複数の半導体デバイスのそれぞれに共通する共通情報に対応する共通パターン 波形を生成する第 1の波形生成段階と、
前記複数の半導体デバイスのそれぞれに対応して個別に用意された複数の個別 情報に対応する個別パターン波形を生成する複数の第 2の波形生成段階と、 前記複数の半導体デバイスのそれぞれに、前記第 1の波形生成段階によって生成 された前記共通パターン波形を共通に入力する動作と、前記複数の第 2の波形生成 段階のそれぞれによって生成された前記個別パターン波形を個別に入力する動作と を選択的に行う波形切替段階と
を備えることを特徴とする制御方法。
[10] 複数の半導体メモリデバイスを試験する半導体試験装置であって、
複数の半導体メモリデバイスのそれぞれの試験結果に基づいて、前記複数の半導 体メモリデバイスのそれぞれについて不良記憶領域を識別する個別情報を出力する 不良記憶領域選択手段と、
前記複数の半導体メモリデバイスに対して並行に、データを書き込むコマンドに対 応するパターン波形を共通に入力し、前記複数の半導体メモリデバイスのそれぞれ の前記個別情報により識別される前記不良記憶領域のアドレスに対応するパターン 波形を書込アドレスとして個別に入力し、前記書込アドレスに対応する記憶領域が不 良であることを示すデータに対応するパターン波形を書込データとして共通に入力 する波形出力手段と
を備える半導体試験装置。
複数の半導体メモリデバイスを試験する半導体試験装置の制御方法であって、 前記複数の半導体メモリデバイスのそれぞれの試験結果に基づいて、前記複数の 半導体メモリデバイスのそれぞれについて不良記憶領域を識別する個別情報を出力 する不良記憶領域選択段階と、
前記複数の半導体メモリデバイスに対して並行に、データを書き込むコマンドに対 応するパターン波形を共通に入力し、前記複数の半導体メモリデバイスのそれぞれ の前記個別情報により識別される前記不良記憶領域のアドレスに対応するパターン 波形を書込アドレスとして個別に入力し、前記書込アドレスに対応する記憶領域が不 良であることを示すデータに対応するパターン波形を書込データとして共通に入力 する波形出力段階と
を備える制御方法。
PCT/JP2004/008361 2003-06-19 2004-06-15 半導体試験装置及びその制御方法 WO2004114318A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04745915A EP1643509B1 (en) 2003-06-19 2004-06-15 Semiconductor test device and control method thereof
DE602004025347T DE602004025347D1 (de) 2003-06-19 2004-06-15 Halbleiter-prüfeinrichtung und steuerverfahren dafür
US11/303,191 US7356435B2 (en) 2003-06-19 2005-12-16 Semiconductor test apparatus and control method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003174477 2003-06-19
JP2003-174477 2003-06-19
JP2003-185679 2003-06-27
JP2003185679A JP4334285B2 (ja) 2003-06-19 2003-06-27 半導体試験装置及びその制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/303,191 Continuation US7356435B2 (en) 2003-06-19 2005-12-16 Semiconductor test apparatus and control method therefor

Publications (1)

Publication Number Publication Date
WO2004114318A1 true WO2004114318A1 (ja) 2004-12-29

Family

ID=33543477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008361 WO2004114318A1 (ja) 2003-06-19 2004-06-15 半導体試験装置及びその制御方法

Country Status (9)

Country Link
US (1) US7356435B2 (ja)
EP (1) EP1643509B1 (ja)
JP (1) JP4334285B2 (ja)
KR (1) KR100733234B1 (ja)
CN (1) CN100524536C (ja)
DE (1) DE602004025347D1 (ja)
PT (1) PT1643509E (ja)
TW (1) TWI317430B (ja)
WO (1) WO2004114318A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542852B2 (ja) * 2004-08-20 2010-09-15 株式会社アドバンテスト 試験装置及び試験方法
US7913002B2 (en) * 2004-08-20 2011-03-22 Advantest Corporation Test apparatus, configuration method, and device interface
JP2006294104A (ja) * 2005-04-08 2006-10-26 Yokogawa Electric Corp デバイス試験装置およびデバイス試験方法
KR100753050B1 (ko) 2005-09-29 2007-08-30 주식회사 하이닉스반도체 테스트장치
KR100788913B1 (ko) * 2005-11-18 2007-12-27 주식회사디아이 반도체 장치의 테스트 시스템을 위한 전치 분기 패턴 발생장치
KR100750397B1 (ko) * 2006-01-24 2007-08-17 주식회사디아이 웨이퍼 검사장치의 멀티 테스트 구현시스템
US20070208968A1 (en) * 2006-03-01 2007-09-06 Anand Krishnamurthy At-speed multi-port memory array test method and apparatus
KR100859793B1 (ko) * 2007-06-25 2008-09-23 주식회사 메모리앤테스팅 반도체 테스트 장치 및 이를 이용한 반도체 테스트 방법
US7821284B2 (en) * 2008-10-24 2010-10-26 It&T Semiconductor test head apparatus using field programmable gate array
CN101776731B (zh) * 2009-01-14 2012-06-13 南亚科技股份有限公司 半导体组件测试装置与方法
JP2011007721A (ja) * 2009-06-29 2011-01-13 Yokogawa Electric Corp 半導体試験装置、半導体試験方法および半導体試験プログラム
EP2587489A1 (en) * 2011-10-27 2013-05-01 Maishi Electronic (Shanghai) Ltd. Systems and methods for testing memories
CN103093829A (zh) * 2011-10-27 2013-05-08 迈实电子(上海)有限公司 存储器测试系统及存储器测试方法
US9285828B2 (en) * 2013-07-11 2016-03-15 Apple Inc. Memory system with improved bus timing calibration
US20170045579A1 (en) * 2015-08-14 2017-02-16 Texas Instruments Incorporated Cpu bist testing of integrated circuits using serial wire debug
US10319453B2 (en) * 2017-03-16 2019-06-11 Intel Corporation Board level leakage testing for memory interface
KR20220052780A (ko) * 2020-10-21 2022-04-28 에스케이하이닉스 주식회사 테스트회로를 포함하는 전자장치 및 그의 동작 방법
CN115047307B (zh) * 2022-08-17 2022-11-25 浙江杭可仪器有限公司 一种半导体器件老化测试箱

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11203893A (ja) * 1998-01-05 1999-07-30 Fujitsu Ltd 半導体装置及び半導体装置の試験方法
JP2002071766A (ja) * 2000-08-28 2002-03-12 Advantest Corp 半導体試験装置
JP2002174669A (ja) * 1999-03-01 2002-06-21 Formfactor Inc Dut間及びdut内比較を用いる、集積回路デバイスの同時テスト

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0140176B1 (ko) * 1994-11-30 1998-07-15 김광호 반도체 메모리장치의 동작모드 제어장치 및 방법
US6094733A (en) * 1996-01-25 2000-07-25 Kabushiki Kaisha Toshiba Method for testing semiconductor memory devices, and apparatus and system for testing semiconductor memory devices
JPH09288153A (ja) * 1996-04-19 1997-11-04 Advantest Corp 半導体試験装置
US5794175A (en) * 1997-09-09 1998-08-11 Teradyne, Inc. Low cost, highly parallel memory tester
WO2001013347A1 (fr) * 1999-08-17 2001-02-22 Advantest Corporation Adaptateur de commande d'instrument de mesure, instrument de mesure, systeme de commande d'instrument de mesure, procede d'execution de mesure et support enregistre
JP3447638B2 (ja) * 1999-12-24 2003-09-16 日本電気株式会社 半導体装置のテスト方法及びシステム並びに記録媒体
JP2002015596A (ja) * 2000-06-27 2002-01-18 Advantest Corp 半導体試験装置
WO2002103379A1 (fr) * 2001-06-13 2002-12-27 Advantest Corporation Instrument destine a tester des dispositifs semi-conducteurs et procede destine a tester des dispositifs semi-conducteurs
JP4291596B2 (ja) * 2003-02-26 2009-07-08 株式会社ルネサステクノロジ 半導体集積回路の試験装置およびそれを用いた半導体集積回路の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11203893A (ja) * 1998-01-05 1999-07-30 Fujitsu Ltd 半導体装置及び半導体装置の試験方法
JP2002174669A (ja) * 1999-03-01 2002-06-21 Formfactor Inc Dut間及びdut内比較を用いる、集積回路デバイスの同時テスト
JP2002071766A (ja) * 2000-08-28 2002-03-12 Advantest Corp 半導体試験装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1643509A4 *

Also Published As

Publication number Publication date
CN100524536C (zh) 2009-08-05
EP1643509A4 (en) 2007-04-04
TW200508631A (en) 2005-03-01
US20060092755A1 (en) 2006-05-04
US7356435B2 (en) 2008-04-08
KR20060019607A (ko) 2006-03-03
EP1643509A1 (en) 2006-04-05
TWI317430B (en) 2009-11-21
JP4334285B2 (ja) 2009-09-30
EP1643509B1 (en) 2010-01-27
PT1643509E (pt) 2010-03-25
DE602004025347D1 (de) 2010-03-18
CN1809896A (zh) 2006-07-26
KR100733234B1 (ko) 2007-06-27
JP2005063471A (ja) 2005-03-10

Similar Documents

Publication Publication Date Title
US7356435B2 (en) Semiconductor test apparatus and control method therefor
US20050204234A1 (en) Method and apparatus for the memory self-test of embedded memories in semiconductor chips
KR100556639B1 (ko) 반도체 검사 장치, 반도체 집적 회로 장치, 및 반도체 집적 회로 장치의 검사 방법
JP3804733B2 (ja) ストレス用電圧を用いてメモリをテストする機能を有する集積回路
JP4008041B2 (ja) データ・シリアライザを有する半導体テスタ
JP4334463B2 (ja) 半導体集積回路のテスト装置および方法
JP4377238B2 (ja) 半導体試験装置
JP2001520780A (ja) 相互接続部テストユニットを有する回路及び第1電子回路と第2電子回路との間の相互接続部をテストする方法
US6219289B1 (en) Data writing apparatus, data writing method, and tester
US8368418B2 (en) Testing apparatus for multiple identical circuit components
US5889786A (en) Memory testing device
US20020049943A1 (en) Semiconductor test system
KR100660640B1 (ko) 웨이퍼 자동선별 테스트를 위한 데이터 기입 장치 및 방법
KR101184312B1 (ko) 시험 장치
US8117004B2 (en) Testing module, testing apparatus and testing method
JP3185187B2 (ja) Ic試験装置
JPH10253707A (ja) 集積回路試験装置
JP4922506B2 (ja) 半導体メモリ試験装置
JP2009222581A (ja) 半導体試験装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11303191

Country of ref document: US

Ref document number: 20048169762

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057024360

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004745915

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057024360

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004745915

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11303191

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP